WO2013080549A1 - Solar cell module and method for producing same - Google Patents

Solar cell module and method for producing same Download PDF

Info

Publication number
WO2013080549A1
WO2013080549A1 PCT/JP2012/007665 JP2012007665W WO2013080549A1 WO 2013080549 A1 WO2013080549 A1 WO 2013080549A1 JP 2012007665 W JP2012007665 W JP 2012007665W WO 2013080549 A1 WO2013080549 A1 WO 2013080549A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
back glass
hole
solar cell
translucent member
Prior art date
Application number
PCT/JP2012/007665
Other languages
French (fr)
Japanese (ja)
Inventor
篠原 亘
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013080549A1 publication Critical patent/WO2013080549A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module and a manufacturing method thereof.
  • a transparent glass substrate, a filling adhesive, a photoelectric conversion panel, a filling adhesive, and a back surface protection cover material are sequentially stacked and integrated into a laminated configuration, and then the peripheral edge is sealed with a sealing material. Obtained.
  • the two lead wires connected to the photoelectric conversion panel penetrate the filling adhesive and the back surface protection cover material, and are provided outside the back surface protection cover material.
  • the back protective cover material is provided with a terminal port for penetrating the two lead wires.
  • the terminal port is sealed with a filling adhesive such as silicone resin.
  • the peripheral edge is sealed with a sealing material, or the terminal port is sealed with a filling adhesive.
  • the sealing material and the filling adhesive deteriorate, and moisture easily enters.
  • the terminal port is provided close to the photoelectric conversion panel, the probability of failure of the photoelectric conversion panel increases when moisture enters from the terminal port.
  • the above-mentioned filling adhesive is considered to be waterproof, there is room for further improvement from the viewpoint of moisture resistance.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a technique for improving the reliability of a solar cell module.
  • a solar cell module includes a translucent member disposed on the light receiving side, a back glass plate provided to face the translucent member, and a translucent member.
  • a photovoltaic device provided between the conductive member and the back glass plate, and a conductive path provided on the surface of the back glass plate for outputting the electric power generated in the photovoltaic device to the outside.
  • the back glass plate has a through hole formed therein, and the terminal is disposed so as to cover the through hole, and at least a part of the periphery of the through hole is melt bonded to the back glass plate.
  • Another aspect of the present invention is a method for manufacturing a solar cell module.
  • a step of preparing a translucent member provided with a photovoltaic device, and an electric power generated in the photovoltaic device on the surface of a back glass plate in which a through hole is formed are externally provided.
  • a step of irradiating, and a step of making the translucent member and the back glass plate face each other and joining the peripheral portion.
  • the reliability of the solar cell module can be improved.
  • FIG. 2 is a cross-sectional view taken along line AA in the vicinity of the terminal box shown in FIG. It is the front view which looked at the inside of the terminal box shown in FIG. 1 from the back surface side.
  • 4 (a) to 4 (c) are diagrams for explaining a method of manufacturing a solar cell module. It is an enlarged view of the junction part vicinity of the metal terminal and back glass plate which concern on 2nd Embodiment. It is an enlarged view of the junction part vicinity of the metal terminal and back glass plate which concern on 3rd Embodiment. It is a figure which shows the modification of the connection mechanism of a metal terminal and a cable.
  • FIG. 1 is a plan view of the solar cell module according to the first embodiment viewed from the light receiving surface side.
  • 2 is a cross-sectional view taken along the line AA in the vicinity of the terminal box shown in FIG.
  • FIG. 3 is a front view of the inside of the terminal box shown in FIG. 1 viewed from the back side.
  • the solar cell module 10 includes a translucent member 12 disposed on the light receiving side, a back glass plate 14 provided so as to face the translucent member 12, and the translucent member 12 and the back glass plate 14. And a photovoltaic device 16 provided therebetween.
  • the translucent member 12 for example, a glass plate having a 1 m square and a plate thickness of 4 mm is applied.
  • the present invention is not limited to this, and any material that is suitable for forming the photovoltaic device 16 and that can mechanically support the solar cell module 10 may be used. Incidence of light to the solar cell module 10 is basically performed from the translucent member 12 side.
  • a photovoltaic device 16 is formed on the translucent member 12.
  • the photovoltaic device 16 is formed by laminating a transparent electrode, a photoelectric conversion unit, a back electrode, and the like.
  • the transparent electrode for example, tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. is doped with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc.
  • TCO transparent conductive oxides
  • a film in which at least one kind or a plurality of kinds is combined can be used.
  • the photoelectric conversion unit examples include an amorphous silicon photoelectric conversion unit (a-Si unit) and a microcrystalline silicon photoelectric conversion unit ( ⁇ c-Si unit).
  • the photoelectric conversion unit may have a structure in which a plurality of photoelectric conversion units are stacked such as a tandem type or a triple type.
  • the back electrode can be a transparent conductive oxide (TCO), a reflective metal, or a laminated structure thereof.
  • TCO transparent conductive oxide
  • SnO 2 tin oxide
  • ZnO zinc oxide
  • ITO indium tin oxide
  • silver (Ag), aluminum (Al ) Or the like is used.
  • the back glass plate 14 is provided so as to cover the photovoltaic device 16 formed on the translucent member 12.
  • the back glass plate 14 has, for example, substantially the same size as the translucent member 12, and a glass plate having a thickness of 3.2 mm is applied. However, it is not limited to this.
  • the translucent member 12 and the back glass plate 14 are melt-bonded in the bonding region R1 in the outer peripheral region thereof.
  • the joining region R1 is provided in the peripheral portion R2 where the photovoltaic device 16 is not formed in the translucent member 12.
  • the peripheral portion R2 (region not hatched in FIG. 1) can be provided by removing the photovoltaic device 16 once formed on the translucent member 12 with a laser or the like.
  • at least one peripheral portion of the translucent member 12 and the back glass plate 14 may be bent. Is preferred.
  • the solar cell module 10 is provided on the front surface 14 a of the back glass plate 14, and has a metal terminal 18 having a conductive path 18 a that outputs power generated in the photovoltaic device 16 to the outside. It has. Further, the back glass plate 14 has two through holes 20 having a diameter of 6 mm formed at the center, and the metal terminals 18 are arranged so as to cover the through holes 20, and the periphery of the through holes 20 (see FIG. 3). At least a part of the hatching region R3) shown is melt bonded to the back glass plate 14.
  • the metal terminal 18 is melt-bonded and at least melt-bonded to the back glass plate 14 in at least a part of the periphery of the through-hole 20 in a state of covering the through-hole 20 of the back glass plate 14. Highly airtight against the ingress of moisture from the outside is realized in the part. Therefore, external moisture passes between the metal terminal 18 and the back glass plate 14 and is prevented from entering the inside of the solar cell module 10 through the through hole 20, and long-term reliability of the solar cell module 10. Can be improved.
  • melt-bonding can be understood as, for example, a state where the metal terminals 18 and the back glass plate 14 are partly melted and joined together. More preferably, at the interface between the metal terminal 18 and the back glass plate 14, the material of the metal terminal 18 and the glass of the back glass plate 14 may be melted and mixed with each other.
  • a first current collecting wiring 22 and a second current collecting wiring 24 are formed in order to take out the electric power generated by the photovoltaic device 16.
  • the first current collecting wiring 22 is a wiring for collecting current from the photovoltaic devices 16 divided in parallel, and the second current collecting wiring 24 is connected from the first current collecting wiring 22 to the terminal box 26. Wiring.
  • the first current collecting wiring 22 is extended on the back electrode of the photovoltaic device 16.
  • the first current collector wiring 22 is formed to connect the positive electrodes and the negative electrodes of the photoelectric conversion layers divided in parallel near the end of the solar cell module 10. Therefore, the 1st current collection wiring 22 is extended along the direction orthogonal to the parallel division direction of a photoelectric conversion layer.
  • the first current collector wiring 22 extends along the vertical direction on the left and right edges. As a result, the positive electrodes and the negative electrodes of the photovoltaic devices 16 connected in series are connected in parallel.
  • an insulating coating material 28 is disposed in order to form electrical insulation between the second current collector wiring 24 and the back electrode of the photovoltaic device 16. As shown in FIG. 1 and FIG. 2, the insulating coating material 28 extends from the vicinity of the first current collector wiring 22 provided along the left and right edges of the solar cell module 10 to the vicinity of the arrangement position of the terminal box 26 in the central portion. , Extending on the back electrode of the photovoltaic device 16.
  • the insulating coating material 28 is preferably made of, for example, polyester (PE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polyvinyl fluoride, or the like. Moreover, it is preferable to use the insulating coating material 28 in which an adhesive is applied to the back surface in a sealing manner.
  • the second current collecting wiring 24 is extended from the left and right first current collecting wirings 22 along the insulating coating material 28 toward the center of the solar cell module 10. Yes.
  • the insulation coating material 28 is sandwiched between the second current collecting wiring 24 and the back electrode of the photovoltaic device 16, so that electrical insulation between the second current collecting wiring 24 and the back electrode is maintained.
  • one end of the second current collecting wiring 24 extends to the first current collecting wiring 22 and is electrically connected to the first current collecting wiring 22.
  • the second current collecting wiring 24 is preferably electrically connected to the first current collecting wiring 22 by ultrasonic soldering or the like.
  • the other end of the 2nd current collection wiring 24 is electrically connected with the metal terminal 18 in the terminal box 26 via the spring which is the electroconductive elastic member mentioned later.
  • a region where the translucent member 12 and the back glass plate 14 are opposed is filled with a filler 30.
  • a filler 30 in addition to butyl rubber and ethylene vinyl acetate (EVA), materials used for coking such as silicone, filled resin materials such as polyvinyl butyral (PVB), ethylene resins such as ethylene ethyl acrylate copolymer (EEA), urethane, Acrylic or epoxy resin may be used.
  • EVA ethylene vinyl acetate
  • the laser beam 34 is preferably a femtosecond laser beam. That is, the laser beam 34 preferably has a pulse width of 1 nanosecond or less.
  • the laser beam 34 preferably has a wavelength at which absorption occurs in at least one of the translucent member 12 and the back glass plate 14. For example, it is preferable that the laser beam 34 has a wavelength of 800 nm. Furthermore, it is preferable that the laser beam 34 is irradiated at an energy density and a scanning speed sufficient to melt the translucent member 12 and the back glass plate 14.
  • the laser beam 34 is preferably irradiated with a pulse energy of a wavelength of 800 nm, a pulse width of 150 fs, an oscillation repetition rate of 1 kHz, and 5 microjoules ( ⁇ J) per pulse.
  • the laser beam 34 is preferably scanned at a scanning speed of 60 mm / min. Further, the laser beam 34 may be irradiated from either the translucent member 12 side or the back glass plate 14 side.
  • the metal terminal 18 is melt-bonded to the back glass plate 14 in at least a part of the periphery of the through hole 20 (hatching region R3 shown in FIG. 3).
  • the metal terminal 18 may be melt-bonded to the back glass plate 14 over the entire circumference around the through hole 20. Accordingly, it is further suppressed that external moisture passes between the metal terminal 18 and the back glass plate 14 and enters the solar cell module 10 through the through hole 20.
  • the metal terminal 18 has a cylindrical shape with a diameter of 30 mm and a thickness of 5 mm, and is made of copper.
  • the metal terminal 18 is a metal whose surface is plated with a low resistivity material such as aluminum, gold or silver, Kovar (an alloy in which nickel and cobalt are mixed with iron), or at least a part of the metal terminal 18, or Other alloys may be used. Thereby, the electric power generated by the photovoltaic device 16 can be output to the outside through the metal terminal 18.
  • the metal terminal 18 has a large-diameter cylindrical portion facing the back glass plate 14 and a small-diameter cylindrical portion protruding from the center of one end face of the large-diameter cylindrical portion.
  • the small-diameter columnar portion is positioned in the through hole 20 to position the metal terminal 18 with respect to the rear glass plate 14.
  • a cable 36 is connected to the other end face of the large-diameter column by solder or the like.
  • FIG. 4A ⁇ Method for manufacturing solar cell module> 4 (a) to 4 (c) are diagrams for explaining a method of manufacturing a solar cell module.
  • the metal terminal 18 to which the cable 36 is connected is arranged on the front surface 14 a of the back glass plate 14 in which the through hole 20 is formed so as to cover the through hole 20.
  • the pulse width is 1 nanosecond or less from the opposite side to the side by which the metal terminal 18 of the back surface glass plate 14 is provided in the opposing part of the back surface glass plate 14 and the metal terminal 18.
  • a laser beam 34 is irradiated using a laser device 32. Thereby, the metal terminal 18 and the back surface glass plate 14 are melt-bonded.
  • a translucent member 12 provided with the photovoltaic device 16 is prepared.
  • the 1st current collection wiring 22, the 2nd current collection wiring 24, insulating covering material 28, filler 30 (not shown in Drawing 4 (b)) etc. are arranged suitably.
  • the back glass plate 14 on which the metal terminals 18 are melt-bonded and the translucent member 12 provided with the photovoltaic device 16 are opposed to each other and overlapped with each other in a predetermined positional relationship.
  • a spring 38 as a conductive elastic member for conducting the metal terminal 18 and the photovoltaic device 16 is arranged in a state of being biased inside the through hole 20 (see FIG. 4C).
  • One end of the biased spring 38 contacts the metal terminal 18 inside the through hole 20, and the other end contacts the second current collector wiring 24. That is, the second current collection wiring 24 and the cable 36 are electrically connected to each other via the spring 38 and the metal terminal 18.
  • the solar cell module 10 is deformed by external force or heat, or the joining position of the metal terminal 18 is shifted, so that the positional relationship between the metal terminal 18 and the photovoltaic device 16 or each wiring changes.
  • high connection reliability is realized.
  • the surface of the spring 38 is covered with a material having higher conductivity than the core material of the spring 38.
  • the material having high conductivity include gold (Au), silver (Ag), and copper (Cu).
  • Au gold
  • Ag silver
  • Cu copper
  • the entire spring 38 may be made of a highly conductive material such as gold (Au), silver (Ag), or copper (Cu).
  • the translucent member 12 and the back glass plate 14 are opposed to each other, and the peripheral portion is melt-bonded by the laser beam 34 to complete the completely sealed solar cell module 10. To do.
  • FIG. 5 is an enlarged view of the vicinity of the joint between the metal terminal and the back glass plate according to the second embodiment.
  • the metal terminal 40 according to the second embodiment has a glass portion 40a in which glass frit is baked.
  • the glass part 40 a is a cylindrical part fired around the small-diameter columnar part 40 b of the metal terminal 40.
  • the glass frit refers to, for example, glass fragments (flakes) or powder produced by melting a glass raw material at a high temperature and quenching.
  • the glass part 40a is formed by applying glass frit to the metal part of the metal terminal 40 using a dispenser and then baking at 200 ° C. for about 20 minutes.
  • the metal terminal 40 is melt-bonded to the back glass plate 14 through the glass portion 40a.
  • the fusion bonding is performed by a laser beam 34 emitted from the laser device 32 from the side opposite to the side where the metal terminals 40 of the back glass plate 14 are provided.
  • a laser beam 34 emitted from the laser device 32 from the side opposite to the side where the metal terminals 40 of the back glass plate 14 are provided.
  • FIG. 6 is an enlarged view of the vicinity of the joint between the metal terminal and the back glass plate according to the third embodiment.
  • the metal terminal 42 according to the third embodiment is brazed and welded to the intermediate glass 44 in which the through-hole 43 is formed, using a braze 46.
  • the metal terminal 42 is preferably, for example, Kovar.
  • the intermediate glass 44 is preferably a borosilicate glass that is easy to braze. Note that TIG (Tungsten Inert Gas) welding may be used instead of brazing.
  • the metal terminal 42 is melt bonded to the back glass plate 14 via the intermediate glass 44.
  • the fusion bonding is performed by a laser beam 34 emitted from the laser device 32 as in the first embodiment.
  • the joining portion of the intermediate glass 44 and the back glass plate 14 to which the metal terminal 40 is fixed is made of glass, it is possible to perform fusion bonding with higher strength and higher sealing performance. It becomes.
  • FIG. 10 is a cross-sectional view showing the structure of a solar cell module according to the fourth embodiment.
  • FIG. 11 is a plan view showing a light receiving surface of a solar cell module according to the fourth embodiment.
  • the solar cell module 500 includes a metal terminal 18, a through hole 20, a cable 36, a support substrate 60, a passivation layer 61, a base layer 62, and a first conductive material. Mold diffusion layer 63, i-type layer 64, second conductivity type layer 65, transparent electrode layer 66, metal layer 67 (67p, 67n), filler 68, back glass plate 69, conductive tab 70 (see FIG. 11), A current collecting tab 71 (see FIG. 11) is included.
  • the passivation layer 61, the base layer 62, the first conductivity type diffusion layer 63, the i-type layer 64, the second conductivity type layer 65, the transparent electrode layer 66, and the metal layer 67 constitute a photoelectric conversion element.
  • the photovoltaic device 510 includes a plurality of photoelectric conversion elements.
  • the photovoltaic device 510 is a back junction type photovoltaic device, and an electrode for taking out the electric power generated by the photovoltaic device to the outside is a main surface opposite to the light receiving surface (hereinafter referred to as a back surface). Only provided.
  • the application range of the present invention is not limited to this, and any photovoltaic device in which a plurality of photoelectric conversion elements are arranged on the support substrate 60 may be used.
  • the light receiving surface means a main surface on which light is mainly incident in the photovoltaic element, and specifically, is a surface on which most of the light incident on the photovoltaic element is incident.
  • the back surface means a surface opposite to the light receiving surface of the photovoltaic element.
  • the support substrate 60 mechanically supports the photovoltaic element and protects the semiconductor layer included in the photovoltaic element from the external environment.
  • the photovoltaic element transmits light in a wavelength band used for power generation, and mechanically supports each layer such as the base layer 62.
  • the material is made.
  • As the support substrate 60 for example, a glass plate having translucency is used.
  • the passivation layer 61 is provided between the support substrate 60 and the base layer 62.
  • the passivation layer 61 plays a role of terminating dangling bonds (dangling bonds) on the surface of the base layer 62 and suppresses carrier recombination on the surface of the base layer 62.
  • dangling bonds dangling bonds
  • the passivation layer 61 may include, for example, a silicon nitride layer (SiN), and more preferably has a stacked structure of a silicon oxide layer (SiOx) and silicon nitride.
  • SiN silicon nitride layer
  • SiOx silicon oxide layer
  • silicon nitride a structure in which a silicon oxide layer and a silicon nitride layer are sequentially stacked with a thickness of 30 nm and 40 nm, respectively, may be used.
  • the support substrate 60 and the photoelectric conversion element are bonded to each other through the passivation layer 61.
  • the base layer 62 is a crystalline semiconductor layer. Note that the crystalline includes not only a single crystal but also a polycrystal in which a large number of crystal grains are aggregated.
  • the base layer 62 becomes a power generation layer of the photovoltaic element.
  • the base layer 62 is an n-type crystalline silicon layer to which an n-type dopant is added.
  • the doping concentration of the base layer 62 may be about 10 16 / cm 3 .
  • the film thickness of the base layer 62 is a film thickness that can sufficiently generate carriers as a power generation layer, and is desirably 50 ⁇ m or less.
  • the base layer 62 and the first conductivity type diffusion layer 63 form a first conductivity type contact region in which the crystalline materials are homo-joined.
  • the first conductivity type diffusion layer 63 is an n-type crystalline silicon layer to which an n-type dopant is added.
  • the first conductivity type diffusion layer 63 is a layer bonded to the metal layer 67 (first electrode 67n) and has a higher doping concentration than the base layer 62.
  • the doping concentration of the first conductivity type diffusion layer 63 may be about 10 19 / cm 3 .
  • the film thickness of the first conductivity type diffusion layer 63 is preferably as thin as possible within a range where the contact resistance with the metal can be sufficiently lowered, and may be, for example, 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the i-type layer 64 and the second conductivity type layer 65 are amorphous semiconductor layers. Note that the amorphous system includes an amorphous phase or a microcrystalline phase in which minute crystal grains are precipitated in the amorphous phase.
  • the i-type layer 64 and the second conductivity type layer 65 are made of amorphous silicon containing hydrogen.
  • the i-type layer 64 is a substantially intrinsic amorphous silicon layer.
  • the second conductivity type layer 65 is an amorphous silicon layer to which a p-type dopant is added.
  • the second conductivity type layer 65 is a semiconductor layer having a higher doping concentration than the i-type layer 64.
  • the i-type layer 64 is not intentionally doped, and the doping concentration of the second conductivity type layer 65 may be about 10 18 / cm 3 .
  • the thickness of the i-type layer 64 is made thin so that light absorption can be suppressed as much as possible, while it is made thick enough that the surface of the base layer 62 is sufficiently passivated. Specifically, the thickness may be 1 nm or more and 50 nm or less, for example, 10 nm.
  • the film thickness of the second conductivity type layer 65 is made thin so as to suppress light absorption as much as possible, while it is made so thick that the open circuit voltage of the photovoltaic element becomes sufficiently high.
  • the thickness may be 1 nm or more and 50 nm or less, for example, 10 nm.
  • the transparent electrode layer 66 is doped with tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. It is preferable to use at least one or a combination of a plurality of transparent conductive oxides (TCO). In particular, zinc oxide (ZnO) has advantages such as high translucency and low resistivity.
  • the film thickness of the transparent electrode layer 66 may be 10 nm or more and 500 nm or less, for example, 100 nm.
  • the base layer 62, the i-type layer 64, and the second conductivity type layer 65 form a second conductivity type contact region in which crystalline and amorphous are heterojunctioned.
  • the metal layer 67 is a layer serving as an electrode provided on the back side of the photovoltaic element.
  • the metal layer 67 is made of a conductive material such as metal, and is made of, for example, a material containing copper (Cu) or aluminum (Al).
  • the metal layer 67 includes a first electrode 67 n connected to the first conductivity type diffusion layer 63 and a second electrode 67 p connected to the second conductivity type layer 65.
  • the metal layer 67 may further include an electrolytic plating layer such as copper (Cu) or tin (Sn). However, it is not limited to this, It is good also as other metals, such as gold
  • the first electrode 67n and the second electrode 67p of the plurality of photovoltaic elements arranged in parallel are connected by the conductive tab 70, and the plurality of photovoltaic elements are connected in series or in parallel.
  • a filler 68 is disposed on the back side of the photovoltaic element and sealed with a back glass plate 69.
  • the filler 68 can be a resin material such as EVA or polyimide.
  • the back glass plate 69 is a glass plate having a size substantially the same as that of the support substrate 60, thereby preventing moisture from entering the power generation layer of the photovoltaic device 510 in the solar cell module 500. .
  • the through-hole 20 is formed in the back glass plate 69 serving as a path for taking out the electric energy generated by the photovoltaic element to the outside, and the whole is covered with the metal terminal 18.
  • the metal terminal 18 is disposed so as to cover the through hole 20, and is melt-bonded to the back glass plate 69 in at least a part of the periphery (region R ⁇ b> 3) of the through hole 20.
  • a spring 38 as a conductive elastic member that conducts between the metal terminal 18 and the current collecting tab 71 connected to the conductive tab 70 is arranged in a state of being biased inside the through hole 20 (see FIG. 10). ). One end of the biased spring 38 contacts the metal terminal 18 inside the through hole 20, and the other end contacts the current collecting tab 71.
  • the solar cell module 500 includes a cable 36 connected to the metal terminal 18 in order to output the electric energy generated by the photovoltaic device 510 to the outside.
  • the present invention has been described with reference to each of the above-described embodiments, but the present invention is not limited to each of the above-described embodiments, and the configuration of the embodiments is appropriately combined or replaced. Are also included in the present invention. Further, it is possible to appropriately change the combination and processing order in each embodiment based on the knowledge of those skilled in the art and to add various modifications such as various design changes to each embodiment. Embodiments to which is added can also be included in the scope of the present invention.
  • FIG. 7 is a diagram illustrating a modification of the connection mechanism between the metal terminal and the cable.
  • the metal terminal 48 that is melt-bonded to the back glass plate 14 is connected to the cable 36 via the connection member 50.
  • the connection member 50 includes a crimp terminal 52 that is crimped to one end of the cable 36, and a screw 54 that fixes the crimp terminal 52 to the metal terminal 48. Thereby, the metal terminal 48 and the cable 36 are detachably connected, and the cable 36 can be easily replaced.
  • FIG. 8 and FIG. 9 are diagrams showing modifications of the fusion bonding between the translucent member 12 and the back glass plate 14.
  • the translucent member 12 and the back glass plate 14 may be melt-bonded by melting.
  • the spacer 56 it is preferable to apply a material containing an element capable of melt-bonding the translucent member 12 and the back glass plate 14, such as Si, SiO, SiO 2 , or SiO X.
  • the frame-shaped spacer 56 may be formed by applying the above-described glass frit to the outer peripheral portion of the back glass plate 14 by screen printing and baking.
  • the laser beam 34 can be irradiated from either the translucent member 12 side or the back glass plate 14 side. Therefore, when the photovoltaic device 16 (including the silicon substrate) itself is thick like a crystalline silicon solar cell, the surface 56a of the spacer 56 and the translucent member 12 are melted as shown in FIG. The back surface 56b of the spacer 56 and the back glass plate 14 may be melt-bonded to each other.
  • the solar cell module by the following combination and its manufacturing method can also be included in the scope of the present invention.
  • Solar cell module A translucent member disposed on the light receiving side; A back glass plate provided to face the translucent member; A photovoltaic device provided between the translucent member and the back glass plate; A terminal provided on the surface of the back glass plate, and having a conductive path for outputting the power generated in the photovoltaic device to the outside,
  • the back glass plate has a through hole formed, The terminal is disposed so as to cover the through hole, and is melt-bonded to the back glass plate at least at a part of the periphery of the through hole.
  • a conductive elastic member that conducts the terminal and the photovoltaic device is further provided, and the conductive elastic member is disposed in the through hole in an urged state (1) or (2 ).
  • the manufacturing method of the solar cell module Preparing a translucent member provided with a photovoltaic device; On the surface of the back glass plate in which the through hole is formed, a step of arranging a terminal having a conductive path for outputting the electric power generated in the photovoltaic device to the outside so as to cover the through hole, A step of irradiating a laser beam having a pulse width of 1 nanosecond or less to the opposed portion of the back glass plate and the terminal around the through hole; A step of making the translucent member and the back glass plate face each other and bonding a peripheral edge; including.
  • the present invention can be used for solar cells.

Abstract

This solar cell module (10) is provided with: a translucent member (12) disposed on the light-receiving side; a rear surface glass plate (14) provided in a manner so as to face the translucent member; a photovoltaic device (16) provided between the translucent member (12) and the rear surface glass plate (14); and a metal terminal (18) provided on the obverse surface of the rear surface glass plate (14) and having a conductive pathway (18a) that outputs the electrical power generated at the photovoltaic device (16) to the outside. A through hole (20) is formed at the rear surface glass plate (14), and the metal terminal (18) is disposed in a manner so as to cover the through hole (20), being welded/joined to the rear surface glass plate (14) at least at a portion of the periphery of the through hole (20).

Description

太陽電池モジュールおよびその製造方法Solar cell module and manufacturing method thereof
 本発明は、太陽電池モジュールおよびその製造方法に関する。 The present invention relates to a solar cell module and a manufacturing method thereof.
 従来、光エネルギーを電気エネルギーに変換する光電変換装置として、いわゆる太陽電池の開発が各方面で精力的に行われている。太陽電池は、クリーンで無尽蔵なエネルギー源である太陽からの光を直接電気に変換できることから、新しいエネルギー源として期待されている。 Conventionally, so-called solar cells have been vigorously developed in various fields as photoelectric conversion devices that convert light energy into electrical energy. Solar cells are expected to be a new energy source because they can directly convert light from the sun, a clean and inexhaustible energy source, into electricity.
 例えば、太陽電池パネルは、透明ガラス基板、充填接着剤、光電変換パネル、充填接着剤、裏面保護カバー材を順に重ね、積層構成に一体化した後、周縁端部を封止材で封止して得られる。ここで、光電変換パネルに発生した電力を取り出すために、光電変換パネルに接続された2本のリード線は、充填接着剤、裏面保護カバー材を貫通し、裏面保護カバー材の外側に設けられたボックスに収容されている。そのため、裏面保護カバー材には、2本のリード線を貫通させるために端子口が設けられているが、防水を目的として、当該端子口は、シリコーン樹脂等の充填接着剤で封止されている(例えば、特許文献1参照)。 For example, in a solar cell panel, a transparent glass substrate, a filling adhesive, a photoelectric conversion panel, a filling adhesive, and a back surface protection cover material are sequentially stacked and integrated into a laminated configuration, and then the peripheral edge is sealed with a sealing material. Obtained. Here, in order to take out the electric power generated in the photoelectric conversion panel, the two lead wires connected to the photoelectric conversion panel penetrate the filling adhesive and the back surface protection cover material, and are provided outside the back surface protection cover material. In a box. Therefore, the back protective cover material is provided with a terminal port for penetrating the two lead wires. For the purpose of waterproofing, the terminal port is sealed with a filling adhesive such as silicone resin. (For example, refer to Patent Document 1).
特開平9-279789号公報JP-A-9-279789
 ところで、太陽電池を普及させるためには、発電コストの低減が必要とされており、その達成のためには、光電変換装置の長寿命化が有効である。長寿命化を妨げる主な要因は、光電変換パネルへの水分の浸入である。一方、水分の浸入を防止するために、前述のごとく、周縁端部が封止材で封止されていたり、端子口が充填接着剤で封止されていたりする。 Incidentally, in order to popularize solar cells, it is necessary to reduce the power generation cost. To achieve this, it is effective to extend the life of the photoelectric conversion device. The main factor that hinders the longevity is the penetration of moisture into the photoelectric conversion panel. On the other hand, in order to prevent moisture from entering, as described above, the peripheral edge is sealed with a sealing material, or the terminal port is sealed with a filling adhesive.
 しかしながら、長期の使用によって、封止材や充填接着剤は劣化し、水分が浸入しやすくなる。特に、端子口は光電変換パネルに近接して設けられるので、端子口から水分が浸入することによって、光電変換パネルの故障発生確率が高くなる。前述の充填接着剤は、防水性は考慮されているものの、防湿性という観点からは更なる改良の余地がある。 However, with long-term use, the sealing material and the filling adhesive deteriorate, and moisture easily enters. In particular, since the terminal port is provided close to the photoelectric conversion panel, the probability of failure of the photoelectric conversion panel increases when moisture enters from the terminal port. Although the above-mentioned filling adhesive is considered to be waterproof, there is room for further improvement from the viewpoint of moisture resistance.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、太陽電池モジュールの信頼性を向上させる技術を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to provide a technique for improving the reliability of a solar cell module.
 上記課題を解決するために、本発明のある態様の太陽電池モジュールは、受光側に配置された透光性部材と、透光性部材と対向するように設けられた裏面ガラス板と、透光性部材と裏面ガラス板との間に設けられている光起電力装置と、裏面ガラス板の表面上に設けられ、光起電力装置において発生した電力を外部へ出力する導電路を有している端子と、を備える。裏面ガラス板は、貫通孔が形成されており、端子は、貫通孔を覆うように配置され、該貫通孔の周囲の少なくとも一部において裏面ガラス板と溶融接合されている。 In order to solve the above-described problems, a solar cell module according to an aspect of the present invention includes a translucent member disposed on the light receiving side, a back glass plate provided to face the translucent member, and a translucent member. A photovoltaic device provided between the conductive member and the back glass plate, and a conductive path provided on the surface of the back glass plate for outputting the electric power generated in the photovoltaic device to the outside. A terminal. The back glass plate has a through hole formed therein, and the terminal is disposed so as to cover the through hole, and at least a part of the periphery of the through hole is melt bonded to the back glass plate.
 本発明の別の態様は、太陽電池モジュールの製造方法である。この方法は、光起電力装置が設けられている透光性部材を準備する工程と、貫通孔が形成されている裏面ガラス板の表面上に、光起電力装置において発生された電力を外部へ出力する導電路を有している端子を、貫通孔を覆うように配置する工程と、貫通孔の周囲において、裏面ガラス板と端子との対向部にパルス幅が1ナノ秒以下のレーザビームを照射する工程と、透光性部材と裏面ガラス板とを対向させ、周縁部を接合する工程と、を含む。 Another aspect of the present invention is a method for manufacturing a solar cell module. In this method, a step of preparing a translucent member provided with a photovoltaic device, and an electric power generated in the photovoltaic device on the surface of a back glass plate in which a through hole is formed are externally provided. A step of arranging a terminal having a conductive path to be output so as to cover the through hole, and a laser beam having a pulse width of 1 nanosecond or less at the opposite portion between the back glass plate and the terminal around the through hole. A step of irradiating, and a step of making the translucent member and the back glass plate face each other and joining the peripheral portion.
 本発明によれば、太陽電池モジュールの信頼性を向上させることができる。 According to the present invention, the reliability of the solar cell module can be improved.
第1の実施の形態に係る太陽電池モジュールを受光面側から見た平面図である。It is the top view which looked at the solar cell module which concerns on 1st Embodiment from the light-receiving surface side. 図1に示す端子ボックス近傍のA-A断面図である。FIG. 2 is a cross-sectional view taken along line AA in the vicinity of the terminal box shown in FIG. 図1に示す端子ボックスの内部を裏面側から見た正面図である。It is the front view which looked at the inside of the terminal box shown in FIG. 1 from the back surface side. 図4(a)~図4(c)は、太陽電池モジュールの製造方法を説明するための図である。4 (a) to 4 (c) are diagrams for explaining a method of manufacturing a solar cell module. 第2の実施の形態に係る金属端子と裏面ガラス板との接合部近傍の拡大図である。It is an enlarged view of the junction part vicinity of the metal terminal and back glass plate which concern on 2nd Embodiment. 第3の実施の形態に係る金属端子と裏面ガラス板との接合部近傍の拡大図である。It is an enlarged view of the junction part vicinity of the metal terminal and back glass plate which concern on 3rd Embodiment. 金属端子とケーブルとの接続機構の変形例を示す図である。It is a figure which shows the modification of the connection mechanism of a metal terminal and a cable. 透光性部材と裏面ガラス板との溶融接合の変形例を示す図である。It is a figure which shows the modification of the melt | fusion joining of a translucent member and a back surface glass plate. 透光性部材と裏面ガラス板との溶融接合の変形例を示す図である。It is a figure which shows the modification of the melt | fusion joining of a translucent member and a back surface glass plate. 第4の実施の形態に係る太陽電池モジュールの構造を示す断面図である。It is sectional drawing which shows the structure of the solar cell module which concerns on 4th Embodiment. 第4の実施の形態に係る太陽電池モジュールの受光面の平面図である。It is a top view of the light-receiving surface of the solar cell module which concerns on 4th Embodiment.
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate.
 以下の各図に示す各層、各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。 The scales and shapes of each layer and each part shown in the following drawings are set for convenience of explanation, and are not interpreted in a limited manner unless otherwise specified.
 (第1の実施の形態)
 図1は、第1の実施の形態に係る太陽電池モジュールを受光面側から見た平面図である。図2は、図1に示す端子ボックス近傍のA-A断面図である。図3は、図1に示す端子ボックスの内部を裏面側から見た正面図である。
(First embodiment)
FIG. 1 is a plan view of the solar cell module according to the first embodiment viewed from the light receiving surface side. 2 is a cross-sectional view taken along the line AA in the vicinity of the terminal box shown in FIG. FIG. 3 is a front view of the inside of the terminal box shown in FIG. 1 viewed from the back side.
 太陽電池モジュール10は、受光側に配置された透光性部材12と、透光性部材12と対向するように設けられた裏面ガラス板14と、透光性部材12と裏面ガラス板14との間に設けられている光起電力装置16と、を備える。 The solar cell module 10 includes a translucent member 12 disposed on the light receiving side, a back glass plate 14 provided so as to face the translucent member 12, and the translucent member 12 and the back glass plate 14. And a photovoltaic device 16 provided therebetween.
 透光性部材12は、例えば、1m角及び板厚4mmのガラス板が適用される。ただし、これに限定されるものではなく、光起電力装置16の形成に適しており、太陽電池モジュール10を機械的に支持できるものであればよい。太陽電池モジュール10への光の入射は基本的に透光性部材12側から行われる。 As the translucent member 12, for example, a glass plate having a 1 m square and a plate thickness of 4 mm is applied. However, the present invention is not limited to this, and any material that is suitable for forming the photovoltaic device 16 and that can mechanically support the solar cell module 10 may be used. Incidence of light to the solar cell module 10 is basically performed from the translucent member 12 side.
 透光性部材12上には光起電力装置16が形成される。光起電力装置16は、透明電極、光電変換ユニット、裏面電極等が積層されて形成される。透明電極は、例えば、酸化錫(SnO)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等に錫(Sn)、アンチモン(Sb)、フッ素(F)、アルミニウム(Al)等をドープした透明導電性酸化物(TCO)のうち、少なくとも一種類または複数種を組み合わせた膜を用いることができる。 A photovoltaic device 16 is formed on the translucent member 12. The photovoltaic device 16 is formed by laminating a transparent electrode, a photoelectric conversion unit, a back electrode, and the like. The transparent electrode, for example, tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. is doped with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. Among the transparent conductive oxides (TCO), a film in which at least one kind or a plurality of kinds is combined can be used.
 また、光電変換ユニットは、例えば、アモルファスシリコン光電変換ユニット(a-Siユニット)や微結晶シリコン光電変換ユニット(μc-Siユニット)等が挙げられる。光電変換ユニットは、タンデム型やトリプル型のように複数の光電変換ユニットを積層した構造としてもよい。裏面電極は、透明導電性酸化物(TCO)や反射性金属、それらの積層構造とすることができる。透明導電性酸化物(TCO)としては、酸化錫(SnO)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等が用いられ、反射性金属としては、銀(Ag)、アルミニウム(Al)等の金属が用いられる。 Examples of the photoelectric conversion unit include an amorphous silicon photoelectric conversion unit (a-Si unit) and a microcrystalline silicon photoelectric conversion unit (μc-Si unit). The photoelectric conversion unit may have a structure in which a plurality of photoelectric conversion units are stacked such as a tandem type or a triple type. The back electrode can be a transparent conductive oxide (TCO), a reflective metal, or a laminated structure thereof. As the transparent conductive oxide (TCO), tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO) or the like is used, and as the reflective metal, silver (Ag), aluminum (Al ) Or the like is used.
 裏面ガラス板14は、透光性部材12上に形成された光起電力装置16を覆うように設けられる。裏面ガラス板14は、例えば、透光性部材12と略同じ大きさを有し、板厚3.2mmのガラス板が適用される。ただし、これに限定されるものではない。 The back glass plate 14 is provided so as to cover the photovoltaic device 16 formed on the translucent member 12. The back glass plate 14 has, for example, substantially the same size as the translucent member 12, and a glass plate having a thickness of 3.2 mm is applied. However, it is not limited to this.
 透光性部材12と裏面ガラス板14は、それらの外周縁領域の接合領域R1において溶融接合されている。接合領域R1は、透光性部材12において光起電力装置16が形成されていない周辺部R2に設けられる。周辺部R2(図1においてハッチングされていない領域)は、例えば、透光性部材12上にいったん形成した光起電力装置16をレーザ等で除去して設けることができる。透光性部材12と裏面ガラス板14とを溶融接合するために、図2に示すように、透光性部材12及び裏面ガラス板14の少なくとも一方の周辺部を撓ませた状態とすることが好適である。 The translucent member 12 and the back glass plate 14 are melt-bonded in the bonding region R1 in the outer peripheral region thereof. The joining region R1 is provided in the peripheral portion R2 where the photovoltaic device 16 is not formed in the translucent member 12. For example, the peripheral portion R2 (region not hatched in FIG. 1) can be provided by removing the photovoltaic device 16 once formed on the translucent member 12 with a laser or the like. In order to melt and bond the translucent member 12 and the back glass plate 14, as shown in FIG. 2, at least one peripheral portion of the translucent member 12 and the back glass plate 14 may be bent. Is preferred.
 太陽電池モジュール10は、図2に示すように、裏面ガラス板14の表面14a上に設けられ、光起電力装置16において発生した電力を外部へ出力する導電路18aを有している金属端子18を備えている。また、裏面ガラス板14は、中央部に、直径6mmの貫通孔20が2つ形成されており、金属端子18は、貫通孔20を覆うように配置され、貫通孔20の周囲(図3に示すハッチング領域R3)の少なくとも一部において裏面ガラス板14と溶融接合されている。 As shown in FIG. 2, the solar cell module 10 is provided on the front surface 14 a of the back glass plate 14, and has a metal terminal 18 having a conductive path 18 a that outputs power generated in the photovoltaic device 16 to the outside. It has. Further, the back glass plate 14 has two through holes 20 having a diameter of 6 mm formed at the center, and the metal terminals 18 are arranged so as to cover the through holes 20, and the periphery of the through holes 20 (see FIG. 3). At least a part of the hatching region R3) shown is melt bonded to the back glass plate 14.
 したがって、太陽電池モジュール10において、金属端子18は、裏面ガラス板14の貫通孔20を覆った状態で、貫通孔20の周囲の少なくとも一部において裏面ガラス板14と溶融接合され、少なくとも溶融接合された部分では外部からの水分の浸入に対する高い気密性が実現される。そのため、外部の水分が金属端子18と裏面ガラス板14との間を通過し、貫通孔20を介して太陽電池モジュール10の内部に浸入することが抑制され、太陽電池モジュール10の長期にわたる信頼性の向上が可能となる。 Therefore, in the solar cell module 10, the metal terminal 18 is melt-bonded and at least melt-bonded to the back glass plate 14 in at least a part of the periphery of the through-hole 20 in a state of covering the through-hole 20 of the back glass plate 14. Highly airtight against the ingress of moisture from the outside is realized in the part. Therefore, external moisture passes between the metal terminal 18 and the back glass plate 14 and is prevented from entering the inside of the solar cell module 10 through the through hole 20, and long-term reliability of the solar cell module 10. Can be improved.
 ここで、「溶融接合」とは、例えば、金属端子18や裏面ガラス板14の一部が溶けた状態で互いに接合されている状態と捉えることができる。より好ましくは、金属端子18と裏面ガラス板14との界面において、金属端子18の材料と裏面ガラス板14のガラスとが互いに溶融して混ざり合った状態であるとよい。 Here, “melt-bonding” can be understood as, for example, a state where the metal terminals 18 and the back glass plate 14 are partly melted and joined together. More preferably, at the interface between the metal terminal 18 and the back glass plate 14, the material of the metal terminal 18 and the glass of the back glass plate 14 may be melted and mixed with each other.
 次に、光起電力装置16で発電した電力の取り出し経路について説明する。図1、図2に示すように、光起電力装置16で発電された電力を取り出すために第1集電配線22及び第2集電配線24が形成されている。第1集電配線22は、並列に分割された光起電力装置16から集電を行うための配線であり、第2集電配線24は、第1集電配線22から端子ボックス26までを接続する配線である。 Next, an extraction path for the electric power generated by the photovoltaic device 16 will be described. As shown in FIGS. 1 and 2, a first current collecting wiring 22 and a second current collecting wiring 24 are formed in order to take out the electric power generated by the photovoltaic device 16. The first current collecting wiring 22 is a wiring for collecting current from the photovoltaic devices 16 divided in parallel, and the second current collecting wiring 24 is connected from the first current collecting wiring 22 to the terminal box 26. Wiring.
 第1集電配線22は、光起電力装置16の裏面電極上に延設されている。また、第1集電配線22は、太陽電池モジュール10の端辺付近において並列に分割された光電変換層の正電極同士及び負電極同士を接続するために形成されている。したがって、第1集電配線22は、光電変換層の並列分割方向に直交する方向に沿って延設されている。第1の実施の形態では、図1に示すように、第1集電配線22は左右の端辺に上下方向に沿って延設されている。これによって、直列接続された光起電力装置16の正電極同士及び負電極同士が並列に接続される。 The first current collecting wiring 22 is extended on the back electrode of the photovoltaic device 16. The first current collector wiring 22 is formed to connect the positive electrodes and the negative electrodes of the photoelectric conversion layers divided in parallel near the end of the solar cell module 10. Therefore, the 1st current collection wiring 22 is extended along the direction orthogonal to the parallel division direction of a photoelectric conversion layer. In the first embodiment, as shown in FIG. 1, the first current collector wiring 22 extends along the vertical direction on the left and right edges. As a result, the positive electrodes and the negative electrodes of the photovoltaic devices 16 connected in series are connected in parallel.
 また、第2集電配線24と光起電力装置16の裏面電極との間の電気的な絶縁を形成するために絶縁被覆材28が配設されている。絶縁被覆材28は、図1及び図2に示すように、太陽電池モジュール10の左右の端辺に沿って設けられた第1集電配線22近傍から中央部の端子ボックス26の配置位置近傍まで、光起電力装置16の裏面電極上に延設されている。絶縁被覆材28は、例えば、ポリエステル(PE)、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド、ポリフッ化ビニル等とすることが好適である。また、絶縁被覆材28は、裏面にシール状に接着剤が塗布されたものを用いることが好適である。 In addition, an insulating coating material 28 is disposed in order to form electrical insulation between the second current collector wiring 24 and the back electrode of the photovoltaic device 16. As shown in FIG. 1 and FIG. 2, the insulating coating material 28 extends from the vicinity of the first current collector wiring 22 provided along the left and right edges of the solar cell module 10 to the vicinity of the arrangement position of the terminal box 26 in the central portion. , Extending on the back electrode of the photovoltaic device 16. The insulating coating material 28 is preferably made of, for example, polyester (PE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polyvinyl fluoride, or the like. Moreover, it is preferable to use the insulating coating material 28 in which an adhesive is applied to the back surface in a sealing manner.
 第2集電配線24は、図1及び図2に示すように、左右の第1集電配線22上から絶縁被覆材28上に沿って太陽電池モジュール10の中央部へ向けて延設されている。第2集電配線24と光起電力装置16の裏面電極との間に絶縁被覆材28が挟み込まれることで、第2集電配線24と裏面電極との電気的な絶縁が保たれる。一方、第2集電配線24の一端は第1集電配線22上まで延設され、第1集電配線22に電気的に接続される。例えば、第2集電配線24は超音波はんだ等によって第1集電配線22に電気的に接続することが好適である。第2集電配線24の他端は、後述する導電性弾性部材であるばねを介して端子ボックス26内の金属端子18と電気的に接続されている。 As shown in FIGS. 1 and 2, the second current collecting wiring 24 is extended from the left and right first current collecting wirings 22 along the insulating coating material 28 toward the center of the solar cell module 10. Yes. The insulation coating material 28 is sandwiched between the second current collecting wiring 24 and the back electrode of the photovoltaic device 16, so that electrical insulation between the second current collecting wiring 24 and the back electrode is maintained. On the other hand, one end of the second current collecting wiring 24 extends to the first current collecting wiring 22 and is electrically connected to the first current collecting wiring 22. For example, the second current collecting wiring 24 is preferably electrically connected to the first current collecting wiring 22 by ultrasonic soldering or the like. The other end of the 2nd current collection wiring 24 is electrically connected with the metal terminal 18 in the terminal box 26 via the spring which is the electroconductive elastic member mentioned later.
 透光性部材12と裏面ガラス板14とが対向している領域には、充填材30が充填されている。充填材30としては、ブチルゴムやエチレン酢酸ビニル(EVA)の他、シリコーンなどのコーキングに用いる材料、ポリビニルブチラール(PVB)といった充填樹脂材料、エチレンエチルアクリレートコポリマー(EEA)等のエチレン系樹脂、ウレタン、アクリル、エポキシ樹脂などを用いてもよい。 A region where the translucent member 12 and the back glass plate 14 are opposed is filled with a filler 30. As the filler 30, in addition to butyl rubber and ethylene vinyl acetate (EVA), materials used for coking such as silicone, filled resin materials such as polyvinyl butyral (PVB), ethylene resins such as ethylene ethyl acrylate copolymer (EEA), urethane, Acrylic or epoxy resin may be used.
 <溶融接合方法>
 次に、透光性部材12と裏面ガラス板14、および、裏面ガラス板14と金属端子18とを溶融接合する方法について説明する。
<Melting method>
Next, a method for fusion bonding the translucent member 12 and the back glass plate 14 and the back glass plate 14 and the metal terminal 18 will be described.
 透光性部材12と裏面ガラス板14との溶融接合では、図2に示したように、透光性部材12及び裏面ガラス板14の少なくとも一方の周辺部を撓ませて、透光性部材12と裏面ガラス板14との周辺部R2を密着させた状態とする。そして、密着させた周辺部R2の接触面に焦点を合わせてレーザ装置32からレーザビーム34を照射し、透光性部材12及び裏面ガラス板14の外周4辺に沿って走査する In the fusion bonding of the translucent member 12 and the back glass plate 14, as shown in FIG. 2, at least one peripheral portion of the translucent member 12 and the back glass plate 14 is bent to transmit the translucent member 12. And the rear surface glass plate 14 are in a state of being in close contact with each other. Then, a laser beam 34 is irradiated from the laser device 32 while focusing on the contact surface of the peripheral portion R2 that is in close contact, and scanning is performed along the outer peripheral four sides of the translucent member 12 and the back glass plate 14.
 レーザビーム34は、フェムト秒レーザビームとすることが好適である。すなわち、レーザビーム34は、1ナノ秒以下のパルス幅を有するものとすることが好適である。また、レーザビーム34は、透光性部材12及び裏面ガラス板14の少なくとも一方で吸収が生ずる波長とすることが好適である。例えば、レーザビーム34は、波長800nmとすることが好適である。さらに、レーザビーム34は、透光性部材12と裏面ガラス板14とが溶融するに足りるエネルギー密度及び走査速度で照射することが好適である。例えば、レーザビーム34は、波長800nm、パルス幅150fs、発振繰り返し1kHz、1パルス当たり5マイクロジュール(μJ)のパルスエネルギーで照射することが好適である。また、レーザビーム34は、60mm/分の走査速度で走査することが好適である。また、レーザビーム34は、透光性部材12側及び裏面ガラス板14側のいずれから照射してもよい。 The laser beam 34 is preferably a femtosecond laser beam. That is, the laser beam 34 preferably has a pulse width of 1 nanosecond or less. The laser beam 34 preferably has a wavelength at which absorption occurs in at least one of the translucent member 12 and the back glass plate 14. For example, it is preferable that the laser beam 34 has a wavelength of 800 nm. Furthermore, it is preferable that the laser beam 34 is irradiated at an energy density and a scanning speed sufficient to melt the translucent member 12 and the back glass plate 14. For example, the laser beam 34 is preferably irradiated with a pulse energy of a wavelength of 800 nm, a pulse width of 150 fs, an oscillation repetition rate of 1 kHz, and 5 microjoules (μJ) per pulse. The laser beam 34 is preferably scanned at a scanning speed of 60 mm / min. Further, the laser beam 34 may be irradiated from either the translucent member 12 side or the back glass plate 14 side.
 同様の方法によって、金属端子18は、貫通孔20の周囲(図3に示すハッチング領域R3)の少なくとも一部において裏面ガラス板14と溶融接合されている。 By the same method, the metal terminal 18 is melt-bonded to the back glass plate 14 in at least a part of the periphery of the through hole 20 (hatching region R3 shown in FIG. 3).
 なお、金属端子18は、貫通孔20の周囲の全周にわたって裏面ガラス板14と溶融接合されていてもよい。これにより、外部の水分が金属端子18と裏面ガラス板14との間を通過し、貫通孔20を介して太陽電池モジュール10の内部に浸入することがより抑制される。 The metal terminal 18 may be melt-bonded to the back glass plate 14 over the entire circumference around the through hole 20. Accordingly, it is further suppressed that external moisture passes between the metal terminal 18 and the back glass plate 14 and enters the solar cell module 10 through the through hole 20.
 <金属端子>
 金属端子18は、直径30mm、厚さ5mmの円柱形であり、銅からなる。金属端子18は、銅以外に、少なくともその一部が、アルミニウム、金や銀などの低抵抗率の材料で表面がメッキされた金属、コバール(鉄にニッケル、コバルトを配合した合金)、または、その他の合金であってもよい。これにより、光起電力装置16で発生した電力を金属端子18を介して外部へ出力することができる。
<Metal terminal>
The metal terminal 18 has a cylindrical shape with a diameter of 30 mm and a thickness of 5 mm, and is made of copper. The metal terminal 18 is a metal whose surface is plated with a low resistivity material such as aluminum, gold or silver, Kovar (an alloy in which nickel and cobalt are mixed with iron), or at least a part of the metal terminal 18, or Other alloys may be used. Thereby, the electric power generated by the photovoltaic device 16 can be output to the outside through the metal terminal 18.
 金属端子18は、裏面ガラス板14と対向する大径の円柱部と、大径の円柱部の一方の端面の中心から突出している小径の円柱部とを有する。小径の円柱部は、貫通孔20にはまり込むことで裏面ガラス板14に対する金属端子18の位置決めとなる。また、大径の円柱部の他方の端面には、図2に示すように、ケーブル36がはんだ等により接続されている。 The metal terminal 18 has a large-diameter cylindrical portion facing the back glass plate 14 and a small-diameter cylindrical portion protruding from the center of one end face of the large-diameter cylindrical portion. The small-diameter columnar portion is positioned in the through hole 20 to position the metal terminal 18 with respect to the rear glass plate 14. Further, as shown in FIG. 2, a cable 36 is connected to the other end face of the large-diameter column by solder or the like.
 <太陽電池モジュールの製造方法>
 図4(a)~図4(c)は、太陽電池モジュールの製造方法を説明するための図である。図4(a)に示すように、貫通孔20が形成されている裏面ガラス板14の表面14a上に、ケーブル36が接続されている金属端子18を、貫通孔20を覆うように配置する。そして、貫通孔20の周囲において、裏面ガラス板14と金属端子18との対向部に、裏面ガラス板14の金属端子18が設けられている側と反対側から、パルス幅が1ナノ秒以下のレーザビーム34をレーザ装置32を用いて照射する。これにより、金属端子18と裏面ガラス板14とが溶融接合される。
<Method for manufacturing solar cell module>
4 (a) to 4 (c) are diagrams for explaining a method of manufacturing a solar cell module. As shown in FIG. 4A, the metal terminal 18 to which the cable 36 is connected is arranged on the front surface 14 a of the back glass plate 14 in which the through hole 20 is formed so as to cover the through hole 20. And in the circumference | surroundings of the through-hole 20, the pulse width is 1 nanosecond or less from the opposite side to the side by which the metal terminal 18 of the back surface glass plate 14 is provided in the opposing part of the back surface glass plate 14 and the metal terminal 18. A laser beam 34 is irradiated using a laser device 32. Thereby, the metal terminal 18 and the back surface glass plate 14 are melt-bonded.
 また、これと並行して、図4(b)に示すように、光起電力装置16が設けられている透光性部材12を準備する。その際、第1集電配線22、第2集電配線24、絶縁被覆材28、充填材30(図4(b)では不図示)なども適宜配設する。そして、金属端子18が溶融接合されている裏面ガラス板14と、光起電力装置16が設けられている透光性部材12とを対向させ、所定の位置関係で重ね合わせる。 In parallel with this, as shown in FIG. 4B, a translucent member 12 provided with the photovoltaic device 16 is prepared. In that case, the 1st current collection wiring 22, the 2nd current collection wiring 24, insulating covering material 28, filler 30 (not shown in Drawing 4 (b)) etc. are arranged suitably. Then, the back glass plate 14 on which the metal terminals 18 are melt-bonded and the translucent member 12 provided with the photovoltaic device 16 are opposed to each other and overlapped with each other in a predetermined positional relationship.
 その際、金属端子18と光起電力装置16とを導通する導電性弾性部材としてのばね38を、貫通孔20の内部に付勢された状態で配置する(図4(c)参照)。付勢された状態のばね38の一端は貫通孔20内部で金属端子18と当接し、他端は第2集電配線24と当接する。つまり、第2集電配線24とケーブル36とは、ばね38および金属端子18を介して互いに電気的に接続されている。これにより、外力や熱で太陽電池モジュール10が変形したり、金属端子18の接合位置がずれたりすることで、金属端子18と、光起電力装置16や各配線との位置関係が変化しても、高い接続信頼性が実現される。 At that time, a spring 38 as a conductive elastic member for conducting the metal terminal 18 and the photovoltaic device 16 is arranged in a state of being biased inside the through hole 20 (see FIG. 4C). One end of the biased spring 38 contacts the metal terminal 18 inside the through hole 20, and the other end contacts the second current collector wiring 24. That is, the second current collection wiring 24 and the cable 36 are electrically connected to each other via the spring 38 and the metal terminal 18. As a result, the solar cell module 10 is deformed by external force or heat, or the joining position of the metal terminal 18 is shifted, so that the positional relationship between the metal terminal 18 and the photovoltaic device 16 or each wiring changes. However, high connection reliability is realized.
 なお、ばね38の表面は、ばね38の芯材よりも導電率の高い材料で被覆されている。導電率の高い材料としては、例えば、金(Au)、銀(Ag)、銅(Cu)などが挙げられる。これにより、ばね38における適度な弾性と適度な導電性とを両立し得る。また、ばね38全体を金(Au)、銀(Ag)、銅(Cu)などの導電性の高い材料で構成してもよい。 Note that the surface of the spring 38 is covered with a material having higher conductivity than the core material of the spring 38. Examples of the material having high conductivity include gold (Au), silver (Ag), and copper (Cu). Thereby, both moderate elasticity and moderate conductivity in the spring 38 can be achieved. The entire spring 38 may be made of a highly conductive material such as gold (Au), silver (Ag), or copper (Cu).
 その後、図4(c)に示すように、透光性部材12と裏面ガラス板14とを対向させ、周縁部をレーザビーム34により溶融接合することで、完全密閉型の太陽電池モジュール10が完成する。 After that, as shown in FIG. 4C, the translucent member 12 and the back glass plate 14 are opposed to each other, and the peripheral portion is melt-bonded by the laser beam 34 to complete the completely sealed solar cell module 10. To do.
 このような方法であれば、パルス幅が1ナノ秒以下のレーザビームを用いることで、金属端子18と裏面ガラス板14との間に封止部材や接着剤を充填することなく、気密性の高い太陽電池モジュールを連続的に生産することが可能となる。 With such a method, by using a laser beam having a pulse width of 1 nanosecond or less, an airtight property can be obtained without filling a sealing member or an adhesive between the metal terminal 18 and the back glass plate 14. High solar cell modules can be continuously produced.
 (第2の実施の形態)
 図5は、第2の実施の形態に係る金属端子と裏面ガラス板との接合部近傍の拡大図である。第2の実施の形態に係る金属端子40は、ガラスフリットが焼成されたガラス部40aを有している。ガラス部40aは、金属端子40の小径の円柱部40bの周囲に焼成された円筒形の部分である。ここで、ガラスフリットとは、例えば、ガラス原料を高温で溶解し、急冷して生成されるガラスのかけら(フレーク)または粉末をいう。
(Second Embodiment)
FIG. 5 is an enlarged view of the vicinity of the joint between the metal terminal and the back glass plate according to the second embodiment. The metal terminal 40 according to the second embodiment has a glass portion 40a in which glass frit is baked. The glass part 40 a is a cylindrical part fired around the small-diameter columnar part 40 b of the metal terminal 40. Here, the glass frit refers to, for example, glass fragments (flakes) or powder produced by melting a glass raw material at a high temperature and quenching.
 ガラス部40aは、ディスペンサを用いてガラスフリットを金属端子40の金属部分に塗布した後、200℃で20分程度、焼成を行うことで形成される。 The glass part 40a is formed by applying glass frit to the metal part of the metal terminal 40 using a dispenser and then baking at 200 ° C. for about 20 minutes.
 そして、金属端子40は、ガラス部40aを介して、裏面ガラス板14と溶融接合されている。溶融接合は、第1の実施の形態と同様に、裏面ガラス板14の金属端子40が設けられている側と反対側から、レーザ装置32が発するレーザビーム34により行われる。このように、第2の実施の形態では、金属端子40と裏面ガラス板14との接合部がガラス同士のため、より強固で封止性の高い溶融接合が可能となる。 The metal terminal 40 is melt-bonded to the back glass plate 14 through the glass portion 40a. As in the first embodiment, the fusion bonding is performed by a laser beam 34 emitted from the laser device 32 from the side opposite to the side where the metal terminals 40 of the back glass plate 14 are provided. Thus, in 2nd Embodiment, since the junction part of the metal terminal 40 and the back surface glass plate 14 is glass, stronger and highly fusion-bondable melt | fusion joining is attained.
 (第3の実施の形態)
 図6は、第3の実施の形態に係る金属端子と裏面ガラス板との接合部近傍の拡大図である。第3の実施の形態に係る金属端子42は、はじめに、貫通孔43が形成されている中間ガラス44にロウ46を用いてロウ付け溶接する。金属端子42は、例えば、コバールが好適である。また、中間ガラス44は、ロウ付けがしやすいホウケイ酸ガラスが好適である。なお、ロウ付けの代わりに、TIG(Tungsten Inert Gas)溶接であってもよい。
(Third embodiment)
FIG. 6 is an enlarged view of the vicinity of the joint between the metal terminal and the back glass plate according to the third embodiment. First, the metal terminal 42 according to the third embodiment is brazed and welded to the intermediate glass 44 in which the through-hole 43 is formed, using a braze 46. The metal terminal 42 is preferably, for example, Kovar. The intermediate glass 44 is preferably a borosilicate glass that is easy to braze. Note that TIG (Tungsten Inert Gas) welding may be used instead of brazing.
 そして、金属端子42は、中間ガラス44を介して、裏面ガラス板14と溶融接合されている。溶融接合は、第1の実施の形態と同様に、レーザ装置32が発するレーザビーム34により行われる。このように、第3の実施の形態では、金属端子40が固定されている中間ガラス44と裏面ガラス板14との接合部がガラス同士のため、より強固で封止性の高い溶融接合が可能となる。 The metal terminal 42 is melt bonded to the back glass plate 14 via the intermediate glass 44. The fusion bonding is performed by a laser beam 34 emitted from the laser device 32 as in the first embodiment. As described above, in the third embodiment, since the joining portion of the intermediate glass 44 and the back glass plate 14 to which the metal terminal 40 is fixed is made of glass, it is possible to perform fusion bonding with higher strength and higher sealing performance. It becomes.
 (第4の実施の形態)
  図10は、第4の実施の形態に太陽電池モジュールの構造を示す断面図である。図11は、第4の実施の形態に係る太陽電池モジュールの受光面を示す平面図である。
(Fourth embodiment)
FIG. 10 is a cross-sectional view showing the structure of a solar cell module according to the fourth embodiment. FIG. 11 is a plan view showing a light receiving surface of a solar cell module according to the fourth embodiment.
 第4の実施の形態に係る太陽電池モジュール500は、図10の断面図に示すように、金属端子18、貫通孔20、ケーブル36、支持基板60、パッシベーション層61、ベース層62、第1導電型拡散層63、i型層64、第2導電型層65、透明電極層66、金属層67(67p,67n)、充填材68、裏面ガラス板69、導電性タブ70(図11参照)、集電タブ71(図11参照)を含んで構成される。パッシベーション層61、ベース層62、第1導電型拡散層63、i型層64、第2導電型層65、透明電極層66、金属層67は、光電変換素子を構成する。 As shown in the sectional view of FIG. 10, the solar cell module 500 according to the fourth embodiment includes a metal terminal 18, a through hole 20, a cable 36, a support substrate 60, a passivation layer 61, a base layer 62, and a first conductive material. Mold diffusion layer 63, i-type layer 64, second conductivity type layer 65, transparent electrode layer 66, metal layer 67 (67p, 67n), filler 68, back glass plate 69, conductive tab 70 (see FIG. 11), A current collecting tab 71 (see FIG. 11) is included. The passivation layer 61, the base layer 62, the first conductivity type diffusion layer 63, the i-type layer 64, the second conductivity type layer 65, the transparent electrode layer 66, and the metal layer 67 constitute a photoelectric conversion element.
 本実施の形態では、光起電力装置510は、複数の光電変換素子を含んで構成される。また、光起電力装置510は、裏面接合型光起電力素子であり、光起電力素子で発電された電力を外部へ取り出す電極が受光面とは反対側の主面(以下、裏面という。)のみに設けられる。ただし、本発明の適用範囲は、これに限定されるものではなく、支持基板60上に光電変換素子が複数配置されている光起電力装置であればよい。 In the present embodiment, the photovoltaic device 510 includes a plurality of photoelectric conversion elements. The photovoltaic device 510 is a back junction type photovoltaic device, and an electrode for taking out the electric power generated by the photovoltaic device to the outside is a main surface opposite to the light receiving surface (hereinafter referred to as a back surface). Only provided. However, the application range of the present invention is not limited to this, and any photovoltaic device in which a plurality of photoelectric conversion elements are arranged on the support substrate 60 may be used.
 ここで、受光面とは、光起電力素子において主に光が入射される主面を意味し、具体的には、光起電力素子に入射される光の大部分が入射される面である。また、裏面とは、光起電力素子の受光面とは反対側の面を意味する。 Here, the light receiving surface means a main surface on which light is mainly incident in the photovoltaic element, and specifically, is a surface on which most of the light incident on the photovoltaic element is incident. . The back surface means a surface opposite to the light receiving surface of the photovoltaic element.
 支持基板60は、光起電力素子を機械的に支持すると共に、光起電力素子に含まれる半導体層を外部環境から保護する。また、支持基板60は、光起電力素子の受光面側に配置されるので、光起電力素子で発電に利用される波長帯域の光を透過し、ベース層62等の各層を機械的に支持できる材料(透光性部材)とされる。支持基板60は、例えば、透光性を有するガラス板が用いられる。 The support substrate 60 mechanically supports the photovoltaic element and protects the semiconductor layer included in the photovoltaic element from the external environment. In addition, since the support substrate 60 is disposed on the light receiving surface side of the photovoltaic element, the photovoltaic element transmits light in a wavelength band used for power generation, and mechanically supports each layer such as the base layer 62. The material (translucent member) is made. As the support substrate 60, for example, a glass plate having translucency is used.
 パッシベーション層61は、支持基板60とベース層62との間に設けられる。パッシベーション層61は、ベース層62の表面の未結合手(ダングリングボンド)を終端させる等の役割を果たし、ベース層62の表面におけるキャリアの再結合を抑制する。パッシベーション層61を設けることによって、光起電力素子の受光面側においてベース層62の表面でのキャリアの再結合による損失を抑制することができる。 The passivation layer 61 is provided between the support substrate 60 and the base layer 62. The passivation layer 61 plays a role of terminating dangling bonds (dangling bonds) on the surface of the base layer 62 and suppresses carrier recombination on the surface of the base layer 62. By providing the passivation layer 61, loss due to carrier recombination on the surface of the base layer 62 on the light receiving surface side of the photovoltaic element can be suppressed.
 パッシベーション層61は、例えば、窒化シリコン層(SiN)を含むようにすればよく、酸化シリコン層(SiOx)と窒化シリコンとの積層構造とすることがより好ましい。例えば、酸化シリコン層及び窒化シリコン層をそれぞれ30nm及び40nmの膜厚で順に積層した構造とすればよい。後述するように、パッシベーション層61を介して支持基板60と光電変換素子とが接合される。 The passivation layer 61 may include, for example, a silicon nitride layer (SiN), and more preferably has a stacked structure of a silicon oxide layer (SiOx) and silicon nitride. For example, a structure in which a silicon oxide layer and a silicon nitride layer are sequentially stacked with a thickness of 30 nm and 40 nm, respectively, may be used. As will be described later, the support substrate 60 and the photoelectric conversion element are bonded to each other through the passivation layer 61.
 ベース層62は、結晶質の半導体層である。なお、結晶質とは、単結晶のみならず、多数の結晶粒が集合した多結晶も含むものとする。ベース層62は、光起電力素子の発電層となる。ここでは、ベース層62は、n型のドーパントが添加されたn型結晶質シリコン層とする。ベース層62のドーピング濃度は1016/cm程度とすればよい。 The base layer 62 is a crystalline semiconductor layer. Note that the crystalline includes not only a single crystal but also a polycrystal in which a large number of crystal grains are aggregated. The base layer 62 becomes a power generation layer of the photovoltaic element. Here, the base layer 62 is an n-type crystalline silicon layer to which an n-type dopant is added. The doping concentration of the base layer 62 may be about 10 16 / cm 3 .
 ベース層62の膜厚は、発電層として十分にキャリアを発生できる膜厚であって且つ50μm以下が望ましい。 The film thickness of the base layer 62 is a film thickness that can sufficiently generate carriers as a power generation layer, and is desirably 50 μm or less.
 ベース層62と第1導電型拡散層63とは結晶質同士がホモ接合された第1導電型コンタクト領域を形成する。第1導電型拡散層63は、n型のドーパントが添加されたn型結晶質シリコン層とする。第1導電型拡散層63は、金属層67(第1電極67n)と接合される層であり、ベース層62よりも高いドーピング濃度とされる。第1導電型拡散層63のドーピング濃度は1019/cm程度とすればよい。第1導電型拡散層63の膜厚は、金属との接触抵抗を十分に低くできる範囲でできるだけ薄くすることが好ましく、例えば0.1μm以上2μm以下とすればよい。 The base layer 62 and the first conductivity type diffusion layer 63 form a first conductivity type contact region in which the crystalline materials are homo-joined. The first conductivity type diffusion layer 63 is an n-type crystalline silicon layer to which an n-type dopant is added. The first conductivity type diffusion layer 63 is a layer bonded to the metal layer 67 (first electrode 67n) and has a higher doping concentration than the base layer 62. The doping concentration of the first conductivity type diffusion layer 63 may be about 10 19 / cm 3 . The film thickness of the first conductivity type diffusion layer 63 is preferably as thin as possible within a range where the contact resistance with the metal can be sufficiently lowered, and may be, for example, 0.1 μm or more and 2 μm or less.
 i型層64及び第2導電型層65は、非晶質系の半導体層とされる。なお、非晶質系とは、アモルファス相又はアモルファス相内に微少な結晶粒が析出している微結晶相を含む。本実施の形態では、i型層64及び第2導電型層65は、水素を含有するアモルファスシリコンとする。i型層64は、実質的に真性のアモルファスシリコン層とされる。第2導電型層65は、p型のドーパントが添加されたアモルファスシリコン層とされる。第2導電型層65は、i型層64よりもドーピング濃度が高い半導体層とされる。例えば、i型層64には意図的にドーピングを行わず、第2導電型層65のドーピング濃度は1018/cm程度とすればよい。i型層64の膜厚は、光の吸収をできるだけ抑えられるように薄くし、一方でベース層62の表面が十分にパッシベーションされる程度に厚くする。具体的には、1nm以上50nm以下とすればよく、例えば10nmとする。また、第2導電型層65の膜厚は、光の吸収をできるだけ抑えられるように薄くし、一方で光起電力素子の開放電圧が十分に高くなるような程度に厚くする。例えば、1nm以上50nm以下とすればよく、例えば10nmとする。 The i-type layer 64 and the second conductivity type layer 65 are amorphous semiconductor layers. Note that the amorphous system includes an amorphous phase or a microcrystalline phase in which minute crystal grains are precipitated in the amorphous phase. In the present embodiment, the i-type layer 64 and the second conductivity type layer 65 are made of amorphous silicon containing hydrogen. The i-type layer 64 is a substantially intrinsic amorphous silicon layer. The second conductivity type layer 65 is an amorphous silicon layer to which a p-type dopant is added. The second conductivity type layer 65 is a semiconductor layer having a higher doping concentration than the i-type layer 64. For example, the i-type layer 64 is not intentionally doped, and the doping concentration of the second conductivity type layer 65 may be about 10 18 / cm 3 . The thickness of the i-type layer 64 is made thin so that light absorption can be suppressed as much as possible, while it is made thick enough that the surface of the base layer 62 is sufficiently passivated. Specifically, the thickness may be 1 nm or more and 50 nm or less, for example, 10 nm. Further, the film thickness of the second conductivity type layer 65 is made thin so as to suppress light absorption as much as possible, while it is made so thick that the open circuit voltage of the photovoltaic element becomes sufficiently high. For example, the thickness may be 1 nm or more and 50 nm or less, for example, 10 nm.
 透明電極層66は、酸化錫(SnO)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等に錫(Sn)、アンチモン(Sb)、フッ素(F)、アルミニウム(Al)等をドープした透明導電性酸化物(TCO)のうち少なくとも一種類又は複数種を組み合わせて用いることが好適である。特に、酸化亜鉛(ZnO)は、透光性が高く、抵抗率が低い等の利点を有している。透明電極層66の膜厚は、10nm以上500nm以下とすればよく、例えば100nmとする。 The transparent electrode layer 66 is doped with tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. It is preferable to use at least one or a combination of a plurality of transparent conductive oxides (TCO). In particular, zinc oxide (ZnO) has advantages such as high translucency and low resistivity. The film thickness of the transparent electrode layer 66 may be 10 nm or more and 500 nm or less, for example, 100 nm.
 ベース層62とi型層64及び第2導電型層65とは結晶質と非晶質とがヘテロ接合された第2導電型コンタクト領域を形成する。 The base layer 62, the i-type layer 64, and the second conductivity type layer 65 form a second conductivity type contact region in which crystalline and amorphous are heterojunctioned.
 金属層67は、光起電力素子の裏面側に設けられる電極となる層である。金属層67は、金属等の導電性の材料から構成され、例えば、銅(Cu)やアルミニウム(Al)を含む材料とする。金属層67は、第1導電型拡散層63に接続される第1電極67nと第2導電型層65に接続される第2電極67pとを含む。金属層67は、さらに銅(Cu)や錫(Sn)等の電解メッキ層を含んでもよい。ただし、これに限定されるものでなく、金、銀等の他の金属、他の導電性材料、又はそれらの組合せとしてもよい。 The metal layer 67 is a layer serving as an electrode provided on the back side of the photovoltaic element. The metal layer 67 is made of a conductive material such as metal, and is made of, for example, a material containing copper (Cu) or aluminum (Al). The metal layer 67 includes a first electrode 67 n connected to the first conductivity type diffusion layer 63 and a second electrode 67 p connected to the second conductivity type layer 65. The metal layer 67 may further include an electrolytic plating layer such as copper (Cu) or tin (Sn). However, it is not limited to this, It is good also as other metals, such as gold | metal | money and silver, another electroconductive material, or those combinations.
 光起電力素子をモジュール化する場合、並置された複数の光起電力素子の第1電極67n及び第2電極67pを導電性タブ70で接続して、複数の光起電力素子を直列又は並列に接続する。さらに、光起電力素子の裏面側に充填材68を配置し、裏面ガラス板69で封止する。充填材68は、EVA、ポリイミド等の樹脂材料とすることができる。また、裏面ガラス板69は、支持基板60と略同じ大きさのガラス板が適用され、これによって、太陽電池モジュール500における光起電力装置510の発電層への水分の浸入等を防ぐことができる。 When modularizing photovoltaic elements, the first electrode 67n and the second electrode 67p of the plurality of photovoltaic elements arranged in parallel are connected by the conductive tab 70, and the plurality of photovoltaic elements are connected in series or in parallel. Connecting. Further, a filler 68 is disposed on the back side of the photovoltaic element and sealed with a back glass plate 69. The filler 68 can be a resin material such as EVA or polyimide. Further, the back glass plate 69 is a glass plate having a size substantially the same as that of the support substrate 60, thereby preventing moisture from entering the power generation layer of the photovoltaic device 510 in the solar cell module 500. .
 太陽電池モジュール500においては、光起電力素子で発生した電気エネルギーを外部へ取り出す経路となる、裏面ガラス板69に貫通孔20が形成され、金属端子18により全体が覆われている。金属端子18は、貫通孔20を覆うように配置され、貫通孔20の周囲(領域R3)の少なくとも一部において裏面ガラス板69と溶融接合されている。 In the solar cell module 500, the through-hole 20 is formed in the back glass plate 69 serving as a path for taking out the electric energy generated by the photovoltaic element to the outside, and the whole is covered with the metal terminal 18. The metal terminal 18 is disposed so as to cover the through hole 20, and is melt-bonded to the back glass plate 69 in at least a part of the periphery (region R <b> 3) of the through hole 20.
 金属端子18と、導電性タブ70と接続されている集電タブ71とを導通する導電性弾性部材としてのばね38を、貫通孔20の内部に付勢された状態で配置する(図10参照)。付勢された状態のばね38の一端は貫通孔20内部で金属端子18と当接し、他端は集電タブ71と当接する。太陽電池モジュール500は、光起電力装置510で生じた電気エネルギーを外部へ出力するために金属端子18と接続されているケーブル36を備える。 A spring 38 as a conductive elastic member that conducts between the metal terminal 18 and the current collecting tab 71 connected to the conductive tab 70 is arranged in a state of being biased inside the through hole 20 (see FIG. 10). ). One end of the biased spring 38 contacts the metal terminal 18 inside the through hole 20, and the other end contacts the current collecting tab 71. The solar cell module 500 includes a cable 36 connected to the metal terminal 18 in order to output the electric energy generated by the photovoltaic device 510 to the outside.
 以上、本発明を上述の各実施の形態を参照して説明したが、本発明は上述の各実施の形態に限定されるものではなく、実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて各実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を各実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。 As described above, the present invention has been described with reference to each of the above-described embodiments, but the present invention is not limited to each of the above-described embodiments, and the configuration of the embodiments is appropriately combined or replaced. Are also included in the present invention. Further, it is possible to appropriately change the combination and processing order in each embodiment based on the knowledge of those skilled in the art and to add various modifications such as various design changes to each embodiment. Embodiments to which is added can also be included in the scope of the present invention.
 上述の各実施の形態では、金属端子とケーブルとをはんだにより接合していたが、金属端子とケーブルとが着脱可能なように他の部材を介して接続してもよい。図7は、金属端子とケーブルとの接続機構の変形例を示す図である。 In each of the above-described embodiments, the metal terminal and the cable are joined by soldering. However, the metal terminal and the cable may be connected via another member so that the metal terminal and the cable can be attached and detached. FIG. 7 is a diagram illustrating a modification of the connection mechanism between the metal terminal and the cable.
 裏面ガラス板14と溶融接合されている金属端子48は、接続部材50を介してケーブル36と接続されている。接続部材50は、ケーブル36の一端に圧着されてる圧着端子52と、圧着端子52を金属端子48に固定するねじ54と、を有する。これにより、金属端子48とケーブル36とが着脱可能に接続され、ケーブル36の交換が容易となる。 The metal terminal 48 that is melt-bonded to the back glass plate 14 is connected to the cable 36 via the connection member 50. The connection member 50 includes a crimp terminal 52 that is crimped to one end of the cable 36, and a screw 54 that fixes the crimp terminal 52 to the metal terminal 48. Thereby, the metal terminal 48 and the cable 36 are detachably connected, and the cable 36 can be easily replaced.
 また、上述の各実施の形態では、透光性部材12と裏面ガラス板14との周縁部は直接溶融接合されている。しかしながら、太陽電池モジュール内部に配設される、光起電力装置16や配線等の厚みが大きく、透光性部材12と裏面ガラス板14とを周縁部において密着させることが困難な場合がある。図8、図9は、透光性部材12と裏面ガラス板14との溶融接合の変形例を示す図である。 In each of the above-described embodiments, the peripheral edge between the translucent member 12 and the back glass plate 14 is directly melt-bonded. However, there are cases where the photovoltaic device 16 and the wiring, etc., disposed inside the solar cell module are thick and it is difficult to bring the translucent member 12 and the back glass plate 14 into close contact with each other at the periphery. FIG. 8 and FIG. 9 are diagrams showing modifications of the fusion bonding between the translucent member 12 and the back glass plate 14.
 透光性部材12と裏面ガラス板14との周縁部の隙間が大きくなる場合には、図8の断面図に示すように、隙間にスペーサ56を形成し、上述のレーザ装置32によりスペーサ56を溶融させることで、透光性部材12と裏面ガラス板14とを溶融接合してもよい。 When the gap between the peripheral portions of the translucent member 12 and the back glass plate 14 becomes large, a spacer 56 is formed in the gap as shown in the cross-sectional view of FIG. The translucent member 12 and the back glass plate 14 may be melt-bonded by melting.
 スペーサ56としては、Si、SiO、SiO、SiO等の、透光性部材12と裏面ガラス板14とを溶融接合できる元素を含む材料を適用することが好適である。例えば、前述のガラスフリットを裏面ガラス板14の外周部にスクリーン印刷で塗布し、焼成することで枠状のスペーサ56を形成してもよい。 As the spacer 56, it is preferable to apply a material containing an element capable of melt-bonding the translucent member 12 and the back glass plate 14, such as Si, SiO, SiO 2 , or SiO X. For example, the frame-shaped spacer 56 may be formed by applying the above-described glass frit to the outer peripheral portion of the back glass plate 14 by screen printing and baking.
 また、レーザビーム34は、透光性部材12側及び裏面ガラス板14側のどちらからも照射することが可能である。そこで、結晶系シリコン太陽電池のように光起電力装置16(シリコン基板を含む)自体が厚い場合等においては、図9に示すように、スペーサ56の表面56aと透光性部材12とを溶融接合させ、スペーサ56の裏面56bと裏面ガラス板14とを溶融接合させる構成としてもよい。 Further, the laser beam 34 can be irradiated from either the translucent member 12 side or the back glass plate 14 side. Therefore, when the photovoltaic device 16 (including the silicon substrate) itself is thick like a crystalline silicon solar cell, the surface 56a of the spacer 56 and the translucent member 12 are melted as shown in FIG. The back surface 56b of the spacer 56 and the back glass plate 14 may be melt-bonded to each other.
 なお、以下の組合わせによる太陽電池モジュールおよびその製造方法についても本発明の範囲に含まれうる。 In addition, the solar cell module by the following combination and its manufacturing method can also be included in the scope of the present invention.
 (1)太陽電池モジュールは、
 受光側に配置された透光性部材と、
 前記透光性部材と対向するように設けられた裏面ガラス板と、
 前記透光性部材と前記裏面ガラス板との間に設けられている光起電力装置と、
 前記裏面ガラス板の表面上に設けられ、前記光起電力装置において発生した電力を外部へ出力する導電路を有している端子と、を備え、
 前記裏面ガラス板は、貫通孔が形成されており、
 前記端子は、前記貫通孔を覆うように配置され、該貫通孔の周囲の少なくとも一部において前記裏面ガラス板と溶融接合されている。
(1) Solar cell module
A translucent member disposed on the light receiving side;
A back glass plate provided to face the translucent member;
A photovoltaic device provided between the translucent member and the back glass plate;
A terminal provided on the surface of the back glass plate, and having a conductive path for outputting the power generated in the photovoltaic device to the outside,
The back glass plate has a through hole formed,
The terminal is disposed so as to cover the through hole, and is melt-bonded to the back glass plate at least at a part of the periphery of the through hole.
 これにより、外部の水分が金属端子と裏面ガラス板との間を通過し、貫通孔を介して太陽電池モジュールの内部に浸入することが抑制される。 This prevents external moisture from passing between the metal terminal and the back glass plate and entering the inside of the solar cell module through the through hole.
 (2)前記端子は、前記貫通孔の周囲の全周にわたって前記裏面ガラス板と溶融接合されている(1)に記載の太陽電池モジュールであってもよい。これにより、外部の水分が金属端子と裏面ガラス板との間を通過し、貫通孔を介して太陽電池モジュールの内部に浸入することがより抑制される。 (2) The solar cell module according to (1), wherein the terminal is melt-bonded to the back glass plate over the entire circumference around the through hole. Thereby, external water | moisture content passes between between a metal terminal and a back surface glass plate, and it is suppressed more that it penetrate | invades into the inside of a solar cell module through a through-hole.
 (3)前記端子と前記光起電力装置とを導通する導電性弾性部材を更に備え、前記導電性弾性部材は、付勢された状態で前記貫通孔に配置されている(1)または(2)に記載の太陽電池モジュールであってもよい。これにより、外力や熱で太陽電池モジュールが変形したり、金属端子の接合位置がずれたりすることで、金属端子と、光起電力装置や各配線との位置関係が変化しても、高い接続信頼性が実現される。 (3) A conductive elastic member that conducts the terminal and the photovoltaic device is further provided, and the conductive elastic member is disposed in the through hole in an urged state (1) or (2 ). As a result, even if the positional relationship between the metal terminal and the photovoltaic device or each wiring changes due to deformation of the solar cell module due to external force or heat, or displacement of the joining position of the metal terminal, high connection Reliability is realized.
 (4)太陽電池モジュールの製造方法は、
 光起電力装置が設けられている透光性部材を準備する工程と、
 貫通孔が形成されている裏面ガラス板の表面上に、光起電力装置において発生した電力を外部へ出力する導電路を有している端子を、前記貫通孔を覆うように配置する工程と、
 前記貫通孔の周囲において、前記裏面ガラス板と前記端子との対向部にパルス幅が1ナノ秒以下のレーザビームを照射する工程と、
 前記透光性部材と前記裏面ガラス板とを対向させ、周縁部を接合する工程と、
 を含む。
(4) The manufacturing method of the solar cell module
Preparing a translucent member provided with a photovoltaic device;
On the surface of the back glass plate in which the through hole is formed, a step of arranging a terminal having a conductive path for outputting the electric power generated in the photovoltaic device to the outside so as to cover the through hole,
A step of irradiating a laser beam having a pulse width of 1 nanosecond or less to the opposed portion of the back glass plate and the terminal around the through hole;
A step of making the translucent member and the back glass plate face each other and bonding a peripheral edge;
including.
 これにより、完全密閉型の太陽電池モジュールを実現することが可能となる。 This makes it possible to realize a completely sealed solar cell module.
 10 太陽電池モジュール、 12 透光性部材、 14 裏面ガラス板、 14a 表面、 16 光起電力装置、 18 金属端子、 18a 導電路、 20 貫通孔、 22 第1集電配線、 24 第2集電配線、 32 レーザ装置、 34 レーザビーム、 40 金属端子、 40a ガラス部、 42 金属端子、 43 貫通孔、 44 中間ガラス、 46 ロウ、 48 金属端子、 50 接続部材、 52 圧着端子、 56 スペーサ。 10 solar cell module, 12 translucent member, 14 back glass plate, 14a surface, 16 photovoltaic device, 18 metal terminal, 18a conductive path, 20 through hole, 22 1st current collecting wiring, 24 2nd current collecting wiring , 32 laser device, 34 laser beam, 40 metal terminal, 40a glass part, 42 metal terminal, 43 through hole, 44 intermediate glass, 46 brazing, 48 metal terminal, 50 connecting member, 52 crimping terminal, 56 spacer.
 本発明は、太陽電池に利用できる。 The present invention can be used for solar cells.

Claims (4)

  1.  受光側に配置された透光性部材と、
     前記透光性部材と対向するように設けられた裏面ガラス板と、
     前記透光性部材と前記裏面ガラス板との間に設けられている光起電力装置と、
     前記裏面ガラス板の表面上に設けられ、前記光起電力装置において発生した電力を外部へ出力する導電路を有している端子と、を備え、
     前記裏面ガラス板は、貫通孔が形成されており、
     前記端子は、前記貫通孔を覆うように配置され、該貫通孔の周囲の少なくとも一部において前記裏面ガラス板と溶融接合されていることを特徴とする太陽電池モジュール。
    A translucent member disposed on the light receiving side;
    A back glass plate provided to face the translucent member;
    A photovoltaic device provided between the translucent member and the back glass plate;
    A terminal provided on the surface of the back glass plate, and having a conductive path for outputting the power generated in the photovoltaic device to the outside,
    The back glass plate has a through hole formed,
    The solar cell module, wherein the terminal is disposed so as to cover the through hole, and is melt-bonded to the back glass plate in at least a part of the periphery of the through hole.
  2.  前記端子は、前記貫通孔の周囲の全周にわたって前記裏面ガラス板と溶融接合されていることを特徴とする請求項1に記載の太陽電池モジュール。 2. The solar cell module according to claim 1, wherein the terminal is melt-bonded to the back glass plate over the entire circumference around the through hole.
  3.  前記端子と前記光起電力装置とを導通する導電性弾性部材を更に備え、
     前記導電性弾性部材は、付勢された状態で前記貫通孔に配置されていることを特徴とする請求項1または2に記載の太陽電池モジュール。
    A conductive elastic member for conducting the terminal and the photovoltaic device;
    The solar cell module according to claim 1, wherein the conductive elastic member is disposed in the through hole in an urged state.
  4.  光起電力装置が設けられている透光性部材を準備する工程と、
     貫通孔が形成されている裏面ガラス板の表面上に、光起電力装置において発生した電力を外部へ出力する導電路を有している端子を、前記貫通孔を覆うように配置する工程と、
     前記貫通孔の周囲において、前記裏面ガラス板と前記端子との対向部にパルス幅が1ナノ秒以下のレーザビームを照射する工程と、
     前記透光性部材と前記裏面ガラス板とを対向させ、周縁部を接合する工程と、
     を含むことを特徴とする太陽電池モジュールの製造方法。
    Preparing a translucent member provided with a photovoltaic device;
    On the surface of the back glass plate in which the through hole is formed, a step of arranging a terminal having a conductive path for outputting the electric power generated in the photovoltaic device to the outside so as to cover the through hole,
    A step of irradiating a laser beam having a pulse width of 1 nanosecond or less to the opposed portion of the back glass plate and the terminal around the through hole;
    A step of making the translucent member and the back glass plate face each other and bonding a peripheral edge;
    The manufacturing method of the solar cell module characterized by including.
PCT/JP2012/007665 2011-11-29 2012-11-29 Solar cell module and method for producing same WO2013080549A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011260643A JP2015035436A (en) 2011-11-29 2011-11-29 Solar cell module and manufacturing method of the same
JP2011-260643 2011-11-29

Publications (1)

Publication Number Publication Date
WO2013080549A1 true WO2013080549A1 (en) 2013-06-06

Family

ID=48535038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007665 WO2013080549A1 (en) 2011-11-29 2012-11-29 Solar cell module and method for producing same

Country Status (2)

Country Link
JP (1) JP2015035436A (en)
WO (1) WO2013080549A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266648A (en) * 1999-11-22 2007-10-11 Canon Inc Method of manufacturing photovoltaic element, removing coating of coated wire, and bonding coated wire and conductor
JP2009152249A (en) * 2007-12-18 2009-07-09 Seiko Epson Corp Bonding method, joint structure, semiconductor device, and photoelectric conversion element
JP2010114034A (en) * 2008-11-10 2010-05-20 Fujikura Ltd Dye-sensitized solar cell module
JP2010228998A (en) * 2009-03-27 2010-10-14 Asahi Glass Co Ltd Glass member with sealing material layer, electronic device using the same, and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266648A (en) * 1999-11-22 2007-10-11 Canon Inc Method of manufacturing photovoltaic element, removing coating of coated wire, and bonding coated wire and conductor
JP2009152249A (en) * 2007-12-18 2009-07-09 Seiko Epson Corp Bonding method, joint structure, semiconductor device, and photoelectric conversion element
JP2010114034A (en) * 2008-11-10 2010-05-20 Fujikura Ltd Dye-sensitized solar cell module
JP2010228998A (en) * 2009-03-27 2010-10-14 Asahi Glass Co Ltd Glass member with sealing material layer, electronic device using the same, and production method thereof

Also Published As

Publication number Publication date
JP2015035436A (en) 2015-02-19

Similar Documents

Publication Publication Date Title
WO2014002329A1 (en) Solar cell module and method for producing same
TWI413266B (en) Photovoltaic module
JP5410050B2 (en) Solar cell module
JP6122049B2 (en) Method for producing photovoltaic cell having multiple junctions and multiple electrodes
JP5879513B2 (en) Solar cell module
JP2008135654A (en) Solar battery module
JP2008010857A (en) Solar cell module
KR20120138021A (en) Solar cell module
US20140069479A1 (en) Photoelectric Device Module and Manufacturing Method Thereof
WO2010150675A1 (en) Solar cell module and method for manufacturing solar cell module
KR20100069354A (en) Thin film type solar cell, method and system for manufacturing the same
WO2013031199A1 (en) Solar cell module
WO2013014972A1 (en) Photovoltaic module
JP6025123B2 (en) Solar cell module
JPWO2020054130A1 (en) Solar cell module
JP2006041349A (en) Photovoltaic element and its manufacturing method
WO2013080549A1 (en) Solar cell module and method for producing same
JPWO2018142544A1 (en) Solar cell module and method of manufacturing the same
JP2013030678A (en) Solar cell module and manufacturing method of the same
US20110017260A1 (en) Solar cell module
WO2022209585A1 (en) Solar cell module and manufacturing method for solar cell module
US20140224320A1 (en) Solar cell module
KR102233683B1 (en) Shingled solar cell panel with wire and manufacturing method thereof
JP2012234936A (en) Photoelectric conversion module and method for manufacturing the same
JP2024516468A (en) Back contact solar cell strings and methods, assemblies and systems thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP