WO2013080475A1 - 中継サーバ及び中継通信システム - Google Patents

中継サーバ及び中継通信システム Download PDF

Info

Publication number
WO2013080475A1
WO2013080475A1 PCT/JP2012/007382 JP2012007382W WO2013080475A1 WO 2013080475 A1 WO2013080475 A1 WO 2013080475A1 JP 2012007382 W JP2012007382 W JP 2012007382W WO 2013080475 A1 WO2013080475 A1 WO 2013080475A1
Authority
WO
WIPO (PCT)
Prior art keywords
address
relay server
routing
routing target
packet
Prior art date
Application number
PCT/JP2012/007382
Other languages
English (en)
French (fr)
Inventor
谷本 好史
Original Assignee
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社 filed Critical 村田機械株式会社
Priority to US14/361,385 priority Critical patent/US9385990B2/en
Priority to CN201280058182.7A priority patent/CN103959720B/zh
Priority to EP12854112.5A priority patent/EP2787692B1/en
Priority to JP2013546975A priority patent/JP5668954B2/ja
Publication of WO2013080475A1 publication Critical patent/WO2013080475A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/30Managing network names, e.g. use of aliases or nicknames
    • H04L61/3005Mechanisms for avoiding name conflicts
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/15Interconnection of switching modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/256NAT traversal
    • H04L61/2589NAT traversal over a relay server, e.g. traversal using relay for network address translation [TURN]

