WO2013080627A1 - Hydraulically driven vehicle - Google Patents

Hydraulically driven vehicle Download PDF

Info

Publication number
WO2013080627A1
WO2013080627A1 PCT/JP2012/073092 JP2012073092W WO2013080627A1 WO 2013080627 A1 WO2013080627 A1 WO 2013080627A1 JP 2012073092 W JP2012073092 W JP 2012073092W WO 2013080627 A1 WO2013080627 A1 WO 2013080627A1
Authority
WO
WIPO (PCT)
Prior art keywords
regenerative
oil passage
oil
main oil
engine
Prior art date
Application number
PCT/JP2012/073092
Other languages
French (fr)
Japanese (ja)
Inventor
丸山 純
雅弘 湊
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2013080627A1 publication Critical patent/WO2013080627A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4078Fluid exchange between hydrostatic circuits and external sources or consumers
    • F16H61/4096Fluid exchange between hydrostatic circuits and external sources or consumers with pressure accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4078Fluid exchange between hydrostatic circuits and external sources or consumers
    • F16H61/4139Replenishing or scavenging pumps, e.g. auxiliary charge pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a traveling hydraulic pump and traveling hydraulic motor disposed in a closed circuit, an engine that drives the traveling hydraulic pump, and a torque so that an output torque output from an output shaft of the engine becomes a target torque.
  • the present invention relates to a hydraulically driven vehicle that includes a control unit that performs control, and is capable of traveling by circulatingly supplying oil from a traveling hydraulic pump and driving a traveling hydraulic motor.
  • HST Hydro-Static Transmission
  • the hydraulic device includes a traveling hydraulic pump and a traveling hydraulic motor disposed in a closed circuit, and circulates and supplies oil from the traveling hydraulic pump through a pair of main oil passages constituting the closed circuit. By driving, the vehicle is made to travel.
  • the hydraulically driven vehicle of Patent Document 1 accumulates oil in a regenerative accumulator that is an external device with respect to the closed circuit, and then assists driving of the engine by returning the oil to the original closed circuit again. It is a thing.
  • a reservoir according to the charge unit 40 provided in the normal closed circuit shown in FIG. 3 is provided, and a shortage of oil is replenished by this reservoir. That is, when oil is accumulated in the regenerative accumulator that is an external device, the amount of oil accumulated in the regenerative accumulator is replenished to the closed circuit by the reservoir.
  • Such problems can be prevented by controlling the amount of oil flowing in the closed circuit so that the rotational speed does not fluctuate before and after the oil is discharged from the regenerative accumulator.
  • the flow of oil accumulated in the regenerative accumulator changes from time to time depending on driving conditions, such as when the hydraulically driven vehicle is moving forward or backward, or when the direction of travel is switched. It is not easy to control the amount of oil in the closed circuit so that the rotation speed of the hydraulic motor does not fluctuate.
  • an object of the present invention is to provide a hydraulically driven vehicle that can reduce the consumption of fuel by eliminating the influence on the traveling speed of the vehicle.
  • a hydraulically driven vehicle includes a hydraulic pump and a traveling hydraulic motor connected via a pair of main oil passages constituting a closed circuit, an engine for driving the hydraulic pump, A control unit that performs torque control so that an output torque output from the output shaft of the engine becomes a target torque, and circulates and supplies oil from the hydraulic pump through the pair of main oil passages to
  • a hydraulically driven vehicle that is capable of traveling by being driven includes a regenerative accumulator that is connected to the main oil passage and accumulates oil therein, and drives the output shaft of the engine by the oil accumulated in the regenerative accumulator It is characterized by that.
  • the present invention provides the above-described hydraulic drive vehicle, wherein a regenerative hydraulic motor is connected to the output shaft of the engine and a regenerative oil passage is provided from the main oil passage to the regenerative hydraulic motor.
  • the regeneration accumulator is interposed in an oil passage, and the regeneration hydraulic motor is driven by oil introduced into the regeneration oil passage from the main oil passage and oil accumulated in the regeneration accumulator.
  • the present invention is characterized in that, in the hydraulic drive vehicle described above, a working machine hydraulic pump that supplies oil to the working machine is connected to the output shaft of the engine.
  • the present invention provides a charge unit that is connected to the main oil passage through the low pressure selection means and replenishes oil when the connected main oil passage falls below a preset pressure in the hydraulic drive vehicle described above. It is characterized by having.
  • the present invention provides a charging accumulator that is connected to a main oil passage through a low pressure selection means and replenishes oil when the connected main oil passage falls below a preset pressure in the hydraulic drive vehicle described above. It is provided with.
  • the present invention is characterized in that, in the hydraulic drive vehicle described above, the regeneration accumulator is connected to a main oil passage through a high pressure selection means.
  • the present invention is characterized in that a regeneration valve that opens and closes between the main oil passage and the charge accumulator is disposed in the regeneration oil passage.
  • the output shaft of the engine is driven by the oil accumulated in the regenerative accumulator, the output torque of the engine can be reduced without causing fluctuations in the rotational speed of the traveling hydraulic motor. This makes it possible to reduce fuel consumption.
  • FIG. 1 is a hydraulic circuit diagram of a hydraulically driven vehicle according to a first embodiment of the present invention.
  • FIG. 2 is a hydraulic circuit diagram of a hydraulically driven vehicle according to the second embodiment of the present invention.
  • FIG. 3 is a hydraulic circuit diagram showing the prior art of a hydraulically driven vehicle to which the present invention is applied.
  • the hydraulic drive vehicle illustrated in FIG. 3 is used as a construction machine such as a wheel loader or a forklift, and includes a traveling hydraulic device 10 between the engine 1 and the drive wheel 2.
  • the traveling system hydraulic device 10 is called HST (Hydro-Static Transmission), and is a traveling hydraulic pump 11 driven by the engine 1 and a traveling hydraulic pump driven by oil supplied from the traveling hydraulic pump 11.
  • a hydraulic motor 12 and a pair of main oil passages 13 constituting a closed circuit are provided between the traveling hydraulic pump 11 and the traveling hydraulic motor 12.
  • the traveling hydraulic pump 11 and the traveling hydraulic motor 12 are of a variable displacement type in which the displacement volume is changed by changing the tilt angle of the swash plates 11a and 12a.
  • the travel hydraulic pump 11 and the travel hydraulic motor 12 are provided with individual capacity control units 21 and 22 for tilting the individual swash plates 11a and 12a.
  • the pump displacement control unit 21 and the motor displacement control unit 22 have displacements corresponding to the control signals of the traveling hydraulic pump 11 and the traveling hydraulic motor 12 when a control signal is given from the control unit 30 described later. As described above, the tilt angles of the swash plates 11a and 12a are changed.
  • the traveling hydraulic pump 11 has an input shaft connected to the output shaft 1 a of the engine 1.
  • the travel hydraulic motor 12 has an output shaft 12b connected to the drive wheel 2 of the hydraulic drive vehicle, and can drive the hydraulic drive vehicle by driving the drive wheel 2 to rotate.
  • the rotational direction of the traveling hydraulic motor 12 can be changed according to the direction of oil supply from the traveling hydraulic pump 11, and the hydraulically driven vehicle can be moved forward or backward.
  • first main oil passage 13 ⁇ / b> A the one connected to the discharge port located above the traveling hydraulic pump 11 in FIG. 3
  • the one connected to the discharge port located below the traveling hydraulic pump 11 may be referred to as a “second main oil passage 13B” to be distinguished from each other.
  • the traveling hydraulic device 10 is provided with a charge unit 40 and a high pressure selection valve 54.
  • the charge unit 40 includes a charge pump 41 connected to the output shaft 1 a of the engine 1, one end connected to the discharge port of the charge pump 41, and the other end connected to the first main oil passage 13 ⁇ / b> A via the low pressure selection valve 42.
  • a charge passage 43 connected to each of the second main oil passages 13B and a charge relief valve 44 interposed in the charge passage 43 are provided.
  • the high pressure selection valve 54 is connected to the charge passage 43 via a high pressure relief valve 59.
  • the charge pump 41 when the engine 1 is driven, the charge pump 41 is always driven. For example, due to internal leakage of the traveling hydraulic pump 11 or the traveling hydraulic motor 12, the first main oil passage 13A And / or when the pressure of the second main oil passage 13B becomes lower than the set pressure of the charge relief valve 44, the main oil passages 13A, 13B whose pressure has decreased are replenished with oil from the charge pump 41. Become. If the pressures in the first main oil passage 13A and the second main oil passage 13B are both equal to or higher than the set pressure of the charge relief valve 44, the oil discharged from the charge pump 41 passes through the charge relief valve 44. Returned to tank T.
  • the hydraulically driven vehicle includes a control unit 30.
  • the control unit 30 controls the pump displacement control unit 21, the motor displacement control unit 22, and the fuel injection device 3 of the engine 1 described above based on output information from the potentiometer 33 and the vehicle speed sensor 34.
  • the potentiometer 33 is provided in the accelerator pedal 33a, and outputs a detection signal corresponding to the depression amount of the accelerator pedal 33a to the control unit 30.
  • the vehicle speed sensor 34 converts the speed of the hydraulically driven vehicle from the rotational speed of the output shaft 12 b that supports the drive wheel 2, and outputs the conversion result to the control unit 30.
  • the output torque of the engine 1 is set within the range of the upper limit torque set in advance by the control unit 30 according to the engine speed.
  • the fuel injection amount of the fuel injection device 3 is controlled so as to have a torque according to the load.
  • control unit 30 controls the tilt angle of the swash plate 11a of the traveling hydraulic pump 11 via the pump displacement control unit 21 so that the amount of oil discharged from the traveling hydraulic pump 11 becomes zero. Control. As a result, the traveling hydraulic motor 12 is not rotated even when the engine 1 is in operation, and the hydraulically driven vehicle remains stopped.
  • the control unit 30 calculates a target torque required for the traveling hydraulic motor 12 based on the depression amount and the speed of the hydraulically driven vehicle. Further, a command is output from the control unit 30 to the pump displacement control unit 21 and the motor displacement control unit 22, and the traveling hydraulic pump 11 and the traveling hydraulic motor are adjusted so that the output torque of the traveling hydraulic motor 12 becomes the target torque.
  • the twelve swash plates 11a and 12a are respectively controlled.
  • the hydraulic pressure of one of the main oil passages for example, the first main oil passage 13A increases.
  • the oil pressure in the first main oil passage 13A rises and exceeds the set pressure of the high pressure relief valve 59
  • the oil in the first main oil passage 13A on the high pressure side passes through the high pressure selection valve 54 and the high pressure relief valve 59 and the charge passage 43 Flow into.
  • the oil flowing into the charge passage 43 is replenished to the second main oil passage 13B via the low pressure selection valve 42 when the hydraulic pressure in the second main oil passage 13B is smaller than the set pressure of the charge relief valve 44.
  • the hydraulic pressure in the second main oil passage 13B is equal to or higher than the set pressure of the charge relief valve 44, the oil discharged from the charge pump 41 is returned to the oil tank T via the charge relief valve 44.
  • the driver reduces the amount of depression of the accelerator pedal 33a or applies a brake by depressing a brake pedal (not shown) to decelerate the hydraulically driven vehicle.
  • the traveling hydraulic motor 12 is driven and rotated.
  • the oil discharged from the driving of the traveling hydraulic motor 12 flows toward the traveling hydraulic pump 11, and the pressure in one of the main oil passages, for example, the second main oil passage 13B, is increased according to the deceleration. 1
  • the pressure rises higher than the pressure in the main oil passage 13A.
  • the charging accumulator 45 and the regenerative unit 50 are attached to the traveling hydraulic device 10 as shown in FIG. 1 for the hydraulically driven vehicle having the hydraulic circuit shown in FIG.
  • the control content of the control unit 130 is changed.
  • symbol is attached
  • the charge accumulator 45 is a component of the charge unit 40.
  • the charge accumulator 45 is connected to the charge passage 43 via the low pressure selection valve 42 and can accumulate the oil discharged from the charge pump 41.
  • the regeneration unit 50 includes a regeneration accumulator 51, a regeneration hydraulic motor 52, a first oil passage 53a, and a second oil passage 53b.
  • the regenerative hydraulic motor 52 has a fixed displacement with a constant displacement, and is connected to the output shaft 1 a of the engine 1.
  • the first oil passage 53 a connects the discharge port of the regeneration accumulator 51 to the suction port of the regeneration hydraulic motor 52.
  • the second oil passage 53b has one end connected to the regeneration accumulator 51 and the regeneration hydraulic motor 52 via the first oil passage 53a, and the other end connected to the first main oil passage 13A via the high pressure selection valve 54. This is connected to the second main oil passage 13B.
  • a regeneration valve 55 is interposed in the second oil passage 53b.
  • the first oil passage 53a and the second oil passage 53b are for regenerative use for connecting the first main oil passage 13A or the second main oil passage 13B and the regenerative hydraulic motor 52 via the high pressure selection valve 54.
  • the oil passage 53 is configured.
  • the regeneration valve 55 opens and closes the second oil passage 53b in accordance with a control signal from the control unit 130 described later.
  • a regenerative relief valve 57 and a suction check valve 58 of the regenerative hydraulic motor 52 are connected in parallel to the protective oil passage 56 extending from the oil tank T to the regenerative accumulator 51.
  • the regenerative relief valve 57 relieves oil to the oil tank T when the pressure in the first oil passage 53a exceeds a set pressure.
  • the suction check valve 58 opens and supplies the oil in the oil tank T when the regenerative hydraulic motor 52 rotates in a state in which no oil is supplied to the first oil passage 53a, thereby damaging the regenerative hydraulic motor 52. Is to prevent.
  • the control unit 130 of the hydraulically driven vehicle is based on the output information from the pressure sensors 31 and 32, the potentiometer 33, the vehicle speed sensor 34, and the engine speed sensor 35, and the pump displacement control unit 21 and the motor displacement control unit 22 described above.
  • the regenerative valve 55 and the fuel injection device 3 of the engine 1 are controlled.
  • the pressure sensors 31 and 32 are provided in the first main oil passage 13A and the second main oil passage 13B, detect the pressure in the main oil passages 13A and 13B, and output the detection result to the control unit 130. is there.
  • the potentiometer 33 is provided in the accelerator pedal 33a, and outputs a detection signal corresponding to the depression amount of the accelerator pedal 33a to the control unit 130.
  • the vehicle speed sensor 34 converts the speed of the hydraulically driven vehicle from the rotational speed of the output shaft 12 b that supports the drive wheel 2, and outputs the conversion result to the control unit 130.
  • the engine speed sensor 35 is provided on the output shaft 1 a of the engine 1, detects the speed of the engine 1, and outputs the detection result to the control unit 130.
  • the fuel injection amount of the fuel injection device 3 is controlled so as to be a torque corresponding to the load within a preset upper limit torque range.
  • the control unit 130 controls the tilt angle of the swash plate 11a of the traveling hydraulic pump 11 via the pump displacement control unit 21 so that the amount of oil discharged from the traveling hydraulic pump 11 becomes zero. To do. As a result, the traveling hydraulic motor 12 is not rotated even when the engine 1 is in operation, and the hydraulically driven vehicle remains stopped. Further, when the traveling hydraulic motor 12 is stopped, the control unit 130 maintains the state where the second oil passage 53b of the regeneration oil passage 53 is blocked by the regeneration valve 55. Therefore, in this state, no oil is accumulated in the regeneration accumulator 51 and the regeneration hydraulic motor 52 is not driven.
  • the control unit 130 calculates a target torque required for the traveling hydraulic motor 12 based on the depression amount and the speed of the hydraulically driven vehicle. Further, a command is output from the control unit 30 to the pump displacement control unit 21 and the motor displacement control unit 22, and the traveling hydraulic pump 11 and the traveling hydraulic motor are adjusted so that the output torque of the traveling hydraulic motor 12 becomes the target torque.
  • the twelve swash plates 11a and 12a are respectively controlled.
  • the hydraulic pressure of one of the main oil passages for example, the first main oil passage 13A increases.
  • the oil pressure in the first main oil passage 13A rises and exceeds the set pressure of the high pressure relief valve 59
  • the oil in the first main oil passage 13A on the high pressure side passes through the high pressure selection valve 54 and the high pressure relief valve 59 and the charge passage 43 Flow into.
  • the oil flowing into the charge passage 43 is replenished to the second main oil passage 13B via the low pressure selection valve 42 when the hydraulic pressure in the second main oil passage 13B is smaller than the set pressure of the charge relief valve 44.
  • the oil discharged from the charge pump 41 is not supplied to any of the main oil passages 13A and 13B, and is a charge accumulator. 45 is accumulated. The excess oil that has not accumulated in the charge accumulator 45 is returned to the oil tank T via the charge relief valve 44. The oil accumulated in the charge accumulator 45 is appropriately discharged when the charge passage 43 becomes low pressure, and is supplied to the second main oil passage 13B on the low pressure side.
  • the driver reduces the amount of depression of the accelerator pedal 33a or applies a brake by depressing a brake pedal (not shown) to decelerate the hydraulically driven vehicle.
  • the traveling hydraulic motor 12 is driven and rotated.
  • the oil discharged from the driving of the traveling hydraulic motor 12 flows toward the traveling hydraulic pump 11, and the pressure in one of the main oil passages, for example, the second main oil passage 13B, is increased according to the deceleration. 1
  • the pressure rises higher than the pressure in the main oil passage 13A.
  • the control unit 130 When the control unit 130 detects from the detection result of the pressure sensor 32 that the pressure in the second main oil passage 13B has risen above the preset pressure, the control unit 130 switches the regeneration valve 55 to the open position, and sets the regenerative oil passage 53 in the first position.
  • the high pressure selection valve 54 and the regenerative accumulator 51 are communicated with each other via the two oil passage 53b.
  • the oil in the second main oil passage 13B whose pressure has been increased is supplied to the regenerative oil passage 53 via the high pressure selection valve 54 and the regenerative valve 55, and is supplied to the regenerative hydraulic motor 52. Is accumulated in the regeneration accumulator 51.
  • the drive of the engine 1 is assisted by driving and rotating the regenerative hydraulic motor 52.
  • the pressure of the first main oil passage 13A on the low pressure side becomes smaller than the set pressure of the charge relief valve 44, oil is replenished to the first main oil passage 13A via the low pressure selection valve.
  • the flow rate of the oil to the traveling hydraulic motor 12 may be equal and fluctuate in the pair of main oil passages 13A and 13B without requiring a special device as long as it is within the capacity of the charge unit 40. Absent.
  • the control unit 130 controls the fuel injection amount so as to reduce the output of the engine 1 by the amount of assistance. That is, the engine output is controlled by the control unit 130 so that the output torque of the engine 1 is always a predetermined constant torque. Accordingly, not only fuel consumption can be reduced and energy can be saved, but also there is no risk of fluctuations in the rotational speed of the traveling hydraulic motor 12, and the handling stability of the hydraulically driven vehicle is improved. Can be made.
  • the regenerative valve 55 When the vehicle speed decreases in the above-described state and the hydraulic pressure in the second main oil passage 13B decreases, the regenerative valve 55 is returned to the shut-off state by the control unit 130, and the regenerative oil passage 53 is supplied from the second main oil passage 13B. The inflow of oil will be cut off. However, even after the regeneration valve 55 is in the shut-off position, the oil accumulated in the regeneration accumulator 51 is supplied to the regeneration hydraulic motor 52, so that the engine 1 continues to be driven by the discharged oil. Will be assisted.
  • the oil introduced into the regenerative oil passage 53 and the oil accumulated in the regenerative accumulator 51 are not returned to the main oil passages 13A and 13B, which are closed circuits. 1 is supplied to a regenerative hydraulic motor 52 connected to one output shaft 1a. Therefore, the oil supplied from the regenerative oil passage 53 or the regenerative accumulator 51 does not cause a change in the rotational speed of the traveling hydraulic motor 12, and corresponds to driving assistance of the engine 1 by the regenerative hydraulic motor 52. By reducing the output torque of the engine 1 by that amount, it is possible to reduce fuel consumption.
  • the regenerative hydraulic motor 52 is directly connected to the output shaft 1a of the engine 1.
  • the present invention is not limited to this.
  • the output shaft 1a of the engine 1 and the regenerative hydraulic motor are not limited thereto.
  • a clutch or a reduction gear train may be interposed between the control pin 52 and the gear 52.
  • the regenerative hydraulic motor 52 it is not necessary to apply a fixed capacity, and a variable capacity may be applied.
  • the hydraulic circuit is configured so that oil can be accumulated in the regenerative accumulator 51 from either of the pair of main oil passages 13A, 13B.
  • the high pressure selection valve 54 is not necessarily used. That is, the regenerative accumulator may be connected only to the main oil passage that is on the high pressure side during traveling deceleration while the hydraulic drive vehicle is moving forward.
  • the charge unit 40 is configured so that oil can be replenished to both the pair of main oil passages 13A and 13B via the low pressure selection valve 42, but the low pressure selection valve 42 is not necessarily used.
  • the charge accumulator 45 is connected to the charge unit 40, the charge accumulator 45 is not necessarily provided.
  • the drive of the engine 1 is assisted by the regenerative hydraulic motor 52.
  • the working machine hydraulic pump 60 may be connected and the regeneration hydraulic motor 52 may assist the driving of the working machine hydraulic pump 60.
  • the same reference numerals in the second embodiment denote the same components as those in the first embodiment.
  • driving of the engine 1 and the working machine hydraulic pump 60 can be assisted by the kinetic energy at the time of traveling deceleration of the hydraulically driven vehicle.
  • the output torque of the engine 1 is always controlled by the control unit 130 so that the output torque of the engine 1 is reduced by the amount corresponding to the driving assistance of the engine 1 by the regenerative hydraulic motor 52, the traveling speed of the hydraulically driven vehicle is increased. There is no fear of affecting.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Control Of Fluid Gearings (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

In order to reduce fuel consumption while reducing as much as possible the effect on the vehicle travel speed, provided is a hydraulically driven vehicle that is equipped with a travel hydraulic pump (11) and a travel hydraulic motor (12) which are connected via a pair of main oil passages (13A, 13B), an engine (1) for driving the travel hydraulic pump (11), and a control unit (130) for implementing a torque control such that the output torque outputted from an output shaft (1a) of the engine (1) becomes the target torque, wherein oil is circulated and supplied from the travel hydraulic pump (11) via the pair of main oil passages (13A, 13B) to drive the travel hydraulic motor (12) so as to make travel possible. The hydraulically driven vehicle is equipped with a regeneration accumulator (51) which is connected to the main oil passage that will become the high pressure side during travel deceleration, and which accumulates oil therein. A regeneration hydraulic motor (52) is driven by the oil accumulated in the regeneration accumulator (51).

Description

油圧駆動車両Hydraulic drive vehicle
 本発明は、閉回路中に配設した走行用油圧ポンプ及び走行用油圧モータと、走行用油圧ポンプを駆動するエンジンと、エンジンの出力軸から出力される出力トルクが目標トルクとなるようにトルク制御を行う制御部とを備え、走行用油圧ポンプから油を循環供給して走行用油圧モータを駆動することにより走行可能となる油圧駆動車両に関する。 The present invention relates to a traveling hydraulic pump and traveling hydraulic motor disposed in a closed circuit, an engine that drives the traveling hydraulic pump, and a torque so that an output torque output from an output shaft of the engine becomes a target torque. The present invention relates to a hydraulically driven vehicle that includes a control unit that performs control, and is capable of traveling by circulatingly supplying oil from a traveling hydraulic pump and driving a traveling hydraulic motor.
 ホイールローダやフォークリフト等、建設機械として使用される車両には、エンジンと駆動車輪との間にHST(Hydro-Static Transmission)と称される油圧装置が設けられているものがある。油圧装置は、閉回路中に配設した走行用油圧ポンプ及び走行用油圧モータを備え、閉回路を構成する一対の主油通路を通じて走行用油圧ポンプから油を循環供給して走行用油圧モータを駆動することにより、車両を走行させるようにしたものである。 Some vehicles used as construction machines such as wheel loaders and forklifts are provided with a hydraulic device called HST (Hydro-Static Transmission) between the engine and driving wheels. The hydraulic device includes a traveling hydraulic pump and a traveling hydraulic motor disposed in a closed circuit, and circulates and supplies oil from the traveling hydraulic pump through a pair of main oil passages constituting the closed circuit. By driving, the vehicle is made to travel.
 この種の油圧装置を適用した油圧駆動車両には、走行減速時の運動エネルギを回生するようにしたものが提供されている。例えば、特許文献1では、走行用油圧モータのポンプ作用により運動エネルギを油圧エネルギに変換して回生用アキュムレータに蓄積し、その後、走行加速時に、走行用油圧ポンプから主油通路に吐出される油と、回生用アキュムレータから主油通路に吐出される油とによって走行用油圧モータを駆動するようにしている。こうした油圧駆動車両によれば、エンジンの駆動が補助されるため、走行用油圧ポンプから吐出される油のみで走行用油圧モータを駆動する場合に比べて燃料の消費量を低減することができるようになる。 For hydraulically driven vehicles to which this type of hydraulic device is applied, there are provided vehicles that regenerate kinetic energy during traveling deceleration. For example, in Patent Document 1, kinetic energy is converted into hydraulic energy by the pump action of a traveling hydraulic motor, accumulated in a regenerative accumulator, and then discharged from the traveling hydraulic pump to the main oil passage during traveling acceleration. The traveling hydraulic motor is driven by the oil discharged from the regenerative accumulator into the main oil passage. According to such a hydraulically driven vehicle, the driving of the engine is assisted, so that it is possible to reduce the fuel consumption as compared with the case where the traveling hydraulic motor is driven only by the oil discharged from the traveling hydraulic pump. become.
米国特許第3892283号明細書US Pat. No. 3,899,283
 ところで、特許文献1の油圧駆動車両は、閉回路に対して外部機器となる回生用アキュムレータに油を蓄積し、その後、再び元の閉回路に油を戻すことによってエンジンの駆動を補助するようにしたものである。ここで、特許文献1には、図3に示す通常の閉回路に設けられるチャージユニット40に準じたリザーバが設けられており、不足分の油をこのリザーバによって補充することが行われている。すなわち、外部機器である回生用アキュムレータに油が蓄積された場合には、回生用アキュムレータに蓄積された分の油がリザーバによって閉回路に補充されることになる。このため、回生用アキュムレータに蓄積した油を閉回路に戻した場合には、走行用油圧モータに対して走行用油圧ポンプからの油に加えて回生用アキュムレータからの油が供給されることになるため、走行用油圧モータによって駆動される駆動車輪の回転数、つまり車両の走行速度に大きな影響を与える恐れがある。 By the way, the hydraulically driven vehicle of Patent Document 1 accumulates oil in a regenerative accumulator that is an external device with respect to the closed circuit, and then assists driving of the engine by returning the oil to the original closed circuit again. It is a thing. Here, in Patent Document 1, a reservoir according to the charge unit 40 provided in the normal closed circuit shown in FIG. 3 is provided, and a shortage of oil is replenished by this reservoir. That is, when oil is accumulated in the regenerative accumulator that is an external device, the amount of oil accumulated in the regenerative accumulator is replenished to the closed circuit by the reservoir. For this reason, when the oil accumulated in the regenerative accumulator is returned to the closed circuit, the oil from the regenerative accumulator is supplied to the travel hydraulic motor in addition to the oil from the travel hydraulic pump. Therefore, there is a possibility that the rotational speed of the drive wheel driven by the traveling hydraulic motor, that is, the traveling speed of the vehicle may be greatly affected.
 こうした問題は、回生用アキュムレータからの油の吐出以前と吐出以後とで、回転数が変動しないように、閉回路に流れる油の量を制御すれば防ぐことは可能である。しかしながら、回生用アキュムレータに蓄積される油の流は、油圧駆動車両が前進中であるか後進中であるか、あるいは進行方向を切り換えた場合等々、走行条件によって随時変化するものであり、走行用油圧モータの回転数が変動しないように閉回路の油の量を制御することは容易ではない。 Such problems can be prevented by controlling the amount of oil flowing in the closed circuit so that the rotational speed does not fluctuate before and after the oil is discharged from the regenerative accumulator. However, the flow of oil accumulated in the regenerative accumulator changes from time to time depending on driving conditions, such as when the hydraulically driven vehicle is moving forward or backward, or when the direction of travel is switched. It is not easy to control the amount of oil in the closed circuit so that the rotation speed of the hydraulic motor does not fluctuate.
 本発明は、上記実情に鑑みて、車両の走行速度への影響を排除して燃料の消費量を低減することのできる油圧駆動車両を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a hydraulically driven vehicle that can reduce the consumption of fuel by eliminating the influence on the traveling speed of the vehicle.
 上記目的を達成するため、本発明に係る油圧駆動車両は、閉回路を構成する一対の主油通路を介して接続した油圧ポンプ及び走行用油圧モータと、前記油圧ポンプを駆動するエンジンと、前記エンジンの出力軸から出力される出力トルクが目標トルクとなるようにトルク制御を行う制御部とを備え、前記一対の主油通路を通じて前記油圧ポンプから油を循環供給して前記走行用油圧モータを駆動することにより走行可能となる油圧駆動車両において、前記主油通路に接続され、内部に油を蓄積する回生用アキュムレータを備え、前記回生用アキュムレータに蓄積した油によって前記エンジンの出力軸を駆動することを特徴とする。 To achieve the above object, a hydraulically driven vehicle according to the present invention includes a hydraulic pump and a traveling hydraulic motor connected via a pair of main oil passages constituting a closed circuit, an engine for driving the hydraulic pump, A control unit that performs torque control so that an output torque output from the output shaft of the engine becomes a target torque, and circulates and supplies oil from the hydraulic pump through the pair of main oil passages to A hydraulically driven vehicle that is capable of traveling by being driven includes a regenerative accumulator that is connected to the main oil passage and accumulates oil therein, and drives the output shaft of the engine by the oil accumulated in the regenerative accumulator It is characterized by that.
 また、本発明は、上述した油圧駆動車両において、前記エンジンの出力軸に回生用油圧モータを接続し、かつ前記主油通路から前記回生用油圧モータに回生用油通路を設けるとともに、この回生用油通路に前記回生用アキュムレータを介在させ、前記主油通路から前記回生用油通路に導入された油及び前記回生用アキュムレータに蓄積した油によって前記回生用油圧モータを駆動することを特徴とする。 Further, the present invention provides the above-described hydraulic drive vehicle, wherein a regenerative hydraulic motor is connected to the output shaft of the engine and a regenerative oil passage is provided from the main oil passage to the regenerative hydraulic motor. The regeneration accumulator is interposed in an oil passage, and the regeneration hydraulic motor is driven by oil introduced into the regeneration oil passage from the main oil passage and oil accumulated in the regeneration accumulator.
 また、本発明は、上述した油圧駆動車両において、作業機に油を供給する作業機用油圧ポンプを前記エンジンの出力軸に接続したことを特徴とする。 Further, the present invention is characterized in that, in the hydraulic drive vehicle described above, a working machine hydraulic pump that supplies oil to the working machine is connected to the output shaft of the engine.
 また、本発明は、上述した油圧駆動車両において、低圧選択手段を介して主油通路に接続され、かつ接続された主油通路が予め設定した圧力を下回った場合に油を補充するチャージユニットを備えたことを特徴とする。 Further, the present invention provides a charge unit that is connected to the main oil passage through the low pressure selection means and replenishes oil when the connected main oil passage falls below a preset pressure in the hydraulic drive vehicle described above. It is characterized by having.
 また、本発明は、上述した油圧駆動車両において、低圧選択手段を介して主油通路に接続され、かつ接続された主油通路が予め設定した圧力を下回った場合に油を補充するチャージ用アキュムレータを備えたことを特徴とする。 Further, the present invention provides a charging accumulator that is connected to a main oil passage through a low pressure selection means and replenishes oil when the connected main oil passage falls below a preset pressure in the hydraulic drive vehicle described above. It is provided with.
 また、本発明は、上述した油圧駆動車両において、高圧選択手段を介して前記回生用アキュムレータを主油通路に接続させたことを特徴とする。 Further, the present invention is characterized in that, in the hydraulic drive vehicle described above, the regeneration accumulator is connected to a main oil passage through a high pressure selection means.
 また、本発明は、上述した油圧駆動車両において、前記回生用油通路に前記主油通路と前記チャージ用アキュムレータとの間を開閉する回生用バルブを配設したことを特徴とする。 In the hydraulic drive vehicle described above, the present invention is characterized in that a regeneration valve that opens and closes between the main oil passage and the charge accumulator is disposed in the regeneration oil passage.
 本発明によれば、回生用アキュムレータに蓄積した油によってエンジンの出力軸を駆動するようにしているため、走行用油圧モータの回転数に変動を招来することなくエンジンの出力トルクを減少させることができ、燃料の消費量を低減することが可能となる。 According to the present invention, since the output shaft of the engine is driven by the oil accumulated in the regenerative accumulator, the output torque of the engine can be reduced without causing fluctuations in the rotational speed of the traveling hydraulic motor. This makes it possible to reduce fuel consumption.
図1は、本発明の実施の形態1である油圧駆動車両の油圧回路図である。1 is a hydraulic circuit diagram of a hydraulically driven vehicle according to a first embodiment of the present invention. 図2は、本発明の実施の形態2である油圧駆動車両の油圧回路図である。FIG. 2 is a hydraulic circuit diagram of a hydraulically driven vehicle according to the second embodiment of the present invention. 図3は、本発明を適用する油圧駆動車両の従来技術を示した油圧回路図である。FIG. 3 is a hydraulic circuit diagram showing the prior art of a hydraulically driven vehicle to which the present invention is applied.
 以下に添付図面を参照して、本発明に係る油圧駆動車両の好適な実施の形態について詳細に説明する。 Hereinafter, a preferred embodiment of a hydraulically driven vehicle according to the present invention will be described in detail with reference to the accompanying drawings.
 まず、本発明の適用が前提となる油圧駆動車両について、図3を引用しながら従来技術について説明する。図3で例示する油圧駆動車両は、ホイールローダやフォークリフト等、建設機械として使用されるもので、エンジン1と駆動車輪2との間に走行系油圧装置10を備えている。走行系油圧装置10は、HST(Hydro-Static Transmission)と称されるもので、エンジン1によって駆動される走行用油圧ポンプ11と、走行用油圧ポンプ11から供給される油によって駆動される走行用油圧モータ12と、これら走行用油圧ポンプ11及び走行用油圧モータ12の間に閉回路を構成する一対の主油通路13とを備えて構成してある。 First, the prior art will be described with reference to FIG. 3 for a hydraulically driven vehicle on which the application of the present invention is a prerequisite. The hydraulic drive vehicle illustrated in FIG. 3 is used as a construction machine such as a wheel loader or a forklift, and includes a traveling hydraulic device 10 between the engine 1 and the drive wheel 2. The traveling system hydraulic device 10 is called HST (Hydro-Static Transmission), and is a traveling hydraulic pump 11 driven by the engine 1 and a traveling hydraulic pump driven by oil supplied from the traveling hydraulic pump 11. A hydraulic motor 12 and a pair of main oil passages 13 constituting a closed circuit are provided between the traveling hydraulic pump 11 and the traveling hydraulic motor 12.
 走行用油圧ポンプ11及び走行用油圧モータ12は、斜板11a,12aの傾転角を変更することにより、押しのけ容積が変化する可変容量型のものである。走行用油圧ポンプ11及び走行用油圧モータ12には、個々の斜板11a,12aを傾転動作させる個別の容量制御ユニット21,22が付設してある。ポンプ容量制御ユニット21及びモータ容量制御ユニット22は、後述の制御部30から制御信号が与えられた場合、走行用油圧ポンプ11及び走行用油圧モータ12のそれぞれが制御信号に応じた押しのけ容積となるように斜板11a,12aの傾転角を変化させるものである。 The traveling hydraulic pump 11 and the traveling hydraulic motor 12 are of a variable displacement type in which the displacement volume is changed by changing the tilt angle of the swash plates 11a and 12a. The travel hydraulic pump 11 and the travel hydraulic motor 12 are provided with individual capacity control units 21 and 22 for tilting the individual swash plates 11a and 12a. The pump displacement control unit 21 and the motor displacement control unit 22 have displacements corresponding to the control signals of the traveling hydraulic pump 11 and the traveling hydraulic motor 12 when a control signal is given from the control unit 30 described later. As described above, the tilt angles of the swash plates 11a and 12a are changed.
 走行用油圧ポンプ11は、入力軸がエンジン1の出力軸1aに接続してある。走行用油圧モータ12は、その出力軸12bが油圧駆動車両の駆動車輪2に接続してあり、駆動車輪2を回転駆動することで油圧駆動車両を走行させることができる。走行用油圧モータ12の回転方向は、走行用油圧ポンプ11からの油の供給方向に応じて変更することが可能であり、油圧駆動車両を前進、もしくは後進させることができる。尚、以下においては便宜上、一対の主油通路13のうち、図3において走行用油圧ポンプ11の上方に位置する吐出口に接続したものを「第1主油通路13A」と称し、図3において走行用油圧ポンプ11の下方に位置する吐出口に接続したものを「第2主油通路13B」と称して両者を区別する場合がある。 The traveling hydraulic pump 11 has an input shaft connected to the output shaft 1 a of the engine 1. The travel hydraulic motor 12 has an output shaft 12b connected to the drive wheel 2 of the hydraulic drive vehicle, and can drive the hydraulic drive vehicle by driving the drive wheel 2 to rotate. The rotational direction of the traveling hydraulic motor 12 can be changed according to the direction of oil supply from the traveling hydraulic pump 11, and the hydraulically driven vehicle can be moved forward or backward. In the following, for the sake of convenience, of the pair of main oil passages 13, the one connected to the discharge port located above the traveling hydraulic pump 11 in FIG. 3 is referred to as “first main oil passage 13 </ b> A”, and in FIG. The one connected to the discharge port located below the traveling hydraulic pump 11 may be referred to as a “second main oil passage 13B” to be distinguished from each other.
 この走行系油圧装置10には、チャージユニット40及び高圧選択バルブ54が付設してある。チャージユニット40は、エンジン1の出力軸1aに接続したチャージポンプ41と、一端部がチャージポンプ41の吐出口に接続し、他端部が低圧選択バルブ42を介して第1主油通路13A及び第2主油通路13Bのそれぞれに接続したチャージ通路43と、チャージ通路43に介在させたチャージリリーフバルブ44とを備えて構成したものである。高圧選択バルブ54は、高圧リリーフバルブ59を介してチャージ通路43に接続してある。 The traveling hydraulic device 10 is provided with a charge unit 40 and a high pressure selection valve 54. The charge unit 40 includes a charge pump 41 connected to the output shaft 1 a of the engine 1, one end connected to the discharge port of the charge pump 41, and the other end connected to the first main oil passage 13 </ b> A via the low pressure selection valve 42. A charge passage 43 connected to each of the second main oil passages 13B and a charge relief valve 44 interposed in the charge passage 43 are provided. The high pressure selection valve 54 is connected to the charge passage 43 via a high pressure relief valve 59.
 このチャージユニット40では、エンジン1が駆動した場合にチャージポンプ41が常時駆動された状態となり、例えば走行用油圧ポンプ11や走行用油圧モータ12の内部漏れに起因して、第1主油通路13A及び/または第2主油通路13Bの圧力がチャージリリーフバルブ44の設定圧力よりも低くなった場合、圧力が低下した主油通路13A,13Bに対してチャージポンプ41から油が補充されることになる。尚、第1主油通路13A及び第2主油通路13Bの圧力がいずれもチャージリリーフバルブ44の設定圧力以上であれば、チャージポンプ41から吐出された油は、チャージリリーフバルブ44を介して油タンクTに戻される。 In the charge unit 40, when the engine 1 is driven, the charge pump 41 is always driven. For example, due to internal leakage of the traveling hydraulic pump 11 or the traveling hydraulic motor 12, the first main oil passage 13A And / or when the pressure of the second main oil passage 13B becomes lower than the set pressure of the charge relief valve 44, the main oil passages 13A, 13B whose pressure has decreased are replenished with oil from the charge pump 41. Become. If the pressures in the first main oil passage 13A and the second main oil passage 13B are both equal to or higher than the set pressure of the charge relief valve 44, the oil discharged from the charge pump 41 passes through the charge relief valve 44. Returned to tank T.
 一方、油圧駆動車両は、制御部30を備えている。制御部30は、ポテンショメータ33、車速センサ34からの出力情報に基づいて、上述したポンプ容量制御ユニット21、モータ容量制御ユニット22、エンジン1の燃料噴射装置3を制御するものである。ポテンショメータ33は、アクセルペダル33aに設けてあり、アクセルペダル33aの踏み込み量に応じた検出信号を制御部30に出力するものである。車速センサ34は、駆動車輪2を支持する出力軸12bの回転数から油圧駆動車両の速度を換算し、その換算結果を制御部30に出力するものである。 On the other hand, the hydraulically driven vehicle includes a control unit 30. The control unit 30 controls the pump displacement control unit 21, the motor displacement control unit 22, and the fuel injection device 3 of the engine 1 described above based on output information from the potentiometer 33 and the vehicle speed sensor 34. The potentiometer 33 is provided in the accelerator pedal 33a, and outputs a detection signal corresponding to the depression amount of the accelerator pedal 33a to the control unit 30. The vehicle speed sensor 34 converts the speed of the hydraulically driven vehicle from the rotational speed of the output shaft 12 b that supports the drive wheel 2, and outputs the conversion result to the control unit 30.
 上記のように構成した油圧駆動車両では、まず、エンジン1が起動されると、以降、制御部30によってエンジン1の出力トルクがエンジン回転数に応じて予め設定された上限トルクの範囲内で、負荷に応じたトルクとなるように燃料噴射装置3の燃料噴射量が制御される。 In the hydraulic drive vehicle configured as described above, first, when the engine 1 is started, the output torque of the engine 1 is set within the range of the upper limit torque set in advance by the control unit 30 according to the engine speed. The fuel injection amount of the fuel injection device 3 is controlled so as to have a torque according to the load.
 エンジン1の起動時において制御部30は、走行用油圧ポンプ11からの油の吐出量がゼロとなるようにポンプ容量制御ユニット21を介して走行用油圧ポンプ11の斜板11aの傾転角を制御する。この結果、エンジン1が運転されている状態においても走行用油圧モータ12が回転されることはなく、油圧駆動車両は停止したままとなる。 When the engine 1 is started, the control unit 30 controls the tilt angle of the swash plate 11a of the traveling hydraulic pump 11 via the pump displacement control unit 21 so that the amount of oil discharged from the traveling hydraulic pump 11 becomes zero. Control. As a result, the traveling hydraulic motor 12 is not rotated even when the engine 1 is in operation, and the hydraulically driven vehicle remains stopped.
 上述した状態から油圧駆動車両を走行させるには、図示せぬ進行方向指示レバーを中立から前進もしくは後進に操作してアクセルペダル33aを踏み込めば良い。制御部30は、アクセルペダル33aが踏み込まれると、その踏み込み量と油圧駆動車両の速度とに基づいて走行用油圧モータ12に要求される目標トルクを算出する。さらに、制御部30からポンプ容量制御ユニット21及びモータ容量制御ユニット22に対して指令が出力され、走行用油圧モータ12の出力トルクが目標トルクとなるように走行用油圧ポンプ11及び走行用油圧モータ12の斜板11a,12aがそれぞれ制御される。これにより、走行用油圧ポンプ11から吐出された油により、走行用油圧モータ12が駆動されて回転することになり、運転者によるアクセルペダル33aの操作に応じて油圧駆動車両が走行することになる。 To drive the hydraulically driven vehicle from the above-described state, it is only necessary to depress the accelerator pedal 33a by operating a travel direction indicating lever (not shown) from neutral to forward or backward. When the accelerator pedal 33a is depressed, the control unit 30 calculates a target torque required for the traveling hydraulic motor 12 based on the depression amount and the speed of the hydraulically driven vehicle. Further, a command is output from the control unit 30 to the pump displacement control unit 21 and the motor displacement control unit 22, and the traveling hydraulic pump 11 and the traveling hydraulic motor are adjusted so that the output torque of the traveling hydraulic motor 12 becomes the target torque. The twelve swash plates 11a and 12a are respectively controlled. Thus, the traveling hydraulic motor 12 is driven and rotated by the oil discharged from the traveling hydraulic pump 11, and the hydraulically driven vehicle travels according to the operation of the accelerator pedal 33a by the driver. .
 進行方向指示レバーが前進もしくは後進に操作されている間に、外力等の影響が加わると、いずれか一方の主油通路、例えば第1主油通路13A、の油圧が上昇する。第1主油通路13Aの油圧が上昇して高圧リリーフバルブ59の設定圧力を超えると、高圧選択バルブ54及び高圧リリーフバルブ59を介して高圧側の第1主油通路13Aの油がチャージ通路43に流入する。チャージ通路43に流入した油は、第2主油通路13Bの油圧がチャージリリーフバルブ44の設定圧力よりも小さい場合、低圧選択バルブ42を介して第2主油通路13Bに補充される。第2主油通路13Bの油圧がチャージリリーフバルブ44の設定圧力以上であった場合、チャージポンプ41から吐出された油は、チャージリリーフバルブ44を介して油タンクTに戻される。 If the influence of an external force or the like is applied while the traveling direction indicator lever is operated forward or backward, the hydraulic pressure of one of the main oil passages, for example, the first main oil passage 13A increases. When the oil pressure in the first main oil passage 13A rises and exceeds the set pressure of the high pressure relief valve 59, the oil in the first main oil passage 13A on the high pressure side passes through the high pressure selection valve 54 and the high pressure relief valve 59 and the charge passage 43 Flow into. The oil flowing into the charge passage 43 is replenished to the second main oil passage 13B via the low pressure selection valve 42 when the hydraulic pressure in the second main oil passage 13B is smaller than the set pressure of the charge relief valve 44. When the hydraulic pressure in the second main oil passage 13B is equal to or higher than the set pressure of the charge relief valve 44, the oil discharged from the charge pump 41 is returned to the oil tank T via the charge relief valve 44.
 一方、油圧駆動車両が走行している際に運転者がアクセルペダル33aの踏み込み量を減少させ、あるいは図示せぬブレーキペダルを踏み込んで制動を掛け、油圧駆動車両が減速されると、駆動車輪2によって走行用油圧モータ12が駆動されて回転されることになる。これにより、走行用油圧モータ12の駆動より吐出された油が走行用油圧ポンプ11に向けて流れ、いずれか一方の主油通路、例えば第2主油通路13Bの圧力が減速度に応じて第1主油通路13Aの圧力よりも上昇する。 On the other hand, when the hydraulically driven vehicle is running, the driver reduces the amount of depression of the accelerator pedal 33a or applies a brake by depressing a brake pedal (not shown) to decelerate the hydraulically driven vehicle. Thus, the traveling hydraulic motor 12 is driven and rotated. As a result, the oil discharged from the driving of the traveling hydraulic motor 12 flows toward the traveling hydraulic pump 11, and the pressure in one of the main oil passages, for example, the second main oil passage 13B, is increased according to the deceleration. 1 The pressure rises higher than the pressure in the main oil passage 13A.
 このとき、第1主油通路13Aの圧力がチャージリリーフバルブ44の設定圧力よりも小さくなると、第1主油通路13Aに対して低圧選択バルブ42を介してチャージポンプ41から油が補充される。これにより、走行用油圧ポンプ11及び走行用油圧モータ12を接続した一対の主油通路13A,13Bを流れる油の流量が等しくなり、特別な装置を要せずとも走行用油圧モータ12の回転数に変動を来す恐れがなくなる。 At this time, when the pressure in the first main oil passage 13A becomes lower than the set pressure of the charge relief valve 44, oil is replenished from the charge pump 41 to the first main oil passage 13A via the low pressure selection valve 42. Thereby, the flow rate of the oil flowing through the pair of main oil passages 13A and 13B connected to the traveling hydraulic pump 11 and the traveling hydraulic motor 12 becomes equal, and the rotational speed of the traveling hydraulic motor 12 is not required even if a special device is required. There is no risk of fluctuations.
 上述の図3に示す油圧回路を備えた油圧駆動車両に対して本発明の実施の形態1は、図1に示すように、走行系油圧装置10にチャージ用アキュムレータ45及び回生ユニット50を付設するとともに、制御部130の制御内容を変更したものである。尚、実施の形態1において図3に示した油圧回路と同じ構成については、同一の符号を付してそれぞれの詳細説明を省略する。 In the first embodiment of the present invention, the charging accumulator 45 and the regenerative unit 50 are attached to the traveling hydraulic device 10 as shown in FIG. 1 for the hydraulically driven vehicle having the hydraulic circuit shown in FIG. In addition, the control content of the control unit 130 is changed. In addition, about the same structure as the hydraulic circuit shown in FIG. 3 in Embodiment 1, the same code | symbol is attached | subjected and each detailed description is abbreviate | omitted.
 チャージ用アキュムレータ45は、チャージユニット40の構成要素である。このチャージ用アキュムレータ45は、低圧選択バルブ42を介してチャージ通路43に接続してあり、チャージポンプ41から吐出された油を蓄積することが可能である。 The charge accumulator 45 is a component of the charge unit 40. The charge accumulator 45 is connected to the charge passage 43 via the low pressure selection valve 42 and can accumulate the oil discharged from the charge pump 41.
 回生ユニット50は、回生用アキュムレータ51と、回生用油圧モータ52と、第一油通路53aと、第二油通路53bとを備えて構成したものである。回生用油圧モータ52は、押しのけ容積が常時一定の固定容量のもので、エンジン1の出力軸1aに接続してある。第一油通路53aは、回生用アキュムレータ51の吐出口を回生用油圧モータ52の吸込口に接続するものである。第二油通路53bは、一端部が第一油通路53aを介して回生用アキュムレータ51及び回生用油圧モータ52に接続し、他端部が高圧選択バルブ54を介して第1主油通路13A及び第2主油通路13Bに接続したものである。この第二油通路53bには、回生用バルブ55が介在させてある。これら第一油通路53a及び第二油通路53bは、高圧選択バルブ54を介して第1主油通路13Aもしくは第2主油通路13Bと回生用油圧モータ52との間を接続するための回生用油通路53を構成するものである。回生用バルブ55は、後述する制御部130からの制御信号に応じて第二油通路53bを開閉するものである。油タンクTから回生用アキュムレータ51に至る保護油通路56には、回生リリーフバルブ57と回生用油圧モータ52の吸込チェックバルブ58とが並列に接続してある。回生リリーフバルブ57は、第一油通路53aの圧力が設定圧力を超えた場合に油を油タンクTにリリーフするものである。吸込チェックバルブ58は、第一油通路53aに油が供給されていない状態で回生用油圧モータ52が回転した場合に開いて油タンクTの油を供給することにより、回生用油圧モータ52の損傷を防止するものである。 The regeneration unit 50 includes a regeneration accumulator 51, a regeneration hydraulic motor 52, a first oil passage 53a, and a second oil passage 53b. The regenerative hydraulic motor 52 has a fixed displacement with a constant displacement, and is connected to the output shaft 1 a of the engine 1. The first oil passage 53 a connects the discharge port of the regeneration accumulator 51 to the suction port of the regeneration hydraulic motor 52. The second oil passage 53b has one end connected to the regeneration accumulator 51 and the regeneration hydraulic motor 52 via the first oil passage 53a, and the other end connected to the first main oil passage 13A via the high pressure selection valve 54. This is connected to the second main oil passage 13B. A regeneration valve 55 is interposed in the second oil passage 53b. The first oil passage 53a and the second oil passage 53b are for regenerative use for connecting the first main oil passage 13A or the second main oil passage 13B and the regenerative hydraulic motor 52 via the high pressure selection valve 54. The oil passage 53 is configured. The regeneration valve 55 opens and closes the second oil passage 53b in accordance with a control signal from the control unit 130 described later. A regenerative relief valve 57 and a suction check valve 58 of the regenerative hydraulic motor 52 are connected in parallel to the protective oil passage 56 extending from the oil tank T to the regenerative accumulator 51. The regenerative relief valve 57 relieves oil to the oil tank T when the pressure in the first oil passage 53a exceeds a set pressure. The suction check valve 58 opens and supplies the oil in the oil tank T when the regenerative hydraulic motor 52 rotates in a state in which no oil is supplied to the first oil passage 53a, thereby damaging the regenerative hydraulic motor 52. Is to prevent.
 一方、油圧駆動車両の制御部130は、圧力センサ31,32、ポテンショメータ33、車速センサ34及びエンジン回転数センサ35からの出力情報に基づいて、上述したポンプ容量制御ユニット21、モータ容量制御ユニット22、回生用バルブ55、エンジン1の燃料噴射装置3を制御するものである。圧力センサ31,32は、第1主油通路13A及び第2主油通路13Bに設けたもので、主油通路13A,13Bの圧力を検出し、その検出結果を制御部130に出力するものである。ポテンショメータ33は、アクセルペダル33aに設けてあり、アクセルペダル33aの踏み込み量に応じた検出信号を制御部130に出力するものである。車速センサ34は、駆動車輪2を支持する出力軸12bの回転数から油圧駆動車両の速度を換算し、その換算結果を制御部130に出力するものである。エンジン回転数センサ35は、エンジン1の出力軸1aに設けてあり、エンジン1の回転数を検出し、その検出結果を制御部130に出力するものである。 On the other hand, the control unit 130 of the hydraulically driven vehicle is based on the output information from the pressure sensors 31 and 32, the potentiometer 33, the vehicle speed sensor 34, and the engine speed sensor 35, and the pump displacement control unit 21 and the motor displacement control unit 22 described above. The regenerative valve 55 and the fuel injection device 3 of the engine 1 are controlled. The pressure sensors 31 and 32 are provided in the first main oil passage 13A and the second main oil passage 13B, detect the pressure in the main oil passages 13A and 13B, and output the detection result to the control unit 130. is there. The potentiometer 33 is provided in the accelerator pedal 33a, and outputs a detection signal corresponding to the depression amount of the accelerator pedal 33a to the control unit 130. The vehicle speed sensor 34 converts the speed of the hydraulically driven vehicle from the rotational speed of the output shaft 12 b that supports the drive wheel 2, and outputs the conversion result to the control unit 130. The engine speed sensor 35 is provided on the output shaft 1 a of the engine 1, detects the speed of the engine 1, and outputs the detection result to the control unit 130.
 上記のように構成した油圧駆動車両においても、図3に示した油圧駆動車両と同様、まず、エンジン1が起動されると、以降、制御部130によってエンジン1の出力トルクがエンジン回転数に応じて予め設定された上限トルクの範囲内で、負荷に応じたトルクとなるように燃料噴射装置3の燃料噴射量が制御される。 Also in the hydraulically driven vehicle configured as described above, as in the hydraulically driven vehicle shown in FIG. 3, first, when the engine 1 is started, the output torque of the engine 1 is set according to the engine speed by the control unit 130 thereafter. Thus, the fuel injection amount of the fuel injection device 3 is controlled so as to be a torque corresponding to the load within a preset upper limit torque range.
 エンジン1起動時において制御部130は、走行用油圧ポンプ11からの油の吐出量がゼロとなるようにポンプ容量制御ユニット21を介して走行用油圧ポンプ11の斜板11aの傾転角を制御する。この結果、エンジン1が運転されている状態においても走行用油圧モータ12が回転されることはなく、油圧駆動車両は停止したままとなる。また、制御部130は、走行用油圧モータ12が停止している場合、回生用バルブ55によって回生用油通路53の第二油通路53bを遮断した状態に維持する。従って、この状態においては、回生用アキュムレータ51に油が蓄積されることはなく、回生用油圧モータ52が駆動されることもない。 When the engine 1 is started, the control unit 130 controls the tilt angle of the swash plate 11a of the traveling hydraulic pump 11 via the pump displacement control unit 21 so that the amount of oil discharged from the traveling hydraulic pump 11 becomes zero. To do. As a result, the traveling hydraulic motor 12 is not rotated even when the engine 1 is in operation, and the hydraulically driven vehicle remains stopped. Further, when the traveling hydraulic motor 12 is stopped, the control unit 130 maintains the state where the second oil passage 53b of the regeneration oil passage 53 is blocked by the regeneration valve 55. Therefore, in this state, no oil is accumulated in the regeneration accumulator 51 and the regeneration hydraulic motor 52 is not driven.
 上述した状態から油圧駆動車両を走行させるには、図示せぬ進行方向指示レバーを中立から前進もしくは後進に操作してアクセルペダル33aを踏み込めば良い。制御部130は、アクセルペダル33aが踏み込まれると、その踏み込み量と油圧駆動車両の速度とに基づいて走行用油圧モータ12に要求される目標トルクを算出する。さらに、制御部30からポンプ容量制御ユニット21及びモータ容量制御ユニット22に対して指令が出力され、走行用油圧モータ12の出力トルクが目標トルクとなるように走行用油圧ポンプ11及び走行用油圧モータ12の斜板11a,12aがそれぞれ制御される。これにより、走行用油圧ポンプ11から吐出された油により、走行用油圧モータ12が駆動されて回転することになり、運転者によるアクセルペダル33aの操作に応じて油圧駆動車両が走行することになる。 To drive the hydraulically driven vehicle from the above-described state, it is only necessary to depress the accelerator pedal 33a by operating a travel direction indicating lever (not shown) from neutral to forward or backward. When the accelerator pedal 33a is depressed, the control unit 130 calculates a target torque required for the traveling hydraulic motor 12 based on the depression amount and the speed of the hydraulically driven vehicle. Further, a command is output from the control unit 30 to the pump displacement control unit 21 and the motor displacement control unit 22, and the traveling hydraulic pump 11 and the traveling hydraulic motor are adjusted so that the output torque of the traveling hydraulic motor 12 becomes the target torque. The twelve swash plates 11a and 12a are respectively controlled. Thus, the traveling hydraulic motor 12 is driven and rotated by the oil discharged from the traveling hydraulic pump 11, and the hydraulically driven vehicle travels according to the operation of the accelerator pedal 33a by the driver. .
 進行方向指示レバーが前進もしくは後進に操作されている間に、外力等の影響が加わると、いずれか一方の主油通路、例えば第1主油通路13A、の油圧が上昇する。第1主油通路13Aの油圧が上昇して高圧リリーフバルブ59の設定圧力を超えると、高圧選択バルブ54及び高圧リリーフバルブ59を介して高圧側の第1主油通路13Aの油がチャージ通路43に流入する。チャージ通路43に流入した油は、第2主油通路13Bの油圧がチャージリリーフバルブ44の設定圧力よりも小さい場合、低圧選択バルブ42を介して第2主油通路13Bに補充される。第2主油通路13Bの油圧がチャージリリーフバルブ44の設定圧力以上であった場合、チャージポンプ41から吐出された油は、いずれの主油通路13A,13Bにも供給されることなくチャージ用アキュムレータ45に蓄積される。尚、チャージ用アキュムレータ45に蓄積されなかった余剰分の油は、チャージリリーフバルブ44を介して油タンクTに戻される。チャージ用アキュムレータ45に蓄積された油は、チャージ通路43が低圧となった場合に適宜吐出され、低圧側となる第2主油通路13Bに供給される。 If the influence of an external force or the like is applied while the traveling direction indicator lever is operated forward or backward, the hydraulic pressure of one of the main oil passages, for example, the first main oil passage 13A increases. When the oil pressure in the first main oil passage 13A rises and exceeds the set pressure of the high pressure relief valve 59, the oil in the first main oil passage 13A on the high pressure side passes through the high pressure selection valve 54 and the high pressure relief valve 59 and the charge passage 43 Flow into. The oil flowing into the charge passage 43 is replenished to the second main oil passage 13B via the low pressure selection valve 42 when the hydraulic pressure in the second main oil passage 13B is smaller than the set pressure of the charge relief valve 44. When the oil pressure in the second main oil passage 13B is equal to or higher than the set pressure of the charge relief valve 44, the oil discharged from the charge pump 41 is not supplied to any of the main oil passages 13A and 13B, and is a charge accumulator. 45 is accumulated. The excess oil that has not accumulated in the charge accumulator 45 is returned to the oil tank T via the charge relief valve 44. The oil accumulated in the charge accumulator 45 is appropriately discharged when the charge passage 43 becomes low pressure, and is supplied to the second main oil passage 13B on the low pressure side.
 一方、油圧駆動車両が走行している際に運転者がアクセルペダル33aの踏み込み量を減少させ、あるいは図示せぬブレーキペダルを踏み込んで制動を掛け、油圧駆動車両が減速されると、駆動車輪2によって走行用油圧モータ12が駆動されて回転されることになる。これにより、走行用油圧モータ12の駆動より吐出された油が走行用油圧ポンプ11に向けて流れ、いずれか一方の主油通路、例えば第2主油通路13Bの圧力が減速度に応じて第1主油通路13Aの圧力よりも上昇する。 On the other hand, when the hydraulically driven vehicle is running, the driver reduces the amount of depression of the accelerator pedal 33a or applies a brake by depressing a brake pedal (not shown) to decelerate the hydraulically driven vehicle. Thus, the traveling hydraulic motor 12 is driven and rotated. As a result, the oil discharged from the driving of the traveling hydraulic motor 12 flows toward the traveling hydraulic pump 11, and the pressure in one of the main oil passages, for example, the second main oil passage 13B, is increased according to the deceleration. 1 The pressure rises higher than the pressure in the main oil passage 13A.
 制御部130は、圧力センサ32の検出結果から第2主油通路13Bの圧力が予め設定した圧力より上昇したことを検出すると、回生用バルブ55を開位置に切り替え、回生用油通路53の第二油通路53bを介して高圧選択バルブ54と回生用アキュムレータ51との間を互いに連通させる。これにより、圧力が上昇した第2主油通路13Bの油が高圧選択バルブ54、回生用バルブ55を介して回生用油通路53に供給され、回生用油圧モータ52に供給されるとともに、余剰分が回生用アキュムレータ51に蓄積される。 When the control unit 130 detects from the detection result of the pressure sensor 32 that the pressure in the second main oil passage 13B has risen above the preset pressure, the control unit 130 switches the regeneration valve 55 to the open position, and sets the regenerative oil passage 53 in the first position. The high pressure selection valve 54 and the regenerative accumulator 51 are communicated with each other via the two oil passage 53b. As a result, the oil in the second main oil passage 13B whose pressure has been increased is supplied to the regenerative oil passage 53 via the high pressure selection valve 54 and the regenerative valve 55, and is supplied to the regenerative hydraulic motor 52. Is accumulated in the regeneration accumulator 51.
 回生用油圧モータ52に油が供給されると、回生用油圧モータ52が駆動されて回転することによってエンジン1の駆動が補助される。このとき、低圧側となる第1主油通路13Aの圧力がチャージリリーフバルブ44の設定圧力よりも小さくなるため、低圧選択バルブ42を介して第1主油通路13Aに油が補充される。これにより、チャージユニット40の能力の範囲内であれば、別途特別な装置を要せずとも、走行用油圧モータ12に対する油の流量は一対の主油通路13A,13Bで等しくなり変動することがない。 When oil is supplied to the regenerative hydraulic motor 52, the drive of the engine 1 is assisted by driving and rotating the regenerative hydraulic motor 52. At this time, since the pressure of the first main oil passage 13A on the low pressure side becomes smaller than the set pressure of the charge relief valve 44, oil is replenished to the first main oil passage 13A via the low pressure selection valve. As a result, the flow rate of the oil to the traveling hydraulic motor 12 may be equal and fluctuate in the pair of main oil passages 13A and 13B without requiring a special device as long as it is within the capacity of the charge unit 40. Absent.
 ここで、制御部130においては、回生用油圧モータ52によってエンジン1の駆動が補助されると、補助された分だけエンジン1の出力を低減するように燃料噴射量が制御される。すなわち、エンジン1の出力トルクが常に予め設定した一定のトルクとなるように、制御部130によってエンジン出力が制御される。従って、燃料の消費量が低減されて省エネルギ化を図ることが可能となるばかりでなく、走行用油圧モータ12に回転数の変動を来す恐れがなく、油圧駆動車両の操縦安定性を向上させることができる。 Here, when the drive of the engine 1 is assisted by the regenerative hydraulic motor 52, the control unit 130 controls the fuel injection amount so as to reduce the output of the engine 1 by the amount of assistance. That is, the engine output is controlled by the control unit 130 so that the output torque of the engine 1 is always a predetermined constant torque. Accordingly, not only fuel consumption can be reduced and energy can be saved, but also there is no risk of fluctuations in the rotational speed of the traveling hydraulic motor 12, and the handling stability of the hydraulically driven vehicle is improved. Can be made.
 上述の状態において車速が低下し、第2主油通路13Bの油圧が低下すると、制御部130によって回生用バルブ55が遮断状態に復帰され、第2主油通路13Bから回生用油通路53への油の流入が断たれることになる。しかしながら、回生用バルブ55が遮断位置となった後においても、回生用アキュムレータ51に蓄積された油が回生用油圧モータ52に供給されるため、この吐出された油によってエンジン1の駆動が継続して補助されることになる。 When the vehicle speed decreases in the above-described state and the hydraulic pressure in the second main oil passage 13B decreases, the regenerative valve 55 is returned to the shut-off state by the control unit 130, and the regenerative oil passage 53 is supplied from the second main oil passage 13B. The inflow of oil will be cut off. However, even after the regeneration valve 55 is in the shut-off position, the oil accumulated in the regeneration accumulator 51 is supplied to the regeneration hydraulic motor 52, so that the engine 1 continues to be driven by the discharged oil. Will be assisted.
 制御部130により回生用バルブ55が遮断された状態で回生用アキュムレータ51に蓄積された油がすべて放出されると、回生用アキュムレータ51から第一油通路53aに油が供給されない状態となる。この結果、エンジン1により回生用油圧モータ52が微少トルクで駆動されるが、吸込チェックバルブ58を介して油タンクTの油が供給されるため、回生用油圧モータ52に損傷を来す恐れはない。尚、回生用アキュムレータ51に蓄積された油がすべて放出されると、回生用油圧モータ52によるエンジン1の駆動補助が無くなる。この場合は、制御部130の指令により、エンジン1自体の出力トルクが増えるように燃料噴射量が制御されて目標トルクが維持される。 When all the oil accumulated in the regenerative accumulator 51 is released in a state where the regenerative valve 55 is shut off by the control unit 130, the oil is not supplied from the regenerative accumulator 51 to the first oil passage 53a. As a result, the regenerative hydraulic motor 52 is driven with a slight torque by the engine 1, but the oil in the oil tank T is supplied via the suction check valve 58, so that the regenerative hydraulic motor 52 may be damaged. Absent. When all the oil accumulated in the regenerative accumulator 51 is released, the driving assistance of the engine 1 by the regenerative hydraulic motor 52 is lost. In this case, the fuel injection amount is controlled by the command of the control unit 130 so that the output torque of the engine 1 itself is increased, and the target torque is maintained.
 以上説明したように、この油圧駆動車両においては、回生用油通路53に導入された油及び回生用アキュムレータ51に蓄積した油を閉回路である主油通路13A,13Bに戻すのではなく、エンジン1の出力軸1aに接続した回生用油圧モータ52に供給するようにしている。従って、回生用油通路53や回生用アキュムレータ51から供給される油によっては走行用油圧モータ12の回転数に変動を招来することがなく、回生用油圧モータ52によるエンジン1の駆動補助に相当する分だけエンジン1の出力トルクを減少させることによって燃料の消費量を低減することが可能となる。 As described above, in this hydraulically driven vehicle, the oil introduced into the regenerative oil passage 53 and the oil accumulated in the regenerative accumulator 51 are not returned to the main oil passages 13A and 13B, which are closed circuits. 1 is supplied to a regenerative hydraulic motor 52 connected to one output shaft 1a. Therefore, the oil supplied from the regenerative oil passage 53 or the regenerative accumulator 51 does not cause a change in the rotational speed of the traveling hydraulic motor 12, and corresponds to driving assistance of the engine 1 by the regenerative hydraulic motor 52. By reducing the output torque of the engine 1 by that amount, it is possible to reduce fuel consumption.
 尚、上述した実施の形態1では、エンジン1の出力軸1aに直接回生用油圧モータ52を接続しているが、必ずしもこれに限定されず、例えば、エンジン1の出力軸1aと回生用油圧モータ52との間にクラッチや減速歯車列を介在させるようにしても良い。また、回生用油圧モータ52としては、固定容量のものを適用する必要はなく、可変容量のものを適用しても構わない。 In the first embodiment described above, the regenerative hydraulic motor 52 is directly connected to the output shaft 1a of the engine 1. However, the present invention is not limited to this. For example, the output shaft 1a of the engine 1 and the regenerative hydraulic motor are not limited thereto. A clutch or a reduction gear train may be interposed between the control pin 52 and the gear 52. Further, as the regenerative hydraulic motor 52, it is not necessary to apply a fixed capacity, and a variable capacity may be applied.
 また、上述した実施の形態1では、高圧選択バルブ54を適用することにより、一対の主油通路13A,13Bのいずれからも回生用アキュムレータ51への油の蓄積が可能となるように油圧回路を構成しているが、必ずしも高圧選択バルブ54を用いる必要はない。すなわち、油圧駆動車両が前進している状態において走行減速時に高圧側となる主油通路にのみ回生用アキュムレータを接続するようにしても良い。同様に、チャージユニット40においても低圧選択バルブ42を介して一対の主油通路13A,13Bのいずれにも油を補充できるように構成しているが、必ずしも低圧選択バルブ42を用いる必要はない。尚、チャージユニット40にチャージ用アキュムレータ45を接続しているが、チャージ用アキュムレータ45は必ずしも設ける必要はない。 Further, in the first embodiment described above, by applying the high pressure selection valve 54, the hydraulic circuit is configured so that oil can be accumulated in the regenerative accumulator 51 from either of the pair of main oil passages 13A, 13B. Although it is configured, the high pressure selection valve 54 is not necessarily used. That is, the regenerative accumulator may be connected only to the main oil passage that is on the high pressure side during traveling deceleration while the hydraulic drive vehicle is moving forward. Similarly, the charge unit 40 is configured so that oil can be replenished to both the pair of main oil passages 13A and 13B via the low pressure selection valve 42, but the low pressure selection valve 42 is not necessarily used. Although the charge accumulator 45 is connected to the charge unit 40, the charge accumulator 45 is not necessarily provided.
 さらに、上述した実施の形態1では、回生用油圧モータ52によってエンジン1の駆動のみを補助するようにしているが、例えば図2に示す実施の形態2のように、エンジン1の出力軸1aに作業機用油圧ポンプ60を接続し、回生用油圧モータ52によって作業機用油圧ポンプ60の駆動を補助するように構成しても良い。尚、実施の形態2において実施の形態1と同様の構成については、同一の符号を付している。 Furthermore, in the first embodiment described above, only the drive of the engine 1 is assisted by the regenerative hydraulic motor 52. However, for example, in the second embodiment shown in FIG. The working machine hydraulic pump 60 may be connected and the regeneration hydraulic motor 52 may assist the driving of the working machine hydraulic pump 60. Note that the same reference numerals in the second embodiment denote the same components as those in the first embodiment.
 この実施の形態2においても、油圧駆動車両の走行減速時の運動エネルギによってエンジン1や作業機用油圧ポンプ60の駆動を補助することができるようになる。しかも、制御部130によってエンジン1の出力トルクが常に回生用油圧モータ52によるエンジン1の駆動補助に相当する分を減じて一定のトルクとなるように制御されているため、油圧駆動車両の走行速度に影響を与える恐れはない。 Also in the second embodiment, driving of the engine 1 and the working machine hydraulic pump 60 can be assisted by the kinetic energy at the time of traveling deceleration of the hydraulically driven vehicle. In addition, since the output torque of the engine 1 is always controlled by the control unit 130 so that the output torque of the engine 1 is reduced by the amount corresponding to the driving assistance of the engine 1 by the regenerative hydraulic motor 52, the traveling speed of the hydraulically driven vehicle is increased. There is no fear of affecting.
 1  エンジン
 1a  出力軸
 11  走行用油圧ポンプ
 12  走行用油圧モータ
 13(13A,13B)  主油通路
 40  チャージユニット
 41  チャージポンプ
 42  低圧選択バルブ
 43  チャージ通路
 44  低圧チャージリリーフバルブ
 45  チャージ用アキュムレータ
 50  回生ユニット
 51  回生用アキュムレータ
 52  回生用油圧モータ
 53  回生用油通路
 54  高圧選択バルブ
 55  回生用バルブ
 60  作業機用油圧ポンプ
130  制御部
1 Engine 1a Output shaft 11 Traveling hydraulic pump 12 Traveling hydraulic motor 13 (13A, 13B) Main oil passage 40 Charge unit 41 Charge pump 42 Low pressure selection valve 43 Charge passage 44 Low pressure charge relief valve 45 Charge accumulator 50 Regenerative unit 51 Regenerative accumulator 52 Regenerative hydraulic motor 53 Regenerative oil passage 54 High pressure selection valve 55 Regenerative valve 60 Working machine hydraulic pump 130 Controller

Claims (7)

  1.  閉回路を構成する一対の主油通路を介して接続した油圧ポンプ及び走行用油圧モータと、
     前記油圧ポンプを駆動するエンジンと、
     前記エンジンの出力軸から出力される出力トルクが目標トルクとなるようにトルク制御を行う制御部と
     を備え、前記一対の主油通路を通じて前記油圧ポンプから油を循環供給して前記走行用油圧モータを駆動することにより走行可能となる油圧駆動車両において、
     前記主油通路に接続され、内部に油を蓄積する回生用アキュムレータを備え、前記回生用アキュムレータに蓄積した油によって前記エンジンの出力軸を駆動することを特徴とする油圧駆動車両。
    A hydraulic pump and a traveling hydraulic motor connected via a pair of main oil passages constituting a closed circuit;
    An engine for driving the hydraulic pump;
    A control unit that performs torque control so that an output torque output from the output shaft of the engine becomes a target torque, and circulates and supplies oil from the hydraulic pump through the pair of main oil passages. In a hydraulically driven vehicle that can travel by driving
    A hydraulically driven vehicle comprising a regenerative accumulator connected to the main oil passage and accumulating oil therein, wherein the output shaft of the engine is driven by the oil accumulated in the regenerative accumulator.
  2.  前記エンジンの出力軸に回生用油圧モータを接続し、かつ前記主油通路から前記回生用油圧モータに回生用油通路を設けるとともに、この回生用油通路に前記回生用アキュムレータを介在させ、前記主油通路から前記回生用油通路に導入された油及び前記回生用アキュムレータに蓄積した油によって前記回生用油圧モータを駆動することを特徴とする請求項1に記載の油圧駆動車両。 A regenerative hydraulic motor is connected to the output shaft of the engine, a regenerative oil passage is provided from the main oil passage to the regenerative hydraulic motor, and the regenerative accumulator is interposed in the regenerative oil passage, The hydraulic drive vehicle according to claim 1, wherein the regenerative hydraulic motor is driven by oil introduced into the regenerative oil passage from an oil passage and oil accumulated in the regenerative accumulator.
  3.  作業機に油を供給する作業機用油圧ポンプを前記エンジンの出力軸に接続したことを特徴とする請求項2に記載の油圧駆動車両。 The hydraulic drive vehicle according to claim 2, wherein a hydraulic pump for a work machine that supplies oil to the work machine is connected to an output shaft of the engine.
  4.  低圧選択手段を介して主油通路に接続され、かつ接続された主油通路が予め設定した圧力を下回った場合に油を補充するチャージユニットを備えたことを特徴とする請求項1に記載の油圧駆動車両。 2. The charging unit according to claim 1, further comprising a charge unit that is connected to the main oil passage through the low-pressure selection unit and replenishes oil when the connected main oil passage falls below a preset pressure. Hydraulic drive vehicle.
  5.  低圧選択手段を介して主油通路に接続され、かつ接続された主油通路が予め設定した圧力を下回った場合に油を補充するチャージ用アキュムレータを備えたことを特徴とする請求項1に記載の油圧駆動車両。 The charging accumulator is connected to the main oil passage through the low pressure selection means, and replenishes oil when the connected main oil passage falls below a preset pressure. Hydraulic drive vehicle.
  6.  高圧選択手段を介して前記回生用アキュムレータを主油通路に接続させたことを特徴とする請求項1に記載の油圧駆動車両。 2. The hydraulically driven vehicle according to claim 1, wherein the regenerative accumulator is connected to a main oil passage through a high pressure selection means.
  7.  前記回生用油通路に前記主油通路と前記チャージ用アキュムレータとの間を開閉する回生用バルブを配設したことを特徴とする請求項2に記載の油圧駆動車両。 The hydraulic drive vehicle according to claim 2, wherein a regenerative valve that opens and closes between the main oil passage and the charge accumulator is disposed in the regenerative oil passage.
PCT/JP2012/073092 2011-12-01 2012-09-10 Hydraulically driven vehicle WO2013080627A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-263979 2011-12-01
JP2011263979A JP5947029B2 (en) 2011-12-01 2011-12-01 Hydraulic drive vehicle

Publications (1)

Publication Number Publication Date
WO2013080627A1 true WO2013080627A1 (en) 2013-06-06

Family

ID=48535104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073092 WO2013080627A1 (en) 2011-12-01 2012-09-10 Hydraulically driven vehicle

Country Status (2)

Country Link
JP (1) JP5947029B2 (en)
WO (1) WO2013080627A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109949A (en) * 1980-01-28 1981-08-31 Hitachi Constr Mach Co Ltd Inertia body driving oil pressure closed circuit
JP2000266181A (en) * 1999-03-17 2000-09-26 Kayaba Ind Co Ltd Hydrostatic transmission device
JP2003264903A (en) * 2002-03-07 2003-09-19 Hitachi Constr Mach Co Ltd Device for driving wheel work vehicle
JP2007528471A (en) * 2003-12-19 2007-10-11 デーナ、コーポレイション Pressurized hydraulic system with remote charge pump
WO2009065556A1 (en) * 2007-11-20 2009-05-28 Robert Bosch Gmbh Hydrostatic drive and method for operating a vehicle
JP2011033177A (en) * 2009-08-05 2011-02-17 Caterpillar Sarl Hst recycling control device for working machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08169246A (en) * 1994-12-20 1996-07-02 Mitsubishi Agricult Mach Co Ltd Continuously variable transmission for traveling work machine
JPH094709A (en) * 1995-06-16 1997-01-07 Daikin Ind Ltd Hydraulic transmission
JP2004150304A (en) * 2002-10-29 2004-05-27 Komatsu Ltd Controller of engine
DE102007046696A1 (en) * 2007-09-28 2009-04-09 Liebherr-Werk Nenzing Gmbh Hydraulic drive system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109949A (en) * 1980-01-28 1981-08-31 Hitachi Constr Mach Co Ltd Inertia body driving oil pressure closed circuit
JP2000266181A (en) * 1999-03-17 2000-09-26 Kayaba Ind Co Ltd Hydrostatic transmission device
JP2003264903A (en) * 2002-03-07 2003-09-19 Hitachi Constr Mach Co Ltd Device for driving wheel work vehicle
JP2007528471A (en) * 2003-12-19 2007-10-11 デーナ、コーポレイション Pressurized hydraulic system with remote charge pump
WO2009065556A1 (en) * 2007-11-20 2009-05-28 Robert Bosch Gmbh Hydrostatic drive and method for operating a vehicle
JP2011033177A (en) * 2009-08-05 2011-02-17 Caterpillar Sarl Hst recycling control device for working machine

Also Published As

Publication number Publication date
JP5947029B2 (en) 2016-07-06
JP2013117243A (en) 2013-06-13

Similar Documents

Publication Publication Date Title
US9453503B2 (en) Method for obtaining a full range of lift speeds using a single input
CN107000564B (en) Hydraulic hybrid propulsion circuit with hydrostatic selection and method of operation
JP6635947B2 (en) Hydraulic hybrid propulsion circuit with additional static pressure specification and operating method
WO2012099255A1 (en) Work vehicle control apparatus and work vehicle
US7693642B2 (en) Anti-overspeed system for vehicle and associated method
EP2098430A1 (en) Travel drive device for working vehicle, working vehicle, and travel drive method
JP5180494B2 (en) HST cooling circuit
US10017918B2 (en) Working machine
CN101688606B (en) Hydraulic drive system with neutral drift compensation and temperature compensation for pressure limits
JP5113946B1 (en) Work vehicle and control method of work vehicle
EP3037589B1 (en) Construction machine
JP4160047B2 (en) Method and apparatus for controlling the function of a work vehicle
JPH11350539A (en) Traveling aid hydraulic circuit of hydraulic drive working vehicle
WO2013080633A1 (en) Regeneration control device for work vehicles and regeneration control method for work vehicles
WO2019163990A1 (en) Hydraulic system for construction machine
JP5092059B1 (en) Work vehicle and control method of work vehicle
CN101943263B (en) Hydraulic transmission system having median drift compensation and used for temperature compensation at pressure limit
JP5947029B2 (en) Hydraulic drive vehicle
JP2009024747A (en) Hydraulic travel driving apparatus
JP6535871B2 (en) Industrial vehicles
CN105667291B (en) Hydrostatic drive system
JPH0972303A (en) Variable displacement type hydraulic device system
JP2021115987A (en) Starting engine output reduction device
JP2004176919A (en) Speed limit system for hydraulic running vehicle
JP2008223992A (en) Hydraulic drive mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853594

Country of ref document: EP

Kind code of ref document: A1