WO2013078587A1 - 预失真系数的调整方法及装置 - Google Patents
预失真系数的调整方法及装置 Download PDFInfo
- Publication number
- WO2013078587A1 WO2013078587A1 PCT/CN2011/083034 CN2011083034W WO2013078587A1 WO 2013078587 A1 WO2013078587 A1 WO 2013078587A1 CN 2011083034 W CN2011083034 W CN 2011083034W WO 2013078587 A1 WO2013078587 A1 WO 2013078587A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- distortion coefficient
- transmit power
- adjustment
- signal
- distortion
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 230000008859 change Effects 0.000 claims abstract description 49
- 230000005540 biological transmission Effects 0.000 claims abstract description 44
- 238000004458 analytical method Methods 0.000 claims description 11
- 230000003247 decreasing effect Effects 0.000 claims description 6
- 230000003993 interaction Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 abstract description 20
- 230000032683 aging Effects 0.000 abstract description 11
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000003860 storage Methods 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000009191 jumping Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/08—Modifications for reducing interference; Modifications for reducing effects due to line faults ; Receiver end arrangements for detecting or overcoming line faults
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3241—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
- H03F1/3247—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3241—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3241—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
- H03F1/3258—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits based on polynomial terms
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
- H03F3/195—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B1/0475—Circuits with means for limiting noise, interference or distortion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/02—Details
- H04B3/20—Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other
- H04B3/23—Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other using a replica of transmitted signal in the time domain, e.g. echo cancellers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/36—Modulator circuits; Transmitter circuits
- H04L27/366—Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
- H04L27/367—Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion
- H04L27/368—Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion adaptive predistortion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B2001/0408—Circuits with power amplifiers
- H04B2001/0425—Circuits with power amplifiers with linearisation using predistortion
Definitions
- the present invention relates to the field of mobile communications, and in particular, to a method and apparatus for adjusting a predistortion coefficient. Background technique
- the nonlinear problem of PA limits the maximum transmit power and efficiency of PA.
- pre-distortion technology can be used to offset the nonlinearity of PA. Therefore, the PA can work in the non-linear amplification area to improve the transmission power and efficiency of the PA; the pre-distortion technique refers to pre-distortion processing the signal before the signal is input to the PA to obtain a distorted signal, when the distorted signal passes through the PA.
- the nonlinearity of the PA is eliminated, the linearization of the PA is realized, and the transmission power and efficiency of the PA are improved.
- the pre-distortion coefficient plays a key role. By selecting the pre-distortion coefficient that best matches the current output power of the PA, the PA can achieve the best linearization effect.
- the pre-distortion coefficient mainly includes two types. : Open loop predistortion coefficient and closed loop predistortion coefficient.
- the open-loop pre-distortion coefficient is used to sample the output of different transmit powers in the PA nonlinear region by a dedicated meter (for example, a spectrum analyzer) before leaving the factory (for example, a transceiver), and obtain a set by computer.
- a dedicated meter for example, a spectrum analyzer
- the factory for example, a transceiver
- pre-distortion coefficient corresponding to the transmit power of the PA, and writing the set of pre-distortion coefficients into the memory of the device; when the device is actually used, directly selecting a pre-distortion corresponding to the transmit power currently set by the device from the memory
- the coefficient pre-distorts the signal to solve the nonlinear problem of the PA; however, as the temperature changes and the PA ages, the actual transmit power of the device will deviate from the currently set transmit power, resulting in the set transmit power.
- the correspondence with the open-loop predistortion coefficient is deviated, and the effect of predistortion is deteriorated.
- the closed-loop pre-distortion coefficient differs from the open-loop pre-distortion coefficient in that a pre-distortion coefficient calculation device is integrated on a device (eg, a transceiver) (mainly: sampling circuit, frequency converter, filter, analog-to-digital converter, etc.) Etc.), the output of the PA is sampled in real time by the computing device to calculate a predistortion coefficient that best matches the current transmit power, and an optimal predistortion effect is obtained.
- a calculation device such as a sampling circuit, a frequency converter, a filter, and an analog-to-digital converter to be added to each device, and thus the production cost is greatly increased. Summary of the invention
- the technical problem to be solved by the embodiments of the present invention is to provide a method and a device for adjusting the predistortion coefficient, which can overcome the influence of temperature and PA aging on the predistortion effect when using the open loop predistortion coefficient, and when the closed loop predistortion coefficient is used. , the high cost problem brought.
- an embodiment of the present invention provides a method for adjusting a pre-distortion coefficient, including:
- a signal receiving quality report fed back by the receiving end obtained according to the pre-distortion coefficient before the adjustment, and a signal receiving quality report fed back by the receiving end according to the adjusted pre-distortion coefficient are analyzed to determine a change in the signal receiving quality of the receiving end.
- the adjusted pre-distortion coefficient is used as a pre-distortion coefficient corresponding to the currently-set transmit power of the transmitting end, and then returns to the transmit power currently set by the adjusting transmitting end. Step of predistortion coefficient;
- the pre-distortion coefficient before the adjustment is used as the pre-distortion coefficient corresponding to the currently-set transmit power of the transmitting end.
- the embodiment of the present invention further provides a pre-distortion coefficient adjustment apparatus, including: a first adjustment module, configured to adjust a pre-distortion coefficient corresponding to a transmit power currently set by a transmitting end; A signal receiving quality report fed back by the receiving end obtained according to the pre-distortion coefficient before the adjustment, and a signal receiving quality report fed back by the receiving end according to the adjusted pre-distortion coefficient are analyzed to determine a change in the signal receiving quality of the receiving end. ;
- a first indication module configured to: when the signal receiving quality of the receiving end becomes better, use the adjusted pre-distortion coefficient as a pre-distortion coefficient corresponding to the currently-set transmit power of the transmitting end, and then instruct the first adjusting module to adjust a pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end;
- an execution module configured to: when the signal receiving quality of the receiving end is deteriorated, use a pre-distortion coefficient before the adjustment as a pre-distortion coefficient corresponding to the currently-set transmit power of the transmitting end.
- the pre-distortion coefficient corresponding to the currently set transmit power is adjusted, and the signal reception quality report and the adjusted signal reception quality report fed back by the receiving end are analyzed to determine the change of the signal receiving quality of the receiving end. Case, and according to the change situation, determine whether to continue to adjust the pre-distortion coefficient corresponding to the currently set transmit power; due to the change in signal reception quality through the receiving end.
- the pre-distortion coefficient corresponding to the currently set transmit power can be adjusted to match the current actual transmit power, thereby obtaining a better pre-distortion effect, and overcoming the adoption.
- FIG. 1 is a schematic flow chart of a first embodiment of a method for adjusting pre-distortion coefficients provided by the present invention
- FIG. 2 is a schematic flowchart of a second embodiment of a method for adjusting pre-distortion coefficients provided by the present invention
- FIG. 4 is a schematic flowchart of an embodiment of a method for transmitting a signal provided by the present invention
- FIG. 5 is a schematic structural view of a first embodiment of an apparatus for adjusting pre-distortion coefficients provided by the present invention
- FIG. 6 is a schematic structural view of a second embodiment of an apparatus for adjusting pre-distortion coefficients provided by the present invention
- FIG. 8 is a schematic structural diagram of a fourth embodiment of a predistortion coefficient adjusting apparatus provided by the present invention
- FIG. 8 is a schematic diagram of a fourth embodiment of the predistortion coefficient adjusting apparatus provided by the present invention
- FIG. 10 is a schematic structural diagram of a second embodiment of a transceiver provided by the present invention. detailed description
- FIG. 1 is a schematic flowchart of a first embodiment of a method for adjusting pre-distortion coefficients according to the present invention, the method includes:
- Step S11 Adjust a pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end.
- adjusting the pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end may include: The pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end is adjusted to be a pre-distortion coefficient corresponding to the assumed transmit power by N adjustment steps, and the N is the number of times the assumed transmit power is increased; or The pre-distortion coefficient corresponding to the currently set transmit power is adjusted to be a pre-distortion coefficient corresponding to assuming that the transmit power is reduced by N adjustment steps, and the N is a number of times the assumed transmit power is reduced; for example: transmitting The currently set transmit power X, the adjustment step size is ⁇ ⁇ , then in the adjustment, the pre-distortion coefficient corresponding to the transmit power of (X ⁇ ⁇ * ⁇ X ) is the corresponding set transmit power X.
- Pre-distortion coefficient that is, the adjusted pre-distortion coefficient, where ⁇ is the number of times the assumed transmit power is increased or decreased; here, it should be noted that this embodiment only involves assuming that the currently set transmit power is increased or decreased.
- the pre-distortion coefficient corresponding to the transmit power after the adjustment value is used as the pre-distortion coefficient corresponding to the currently set transmit power, but does not actually change the currently set transmit power.
- the currently set transmit power of the transmitting end may deviate to some extent from the actual transmit power of the transmitting end.
- the pre-distortion coefficient corresponding to the currently set transmit power may be a digital pre-distortion coefficient and is an open-loop pre-distortion coefficient.
- Step S12 analyzing a signal reception quality report fed back by the receiving end obtained according to the pre-distortion coefficient before adjustment, and a signal receiving quality report fed back by the receiving end according to the adjusted pre-distortion coefficient.
- the signal reception quality report fed back by the receiving end obtained according to the pre-distortion coefficient before the adjustment may be obtained by the following method before step S11:
- the predistortion processing is performed on the baseband signal by using the predistortion coefficient before adjustment to generate a predistortion baseband signal.
- ⁇ Performing a series of processing (mainly including: modulation, up-conversion) on the pre-distorted baseband signal generated according to the pre-distortion coefficient before adjustment, transmitting to the receiving end, and receiving the signal receiving quality report fed back by the receiving end.
- the signal reception quality report fed back by the receiving end obtained according to the adjusted predistortion coefficient may be obtained after the step S11 as follows:
- D performing a series of processing (including mainly: modulation, up-conversion) on the pre-distorted baseband signal generated according to the adjusted pre-distortion coefficient, transmitting to the receiving end, and receiving the signal fed back by the receiving end Receive quality report.
- processing including mainly: modulation, up-conversion
- the signal reception quality report obtained according to the pre-distortion coefficient before adjustment or the signal reception quality report obtained according to the adjusted pre-distortion coefficient may include: a physical quantity for measuring the signal reception quality of the receiving end, for example : MSE (Mean Squared Error) value or SNR (Signal to Noise Ratio, signal to noise ratio); MSE value or SNR in the received quality report by comparing the two obtained signals
- MSE Mel Squared Error
- SNR Signal to Noise Ratio, signal to noise ratio
- MSE value or SNR in the received quality report by comparing the two obtained signals
- the change of the receiving quality of the signal at the receiving end can be obtained.
- the change of the receiving quality of the signal at the receiving end can be reversed to determine the currently set transmit power for the transmitting end. It is better to use the pre-distortion coefficient before the adjustment. Pre-distortion effect, or adjusted pre-distortion coefficient can get better pre-distortion effect.
- Step S13 determining a change in the signal reception quality of the receiving end.
- the change of the signal reception quality includes: the signal receiving quality of the receiving end becomes better, or the signal receiving quality of the receiving end becomes worse; when the signal receiving quality becomes better, step S14 is performed, when the signal receiving quality is deteriorated, the execution is performed. Step S15.
- Step S14 after the adjusted pre-distortion coefficient is used as the pre-distortion coefficient corresponding to the currently-set transmit power of the transmitting end, the process returns to step S11.
- Step S15 The pre-distortion coefficient before the adjustment is used as a pre-distortion coefficient corresponding to the currently-set transmit power of the transmitting end.
- the pre-distortion coefficient before the adjustment is used as the pre-distortion coefficient corresponding to the transmit power currently set by the transmitting end
- the pre-distortion coefficient corresponding to the current transmit power currently set by the transmitting end is established.
- Correspondence relationship for example, establishing a pre-distortion coefficient LUT (Look-Up-Table) table, recording the transmission power in the LUT table (the set transmission power may be deviated from the actual transmission power), the pre-distortion coefficient and The one-to-one correspondence of temperature may also be to write the corresponding relationship between the transmit power, the predistortion coefficient and the temperature into the existing LUT table; by recording the relationship between the predistortion coefficient and the temperature, it is possible to avoid the same temperature Repeated adjustment of the predistortion coefficient.
- LUT Look-Up-Table
- the triggering execution condition of the pre-distortion coefficient adjustment method of the embodiment may include: when detecting the power-on signal, when detecting the power-on signal, the most likely situation is that the usage environment has changed, Adapt to the change of the environment, adjust the pre-distortion coefficient; or detect that the current temperature of the environment is not within the preset temperature range, for example, the preset temperature range is [15°, 30°], and the detected current temperature is 0. .
- the signal receiving quality of the receiving end does not meet the expected requirements, in order to ensure the signal receiving quality of the receiving end, an attempt may be made to adjust the pre-distortion coefficient corresponding to the currently set transmitting power; or the setting time of the timer comes.
- the pre-distortion coefficient corresponding to the current set power is adjusted, and according to the change of the signal receiving quality of the receiving end before and after the adjustment, whether to continue the adjustment is determined, so that the current actual transmitting power can be found.
- a well-matched pre-distortion coefficient is used as a pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end to overcome the influence of temperature variation (also referred to as "temperature drift") and device (mainly PA) aging on the pre-distortion effect; Since the method for adjusting the pre-distortion coefficient of the embodiment does not need to increase the sampling circuit, the frequency converter, the filter, the analog-to-digital converter and the like required to implement the closed-loop pre-distortion coefficient, the device can be directly implemented by software, thereby significantly reducing the production. cost.
- FIG. 2 it is a schematic flowchart of a second embodiment of a method for adjusting a predistortion coefficient provided by the present invention, where the method includes:
- Step S21 Adjust a pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end to a corresponding pre-distortion coefficient after the transmit power is decreased by one adjustment step.
- the current transmit power X of the transmitting end is adjusted to a step size of ⁇ ⁇
- the pre-distortion coefficient corresponding to the currently set transmit power X is adjusted to a set transmit power of (X ⁇ ⁇ ⁇ ). Predistortion coefficient.
- Step S22 analyzing a signal reception quality report fed back by the receiving end obtained according to the pre-distortion coefficient before adjustment, and a signal receiving quality report fed back by the receiving end according to the adjusted pre-distortion coefficient.
- Step S23 determining a change in the signal reception quality of the receiving end. If the signal reception quality of the receiving end is deteriorated, the pre-distortion coefficient before the adjustment is used as the pre-distortion coefficient corresponding to the currently set transmission power, and then the process proceeds to step S24.
- Step S24 adjusting a pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end to a corresponding pre-distortion coefficient after the transmitting power is increased by N adjustment steps.
- the current transmit power X of the transmitting end is adjusted to a step size of ⁇ ⁇
- the currently set transmit power X is adjusted to assuming that the set transmit power is ( ⁇ + ⁇ * ⁇ ⁇ ).
- step (24+ ⁇ * ⁇ ⁇ is used in step S24).
- the corresponding pre-distortion coefficient is used as the pre-distortion coefficient corresponding to the currently set transmit power X, so as to adjust the pre-distortion coefficient corresponding to the currently set transmit power X, but does not change the currently set transmit power.
- Step S25 analyzing a signal receiving quality report fed back by the receiving end obtained according to the pre-distortion coefficient before adjustment, and a signal receiving quality report fed back by the receiving end according to the adjusted pre-distortion coefficient.
- Step S26 determining a change in the signal reception quality of the receiving end.
- the change of the signal reception quality includes: the signal receiving quality of the receiving end becomes better, or the signal receiving quality of the receiving end becomes worse; when the signal receiving quality becomes better, step S27 is performed, when the signal receiving quality is deteriorated, the execution is performed. Step S28.
- Step S27 after the adjusted pre-distortion coefficient is used as the pre-distortion coefficient corresponding to the currently-set transmit power of the transmitting end, the process returns to step S24.
- Step S28 the pre-distortion coefficient before the adjustment is used as the pre-distortion coefficient corresponding to the currently-set transmit power of the transmitting end.
- the pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end is adjusted to be a pre-distortion coefficient corresponding to assuming that the transmit power is reduced by one adjustment step, if the received signal quality of the receiving end is deteriorated, Then, it indicates that the current actual transmit power is higher than the currently set transmit power. Therefore, it is necessary to use the pre-distortion coefficient corresponding to the transmit power currently set by the transmit end to be adjusted to assume that the transmit power is increased by N adjustment steps.
- the predistortion coefficient is adjusted in a manner of predistortion coefficients.
- FIG. 3 is a schematic flowchart diagram of a third embodiment of a method for adjusting a predistortion coefficient provided by the present invention, where the method includes:
- Step S31 Adjust a pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end to a corresponding pre-distortion coefficient after the transmit power is increased by one adjustment step.
- the current transmit power X of the transmitting end is adjusted to a step size of ⁇ ⁇
- the pre-distortion coefficient corresponding to the currently set transmit power X is adjusted to assuming that the set transmit power is ( ⁇ + ⁇ ⁇ ) Corresponding predistortion coefficient.
- Step S32 analyzing a signal reception quality report fed back by the receiving end obtained according to the pre-distortion coefficient before adjustment, and a signal receiving quality report fed back by the receiving end according to the adjusted pre-distortion coefficient.
- Step S33 determining a change in the signal reception quality of the receiving end. If the signal reception quality of the receiving end deteriorates, the pre-distortion coefficient before the adjustment is used as the pre-distortion coefficient corresponding to the currently set transmission power, and then the process proceeds to step S34.
- Step S34 adjusting a pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end to a corresponding pre-distortion coefficient after the transmitting power is reduced by N adjustment steps.
- the current transmit power X of the transmitting end is adjusted to a step size of ⁇ ⁇
- the currently set transmit power X is adjusted to a pre-distortion coefficient corresponding to ( ⁇ _ ⁇ * ⁇ ⁇ ), where ⁇ is a hypothesis
- N a hypothesis
- the number of times the transmission power is reduced, for example, when jumping from step S23 to step S24, N l, it should be noted here that In step S24, only the pre-distortion coefficient corresponding to (X - N* ⁇ X ) is used as the pre-distortion coefficient corresponding to the transmission power X, so as to adjust the pre-distortion coefficient corresponding to the transmission power X, but the setting is not changed. Transmit power X.
- Step S35 analyzing a signal receiving quality report fed back by the receiving end obtained according to the pre-distortion coefficient before adjustment, and a signal receiving quality report fed back by the receiving end according to the adjusted pre-distortion coefficient.
- Step S36 determining a change in the signal reception quality of the receiving end.
- the change of the signal receiving quality includes: the signal receiving quality of the receiving end becomes better, or the signal receiving quality of the receiving end becomes worse; when the signal receiving quality becomes better, step S37 is performed, when the signal receiving quality is deteriorated, the execution is performed. Step S38.
- Step S37 after the adjusted pre-distortion coefficient is used as the pre-distortion coefficient corresponding to the currently-set transmit power of the transmitting end, the process returns to step S34.
- Step S38 the pre-distortion coefficient before the adjustment is used as a pre-distortion coefficient corresponding to the currently-set transmit power of the transmitting end.
- the pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end is adjusted to be the corresponding pre-distortion coefficient after the transmit power is increased by one adjustment step, if the received signal quality of the receiving end is deteriorated, then It indicates that the current actual transmit power is higher than the currently set transmit power. Therefore, it is necessary to use the pre-distortion coefficient corresponding to the transmit power currently set by the transmit end to be adjusted to assume that the transmit power is reduced by N adjustment steps.
- the predistortion coefficient is adjusted in a manner of predistortion coefficients.
- the method for adjusting the pre-distortion coefficient of the embodiment of the present invention is described in detail in the above embodiment.
- the method for transmitting the embodiment of the present invention will be described below with reference to FIG. 4, which performs pre-distortion processing on the baseband signal.
- the predistortion coefficients obtained by the embodiment shown in any of Figs. 1 to 3 are used.
- FIG. 4 it is a schematic flowchart of an embodiment of a signaling method according to an embodiment of the present invention, where the sending method includes:
- Step S41 Perform pre-distortion processing on the baseband signal by using a pre-distortion coefficient corresponding to the currently-set transmit power of the transmitting end to generate a pre-distorted baseband signal.
- the pre-distortion coefficient corresponding to the transmit power currently set by the transmitting end is the pre-distortion coefficient adjusted by using the embodiment shown in any one of FIG. 1-3, that is, the current actual transmit power adjusted by the transmitting end. Pre-distortion coefficient with better matching relationship and better pre-distortion effect.
- the pre-distortion matching the current temperature is adopted.
- the coefficient is used as the pre-distortion coefficient used in step S41; if there is no pre-distortion coefficient matching the current temperature under the currently set transmit power, then it can be used at any temperature as shown in any one of Figures 1-3.
- the pre-distortion coefficient adjustment method adjusts the pre-distortion coefficient to obtain a pre-distortion coefficient that matches the current temperature; and may also select a pre-distortion coefficient corresponding to a temperature within a certain range of the current temperature as the step S41.
- Pre-distortion coefficient for example: the current temperature is 15°, and the pre-distortion coefficient corresponding to the currently set transmit power corresponds to a temperature of 12°. Since the temperature difference between the two is only 3°, the pre-distortion corresponding to 12° is directly selected.
- the coefficients pre-distort the baseband signal to produce a pre-distorted baseband signal.
- Step S52 after converting the pre-distorted baseband signal generated in step S41 into a radio frequency signal, transmitting to the receiving end.
- the process of converting the pre-distorted baseband signal into a radio frequency signal and transmitting to the receiving end mainly comprises: sequentially performing digital-to-analog conversion, modulation, up-conversion, filtering, and power amplification of the pre-distorted baseband signal, and finally transmitting the power through the antenna.
- Receiving end sequentially performing digital-to-analog conversion, modulation, up-conversion, filtering, and power amplification of the pre-distorted baseband signal, and finally transmitting the power through the antenna.
- the pre-distortion coefficient adjusted by the pre-distortion coefficient adjustment method shown in any one of FIG. 1-3 is used. Therefore, it is possible to overcome the influence of temperature variation and device (mainly PA) aging on the predistortion effect, and it is possible to save costs.
- the pre-distortion coefficient adjustment method and the signaling method according to the embodiment of the present invention are described in detail from the method flow, and the pre-distortion coefficient adjusting device and the signaling corresponding to the above method are respectively described below with reference to the accompanying drawings. The machine is introduced.
- the adjusting apparatus 5 includes:
- the first adjusting module 51 is configured to adjust a pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end.
- adjusting the pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end may include: adjusting a pre-distortion coefficient corresponding to the currently-set transmit power of the transmitting end to be assuming that the transmit power is increased by N adjustment steps.
- Pre-distortion coefficient the N is a number of times the transmission power is assumed to be increased; or, the pre-distortion coefficient corresponding to the currently-set transmission power of the transmitting end is adjusted to be assuming that the transmission power is reduced by N adjustment steps
- Pre-distortion coefficient the N is the number of times the transmission power is assumed to be reduced; for example: the transmission power X currently set by the transmitting end, and the adjustment step is ⁇ ⁇ , then when adjusting, the value is (X ⁇ *
- the pre-distortion coefficient corresponding to the transmit power of ⁇ ⁇ ) is the pre-loss corresponding to the currently set transmit power X
- the true coefficient that is, the adjusted predistortion coefficient, where N is the number of times the transmit power is increased or decreased.
- the currently set transmit power of the transmitting end may deviate to some extent from the actual transmit power of the transmitting end.
- the pre-distortion coefficient corresponding to the currently set transmit power may be a digital pre-distortion coefficient and is an open-loop pre-distortion coefficient.
- the first analyzing module 52 is configured to analyze a signal receiving quality report of the receiving end feedback obtained according to the pre-distortion coefficient before adjustment, and a signal receiving quality report of the receiving end feedback obtained according to the adjusted pre-distortion coefficient, to determine the receiving end
- the change in signal reception quality includes: the reception quality of the signal at the receiving end becomes good, or the reception quality of the signal at the receiving end is deteriorated.
- the signal reception quality report obtained according to the pre-distortion coefficient before adjustment or the signal reception quality report obtained according to the adjusted pre-distortion coefficient may include: a physical quantity used to measure the signal reception quality of the receiving end, for example: MSE (Mean Squared Error) value or SNR (Signal to Noise Ratio, signal to noise ratio); By comparing the MSE value or SNR in the received signal quality report obtained twice, The change of the receiving quality of the signal at the receiving end can be obtained, and the change of the receiving quality of the signal at the receiving end can be reversed to determine the currently set transmit power for the transmitting end, and the pre-distortion coefficient before the adjustment can be used to obtain a better pre-preparation. The distortion effect, or the adjusted pre-distortion coefficient can get better pre-distortion effect.
- the first indicating module 53 is configured to: after the adjusted pre-distortion coefficient is used as the pre-distortion coefficient corresponding to the currently-set transmit power of the transmitting end, the first adjusting module 51 is instructed to continue to adjust the current transmitting end of the transmitting end.
- the pre-distortion coefficient corresponding to the set transmit power is configured to: after the adjusted pre-distortion coefficient is used as the pre-distortion coefficient corresponding to the currently-set transmit power of the transmitting end, the first adjusting module 51 is instructed to continue to adjust the current transmitting end of the transmitting end.
- the pre-distortion coefficient corresponding to the set transmit power is configured to: after the adjusted pre-distortion coefficient is used as the pre-distortion coefficient corresponding to the currently-set transmit power of the transmitting end.
- the execution module 54 is configured to use the pre-distortion coefficient before the adjustment as the pre-distortion coefficient corresponding to the transmit power currently set by the transmitting end.
- the execution module 54 establishes a pre-distortion coefficient corresponding to the current transmit power currently set by the transmitting end.
- the triggering execution condition of the pre-distortion coefficient adjustment method of the embodiment may include: when detecting the power-on signal, when detecting the power-on signal, the most likely situation is that the usage environment has changed, in order to adapt to the environment. Change, adjust the pre-distortion coefficient; or detect that the current temperature of the environment is not within the preset temperature range, for example, the preset temperature range is [15°, 30°], and the detected current temperature is 0.
- the signal receiving quality of the receiving end does not meet the expected requirements, in order to ensure the signal receiving quality of the receiving end, an attempt may be made to adjust the pre-distortion coefficient corresponding to the currently set transmitting power; or the setting time of the timer comes.
- the timer can be used to adjust the pre-distortion coefficient corresponding to the current set power seasonally; or other reasonable timing
- the pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end is adjusted, and according to the change of the signal receiving quality of the receiving end before and after the adjustment, whether to continue the adjustment is determined, so that the current actual transmitting power can be found.
- a well-matched pre-distortion coefficient is used as a pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end to overcome the influence of temperature variation (also referred to as "temperature drift") and device (mainly PA) aging on the pre-distortion effect; Since the method for adjusting the pre-distortion coefficient of the embodiment does not need to increase the sampling circuit, the frequency converter, the filter, the analog-to-digital converter and the like required to implement the closed-loop pre-distortion coefficient, the device can be directly implemented by software, thereby significantly reducing the production. cost.
- FIG. 6 is a schematic structural diagram of a second embodiment of the pre-distortion coefficient adjusting device of the present invention.
- the adjusting device 5 further includes: a pre-distortion module 61 and an interaction module, compared with the adjusting device 5 shown in FIG. 5 . 62.
- the predistortion module 61 is configured to perform predistortion processing on the baseband signal by using the pre-distortion or adjusted pre-distortion coefficient to generate a pre-distortion baseband signal.
- the interaction module 62 is configured to perform a series of processing (including: modulation, up-conversion) on the pre-distorted baseband signal generated according to the pre-distortion or adjusted pre-distortion coefficient, transmit to the receiving end, and receive the feedback from the receiving end. Signal reception quality report.
- the pre-distortion module 61 and the interaction module 62 achieve the purpose of obtaining the signal reception quality report fed back by the receiving end according to the pre-distortion or adjusted pre-distortion coefficient, thereby providing a basis for the analysis module 52 to analyze the change of the quality of the receiving end.
- FIG. 7 is a structural diagram of a third embodiment of an apparatus for adjusting pre-distortion coefficient provided by the present invention. Intended, the adjusting device 5 comprises:
- the second adjusting module 71 is configured to adjust a pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end to a pre-distortion coefficient corresponding to the assumed transmit power by one adjustment step.
- the transmission power X currently set by the transmitting end is adjusted to be ⁇ ⁇
- the pre-distortion coefficient corresponding to the currently set transmission power X is adjusted to the pre-distortion coefficient corresponding to (X ⁇ ⁇ ⁇ ).
- a second analysis module 72 configured to analyze a signal receiving quality report fed back by the receiving end according to the pre-distortion coefficient before adjustment, and a signal receiving quality report fed back by the receiving end according to the adjusted pre-distortion coefficient, to determine the receiving end The change in signal reception quality.
- a second indication module 73 configured to: when the second analysis module 72 analyzes the quality report, and obtains a result that the signal reception quality of the receiving end is degraded, the pre-distortion coefficient before the adjustment is used as the currently set transmit power. After the pre-distortion coefficient, the first adjustment module 51 is instructed to adjust the pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end to a pre-distortion coefficient corresponding to the assumed transmit power by an adjustment step.
- the first adjustment module 51 is configured to adjust a pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end to a pre-distortion coefficient corresponding to the assumed increase of the transmit power by one adjustment step.
- the current transmit power X of the transmitting end is adjusted to a step size of ⁇ ⁇
- the currently set transmit power X is adjusted to a pre-distortion coefficient corresponding to ( ⁇ + ⁇ * ⁇ ⁇ ), where ⁇ is a hypothesis
- the first adjustment module 51 only adopts ( ⁇ + ⁇ * ⁇ ⁇ ) corresponding to
- the predistortion coefficient is used as a predistortion coefficient corresponding to the transmission power X to achieve adjustment of the predistortion coefficient corresponding to the transmission power X, but does not change the set transmission power X.
- a first analysis module 52 configured to analyze a signal receiving quality report fed back by the receiving end obtained according to the pre-distortion coefficient before adjustment, and a signal receiving quality report fed back by the receiving end according to the adjusted pre-distortion coefficient, to determine the receiving end
- the change in signal reception quality includes: the reception quality of the signal at the receiving end becomes good, or the reception quality of the signal at the receiving end deteriorates.
- the first indication module 53 is configured to: when the first analysis module 52 analyzes that the signal receiving quality of the receiving end is good, and the adjusted pre-distortion coefficient is used as the pre-distortion coefficient corresponding to the currently-set transmit power of the transmitting end,
- the first adjustment module 51 is instructed to adjust the pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end to a pre-distortion coefficient corresponding to the assumed transmit power after increasing the adjustment step.
- the executing module 54 uses the pre-distortion coefficient before the adjustment as the pre-distortion coefficient corresponding to the currently-set transmit power of the transmitting end.
- the pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end is adjusted to be the corresponding pre-distortion coefficient after the transmit power is reduced by one adjustment step, if the received signal quality of the receiving end is deteriorated, then The current actual transmit power is higher than the currently set transmit power. Therefore, the pre-distortion coefficient corresponding to the transmit power currently set by the transmit end needs to be adjusted to be the corresponding pre-reduction after the transmit power is increased by N adjustment steps.
- the predistortion coefficient is adjusted in the form of a distortion coefficient.
- FIG. 8 is a schematic structural diagram of a third embodiment of a predistortion coefficient adjusting apparatus according to the present invention.
- the adjusting apparatus 5 includes:
- the third adjusting module 81 is configured to adjust a pre-distortion coefficient corresponding to the currently set transmit power to a pre-distortion coefficient corresponding to the transmit power being increased by one adjustment step.
- the transmission power X currently set by the transmitting end is adjusted to be ⁇ ⁇
- the pre-distortion coefficient corresponding to the currently set transmission power X is adjusted to a pre-distortion coefficient corresponding to ( ⁇ + ⁇ ⁇ ).
- a third analysis module 82 configured to analyze a signal receiving quality report fed back by the receiving end obtained according to the pre-distortion coefficient before adjustment, and a signal receiving quality report fed back by the receiving end according to the adjusted pre-distortion coefficient, to determine the receiving end
- the change in signal reception quality includes: getting better or worse.
- the third indication module 83 is configured to: when the third analysis module 54 analyzes the result of the signal reception quality change of the receiving end, instruct the first adjusting module 51 to adjust the pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end to the The transmit power is reduced by a corresponding predistortion coefficient after one adjustment step.
- the first adjustment module 51 is configured to adjust a pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end to a pre-distortion coefficient corresponding to the assumed transmit power after reducing the adjusted step size.
- the current transmit power X of the transmitting end is adjusted to a step size of ⁇ ⁇
- the currently set transmit power X is adjusted to a pre-distortion coefficient corresponding to ( ⁇ _ ⁇ * ⁇ ⁇ ), where ⁇ is a hypothesis
- the first adjustment module 51 only adopts (X - ⁇ * ⁇ ⁇
- the corresponding pre-distortion coefficient is used as the pre-distortion coefficient corresponding to the transmission power X to achieve the adjustment of the pre-distortion coefficient corresponding to the transmission power X, but does not change the currently set transmission power X.
- a first analyzing module 52 configured to analyze a signal receiving quality report of the receiving end feedback obtained according to the pre-distortion coefficient before the adjustment, and a signal receiving of the receiving end feedback obtained according to the adjusted pre-distortion coefficient Quality report to determine the change in signal reception quality at the receiving end.
- the change in the reception quality of the signal includes: the reception quality of the signal at the receiving end becomes good, or the reception quality of the signal at the receiving end deteriorates.
- the first indication module 53 is configured to: when the first analysis module 52 determines that the signal receiving quality of the receiving end is good, and after the adjusted pre-distortion coefficient is used as the pre-distortion coefficient corresponding to the currently-set transmit power of the transmitting end, indicating the first
- the adjusting module 51 adjusts the pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end to a pre-distortion coefficient corresponding to the assumed transmit power by N adjustment steps.
- the execution module 54 is configured to: when the first analysis module 52 determines that the signal reception quality of the receiving end is deteriorated, use the pre-distortion coefficient before the adjustment as the pre-distortion coefficient corresponding to the currently-set transmit power of the transmitting end.
- the pre-distortion coefficient corresponding to the currently set transmit power of the transmitting end is adjusted to be the corresponding pre-distortion coefficient after the transmit power is increased by one adjustment step, if the received signal quality of the receiving end is deteriorated, then It indicates that the current actual transmit power is higher than the currently set transmit power. Therefore, it is necessary to use the pre-distortion coefficient corresponding to the transmit power currently set by the transmit end to be adjusted to be the corresponding pre-reduction after the transmit power is reduced by N adjustment steps.
- the predistortion coefficient is adjusted in the form of a distortion coefficient.
- the foregoing embodiment describes the apparatus for adjusting the predistortion coefficient of the embodiment of the present invention in detail.
- the transceiver of the embodiment of the present invention will be described below with reference to the accompanying drawings, and the transceiver can be integrated with the pre shown in FIG. 5-8.
- the distortion coefficient adjusting device adjusts the pre-distortion coefficient according to the signal receiving quality of the receiving end when transmitting, thereby overcoming the influence of temperature change and device aging on the pre-distortion effect, and saving production cost.
- FIG. 9 is a schematic structural diagram of an embodiment of a transceiver according to an embodiment of the present invention.
- the transceiver 9 is used as a transmitting end, and includes:
- the predistortion module 91 is configured to perform predistortion processing on the baseband signal by using a predistortion coefficient corresponding to the currently set transmit power of the transmitting end to generate a predistortion baseband signal.
- the pre-distortion coefficient corresponding to the currently set transmit power of the transceiver 9 is a pre-distortion coefficient adjusted by using the embodiment shown in any one of FIG. 5-8, that is, the adjusted and the transceiver 9 are currently
- the actual transmit power has a good matching relationship, and a pre-distortion coefficient with better pre-distortion effect can be obtained.
- the predistortion coefficient matched with the current temperature is used as the predistortion coefficient.
- the predistortion coefficient adjusting device adjusts the predistortion coefficient to obtain a pre-loss that matches the current temperature.
- the true coefficient; the predistortion coefficient corresponding to the temperature within a certain range of the difference between the current temperatures may also be selected as the predistortion coefficient used in the predistortion module 91, for example: the current temperature is 15.
- the pre-distortion coefficient corresponding to the currently set transmit power corresponds to a temperature of 12°. Since the temperature difference between the two is only 3°, the pre-distortion coefficient of the baseband signal is directly selected by using the pre-distortion coefficient corresponding to 12° to generate a pre-distortion. Distortion baseband signal.
- the transmitting module 52 is configured to convert the pre-distorted baseband signal generated by the pre-distortion module 91 into a radio frequency signal, and then transmit the signal to the receiving end.
- the process of converting the pre-distorted baseband signal into a radio frequency signal and transmitting to the receiving end mainly comprises: sequentially performing digital-to-analog conversion, modulation, up-conversion, filtering, and power amplification of the pre-distorted baseband signal, and finally transmitting the power through the antenna.
- Receiving end sequentially performing digital-to-analog conversion, modulation, up-conversion, filtering, and power amplification of the pre-distorted baseband signal, and finally transmitting the power through the antenna.
- the pre-distortion coefficient adjusted by the pre-distortion coefficient adjustment method shown in any one of FIG. 5-8 is used. Therefore, it is possible to overcome the influence of temperature variation and device (mainly PA) aging on the predistortion effect, and it is possible to save costs.
- the transceiver 9 of FIG. 10 is further refined by the transceiver 9 of FIG. 9. Specifically, the transceiver 9 includes : Predistortion module 91 and transmit module 92.
- the predistortion module 91 includes: a digital modulation unit 911, a storage unit 912, and a predistortion unit 913.
- the storage unit 912 stores pre-distortion coefficients corresponding to different set powers, and the stored pre-distortion coefficients may be open-loop pre-distortion coefficients, or may be pre-obtained by using the adjusting device shown in any of FIG. 5-8.
- Distortion coefficient when the transceiver 9 needs to transmit, the predistortion unit 913 receives the baseband signal received by the digital modulation unit 911, and selects a predistortion corresponding to the transmit power currently set by the transceiver 9 from the storage unit 912. The coefficient pre-distorts the baseband signal to obtain a pre-distorted baseband signal, which is then output to the next stage.
- the transmitting module 92 mainly includes a DAC (Digital to Analog Converter) 921, a modulation inverter 922, a filter circuit 923, a PA924, and a duplexer 925.
- DAC Digital to Analog Converter
- the DAC921, the modulation inverter 922, the filter circuit 923, and the PA924 respectively perform digital-to-analog conversion, modulation, and up-conversion, filtering, and power amplification on the pre-distorted baseband signal.
- the output is output to the antenna through the duplexer 925.
- the duplexer 925 functions to distinguish the signal sent by the transceiver 9 from the received signal, so that the transceiver 9 can transmit and receive. The function of the letter.
- the transceiver 9 of this embodiment can adopt the pre-distortion coefficient obtained by the adjusting device shown in any of FIG. 5-8, it can overcome the effect of temperature drift and device aging on the pre-distortion when the open-loop pre-distortion coefficient is adopted. The impact, as well as the high cost problem when using closed-loop pre-distortion coefficients.
- the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Algebra (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Transmitters (AREA)
- Amplifiers (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例公开了一种预失真系数的调整方法,包括:调整发射端当前设定的发射功率对应的预失真系数;分析分别根据调整前和调后的预失真系数获得的接收端反馈的信号接收质量报告,以确定接收端的信号接收质量的变化情况;若信号接收质量变好,则以调整后的预失真系数作为发射端当前设定的发射功率对应的预失真系数,然后返回所述调整发射端当前设定的发射功率对应的预失真系数的步骤;若信号接收质量变差,则将调整前的预失真系数作为发射端当前设定的发射功率对应的预失真系数。本发明实施例还公开了一种预失真系数的调整装置。采用本发明,可以克服采用开环预失真系数时,温度和PA老化对预失真效果的影响,以及采用闭环预失真系数时的高成本问题。
Description
技术领域
本发明涉及移动通信领域, 尤其涉及一种预失真系数调整方法及装置。 背景技术
在无线通讯中, PA(Power Amplifier, 功率放大器)的非线性问题制约了 PA 的最大发射功率和效率; 为了最大程度地提高 PA的发射功率和效率, 可以采用 预失真技术抵消 PA的非线性,从而使 PA能够工作在非线性放大区, 以提高 PA 的发射功率和效率; 预失真技术是指在信号输入 PA之前, 对信号进行预失真处 理, 得到失真的信号, 当这个失真的信号通过 PA时, 将氏消 PA的非线性, 实 现 PA的线性化, 提高 PA的发射功率和效率。
在预失真技术中, 起关键作用的是预失真系数, 通过选择与 PA当前的输出 功率最匹配的预失真系数, 可以使 PA达到最佳的线性化效果; 目前, 预失真系 数主要包括两种: 开环预失真系数和闭环预失真系数。
开环预失真系数是在设备(例如: 收发信机)出厂前, 通过专用的仪表(例 如: 频谱分析仪)对 PA非线性区内的不同发射功率下的输出进行采样, 通过计 算机得到一组与 PA的发射功率相对应的预失真系数,并将该组预失真系数写入 设备的存储器中; 当设备实际使用时, 直接从存储器中选择与设备当前设定的 发射功率相对应的预失真系数对信号进行预失真处理, 以解决 PA 的非线性问 题; 但是, 随着温度的变化和 PA的老化, 设备实际的发射功率会与当前设定的 发射功率出现偏差, 导致设定的发射功率与开环预失真系数的对应关系发生偏 差, 使预失真的效果变得恶劣。
闭环预失真系数与开环预失真系数不同的是, 在设备(例如: 收发信机) 上集成预失真系数的计算装置 (主要包括: 取样电路、 变频器、 滤波器、 模数 转换器, 等等), 通过该计算装置实时地对 PA的输出进行采样, 从而计算出与 当前的发射功率最匹配的预失真系数, 得到最佳的预失真效果。 但是, 此种方 式需要在每台设备上均增加诸如取样电路、 变频器、 滤波器和模数转换器等预 失真系数的计算装置, 因此将使生产成本剧增。
发明内容
本发明实施例所要解决的技术问题在于, 提供一种预失真系数调整方法及 装置, 可以克服采用开环预失真系数时, 温度和 PA老化对预失真效果的影响, 以及采用闭环预失真系数时, 带来的高成本问题。
为了解决上述技术问题, 本发明实施例提供了一种预失真系数的调整方法, 包括:
调整发射端当前设定的发射功率对应的预失真系数;
分析根据调整前的预失真系数获得的接收端反馈的信号接收质量报告、 和 根据调整后的预失真系数获得的接收端反馈的信号接收质量报告, 以确定所述 接收端的信号接收质量的变化情况;
若所述接收端的信号接收质量变好, 则以调整后的预失真系数作为所述发 射端当前设定的发射功率对应的预失真系数, 然后返回所述调整发射端当前设 定的发射功率对应的预失真系数的步骤;
若所述接收端的信号接收质量变差, 则将调整前的预失真系数作为所述发 射端当前设定的发射功率对应的预失真系数。
相应地, 本发明实施例还提供了一种预失真系数的调整装置, 包括: 第一调整模块, 用于调整发射端当前设定的发射功率对应的预失真系数; 第一分析模块, 用于分析根据调整前的预失真系数获得的接收端反馈的信 号接收质量报告、 和根据调整后的预失真系数获得的接收端反馈的信号接收质 量报告, 以确定所述接收端的信号接收质量的变化情况;
第一指示模块, 用于当所述接收端的信号接收质量变好时, 以调整后的预 失真系数作为所述发射端当前设定的发射功率对应的预失真系数, 然后指示第 一调整模块调整发射端当前设定的发射功率对应的预失真系数;
执行模块, 用于当所述接收端的信号接收质量变差时, 将调整前的预失真 系数作为所述发射端当前设定的发射功率对应的预失真系数。
实施本发明实施例, 具有如下有益效果:
本发明实施例由于对当前设定的发射功率对应的预失真系数进行调整, 分 析接收端反馈的调整前的信号接收质量报告和调整后的信号接收质量报告, 以 确定接收端的信号接收质量的变化情况, 并根据变化情况确定是否继续调整当 前设定的发射功率对应的预失真系数; 由于通过接收端的信号接收质量的变化
情况作为衡量是否继续调整预失真系数的依据, 因此可以将当前设定的发射功 率对应的预失真系数调整为与当前实际的发射功率相匹配, 从而得到较好的预 失真效果, 克服在采用开环预失真系数时, 由于温度和 PA老化对预失真效果的 影响, 以及采用闭环预失真系数时, 带来的高成本问题。 附图说明 例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是是本发明提供的预失真系数的调整方法的第一实施例的流程示意图; 图 2是本发明提供的预失真系数的调整方法的第二实施例的流程示意图; 图 3是本发明提供的预失真系数的调整方法的第三实施例的流程示意图; 图 4是本发明提供的发信方法的实施例的流程示意图;
图 5是是本发明提供的预失真系数的调整装置的第一实施例的结构示意图; 图 6是本发明提供的预失真系数的调整装置的第二实施例的结构示意图; 图 7是本发明提供的预失真系数的调整装置的第三实施例的结构示意图; 图 8是本发明提供的预失真系数的调整装置的第四实施例的结构示意图 图 9是本发明提供的发信机的第一实施例的结构示意图;
图 10是本发明提供的收发信机的第二实施例的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
请参考图 1 , 是本发明的预失真系数的调整方法的第一实施例的流程示意 图, 所述方法包括:
步骤 S11 , 调整发射端当前设定的发射功率对应的预失真系数。
具体地, 调整发射端当前设定的发射功率对应的预失真系数可以包括: 将
发射端当前设定的发射功率对应的预失真系数调整为假设所述发射功率增加 N 个调整步长后对应的预失真系数, 所述 N为假设所述发射功率增加的次数; 或 者, 将发射端当前设定的发射功率对应的预失真系数调整为假设所述发射功率 减小 N个调整步长后对应的预失真系数, 所述 N为假设所述发射功率减小的次 数; 例如: 发射端当前设定的发射功率 X, 调整步长为 Δ Χ , 则在调整时, 将值 为( X士 Ν* Δ X )的发射功率对应的预失真系数作当前设定的发射功率 X对应的 预失真系数, 即调整后的预失真系数, 其中 Ν为假设发射功率增加或减小的次 数; 此处, 需要说明的是, 本实施例只涉及假设将当前设定的发射功率增加或 减小调整值后的发射功率对应的预失真系数作为当前设定的发射功率对应的预 失真系数, 但实际上并没有改变当前设定的发射功率。
需要说明的是, 由于温度的变化和器件(主要是 ΡΑ )的老化等因素的影响, 发射端当前设定的发射功率可能与发射端当前实际的发射功率存在一定程度的 偏差。
可以理解的是, 当前设定的发射功率对应的预失真系数可以是数字预失真 系数, 并且是开环预失真系数。
步骤 S12,分析根据调整前的预失真系数获得的接收端反馈的信号接收质量 报告、 和根据调整后的预失真系数获得的接收端反馈的信号接收质量报告。
其中, 根据调整前的预失真系数获得的接收端反馈的信号接收质量报告可 以是在步骤 S11之前, 采用如下方式获得:
Α、 利用调整前的预失真系数对基带信号进行预失真处理, 生成预失真基带 信号。
Β、 对根据调整前的预失真系数生成的预失真基带信号进行一系处理(主要 包括: 调制、 上变频)之后, 发射给接收端, 并接收所述接收端反馈的信号接 收质量报告。
类似地, 根据调整后的预失真系数获得的接收端反馈的信号接收质量报告 可以是在步骤 S11之后, 采用如下方式获得:
C、 利用调整后的预失真系数对基带信号进行预失真处理, 生成预失真基带 信号。
D、 对根据调整后的预失真系数生成的预失真基带信号进行一系处理(主要 包括: 调制、 上变频)之后, 发射给接收端, 并接收所述接收端反馈的信号接
收质量报告。
进一步地, 不论是根据调整前的预失真系数获得的信号接收质量报告, 还 是根据调整后的预失真系数获得的信号接收质量报告, 均可以包括: 用于衡量 接收端的信号接收质量的物理量, 例如: MSE(Mean Squared Error, 误差均方根) 值或 SNR(Signal to noise ratio, 信号噪声比, 筒称 "信噪比" ); 通过比较两次获 得的信号接收质量报告中的 MSE值或 SNR,可以得到接收端的信号接收质量的 变化情况, 由接收端的信号接收质量的变化情况, 可以反向判断出对于发射端 当前设定的发射功率, 是采用调整前的预失真系数能获得更好的预失真效果, 还是采用调整后的预失真系数能够获得更好的预失真效果。
步骤 S13, 确定接收端的信号接收质量的变化情况。 此处, 信号接收质量的 变化情况包括: 接收端的信号接收质量变好, 或, 接收端的信号接收质量变差; 当信号接收质量变好时,执行步骤 S14, 当信号接收质量变差时,执行步骤 S15。
步骤 S14,以调整后的预失真系数作为发射端当前设定的发射功率对应的预 失真系数之后, 返回执行步骤 Sll。
步骤 S15,将调整前的预失真系数作为发射端当前设定的发射功率对应的预 失真系数。
进一步地, 步骤 S15将调整前的预失真系数作为发射端当前设定的发射功 率对应的预失真系数时, 建立当前温度与所述作为发射端当前设定的发射功率 最终对应的预失真系数的对应关系,例如:建立预失真系数 LUT( Look-Up-Table, 显示查找)表, 在 LUT表中记录发射功率(设定的发射功率, 可能与实际的发 射功率存在偏差)、 预失真系数和温度的一一对应关系, 也可能是将发射功率、 预失真系数和温度的——对应关系写入已有的 LUT表中; 通过记录预失真系数 与温度的关系, 可以避免在相同温度下对预失真系数的反复调整。
可以理解的是, 本实施例的预失真系数的调整方法的触发执行的条件可以 包括: 检测到上电信号时, 当检测上电信号时, 最有可能的情况是使用环境发 生了改变, 为了适应环境的变化, 进行预失真系数的调整; 或检测到环境的当 前温度不在预设温度范围内时,例如预设温度范围为 [15° ,30° ] , 而检测到的当 前温度却为 0。 时; 或接收端的信号接收质量不符合预期的要求时, 此时为了保 证接收端的信号接收质量, 可以尝试对当前设定的发射功率对应的预失真系数 进行调整; 或定时器的设定时刻到来时, 例如: 可以通过定时器, 实现按季节
地对当前设定功率对应的预失真系数进行调整; 或其它合理的时机。 本实施例对发射端当前设定的发射功率对应的预失真系数进行调整, 并根 据调整前后, 接收端的信号接收质量的变化情况, 确定是否继续调整, 从而查 找到与当前实际的发射功率能较好匹配的预失真系数作为发射端当前设定的发 射功率对应的预失真系数, 以克服温度变化(也称 "温漂" )和器件(主要是 PA ) 老化对预失真效果的影响; 另外, 由于本实施例的预失真系数的调整方法不需 要增加实现闭环预失真系数所需的取样电路、 变频器、 滤波器、 模数转换器等 器件, 可以直接由软件实现, 因此可以显著地降低生产成本。
请参考图 2,是本发明提供的预失真系数调整方法的第二实施例的流程示意 图, 所述方法包括:
步骤 S21 ,将发射端当前设定的发射功率对应的预失真系数调整为 殳所述 发射功率减小一个调整步长后对应的预失真系数。
此处, 殳发射端当前设定的发射功率 X, 调整步长为 Δ Χ, 则将当前设定 的发射功率 X对应的预失真系数调整为设定的发射功率为 (X - Δ Χ )对应的预 失真系数。
步骤 S22,分析根据调整前的预失真系数获得的接收端反馈的信号接收质量 报告、 和根据调整后的预失真系数获得的接收端反馈的信号接收质量报告。
步骤 S23, 确定接收端的信号接收质量的变化情况。如果接收端的信号接收 质量变差, 则以所述调整前的预失真系数作为所述当前设定的发射功率对应的 预失真系数之后, 转到步骤 S24。
步骤 S24,将发射端当前设定的发射功率对应的预失真系数调整为 殳所述 发射功率增加 N个调整步长后对应的预失真系数。
此处, 殳发射端当前设定的发射功率 X, 调整步长为 Δ Χ, 则将当前设定 的发射功率 X调整为假设设定的发射功率为(Χ+Ν* Δ Χ )时对应的预失真系数, 其中 Ν为假设发射功率增加的次数,例如,当由步骤 S23跳到步骤 S24时, N=l; 此处需要说明的是, 在步骤 S24 中只是采用 (Χ+Ν* Δ Χ )对应的预失真系数作 为当前设定的发射功率 X对应的预失真系数, 以实现对当前设定的发射功率 X 对应的预失真系数的调整, 但并没有改变当前设定的发射功率。
步骤 S25,分析根据调整前的预失真系数获得的接收端反馈的信号接收质量 报告、 和根据调整后的预失真系数获得的接收端反馈的信号接收质量报告。
步骤 S26, 确定接收端的信号接收质量的变化情况。
此处, 信号接收质量的变化情况包括: 接收端的信号接收质量变好, 或, 接收端的信号接收质量变差; 当信号接收质量变好时, 执行步骤 S27, 当信号接 收质量变差时, 执行步骤 S28。
步骤 S27,以调整后的预失真系数作为发射端当前设定的发射功率对应的预 失真系数之后, 返回执行步骤 S24。
步骤 S28,将调整前的预失真系数作为发射端当前设定的发射功率对应的预 失真系数。
本实施例中, 当将发射端当前设定的发射功率对应的预失真系数调整为假 设所述发射功率减小一个调整步长后对应的预失真系数时, 如果接收端的接收 信号质量变差, 那么则表明当前实际的发射功率比当前设定的发射功率高, 因 此需要改用将发射端当前设定的发射功率对应的预失真系数调整为假设所述发 射功率增加 N个调整步长后对应的预失真系数的方式调整预失真系数。
请参考图 3 是本发明提供的预失真系数调整方法的第三实施例的流程示意 图, 所述方法包括:
步骤 S31 ,将发射端当前设定的发射功率对应的预失真系数调整为 殳所述 发射功率增加一个调整步长后对应的预失真系数。
此处, 殳发射端当前设定的发射功率 X, 调整步长为 Δ Χ, 则将当前设定 的发射功率 X对应的预失真系数调整为假设设定的发射功率为 (Χ+ Δ χ )对应 的预失真系数。
步骤 S32,分析根据调整前的预失真系数获得的接收端反馈的信号接收质量 报告、 和根据调整后的预失真系数获得的接收端反馈的信号接收质量报告。
步骤 S33, 确定接收端的信号接收质量的变化情况。如果接收端的信号接收 质量变差, 则以所述调整前的预失真系数作为所述当前设定的发射功率对应的 预失真系数, 然后转到步骤 S34。
步骤 S34,将发射端当前设定的发射功率对应的预失真系数调整为 殳所述 发射功率减小 N个调整步长后对应的预失真系数。
此处, 殳发射端当前设定的发射功率 X, 调整步长为 Δ Χ, 则将当前设定 的发射功率 X调整为(Χ _ Ν* Δ Χ )对应的预失真系数, 其中 Ν为假设发射功率 减小的次数, 例如, 当由步骤 S23跳到步骤 S24时, N=l , 此处需要说明的是,
在步骤 S24中只是采用( X - N* Δ X )对应的预失真系数作为发射功率 X对应的 预失真系数, 以实现对发射功率 X对应的预失真系数的调整, 但并没有改变设 定的发射功率 X。
步骤 S35 ,分析根据调整前的预失真系数获得的接收端反馈的信号接收质量 报告、 和根据调整后的预失真系数获得的接收端反馈的信号接收质量报告。
步骤 S36, 确定接收端的信号接收质量的变化情况。 此处, 信号接收质量的 变化情况包括: 接收端的信号接收质量变好, 或, 接收端的信号接收质量变差; 当信号接收质量变好时,执行步骤 S37, 当信号接收质量变差时,执行步骤 S38。
步骤 S37 ,以调整后的预失真系数作为发射端当前设定的发射功率对应的预 失真系数之后, 返回执行步骤 S34。
步骤 S38,将调整前的预失真系数作为发射端当前设定的发射功率对应的预 失真系数。
本实施例中, 当将发射端当前设定的发射功率对应的预失真系数调整为所 述发射功率增加一个调整步长后对应的预失真系数时, 如果接收端的接收信号 质量变差, 那么则表明当前实际的发射功率比当前设定的发射功率高, 因此需 要改用将发射端当前设定的发射功率对应的预失真系数调整为假设所述发射功 率减小 N个调整步长后对应的预失真系数的方式调整预失真系数。
以上实施例对本发明实施例的预失真系数的调整方法进行了详细阐述, 下 面结合附图 4, 对本发明实施例的发信方法进行说明, 该发信方法在对基带信号 进行预失真处理时, 采用图 1-图 3 中任一图所示的实施例所调整得到的预失真 系数。
请参考图 4, 是本发明实施例的发信方法的实施例的流程示意图, 所述发信 方法包括:
步骤 S41 ,采用与发射端当前设定的发射功率对应的预失真系数对基带信号 进行预失真处理, 生成预失真基带信号。
其中,发射端当前设定的发射功率对应的预失真系数为采用图 1-3中任一图 所示的实施例所调整出的预失真系数, 即经过调整的与发射端当前实际的发射 功率具有较好匹配关系, 能够获得较好预失真效果的预失真系数。
可以理解的是, 如果图 1-3中任一图所示的实施例在确定出预失真系数时, 还建立了预失真系数与温度的对应关系, 那么则采用与当前温度匹配的预失真
系数作为步骤 S41 中使用的预失真系数; 如果在当前设定的发射功率下, 没有 与当前温度相匹配的预失真系数,则可以在此温度下使用如图 1-3中任一图所示 的预失真系数调整方法对预失真系数进行调整, 获得与当前温度相匹配的预失 真系数; 也可以选择与当前温度的差值在一定范围内的温度对应的预失真系数 作为步骤 S41中使用的预失真系数, 例如: 当前温度为 15° , 而当前设定的发 射功率对应的预失真系数对应的温度为 12° , 由于两者的温差仅有 3° , 因此 直接选用 12° 对应的预失真系数对基带信号进行预失真处理, 生成预失真基带 信号。
步骤 S52,将步骤 S41生成的预失真基带信号转换为射频信号之后,发射给 接收端。
其中, 将预失真基带信号转换成射频信号, 发射给接收端的过程主要包括: 依次对预失真基带信号的数模转换、 调制、 上变频、 滤波和通过功率放大器进 行功率放大, 最后通过天线发射给接收端。
本实施例由于在发信时, 不是直接采用开环预失真系数或闭环预失真系数, 而是使用由图 1-3中任一图所示的预失真系数调整方法调整得到的预失真系数, 因此能够克服温度变化和器件(主要是 PA )老化对预失真效果的影响, 且能够 节约成本。
以上实施例, 从方法流程对本发明实施例所涉及的预失真系数的调整方法 和发信方法进行了详细的阐述, 下面结合附图, 对相应于上述方法的预失真系 数的调整装置和发信机进行介绍。
请参考图 5 , 是本发明的预失真系数的调整装置的第一实施例的结构示意 图, 所述调整装置 5包括:
第一调整模块 51 ,用于调整发射端当前设定的发射功率对应的预失真系数。 具体地, 调整发射端当前设定的发射功率对应的预失真系数可以包括: 将 发射端当前设定的发射功率对应的预失真系数调整为假设所述发射功率增加 N 个调整步长后对应的预失真系数, 所述 N为假设所述发射功率增加的次数; 或, 将发射端当前设定的发射功率对应的预失真系数调整为假设所述发射功率减小 N个调整步长后对应的预失真系数, 所述 N为假设所述发射功率减小的次数; 例如: 发射端当前设定的发射功率 X, 调整步长为 Δ Χ , 则在调整时, 将值为(X 士 Ν* Δ Χ ) 的发射功率对应的预失真系数作当前设定的发射功率 X对应的预失
真系数,即调整后的预失真系数,其中 N为发射功率增加或减小的次数。;此处, 需要说明的是, 虽然本实施例中涉及到假设发射功率的增加或减小, 但是在本 实施例中, 却并没有改变当前设定的发射功率。
需要说明的是, 由于温度的变化和器件(主要是 PA )的老化等因素的影响, 发射端当前设定的发射功率可能与发射端当前实际的发射功率存在一定程度的 偏差。
可以理解的是, 当前设定的发射功率对应的预失真系数可以是数字预失真 系数, 并且是开环预失真系数。
第一分析模块 52, 用于分析根据调整前的预失真系数获得的接收端反馈的 信号接收质量报告、 和根据调整后的预失真系数获得的接收端反馈的信号接收 质量报告, 以确定接收端信号接收质量的变化情况。 此处, 信号接收质量的变 化情况包括: 接收端的信号接收质量变好, 或, 接收端的信号接收质量变差。
其中, 不论是根据调整前的预失真系数获得的信号接收质量报告, 还是根 据调整后的预失真系数获得的信号接收质量报告, 均可以包括: 用于衡量接收 端的信号接收质量的物理量, 例如: MSE(Mean Squared Error, 误差均方根)值或 SNR(Signal to noise ratio, 信号噪声比, 筒称 "信噪比" ); 通过比较两次获得的 信号接收质量报告中的 MSE值或 SNR,可以得到接收端的信号接收质量的变化 情况, 由接收端的信号接收质量的变化情况, 可以反向判断出对于发射端当前 设定的发射功率, 是采用调整前的预失真系数能获得更好的预失真效果, 还是 采用调整后的预失真系数能够获得更好的预失真效果。
第一指示模块 53, 用于当信号接收质量变差时, 以调整后的预失真系数作 为发射端当前设定的发射功率对应的预失真系数之后, 指示第一调整模块 51继 续调整发射端当前设定的发射功率对应的预失真系数。
执行模块 54, 用于将调整前的预失真系数作为发射端当前设定的发射功率 对应的预失真系数。
进一步地, 执行模块 54将调整前的预失真系数作为发射端当前设定的发射 功率对应的预失真系数时, 建立当前温度与所述作为发射端当前设定的发射功 率最终对应的预失真系数的对应关系, 例如: 建立预失真系数 LUT ( Look-Up-Table, 显示查找 )表, 在 LUT表中记录发射功率(设定的发射功率, 可能与实际的发射功率存在偏差)、 预失真系数和温度的——对应关系, 也可能
是将发射功率、 预失真系数和温度的一一对应关系写入已有的 LUT表中; 通过 记录预失真系数与温度的关系, 可以避免在相同温度下对预失真系数的反复调 可以理解的是, 本实施例的预失真系数的调整方法的触发执行的条件可以 包括: 检测到上电信号时, 当检测上电信号时, 最有可能的情况是使用环境发 生了改变, 为了适应环境的变化, 进行预失真系数的调整; 或检测到环境的当 前温度不在预设温度范围内时,例如预设温度范围为 [15° ,30° ] , 而检测到的当 前温度却为 0。 时; 或接收端的信号接收质量不符合预期的要求时, 此时为了保 证接收端的信号接收质量, 可以尝试对当前设定的发射功率对应的预失真系数 进行调整; 或定时器的设定时刻到来时, 例如: 可以通过定时器, 实现按季节 地对当前设定功率对应的预失真系数进行调整; 或其它合理的时机
本实施例对发射端当前设定的发射功率对应的预失真系数进行调整, 并根 据调整前后, 接收端的信号接收质量的变化情况, 确定是否继续调整, 从而查 找到与当前实际的发射功率能较好匹配的预失真系数作为发射端当前设定的发 射功率对应的预失真系数, 以克服温度变化(也称 "温漂" )和器件(主要是 PA ) 老化对预失真效果的影响; 另外, 由于本实施例的预失真系数的调整方法不需 要增加实现闭环预失真系数所需的取样电路、 变频器、 滤波器、 模数转换器等 器件, 可以直接由软件实现, 因此可以显著地降低生产成本。
请参考图 6, 是本发明的预失真系数的调整装置的第二实施例的结构示意 图, 该调整装置 5与图 5所示的调整装置 5相比, 还包括: 预失真模块 61和交 互模块 62。
其中, 预失真模块 61 , 用于利用调整前或调整后的预失真系数对基带信号 进行预失真处理, 生成预失真基带信号。
交互模块 62, 用于对根据调整前或调整后的预失真系数生成的预失真基带 信号进行一系处理(主要包括: 调制、 上变频)之后, 发射给接收端, 并接收 所述接收端反馈的信号接收质量报告。
通过预失真模块 61和交互模块 62实现了根据调整前或调整后的预失真系 数获得接收端反馈的信号接收质量报告的目的, 从而为分析模块 52分析接收端 的质量的变化情况提供了依据。
请参考图 7 ,是本发明提供的预失真系数的调整装置的第三实施例的结构示
意图, 该调整装置 5包括:
第二调整模块 71 , 用于将发射端当前设定的发射功率对应的预失真系数调 整为假设所述发射功率减小一个调整步长后对应的预失真系数。
此处, 殳发射端当前设定的发射功率 X, 调整步长为 Δ Χ, 则将当前设定 的发射功率 X对应的预失真系数调整为 (X - Δ Χ )对应的预失真系数。
第二分析模块 72, 用于分析根据调整前的预失真系数获得的接收端反馈的 信号接收质量报告、 和根据调整后的预失真系数获得的接收端反馈的信号接收 质量报告, 以确定接收端的信号接收质量的变化情况。
第二指示模块 73 , 用于当第二分析模块 72分析质量报告, 得到接收端的信 号接收质量变差的结果时, 以所述调整前的预失真系数作为所述当前设定的发 射功率对应的预失真系数之后, 指示所述第一调整模块 51将发射端当前设定的 发射功率对应的预失真系数调整为假设所述发射功率增加一个调整步长后对应 的预失真系数。
第一调整模块 51 , 用于将发射端当前设定的发射功率对应的预失真系数调 整为假设所述发射功率增加 Ν个调整步长后对应的预失真系数。
此处, 殳发射端当前设定的发射功率 X, 调整步长为 Δ Χ, 则将当前设定 的发射功率 X调整为 (Χ+Ν* Δ Χ )对应的预失真系数, 其中 Ν为假设发射功率 增加的次数, 例如, 当由指示模块 73转到第一调整模块 51时, N=l ; 此处需要 说明的是, 第一调整模块 51只是采用 (Χ+Ν* Δ Χ )对应的预失真系数作为发射 功率 X对应的预失真系数, 以实现对发射功率 X对应的预失真系数的调整, 但 并没有改变设定的发射功率 X。
第一分析模块 52,用于分析根据调整前的预失真系数获得的接收端反馈的 信号接收质量报告、 和根据调整后的预失真系数获得的接收端反馈的信号接收 质量报告, 以确定接收端的信号接收质量的变化情况。 此处, 信号接收质量的 变化情况包括: 接收端的信号接收质量变好, 或, 接收端的信号接收质量变差。
第一指示模块 53 ,用于当第一分析模块 52分析得到接收端的信号接收质量 变好的结果时, 以调整后的预失真系数作为发射端当前设定的发射功率对应的 预失真系数之后, 指示所述第一调整模块 51将发射端当前设定的发射功率对应 的预失真系数调整为假设所述发射功率增加 Ν 个调整步长后对应的预失真系 数。
执行模块 54, 将调整前的预失真系数作为发射端当前设定的发射功率对应 的预失真系数。
本实施例中, 当将发射端当前设定的发射功率对应的预失真系数调整为所 述发射功率减小一个调整步长后对应的预失真系数时, 如果接收端的接收信号 质量变差, 那么则表明当前实际的发射功率比当前设定的发射功率高, 因此需 要改用将发射端当前设定的发射功率对应的预失真系数调整为所述发射功率增 加 N个调整步长后对应的预失真系数的方式调整预失真系数。
请参考图 8,是本发明提供的预失真系数的调整装置的第三实施例的结构示 意图, 所述调整装置 5包括:
第三调整模块 81 , 用于将当前设定的发射功率对应的预失真系数调整为假 设所述发射功率增加一个调整步长后对应的预失真系数。
此处, 殳发射端当前设定的发射功率 X, 调整步长为 Δ Χ, 则将当前设定 的发射功率 X对应的预失真系数调整为 (Χ+ Δ χ )对应的预失真系数。
第三分析模块 82, 用于分析根据调整前的预失真系数获得的接收端反馈的 信号接收质量报告、 和根据调整后的预失真系数获得的接收端反馈的信号接收 质量报告, 以确定接收端的信号接收质量的变化情况。 此处, 接收端的信号接 收质量变化情况包括: 变好或变差。
第三指示模块 83,用于当第三分析模块 54分析得到接收端的信号接收质量 变的结果时, 指示第一调整模块 51将发射端当前设定的发射功率对应的预失真 系数调整为所述发射功率减小一个调整步长后对应的预失真系数。
第一调整模块 51 , 用于将发射端当前设定的发射功率对应的预失真系数调 整为假设所述发射功率减小 Ν个调整步长后对应的预失真系数。
此处, 殳发射端当前设定的发射功率 X, 调整步长为 Δ Χ, 则将当前设定 的发射功率 X调整为(Χ _ Ν* Δ Χ )对应的预失真系数, 其中 Ν为假设发射功率 减小的次数, 例如, 当由第三指示模块 83转到第一调整模块 51时, N=l ; 此处 需要说明的是, 第一调整模块 51 只是采用 (X - Ν* Δ Χ )对应的预失真系数作 为发射功率 X对应的预失真系数, 以实现对发射功率 X对应的预失真系数的调 整, 但并没有改变当前设定的发射功率 X。
第一分析模块 52, 用于分析根据调整前的预失真系数获得的接收端反馈的 信号接收质量报告、 和根据调整后的预失真系数获得的接收端反馈的信号接收
质量报告, 以确定接收端的信号接收质量的变化情况。 此处, 信号接收质量的 变化情况包括: 接收端的信号接收质量变好, 或, 接收端的信号接收质量变差。
第一指示模块 53 ,用于当第一分析模块 52确定接收端的信号接收质量变好 时, 以调整后的预失真系数作为发射端当前设定的发射功率对应的预失真系数 之后, 指示第一调整模块 51将发射端当前设定的发射功率对应的预失真系数调 整为假设所述发射功率减小 N个调整步长后对应的预失真系数。
执行模块 54, 用于当第一分析模块 52确定接收端的信号接收质量变差时, 将调整前的预失真系数作为发射端当前设定的发射功率对应的预失真系数。
本实施例中, 当将发射端当前设定的发射功率对应的预失真系数调整为所 述发射功率增加一个调整步长后对应的预失真系数时, 如果接收端的接收信号 质量变差, 那么则表明当前实际的发射功率比当前设定的发射功率高, 因此需 要改用将发射端当前设定的发射功率对应的预失真系数调整为所述发射功率减 小 N个调整步长后对应的预失真系数的方式调整预失真系数。
以上实施例对本发明实施例的预失真系数的调整装置进行了详细阐述, 下 面结合附图, 对本发明实施例的收发信机进行说明, 该收发信机可以集成图 5- 图 8所示的预失真系数的调整装置, 以在发信时, 根据接收端的信号接收质量 对预失真系数进行调整, 从而克服温度变化和器件老化对预失真效果的影响, 且能够节约生产成本。
请参考图 9, 是本发明实施例的收发信机的实施例的结构示意图, 所述收发 信机 9作为发射端, 包括:
预失真模块 91 , 用于采用与发射端当前设定的发射功率对应的预失真系数 对基带信号进行预失真处理, 生成预失真基带信号。
其中,收发信机 9当前设定的发射功率对应的预失真系数为采用图 5-8中任 一图所示的实施例所调整出的预失真系数, 即经过调整的与收发信机 9 当前实 际的发射功率具有较好匹配关系, 能够获得较好预失真效果的预失真系数。
可以理解的是,如果图 5-8中任一图所示的实施例在得出预失真系数时,还 建立预失真系数与温度的对应关系, 那么则采用与当前温度匹配的预失真系数 作为预失真模块 91使用的预失真系数; 如果在当前设定的发射功率下, 没有与 当前温度相匹配的预失真系数,则可以在此温度下使用如图 5-8中任一图所示的 预失真系数的调整装置对预失真系数进行调整, 获得与当前温度相匹配的预失
真系数; 也可以选择与当前温度的差值在一定范围内的温度对应的预失真系数 作为预失真模块 91中使用的预失真系数, 例如: 当前温度为 15。 , 而当前设定 的发射功率对应的预失真系数对应的温度为 12° , 由于两者的温差仅有 3° , 因此直接选用 12° 对应的预失真系数对基带信号进行预失真处理, 生成预失真 基带信号。
发射模块 52,用于将预失真模块 91生成的预失真基带信号转换为射频信号 之后, 发射给接收端。
其中, 将预失真基带信号转换成射频信号, 发射给接收端的过程主要包括: 依次对预失真基带信号的数模转换、 调制、 上变频、 滤波和通过功率放大器进 行功率放大, 最后通过天线发射给接收端。
本实施例由于在发信时, 不是直接采用开环预失真系数或闭环预失真系数, 而是使用由图 5-8中任一图所示的预失真系数调整方法调整得到的预失真系数, 因此能够克服温度变化和器件(主要是 PA )老化对预失真效果的影响, 且能够 节约成本。
请参考图 10, 是本发明的收发信机的第二实施例的结构示图, 图 10的收发 信机 9是图 9的收发信机 9的进一步细化, 具体地, 收发信机 9包括: 预失真 模块 91和发射模块 92。
其中, 预失真模块 91包括: 数字调制单元 911、 存储单元 912和预失真单 元 913。存储单元 912中存储有与不同设定功率对应的预失真系数, 该存储的预 失真系数可以是开环预失真系数,也可以是采用图 5-8任一图所示的调整装置得 到的预失真系数, 当收发信机 9需要发信时, 预失真单元 913接收数字调制单 元 911输来的基带信号, 并从存储单元 912中选择与收发信机 9当前设定的发 射功率对应的预失真系数对该基带信号进行预失真处理, 得到预失真的基带信 号, 然后输出给下一级。
发射模块 92主要包括: DAC(Digital to Analog Converter, 数模转换器) 921、 调制变频器 922、 滤波电路 923、 PA924和双工器 925。 当预失真单元 913将预 失真基带信号输出给发射模块 92时, 通过 DAC921、 调制变频器 922、 滤波电 路 923和 PA924分别对预失真基带信号进行数模转换、 调制及上变频、 滤波以 及功率放大, 最后通过双工器 925输出给天线发射出去, 此处双工器 925的作 用是将收发信机 9发送的信号和接收的信号进行区分, 使收发信机 9实现收发
信的功能。
本实施例的收发信机 9由于可以采用图 5-8任一图所示的调整装置得到的预 失真系数, 因此可以克服采用开环预失真系数时, 温漂和器件老化对预失真效 果的影响, 以及采用闭环预失真系数时, 高成本的问题。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计算 机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Random Access Memory, RAM )等。
以上所揭露的仅为本发明较佳实施例而已, 当然不能以此来限定本发明之 权利范围, 本领域普通技术人员可以理解实现上述实施例的全部或部分流程, 并依本发明权利要求所作的等同变化, 仍属于发明所涵盖的范围。
Claims
1、 一种预失真系数的调整方法, 其特征在于, 包括:
调整发射端当前设定的发射功率对应的预失真系数;
分析根据调整前的预失真系数获得的接收端反馈的信号接收质量报告、 和 根据调整后的预失真系数获得的接收端反馈的信号接收质量报告, 以确定所述 接收端的信号接收质量的变化情况;
若所述接收端的信号接收质量变好, 则以调整后的预失真系数作为所述发 射端当前设定的发射功率对应的预失真系数, 然后返回所述调整发射端当前设 定的发射功率对应的预失真系数的步骤;
若所述接收端的信号接收质量变差, 则将调整前的预失真系数作为所述发 射端当前设定的发射功率对应的预失真系数。
2、 如权利要求 1所述的调整方法, 其特征在于, 在调整发射端当前设定的 发射功率对应的预失真系数之前, 还包括:
采用调整前的预失真系数对基带信号进行预失真处理, 生成预失真基带信 号, 将所述根据调整前预失真系数生成的预失真基带信号转换为射频信号之后, 发射给接收端, 并接收所述接收端反馈的信号接收质量报告;
在调整发射端当前设定的发射功率对应的预失真系数之后, 还包括: 采用调整后的预失真系数对基带信号进行预失真处理, 生成预失真基带信 号, 将所述根据调整前的预失真系数生成的预失真基带信号转换为射频信号之 后, 发射给接收端, 并接收所述接收端反馈的信号接收质量报告。
3、 如权利要求 1所述调整方法, 其特征在于, 当将调整前的预失真系数作 为发射端当前设定的发射功率对应的预失真系数时, 建立当前温度值与所述作 为发射端当前设定的发射功率对应的预失真系数的对应关系。
4、 如权利要求 1所述的调整方法, 其特征在于, 所述信号接收端反馈的质 量报告包括: 用于衡量接收端的信号接收质量的误差均方根 MSE值或信噪比 SNR。
5、 如权利要求 1-4中任一项所述的调整方法, 其特征在于, 所述调整发射 端当前设定的发射功率对应的预失真系数, 包括:
将发射端当前设定的发射功率对应的预失真系数调整为假设所述发射功率 增加 N个调整步长后对应的预失真系数, 所述 N为假设所述发射功率增加的次 数;
或者, 将发射端当前设定的发射功率对应的预失真系数调整为假设所述发 射功率减小 N个调整步长后对应的预失真系数, 所述 N为假设所述发射功率减 小的次数。
6、 如权利要求 5所述的调整方法, 其特征在于, 所述将发射端当前设定的 发射功率调整为假设所述发射功率增加一个调整步长后对应的预失真系数的步 骤之前, 还包括:
将发射端当前设定的发射功率对应的预失真系数调整为假设所述发射功率 减小一个调整步长后对应的预失真系数;
分析根据调整前的预失真系数获得的接收端反馈的信号接收质量报告、 和 根据调整后的预失真系数获得的接收端反馈的信号接收质量报告, 以确定接收 端的信号接收质量的变化情况;
如果所述变化情况为接收端的信号接收质量变差, 则以所述调整前的预失 真系数作为发射端当前设定的发射功率对应的预失真系数, 然后指示执行将发 射端当前设定的发射功率调整为假设所述发射功率增加一个调整步长后对应的 预失真系数的步骤。
7、 如权利要求 5所述的调整方法, 其特征在于, 所述将发射端当前设定的 发射功率对应的预失真系数调整为假设所述发射功率减小一个调整步长后对应 的预失真系数的步骤之前, 还包括:
将发射端当前设定的发射功率对应的预失真系数调整为假设所述发射功率 增加一个调整步长后对应的预失真系数;
分析根据调整前的预失真系数获得的接收端反馈的信号接收质量报告、 和 根据调整后的预失真系数获得的接收端反馈的信号接收质量报告, 以确定接收 端的信号接收质量的变化情况;
如果所述接收端的信号接收质量变差, 则指示执行将发射端当前设定的发 射功率调整为假设所述发射功率减小一个调整步长后对应的预失真系数的步 骤。
8、 一种预失真系数的调整装置, 其特征在于, 包括:
第一调整模块, 用于调整发射端当前设定的发射功率对应的预失真系数; 第一分析模块, 用于分析根据调整前的预失真系数获得的接收端反馈的信 号接收质量报告、 和根据调整后的预失真系数获得的接收端反馈的信号接收质 量报告, 以确定所述接收端的信号接收质量的变化情况;
第一指示模块, 用于当所述接收端的信号接收质量变好时, 以调整后的预 失真系数作为所述发射端当前设定的发射功率对应的预失真系数, 然后指示所 述第一调整模块继续调整发射端当前设定的发射功率对应的预失真系数;
执行模块, 用于当所述接收端的接收质量变差时, 将调整前的预失真系数 作为所述发射端当前设定的发射功率对应的预失真系数。
9、 如权利要求 8所述的调整装置, 其特征在于, 还包括:
预失真模块, 用于采用调整前的预失真系数对基带信号进行预失真处理, 生成预失真基带信号;
交互模块, 用于将根据调整前的预失真系数生成的预失真基带信号转换为 射频信号之后, 发射给接收端, 并接收所述接收端反馈的信号接收质量报告; 所述预失真模块, 还用于采用调整后的预失真系数对基带信号进行预失真 处理, 生成预失真基带信号;
所述交互模块, 还用于将根据调整后的预失真系数生成的预失真基带信号 转换为射频信号之后, 发射给接收端, 并接收所述接收端反馈的信号接收质量 报告。
10、 如权利要求 8所述调整装置, 其特征在于, 所述执行模块, 还用于在 将调整前的预失真系数作为当前设定的发射功率对应的预失真系数时, 建立当 前温度值与所述作为发射端当前设定的发射功率对应的预失真系数的对应关 系。
11、 如权利要求 8 所述的调整装置, 其特征在于, 所述接收端反馈的信号 接收质量报告包括: 用于衡量接收端的信号接收质量的误差均方根 MSE值或信 噪比 SNR。
12、 如权利要求 8-11中任一项所述的调整装置, 其特征在于,
所述调整模块, 用于将发射端当前设定的发射功率对应的预失真系数调整 为假设所述发射功率增加 N个调整步长后对应的预失真系数, 所述 N为假设所 述发射功率增加的次数;
或者, 用于将发射端当前设定的发射功率对应的预失真系数调整为假设所 述发射功率减小 N个调整步长后对应的预失真系数, 所述 N为假设所述发射功 率减小的次数。
13、 如权利要求 12所述的调整装置, 其特征在于, 还包括:
第二调整模块, 用于将发射端当前设定的发射功率对应的预失真系数调整 为所述发射功率减小一个调整步长后对应的预失真系数;
第二分析模块, 用于分析根据调整前的预失真系数获得的接收端反馈的信 号接收质量报告、 和根据调整后的预失真系数获得的接收端反馈的信号接收质 量报告, 以确定所述接收端的信号接收质量的变化情况;
第二指示模块, 用于当所述变化情况为接收端的信号接收质量变差时, 以 所述调整前的预失真系数作为发射端当前设定的发射功率对应的预失真系数, 然后指示所述调整模块将发射端当前设定的发射功率调整为假设所述发射功率 增加一个调整步长后对应的预失真系数。
14、 如权利要求 12所述的调整装置, 其特征在于, 还包括:
第三调整模块, 用于将发射端当前设定的发射功率对应的预失真系数调整 为所述发射功率减小一个调整步长后对应的预失真系数;
第三分析模块, 用于分析根据调整前的预失真系数获得的接收端反馈的信 号接收质量报告、 和根据调整后的预失真系数获得的接收端反馈的信号接收质 量报告, 以确定所述接收端的信号接收质量的变化情况;
第三指示模块, 用于当所述接收端的信号接收质量变差时, 以调整前的预 失真系数作为所述当前设定的发射功率对应的预失真系数, 然后指示所述调整 模块将发射端当前设定的发射功率调整为假设所述发射功率增加一个调整步长 后对应的预失真系数。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/083034 WO2013078587A1 (zh) | 2011-11-28 | 2011-11-28 | 预失真系数的调整方法及装置 |
EP11876625.2A EP2779555B1 (en) | 2011-11-28 | 2011-11-28 | Method and apparatus for adjusting predistortion coefficients |
CN201180002466.XA CN102510765B (zh) | 2011-11-28 | 2011-11-28 | 预失真系数的调整方法及装置 |
US14/288,151 US9479368B2 (en) | 2011-11-28 | 2014-05-27 | Method and apparatus for adjusting pre-distortion coefficient |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/083034 WO2013078587A1 (zh) | 2011-11-28 | 2011-11-28 | 预失真系数的调整方法及装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/288,151 Continuation US9479368B2 (en) | 2011-11-28 | 2014-05-27 | Method and apparatus for adjusting pre-distortion coefficient |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013078587A1 true WO2013078587A1 (zh) | 2013-06-06 |
Family
ID=46222760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/083034 WO2013078587A1 (zh) | 2011-11-28 | 2011-11-28 | 预失真系数的调整方法及装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9479368B2 (zh) |
EP (1) | EP2779555B1 (zh) |
CN (1) | CN102510765B (zh) |
WO (1) | WO2013078587A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103634252B (zh) * | 2012-08-20 | 2016-08-17 | 富士通株式会社 | 一种数字预失真系数的更新控制方法和装置 |
CN105764075B (zh) * | 2014-12-15 | 2019-04-26 | 联想(北京)有限公司 | 获取数字预失真校准值的方法及终端设备 |
CN106160676A (zh) * | 2015-04-23 | 2016-11-23 | 中兴通讯股份有限公司 | 数字预失真样本筛选方法和装置 |
CN107872410B (zh) * | 2016-09-26 | 2020-04-03 | 中兴通讯股份有限公司 | 一种基带信号的处理方法和装置 |
WO2018093788A1 (en) * | 2016-11-15 | 2018-05-24 | Cisco Technology, Inc. | High power efficient amplification at cable modems through digital pre-distortion and machine learning in cable network environments |
KR102622024B1 (ko) * | 2019-01-15 | 2024-01-08 | 삼성전자 주식회사 | 수신 신호의 주파수 대역의 잡음을 감소시키는 전자 장치 및 전자 장치의 동작 방법 |
CN113098569B (zh) * | 2019-12-23 | 2024-10-11 | 中兴通讯股份有限公司 | 数据传输方法及装置、存储介质 |
CN112838996B (zh) * | 2020-12-31 | 2022-03-25 | 京信网络系统股份有限公司 | 数字预失真系数更新方法、装置、通信设备和存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1335699A (zh) * | 2000-07-20 | 2002-02-13 | 华为技术有限公司 | 一种宽带发射机的自适应数字预失真方法和装置 |
CN101238638A (zh) * | 2005-06-29 | 2008-08-06 | 诺基亚西门子通信公司 | 数据处理方法、预失真设备、发射机、网络单元和基站 |
CN101626355A (zh) * | 2009-08-11 | 2010-01-13 | 北京天碁科技有限公司 | 一种多输入多输出终端的校准装置及校准方法 |
CN101753105A (zh) * | 2008-12-18 | 2010-06-23 | 富士通株式会社 | 失真补偿装置和方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2517906A1 (fr) * | 1981-12-03 | 1983-06-10 | Centre Nat Rech Scient | Annulateur d'echo a commande automatique de gain pour systemes de transmission |
FR2622021B1 (fr) * | 1987-10-16 | 1990-05-04 | Trt Telecom Radio Electr | Dispositif pour mesurer la distance " h " qui le separe d'un objet |
US5093801A (en) * | 1990-07-06 | 1992-03-03 | Rockwell International Corporation | Arrayable modular FFT processor |
US20020041678A1 (en) * | 2000-08-18 | 2002-04-11 | Filiz Basburg-Ertem | Method and apparatus for integrated echo cancellation and noise reduction for fixed subscriber terminals |
JP4681163B2 (ja) * | 2001-07-16 | 2011-05-11 | パナソニック株式会社 | ハウリング検出抑圧装置、これを備えた音響装置、及び、ハウリング検出抑圧方法 |
US20040021517A1 (en) * | 2002-08-05 | 2004-02-05 | Spectrian Corporation | Power minimization, correlation-based closed loop for controlling predistorter and vector modulator feeding RF power amplifier |
JP4701024B2 (ja) * | 2005-07-07 | 2011-06-15 | 株式会社日立国際電気 | プリディストーション歪補償付き増幅器 |
US20080051042A1 (en) * | 2006-08-25 | 2008-02-28 | Jaleh Komaili | Adaptive predistortion for controlling an open loop power amplifier |
US8023588B1 (en) * | 2008-04-08 | 2011-09-20 | Pmc-Sierra, Inc. | Adaptive predistortion of non-linear amplifiers with burst data |
US8620233B2 (en) * | 2008-04-11 | 2013-12-31 | Samsung Electroncs Co., Ltd. | Method of power amplifier predistortion adaptation using compression detection |
CN101771383B (zh) * | 2008-12-31 | 2012-04-18 | 大唐移动通信设备有限公司 | 一种实现信号预失真处理的方法和装置 |
CN101459647B (zh) * | 2009-01-09 | 2011-12-21 | 航天恒星科技有限公司 | 一种基于频带分割的开环数字基带预失真器及预失真方法 |
US8170508B2 (en) * | 2009-05-07 | 2012-05-01 | Rockstar Bidco Lp | Pre-distortion for a radio frequency power amplifier |
US8744009B2 (en) * | 2009-09-25 | 2014-06-03 | General Dynamics C4 Systems, Inc. | Reducing transmitter-to-receiver non-linear distortion at a transmitter prior to estimating and cancelling known non-linear distortion at a receiver |
-
2011
- 2011-11-28 CN CN201180002466.XA patent/CN102510765B/zh active Active
- 2011-11-28 EP EP11876625.2A patent/EP2779555B1/en active Active
- 2011-11-28 WO PCT/CN2011/083034 patent/WO2013078587A1/zh active Application Filing
-
2014
- 2014-05-27 US US14/288,151 patent/US9479368B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1335699A (zh) * | 2000-07-20 | 2002-02-13 | 华为技术有限公司 | 一种宽带发射机的自适应数字预失真方法和装置 |
CN101238638A (zh) * | 2005-06-29 | 2008-08-06 | 诺基亚西门子通信公司 | 数据处理方法、预失真设备、发射机、网络单元和基站 |
CN101753105A (zh) * | 2008-12-18 | 2010-06-23 | 富士通株式会社 | 失真补偿装置和方法 |
CN101626355A (zh) * | 2009-08-11 | 2010-01-13 | 北京天碁科技有限公司 | 一种多输入多输出终端的校准装置及校准方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2779555A1 (en) | 2014-09-17 |
CN102510765A (zh) | 2012-06-20 |
EP2779555B1 (en) | 2016-04-13 |
CN102510765B (zh) | 2014-09-03 |
US9479368B2 (en) | 2016-10-25 |
EP2779555A4 (en) | 2015-01-28 |
US20140269973A1 (en) | 2014-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013078587A1 (zh) | 预失真系数的调整方法及装置 | |
JP6166457B2 (ja) | 内部電力増幅器特徴付けを伴う包絡線追跡システム | |
US8014735B2 (en) | RF power amplifier controlled by estimated distortion level of output signal of power amplifier | |
CN1988373B (zh) | 用于控制电压控制信号的装置和方法 | |
US20140169427A1 (en) | Method and apparatus for calibrating an envelope tracking system | |
US7894546B2 (en) | Replica linearized power amplifier | |
US8081710B2 (en) | System and method for corrected modulation with nonlinear power amplification | |
CN102143108A (zh) | 一种改进的自适应预失真技术 | |
US9344041B2 (en) | Polar amplification transmitter distortion reduction | |
KR20050041481A (ko) | 아날로그 구적 변조 에러 보상 장치 및 방법 | |
CA2586439A1 (en) | Method and system for determining the amplitude and/or phase of the output signal of a transmission link according to the amplitude of the input signal | |
US8094748B2 (en) | Transceiver architecture with combined smart antenna calibration and digital predistortion | |
US20140292403A1 (en) | Power amplifier signal compensation | |
US20100184389A1 (en) | Wireless communication unit, integrated circuit and method for biasing a power amplifier | |
CN102065042A (zh) | 一种数字预失真装置及方法 | |
WO2016026070A1 (zh) | 信号处理装置、射频拉远单元和基站 | |
US9853608B2 (en) | Temperature compensation technique for envelope tracking system | |
US7816984B2 (en) | Lookup table generation method and related device for a predistorter | |
CN100471047C (zh) | 用于产生发射信号的方法 | |
CN203800956U (zh) | 离线估计预失真系数的数字预失真系统 | |
US9515614B2 (en) | Amplifier device and wireless communication device | |
WO2006069477A1 (fr) | Procede et equipement permettant de simuler une linearisation par predistorsion | |
CN111327552A (zh) | 一种终端数字预失真方法、系统和存储介质 | |
Wang et al. | A linearized transmitter based on digital baseband predistortion for BTS | |
Nentwig | Power amplifier characterization for predistortion in mobile transmitters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180002466.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11876625 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011876625 Country of ref document: EP |