WO2013080274A1 - Ac electromagnet structure - Google Patents

Ac electromagnet structure Download PDF

Info

Publication number
WO2013080274A1
WO2013080274A1 PCT/JP2011/077370 JP2011077370W WO2013080274A1 WO 2013080274 A1 WO2013080274 A1 WO 2013080274A1 JP 2011077370 W JP2011077370 W JP 2011077370W WO 2013080274 A1 WO2013080274 A1 WO 2013080274A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
exciting coil
iron core
kumatori
core yoke
Prior art date
Application number
PCT/JP2011/077370
Other languages
French (fr)
Japanese (ja)
Inventor
友徳 水谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/077370 priority Critical patent/WO2013080274A1/en
Priority to JP2012517599A priority patent/JP5073122B1/en
Priority to CN201180015918.8A priority patent/CN103229255B/en
Publication of WO2013080274A1 publication Critical patent/WO2013080274A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/10Electromagnets; Actuators including electromagnets with armatures specially adapted for alternating current
    • H01F7/12Electromagnets; Actuators including electromagnets with armatures specially adapted for alternating current having anti-chattering arrangements
    • H01F7/1205Electromagnets; Actuators including electromagnets with armatures specially adapted for alternating current having anti-chattering arrangements having short-circuited conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding

Definitions

  • the present invention relates to an AC electromagnet structure.
  • a concentric electromagnet structure is used by inputting DC power to an exciting coil.
  • Patent Document 1 describes that in a motor with a brake that brakes a rotor when not driven, a coil fixed to a yoke is an inner and outer double coil in which currents flow in opposite directions. Thus, according to Patent Document 1, it is said that the magnetic flux reaching the inside of the rotating shaft is reduced when the motor is driven to rotate, and the influence of the magnetic field on the outside of the brake can be greatly reduced.
  • an AC electromagnet structure includes a disc-shaped movable member that is movable in an axial direction, and a main gap with respect to the movable member.
  • An annular Kumatori coil embedded in the iron core yoke outside the second excitation coil, and the Kumatori coil is disposed adjacent to the outer periphery of the second excitation coil and facing the main gap.
  • AC power is input to each of the first excitation coil and the second excitation coil.
  • pulsation of electromagnetic force by the first excitation coil and the second excitation coil can be effectively suppressed, and the movable member can be continuously driven. Therefore, it is not necessary to prepare a separate DC power source for use, and the cost for using the electromagnet can be reduced.
  • FIG. 1 is a cross-sectional view illustrating a configuration of an AC electromagnet structure according to the first embodiment.
  • FIG. 2 is a perspective cross-sectional view illustrating a configuration of the AC electromagnet structure according to the first embodiment.
  • FIG. 3 is a magnetic flux diagram showing the operation of the AC electromagnet structure according to the first exemplary embodiment.
  • FIG. 4 is an electromagnetic force waveform diagram showing the effect of the first embodiment.
  • FIG. 5 is a cross-sectional view illustrating a configuration of an AC electromagnet structure according to the second embodiment.
  • FIG. 6 is a diagram illustrating a comparative example.
  • FIG. 1 is a cross-sectional view showing a configuration of an AC electromagnet structure 100.
  • FIG. 2 is a perspective sectional view showing the configuration of the AC electromagnet structure 100.
  • the AC electromagnet structure 100 receives AC power, generates an electromagnetic force acting on the movable member 102, and operates the movable member 2 in the direction along the axis AX.
  • the AC electromagnet structure 100 applies a magnetic attractive force to the movable member 102 to bring the movable member 102 closer to the yoke 150 side along the axis AX.
  • the AC electromagnet structure 100 includes a movable member 102 and a yoke 150.
  • the movable member 102 is configured to be movable in a direction along the axis AX.
  • the movable member 102 is a disk-shaped member.
  • the movable member 102 is formed using, for example, a dust core. Thereby, the heat_generation
  • the yoke 150 receives AC power and generates an electromagnetic force that acts on the movable member 102.
  • the yoke 150 includes an iron core yoke 140, a first excitation coil 110, a second excitation coil 120, and a Kumatori coil 130.
  • the iron core yoke 140 is adjacent to the movable member 102 in the direction along the axis AX via the main gap 3. That is, the iron core yoke 140 faces the movable member 102 with the main gap 3 interposed therebetween.
  • the iron core yoke 140 has, for example, a substantially cylindrical shape corresponding to the movable member 102.
  • the iron core yoke 140 is formed using, for example, a dust iron core. Thereby, the heat_generation
  • the iron core yoke 140 has a gap 104 for preventing residual magnetism between the first exciting coil 110 and the second exciting coil 120. That is, the facing surface 140b between the first exciting coil 110 and the second exciting coil 120 in the iron core yoke 140 is further away from the movable member 102 than the outer facing surface 140a, and the inner facing surface 140c. Rather than the movable member 102. As a result, a gap 104 for preventing residual magnetism is formed between the first exciting coil 110 and the second exciting coil 120 in the iron core yoke 140.
  • the first excitation coil 110 is embedded in the iron core yoke 140 inside the second excitation coil 120 and inside the Kumatori coil 130.
  • the first exciting coil 110 extends in an annular shape so as to surround the axis AX.
  • the first exciting coil 110 has, for example, a substantially cylindrical shape centered on the axis AX.
  • the first excitation coil 110 is formed of, for example, a winding of a conductor (for example, a metal or an intermetallic compound containing aluminum or copper as a main component).
  • the first exciting coil 110 faces the main gap 3 on the movable member 102 side.
  • the second exciting coil 120 is embedded in the iron core yoke 140 outside the first exciting coil 110 and inside the Kumatori coil 130.
  • the second exciting coil 120 extends in an annular shape so as to surround the axis AX.
  • the second exciting coil 120 has, for example, a substantially cylindrical shape centered on the axis AX.
  • the second exciting coil 120 is formed of, for example, a conductor (for example, a metal or an intermetallic compound mainly composed of aluminum or copper).
  • the second exciting coil 120 faces the main gap 3 on the movable member 102 side.
  • the first excitation coil 110 and the second excitation coil 120 form a concentric shape with the axis AX as a common center.
  • the second excitation coil 120 extends so as to surround the first excitation coil 110 while maintaining a substantially constant interval with respect to the first excitation coil 110.
  • the ampere-turn number of the winding of the second exciting coil 120 is larger than the ampere-turn number of the winding of the first exciting coil 110.
  • the winding of the first excitation coil 110 and the winding of the second excitation coil 120 are connected in series or in parallel.
  • the Kumatori coil 130 is embedded in the iron core yoke 140 outside the first excitation coil 110 and outside the second excitation coil 120.
  • the Kumatori coil 130 extends in an annular shape so as to surround the axis AX.
  • the Kumatori coil 130 has, for example, a substantially ring shape centered on the axis AX.
  • the second exciting coil 120 is formed of, for example, a conductor (for example, a metal or an intermetallic compound containing aluminum or copper as a main component).
  • the Kumatori coil 130 is adjacent to the outer periphery of the second excitation coil 120 via the layer 160.
  • the Kumatori coil 130 is disposed at a position facing the main gap 3.
  • the part of the movable coil 102 facing the main coil 130 faces the main gap 3.
  • the layer 160 is sandwiched between the second excitation coil 120 and the Kumatori coil 130 and electrically and magnetically insulates the second excitation coil 120 and the Kumatori coil 130 from each other.
  • the layer 160 includes, for example, at least one of an air layer and a nonmagnetic material layer.
  • AC power is input to the first excitation coil 110 and the second excitation coil 120, respectively.
  • the direction of current flow in the first excitation coil 110 and the direction of current flow in the second excitation coil 120 are opposite to each other.
  • AC power is input respectively.
  • the first excitation coil 110 and the second excitation coil 110 are controlled so that the difference between the phase of the current vector flowing in the first excitation coil 110 and the phase of the current vector flowing in the second excitation coil 120 is 180 degrees.
  • AC power is input to each of the excitation coils 120.
  • the winding of the first exciting coil 110 generates a magnetic flux flow 5 indicated by a broken line
  • the winding of the second exciting coil 120 generates a magnetic flux flow 6 indicated by a broken line.
  • the magnitude and direction of the magnetic flux flow 5 and the magnetic flux flow 6 dynamically change.
  • the ampere-turn number of the winding of the second exciting coil 120 is larger than the ampere-turn number of the winding of the first exciting coil 110, the magnetic flux and the second excitation by the first exciting coil 110 are increased.
  • the combined magnetic flux with the magnetic flux by the coil 120 can be easily linked to the Kumatori coil 130.
  • an electromotive force that cancels fluctuations in the magnitude and direction of the magnetic flux flow 5 and the magnetic flux flow 6 can be induced in the Kumatori coil 130, and an induced current can be caused to flow in the Kumatori coil 130.
  • the magnetic flux flow 7 shown can be generated. That is, since the magnetic flux generated by the Kumatori coil 130 does not pass through the gap 104 for preventing residual magnetism, the magnetomotive force loss caused by the gap 104 for preventing residual magnetism can be reduced, and the magnetic flux generated by the Kumatori coil 130 can be used effectively. In other words, as indicated by a solid line in FIG.
  • FIG. 4 shows the results of simulation of electromagnetic force for each of the cases where there is a bear coil (indicated by a solid line) and in the absence (indicated by a broken line). From this, the effectiveness of pulsation reduction of electromagnetic force by Kumatori coil was confirmed.
  • the AC electromagnet structure 1 does not have the Kumatori coil 130 (see FIG. 1) as shown in FIG.
  • the pulsation of the electromagnetic force due to the first exciting coil 10 and the second exciting coil 20 embedded in the iron core yoke 40 is remarkably generated.
  • the first excitation coil 10 and the second excitation coil 10 are shown in FIG. Since the electromagnetic force by the exciting coil 20 fluctuates greatly from zero to the peak value, and the magnetic attractive force cannot be applied to the movable member 2 at the moment when the electromagnetic force becomes zero, the movable member 2 is primarily moved.
  • the AC electromagnet structure 100 has the Kumatori coil 130.
  • the Kumatori coil 130 is disposed adjacent to the outer periphery of the second exciting coil 120 and facing the main gap 3.
  • the Kumatori coil 130 causes the magnitude of the magnetic flux generated by the first excitation coil 110 and the magnitude of the magnetic flux generated by the second excitation coil 120, respectively. It is possible to generate a magnetic flux that cancels the variation in height and direction. As a result, as shown by a solid line in FIG.
  • the AC electromagnet structure 1 has the Kumatori coil 130 (see FIG. 1)
  • the number of ampere turns of the winding of the first exciting coil 10 and the number of ampere turns of the winding of the second exciting coil 20 will be described. Are considered to be equal to each other (see FIG. 6).
  • the magnitude of the magnetic flux generated by the second exciting coil 20 is larger than the magnitude of the magnetic flux generated by the first exciting coil 10
  • the magnetic flux generated by the first exciting coil 10 and the magnetic flux generated by the second exciting coil 20 are combined. It is difficult for the generated magnetic flux to interlink with the Kumatori coil 130.
  • the number of ampere turns of the winding of the first exciting coil 10 is the number of ampere turns of the winding of the second exciting coil 20.
  • the magnitude of the magnetic flux generated by the second exciting coil 20 is relatively larger than the magnitude of the magnetic flux generated by the first exciting coil 10
  • the magnetic flux generated by the first exciting coil 10 and the second exciting coil 20 are increased.
  • the magnetic flux combined with the magnetic flux generated by the magnetic flux becomes more difficult to interlink with the Kumatori coil 130.
  • the number of ampere turns of the winding of the second exciting coil 120 is larger than the number of ampere turns of the winding of the first exciting coil 110.
  • the first excitation coil 110 and the second excitation coil 120 have an alternating current so that the direction of current flow in the first excitation coil 110 and the direction of current flow in the second excitation coil 120 are opposite to each other. Each power is input.
  • the combined magnetic flux of the magnetic flux generated by the first exciting coil 110 and the magnetic flux generated by the second exciting coil 120 can be easily linked to the Kumatori coil 130.
  • an electromotive force that cancels fluctuations in the magnitude and direction of the magnetic flux flow 5 and the magnetic flux flow 6 can be induced in the Kumatori coil 130, and an induced current can be caused to flow in the Kumatori coil 130.
  • the magnetic flux flow 7 can be generated so as to cancel the variation in the magnitude and direction of the magnetic flux flow 6. That is, the pulsation of electromagnetic force by the first excitation coil 110 and the second excitation coil 120 can be effectively suppressed.
  • the second exciting coil 120 and the Kumatori coil 130 are adjacent to each other via at least one of the air layer and the non-magnetic material layer, and are electrically and magnetically insulated from each other. Yes.
  • the combined magnetic flux of the magnetic flux generated by the first exciting coil 110 and the magnetic flux generated by the second exciting coil 120 can be made difficult to pass between the second exciting coil 120 and the Kumatori coil 130, and the first exciting coil
  • the combined magnetic flux of the magnetic flux generated by the coil 110 and the magnetic flux generated by the second exciting coil 120 can be effectively linked to the Kumatori coil 130 (for example, without leakage).
  • the iron core yoke 140 has a gap 104 for preventing residual magnetism between the first exciting coil 110 and the second exciting coil 120.
  • the electromagnet opening failure due to the residual magnetism of the iron core yoke 140 can be suppressed.
  • the magnetic flux generated by the Kumatori coil 130 is difficult to pass through the gap 104 for preventing residual magnetism (see FIG. 3)
  • the magnetic flux generated by the Kumatori coil 130 can be used effectively. That is, the opening failure of the electromagnet due to the residual magnetism of the iron core yoke 140 can be suppressed, and the pulsation of the electromagnetic force by the first exciting coil 110 and the second exciting coil 120 can be effectively suppressed.
  • the surface of the first exciting coil 110 facing the main gap 3, the portion of the second exciting coil 120 facing the main gap 3, and the portion of the Kumatori coil 130 facing the main gap 3 each have an epoxy surface. It may be enclosed with a non-magnetic material such as a material. As a result, a portion facing the main gap 3 in the first exciting coil 110, a portion facing the main gap 3 in the second exciting coil 120, and a portion facing the main gap 3 in the Kumatori coil 130 are oxidized, respectively. Can be protected from.
  • Embodiment 2 the AC electromagnet structure 200 according to Embodiment 2 will be described. Below, it demonstrates focusing on a different part from Embodiment 1.
  • FIG. 1 the AC electromagnet structure 200 according to Embodiment 2 will be described. Below, it demonstrates focusing on a different part from Embodiment 1.
  • the movable member 202 and the yoke 250 each have a hollow structure.
  • the movable member 202 has an opening 202d centered on the axis AX.
  • the iron core yoke 240 of the yoke 250 has a through hole 240d centered on the axis AX.
  • the opening 202 d of the movable member 202 corresponds to the through hole 240 d of the iron core yoke 240.
  • the rotating shaft of the rotating device can be configured to pass through the opening 202d and the through-hole 240d so that the movable member 202 rotates together with the rotating shaft, and the AC electromagnet structure 200 can be used as an electromagnetic brake for braking the rotating device. it can.
  • the AC electromagnet structure according to the present invention is useful for an electromagnetic brake.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)

Abstract

This AC electromagnet structure is provided with a disc-shaped movable member capable of moving in the axial direction, an iron core yoke adjacent to the movable member in the axial direction with a primary gap interposed therebetween, an annular first exciting coil embedded in the iron core yoke, an annular second exciting coil embedded in the iron core yoke to the outside of the first exciting coil, and an annular shading coil embedded in the iron core yoke to the outside of the second exciting coil; the shading coil being arranged at a position that is adjacent to the outer circumference of the second exciting coil and that faces the primary gap; and AC power being inputted into each of the first exciting coil and the second exciting coil.

Description

交流電磁石構造AC electromagnet structure
 本発明は、交流電磁石構造に関する。 The present invention relates to an AC electromagnet structure.
 従来から、同心形状の電磁石構造においては励磁コイルに直流電力を入力して利用されている。 Conventionally, a concentric electromagnet structure is used by inputting DC power to an exciting coil.
 特許文献1には、非駆動時にロータにブレーキをかけるブレーキ付モータにおいて、ヨークに固定されるコイルを、電流が互に逆方向に流れる内外2重コイルとすることが記載されている。これにより、特許文献1によれば、モータの回転駆動時において回転軸内部に達する磁束が少なくなり、ブレーキ外部への磁界の影響を大幅に低減することが可能になるとされている。 Patent Document 1 describes that in a motor with a brake that brakes a rotor when not driven, a coil fixed to a yoke is an inner and outer double coil in which currents flow in opposite directions. Thus, according to Patent Document 1, it is said that the magnetic flux reaching the inside of the rotating shaft is reduced when the motor is driven to rotate, and the influence of the magnetic field on the outside of the brake can be greatly reduced.
実開平6-74066号公報Japanese Utility Model Publication No. 6-74066
 特許文献1に記載のブレーキ付モータでは、内外2重コイルが、回転軸を中心とした同心形状の電磁石として機能していると考えられる。このような同心形状の電磁石は、直流電力入力のみに対応しており、産業分野で広く利用されている交流電力には対応していない。したがって、使用に際しては直流電源を別途用意する必要があり、電磁石の利用におけるコストを増加させやすい。 In the motor with a brake described in Patent Document 1, it is considered that the inner and outer double coils function as concentric electromagnets around the rotation axis. Such concentric electromagnets are compatible only with DC power input, and are not compatible with AC power widely used in the industrial field. Therefore, it is necessary to prepare a direct current power source for use, and it is easy to increase the cost in using the electromagnet.
 仮に、特許文献1に記載の電磁石において、直流電力ではなく交流電力を内外2重コイルのそれぞれの励磁巻線に入力すると、電磁力がゼロからピーク値までの間で大きく変動し、電磁力がゼロとなる瞬間にアーマチュアがバネの付勢力で固定プレートに押し付けられてしまう。これにより、モータが駆動中であるにもかかわらずロータにブレーキがかかってしまうので、実用面で使用に耐えない傾向にある。すなわち、特許文献1に記載の電磁石では、電磁石の利用におけるコストを低減させることが困難である。
 本発明は、上記に鑑みてなされたものであって、電磁石の利用におけるコストを低減できる交流電磁石構造を得ることを目的とする。
For example, in the electromagnet described in Patent Document 1, when AC power is input instead of DC power to each excitation winding of the inner and outer double coils, the electromagnetic force varies greatly from zero to a peak value, and the electromagnetic force is reduced. At the moment when it becomes zero, the armature is pressed against the fixed plate by the biasing force of the spring. As a result, the rotor is braked even when the motor is being driven, so that it tends to be unusable in practical use. That is, with the electromagnet described in Patent Document 1, it is difficult to reduce the cost in using the electromagnet.
This invention is made | formed in view of the above, Comprising: It aims at obtaining the alternating current electromagnet structure which can reduce the cost in utilization of an electromagnet.
 上述した課題を解決し、目的を達成するために、本発明の1つの側面にかかる交流電磁石構造は、軸方向に移動可能な円盤状の可動部材と、前記可動部材に対して主ギャップを介して軸方向に隣接した鉄心ヨークと、前記鉄心ヨークに埋設された環状の第1の励磁コイルと、前記第1の励磁コイルの外側で前記鉄心ヨークに埋設された環状の第2の励磁コイルと、前記第2の励磁コイルの外側で前記鉄心ヨークに埋設された環状のクマトリコイルとを備え、前記クマトリコイルは、前記第2の励磁コイルの外周に隣接し、かつ前記主ギャップに面する位置に配置され、前記第1の励磁コイル及び前記第2の励磁コイルは、交流電力がそれぞれ入力されることを特徴とする。 In order to solve the above-described problems and achieve the object, an AC electromagnet structure according to one aspect of the present invention includes a disc-shaped movable member that is movable in an axial direction, and a main gap with respect to the movable member. An axially adjacent iron yoke, an annular first exciting coil embedded in the iron core yoke, and an annular second exciting coil embedded in the iron core yoke outside the first exciting coil; An annular Kumatori coil embedded in the iron core yoke outside the second excitation coil, and the Kumatori coil is disposed adjacent to the outer periphery of the second excitation coil and facing the main gap. AC power is input to each of the first excitation coil and the second excitation coil.
 本発明によれば、第1の励磁コイル及び第2の励磁コイルによる電磁力の脈動を効果的に抑制でき、可動部材を継続的に駆動し続けることができる。したがって、使用に際しては直流電源を別途用意する必要がないので、電磁石の利用におけるコストを低減できる。 According to the present invention, pulsation of electromagnetic force by the first excitation coil and the second excitation coil can be effectively suppressed, and the movable member can be continuously driven. Therefore, it is not necessary to prepare a separate DC power source for use, and the cost for using the electromagnet can be reduced.
図1は、実施の形態1にかかる交流電磁石構造の構成を示す断面図である。FIG. 1 is a cross-sectional view illustrating a configuration of an AC electromagnet structure according to the first embodiment. 図2は、実施の形態1にかかる交流電磁石構造の構成を示す斜視断面図である。FIG. 2 is a perspective cross-sectional view illustrating a configuration of the AC electromagnet structure according to the first embodiment. 図3は、実施の形態1にかかる交流電磁石構造の動作を示す磁束線図である。FIG. 3 is a magnetic flux diagram showing the operation of the AC electromagnet structure according to the first exemplary embodiment. 図4は、実施の形態1による効果を示す電磁力波形図である。FIG. 4 is an electromagnetic force waveform diagram showing the effect of the first embodiment. 図5は、実施の形態2にかかる交流電磁石構造の構成を示す断面図である。FIG. 5 is a cross-sectional view illustrating a configuration of an AC electromagnet structure according to the second embodiment. 図6は、比較例を示す図である。FIG. 6 is a diagram illustrating a comparative example.
 以下に、本発明にかかる交流電磁石構造の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of an AC electromagnet structure according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 実施の形態1にかかる交流電磁石構造100について図1及び図2を用いて説明する。図1は、交流電磁石構造100の構成を示す断面図である。図2は、交流電磁石構造100の構成を示す斜視断面図である。
Embodiment 1 FIG.
An AC electromagnet structure 100 according to a first exemplary embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view showing a configuration of an AC electromagnet structure 100. FIG. 2 is a perspective sectional view showing the configuration of the AC electromagnet structure 100.
 交流電磁石構造100は、交流電力を受けて、可動部材102に作用する電磁力を発生させ、可動部材2を軸AXに沿った方向に稼働させる。例えば、交流電磁石構造100は、可動部材102に磁気的吸引力を作用させて、可動部材102を軸AXに沿ってヨーク150側に近づける。具体的には、交流電磁石構造100は、可動部材102及びヨーク150を備える。 The AC electromagnet structure 100 receives AC power, generates an electromagnetic force acting on the movable member 102, and operates the movable member 2 in the direction along the axis AX. For example, the AC electromagnet structure 100 applies a magnetic attractive force to the movable member 102 to bring the movable member 102 closer to the yoke 150 side along the axis AX. Specifically, the AC electromagnet structure 100 includes a movable member 102 and a yoke 150.
 可動部材102は、軸AXに沿った方向に移動可能に構成されている。可動部材102は、円盤状の部材である。可動部材102は、例えば圧粉鉄心等を利用して形成されている。これにより、渦電流損による可動部材102の発熱を低減できる。 The movable member 102 is configured to be movable in a direction along the axis AX. The movable member 102 is a disk-shaped member. The movable member 102 is formed using, for example, a dust core. Thereby, the heat_generation | fever of the movable member 102 by an eddy current loss can be reduced.
 ヨーク150は、交流電力を受けて、可動部材102に作用する電磁力を発生させる。ヨーク150は、鉄心ヨーク140、第1の励磁コイル110、第2の励磁コイル120、及びクマトリコイル130を有する。 The yoke 150 receives AC power and generates an electromagnetic force that acts on the movable member 102. The yoke 150 includes an iron core yoke 140, a first excitation coil 110, a second excitation coil 120, and a Kumatori coil 130.
 鉄心ヨーク140は、可動部材102に対して主ギャップ3を介して軸AXに沿った方向に隣接している。すなわち、鉄心ヨーク140は、主ギャップ3を介して可動部材102に対向している。鉄心ヨーク140は、例えば、可動部材102に対応した略円柱形状を有している。鉄心ヨーク140は、例えば圧粉鉄心等を利用して形成されている。これにより、渦電流損による鉄心ヨーク140の発熱を低減できる。 The iron core yoke 140 is adjacent to the movable member 102 in the direction along the axis AX via the main gap 3. That is, the iron core yoke 140 faces the movable member 102 with the main gap 3 interposed therebetween. The iron core yoke 140 has, for example, a substantially cylindrical shape corresponding to the movable member 102. The iron core yoke 140 is formed using, for example, a dust iron core. Thereby, the heat_generation | fever of the iron core yoke 140 by an eddy current loss can be reduced.
 鉄心ヨーク140は、第1の励磁コイル110と第2の励磁コイル120との間に残留磁気防止用のギャップ104を有する。すなわち、鉄心ヨーク140における第1の励磁コイル110と第2の励磁コイル120との間の対向面140bは、その外側の対向面140aよりも可動部材102から離れており、その内側の対向面140cよりも可動部材102から離れている。これにより、鉄心ヨーク140において、第1の励磁コイル110と第2の励磁コイル120との間に残留磁気防止用のギャップ104が形成されている。 The iron core yoke 140 has a gap 104 for preventing residual magnetism between the first exciting coil 110 and the second exciting coil 120. That is, the facing surface 140b between the first exciting coil 110 and the second exciting coil 120 in the iron core yoke 140 is further away from the movable member 102 than the outer facing surface 140a, and the inner facing surface 140c. Rather than the movable member 102. As a result, a gap 104 for preventing residual magnetism is formed between the first exciting coil 110 and the second exciting coil 120 in the iron core yoke 140.
 第1の励磁コイル110は、第2の励磁コイル120の内側で且つクマトリコイル130の内側で鉄心ヨーク140に埋設されている。第1の励磁コイル110は、軸AXを囲むように環状に延びている。第1の励磁コイル110は、例えば、軸AXを中心とする略円筒形状を有している。第1の励磁コイル110は、例えば、導体(例えば、アルミニウム又は銅を主成分とする金属や金属間化合物)の巻線で形成されている。第1の励磁コイル110は、可動部材102側の部分が主ギャップ3に面する。 The first excitation coil 110 is embedded in the iron core yoke 140 inside the second excitation coil 120 and inside the Kumatori coil 130. The first exciting coil 110 extends in an annular shape so as to surround the axis AX. The first exciting coil 110 has, for example, a substantially cylindrical shape centered on the axis AX. The first excitation coil 110 is formed of, for example, a winding of a conductor (for example, a metal or an intermetallic compound containing aluminum or copper as a main component). The first exciting coil 110 faces the main gap 3 on the movable member 102 side.
 第2の励磁コイル120は、第1の励磁コイル110の外側で且つクマトリコイル130の内側で鉄心ヨーク140に埋設されている。第2の励磁コイル120は、軸AXを囲むように環状に延びている。第2の励磁コイル120は、例えば、軸AXを中心とする略円筒形状を有している。第2の励磁コイル120は、例えば、導体(例えば、アルミニウム又は銅を主成分とする金属や金属間化合物)の巻線で形成されている。第2の励磁コイル120は、可動部材102側の部分が主ギャップ3に面する。 The second exciting coil 120 is embedded in the iron core yoke 140 outside the first exciting coil 110 and inside the Kumatori coil 130. The second exciting coil 120 extends in an annular shape so as to surround the axis AX. The second exciting coil 120 has, for example, a substantially cylindrical shape centered on the axis AX. The second exciting coil 120 is formed of, for example, a conductor (for example, a metal or an intermetallic compound mainly composed of aluminum or copper). The second exciting coil 120 faces the main gap 3 on the movable member 102 side.
 すなわち、第1の励磁コイル110及び第2の励磁コイル120は、軸AXを共通の中心とする同心形状を形成している。例えば、第2の励磁コイル120は、第1の励磁コイル110に対して略一定の間隔を保ちながら第1の励磁コイル110を囲むように延びている。このとき、第2の励磁コイル120の巻線のアンペアターン数は、第1の励磁コイル110の巻線のアンペアターン数より大きくなっている。第1の励磁コイル110の巻線と第2の励磁コイル120の巻線とは、例えば、直列もしくは並列に結線される。 That is, the first excitation coil 110 and the second excitation coil 120 form a concentric shape with the axis AX as a common center. For example, the second excitation coil 120 extends so as to surround the first excitation coil 110 while maintaining a substantially constant interval with respect to the first excitation coil 110. At this time, the ampere-turn number of the winding of the second exciting coil 120 is larger than the ampere-turn number of the winding of the first exciting coil 110. For example, the winding of the first excitation coil 110 and the winding of the second excitation coil 120 are connected in series or in parallel.
 クマトリコイル130は、第1の励磁コイル110の外側で且つ第2の励磁コイル120の外側で鉄心ヨーク140に埋設されている。クマトリコイル130は、軸AXを囲むように環状に延びている。クマトリコイル130は、例えば、軸AXを中心とする略リング形状を有している。第2の励磁コイル120は、例えば、導体(例えば、アルミニウム又は銅を主成分とする金属や金属間化合物)の部材で形成されている。クマトリコイル130は、第2の励磁コイル120の外周に層160を介して隣接している。また、クマトリコイル130は、主ギャップ3に面する位置に配置されている。クマトリコイル130は、可動部材102側の部分が主ギャップ3に面する。 The Kumatori coil 130 is embedded in the iron core yoke 140 outside the first excitation coil 110 and outside the second excitation coil 120. The Kumatori coil 130 extends in an annular shape so as to surround the axis AX. The Kumatori coil 130 has, for example, a substantially ring shape centered on the axis AX. The second exciting coil 120 is formed of, for example, a conductor (for example, a metal or an intermetallic compound containing aluminum or copper as a main component). The Kumatori coil 130 is adjacent to the outer periphery of the second excitation coil 120 via the layer 160. The Kumatori coil 130 is disposed at a position facing the main gap 3. The part of the movable coil 102 facing the main coil 130 faces the main gap 3.
 層160は、第2の励磁コイル120とクマトリコイル130との間に挟まれており、第2の励磁コイル120とクマトリコイル130とを互に電気的及び磁気的に絶縁させる。層160は、例えば、空気層及び非磁性材の層の少なくとも一方を含む。
 次に、交流電磁石構造100の動作について図3を用いて説明する。図3は、交流電磁石構造100の動作を示す磁束線図である。
The layer 160 is sandwiched between the second excitation coil 120 and the Kumatori coil 130 and electrically and magnetically insulates the second excitation coil 120 and the Kumatori coil 130 from each other. The layer 160 includes, for example, at least one of an air layer and a nonmagnetic material layer.
Next, the operation of the AC electromagnet structure 100 will be described with reference to FIG. FIG. 3 is a magnetic flux diagram showing the operation of the AC electromagnet structure 100.
 交流電磁石構造100において、第1の励磁コイル110及び第2の励磁コイル120は、交流電力がそれぞれ入力される。具体的には、第1の励磁コイル110及び第2の励磁コイル120は、第1の励磁コイル110における電流の流れる向きと第2の励磁コイル120における電流の流れる向きとが互いに逆になるように、交流電力がそれぞれ入力される。例えば、第1の励磁コイル110に流れる電流ベクトルの位相と第2の励磁コイル120に流れる電流ベクトルの位相との差が180度になるように制御されて、第1の励磁コイル110及び第2の励磁コイル120に交流電力がそれぞれ入力される。 In the AC electromagnet structure 100, AC power is input to the first excitation coil 110 and the second excitation coil 120, respectively. Specifically, in the first excitation coil 110 and the second excitation coil 120, the direction of current flow in the first excitation coil 110 and the direction of current flow in the second excitation coil 120 are opposite to each other. AC power is input respectively. For example, the first excitation coil 110 and the second excitation coil 110 are controlled so that the difference between the phase of the current vector flowing in the first excitation coil 110 and the phase of the current vector flowing in the second excitation coil 120 is 180 degrees. AC power is input to each of the excitation coils 120.
 すると、図3に示すように、第1の励磁コイル110の巻線は、破線で示す磁束の流れ5を生成し、第2の励磁コイル120の巻線は、破線で示す磁束の流れ6を生成する。第1の励磁コイル110及び第2の励磁コイル120に交流電力がそれぞれ供給されているので、磁束の流れ5と磁束の流れ6とは動的に大きさ及び向きが変動する。このとき、第2の励磁コイル120の巻線のアンペアターン数が第1の励磁コイル110の巻線のアンペアターン数より大きくなっているので、第1の励磁コイル110による磁束と第2の励磁コイル120による磁束との合成された磁束を、容易にクマトリコイル130に鎖交させることができる。 Then, as shown in FIG. 3, the winding of the first exciting coil 110 generates a magnetic flux flow 5 indicated by a broken line, and the winding of the second exciting coil 120 generates a magnetic flux flow 6 indicated by a broken line. Generate. Since AC power is supplied to the first exciting coil 110 and the second exciting coil 120, the magnitude and direction of the magnetic flux flow 5 and the magnetic flux flow 6 dynamically change. At this time, since the ampere-turn number of the winding of the second exciting coil 120 is larger than the ampere-turn number of the winding of the first exciting coil 110, the magnetic flux and the second excitation by the first exciting coil 110 are increased. The combined magnetic flux with the magnetic flux by the coil 120 can be easily linked to the Kumatori coil 130.
 これにより、磁束の流れ5及び磁束の流れ6の大きさ及び向きの変動を打ち消すような起電力をクマトリコイル130に誘起できクマトリコイル130に誘導電流を流すことができ、クマトリコイル130は、2点鎖線で示す磁束の流れ7を生成できる。すなわち、クマトリコイル130による磁束は残留磁気防止用のギャップ104を通らないので、残留磁気防止用のギャップ104による起磁力のロスを低減でき、クマトリコイル130による磁束を有効に利用することができる。言い換えると、図4に実線で示すように、クマトリコイル130による磁束により、第1の励磁コイル110及び第2の励磁コイル120による電磁力の脈動を効果的に抑制できる。なお、図4は、クマトリコイルが有る場合(実線で示す場合)と無い場合(破線で示す場合)とのそれぞれについて電磁力のシミュレーションを行った結果を示す。これより、クマトリコイルによる電磁力の脈動軽減の有効性を確認できた。 As a result, an electromotive force that cancels fluctuations in the magnitude and direction of the magnetic flux flow 5 and the magnetic flux flow 6 can be induced in the Kumatori coil 130, and an induced current can be caused to flow in the Kumatori coil 130. The magnetic flux flow 7 shown can be generated. That is, since the magnetic flux generated by the Kumatori coil 130 does not pass through the gap 104 for preventing residual magnetism, the magnetomotive force loss caused by the gap 104 for preventing residual magnetism can be reduced, and the magnetic flux generated by the Kumatori coil 130 can be used effectively. In other words, as indicated by a solid line in FIG. 4, pulsation of electromagnetic force by the first exciting coil 110 and the second exciting coil 120 can be effectively suppressed by the magnetic flux by the Kumatori coil 130. Note that FIG. 4 shows the results of simulation of electromagnetic force for each of the cases where there is a bear coil (indicated by a solid line) and in the absence (indicated by a broken line). From this, the effectiveness of pulsation reduction of electromagnetic force by Kumatori coil was confirmed.
 ここで、仮に、図6に示すように、交流電磁石構造1がクマトリコイル130(図1参照)を有さない場合について考える。この場合、ヨーク50において、鉄心ヨーク40に埋設された第1の励磁コイル10及び第2の励磁コイル20による電磁力の脈動が顕著に発生する。交流電磁石構造1において、交流電力を第1の励磁コイル10及び第2の励磁コイル20のそれぞれの巻線に入力すると、図4に破線で示すように、第1の励磁コイル10及び第2の励磁コイル20による電磁力がゼロからピーク値までの間で大きく変動し、電磁力がゼロとなる瞬間に可動部材2に磁気的吸引力を作用させることができないため、可動部材2を一次的に駆動できなくなってしまうので、実用面で使用に耐えない傾向にある。したがって、使用に際しては直流電源を別途用意して、直流電力を第1の励磁コイル10及び第2の励磁コイル20のそれぞれの巻線に入力する必要があり、電磁石の利用におけるコストを増加させやすい。 Here, suppose that the AC electromagnet structure 1 does not have the Kumatori coil 130 (see FIG. 1) as shown in FIG. In this case, in the yoke 50, the pulsation of the electromagnetic force due to the first exciting coil 10 and the second exciting coil 20 embedded in the iron core yoke 40 is remarkably generated. In the AC electromagnet structure 1, when AC power is input to the respective windings of the first excitation coil 10 and the second excitation coil 20, the first excitation coil 10 and the second excitation coil 10 are shown in FIG. Since the electromagnetic force by the exciting coil 20 fluctuates greatly from zero to the peak value, and the magnetic attractive force cannot be applied to the movable member 2 at the moment when the electromagnetic force becomes zero, the movable member 2 is primarily moved. Since it cannot be driven, it tends to be unusable in practical use. Therefore, it is necessary to prepare a separate DC power source for use and to input DC power to the respective windings of the first exciting coil 10 and the second exciting coil 20, which easily increases the cost of using the electromagnet. .
 それに対して、実施の形態1では、交流電磁石構造100がクマトリコイル130を有する。クマトリコイル130は、第2の励磁コイル120の外周に隣接し、かつ主ギャップ3に面する位置に配置されている。これにより、第1の励磁コイル110及び第2の励磁コイル120に交流電力がそれぞれ入力された際に、クマトリコイル130は、第1の励磁コイル110による磁束及び第2の励磁コイル120による磁束の大きさ及び向きの変動を打ち消すような磁束を発生させることができる。この結果、図4に実線で示すように、クマトリコイル130による磁束により、第1の励磁コイル110及び第2の励磁コイル120による電磁力の脈動を効果的に抑制でき、可動部材2を継続的に駆動し続けることができる。したがって、使用に際しては直流電源を別途用意する必要がないので、電磁石の利用におけるコストを低減できる。これにより、例えば、安価で、小型、性能、品質ともに優れた交流電磁石を提供することができる。 On the other hand, in the first embodiment, the AC electromagnet structure 100 has the Kumatori coil 130. The Kumatori coil 130 is disposed adjacent to the outer periphery of the second exciting coil 120 and facing the main gap 3. As a result, when AC power is input to the first excitation coil 110 and the second excitation coil 120, the Kumatori coil 130 causes the magnitude of the magnetic flux generated by the first excitation coil 110 and the magnitude of the magnetic flux generated by the second excitation coil 120, respectively. It is possible to generate a magnetic flux that cancels the variation in height and direction. As a result, as shown by a solid line in FIG. 4, pulsation of electromagnetic force by the first exciting coil 110 and the second exciting coil 120 can be effectively suppressed by the magnetic flux by the Kumatori coil 130, and the movable member 2 can be continuously moved. Can continue to drive. Therefore, it is not necessary to prepare a separate DC power source for use, and the cost for using the electromagnet can be reduced. As a result, for example, an AC electromagnet that is inexpensive, excellent in size, performance, and quality can be provided.
 あるいは、仮に、交流電磁石構造1がクマトリコイル130を有する場合(図1参照)であって、第1の励磁コイル10の巻線のアンペアターン数と第2の励磁コイル20の巻線のアンペアターン数とが互に等しい場合(図6参照)について考える。この場合、第2の励磁コイル20による磁束の大きさが第1の励磁コイル10による磁束の大きさよりも大きいので、第1の励磁コイル10による磁束と第2の励磁コイル20による磁束との合成された磁束がクマトリコイル130に鎖交しにくい。 Alternatively, if the AC electromagnet structure 1 has the Kumatori coil 130 (see FIG. 1), the number of ampere turns of the winding of the first exciting coil 10 and the number of ampere turns of the winding of the second exciting coil 20 will be described. Are considered to be equal to each other (see FIG. 6). In this case, since the magnitude of the magnetic flux generated by the second exciting coil 20 is larger than the magnitude of the magnetic flux generated by the first exciting coil 10, the magnetic flux generated by the first exciting coil 10 and the magnetic flux generated by the second exciting coil 20 are combined. It is difficult for the generated magnetic flux to interlink with the Kumatori coil 130.
 あるいは、仮に、交流電磁石構造1がクマトリコイル130を有する場合(図1参照)であって、第1の励磁コイル10の巻線のアンペアターン数が第2の励磁コイル20の巻線のアンペアターン数より大きい場合について考える。この場合、第2の励磁コイル20による磁束の大きさが第1の励磁コイル10による磁束の大きさよりもさらに相対的に大きくなるので、第1の励磁コイル10による磁束と第2の励磁コイル20による磁束との合成された磁束がクマトリコイル130にさらに鎖交しにくくなる。 Alternatively, if the AC electromagnet structure 1 has the Kumatori coil 130 (see FIG. 1), the number of ampere turns of the winding of the first exciting coil 10 is the number of ampere turns of the winding of the second exciting coil 20. Think about the larger case. In this case, since the magnitude of the magnetic flux generated by the second exciting coil 20 is relatively larger than the magnitude of the magnetic flux generated by the first exciting coil 10, the magnetic flux generated by the first exciting coil 10 and the second exciting coil 20 are increased. The magnetic flux combined with the magnetic flux generated by the magnetic flux becomes more difficult to interlink with the Kumatori coil 130.
 それに対して、実施の形態1では、第2の励磁コイル120の巻線のアンペアターン数が第1の励磁コイル110の巻線のアンペアターン数より大きくなっている。また、第1の励磁コイル110及び第2の励磁コイル120は、第1の励磁コイル110における電流の流れる向きと第2の励磁コイル120における電流の流れる向きとが互いに逆になるように、交流電力がそれぞれ入力される。これにより、第1の励磁コイル110による磁束と第2の励磁コイル120による磁束との合成された磁束を、容易にクマトリコイル130に鎖交させることができる。この結果、磁束の流れ5及び磁束の流れ6の大きさ及び向きの変動を打ち消すような起電力をクマトリコイル130に誘起できクマトリコイル130に誘導電流を流すことができ、クマトリコイル130は、磁束の流れ5及び磁束の流れ6の大きさ及び向きの変動を打ち消すような磁束の流れ7を生成できる。すなわち、第1の励磁コイル110及び第2の励磁コイル120による電磁力の脈動を効果的に抑制できる。 In contrast, in the first embodiment, the number of ampere turns of the winding of the second exciting coil 120 is larger than the number of ampere turns of the winding of the first exciting coil 110. In addition, the first excitation coil 110 and the second excitation coil 120 have an alternating current so that the direction of current flow in the first excitation coil 110 and the direction of current flow in the second excitation coil 120 are opposite to each other. Each power is input. As a result, the combined magnetic flux of the magnetic flux generated by the first exciting coil 110 and the magnetic flux generated by the second exciting coil 120 can be easily linked to the Kumatori coil 130. As a result, an electromotive force that cancels fluctuations in the magnitude and direction of the magnetic flux flow 5 and the magnetic flux flow 6 can be induced in the Kumatori coil 130, and an induced current can be caused to flow in the Kumatori coil 130. In addition, the magnetic flux flow 7 can be generated so as to cancel the variation in the magnitude and direction of the magnetic flux flow 6. That is, the pulsation of electromagnetic force by the first excitation coil 110 and the second excitation coil 120 can be effectively suppressed.
 また、実施の形態1では、第2の励磁コイル120とクマトリコイル130とが、空気層及び非磁性材の層の少なくとも一方を介して互に隣接され、互に電気的及び磁気的に絶縁されている。これにより、第1の励磁コイル110による磁束と第2の励磁コイル120による磁束との合成された磁束が第2の励磁コイル120及びクマトリコイル130の間を通りにくくすることができ、第1の励磁コイル110による磁束と第2の励磁コイル120による磁束との合成された磁束を効果的に(例えば、漏れなく)クマトリコイル130に鎖交させることができる。 In the first embodiment, the second exciting coil 120 and the Kumatori coil 130 are adjacent to each other via at least one of the air layer and the non-magnetic material layer, and are electrically and magnetically insulated from each other. Yes. As a result, the combined magnetic flux of the magnetic flux generated by the first exciting coil 110 and the magnetic flux generated by the second exciting coil 120 can be made difficult to pass between the second exciting coil 120 and the Kumatori coil 130, and the first exciting coil The combined magnetic flux of the magnetic flux generated by the coil 110 and the magnetic flux generated by the second exciting coil 120 can be effectively linked to the Kumatori coil 130 (for example, without leakage).
 また、実施の形態1では、鉄心ヨーク140が、第1の励磁コイル110と第2の励磁コイル120との間に残留磁気防止用のギャップ104を有する。これにより、鉄心ヨーク140の残留磁気による電磁石の開放不良を抑制できる。その一方で、クマトリコイル130による磁束は残留磁気防止用のギャップ104を通りにくい(図3参照)ので、クマトリコイル130による磁束を有効に利用することができる。すなわち、鉄心ヨーク140の残留磁気による電磁石の開放不良を抑制できるとともに、第1の励磁コイル110及び第2の励磁コイル120による電磁力の脈動を効果的に抑制できる。 In the first embodiment, the iron core yoke 140 has a gap 104 for preventing residual magnetism between the first exciting coil 110 and the second exciting coil 120. Thereby, the electromagnet opening failure due to the residual magnetism of the iron core yoke 140 can be suppressed. On the other hand, since the magnetic flux generated by the Kumatori coil 130 is difficult to pass through the gap 104 for preventing residual magnetism (see FIG. 3), the magnetic flux generated by the Kumatori coil 130 can be used effectively. That is, the opening failure of the electromagnet due to the residual magnetism of the iron core yoke 140 can be suppressed, and the pulsation of the electromagnetic force by the first exciting coil 110 and the second exciting coil 120 can be effectively suppressed.
 なお、第1の励磁コイル110における主ギャップ3に面する部分、第2の励磁コイル120における主ギャップ3に面する部分、及びクマトリコイル130における主ギャップ3に面する部分は、それぞれその表面がエポキシ材などの非磁性材で封入されていてもよい。これにより、第1の励磁コイル110における主ギャップ3に面する部分、第2の励磁コイル120における主ギャップ3に面する部分、及びクマトリコイル130における主ギャップ3に面する部分を、それぞれ、酸化等から保護することができる。 Note that the surface of the first exciting coil 110 facing the main gap 3, the portion of the second exciting coil 120 facing the main gap 3, and the portion of the Kumatori coil 130 facing the main gap 3 each have an epoxy surface. It may be enclosed with a non-magnetic material such as a material. As a result, a portion facing the main gap 3 in the first exciting coil 110, a portion facing the main gap 3 in the second exciting coil 120, and a portion facing the main gap 3 in the Kumatori coil 130 are oxidized, respectively. Can be protected from.
実施の形態2.
 次に、実施の形態2にかかる交流電磁石構造200について説明する。以下では、実施の形態1と異なる部分を中心に説明する。
Embodiment 2. FIG.
Next, the AC electromagnet structure 200 according to Embodiment 2 will be described. Below, it demonstrates focusing on a different part from Embodiment 1. FIG.
 交流電磁石構造200では、可動部材202及びヨーク250をそれぞれ中空構造にしている。具体的には、可動部材202は、軸AXを中心とした開口202dを有する。ヨーク250の鉄心ヨーク240は、軸AXを中心とした貫通孔240dを有する。可動部材202の開口202dは、鉄心ヨーク240の貫通孔240dに対応している。これにより、回転機器の回転軸を開口202d及び貫通孔240dに通して可動部材202が回転軸とともに回転するように構成でき、交流電磁石構造200を電磁ブレーキとして回転機器の制動用途に利用することができる。 In the AC electromagnet structure 200, the movable member 202 and the yoke 250 each have a hollow structure. Specifically, the movable member 202 has an opening 202d centered on the axis AX. The iron core yoke 240 of the yoke 250 has a through hole 240d centered on the axis AX. The opening 202 d of the movable member 202 corresponds to the through hole 240 d of the iron core yoke 240. Accordingly, the rotating shaft of the rotating device can be configured to pass through the opening 202d and the through-hole 240d so that the movable member 202 rotates together with the rotating shaft, and the AC electromagnet structure 200 can be used as an electromagnetic brake for braking the rotating device. it can.
 以上のように、本発明にかかる交流電磁石構造は、電磁ブレーキに有用である。 As described above, the AC electromagnet structure according to the present invention is useful for an electromagnetic brake.
 1、100、200 交流電磁石構造
 2、102、202 可動部材
 3 主ギャップ
 10、110 第1の励磁コイル
 20、120 第2の励磁コイル
 40、140、240 鉄心ヨーク
 50、150、250 ヨーク
 104 残留磁気防止用のギャップ
 130 クマトリコイル
 160 層
1, 100, 200 AC electromagnet structure 2, 102, 202 Movable member 3 Main gap 10, 110 First exciting coil 20, 120 Second exciting coil 40, 140, 240 Iron core yoke 50, 150, 250 Yoke 104 Residual magnetism Gap for prevention 130 Kumatori coil 160 layers

Claims (4)

  1.  軸方向に移動可能な円盤状の可動部材と、
     前記可動部材に対して主ギャップを介して軸方向に隣接した鉄心ヨークと、
     前記鉄心ヨークに埋設された環状の第1の励磁コイルと、
     前記第1の励磁コイルの外側で前記鉄心ヨークに埋設された環状の第2の励磁コイルと、
     前記第2の励磁コイルの外側で前記鉄心ヨークに埋設された環状のクマトリコイルと、
     を備え、
     前記クマトリコイルは、前記第2の励磁コイルの外周に隣接し、かつ前記主ギャップに面する位置に配置され、
     前記第1の励磁コイル及び前記第2の励磁コイルは、交流電力がそれぞれ入力される
     ことを特徴とする交流電磁石構造。
    A disc-shaped movable member movable in the axial direction;
    An iron core yoke axially adjacent to the movable member via a main gap;
    An annular first exciting coil embedded in the iron core yoke;
    An annular second exciting coil embedded in the iron core yoke outside the first exciting coil;
    An annular Kumatori coil embedded in the iron core yoke outside the second exciting coil;
    With
    The Kumatori coil is arranged at a position adjacent to the outer periphery of the second excitation coil and facing the main gap,
    AC power is input to the first exciting coil and the second exciting coil, respectively. An AC electromagnet structure.
  2.  前記第2の励磁コイルの巻線のアンペアターン数は、前記第1の励磁コイルの巻線のアンペアターン数より大きく、
     前記第1の励磁コイル及び前記第2の励磁コイルは、前記第1の励磁コイルにおける電流の流れる向きと前記第2の励磁コイルにおける電流の流れる向きとが互いに逆になるように、交流電力がそれぞれ入力される
     ことを特徴とする請求項1に記載の交流電磁石構造。
    The number of ampere turns of the winding of the second exciting coil is larger than the number of ampere turns of the winding of the first exciting coil,
    The first exciting coil and the second exciting coil have alternating current power so that the direction of current flow in the first exciting coil and the direction of current flowing in the second exciting coil are opposite to each other. The AC electromagnet structure according to claim 1, wherein each is input.
  3.  前記第2の励磁コイルと前記クマトリコイルとは、空気層及び非磁性材の層の少なくとも一方を介して互に隣接され、互に電気的及び磁気的に絶縁されている
     ことを特徴とする請求項1に記載の交流電磁石構造。
    The second excitation coil and the Kumatori coil are adjacent to each other via at least one of an air layer and a nonmagnetic material layer, and are electrically and magnetically insulated from each other. 1. The AC electromagnet structure according to 1.
  4.  前記鉄心ヨークは、前記第1の励磁コイルと前記第2の励磁コイルとの間に残留磁気防止用のギャップを有する
    ことを特徴とする請求項1に記載の交流電磁石構造。
    2. The AC electromagnet structure according to claim 1, wherein the iron core yoke has a gap for preventing residual magnetism between the first exciting coil and the second exciting coil.
PCT/JP2011/077370 2011-11-28 2011-11-28 Ac electromagnet structure WO2013080274A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/077370 WO2013080274A1 (en) 2011-11-28 2011-11-28 Ac electromagnet structure
JP2012517599A JP5073122B1 (en) 2011-11-28 2011-11-28 AC electromagnet structure
CN201180015918.8A CN103229255B (en) 2011-11-28 2011-11-28 Ac electromagnet structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/077370 WO2013080274A1 (en) 2011-11-28 2011-11-28 Ac electromagnet structure

Publications (1)

Publication Number Publication Date
WO2013080274A1 true WO2013080274A1 (en) 2013-06-06

Family

ID=47277862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077370 WO2013080274A1 (en) 2011-11-28 2011-11-28 Ac electromagnet structure

Country Status (3)

Country Link
JP (1) JP5073122B1 (en)
CN (1) CN103229255B (en)
WO (1) WO2013080274A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4324026Y1 (en) * 1967-02-07 1968-10-09
JPS4832860U (en) * 1971-08-25 1973-04-20

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170167A (en) * 1984-02-13 1985-09-03 Japan Storage Battery Co Ltd Manufacturing method for alkaline cell electrode
JP2588824Y2 (en) * 1993-03-17 1999-01-20 株式会社三協精機製作所 Motor with brake

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4324026Y1 (en) * 1967-02-07 1968-10-09
JPS4832860U (en) * 1971-08-25 1973-04-20

Also Published As

Publication number Publication date
CN103229255B (en) 2014-11-19
JP5073122B1 (en) 2012-11-14
JPWO2013080274A1 (en) 2015-04-27
CN103229255A (en) 2013-07-31

Similar Documents

Publication Publication Date Title
TWI426686B (en) Generator-brake integration type rotating machine
JP2005094955A (en) Axial permanent magnet motor
JP5365074B2 (en) Axial gap type rotating electrical machine
WO2013128979A1 (en) Hybrid excitation-type rotating machine
JP4775551B2 (en) Motor with brake
JP2013115899A (en) Rotor of permanent magnet type motor, manufacturing method of the same, and permanent magnet type motor
JP2007067252A (en) Hybrid magnet, and electric motor and generator using it
JP6260994B2 (en) Axial gap type motor
JP5373006B2 (en) Hybrid stepping motor
JP5073122B1 (en) AC electromagnet structure
JP5151183B2 (en) Axial gap type rotating electric machine and compressor
JP2011109762A (en) Unipolar motor
JP5947756B2 (en) Non-excitation electromagnetic brake
JP5300381B2 (en) DC series motor and starter
JP2014180096A (en) Permanent magnet dynamo-electric machine and elevator drive hoist
JP2008187863A (en) Axial gap rotary electric machine and compressor
JP2000179583A (en) Ac electromagnetic brake or ac electromagnetic clutch
JP5578979B2 (en) Axial gap motor
US20230396126A1 (en) Rotator
JP2010268650A (en) Axial gap type rotary electric machine
JP5383579B2 (en) Electric motor with electromagnetic brake
JP2015122905A (en) Brake motor and hoist
JP6036131B2 (en) Negative operating electromagnetic brake device, control method and control device, and drive device
JP2011030356A (en) Axial gap motor
JP5947946B2 (en) Non-excitation electromagnetic brake

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012517599

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876690

Country of ref document: EP

Kind code of ref document: A1