Definitions

  • the present invention mainly relates to a relay server that enables communication between devices connected to different LANs (Local Area Networks).
  • LANs Local Area Networks
  • a communication technology called a virtual private network (VPN) that performs communication between LANs installed at physically separated locations is known.
  • a relay server, a communication terminal, and the like are connected to each of a plurality of LANs installed at physically separated positions.
  • a communication terminal can transmit a packet to a communication terminal connected to another LAN using this VPN.
  • a packet transmitted by a communication terminal is first sent to a relay server in the same LAN.
  • This relay server transmits (transfers) the packet to the relay server in the same LAN as the destination communication terminal via the Internet.
  • the relay server that receives this packet transmits (transfers) the packet to the destination communication terminal.
  • the terminals communicate with each other using the IP address (private IP address) of the terminal connected to the LAN.
  • IP addresses are assigned so as not to overlap in the same LAN, but may overlap between terminals connected to different LANs. In this case, two or more identical IP addresses exist in the VPN, and appropriate communication cannot be performed.
  • the present invention has been made in view of the above circumstances, and its main purpose is a relay that allows a user to start communication without setting even when connecting LANs having overlapping addresses. To provide a server.
  • a relay server having the following configuration. That is, the relay server includes an address filter information storage unit, a virtual address allocation information storage unit, a VPN group information storage unit, and a control unit.
  • the address filter information storage unit is located in the first LAN (the relay server) is capable of transferring packets, and the first routing target address that is the address of the first routing target device and the second relay server located in the second LAN Stores the second routing target address that is the address of the second routing target device that can transfer the packet.
  • the virtual address assignment information storage unit stores a second routing target address and a virtual address assigned to the second routing target address in association with each other.
  • the VPN group information storage unit stores VPN group information that is information relating to the relay server selected as the routing point.
  • the control unit performs control for selecting a VPN group (in response to a user instruction or the like).
  • the control unit transmits the first routing target address to the second relay server belonging to the selected VPN group, receives the second routing target address from the second relay server, and transmits the second routing server address to the second relay server. And establish a routing session.
  • the control unit performs a determination process for determining whether there is an overlap between the first routing target address and the second routing target address. When it is determined that there is an overlap in the determination process, the control unit allocates the virtual address to the second routing target address, and stores the allocation relationship in the virtual address allocation information storage unit.
  • control unit When the control unit receives a packet destined for the virtual address from the first routing target device, the control unit refers to the virtual address allocation information storage unit and associates the destination address of the packet with the virtual address. The packet is transferred to the routing session after being converted to the second routing target address.
  • control unit receives a packet destined for the first routing target address from the routing session and refers to the virtual address allocation information storage unit and the virtual address is allocated, The packet source address is converted into the virtual address assigned to the second routing target address, and the packet is transferred to the destination first routing target device.
  • the virtual address can be used only when necessary.
  • the virtual address can be used based on the latest address of the relay server belonging to the VPN group.
  • the control unit when the control unit determines that there is an overlap in the determination process, the control unit generates the virtual address in consideration of the storage contents of the address filter information storage unit, and generates the generated virtual address.
  • the second routing target address is assigned.
  • the relay server preferably has the following configuration. That is, the relay server includes a virtual address registration information storage unit that stores the virtual address registered in advance. When the control unit determines that there is an overlap in the determination process, the control unit allocates a virtual address stored in the virtual address registration information storage unit to the second routing target address.
  • the range of addresses used as virtual addresses can be determined in advance, it is possible to secure an address that can be used when another LAN is added. In addition, since it is not necessary to generate a virtual address every time relay communication is started, processing performed by the control unit can be reduced.
  • control unit determines that there is duplication if the network addresses match between the routing target addresses even if the routing target addresses do not match completely. Is preferred.
  • the relay server preferably has the following configuration. That is, the relay server receives the second routing target address from the second relay server belonging to the selected VPN group and receives the third routing target address from the third relay server belonging to the VPN group. The determination process determines whether there is an overlap between the first routing target address, the second routing target address, and the third routing target address.
  • the first relay server located in the first LAN includes an address filter information storage unit, a virtual address allocation information storage unit, and a control unit.
  • the address filter information storage unit includes a first routing target address that is an address of a first routing target device to which the first relay server can transfer a packet, and a second relay server that is located in a second LAN transfers the packet. And a second routing target address that is an address of a possible second routing target device.
  • the virtual address assignment information storage unit stores a second routing target address and a virtual address assigned to the second routing target address in association with each other.
  • the control unit transmits the first routing target address to the second relay server, receives the second routing target address from the second relay server, and establishes a routing session with the second relay server.
  • the control unit performs a determination process for determining whether there is an overlap between the first routing target address and the second routing target address. When it is determined that there is an overlap in the determination process, the control unit allocates the virtual address to the second routing target address, and stores the allocation relationship in the virtual address allocation information storage unit.
  • the control unit receives a packet destined for the virtual address from the first routing target device, the control unit refers to the virtual address allocation information storage unit and associates the destination address of the packet with the virtual address. The packet is transferred to the routing session after being converted to the second routing target address.
  • control unit When the control unit receives a packet destined for the first routing target address from the routing session and refers to the virtual address allocation information storage unit and the virtual address is allocated, The packet source address is converted into the virtual address assigned to the second routing target address, and the packet is transferred to the destination first routing target device.
  • the virtual address can be used only when necessary.
  • the virtual address can be used based on the latest address of the relay server belonging to the VPN group.
  • the functional block diagram of a relay server The figure which shows the content of relay group information.
  • the flowchart which shows the setting performed to a relay server beforehand.
  • the flowchart which shows the process which produces a VPN group.
  • the flowchart which shows the process which builds VPN.
  • the flowchart which shows the process which builds VPN.
  • the flowchart which shows the routing control which a relay server performs when a packet is received from LAN.
  • the flowchart which shows the routing control which a relay server performs when a packet is received from a routing session. Explanatory drawing which shows the routing control using a virtual address.
  • FIG. 1 is an explanatory diagram showing the overall configuration of the relay communication system 100 according to the present embodiment.
  • the relay communication system 100 includes a plurality of LANs 10, 20, and 30 connected to a wide area network (WAN) 80.
  • WAN wide area network
  • Each of the LANs 10, 20, and 30 is a relatively small network constructed in a limited place. Further, the LANs 10, 20, and 30 are arranged at locations that are physically separated from each other. In the present embodiment, the Internet is used as the WAN 80.
  • a relay server (second relay server) 1 operation PCs 11 and 12 as second routing target devices, and a client terminal 13 are connected to a LAN (second LAN) 10.
  • a relay server 2 an operation PC 21, and a client terminal 22 are connected to the LAN 20.
  • Connected to the LAN (first LAN) 30 are a relay server (first relay server) 3, target terminals 31, 32 and 33 as first routing target devices, and a client terminal 34.
  • each of the relay servers 1, 2, and 3 Since each of the relay servers 1, 2, and 3 is connected not only to the LANs 10, 20, and 30 but also to the WAN 80, it can communicate with devices connected to the same LAN and is also arranged in another LAN. It is also possible to communicate with the relay server.
  • the operation PCs 11, 12, and 21 are personal computers that are operated by an operator, for example.
  • the target terminals 31, 32, and 33 are personal computers or file servers. For example, the operator operates the operation PC 11 or the like to request predetermined data from the target terminal 31 or the like, and the target terminal 31 It is assumed that the stored content of is updated.
  • the client terminals 13, 22, and 34 are configured by, for example, a personal computer, and can communicate with each other via the relay servers 1, 2, and 3 to which the client terminals 13, 22, and 34 belong.
  • FIG. 2 is a functional block diagram of the relay server 3. Since the relay server 3 has substantially the same configuration as the relay servers 1 and 2, the relay server 3 will be mainly described below.
  • the relay server 3 includes a storage unit 50, a control unit 60, and an interface unit 70.
  • the interface unit 70 performs communication with terminals in the LAN 10.
  • the interface unit 70 performs communication with the WAN 80.
  • the interface unit 70 performs an appropriate process on the packet received from the LAN 30 or the WAN 80 and outputs the packet to the control unit 60.
  • the control unit 60 is a CPU having control and calculation functions, for example, and can execute various processes by a program read from the storage unit 50.
  • the control unit 60 can control various communications according to protocols such as TCP / IP, UDP, and SIP. Specifically, the control unit 60 determines a destination of the received packet based on information indicated by the packet and information stored in the storage unit 50, and transmits the packet to the determined destination. Moreover, the control part 60 can update the memory content of the memory
  • the storage unit 50 is composed of, for example, a hard disk or a nonvolatile RAM, and can store various data.
  • the storage unit 50 includes a relay group information storage unit 51, a relay server information storage unit 52, a client terminal information storage unit 53, a VPN group information storage unit 54, an address filter information storage unit 55, and a virtual address registration information storage. Unit 56 and virtual address allocation information storage unit 57.
  • FIGS. 3 to 10 are diagrams mainly showing the contents stored in the storage unit 50 of the relay server 3.
  • the relay group information storage unit 51 stores relay group information indicating a relay group and a relay server that constitutes the relay group.
  • group tag As shown in FIG. 3, in the relay group information, a group tag and a site tag of a child element whose parent element is the group tag are described.
  • group information 511 related to the relay group is described.
  • group information 511 relay group identification information (“id”), last update time (“lastmod”), and relay group name (“name”) are described.
  • site tag group configuration information 512 related to the relay server that configures the relay group is described.
  • identification information (“id”) of the relay server is described.
  • additional relay groups can be created. In this case, unique identification information different from other relay groups is given to the new relay group. As a result, settings such as data exchange only within a specific relay group are possible.
  • this relay group information is shared among the relay servers 1, 2, and 3 constituting the relay group.
  • the fact is transmitted to the other relay server and the relay group information is updated. In this way, relay group information is dynamically shared.
  • the relay server information storage unit 52 stores relay server information indicating an outline of a relay server that performs relay communication and a client terminal that belongs to the relay server.
  • a site tag described for each relay server and a node tag of a child element having the site tag as a parent element are described.
  • server information 521 regarding the relay server 1 is described.
  • server information 521 relay server identification information (“id”), a relay server name (“name”), and activation information (“stat”) are described.
  • stat When the content of “stat” is “active”, it indicates that the relay server is logged in to the relay communication system 100, and when stat is blank, it indicates that the log-off is being performed.
  • affiliation information 522 indicating a client terminal belonging to the relay server is described.
  • the belonging information 522 includes the name of the relay group to which it belongs (“group”), the identification information of the client terminal (“id”), the name of the client terminal (“name”), and the identification information of the relay server to which it belongs. (“Site”). When the client terminal is not logged in to the relay communication system 100, “site” is blank.
  • the communication by the relay group is performed as follows based on the relay group information and the relay server information. For example, when a packet is transmitted from the client terminal 13 to the client terminal 22, the client terminal 13 first transmits the packet to the relay server 1 that is a relay server to which the client terminal 13 is connected.
  • the relay server capable of exchanging packets can be grasped based on the above relay group information, and the identification information of the client terminal belonging to the relay server and the connection possibility can be determined based on the above relay server information. I can grasp it.
  • the relay server 1 transfers the packet to the relay server 2 that is a relay server to which the client terminal 22 is connected.
  • the relay server 2 that has received this packet transfers the packet to the client terminal 22.
  • relay communication can be performed between the client terminals 13 and 22.
  • the relay server information As in the relay group information, information is shared between the relay servers 1, 2, and 3 constituting the relay group. When a process for changing the relay server information is performed in a certain relay server, the fact is transmitted to the other relay server and the relay server information is updated. In this way, the relay server information is dynamically shared.
  • the client terminal information storage unit 53 stores client terminal information that is detailed information about the client terminal.
  • the relay servers 1, 2, and 3 store only client terminal information related to client terminals belonging to the relay server. Since the client terminal 34 belongs to the relay server 3, only the client terminal information about the client terminal 34 is stored in the client terminal information storage unit 53 provided in the relay server 3.
  • the client terminal information stored in the client terminal information storage unit 53 of the relay server 3 is shown in FIG. Similarly, the client terminal information stored in the relay server 1 is shown in FIG. 5A, and the client terminal information stored in the relay server 2 is shown in FIG. 5B.
  • the node tag includes a private IP address (“addr”) of the client terminal, a name of the relay group to which the client terminal belongs (“group”), identification information (“id”), a name (“name”), a relay A password for logging in to the server (“pass”) and port information (“port”) are described.
  • the VPN group information storage unit 54 stores VPN group information, which is information related to a VPN group configured by a relay server and a device selected as a routing point from the client terminal (hereinafter referred to as a routing device). ing. By establishing a routing session between routing devices belonging to the same VPN group, communication using VPN can be started.
  • VPN group basic information 541, routing point information 542, and routing session information 543 are described.
  • the VPN group basic information 541 includes a relay group name (“group”) to which the VPN group belongs, a VPN group identification information (“id”), a last update time (“lastmod”), and a VPN group name. ("Name").
  • the routing point information 542 describes identification information of a routing device that performs routing when communication is performed between VPN groups.
  • a relay server 1 and a relay server 3 are described as routing devices.
  • the routing session information 543 describes routing devices connected to each other in the VPN group.
  • the routing device first performs communication control (“sp (start point)”) in the routing session establishment process for constructing the VPN in the VPN group and starting communication, and its communication. It is determined separately on the side to be controlled “ep (end point)”.
  • sp (start point) a routing device that first performs communication control for establishing a routing session
  • ep (end point) a routing device that receives the communication control
  • VPN-GROUP 1 is composed of the relay server 1 and the relay server 3. It can also be seen that at the start of this VPN group, communication control for establishing a routing session from the relay server 3 to the relay server 1 is performed.
  • VPN groups to be created is arbitrary, and in the relay communication system 100, a plurality of VPN groups may be created.
  • a VPN group composed of the relay server 1 and the relay server 2 a VPN group composed of the relay server 2 and the relay server 3, and the relay server 1 to the relay server 3
  • the VPN group comprised by may be created.
  • This VPN group information is also shared between the relay servers 1 and 3 belonging to the same VPN group, like the relay server information and the relay group information.
  • a process for changing VPN group information is performed in a certain relay server, the fact is transmitted to other relay servers belonging to the same VPN group, and the VPN group information is updated. In this way, VPN group information is dynamically shared. The process for creating this VPN group will be described later.
  • the address filter information storage unit 55 stores address filter information which is information used when performing routing control using VPN.
  • the address filter information storage unit 55 stores information (address filter information of the relay server 3) indicating a device (routing target device) to which the relay server 3 itself can directly transmit a packet before the VPN is constructed.
  • the address filter information includes the address of the routing target device (routing target address) and the name of the routing target device.
  • FIG. 7C shows an example of address filter information registered in advance in the relay server 3 itself.
  • devices to which the relay server 3 can directly transmit packets are the target terminals 31, 32, and 33.
  • 7A shows the address filter information registered in advance in the relay server 1
  • FIG. 7B shows the address filter information registered in advance in the relay server 2.
  • the address filter information storage unit 55 of the relay server 3 stores only the address filter information shown in FIG. 7C before constructing the VPN.
  • the relay server 3 transmits address filter information (FIG. 7C) registered in advance to the relay server 1 and addresses from the relay server 1.
  • the filter information (FIG. 7A) is received.
  • the relay server 3 stores the address filter information of the relay server 1 in the address filter information storage unit 55 in association with the identification information of the relay server 1.
  • the contents shown in FIG. 9A are stored in the address filter information storage unit 55 of the relay server 3.
  • the content shown in FIG. 8A (the same content as FIG. 9A) is also stored in the address filter information storage unit 55 of the relay server 1.
  • the relay servers 1 and 3 perform routing control based on the acquired address (detailed control will be described later).
  • a routing target address addresses of target terminals 31, 32, and 33 included in the address filter information of the relay server 3 is referred to as a first routing target address
  • the routing target included in the address filter information of the relay server 1 The address (the address of the operation PCs 11 and 12) may be referred to as a second routing target address.
  • the actual operation of the operation PCs 11, 12 Communication is performed using a virtual address without using an address.
  • the virtual address an address that does not overlap in the LAN 30 (an address that is not assigned to a device in the LAN 30 and that is not reserved) is registered in advance and stored in the virtual address registration information storage unit 56 of the relay server 3. Has been.
  • the addresses shown in FIG. 10B are registered as virtual addresses.
  • the actual addresses of the target terminals 31, 32, and 33 are set. Instead of using it, communication is performed using a virtual address. Similar to the above, this virtual address is registered in advance as a non-overlapping address in the LAN 10 and stored in the virtual address registration information storage unit 56 of the relay server 1. In the present embodiment, the addresses shown in FIG. 10A are registered as virtual addresses.
  • the relay server 3 When the relay server 3 obtains the second routing target address by exchanging the address filter information as described above and detects that there is an overlap between the routing target addresses, The virtual address is assigned to (address). As shown in FIG. 9B, the virtual address assignment information storage unit 57 stores the assignment relationship between the second routing target address and the virtual address. Similarly, the virtual address assignment information storage unit 57 of the relay server 1 stores the assignment relationship between the first routing target address and the virtual address, as shown in FIG. 8B.
  • FIG. 11 is a flowchart showing settings to be made to the relay server in advance.
  • FIG. 12 is a flowchart showing processing for creating a VPN group.
  • the relay server 3 is taken as an example, and the settings performed on the relay server 3 and the processing executed by the relay server 3 will be described. Processing can be executed.
  • the relay server 3 As a setting to be performed in advance in the relay server 3, there is registration of address filter information of the relay server 3 (S101). This registration is performed by a user using the relay communication system 100 by inputting an address (first routing target address) of a device or the like designated as a routing target device and a name by a predetermined method. Here, it is assumed that the user has input the addresses and names of the target terminals 31, 32, and 33.
  • the registered address filter information is stored in the address filter information storage unit 55.
  • the user when performing communication using a virtual address, the user registers a non-overlapping address as a virtual address in the LAN 30 to which the relay server 3 is connected (S102).
  • the virtual address registered here is stored in the virtual address registration information storage unit 56.
  • the duplication detection condition is a condition for determining that there is duplication between routing target addresses.
  • the duplicate detection condition for example, “at least the network addresses match” can be cited as an example.
  • both network address and host address match” can be cited as an example. In the present embodiment, it is assumed that the former “at least the network addresses match” is set as the duplicate detection condition.
  • the user can display a VPN group setting screen by operating the client terminals 13, 22, 34, and the like.
  • a case where setting is performed using the client terminal 34 will be described.
  • On the setting screen displayed on the client terminal 34 a plurality of relay groups to which the client terminal 34 belongs are displayed.
  • the user selects a relay group for which a VPN group is to be constructed from the plurality of relay groups (S201).
  • a list of identification information of relay servers and client terminals that belong to the selected relay group and can function as a routing point is displayed on the screen of the client terminal 34 (S202). Then, the user selects a relay server and a client terminal that function as a routing point in the VPN group to be constructed (S203). In this description, it is assumed that the relay server 1 and the relay server 3 are selected by the user.
  • the VPN group information shown in FIG. 6 is created by adding VPN group identification information or the like to these pieces of information.
  • the client terminal 34 transmits this VPN group information to the relay servers 1 and 3 belonging to the same VPN group (S205).
  • the relay servers 1 and 3 store the received VPN group information in the VPN group information storage unit 54. This completes the VPN group creation process.
  • a plurality of VPN groups can be created by repeating the above processing.
  • FIGS. 13 and FIG. 14 are flowcharts showing processing performed until communication using VPN is started.
  • the user can display the created VPN group (a plurality of VPN groups when a plurality are created) on the screen by operating the client terminal 13 or the operation PC 11 or the like. Then, by selecting an appropriate VPN group from the displayed VPN groups (S301), a process for constructing the VPN can be performed.
  • the relay server 3 performs the start process of the VPN group created above (a VPN group composed of the relay servers 1 and 3).
  • the relay server 3 first reads the address filter information associated with itself (S302).
  • the information read here is the content registered in S101 (the content shown in FIG. 7C).
  • the relay server 3 reads the routing points belonging to the selected VPN group (S303). Thereby, the relay server 1 is read based on the content of the VPN group information shown in FIG.
  • the relay server 3 first determines whether or not the relay server 1 is logged in (“stat” is active or blank) (S304). According to the relay server information shown in FIG. 4, since the relay server 1 is logged in, the relay server 3 transmits a VPN group start command together with the VPN group identification information to the relay server 1 (S305).
  • the relay server 1 When the relay server 3 receives a response from the relay server 1 in response to this start command (S306), the relay server 1 registers the relay server 1 as a routing point that is ready to construct a VPN (S307).
  • the relay server 3 determines whether there is another device belonging to the same VPN group (S308). Since the currently created VPN group is composed of only the relay server 1 and the relay server 3, there is no other device. If there is another device, the relay server 3 performs the processing of S304 to S307 this time for the device.
  • the relay server 3 extracts routing session information from the contents stored in the VPN group information storage unit 54 (S309 in FIG. 14). Then, the relay server 3 refers to the extracted routing session information, and determines whether or not a routing session starting from itself is described (S310). In the routing session information of FIG. 6, it is described that in the routing session to be established between the relay server 1 and the relay server 3, itself (the relay server 3) is the starting point.
  • the relay server 3 establishes a routing session by performing predetermined communication control on the relay server 1 (S311).
  • the address filter information is exchanged as described above (S312).
  • the contents shown in FIG. 9A are stored in the address filter information storage unit 55 of the relay server 3.
  • the content shown in FIG. 8A is stored in the address filter information storage unit 55 of the relay server 1.
  • the relay server 3 performs a process (determination process) for determining whether there is an overlap between the routing target addresses of the address filter information based on the stored contents of the address filter information storage unit 55 (S313).
  • this determination processing according to the setting in S103, it is determined that there is an overlap when “at least the network addresses match”. Therefore, in this embodiment, as shown in FIG. 8A and the like, the network addresses of the first routing target address and the second routing target address are both (192.168.8.0). Determines that there is an overlap.
  • the relay server 3 determines the overlap between the routing target addresses of these relay servers.
  • the relay server 3 detects duplication between the three routing target addresses. Thus, in this embodiment, address duplication is detected only for the selected VPN group.
  • the relay server 3 allocates a virtual address to the second routing target address (S314), and stores the allocation relationship in the virtual address allocation information storage unit 57 (S315).
  • the virtual address assigned in S314 can be assigned any address as long as it is registered in the virtual address registration information storage unit 56 and is not yet assigned to the second routing target address. .
  • the relay server 3 performs the process of S310 again. Even when it is determined that there is no duplication between the routing target addresses, the process of S310 is performed again. Since the currently created VPN group is composed of only the relay server 1 and the relay server 3, other routing sessions are not described in the VPN group information. Accordingly, the relay server 3 starts packet routing control (S316). If there is another routing session, the relay server 3 performs the processes of S311 to S315 again.
  • this embodiment it is detected whether or not there is an overlap between the routing target addresses of the selected VPN group, and if there is an overlap, a virtual address is automatically assigned. Therefore, even when there is an overlap between routing target addresses, the user can start communication using VPN without manually changing the setting.
  • This determination process is performed not only at the start of the VPN but also at an appropriate timing (such as a timing when the address filter information is updated) after the start of the VPN.
  • each routing device exchanges (acquires) address filter information with other routing devices, so that the VPN can be constructed using the latest address filter information. Therefore, even if the address filter information is changed in some routing devices at the stage before the VPN start, the VPN can be constructed and communication can be started with the change reflected in all the routing devices. Inconsistency in routing can be prevented, and reliability can be improved.
  • the routing device from the routing device that is the start point Under the communication control, routing session establishment processing and address filter information exchange are performed.
  • virtual addresses are assigned. Therefore, the relay server 1 also assigns a virtual address to the first routing target address and performs control to store it.
  • Each routing device does not perform the initial communication control for establishing a routing session unless the routing session information indicates that it is the starting point.
  • the routing session can be established with simple control.
  • the relay server 3 will be described as an example, and the process executed by the relay server 3 will be described.
  • the relay server 1 and 2 can also execute the same process.
  • FIG. 15 is a flowchart showing the flow of this control.
  • a routing target device in the LAN 30 transmits a packet to another routing target device
  • the routing target device obtains another routing target address with reference to the information registered in the relay server 3, and sends the routing target address to the destination.
  • Send the packet as At this time, if a virtual address is assigned, a virtual address is output from the relay server 3 to the routing target device in the LAN 30 instead of the actual address. Therefore, for example, when a packet is transmitted from the target terminal 31 to the operation PC 11, the target terminal 31 acquires a virtual address (160.90.0.1) as a destination address.
  • the relay server 3 stands by until a packet is received from the LAN 30 (S401).
  • a packet is received from the LAN 30, first, it is determined whether or not the destination of the packet is the own device (relay server 3) (S402).
  • the relay server 3 receives the packet when the destination of the packet is its own device (S403). On the other hand, if the destination of the packet is other than its own, the relay server 3 compares the destination address of the received packet with the address filter information (see FIG. 9B), and the destination address is the address. It is determined whether or not it is registered in the filter information (S404). When the destination address is not registered in the address filter information, the relay server 3 discards the packet (S405). On the other hand, when the destination address is registered in the address filter information, the relay server 3 specifies a routing session corresponding to the address filter information (S406).
  • the relay server 3 refers to the virtual address allocation information storage unit 57 and determines whether or not the destination address is a virtual address (S407). When the destination address is a virtual address, the relay server 3 converts the destination address into an actual address (S408), and transmits (transfers) the packet to the routing session specified in S406 (S409).
  • FIG. 16 is a flowchart showing the flow of this control.
  • the relay server 3 stands by until a packet is received from the routing session (S501).
  • the relay server 3 compares the destination address of the packet with the address filter information (see FIG. 9B), and the destination address of the packet is the address filter information of its own device. It is determined whether it is registered in association with (S502).
  • the virtual address assignment information storage unit 57 is referred to determine whether a virtual address is assigned to the source address. (S503).
  • the relay server 3 converts the transmission source address into a virtual address (S504), and transfers the packet to the device (target terminals 31, 32, 33) indicated by the destination address. (S505). If a virtual address is not assigned to the source address, the relay server 3 transfers the packet to the device indicated by the destination without converting the address (S505).
  • the relay server 3 determines whether or not the destination address is registered in association with the address filter information of another routing device. (S506).
  • the relay server 3 identifies the corresponding routing session (S507), and transmits (transfers) the packet to this routing session ( S508).
  • the relay server 3 discards the packet (S509).
  • the relay server 3 can communicate using a virtual address.
  • FIG. 17A shows a case where a packet is transmitted from the target terminal 31 to the operation PC 11.
  • the relay server 1 performs the control shown in FIG. 16 in order to receive a packet from the routing session.
  • the relay server 3 performs the control shown in FIG. 15 in order to receive a packet from the LAN 30.
  • the target terminal 31 transmits a packet with the virtual address of the operation PC 11 as the destination address as described above.
  • the relay server 3 that has received this packet recognizes that the relay server 1 is described as a routing device corresponding to the destination address of the packet based on the address filter information (see FIG. 9B) and performs routing.
  • a session is specified (S406).
  • the relay server 3 recognizes that the destination address is a virtual address, and converts the destination address into an actual address (S408).
  • the relay server 3 transmits a packet to the relay server 1 via the routing session (S409).
  • the relay server 1 that has received this packet confirms that its own device (relay server 1) is described as a routing device corresponding to the destination address of the packet based on the address filter information (see FIG. 8B). recognize. Next, the relay server 1 recognizes that the virtual address is associated with the transmission source address, and converts the transmission source address into a virtual address (S504). Then, the relay server 1 transmits a packet to the destination operation PC 11 (S505).
  • FIG. 17B shows a case where a packet is transmitted from the operation PC 11 to the target terminal 31.
  • the relay server 1 performs the control shown in FIG. 15 in order to receive a packet from the LAN 10.
  • the relay server 3 performs the control shown in FIG. 16 in order to receive a packet from the routing session.
  • the operation PC 11 transmits a packet with the virtual address of the target terminal 31 as a destination.
  • the relay server 1 that has received this packet like the relay server 3 described above, specifies the routing session (S406), converts the destination address into an actual address (S408), and sends the packet to the relay server 3.
  • a transmission process (S409) is performed.
  • the relay server 3 that has received this packet performs the process of converting the source address into a virtual address (S504) and the process of transmitting the packet to the destination target terminal 31 (S505), as with the relay server 1 described above.
  • the relay server 3 of the present embodiment includes the address filter information storage unit 55, the virtual address allocation information storage unit 57, the VPN group information storage unit 54, and the control unit 60.
  • the address filter information storage unit 55 stores the first routing target address and the second routing target address.
  • the virtual address assignment information storage unit 57 stores the second routing target address and the virtual address assigned to the second routing target address in association with each other.
  • the VPN group information storage unit 54 stores VPN group information that is information related to the relay server selected as the routing point.
  • the control unit 60 performs control for selecting a VPN group in response to a user instruction or the like.
  • the control unit 60 exchanges address filter information with the relay server 1 belonging to the selected VPN group, and establishes a routing session with the relay server 1.
  • the control unit 60 performs a determination process for determining whether there is an overlap between the routing target addresses. When it is determined that there is an overlap in the determination process, the control unit 60 allocates a virtual address to the second routing target address and stores the allocation relationship in the virtual address allocation information storage unit 57. When receiving a packet destined for the virtual address from the first routing target device, the control unit 60 converts the destination address of the packet to the second routing target address and transfers the packet to the corresponding routing session. When a virtual address is assigned when receiving a packet addressed to the first routing target address from the routing session, the control unit 60 converts the packet source address into a virtual address and sends the packet to the destination. Forward.
  • the virtual address can be used only when necessary. Particularly, since the address duplication is detected after the VPN group is activated and the address filter information is exchanged, the virtual address can be used based on the latest address of the relay server belonging to the VPN group.
  • the relay server 3 of the present embodiment includes a virtual address registration information storage unit 56 that stores virtual addresses registered in advance.
  • the control unit 60 determines that there is an overlap in the determination process, the control unit 60 assigns the virtual address stored in the virtual address registration information storage unit 56 to the second routing target address.
  • the range of addresses used as virtual addresses can be determined in advance, it is possible to secure an address that can be used when another LAN is added. Moreover, since it is not necessary to generate a virtual address every time relay communication is started, the processing performed by the control unit 60 can be reduced.
  • the relay server 3 of the present embodiment determines that there is an overlap if the routing target addresses match the network addresses.
  • the above configuration determines that there is an overlap if the network addresses match. Therefore, it is possible to detect the duplication of addresses in advance and assign virtual addresses in advance.
  • the relay server 3 of the present embodiment determines whether there is an overlap between the three routing target addresses.
  • the relay server 3 is configured to assign a virtual address registered in the virtual address registration information storage unit 56. Instead, the relay server 3 may not include the virtual address registration information storage unit 56, and the relay server 3 may generate a virtual address when duplication is detected. At this time, the relay server 3 refers to the contents stored in the address filter information storage unit 55 and uses a virtual address as an address that is not used when performing VPN, thereby ensuring that the virtual server does not overlap with the address in use. An address can be generated.
  • the method for determining whether or not there is an overlap between the routing target addresses is arbitrary. For example, a configuration may be adopted in which the overlap is determined only when both the network address and the host address match.
  • the address filter information is exchanged almost simultaneously with the establishment of the routing session.
  • the address filter information may be transmitted together with the transmission of the VPN group start command (S305), and the address filter information may be received together with the response (S306).
  • the individual devices such as the operation PC 11 are the routing target devices.
  • the entire LAN 10 (192.168.0.0/24) may be set as the routing target device of the relay server 1.
  • the routing target device is assigned a virtual address whose range is specified, such as (160.90.1.0/24).
  • the timing for assigning the virtual address is arbitrary, and for example, the address filter information can be transmitted together with the transmission of the start command. In this case, it is possible to detect duplication of routing target addresses and assign virtual addresses at an earlier timing.
  • the relay server functions as a routing point, but the client terminal may function as a routing point.
  • the number of routing points in the VPN group is not limited to two, and may be three or more.
  • One routing device may belong to a plurality of VPN groups.
  • the format for storing the above relay group information, relay server information, client terminal information, VPN group information, address filter information, etc. is not limited to the XML format, and each information can be stored in an appropriate format.
  • an external server used for communication between each relay server may be installed on the Internet, and a communication may be performed by exhibiting a function as a SIP (Session Initiation Protocol) server. .
  • SIP Session Initiation Protocol
  • Relay server (second relay server) 3 Relay server (first relay server) 11, 12 Operation PC (second routing target device) 31, 32, 33 Target terminal (first routing target device) 10 LAN (second LAN) 30 LAN (first LAN) 54 VPN Group Information Storage Unit 55 Address Filter Information Storage Unit 56 Virtual Address Registration Information Storage Unit 57 Virtual Address Assignment Information Storage Unit 60 Control Unit 100 Relay Communication System

Abstract

 中継サーバ3は、第1ルーティング対象アドレスと、第2ルーティング対象アドレスと、を記憶する。中継サーバ3は、第2ルーティング対象アドレスと、当該第2ルーティング対象アドレスに割り当てられた仮想アドレスと、を対応付けて記憶する。中継サーバ3は、選択されたVPNグループに属する中継サーバ1とアドレスフィルタ情報を交換して、中継サーバ1とルーティングセッションを確立する。中継サーバ3は、ルーティング対象アドレス間で重複があるか否かを判定する。中継サーバ3は、重複があると判定した場合に、第2ルーティング対象アドレスに仮想アドレスを割り当てる。中継サーバ3は、自機と、第1ルーティング対象装置と、の間では仮想アドレスを用いて通信を行う。

Description

中継サーバ及び中継通信システム
 本発明は、主として、異なるLAN(Local Area Network)に接続されている機器間の通信を可能とする中継サーバに関する。
 従来から、物理的に離れた場所に設置されたLAN同士で通信を行う仮想プライベートネットワーク(Virtual Private Network,VPN)と呼ばれる通信技術が知られている。特許文献1に示す例では、物理的に離れた位置に設置された複数のLANのそれぞれに中継サーバ及び通信端末等が接続されている。通信端末は、このVPNを利用して、他のLANに接続された通信端末へパケットを送信することができる。具体的には、通信端末が送信するパケットは、初めに同一LAN内の中継サーバへ送られる。この中継サーバは、インターネットを介して、宛先の通信端末と同一のLAN内の中継サーバへパケットを送信(転送)する。そして、このパケットを受信した中継サーバは、宛先の通信端末へパケットを送信(転送)する。
 このVPNを利用することにより、遠隔地にある他のLANを、あたかも直接接続されているネットワークであるかのように使用することができる。
特開2010-268312号公報
 ところで、この種のシステムにおいては、LANに接続された端末のIPアドレス(プライベートIPアドレス)を用いて端末同士の通信を行っている。IPアドレスは、同一のLAN内においては重複しないように割り当てられるが、異なるLANに接続される端末間においては、重複することがある。この場合、VPNにおいて同一のIPアドレスが2以上存在することになり、適切な通信が行えなくなってしまう。
 これを回避するために、従来では、IPアドレスが重複したときは、VPNをいったん終了し、その後にIPアドレスの再設定を行っていた。従って、ユーザは、IPアドレスの重複を検出する毎に手動で設定を行う必要があり、ユーザの負担となっていた。
 本発明は以上の事情に鑑みてされたものであり、その主要な目的は、アドレスが重複しているLAN同士を接続する場合であっても、ユーザが設定を行うことなく通信を開始できる中継サーバを提供することにある。
課題を解決するための手段及び効果
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
 本発明の第1の観点によれば、以下の構成の中継サーバが提供される。即ち、この中継サーバは、アドレスフィルタ情報記憶部と、仮想アドレス割当情報記憶部と、VPNグループ情報記憶部と、制御部と、を備える。前記アドレスフィルタ情報記憶部は、第1LAN内に位置し(中継サーバが)パケットを転送可能な第1ルーティング対象装置のアドレスである第1ルーティング対象アドレスと、第2LAN内に位置する第2中継サーバがパケットを転送可能な第2ルーティング対象装置のアドレスである第2ルーティング対象アドレスと、を記憶する。前記仮想アドレス割当情報記憶部は、第2ルーティング対象アドレスと、当該第2ルーティング対象アドレスに割り当てられた仮想アドレスと、を対応付けて記憶する。前記VPNグループ情報記憶部は、ルーティングポイントとして選択された中継サーバに関する情報であるVPNグループ情報を記憶する。前記制御部は、(ユーザの指示等を受けて)VPNグループを選択する制御を行う。前記制御部は、選択されたVPNグループに属する前記第2中継サーバへ前記第1ルーティング対象アドレスを送信するとともに、前記第2中継サーバから前記第2ルーティング対象アドレスを受信し、前記第2中継サーバとルーティングセッションを確立する。前記制御部は、前記第1ルーティング対象アドレスと前記第2ルーティング対象アドレスとの間で重複があるか否かを判定する判定処理を行う。前記制御部は、前記判定処理で重複があると判定した場合に、前記第2ルーティング対象アドレスに前記仮想アドレスを割り当て、当該割当関係を前記仮想アドレス割当情報記憶部に記憶する。前記制御部は、前記第1ルーティング対象装置から前記仮想アドレスを宛先とするパケットを受信した際に、前記仮想アドレス割当情報記憶部を参照して、パケットの宛先アドレスを、前記仮想アドレスに対応する前記第2ルーティング対象アドレスに変換して前記ルーティングセッションへパケットを転送する。前記制御部は、前記ルーティングセッションから前記第1ルーティング対象アドレスを宛先とするパケットを受信した際に、前記仮想アドレス割当情報記憶部を参照して、前記仮想アドレスが割り当てられている場合には、パケットの送信元アドレスを、前記第2ルーティング対象アドレスに割り当てられた前記仮想アドレスに変換して宛先の前記第1ルーティング対象装置へパケットを転送する。
 これにより、第1ルーティング対象アドレスと第2ルーティング対象アドレスとが重複していた場合であっても、ユーザが手動で設定を変更することなく、ルーティングセッションを介した中継通信を開始できる。従って、ルーティング対象アドレスを変更する手間、及び中継通信の開始処理をやり直す手間を省くことができる。従って、スムーズに中継通信を開始することができる。また、選択した(通信を開始する)VPNグループに対して仮想アドレスの利用の要否を判断するので、必要な場合にのみ仮想アドレスを利用することができる。特に、VPNグループが起動され、アドレスフィルタ情報が交換された後にアドレスの重複検出を行うので、VPNグループに属する中継サーバの最新のアドレスに基づいて、仮想アドレスを利用することができる。
 前記の中継サーバにおいては、前記制御部は、前記判定処理で重複があると判定したときに、前記アドレスフィルタ情報記憶部の記憶内容を考慮して前記仮想アドレスを生成し、生成した仮想アドレスを前記第2ルーティング対象アドレスに割り当てることが好ましい。
 これにより、アドレスフィルタ情報記憶部の内容を考慮することで、中継通信において利用中のアドレスと確実に重複しない仮想アドレスを生成できる。
 前記の中継サーバにおいては、以下の構成とすることが好ましい。即ち、この中継サーバは、予め登録された前記仮想アドレスを記憶する仮想アドレス登録情報記憶部を備える。前記制御部は、前記判定処理で重複があると判定したときに、前記仮想アドレス登録情報記憶部が記憶する仮想アドレスを前記第2ルーティング対象アドレスに割り当てる。
 これにより、仮想アドレスとして用いられるアドレスの範囲を予め定めておくことができるので、他のLANを追加する場合等に利用可能なアドレスを確保しておくことができる。また、中継通信を開始する度に仮想アドレスを生成しなくて良いので、制御部が行う処理を軽減することができる。
 前記の中継サーバにおいては、前記制御部は、ルーティング対象アドレス同士が完全に一致していない場合であっても、ルーティング対象アドレス同士でネットワークアドレスが一致していれば、重複があると判定することが好ましい。
 これにより、例えばルーティング対象アドレス同士でネットワークアドレスが一致していてホストアドレスが異なる場合、ルーティング対象装置が追加されること等により、完全に一致する2つのアドレスが使用される可能性がある。この点、上記の構成は、ネットワークアドレスが一致していれば重複があると判定するので、アドレスの重複を未然に察知して、予め仮想アドレスを割り当てておくことができる。
 前記の中継サーバにおいては、以下の構成とすることが好ましい。即ち、この中継サーバは、選択されたVPNグループに属する前記第2中継サーバから前記第2ルーティング対象アドレスを受信するとともに、当該VPNグループに属する第3中継サーバから第3ルーティング対象アドレスを受信する。前記判定処理は、前記第1ルーティング対象アドレスと、前記第2ルーティング対象アドレスと、前記第3ルーティング対象アドレスと、の間で重複があるか否かを判定する。
 これにより、選択されたVPNグループが3以上の中継サーバから構成される場合であっても、ルーティング対象アドレスの重複を検出して仮想アドレスの割当てを行うことができる。
 本発明の第2の観点によれば、第1中継サーバ及び第2中継サーバを含んで構成される中継通信システムにおいて、以下の構成が提供される。即ち、第1LAN内に位置する前記第1中継サーバは、アドレスフィルタ情報記憶部と、仮想アドレス割当情報記憶部と、制御部と、を備える。前記アドレスフィルタ情報記憶部は、前記第1中継サーバがパケットを転送可能な第1ルーティング対象装置のアドレスである第1ルーティング対象アドレスと、第2LAN内に位置する前記第2中継サーバがパケットを転送可能な第2ルーティング対象装置のアドレスである第2ルーティング対象アドレスと、を記憶する。前記仮想アドレス割当情報記憶部は、第2ルーティング対象アドレスと、当該第2ルーティング対象アドレスに割り当てられた仮想アドレスと、を対応付けて記憶する。前記制御部は、前記第2中継サーバへ前記第1ルーティング対象アドレスを送信するとともに、前記第2中継サーバから前記第2ルーティング対象アドレスを受信し、前記第2中継サーバとルーティングセッションを確立する。前記制御部は、前記第1ルーティング対象アドレスと前記第2ルーティング対象アドレスとの間で重複があるか否かを判定する判定処理を行う。前記制御部は、前記判定処理で重複があると判定した場合に、前記第2ルーティング対象アドレスに前記仮想アドレスを割り当て、当該割当関係を前記仮想アドレス割当情報記憶部に記憶する。前記制御部は、前記第1ルーティング対象装置から前記仮想アドレスを宛先とするパケットを受信した際に、前記仮想アドレス割当情報記憶部を参照して、パケットの宛先アドレスを、前記仮想アドレスに対応する前記第2ルーティング対象アドレスに変換して前記ルーティングセッションへパケットを転送する。前記制御部は、前記ルーティングセッションから前記第1ルーティング対象アドレスを宛先とするパケットを受信した際に、前記仮想アドレス割当情報記憶部を参照して、前記仮想アドレスが割り当てられている場合には、パケットの送信元アドレスを、前記第2ルーティング対象アドレスに割り当てられた前記仮想アドレスに変換して宛先の前記第1ルーティング対象装置へパケットを転送する。
 これにより、第1ルーティング対象アドレスと第2ルーティング対象アドレスとが重複していた場合であっても、ユーザが手動で設定を変更することなく、ルーティングセッションを介した中継通信を開始できる。従って、ルーティング対象アドレスを変更する手間、及び中継通信の開始処理をやり直す手間を省くことができる。従って、スムーズに中継通信を開始することができる。また、選択した(通信を開始する)VPNグループに対して仮想アドレスの利用の要否を判断するので、必要な場合にのみ仮想アドレスを利用することができる。特に、VPNグループが起動され、アドレスフィルタ情報が交換された後にアドレスの重複検出を行うので、VPNグループに属する中継サーバの最新のアドレスに基づいて、仮想アドレスを利用することができる。
本発明の一実施形態に係る中継通信システムの全体構成を示す説明図。 中継サーバの機能ブロック図。 中継グループ情報の内容を示す図。 中継サーバ情報の内容を示す図。 クライアント端末情報の内容を示す図。 VPNグループ情報の内容を示す図。 それぞれの中継サーバに予め登録されるアドレスフィルタ情報の内容を示す図。 VPNの構築後に中継サーバ1が記憶するアドレスフィルタ情報及び仮想アドレスを示す図。 VPNの構築後に中継サーバ3が記憶するアドレスフィルタ情報及び仮想アドレスを示す図。 仮想アドレス登録情報の内容を示す図。 予め中継サーバに行う設定を示すフローチャート。 VPNグループを作成する処理を示すフローチャート。 VPNを構築する処理を示すフローチャート。 VPNを構築する処理を示すフローチャート。 LANからパケットを受信したときに中継サーバが行うルーティング制御を示すフローチャート。 ルーティングセッションからパケットを受信したときに中継サーバが行うルーティング制御を示すフローチャート。 仮想アドレスを用いたルーティング制御を示す説明図。
 次に、図面を参照して本発明の実施の形態を説明する。初めに、図1を参照して、本実施形態の中継通信システム100の概要について説明する。図1は、本実施形態に係る中継通信システム100の全体構成を示す説明図である。
 図1に示すように、この中継通信システム100は、Wide Area Network(WAN、広域通信網)80に接続された複数のLAN10,20,30で構成されている。それぞれのLAN10,20,30は、限定された場所で構築される比較的小規模なネットワークである。また、LAN10,20,30は、それぞれが物理的に離れた場所に配置されている。なお、本実施形態ではWAN80としてインターネットが使用されている。
 以下、それぞれのLANを具体的に説明する。図1に示すように、LAN(第2LAN)10には、中継サーバ(第2中継サーバ)1と、第2ルーティング対象装置としての操作PC11,12と、クライアント端末13と、が接続されている。LAN20には、中継サーバ2と、操作PC21と、クライアント端末22と、が接続されている。LAN(第1LAN)30には、中継サーバ(第1中継サーバ)3と、第1ルーティング対象装置としての対象端末31,32,33と、クライアント端末34と、が接続されている。
 それぞれの中継サーバ1,2,3は、LAN10,20,30だけでなくWAN80にも接続されているため、同一のLANに接続された機器と通信可能であるだけでなく、他のLANに配置された中継サーバとも通信可能となっている。操作PC11,12,21は、例えばオペレータが操作するためのパーソナルコンピュータである。対象端末31,32,33は、パーソナルコンピュータ、又は、ファイルサーバ等であり、例えばオペレータは、操作PC11等を操作して、対象端末31等に所定のデータを要求すること、及び、対象端末31の記憶内容を更新することが想定されている。クライアント端末13,22,34は、例えばパーソナルコンピュータで構成されており、それぞれ自身が所属する中継サーバ1,2,3を介して、互いに通信可能である。
 次に、図2を参照して、中継サーバ1,2,3の詳細な構成について説明する。図2は、中継サーバ3の機能ブロック図である。なお、中継サーバ3は中継サーバ1,2と略同じ構成であるので、以下では、主として中継サーバ3について説明する。
 図2に示すように、中継サーバ3は、記憶部50と、制御部60と、インタフェース部70と、を備えている。
 インタフェース部70は、LAN10内の端末に対して通信を実行する。また、インタフェース部70は、WAN80に対して通信を実行する。インタフェース部70は、LAN30又はWAN80から受信したパケットに適宜の処理を行って制御部60へ出力する。
 制御部60は、例えば制御及び演算の機能を有するCPUであり、記憶部50から読み出したプログラムにより各種の処理を実行可能である。この制御部60は、TCP/IP、UDP、SIP等のプロトコルに従った様々な通信を制御することができる。具体的には、制御部60は、受信したパケットについて、当該パケットが示す情報と記憶部50に記憶された情報とに基づいて宛先を決定し、決定した宛先へ当該パケットを送信する。また、制御部60は、他の端末から受信した情報に基づいて、記憶部50の記憶内容を更新することができる。
 記憶部50は、例えばハードディスク又は不揮発性RAMで構成されており、各種データを保存可能である。記憶部50は、中継グループ情報記憶部51と、中継サーバ情報記憶部52と、クライアント端末情報記憶部53と、VPNグループ情報記憶部54と、アドレスフィルタ情報記憶部55と、仮想アドレス登録情報記憶部56と、仮想アドレス割当情報記憶部57と、を備えている。以下、図3から図10までを参照して、記憶部50の記憶内容について説明する。図3から図10までは、主として、中継サーバ3の記憶部50の記憶内容を示す図である。
 中継グループ情報記憶部51は、中継グループと、当該中継グループを構成する中継サーバと、を示した中継グループ情報を記憶している。
 図3に示すように、中継グループ情報においては、groupタグと、このgroupタグを親要素とする子要素のsiteタグと、が記述されている。groupタグには中継グループに関するグループ情報511が記述されている。このグループ情報511としては、中継グループの識別情報(「id」)と、最終更新時刻(「lastmod」)と、中継グループの名称(「name」)と、が記述されている。siteタグには、中継グループを構成する中継サーバに関するグループ構成情報512が記述されている。このグループ構成情報512には、当該中継サーバの識別情報(「id」)が記述されている。また、中継グループは追加作成が可能であり、その場合、新しい中継グループには、他の中継グループと異なる一意の識別情報が付与される。これにより、特定の中継グループ内だけでデータのやり取りを行う等の設定が可能になっている。
 なお、この中継グループ情報は、当該中継グループを構成する中継サーバ1,2,3の間で共有されている。そして、ある中継サーバにおいて中継グループを変更する処理が行われた場合は、他の中継サーバに対してその旨が送信されて中継グループ情報が更新される。このようにして、中継グループ情報が動的に共有される。
 中継サーバ情報記憶部52は、中継通信を行う中継サーバ及び当該中継サーバに所属するクライアント端末の概要を示す中継サーバ情報を記憶している。
 図4に示す中継サーバ情報においては、中継サーバ毎に記述されるsiteタグと、前記siteタグを親要素とする子要素のnodeタグと、が記述されている。siteタグには中継サーバ1に関するサーバ情報521が記述されている。このサーバ情報521としては、中継サーバの識別情報(「id」)と、中継サーバの名称(「name」)と、起動情報(「stat」)と、が記述されている。なお、「stat」の内容が「active」の場合は中継サーバが中継通信システム100にログインしていることを示し、statが空欄であるときはログオフ中であることを示す。siteタグの子要素であるnodeタグには、中継サーバに所属するクライアント端末を示す所属情報522が記述されている。所属情報522としては、所属する中継グループの名称(「group」)と、クライアント端末の識別情報(「id」)と、クライアント端末の名称(「name」)と、所属先の中継サーバの識別情報(「site」)と、が記述されている。なお、クライアント端末が中継通信システム100にログインしていないときは、「site」は空欄となる。
 なお、中継グループによる通信は、上記の中継グループ情報及び中継サーバ情報に基づいて、以下のようにして行われる。例えばクライアント端末13からクライアント端末22にパケットを送信する場合、初めに、クライアント端末13は、自身が接続している中継サーバである中継サーバ1にパケットを送信する。なお、パケットのやり取りが可能な中継サーバは上記の中継グループ情報に基づいて把握することができ、中継サーバに所属しているクライアント端末の識別情報及び接続の可否は上記の中継サーバ情報に基づいて把握することができる。中継サーバ1は、これらの情報に基づいて、クライアント端末22が接続している中継サーバである中継サーバ2へパケットを転送する。そして、このパケットを受信した中継サーバ2がクライアント端末22へパケットを転送する。このようにして、クライアント端末13,22同士で中継通信を行うことができる。
 この中継サーバ情報に関しても中継グループ情報と同様に、当該中継グループを構成する中継サーバ1,2,3の間で情報が共有されている。そして、ある中継サーバにおいて中継サーバ情報を変更する処理が行われた場合は、他の中継サーバに対してその旨が送信されて中継サーバ情報が更新される。このようにして、中継サーバ情報が動的に共有される。
 クライアント端末情報記憶部53は、クライアント端末に関する詳細な情報であるクライアント端末情報を記憶している。なお、中継サーバ1,2,3は、自身に所属するクライアント端末に関するクライアント端末情報のみを記憶している。中継サーバ3には、クライアント端末34が所属しているため、中継サーバ3が備えるクライアント端末情報記憶部53には、クライアント端末34についてのクライアント端末情報のみが記憶されている。
 中継サーバ3のクライアント端末情報記憶部53が記憶するクライアント端末情報は、図5(c)に示されている。同様に、中継サーバ1が記憶するクライアント端末情報が図5(a)に、中継サーバ2が記憶するクライアント端末情報が図5(b)に、それぞれ示されている。
 図5に示すクライアント端末情報においては、nodeタグが記述されている。このnodeタグには、クライアント端末のプライベートIPアドレス(「addr」)と、所属する中継グループの名称(「group」)と、識別情報(「id」)と、名称(「name」)と、中継サーバにログインするためのパスワード(「pass」)と、ポート情報(「port」)と、が記述されている。
 VPNグループ情報記憶部54は、中継グループを構成する中継サーバ及びクライアント端末からルーティングポイントとして選択された機器(以下、ルーティング機器と称する)で構成されたVPNグループに関する情報であるVPNグループ情報を記憶している。同一のVPNグループに所属するルーティング機器同士でルーティングセッションを確立させることにより、VPNを利用した通信を開始することができる。
 図6に示すVPNグループ情報においては、vnetタグが記述されている。このvnetタグには、VPNグループ基本情報541と、ルーティングポイント情報542と、ルーティングセッション情報543と、が記述されている。VPNグループ基本情報541には、VPNグループが所属する中継グループの名称(「group」)と、VPNグループの識別情報(「id」)と、最終更新時刻(「lastmod」)と、VPNグループの名称(「name」)と、が記述されている。ルーティングポイント情報542には、VPNグループ間で通信を行うときにルーティングを行うルーティング機器の識別情報が記述されている。図6の例においては、ルーティング機器として、中継サーバ1と、中継サーバ3と、が記述されている。ルーティングセッション情報543には、VPNグループにおいて互いに接続されるルーティング機器が記述されている。ルーティングセッション情報543において、ルーティング機器は、VPNグループでVPNを構築して通信を開始するためのルーティングセッション確立処理において、通信制御を最初に行う側(「sp(start point)」)と、その通信制御を受ける側「ep(end point)」と、に分けて定められている。なお、以下の説明では、ルーティングセッション確立のための通信制御を最初に行う側のルーティング機器を「始点」と、その通信制御を受ける側のルーティング機器を「終点」と、それぞれ称することがある。
 図6に示すVPNグループ情報からは、VPNグループ(VPN-GROUP1)が、中継サーバ1と中継サーバ3とで構成されることが分かる。また、このVPNグループの開始時には、中継サーバ3から中継サーバ1へルーティングセッションを確立するための通信制御が行われることが分かる。
 なお、作成されるVPNグループの数は任意であり、中継通信システム100において、複数のVPNグループが作成されていても良い。例えば、上記のVPNグループに加えて、中継サーバ1と中継サーバ2とで構成されるVPNグループ、中継サーバ2と中継サーバ3とで構成されるVPNグループ、及び、中継サーバ1から中継サーバ3までで構成されるVPNグループが作成されていても良い。
 このVPNグループ情報も中継サーバ情報及び中継グループ情報と同様に、同じVPNグループに所属する中継サーバ1,3の間で共有されている。そして、ある中継サーバにおいてVPNグループ情報を変更する処理が行われた場合は、同じVPNグループに所属する他の中継サーバに対してその旨が送信されてVPNグループ情報が更新される。このようにして、VPNグループ情報が動的に共有される。なお、このVPNグループを作成する処理については後述する。
 アドレスフィルタ情報記憶部55は、VPNを利用したルーティング制御を行う際に用いられる情報であるアドレスフィルタ情報を記憶する。アドレスフィルタ情報記憶部55は、VPNの構築前においては、中継サーバ3自身がパケットを直接的に送信可能な装置(ルーティング対象装置)を示す情報(中継サーバ3のアドレスフィルタ情報)を記憶する。なお、アドレスフィルタ情報には、ルーティング対象装置のアドレス(ルーティング対象アドレス)と、ルーティング対象装置の名称と、が含まれる。
 図7(c)には、中継サーバ3自身に予め登録されたアドレスフィルタ情報の例が示されている。この例では、中継サーバ3がパケットを直接的に送信可能な機器が対象端末31,32,33であることが記述されている。なお、図7(a)には、中継サーバ1に予め登録されたアドレスフィルタ情報が示され、図7(b)には、中継サーバ2に予め登録されたアドレスフィルタ情報が示されている。
 上述のように、中継サーバ3のアドレスフィルタ情報記憶部55は、VPNを構築する前においては、図7(c)に示すアドレスフィルタ情報のみを記憶する。そして、中継サーバ3は、例えば中継サーバ1とルーティングセッションを確立させるときに、自身に予め登録されたアドレスフィルタ情報(図7(c))を中継サーバ1へ送信するとともに、中継サーバ1からアドレスフィルタ情報(図7(a))を受信する。そして、中継サーバ3は、中継サーバ1のアドレスフィルタ情報を当該中継サーバ1の識別情報と対応付けてアドレスフィルタ情報記憶部55に記憶する。
 これにより、中継サーバ3のアドレスフィルタ情報記憶部55には、図9(a)に示す内容が記憶されることになる。同様に、中継サーバ1のアドレスフィルタ情報記憶部55にも、図8(a)に示す内容(図9(a)と同内容)が記憶される。そして、中継サーバ1,3は、この取得したアドレスに基づいて、ルーティング制御を行う(詳細な制御については後述)。なお、以下では、中継サーバ3のアドレスフィルタ情報に含まれるルーティング対象アドレス(対象端末31,32,33のアドレス)を第1ルーティング対象アドレスと称し、中継サーバ1のアドレスフィルタ情報に含まれるルーティング対象アドレス(操作PC11,12のアドレス)を第2ルーティング対象アドレスと称することがある。
 本実施形態では、第1ルーティング対象アドレスと第2ルーティング対象アドレスとの間に重複がある場合、中継サーバ3と対象端末31,32,33との間の通信では、操作PC11,12の実際のアドレスを用いずに、仮想アドレスを用いて通信を行う。仮想アドレスは、LAN30内で重複しないアドレス(LAN30内の機器に割り当てられておらず、かつその予約もされていないアドレス)が予め登録されて、中継サーバ3の仮想アドレス登録情報記憶部56に記憶されている。本実施形態では、図10(b)に示すアドレスが仮想アドレスとして登録されている。
 同様に、第1ルーティング対象アドレスと第2ルーティング対象アドレスとの間に重複がある場合、中継サーバ1と操作PC11,12との間の通信では、対象端末31,32,33の実際のアドレスを用いずに、仮想アドレスを用いて通信を行う。この仮想アドレスは、上記と同様に、LAN10内で重複しないアドレスが予め登録されて、中継サーバ1の仮想アドレス登録情報記憶部56に記憶されている。本実施形態では、図10(a)に示すアドレスが仮想アドレスとして登録されている。
 そして、中継サーバ3は、上記のようにアドレスフィルタ情報を交換して第2ルーティング対象アドレスを取得して、ルーティング対象アドレス間に重複があることを検出した場合、第2ルーティング対象アドレス(実際のアドレス)に対して前記仮想アドレスを割り当てる。仮想アドレス割当情報記憶部57は、図9(b)に示すように、第2ルーティング対象アドレスと、仮想アドレスと、の割当関係を記憶する。同様に、中継サーバ1の仮想アドレス割当情報記憶部57は、図8(b)に示すように、第1ルーティング対象アドレスと、仮想アドレスと、の割当関係を記憶する。
 次に、VPNを利用した通信を行うための準備について説明する。初めに、図11を参照して中継サーバに予め行う設定について説明し、次に、図12を参照してVPNグループを作成するときの流れについて説明する。図11は、予め中継サーバに行う設定を示すフローチャートである。図12は、VPNグループを作成する処理を示すフローチャートである。以下では、中継サーバ3を例に挙げて、中継サーバ3に対して行う設定及び中継サーバ3が実行する処理について説明するが、中継サーバ1,2にも同様の設定が行われるとともに、同様の処理を実行可能である。
 中継サーバ3に予め行う設定としては、当該中継サーバ3のアドレスフィルタ情報の登録(S101)がある。この登録は、中継通信システム100を利用するユーザが、ルーティング対象装置として指定する機器等のアドレス(第1ルーティング対象アドレス)と、名称と、を所定の方法で入力することにより行う。ここでは、ユーザは、対象端末31,32,33のアドレス及び名称を入力したものとする。ここで登録されたアドレスフィルタ情報は、アドレスフィルタ情報記憶部55に記憶される。
 次に、仮想アドレスを用いた通信を行う場合は、ユーザは、中継サーバ3が接続するLAN30内で重複しないアドレスを仮想アドレスとして登録する(S102)。ここで登録された仮想アドレスは、仮想アドレス登録情報記憶部56に記憶される。
 次に、ユーザは、重複検出条件の設定を行う(S103)。重複検出条件とは、ルーティング対象アドレス間で重複があると判定するための条件である。例えば、重複検出条件としては、例えば、「少なくともネットワークアドレスが一致していること」を例として挙げることができる。この他にも、「ネットワークアドレス及びホストアドレスの両方が一致していること」を例として挙げることができる。本実施形態では、前者の「少なくともネットワークアドレスが一致していること」が重複検出条件として設定されたものとする。
 以下、VPNグループを作成するときの流れについて説明する。ユーザは、初めに、クライアント端末13,22,34等を操作することによって、VPNグループの設定画面を表示させることができる。ここでは、クライアント端末34を用いて設定を行う場合について説明する。クライアント端末34に表示させた設定画面には、当該クライアント端末34が属する複数の中継グループが表示される。ユーザは、この複数の中継グループから、VPNグループを構築したい中継グループを選択する(S201)。
 中継グループが選択されると、クライアント端末34の画面には、選択した中継グループに属し、かつルーティングポイントとして機能可能な中継サーバ及びクライアント端末の識別情報の一覧が表示される(S202)。そして、ユーザは、構築するVPNグループにおいてルーティングポイントとして機能させる中継サーバ及びクライアント端末を選択する(S203)。今回の説明では、中継サーバ1と、中継サーバ3と、がユーザに選択されたものとする。
 そして、選択された中継サーバの識別情報に基づいて、ルーティングポイントの識別情報及び前記ルーティングセッション情報が作成される(S204)。そして、これらの情報にVPNグループの識別情報等を付加することにより、図6で示したVPNグループ情報が作成される。クライアント端末34は、このVPNグループ情報を、同じVPNグループに所属する中継サーバ1,3へ送信する(S205)。そして、中継サーバ1,3は、受信したVPNグループ情報をVPNグループ情報記憶部54に記憶する。以上により、VPNグループの作成処理が完了する。なお、上記の処理を繰り返すことで、複数のVPNグループを作成することもできる。
 次に、構築したVPNグループでVPNを利用した通信を開始するまでの流れについて、図13及び図14を参照して説明する。図13及び図14は、VPNを利用した通信を開始するまでに行う処理を示すフローチャートである。
 ユーザは、クライアント端末13等又は操作PC11等を操作することによって、作成されたVPNグループ(複数作成された場合は複数のVPNグループ)を画面に表示させることができる。そして、表示されたVPNグループから適当なVPNグループを選択することにより(S301)、VPNを構築するための処理を行わせることができる。今回の説明では、上記で作成したVPNグループ(中継サーバ1,3で構成されるVPNグループ)の開始処理を中継サーバ3が行う例を説明する。
 中継サーバ3は、初めに、自身に対応付けられたアドレスフィルタ情報を読み出す(S302)。ここで読み出される情報は、S101で登録された内容(図7(c)に示す内容)である。次に、中継サーバ3は、選択されたVPNグループに属するルーティングポイントの読出しを行う(S303)。これにより、図6に示すVPNグループ情報の内容に基づいて、中継サーバ1が読み出される。
 中継サーバ3は、中継サーバ情報に基づいて、初めに、中継サーバ1がログイン中か否か(「stat」がactiveか空欄か)を判断する(S304)。図4に示す中継サーバ情報によれば中継サーバ1はログイン中であるため、中継サーバ3は、中継サーバ1へVPNグループの識別情報とともに、VPNグループの開始コマンドを送信する(S305)。
 中継サーバ3は、この開始コマンドに対する中継サーバ1からの応答を受けると(S306)、中継サーバ1を、VPNを構築する準備が完了したルーティングポイントとして登録する(S307)。
 次に、中継サーバ3は、同じVPNグループに所属する他の機器が有るか否かの判断を行う(S308)。現在作成中のVPNグループは、中継サーバ1と中継サーバ3のみで構成されるため、他の機器は存在しない。なお、仮に他の機器が存在していた場合は、中継サーバ3は、今度は当該機器を対象としてS304~S307の処理を行う。
 次に、中継サーバ3は、VPNグループ情報記憶部54の記憶内容からルーティングセッション情報を抽出する(図14のS309)。そして、中継サーバ3は、抽出したルーティングセッション情報を参照して、自身が始点となるルーティングセッションが記述されているか否かを判断する(S310)。図6のルーティングセッション情報においては、中継サーバ1と中継サーバ3との間で確立されるべきルーティングセッションにおいて、自身(中継サーバ3)が始点となることが記述されている。
 そのため、中継サーバ3は、中継サーバ1に対して所定の通信制御を行ってルーティングセッションを確立する(S311)。なお、この通信制御を行う際に、前述のように、アドレスフィルタ情報が交換される(S312)。これにより、中継サーバ3のアドレスフィルタ情報記憶部55には、図9(a)に示す内容が記憶される。同様に、中継サーバ1のアドレスフィルタ情報記憶部55には、図8(a)に示す内容が記憶される。
 次に、中継サーバ3は、アドレスフィルタ情報記憶部55の記憶内容に基づいて、アドレスフィルタ情報のルーティング対象アドレス間に重複があるか否かを判定する処理(判定処理)を行う(S313)。この判定処理では、S103での設定に従って、「少なくともネットワークアドレスが一致している」場合に重複があると判定される。従って、本実施形態では図8(a)等に示すように、第1ルーティング対象アドレスと第2ルーティング対象アドレスのネットワークアドレスが両方とも(192.168.0)となっているので、中継サーバ3は、重複があると判定する。
 また、今回の説明において、VPNグループは2つの中継サーバから構成されているので、中継サーバ3は、これらの中継サーバのルーティング対象アドレス間の重複を判定する。これに対して、VPNグループが複数の中継サーバから構成され、S301においてこのVPNグループが選択された場合、中継サーバ3は、3つのルーティング対象アドレス間の重複を検出する。このように、本実施形態では、選択されたVPNグループについてのみアドレスの重複を検出する。
 中継サーバ3は、ルーティング対象アドレス間に重複があると判定した場合、第2ルーティング対象アドレスに仮想アドレスを割り当て(S314)、その割当関係を仮想アドレス割当情報記憶部57に記憶する(S315)。なお、S314において割り当てられる仮想アドレスは、仮想アドレス登録情報記憶部56に登録されており、かつ、まだ第2ルーティング対象アドレスに割り当てられていない仮想アドレスであれば、任意のアドレスを割り当てることができる。
 次に、中継サーバ3は、再びS310の処理を行う。なお、ルーティング対象アドレス間で重複がないと判定した場合も再びS310の処理を行う。現在作成中のVPNグループは、中継サーバ1と中継サーバ3のみで構成されるため、他のルーティングセッションはVPNグループ情報には記述されていない。従って、中継サーバ3は、パケットのルーティング制御を開始する(S316)。なお、仮に他のルーティングセッションがある場合は、中継サーバ3は、再びS311~S315の処理を行う。
 このように、本実施形態では、選択されたVPNグループのルーティング対象アドレス間で重複があるか否かを検出し、重複している場合には仮想アドレスの割当てを自動的に行う。従って、ユーザは、ルーティング対象アドレス間に重複がある場合であっても、手動で設定を変更することなく、VPNを利用した通信を開始できる。なお、この判定処理は、VPNの開始時だけでなく、VPNの開始後にも適宜のタイミング(アドレスフィルタ情報が更新されたタイミング等)で行うものとする。
 また、本実施形態ではVPNを構築する際に、それぞれのルーティング機器が他のルーティング機器とアドレスフィルタ情報を交換(取得)するため、最新のアドレスフィルタ情報を用いてVPNを構築することができる。従って、VPN開始前の段階で一部のルーティング機器においてアドレスフィルタ情報が変更された場合でも、その変更を全てのルーティング機器に反映させた状態でVPNを構築して通信を開始できるので、パケットのルーティングにおける矛盾の発生を防止でき、信頼性を向上させることができる。
 また、図14のフローチャートには記載していないが、S310において自身が接続の始点となるルーティングセッションが無い場合(自身がルーティングの終点となる場合)であっても、始点となるルーティング機器からの通信制御を受けてルーティングセッションの確立処理及びアドレスフィルタ情報の交換が行われる。それと同時に、仮想アドレスを用いた通信を行う場合は、仮想アドレスの割当て等も行われる。従って、中継サーバ1も第1ルーティング対象アドレスに仮想アドレスを割当て、それを記憶する制御を行う。
 なお、それぞれのルーティング機器は、自身が始点である旨がルーティングセッション情報に記述されていない限りはルーティングセッション確立のための最初の通信制御を行わないので、通信制御の衝突を防止し、機器間のルーティングセッションを簡素な制御で確立することができる。
 次に、確立したルーティングセッションを用いてパケットのルーティングを行う処理について説明する。以下では、中継サーバ3を例に挙げて、中継サーバ3が実行する処理について説明するが、中継サーバ1,2も同様の処理を実行可能である。
 初めに、中継サーバ3がLAN30からパケットを受信したときに行う制御について図15を参照して説明する。図15は、この制御の流れを示すフローチャートである。
 なお、LAN30内のルーティング対象装置は、他のルーティング対象装置にパケットを送信する際は、中継サーバ3に登録された情報を参照して他のルーティング対象アドレスを取得し、当該ルーティング対象アドレスを宛先としてパケットを送信する。このとき、仮想アドレスが割り当てられている場合は、中継サーバ3からLAN30内のルーティング対象装置へ、実際のアドレスではなく仮想アドレスが出力される。従って、例えば対象端末31から操作PC11へパケットが送信される場合、対象端末31は、宛先アドレスとして仮想アドレス(160.90.0.1)を取得する。
 中継サーバ3は、LAN30からパケットを受信するまで待機している(S401)。そして、LAN30からパケットを受信した場合、初めに、当該パケットの宛先が自機(中継サーバ3)であるか否かの判断を行う(S402)。
 中継サーバ3は、パケットの宛先が自機であった場合、当該パケットの受信を行う(S403)。一方、パケットの宛先が自機以外であった場合、中継サーバ3は、受信したパケットの宛先アドレスと、アドレスフィルタ情報(図9(b)を参照)と、を比較して、宛先アドレスがアドレスフィルタ情報に登録されているか否かの判断を行う(S404)。中継サーバ3は、宛先アドレスがアドレスフィルタ情報に登録されていない場合、パケットを破棄する(S405)。一方、中継サーバ3は、宛先アドレスがアドレスフィルタ情報に登録されていた場合、当該アドレスフィルタ情報に対応するルーティングセッションを特定する(S406)。
 次に、中継サーバ3は、仮想アドレス割当情報記憶部57を参照して、宛先アドレスが仮想アドレスか否かの判断を行う(S407)。宛先アドレスが仮想アドレスである場合、中継サーバ3は、宛先アドレスを実際のアドレスに変換し(S408)、S406で特定したルーティングセッションへパケットを送信(転送)する(S409)。
 次に、中継サーバ3がルーティングセッションからパケットを受信したときに行う制御について図16を参照して説明する。図16は、この制御の流れを示すフローチャートである。
 中継サーバ3は、ルーティングセッションからパケットを受信するまで待機している(S501)。そして、中継サーバ3は、パケットを受信した場合、当該パケットの宛先アドレスと、アドレスフィルタ情報(図9(b)を参照)と、を比較して、パケットの宛先アドレスが自機のアドレスフィルタ情報に対応付けて登録されているか否かの判断を行う(S502)。
 パケットの宛先アドレスが自機のアドレスフィルタ情報に対応付けて登録されている場合、仮想アドレス割当情報記憶部57を参照して、送信元アドレスに仮想アドレスが割り当てられているか否かの判断を行う(S503)。送信元アドレスに仮想アドレスが割り当てられている場合、中継サーバ3は、送信元アドレスを仮想アドレスに変換し(S504)、宛先アドレスが示す機器(対象端末31,32,33)へ、パケットを転送する(S505)。なお、送信元アドレスに仮想アドレスが割り当てられていない場合、中継サーバ3は、アドレスを変換することなく、宛先が示す機器へパケットを転送する(S505)。
 また、中継サーバ3は、宛先アドレスが自機のアドレスフィルタ情報に対応付けて登録されていない場合、当該宛先アドレスが他のルーティング機器のアドレスフィルタ情報に対応付けて登録されているか否かの判断を行う(S506)。当該宛先アドレスが他のルーティング機器のアドレスフィルタ情報に対応付けて登録されている場合、中継サーバ3は、該当するルーティングセッションを特定し(S507)、このルーティングセッションへパケットを送信(転送)する(S508)。
 一方、当該宛先アドレスが他のルーティング機器のアドレスフィルタ情報にも登録されていない場合、中継サーバ3は、当該パケットを破棄する(S509)。
 以上の制御を行うことにより、中継サーバ3は、仮想アドレスを利用して通信を行うことができる。
 次に、上記の制御を行う中継サーバ1,3を介して、操作PC11と対象端末31とがパケットをやり取りするときの流れについて図17を参照して簡単に説明する。
 図17(a)は、対象端末31から操作PC11へパケットが送信される場合を示している。この場合、中継サーバ1は、ルーティングセッションからパケットを受信するため、図16に示す制御を行う。一方、中継サーバ3は、LAN30からパケットを受信するため、図15に示す制御を行う。
 対象端末31は、上述のように操作PC11の仮想アドレスを宛先アドレスとしてパケットを送信する。このパケットを受信した中継サーバ3は、アドレスフィルタ情報(図9(b)を参照)に基づいて、パケットの宛先アドレスに対応するルーティング機器として中継サーバ1が記述されていることを認識してルーティングセッションを特定する(S406)。次に、中継サーバ3は、宛先アドレスが仮想アドレスであることを認識して、宛先アドレスを実際のアドレスに変換する(S408)。そして、中継サーバ3は、ルーティングセッションを介して中継サーバ1へパケットを送信する(S409)。
 このパケットを受信した中継サーバ1は、アドレスフィルタ情報(図8(b)を参照)に基づいて、パケットの宛先アドレスに対応するルーティング機器として自機(中継サーバ1)が記述されていることを認識する。次に、中継サーバ1は、送信元アドレスに仮想アドレスが対応付けられていることを認識して、送信元アドレスを仮想アドレスに変換する(S504)。そして、中継サーバ1は、宛先の操作PC11へパケットを送信する(S505)。
 図17(b)は、操作PC11から対象端末31へパケットが送信される場合を示している。この場合、中継サーバ1は、LAN10からパケットを受信するため、図15に示す制御を行う。一方、中継サーバ3は、ルーティングセッションからパケットを受信するため、図16に示す制御を行う。
 操作PC11は、対象端末31の仮想アドレスを宛先としてパケットを送信する。このパケットを受信した中継サーバ1は、上記の中継サーバ3と同様に、ルーティングセッションを特定する処理(S406)、宛先アドレスを実際のアドレスに変換する処理(S408)、及び中継サーバ3へパケットを送信する処理(S409)を行う。
 このパケットを受信した中継サーバ3は、上記の中継サーバ1と同様に、送信元アドレスを仮想アドレスに変換する処理(S504)及び宛先の対象端末31へパケットを送信する処理(S505)を行う。
 以上により、第1ルーティング対象アドレスと第2ルーティング対象アドレスとが重複した場合であっても、割り当てられた仮想アドレスを利用して通信を行うことができる。
 以上に示したように、本実施形態の中継サーバ3は、アドレスフィルタ情報記憶部55と、仮想アドレス割当情報記憶部57と、VPNグループ情報記憶部54と、制御部60と、を備える。アドレスフィルタ情報記憶部55は、第1ルーティング対象アドレスと、第2ルーティング対象アドレスと、を記憶する。仮想アドレス割当情報記憶部57は、第2ルーティング対象アドレスと、当該第2ルーティング対象アドレスに割り当てられた仮想アドレスと、を対応付けて記憶する。VPNグループ情報記憶部54は、ルーティングポイントとして選択された中継サーバに関する情報であるVPNグループ情報を記憶する。制御部60は、ユーザの指示等を受けてVPNグループを選択する制御を行う。制御部60は、選択されたVPNグループに属する中継サーバ1とアドレスフィルタ情報を交換して、中継サーバ1とルーティングセッションを確立する。制御部60は、ルーティング対象アドレス間で重複があるか否かを判定する判定処理を行う。制御部60は、判定処理で重複があると判定した場合に、第2ルーティング対象アドレスに仮想アドレスを割り当て、当該割当関係を仮想アドレス割当情報記憶部57に記憶する。制御部60は、第1ルーティング対象装置から仮想アドレスを宛先とするパケットを受信した際に、パケットの宛先アドレスを第2ルーティング対象アドレスに変換して該当するルーティングセッションへパケットを転送する。制御部60は、ルーティングセッションから第1ルーティング対象アドレスを宛先とするパケットを受信した際に、仮想アドレスが割り当てられている場合には、パケットの送信元アドレスを仮想アドレスに変換して宛先へパケットを転送する。
 これにより、第1ルーティング対象アドレスと第2ルーティング対象アドレスとが重複していた場合であっても、ユーザが手動で設定を変更することなく、ルーティングセッションを介した中継通信を開始できる。従って、ルーティング対象アドレスを変更する手間、及び中継通信の開始処理をやり直す手間を省くことができる。従って、スムーズに中継通信を開始することができる。また、選択したVPNグループに対して仮想アドレスの利用の要否を判断するので、必要な場合にのみ仮想アドレスを利用することができる。特に、VPNグループが起動され、アドレスフィルタ情報が交換された後にアドレスの重複検出を行うので、VPNグループに属する中継サーバの最新のアドレスに基づいて、仮想アドレスを利用することができる。
 また、本実施形態の中継サーバ3は、予め登録された仮想アドレスを記憶する仮想アドレス登録情報記憶部56を備える。制御部60は、判定処理で重複があると判定したときに、仮想アドレス登録情報記憶部56が記憶する仮想アドレスを第2ルーティング対象アドレスに割り当てる。
 これにより、仮想アドレスとして用いられるアドレスの範囲を予め定めておくことができるので、他のLANを追加する場合等に利用可能なアドレスを確保しておくことができる。また、中継通信を開始する度に仮想アドレスを生成しなくて良いので、制御部60が行う処理を軽減することができる。
 また、本実施形態の中継サーバ3は、ルーティング対象アドレス同士が完全に一致していない場合であっても、ルーティング対象アドレス同士でネットワークアドレスが一致していれば、重複があると判定する。
 これにより、例えばルーティング対象アドレス同士でネットワークアドレスが一致していてホストアドレスが異なる場合、将来的にルーティング対象装置が追加されること等により、ホストアドレスも一致する2つのアドレスが使用される可能性がある。この点、上記の構成は、ネットワークアドレスが一致していれば重複があると判定する。従って、アドレスの重複を未然に察知して、予め仮想アドレスを割り当てておくことができる。
 また、本実施形態の中継サーバ3は、選択されたVPNグループが中継サーバ1,2,3で構成される場合、3つのルーティング対象アドレス間で重複があるか否かを判定する。
 これにより、3以上の中継サーバで構成されるVPNグループが選択された場合であっても、ルーティング対象アドレスの重複を検出して仮想アドレスの割当てを行うことができる。
 以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。
 上記実施形態では、中継サーバ3は、仮想アドレス登録情報記憶部56に登録されている仮想アドレスを割り当てる構成である。これに代えて、中継サーバ3が仮想アドレス登録情報記憶部56を備えない構成として、重複を検出したときに、中継サーバ3が仮想アドレスを生成する構成であっても良い。このとき、中継サーバ3は、アドレスフィルタ情報記憶部55の記憶内容を参照して、VPNを行う際に用いられていないアドレスを仮想アドレスとすることで、利用中のアドレスと確実に重複しない仮想アドレスを生成できる。
 ルーティング対象アドレス間に重複があるか否かの判定方法は任意であり、例えば、ネットワークアドレスとホストアドレスの両方が一致しているときにのみ重複と判定する構成であっても良い。
 上記では、ルーティングセッションの確立と略同時にアドレスフィルタ情報の交換を行う構成である。これに対し、VPNグループの開始コマンドの送信(S305)とともにアドレスフィルタ情報を送信し、応答(S306)とともにアドレスフィルタ情報を受信する構成でも良い。
 上記では、操作PC11等の個別の機器がルーティング対象装置となっていたが、例えば、LAN10全体(192.168.0.0/24)を中継サーバ1のルーティング対象装置として設定しても良い。この場合、当該ルーティング対象装置には、(160.90.1.0/24)のように、範囲指定された仮想アドレスが割り当てられる。
 仮想アドレスの割当てを行うタイミングは任意であり、例えば、開始コマンドの送信とともにアドレスフィルタ情報を送信する構成とすることができる。この場合、より早いタイミングでルーティング対象アドレスの重複の検出及び仮想アドレスの割当てを行うことができる。
 上記では、中継サーバのみがルーティングポイントとして機能する構成であるが、クライアント端末がルーティングポイントとして機能する構成であっても良い。また、上述のようにVPNグループ内のルーティングポイントの数は2つに限られず、3つ以上であっても良い。また、1つのルーティング機器が複数のVPNグループに所属していても良い。
 上記の中継グループ情報、中継サーバ情報、クライアント端末情報、VPNグループ情報、アドレスフィルタ情報等を格納する形式はXML形式に限定されず、適宜の形式で各情報を格納することができる。
 上記実施形態の構成に代えて、各中継サーバ間での通信に用いられる外部サーバをインターネット上に設置し、SIP(Session Initiaion Protocol)サーバとしての機能を発揮させて通信を行う構成にしても良い。
 1 中継サーバ(第2中継サーバ)
 3 中継サーバ(第1中継サーバ)
 11,12 操作PC(第2ルーティング対象装置)
 31,32,33 対象端末(第1ルーティング対象装置)
 10 LAN(第2LAN)
 30 LAN(第1LAN)
 54 VPNグループ情報記憶部
 55 アドレスフィルタ情報記憶部
 56 仮想アドレス登録情報記憶部
 57 仮想アドレス割当情報記憶部
 60 制御部
 100 中継通信システム

Claims (6)

  1.  第1LAN内に位置しパケットを転送可能な第1ルーティング対象装置のアドレスである第1ルーティング対象アドレスと、第2LAN内に位置する第2中継サーバがパケットを転送可能な第2ルーティング対象装置のアドレスである第2ルーティング対象アドレスと、を記憶するアドレスフィルタ情報記憶部と、
     第2ルーティング対象アドレスと、当該第2ルーティング対象アドレスに割り当てられた仮想アドレスと、を対応付けて記憶する仮想アドレス割当情報記憶部と、
     ルーティングポイントとして選択された中継サーバに関する情報であるVPNグループ情報を記憶するVPNグループ情報記憶部と、
    制御部と、を備え、
     前記制御部は、
     VPNグループを選択する制御と、
     選択されたVPNグループに属する前記第2中継サーバへ前記第1ルーティング対象アドレスを送信するとともに、前記第2中継サーバから前記第2ルーティング対象アドレスを受信し、前記第2中継サーバとルーティングセッションを確立する制御と、
     前記第1ルーティング対象アドレスと前記第2ルーティング対象アドレスとの間で重複があるか否かを判定する判定処理を行う制御と、
     前記判定処理で重複があると判定した場合に、前記第2ルーティング対象アドレスに前記仮想アドレスを割り当て、当該割当関係を前記仮想アドレス割当情報記憶部に記憶する制御と、
     前記第1ルーティング対象装置から前記仮想アドレスを宛先とするパケットを受信した際に、前記仮想アドレス割当情報記憶部を参照して、パケットの宛先アドレスを、前記仮想アドレスに対応する前記第2ルーティング対象アドレスに変換して前記ルーティングセッションへパケットを転送する制御と、
     前記ルーティングセッションから前記第1ルーティング対象アドレスを宛先とするパケットを受信した際に、前記仮想アドレス割当情報記憶部を参照して、前記仮想アドレスが割り当てられている場合には、パケットの送信元アドレスを、前記第2ルーティング対象アドレスに割り当てられた前記仮想アドレスに変換して宛先の前記第1ルーティング対象装置へパケットを転送する制御と、
    を行うことを特徴とする中継サーバ。
  2.  請求項1に記載の中継サーバであって、
     前記制御部は、前記判定処理で重複があると判定したときに、前記アドレスフィルタ情報記憶部の記憶内容を考慮して前記仮想アドレスを生成し、生成した仮想アドレスを前記第2ルーティング対象アドレスに割り当てることを特徴とする中継サーバ。
  3.  請求項1に記載の中継サーバであって、
     予め登録された前記仮想アドレスを記憶する仮想アドレス登録情報記憶部を備え、
     前記制御部は、前記判定処理で重複があると判定したときに、前記仮想アドレス登録情報記憶部が記憶する仮想アドレスを前記第2ルーティング対象アドレスに割り当てることを特徴とする中継サーバ。
  4.  請求項1に記載の中継サーバであって、
     前記制御部は、ルーティング対象アドレス同士が完全に一致していない場合であっても、ルーティング対象アドレス同士でネットワークアドレスが一致していれば、重複があると判定することを特徴とする中継サーバ。
  5.  請求項1に記載の中継サーバであって、
     前記制御部は、
     選択されたVPNグループに属する前記第2中継サーバから前記第2ルーティング対象アドレスを受信するとともに、当該VPNグループに属する第3中継サーバから第3ルーティング対象アドレスを受信し、
     前記判定処理は、前記第1ルーティング対象アドレスと、前記第2ルーティング対象アドレスと、前記第3ルーティング対象アドレスと、の間で重複があるか否かを判定することを特徴とする中継サーバ。
  6.  第1中継サーバ及び第2中継サーバを含んで構成される中継通信システムにおいて、
     第1LAN内に位置する前記第1中継サーバは、
     当該第1中継サーバがパケットを転送可能な第1ルーティング対象装置のアドレスである第1ルーティング対象アドレスと、第2LAN内に位置する前記第2中継サーバがパケットを転送可能な第2ルーティング対象装置のアドレスである第2ルーティング対象アドレスと、を記憶するアドレスフィルタ情報記憶部と、
     第2ルーティング対象アドレスと、当該第2ルーティング対象アドレスに割り当てられた仮想アドレスと、を対応付けて記憶する仮想アドレス割当情報記憶部と、
     ルーティングポイントとして選択された中継サーバに関する情報であるVPNグループ情報を記憶しているVPNグループ情報記憶部と、
    制御部と、を備え、
     前記制御部は、
     VPNグループを選択する制御と、
    選択されたVPNグループに属する前記第2中継サーバへ前記第1ルーティング対象アドレスを送信するとともに、前記第2中継サーバから前記第2ルーティング対象アドレスを受信し、前記第2中継サーバとルーティングセッションを確立する制御と、
     前記第1ルーティング対象アドレスと前記第2ルーティング対象アドレスとの間で重複があるか否かを判定する判定処理を行う制御と、
     前記判定処理で重複があると判定した場合に、前記第2ルーティング対象アドレスに前記仮想アドレスを割り当て、当該割当関係を前記仮想アドレス割当情報記憶部に記憶する制御と、
     前記第1ルーティング対象装置から前記仮想アドレスを宛先とするパケットを受信した際に、前記仮想アドレス割当情報記憶部を参照して、パケットの宛先アドレスを前記仮想アドレスに対応する前記第2ルーティング対象アドレスに変換して前記ルーティングセッションへパケットを転送する制御と、
     前記ルーティングセッションから前記第1ルーティング対象アドレスを宛先とするパケットを受信した際に、前記仮想アドレス割当情報記憶部を参照して、前記仮想アドレスが割り当てられている場合には、パケットの送信元アドレスを前記第2ルーティング対象アドレスに割り当てられた前記仮想アドレスに変換して宛先の前記第1ルーティング対象装置へパケットを転送する制御と、
    を行うことを特徴とする中継通信システム。
PCT/JP2012/007382 2011-11-30 2012-11-16 中継サーバ及び中継通信システム WO2013080475A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/361,385 US9385990B2 (en) 2011-11-30 2012-11-16 Relay server and relay communication system
CN201280058182.7A CN103959720B (zh) 2011-11-30 2012-11-16 中继服务器以及中继通信系统
EP12854112.5A EP2787692B1 (en) 2011-11-30 2012-11-16 Relay server with control unit adapted to set an overlap detection condition
JP2013546975A JP5668954B2 (ja) 2011-11-30 2012-11-16 中継サーバ及び中継通信システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-263028 2011-11-30
JP2011263028 2011-11-30

Publications (1)

Publication Number Publication Date
WO2013080475A1 true WO2013080475A1 (ja) 2013-06-06

Family

ID=48534974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007382 WO2013080475A1 (ja) 2011-11-30 2012-11-16 中継サーバ及び中継通信システム

Country Status (5)

Country Link
US (1) US9385990B2 (ja)
EP (1) EP2787692B1 (ja)
JP (1) JP5668954B2 (ja)
CN (1) CN103959720B (ja)
WO (1) WO2013080475A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220073A (ja) * 2015-05-21 2016-12-22 サイレックス・テクノロジー株式会社 中継装置、及び、中継方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6458464B2 (ja) * 2014-11-26 2019-01-30 株式会社リコー 制御システム、制御装置、通信システム、中継装置の選択方法、及びプログラム
US10541966B1 (en) * 2015-07-02 2020-01-21 Aviatrix Systems, Inc. System and method for enabling communication between networks with overlapping IP address ranges
US10397109B2 (en) * 2017-04-24 2019-08-27 International Business Machines Corporation Routing packets in overlapping address spaces
US10757144B2 (en) * 2018-06-19 2020-08-25 T-Mobile Usa, Inc. Session control logic with internet protocol (IP)-based routing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010268312A (ja) 2009-05-15 2010-11-25 Murata Machinery Ltd 中継通信システム
JP2010278636A (ja) * 2009-05-27 2010-12-09 Ntt Comware Corp 通信システム、通信管理装置、通信管理方法、及び通信管理プログラム
JP2011077842A (ja) * 2009-09-30 2011-04-14 Murata Machinery Ltd 中継サーバおよび中継通信システム
JP2011160103A (ja) * 2010-01-29 2011-08-18 Oki Networks Co Ltd ゲートウェイ装置及びプログラム、並びに、通信システム

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888837B1 (en) * 1999-03-23 2005-05-03 Nortel Networks Limited Network address translation in a network having multiple overlapping address domains
US6934763B2 (en) * 2000-04-04 2005-08-23 Fujitsu Limited Communication data relay system and method of controlling connectability between domains
EP1251657A3 (en) * 2001-04-18 2004-06-16 System Management Arts, Inc.(a Delaware corporation) Implementing managed networks services for custormers with duplicate IP networks
US20030009559A1 (en) * 2001-07-09 2003-01-09 Naoya Ikeda Network system and method of distributing accesses to a plurality of server apparatus in the network system
JP3898498B2 (ja) * 2001-12-06 2007-03-28 富士通株式会社 サーバ負荷分散システム
US7099319B2 (en) * 2002-01-23 2006-08-29 International Business Machines Corporation Virtual private network and tunnel gateway with multiple overlapping, remote subnets
US7395354B2 (en) * 2002-02-21 2008-07-01 Corente, Inc. Methods and systems for resolving addressing conflicts based on tunnel information
US7224687B2 (en) * 2002-02-28 2007-05-29 Lucent Technologies Inc. Method and apparatus for voice over IP network address translation
DE60320042T2 (de) * 2003-04-01 2009-05-14 Telefonaktiebolaget Lm Ericsson (Publ) Verfahren und system zur zentralen zuweisung von adressen und portnummern
US7411975B1 (en) * 2004-08-26 2008-08-12 Juniper Networks, Inc. Multimedia over internet protocol border controller for network-based virtual private networks
JP5132059B2 (ja) 2006-01-30 2013-01-30 富士通株式会社 パケット中継方法及びパケット中継システム
US8140707B2 (en) * 2006-04-24 2012-03-20 Kt Corporation Inter working system
US8050267B2 (en) * 2007-02-19 2011-11-01 Cisco Technology, Inc. Simple virtual private network for small local area networks
US7840701B2 (en) * 2007-02-21 2010-11-23 Array Networks, Inc. Dynamic system and method for virtual private network (VPN) packet level routing using dual-NAT method
JP4816572B2 (ja) * 2007-05-30 2011-11-16 富士ゼロックス株式会社 仮想ネットワーク接続システム及び装置
JP2009017429A (ja) * 2007-07-09 2009-01-22 Fujitsu Ltd ネットワーク中継制御プログラム、ネットワーク中継制御装置、ネットワーク中継制御方法
EP2253123B1 (en) * 2008-03-20 2013-08-07 Telefonaktiebolaget L M Ericsson (PUBL) Method and apparatus for communication of data packets between local networks
TWI455547B (zh) * 2008-09-01 2014-10-01 Murata Machinery Ltd Relay server and relay communication system
JP5178573B2 (ja) * 2009-02-17 2013-04-10 株式会社Kddi研究所 通信システムおよび通信方法
KR101279001B1 (ko) 2009-05-15 2013-07-30 무라다기카이가부시끼가이샤 중계 통신 시스템 및 제 1 중계 서버
JP5362640B2 (ja) 2010-04-12 2013-12-11 日本電信電話株式会社 アドレス登録装置、アドレス登録方法、アドレス登録プログラム、及びアドレス登録システム
US9407529B2 (en) * 2010-11-18 2016-08-02 Murata Machinery, Ltd. Relay server and relay communication system
JP5569697B2 (ja) * 2011-03-09 2014-08-13 村田機械株式会社 中継サーバ及び中継通信システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010268312A (ja) 2009-05-15 2010-11-25 Murata Machinery Ltd 中継通信システム
JP2010278636A (ja) * 2009-05-27 2010-12-09 Ntt Comware Corp 通信システム、通信管理装置、通信管理方法、及び通信管理プログラム
JP2011077842A (ja) * 2009-09-30 2011-04-14 Murata Machinery Ltd 中継サーバおよび中継通信システム
JP2011160103A (ja) * 2010-01-29 2011-08-18 Oki Networks Co Ltd ゲートウェイ装置及びプログラム、並びに、通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2787692A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220073A (ja) * 2015-05-21 2016-12-22 サイレックス・テクノロジー株式会社 中継装置、及び、中継方法

Also Published As

Publication number Publication date
CN103959720A (zh) 2014-07-30
JPWO2013080475A1 (ja) 2015-04-27
EP2787692A1 (en) 2014-10-08
US9385990B2 (en) 2016-07-05
EP2787692B1 (en) 2019-02-27
EP2787692A4 (en) 2015-10-07
CN103959720B (zh) 2017-04-26
US20140334497A1 (en) 2014-11-13
JP5668954B2 (ja) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5682782B2 (ja) 中継サーバ及び中継通信システム
JP5569697B2 (ja) 中継サーバ及び中継通信システム
JP5668954B2 (ja) 中継サーバ及び中継通信システム
JP5874354B2 (ja) 中継サーバ及び中継通信システム
JP5621639B2 (ja) 中継サーバ及び中継通信システム
US20130136130A1 (en) Relay server and relay communication system
JP5773205B2 (ja) 中継サーバ及び中継通信システム
JP2012170008A (ja) 中継サーバ及び中継通信システム
JP5920563B2 (ja) 中継サーバ及び中継通信システム
JP2013141060A (ja) 中継サーバ及び中継通信システム
JP2013141056A (ja) 中継サーバ及び中継通信システム
JP2013141058A (ja) 中継サーバ及び中継通信システム
JP2012109874A (ja) 中継サーバ及び中継通信システム
JP2012109873A (ja) 中継サーバ及び中継通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854112

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013546975

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14361385

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE