WO2013077691A1 - Superhydrophobic substrate and method for manufacturing same - Google Patents

Superhydrophobic substrate and method for manufacturing same Download PDF

Info

Publication number
WO2013077691A1
WO2013077691A1 PCT/KR2012/010040 KR2012010040W WO2013077691A1 WO 2013077691 A1 WO2013077691 A1 WO 2013077691A1 KR 2012010040 W KR2012010040 W KR 2012010040W WO 2013077691 A1 WO2013077691 A1 WO 2013077691A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
protrusions
super water
repellent
repellent substrate
Prior art date
Application number
PCT/KR2012/010040
Other languages
French (fr)
Korean (ko)
Inventor
김태수
최현
신부건
김재진
이종병
김수진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120133682A external-priority patent/KR101541583B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2013553382A priority Critical patent/JP5961906B2/en
Priority to CN201280012424.9A priority patent/CN103443660B/en
Publication of WO2013077691A1 publication Critical patent/WO2013077691A1/en
Priority to US13/951,180 priority patent/US9376341B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • B08B17/065Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement the surface having a microscopic surface pattern to achieve the same effect as a lotus flower
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation

Definitions

  • the present invention relates to a water repellent substrate, and more particularly to a super water-repellent substrate having a water contact angle of 140 ° C or more and a method of manufacturing the same.
  • a super water-repellent substrate refers to a substrate having a larger contact angle than a conventional water-repellent substrate by forming an air gap between an interface between the substrate and water using an uneven shape formed on the surface of the substrate.
  • a contact angle is formed between about 100 to L10 o C, but a contact angle of 140 o C or more is formed in the case of a super water repellent substrate.
  • super water-repellent substrates can be classified into structures having an uneven spacing (average spacing between unevennesses) formed on the surface thereof and having a structure larger than the visible light wavelength. If larger, the gap between the unevenness is large, which is durable but there is a problem that the substrate is opaque and the visibility cannot be secured. If the unevenness gap formed on the surface of the super water-repellent substrate is smaller than the visible wavelength, the substrate is transparent to ensure visibility. It can be, but the gap between the unevenness has a problem that the durability is lowered and the manufacturing process is difficult.
  • a method of manufacturing a super water-repellent substrate generally a method of forming irregularities on the substrate by dispersing nanoparticles, a method of forming the irregularities by using photolithography, a method of forming the irregularities by using electrospray
  • these methods have been used, the above-described methods have a problem in that the surface characteristics of the substrate (for example, the size and distribution of patterns formed on the surface of the substrate) and the optical characteristics (transparency, etc.) of the substrate cannot be controlled.
  • an aspect of the present invention provides a super water-repellent substrate having a layered durability and transparency at the same time.
  • the present invention provides a method for producing a super water-repellent substrate that can control the optical properties of the substrate.
  • the present invention provides a display device including a super water-repellent substrate is secured durability and transparency.
  • the present invention provides an automotive glass comprising a super water-repellent substrate secured durability and transparency.
  • the present invention provides a super water-repellent substrate comprising a plurality of protrusions arranged in a pseudo random distribution on one surface, the average spacing between the protrusions is larger than the visible light wavelength.
  • the present invention provides a method of manufacturing a photomask comprising: a) manufacturing a photomask having a plurality of light transmitting parts or light blocking parts arranged in a pseudorandom distribution, wherein an average spacing of the plurality of light transmitting parts or light blocking parts is larger than a visible light wavelength; And b) forming a plurality of protrusions on the surface of the substrate using the photomask prepared in step a).
  • the super water-repellent substrate according to the present invention has excellent durability and transparency, is easy to manufacture, and low in manufacturing cost.
  • FIG. 1 is a view showing the surface shape of a super water-repellent substrate according to an embodiment of the present invention.
  • FIG. 2 is a view showing a contact angle of a super water-repellent substrate according to an embodiment of the present invention.
  • 3 is a view showing a pattern design method using a Voronoi diagram used to manufacture a photomask used in the method of manufacturing a super water-repellent substrate according to an embodiment of the present invention.
  • FIG. 4 is a SEM photograph showing the surface shape of a water repellent substrate according to a comparative example.
  • FIG. 1 is a view showing a super water-repellent substrate surface shape according to an embodiment of the present invention.
  • the super water-repellent substrate of the present invention is characterized by including a plurality of protrusions 20 on one surface of the substrate 10.
  • the substrate 10 is not particularly limited as long as it is a transparent substrate in the visible light region, for example, glass, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (polycarbonate) , PC), polystyrene-block-polymethyl methacrylate (PolyStyrene-block-PolyMethyl MethAcrylate, PS to b-PMMA) and the like can be used.
  • the plurality of protrusions 20 formed on one surface of the substrate 10 is characterized in that arranged in a pseudo random distribution (Pseudo random distribution).
  • the 1 pseudo random distribution 1 column It means a distribution that appears to be random but statistically satisfies one or more rules, as opposed to a true random distribution that is randomly distributed without any rules.
  • the pseudorandom distribution may be formed using various pseudorandom distribution methods known in the art, for example, a random number generation function, a Voronoi diagram, and the like, but the present invention is not limited thereto.
  • the random number generation function and the Voronoi diagram are used in various fields such as computer, architecture, and communication.
  • the random number generation function after setting a specific condition, a random distribution within a range satisfying the condition is obtained. It refers to a method of generating values to have, and can be implemented through a computer program.
  • the Voronoi diagram is a method of forming a pseudorandom distribution that satisfies a specific condition by forming an area of each point by a vertical bisector between a plurality of points randomly distributed on a plane.
  • the plurality of protrusions are arranged in a pseudo-random distribution. Means that the position of each protrusion is set to random, but the average spacing of the entire protrusions is arranged to be adjusted to satisfy the set range.
  • the arrangement of the protrusions on the substrate is regular, it is difficult to secure transparency due to diffraction and interference of light, and when the arrangement of the protrusions on the substrate is a completely random distribution, transparency may be improved, but properties such as water repellency and water resistance may be improved.
  • the average spacing between the protrusions is preferably larger than the visible light wavelength. This is to ensure the durability of the super water-repellent substrate.
  • the average interval between the excavations is about 0.4 to 100j i, for example, about 1 to about 50, about 5 to about 30, To about 10 / ⁇ or about 10 to about 100.
  • the protrusions are preferably formed such that the distance between adjacent protrusions satisfies a normal distr ibut ion. This is because when the gap between adjacent protrusions satisfies the normal distribution, a super water-repellent substrate having excellent water repellency and transparency can be obtained.
  • the average value of the normal distribution is an average interval between protrusions
  • the standard deviation value of the normal distribution is preferably about 1/20 to 1/4 of the average value. That is, the standard deviation of the normal distribution may be 1/20 to 1/4 of the average interval between protrusions. This is because the physical properties of the substrate are particularly excellent when the standard deviation value satisfies the numerical range.
  • the shape of the plurality of protrusions is various, such as cylindrical shape, conical shape, square column shape and the like is not particularly limited.
  • the diameter of the protrusions depends on the average spacing between the protrusions arranged in pseudo random distr ibut ions.
  • the diameter of the protrusion means the diameter of the portion of the protrusion in contact with the substrate, for example, the diameter of the lower circle in the case of conical shape, and the diameter of the lower circle in the case of lamppost shape.
  • the diameter of the protrusions may be about 5 to 30% of the average interval between the protrusions, for example, about 10 to 25%, about 15% to 20%, about 2OT to 30%, or about 5 to 20%.
  • the diameter of the protrusion is less than 5% of the average distance between the protrusions, the durability of the pattern formed on the super water-repellent substrate becomes weak, and when it exceeds 30%, the haze is increased to increase the water-repellency. Problems in which the transparency of the substrate is degraded may occur.
  • the height of the protrusions also depends on the average spacing between the protrusions arranged in a pseudo random distribution.
  • the height of the protrusion is about 15 to 90% of the average interval between the protrusions, for example, may be about 20 to 60%, about 30 to 50%, about 40% to 90% or about 15% to 40%. If the height of the protrusions is less than 15% of the average spacing between the protrusions, it is difficult to express the superhydrophobic property, and if it exceeds 10, the durability of the pattern formed on the superhydrophobic substrate may be weak.
  • the super water-repellent substrate having the structure described above preferably has a haze value of 2 or less because the haze value is preferably 2 or less in order to secure transparency of the article (for example, an automobile) to which the super water-repellent substrate is applied.
  • the haze is 100 when the incident light source is scattered 100% through the substrate, and 0 when it is not scattered at all. A value between 100 and 0 represents the ratio value at which incident light is scattered through the substrate.
  • the super water-repellent substrate may have a haze value of 0.2 to 1.2 or a haze value of 0.5 to 1.0.
  • Figure 2 is a view showing a contact angle of the super water-repellent substrate according to an embodiment of the present invention
  • the super water-repellent substrate according to an embodiment of the present invention preferably has a contact angle of 140 ° C or more. and, for example, it is desirable to have more than l50 o C the contact angle. This is because super water-repellent phenomena occur with little water condensation at a contact angle of 140 ° C or more.
  • the contact angle refers to the angle with respect to the substrate surface when the liquid in a stationary state on the super water-repellent substrate is drawn in a straight line at the liquid surface.
  • the hydrophobic (hydrophobic) coating layer of a material on the surface including the plurality of protrusions may further include.
  • the hydrophobic material may be used as a fluorine-based compound, silane-based compound, for example, polytetrafluoroethylene (PolyTetraFluoroEthylene, PTFE), siloxane (siioxane ) May be used.
  • the super water-repellent substrate according to the present invention described above may be applied to various fields such as a transparent substrate of an automobile glass display device, a display device of a mobile phone, a camera lens, and the like.
  • the superhydrophobic substrate of the present invention can form protrusions using a photolithography process using a light source of a relatively long wavelength band, embossing, or printing method. Since it can be, it is easy to apply to a large area board
  • the method of manufacturing a super water-repellent substrate according to the present invention includes a) forming a photomask, and b) forming a plurality of protrusions on the surface of the substrate using the photomask prepared in step a).
  • Step a) is characterized in that a photomask having a plurality of light transmitting parts (if the negative photosensitive agent is applied to the substrate) or light blocking part (if the positive photosensitive agent is applied to the substrate) arranged in a pseudo-random distribution . This is for arranging the protrusions formed on the substrate in a pseudo random distribution using a photomask.
  • the size of the protrusions and the spacing between the protrusions can be adjusted to control optical characteristics such as transparency of the substrate. Because there is.
  • the plurality of light transmitting parts or light blocking parts arranged in the pseudo random distribution are formed using a pseudo random distribution forming method generally used in the art, for example, a pattern design method using a random number generation function or a Voronoi diagram. which Can be.
  • the plurality of light transmitting parts or light blocking parts of the present invention sets values of average spacing and / or standard deviation of desired protrusions, and then generates values satisfying a pseudo random distribution using a random number generation function.
  • FIG. 3 illustrates a pattern design method using a Voronoi diagram.
  • the pattern design method using the Voronoi diagram may include forming a unit cell region in consideration of an average spacing of a desired protrusion (see ⁇ A> in FIG. 3); Forming a pattern corresponding to the light transmitting part or the light blocking part in the center of gravity of the unit cell (see FIG. 3B); And removing the Voronoi diagram pattern (see O of FIG. 3).
  • the average interval between the light transmitting portion or the light blocking portion is preferably larger than the visible light wavelength.
  • the average distance between the light transmitting portions or the light blocking portions may be about 0.4 to about 100, for example, about 1 / an to about 50, about 5 to about 30, about about 0.4 to about 10, or about about 10 / m to about 100. If the average distance between the light transmitting portion or the light blocking portion is less than 0.1 ⁇ 2m, it is difficult to form a pattern using a photolithography method currently used, and if it exceeds 100 / ztn, the average spacing between the protrusions is larger than that of water droplets so that the desired water repellency characteristics A problem may arise that cannot be obtained.
  • the diameter of the light transmitting part or the light blocking part pattern depends on the average distance between the light transmitting part or the light blocking part.
  • the diameter of the light transmitting part or the light blocking part is about 5 to 30% of the average interval between the light transmitting part or the light blocking part, for example, about 10 to 25%, about 15% to 20%, 20% to 30 Or about 5 to 20%.
  • the diameter of the light transmitting portion or the light blocking portion is If less than 5% of the average distance between the light transmitting part or the light blocking part, the durability of the pattern formed on the super water-repellent substrate becomes weak, and if it exceeds 30%, the haze may increase, resulting in a problem of deterioration of transparency of the super water-repellent substrate. .
  • step b) may be performed by applying a photosensitive agent to the surface of the substrate and irradiating ultraviolet rays through the photomask prepared in step a) to form a plurality of protrusions on the surface of the substrate.
  • a photosensitive agent both a negative photosensitizer and a positive photosensitizer may be used.
  • Su-8 photosensitizers, AZ 4230, etc. may be used, but not necessarily limited thereto.
  • a crescent thin film is formed, the designed pattern is transferred onto a quartz substrate coated with a photoresist on the chromium thin film, and the transferred photoresist is shaped.
  • the chromium thin film is etched using the photoresist pattern generated after development as a film to remove the remaining photoresist.
  • the photomask manufactured as described above has a plurality of circular light transmitting parts having a diameter, the plurality of light transmitting parts are arranged in a pseudo random distribution, and the average spacing between the light transmitting parts is 20 ⁇ .
  • a plurality of protrusions formed on one surface of the manufactured super water-repellent substrate is arranged in a pseudo random distribution, the average interval between the protrusions is 20, the diameter of the protrusions is 3, the height is 10.
  • the surface of the prepared super water-repellent substrate is coated with polytetrafluoroethylene (PolyTetraFluoroEthylene, PTFE). Comparative example
  • a water repellent substrate was manufactured in the same manner as in Example, except that a pattern in which a plurality of diamond shapes were arranged in a line was formed to form a pattern of a photomask.
  • 4 is a view showing the surface shape of a water repellent substrate according to a comparative example. Referring to FIG. 4, a plurality of protrusions formed on one surface of the water repellent substrate according to the comparative example are diamond-shaped and are arranged in a line in two dimensions, and the average spacing between the protrusions is 20, and the diameter of the protrusions is 3 /.
  • the water repellent substrate according to the embodiment is similar to the water repellent substrate according to the comparative example in that the average spacing between the protrusions formed on the surface thereof is larger than the visible light wavelength. It differs from the water repellent substrate according to the comparative example in that the protrusions are arranged in a pseudo random distribution.
  • the contact angle at the surface of the super water-repellent substrate was measured using a Kruss dsa-100 meter.
  • the transparency of the super water-repellent substrate was measured using HR-100 of Murakami color research lab.
  • the super water-repellent substrate prepared in the example was measured at 154 ° as a result of measuring the contact angle on the surface thereof, and the haze value was 1.7.
  • As for the water-repellent board manufactured by the comparative example when the contact angle in the surface was measured, it was 151 0 and haze value was 18.7.
  • the water-repellent substrate according to the embodiment was superior in contact angle and transparency at the same time as compared to the water-repellent substrate in the comparative example. This is because, unlike the comparative example, the protrusions according to the example are arranged at a distance of visible light or pseudorandom distribution so that transparency can be ensured.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The present invention relates to a superhydrophobic substrate, in which multiple protruding parts are arranged in a pseudo random distribution on one surface of the substrate and an average spacing between the protruding parts is larger than a visible light wavelength. The superhydrophobic substrate according to the present invention is advantageous in that the average spacing between the protruding parts is larger than the visible light wavelength to ensure durability, and the protruding parts are arranged in a pseudo random distribution to adjust the sizes and distribution of the protruding parts so as to ensure transparency of the substrate.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
'초발수 기판 및 그 제조방법 '' Super Water-Repellent Substrate and Manufacturing Method Thereof
【기술분야】  Technical Field
본 발명은 발수 기판에 관한 것이며, 보다 상세하게는 수접촉각 140oC 이상의 초발수 기판 및 그 제조방법에 관한 것이다. The present invention relates to a water repellent substrate, and more particularly to a super water-repellent substrate having a water contact angle of 140 ° C or more and a method of manufacturing the same.
【배경기술】  Background Art
초발수 기판이란 기판의 표면에 형성된 요철 형상을 이용하여 기판과 물의 계면 사이에 에어 갭을 형성함으로써 종래의 발수기판보다 접촉각을 크게 만든 기판을 말한다. 기존의 발수기판의 경우 대략 100~L10oC 사이의 접촉각이 형성되지만, 초발수 기판의 경우 140oC 이상의 접촉각이 형성된다. A super water-repellent substrate refers to a substrate having a larger contact angle than a conventional water-repellent substrate by forming an air gap between an interface between the substrate and water using an uneven shape formed on the surface of the substrate. In the case of a conventional water repellent substrate, a contact angle is formed between about 100 to L10 o C, but a contact angle of 140 o C or more is formed in the case of a super water repellent substrate.
일반적으로, 초발수 기판은 그 표면에 형성된 요철 간격 (요철 사이의 평균 간격)이 가시광 파장보다 작은 구조와 가시광 파장보다 큰 구조로 분류할 수 있는데, 초발수 기판의 표면에 형성된 요철 간격이 가시광 파장보다 큰 경우, 요철 간격이 크므로 내구성은 있으나 기판이 불투명하여 시인성을 확보할 수 없다는 문제가 있고, 초발수 기판의 표면에 형성된 요철 간격이 가시광 파장보다 작은 경우, 기판이 투명하여 시인성을 확보할 수 있으나 요철 간격이 작으므로 내구성이 저하되고 제조 공정이 어렵다는 문제가 있었다. 한편, 초발수 기판을 제조하는 방법으로서, 일반적으로 나노 입자를 분산시켜 기판에 요철을 형성하는 방법, 포토리소그래피를 이용하여 요철을 형성하는 방법, 정전분무법 (electrospray)를 이용하여 요철을 형성하는 방법이 이용되어 왔으나, 상술한 방법들은 기판의 표면 특성 (예를 들면, 기판 표면에 형성된 패턴의 크기 및 분포 등) 및 기판의 광학적 특성 (투명도 등)을 제어할 수 없다는 문제가 있었다. Generally, super water-repellent substrates can be classified into structures having an uneven spacing (average spacing between unevennesses) formed on the surface thereof and having a structure larger than the visible light wavelength. If larger, the gap between the unevenness is large, which is durable but there is a problem that the substrate is opaque and the visibility cannot be secured. If the unevenness gap formed on the surface of the super water-repellent substrate is smaller than the visible wavelength, the substrate is transparent to ensure visibility. It can be, but the gap between the unevenness has a problem that the durability is lowered and the manufacturing process is difficult. On the other hand, a method of manufacturing a super water-repellent substrate, generally a method of forming irregularities on the substrate by dispersing nanoparticles, a method of forming the irregularities by using photolithography, a method of forming the irregularities by using electrospray Although these methods have been used, the above-described methods have a problem in that the surface characteristics of the substrate (for example, the size and distribution of patterns formed on the surface of the substrate) and the optical characteristics (transparency, etc.) of the substrate cannot be controlled.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 일 측면은, 층분한 내구성과 투명도를 동시에 가지는 초발수 기판을 제공한다. 또한, 본 발명은 다른 측면에서, 기판의 광학적 특성을 제어할 수 있는 초발수 기판의 제조방법을 제공한다. 또한 본 발명은 또 다른 측면에서, 내구성 및 투명도가 확보된 초발수 기판올 포함하는 디스플레이 장치를 제공한다. [Technical problem] The present invention has been made to solve the above problems, an aspect of the present invention provides a super water-repellent substrate having a layered durability and transparency at the same time. In another aspect, the present invention provides a method for producing a super water-repellent substrate that can control the optical properties of the substrate. In another aspect, the present invention provides a display device including a super water-repellent substrate is secured durability and transparency.
S한, 본 발명은 또 다른 측면에서, 내구성 및 투명도가 확보된 초발수 기판을 포함하는 자동차 유리를 제공한다. In one aspect, the present invention provides an automotive glass comprising a super water-repellent substrate secured durability and transparency.
【기술적 해결방법】  Technical Solution
일 측면에서, 본 발명은 일 표면에 의사임의분포 (Pseudo random distribution)로 배열된 다수의 돌출부를 포함하고, 상기 돌출부간 평균 간격이 가시광 파장보다 큰 초발수 기판을 제공한다. 다른 측면에서, 본 발명은 a) 의사임의분포로 배열된 다수의 광 투과부 또는 광 차단부를 가지고, 상기 다수의 광 투과부 또는 광 차단부의 평균 간격이 가시광 파장보다 큰 포토마스크를 제조하는 단계; 및 b) 상기 a)단계에서 제조된 포토마스크를 이용하여 기판의 표면에 다수의 돌출부를 형성하는 단계를 포함하는 초발수 기판의 제조방법을 제공한다. In one aspect, the present invention provides a super water-repellent substrate comprising a plurality of protrusions arranged in a pseudo random distribution on one surface, the average spacing between the protrusions is larger than the visible light wavelength. In another aspect, the present invention provides a method of manufacturing a photomask comprising: a) manufacturing a photomask having a plurality of light transmitting parts or light blocking parts arranged in a pseudorandom distribution, wherein an average spacing of the plurality of light transmitting parts or light blocking parts is larger than a visible light wavelength; And b) forming a plurality of protrusions on the surface of the substrate using the photomask prepared in step a).
【유리한 효과】  Advantageous Effects
본 발명에 따른 초발수 기판은 우수한 내구성 및 투명도를 가지며, 제조가 용이하고, 제조 비용이 저렴하다. 또한, 본 발명에 따른 초발수 기판의 제조방법에 의하면 기판 표면에 형성된 돌출부의 크기 및 분포를 조절하여 기판의 투명도를 조절할 수 있으며, 대면적의 기판을 용이하게 제조할 수 있다. The super water-repellent substrate according to the present invention has excellent durability and transparency, is easy to manufacture, and low in manufacturing cost. In addition, according to the method of manufacturing a super water-repellent substrate according to the present invention, it is possible to control the transparency of the substrate by adjusting the size and distribution of the protrusions formed on the substrate surface, it is possible to easily manufacture a large area substrate.
【도면의 간단한 설명】 도 1은 본 발명의 일 구현예에 따른 초발수 기판의 표면 형상을 나타내는 도면이다. [Brief Description of Drawings] 1 is a view showing the surface shape of a super water-repellent substrate according to an embodiment of the present invention.
도 2는 본 발명의 일 구현예에 따른 초발수 기판의 접촉각을 보여주는 도면이다. 도 3은 본 발명의 일 구현예에 따른 초발수 기판의 제조방법에 사용되는 포토마스크를 제조하기 위해 이용되는 보로노이 다이어그램을 이용한 패턴 설계 방법을 보여주는 도면이다. 2 is a view showing a contact angle of a super water-repellent substrate according to an embodiment of the present invention. 3 is a view showing a pattern design method using a Voronoi diagram used to manufacture a photomask used in the method of manufacturing a super water-repellent substrate according to an embodiment of the present invention.
도 4는 비교예에 따른 발수 기판의 표면 형상을 나타내는 SEM사진이다. 4 is a SEM photograph showing the surface shape of a water repellent substrate according to a comparative example.
【발명의 실시를 위한 최선의 형태】  [Best form for implementation of the invention]
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시 형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명올 더욱 완전하게 설명하기 위해서 제공되는 것이다. 도면에서 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다. 도 1은 본 발명의 일 구현예에 따른 초발수 기판 표면 형상을 나타내는 도면이다. 도 1에 참조하면, 본 발명의 초발수 기판은 기판 (10)의 일 표면에 다수의 돌출부 (20)를 포함하는 것을 특징으로 한다. 이때, 상기 기판 (10)은 가시광 영역에서 투명한 기판이면 특별히 제한되지 않으며, 예를 들어 유리, 폴리메틸메타크릴레이트 (PolyMethyl MethAcrylate, PMMA), 폴리에틸렌테레프탈레이트 (PolyEthylene Terephthalate, PET), 폴리카보네이트 (Polycarbonate, PC), 폴리스티렌—블록- 폴리메틸메타크릴레이트 (PolyStyrene-block-PolyMethyl MethAcrylate, PS~b- PMMA) 등으로 이루어진 기판이 이용될 수 있다. 한편, 본 발명에 있어서, 상기 기판 (10)의 일 표면에 형성된 다수의 돌출부 (20)는 의사임의분포 (Pseudo random distribution)로 배열되는 것을 그 특징으로 한다. 이때, 상기 1의사임의분포 (Pseudo random distribution) 1란 통계적으로는 무작위하게 보이지만 하나 이상의 규칙을 만족하는 분포를 의미하는 것으로, 아무런 규칙 없이 무작위적으로 분포되는 완전임의 분포 (True random distribution)에 대비되는 개념이다. 상기 의사임의분포는, 당해 기술 분야에 알려진 다양한 의사임의분포 형성 방법, 예를 들면, 난수 발생 함수, 보로노이 다이어그램 등을 이용하여 형성할 수 있으나, 본 발명이 이에 한정되는 것은 아니다. 한편, 상기 난수 발생 함수 및 보로노이 다이어그램은 컴퓨터, 건축, 통신 등 다양한 분야에서 이용되고 있는 것으로, 난수 발생 함수의 경우, 특정한 조건올 설정한 다음, 상기 조건을 만족하는 범위 내에서 임의의 분포를 갖도록 값들을 생성하는 방법을 말하는 것으로, 컴퓨터 프로그램올 통해 구현될 수 있다. 또한, 상기 보로노이 다이어그램은, 평면 상에 랜덤하게 분포되어 있는 다수의 점 사이의 수직이등분선으로 각 점의 영역을 구성함으로써 특정한 조건을 만족하는 의사임의분포를 형성하는 방법이다. Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. In addition, embodiments of the present invention are provided to those skilled in the art to more fully describe the present invention. Shape and size of the elements in the drawings may be exaggerated for more clear description. 1 is a view showing a super water-repellent substrate surface shape according to an embodiment of the present invention. Referring to FIG. 1, the super water-repellent substrate of the present invention is characterized by including a plurality of protrusions 20 on one surface of the substrate 10. At this time, the substrate 10 is not particularly limited as long as it is a transparent substrate in the visible light region, for example, glass, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (polycarbonate) , PC), polystyrene-block-polymethyl methacrylate (PolyStyrene-block-PolyMethyl MethAcrylate, PS to b-PMMA) and the like can be used. On the other hand, in the present invention, the plurality of protrusions 20 formed on one surface of the substrate 10 is characterized in that arranged in a pseudo random distribution (Pseudo random distribution). In this case, the 1 pseudo random distribution 1 column It means a distribution that appears to be random but statistically satisfies one or more rules, as opposed to a true random distribution that is randomly distributed without any rules. The pseudorandom distribution may be formed using various pseudorandom distribution methods known in the art, for example, a random number generation function, a Voronoi diagram, and the like, but the present invention is not limited thereto. Meanwhile, the random number generation function and the Voronoi diagram are used in various fields such as computer, architecture, and communication. In the case of the random number generation function, after setting a specific condition, a random distribution within a range satisfying the condition is obtained. It refers to a method of generating values to have, and can be implemented through a computer program. In addition, the Voronoi diagram is a method of forming a pseudorandom distribution that satisfies a specific condition by forming an area of each point by a vertical bisector between a plurality of points randomly distributed on a plane.
한편 , 본 발명에 있어서, 상기 '다수의 돌출부가 의사임의분포로 배열된다. '라는 것은 각각의 돌출부의 위치는 랜덤 (random)으로 설정되나, 전체 돌출부들의 평균 간격은 설정된 범위를 만족하도록 조절되어 배열되는 것올 의미한다. 기판 상의 돌출부들의 배열이 규칙적인 경우에는 빛의 회절 및 간섭 현상에 의해 투명성을 확보하기 어려우며, 기판 상의 돌출부들의 배열이 완전 임의 분포인 경우에는 투명성이 향상될 수는 있으나, 발수성이나 내수성 등의 물성을 균일하게 구현하는 것에 어려움이 있다. 이에 비해, 본 발명과 같이, 다수의 돌출부를 의사임의분포로 배열하고, 돌출부들 간의 평균 간격을 특정한 범위로 조절할 경우, 투명성, 발수성 및 내구성 등의 특성이 모두 우수한 초발수 기판을 구현할 수 있다. 한편, 본 발명에 있어서, 상기 돌출부간 평균 간격은 가시광 파장보다 큰 것이 바람직하다. 이는 초발수 기판의 내구성을 확보하기 위함이다. 구체적으로 상기 들출부간 평균 간격은 0.4 내지 lOOj i 정도이며, 예를 들면, 1 내지 50 정도, 5 내지 30 정도,
Figure imgf000007_0001
내지 10/ΛΠ 정도 또는 10 내지 100 정도일 수 있다. ᅳ 상기 돌출부간 평균 간격이 으 m 미만인 경우 현재 이용되는 식각 공정으로 형성이 곤란할 뿐 아니라 발수 특성이 저하되며, 100 초과한 경우 돌출부간 평균 간격이 물방울의 직경보다 커지게 되어 원하는 발수 특성을 얻을 수 없는 문제가 발생한다. 또한, 본 발명에 있어서, 상기 돌출부들은 인접한 돌출부들 사이의 간격이 정규 분포 (normal distr ibut ion)를 만족하도록 형성되는 이 바람직하다. 인접한 돌출부들 사이의 간격이 정규 분포를 만족할 경우, 발수성 및 투명성이 모두 우수한 초발수 기판을 얻을 수 있기 때문이다. 이때, 상기 정규 분포의 평균값은 돌출부 간의 평균 간격이며, 상기 정규 분포의 표준 편차 값은 평균값의 1/20 ~ 1/4 정도인 것이 바람직하다. 즉, 상기 정규분포의 표준 편차는 돌출부간 평균 간격의 1/20 내지 1/4일 수 있다. 표준 편차 값이 상기 수치 범위를 만족할 때, 기판의 물성이 특히 우수하기 때문이다. 상기 다수의 돌출부의 형상은 원기등형, 원뿔형, 사각기둥형 등으로 다양하며 특별히 제한되는 것은 아니다. 또한, 상기 돌출부의 직경은 의사임의분포 (Pseudo random distr ibut ion)로 배열된 돌출부간 평균 간격에 따라 달라진다. 여기서, 돌출부의 직경이란 기판과 접촉되는 돌출부의 부분의 직경을 말하며, 예를 들면, 원뿔형의 경우 하부 원의 직경, 기등형의 경우 하부 원의 직경을 의미한다. 돌출부의 직경은 상기 돌출부간 평균 간격의 5 내지 30% 정도이며, 예를 들면, 10 내지 25% 정도, 15% 내지 20% 정도, 2OT 내지 30% 정도, 또는 5 내지 20% 정도일 수 있다. 상기 돌출부의 직경이 상기 돌출부간 평균 간격의 5% 미만인 경우, 초발수 기판 상에 형성된 패턴의 내구성이 취약해지며, 30% 초과한 경우 헤이즈가 증가되어 초발수 기판의 투명성이 저하되는 문제가 발생할 수 있다. 또한, 상기 돌출부의 높이는 의사임의분포 (Pseudo random distribution)로 배열된 돌출부간 평균 간격에 따라 달라진다. 상기 돌출부의 높이는 상기 돌출부간 평균 간격의 15 내지 90% 정도이며, 예를 들면, 20 내지 60% 정도, 30 내지 50% 정도, 40% 내지 90% 정도 또는 15% 내지 40% 정도일 수 있다. 상기 돌출부의 높이가 상기 돌출부간 평균 간격의 15% 미만인 경우 초발수 특성을 나타내기 어렵고, 10 를 초과한 경우 초발수 기판 상에 형성된 패턴의 내구성이 취약해지는 문제가 발생할 수 있다. 상기와 같은 구조를 가진 초발수 기판은 2 이하의 헤이즈 값을 갖는 것이 바람직하다ᅳ 상기 초발수 기판이 적용되는 물품 (예: 자동차 등)의 투명도 확보를 위해 헤이즈 값이 2 이하인 것이 바람직하기 때문이다. 본 발명의 명세서에서 헤이즈는 입사광원이 기판을 통과하여 100% 산란 될 경우 100이라 하며 산란이 하나도 되지 않을 경우에는 0이라 한다. 100과 0 사이의 값은 입사광이 기판을 통과하여 산란된 비율 값을 나타낸다. 또는, 상기 초발수 기판은 0.2 내지 1.2의 헤이즈 값을 가지거나, 또는 0.5 내지 1.0의 헤이즈값을 가질 수 있다. 한편, 도 2는 본 발명의 일 구현예에 따른 초발수 기판의 접촉각을 보여주는 도면이며, 도 2를 참조하면, 본 발명의 일 구현예에 따른 초발수 기판은 140°C 이상의 접촉각을 갖는 것이 바람직하며, 예를 들면, l50oC 이상의 접촉각을 갖는 것이 바람직하다. 이는 140°C 이상의 접촉각에서 물이 거의 맺히지 않고 흐르는 초발수 현상이 발현되기 때문이다. 여기서 접촉각이란 초발수 기판 상에 정지 상태의 액체가 기판과 접하는 점에서 액면에 직선을 그을 때 기판면에 대한 각도를 말한다. 한편, '본 발명의 다른 구현예에 따른 초발수 기판은, 상기 다수의 돌출부를 포함하는 표면에 소수성 (hydrophobic) 물질의 코팅층을 더 포함할 수 있다. 상기 소수성 물질의 코팅층은 기판의 초발수성을 강화시키기 위한 것으로, 상기 소수성 물질으로는 불소계 화합물, 실란계 화합물 등이 이용될 수 있으며, 예를 들면 폴리테트라플루오로에틸렌 (PolyTetraFluoroEthylene, PTFE), 실록산 (siioxane) 등이 이용될 수 있다. 상술한 본 발명에 따른 초발수 기판은 자동차유리 디스플레이장치의 투명기판, 휴대폰의 표시장치, 카메라 렌즈 등 다양한 분야에 적용될 수 있다. 또한, 본 발명의 초발수 기판은 돌출부간 평균 간격이 가시광 파장보다 크기 때문에, 상대적으로 긴 파장 대역의 광원을 이용한 포토리소그라피 공정이나, 를 엠보싱, 를 투 를 인쇄 방법 등을 이용하여 돌출부를 형성할 수 있기 때문에, 대면적의 기판에 적용되기에 용이하다. 다음으로, 본 발명에 따른 초발수 기판의 제조방법의 일 구현예를 설명한다. 본 발명에 따른 초발수 기판의 제조 방법은 a) 포토마스크 제조 단계 및 b) 상기 a) 단계에서 제조된 포토마스크를 이용하여 기판 표면에 다수의 돌출부를 형성하는 단계를 포함한다. 상기 a) 단계는 의사임의분포로 배열된 다수의 광 투과부 (기판에 음성 감광제를 도포하는 경우) 또는 광 차단부 (기판에 양성 감광제를 도포하는 경우)를 갖는 포토마스크를 제조하는 것을 특징으로 한다. 이는 포토마스크를 이용하여 기판에 형성되는 돌출부를 의사임의분포로 배열시키기 위한 것으로, 의사임의분포로 돌출부를 배열하면 돌출부의 크기 및 돌출부간 간격을 조절할 수 있어 기판의 투명도 등 광학적 특성을 제어할 수 있기 때문이다. 상기 의사임의분포로 배열된 다수의 광 투과부 또는 광 차단부는 당해 기술 분야에서 일반적으로 사용되는 의사임의분포 형성 방법, 예를 들면, 난수 발생 함수 또는 보로노이 다이어그램 등을 이용한 패턴 설계 방법을 이용하여 형성할 수 있다. 예를 들면, 본 발명의 상기 다수의 광 투과부 또는 광 차단부는, 원하는 돌출부의 평균 간격 및 /또는 표준 편차값을 설정한 후 난수 발생 함수를 이용하여 의사 임의 분포를 만족하는 값들을 생성하고, 상기 생성된 값들의 위치에 광 투과부 또는 광 차단부에 해당하는 패턴을 형성하는 방법으로 형성될 수 있다. 한편, 도 3에는 보로노이 다이어그램을 이용한 패턴 설계 방법이 도시되어 있다. 도 3을 참조하면, 상기 보로노이 다이어그램을 이용한 패턴 설계 방법은 원하는 돌출부의 평균 간격을 고려하여 단위셀 영역을 형성하는 단계 (도 3의 <A> 참조); 상기 단위셀의 무게 중심에 광 투과부 또는 광 차단부에 해당되는 패턴을 형성하는 단계 (도 3의 <B> 참조); 및 상기 보로노이 다이어그램 패턴을 제거하는 단계 (도 3의 O 참조)로 이루어질 수 있다. 한편, 상기 광 투과부 또는 상기 광 차단부 간 평균 간격은 가시광 파장보다 크게 하는 것이 바람직하다. 구체적으로 상기 광투과부 또는 광차단부간 평균 간격은 0.4 내지 100 정도이며, 예를 들면, 1/an 내지 50 정도, 5 내지 30 정도, 0.4 내지 10 정도 또는 10/m 내지 100 정도일 수 있다. 상기 광투과부 또는 광차단부간 평균 간격이 0.½m 미만인 경우 현재 이용되는 포토리소그래피 방식을 이용하여 패턴을 형성하기가 어렵고, 100/ztn 초과하는 경우 돌출부간 평균 간격이 물방울보다 커지게 되어 원하는 발수 특성을 얻을 수 없는 문제가 발생할 수 있다. 또한, 상기 광 투과부 또는 광 차단부 패턴의 직경은 광 투과부 또는 광 차단부간 평균 간격에 따라 달라진다. 구체적으로, 상기 광 투과부 또는 광 차단부의 직경은 상기 광 투과부 또는 광 차단부간 평균 간격의 5 내지 30% 정도이며, 예를 들면, 10 내지 25% 정도, 15% 내지 20% 정도, 20% 내지 30% 정도 또는 5 내지 20% 정도일 수 있다. 상기 광투과부 또는 광차단부의 직경이 상기 광투과부 또는 광차단부간 평균 간격의 5% 미만인 경우 초발수 기판 상에 형성되는 패턴의 내구성이 취약해지며, 30% 초과한 경우 헤이즈가 증가되어 초발수 기판의 투명성이 저하되는 문제가 발생할 수 있다. 한편, 상기 b)단계는 기판의 표면에 감광제를 도포하고 상기 a)단계에서 제조된 포토마스크를 개입시켜 자외선올 조사함으로써 기판의 표면에 다수의 돌출부를 형성하는 방법으로 수행될 수 있다. 여기서, 상기 감광제로는 음성 감광제, 양성 감광제 모두 사용할 수 있다. 예를 들어 , Su— 8 감광제, AZ 4230 등을 사용할 수 있으나, 반드시 이에 한정되지 않음은 당업자에게는 자명한사실이다.
On the other hand, in the present invention, the plurality of protrusions are arranged in a pseudo-random distribution. Means that the position of each protrusion is set to random, but the average spacing of the entire protrusions is arranged to be adjusted to satisfy the set range. When the arrangement of the protrusions on the substrate is regular, it is difficult to secure transparency due to diffraction and interference of light, and when the arrangement of the protrusions on the substrate is a completely random distribution, transparency may be improved, but properties such as water repellency and water resistance may be improved. It is difficult to uniformly implement On the contrary, as in the present invention, when a plurality of protrusions are arranged in a pseudo random distribution and the average spacing between the protrusions is adjusted to a specific range, a super water-repellent substrate having excellent characteristics such as transparency, water repellency, and durability can be realized. On the other hand, in the present invention, the average spacing between the protrusions is preferably larger than the visible light wavelength. This is to ensure the durability of the super water-repellent substrate. Specifically above The average interval between the excavations is about 0.4 to 100j i, for example, about 1 to about 50, about 5 to about 30,
Figure imgf000007_0001
To about 10 / ΛΠ or about 10 to about 100. 평균 If the average spacing between the protrusions is less than m m not only difficult to form by the etching process currently used, but also the water repellent properties are lowered, if it exceeds 100, the average spacing between the protrusions is larger than the diameter of the water droplets to obtain the desired water-repellent properties No problem occurs. In addition, in the present invention, the protrusions are preferably formed such that the distance between adjacent protrusions satisfies a normal distr ibut ion. This is because when the gap between adjacent protrusions satisfies the normal distribution, a super water-repellent substrate having excellent water repellency and transparency can be obtained. In this case, the average value of the normal distribution is an average interval between protrusions, and the standard deviation value of the normal distribution is preferably about 1/20 to 1/4 of the average value. That is, the standard deviation of the normal distribution may be 1/20 to 1/4 of the average interval between protrusions. This is because the physical properties of the substrate are particularly excellent when the standard deviation value satisfies the numerical range. The shape of the plurality of protrusions is various, such as cylindrical shape, conical shape, square column shape and the like is not particularly limited. In addition, the diameter of the protrusions depends on the average spacing between the protrusions arranged in pseudo random distr ibut ions. Here, the diameter of the protrusion means the diameter of the portion of the protrusion in contact with the substrate, for example, the diameter of the lower circle in the case of conical shape, and the diameter of the lower circle in the case of lamppost shape. The diameter of the protrusions may be about 5 to 30% of the average interval between the protrusions, for example, about 10 to 25%, about 15% to 20%, about 2OT to 30%, or about 5 to 20%. When the diameter of the protrusion is less than 5% of the average distance between the protrusions, the durability of the pattern formed on the super water-repellent substrate becomes weak, and when it exceeds 30%, the haze is increased to increase the water-repellency. Problems in which the transparency of the substrate is degraded may occur. The height of the protrusions also depends on the average spacing between the protrusions arranged in a pseudo random distribution. The height of the protrusion is about 15 to 90% of the average interval between the protrusions, for example, may be about 20 to 60%, about 30 to 50%, about 40% to 90% or about 15% to 40%. If the height of the protrusions is less than 15% of the average spacing between the protrusions, it is difficult to express the superhydrophobic property, and if it exceeds 10, the durability of the pattern formed on the superhydrophobic substrate may be weak. The super water-repellent substrate having the structure described above preferably has a haze value of 2 or less because the haze value is preferably 2 or less in order to secure transparency of the article (for example, an automobile) to which the super water-repellent substrate is applied. . In the specification of the present invention, the haze is 100 when the incident light source is scattered 100% through the substrate, and 0 when it is not scattered at all. A value between 100 and 0 represents the ratio value at which incident light is scattered through the substrate. Alternatively, the super water-repellent substrate may have a haze value of 0.2 to 1.2 or a haze value of 0.5 to 1.0. On the other hand, Figure 2 is a view showing a contact angle of the super water-repellent substrate according to an embodiment of the present invention, referring to Figure 2, the super water-repellent substrate according to an embodiment of the present invention preferably has a contact angle of 140 ° C or more. and, for example, it is desirable to have more than l50 o C the contact angle. This is because super water-repellent phenomena occur with little water condensation at a contact angle of 140 ° C or more. Here, the contact angle refers to the angle with respect to the substrate surface when the liquid in a stationary state on the super water-repellent substrate is drawn in a straight line at the liquid surface. Meanwhile, the second water-repellent substrate according to the "Other embodiments of the present invention, the hydrophobic (hydrophobic) coating layer of a material on the surface including the plurality of protrusions may further include. remind The coating layer of the hydrophobic material is to enhance the super water repellency of the substrate, the hydrophobic material may be used as a fluorine-based compound, silane-based compound, for example, polytetrafluoroethylene (PolyTetraFluoroEthylene, PTFE), siloxane (siioxane ) May be used. The super water-repellent substrate according to the present invention described above may be applied to various fields such as a transparent substrate of an automobile glass display device, a display device of a mobile phone, a camera lens, and the like. In addition, since the average spacing between the protrusions is larger than the visible light wavelength, the superhydrophobic substrate of the present invention can form protrusions using a photolithography process using a light source of a relatively long wavelength band, embossing, or printing method. Since it can be, it is easy to apply to a large area board | substrate. Next, an embodiment of the method of manufacturing a super water-repellent substrate according to the present invention will be described. The method of manufacturing a super water-repellent substrate according to the present invention includes a) forming a photomask, and b) forming a plurality of protrusions on the surface of the substrate using the photomask prepared in step a). Step a) is characterized in that a photomask having a plurality of light transmitting parts (if the negative photosensitive agent is applied to the substrate) or light blocking part (if the positive photosensitive agent is applied to the substrate) arranged in a pseudo-random distribution . This is for arranging the protrusions formed on the substrate in a pseudo random distribution using a photomask. If the protrusions are arranged in the pseudo random distribution, the size of the protrusions and the spacing between the protrusions can be adjusted to control optical characteristics such as transparency of the substrate. Because there is. The plurality of light transmitting parts or light blocking parts arranged in the pseudo random distribution are formed using a pseudo random distribution forming method generally used in the art, for example, a pattern design method using a random number generation function or a Voronoi diagram. which Can be. For example, the plurality of light transmitting parts or light blocking parts of the present invention sets values of average spacing and / or standard deviation of desired protrusions, and then generates values satisfying a pseudo random distribution using a random number generation function. It may be formed by forming a pattern corresponding to the light transmitting part or the light blocking part at the positions of the generated values. Meanwhile, FIG. 3 illustrates a pattern design method using a Voronoi diagram. Referring to FIG. 3, the pattern design method using the Voronoi diagram may include forming a unit cell region in consideration of an average spacing of a desired protrusion (see <A> in FIG. 3); Forming a pattern corresponding to the light transmitting part or the light blocking part in the center of gravity of the unit cell (see FIG. 3B); And removing the Voronoi diagram pattern (see O of FIG. 3). On the other hand, the average interval between the light transmitting portion or the light blocking portion is preferably larger than the visible light wavelength. Specifically, the average distance between the light transmitting portions or the light blocking portions may be about 0.4 to about 100, for example, about 1 / an to about 50, about 5 to about 30, about about 0.4 to about 10, or about about 10 / m to about 100. If the average distance between the light transmitting portion or the light blocking portion is less than 0.½m, it is difficult to form a pattern using a photolithography method currently used, and if it exceeds 100 / ztn, the average spacing between the protrusions is larger than that of water droplets so that the desired water repellency characteristics A problem may arise that cannot be obtained. In addition, the diameter of the light transmitting part or the light blocking part pattern depends on the average distance between the light transmitting part or the light blocking part. Specifically, the diameter of the light transmitting part or the light blocking part is about 5 to 30% of the average interval between the light transmitting part or the light blocking part, for example, about 10 to 25%, about 15% to 20%, 20% to 30 Or about 5 to 20%. The diameter of the light transmitting portion or the light blocking portion is If less than 5% of the average distance between the light transmitting part or the light blocking part, the durability of the pattern formed on the super water-repellent substrate becomes weak, and if it exceeds 30%, the haze may increase, resulting in a problem of deterioration of transparency of the super water-repellent substrate. . Meanwhile, step b) may be performed by applying a photosensitive agent to the surface of the substrate and irradiating ultraviolet rays through the photomask prepared in step a) to form a plurality of protrusions on the surface of the substrate. Here, as the photosensitizer, both a negative photosensitizer and a positive photosensitizer may be used. For example, Su-8 photosensitizers, AZ 4230, etc. may be used, but not necessarily limited thereto.
【발명의 실시를 위한 형태】  [Form for implementation of invention]
이하, 실시예를 이용하여 본 발명의 일 구현예에 따른 초발수 기판 및 그 제조방법에 대해 구체적으로 설명하고자 한다. 다만, 본 발명은 이에 한정되는 것은 아니다. 실시예 Hereinafter, a superhydrophobic substrate and a method of manufacturing the same according to an embodiment of the present invention will be described in detail by using an embodiment. However, the present invention is not limited thereto. EXAMPLE
(1) 포토마스크의 제조  (1) Preparation of photomask
1) 평균 간격을 로 설정하여 보로노이 다이어그램의 단위셀들을 형성하고, 그 보로노이 다이어그램 패턴 단위 셀의 무게중심에 직경 3卿의 원 형상의 패턴을 설계한 후, 상기 보로노이 다이어그램 패턴을 제거하여, 의사임의분포로 배열된 다수의 원 형상의 패턴을 설계한다.  1) forming unit cells of the Voronoi diagram by setting the average spacing to, and designing a circular pattern having a diameter of 3 에 at the center of gravity of the Voronoi diagram pattern unit cell, and then removing the Voronoi diagram pattern Design multiple circular patterns arranged in pseudorandom distribution.
2) 크름 박막이 형성되고, 상기 크롬 박막 위에 포토레지스트가 코팅된 석영 재질의 기판에 상기 설계된 패턴을 전사하고, 전사된 포토레지스트를 형상화한다. 2) A crescent thin film is formed, the designed pattern is transferred onto a quartz substrate coated with a photoresist on the chromium thin film, and the transferred photoresist is shaped.
3) 현상 후 생성된 포토레지스트 패턴을 막으로 하여 크롬 박막을 에칭한 후 남은 포토레지스트를 제거한다. 3) The chromium thin film is etched using the photoresist pattern generated after development as a film to remove the remaining photoresist.
4) 포토레지스트 제거 및 세정 후, 마스크 상의 결함 여부를 검사하여, 결함을 리페어하여 포토마스크를 완성한다. 상술한 바와 같이 제조된 포토마스크는 직경 의 다수의 원 형상의 광 투과부가 형성되며, 상기 다수의 광투과부는 의사임의분포로 배열되고, 상기 광 투과부간 평균 간격은 20 ᅳ이다. 4) After removing and cleaning the photoresist, inspect the mask for defects and repair the defects to complete the photomask. The photomask manufactured as described above has a plurality of circular light transmitting parts having a diameter, the plurality of light transmitting parts are arranged in a pseudo random distribution, and the average spacing between the light transmitting parts is 20 ᅳ.
(2) 기판에 다수의 돌출부 제조 (2) manufacturing of a plurality of protrusions on the substrate
1) 폴리메틸메타크릴레이트 (Polymethyl Methacrylate, PMMA) 기판을 준비하고, 상기 기판의 일 표면에 Su-8 감광제를 도포한다.  1) Prepare a polymethyl methacrylate (PMMA) substrate, and apply a Su-8 photosensitive agent on one surface of the substrate.
2) (1)에서 제작된 포토마스크를 개입시켜 상기 감광제층에 자외선을 조사한 후 현상한다. 현상 후 노광되지 않은 영역을 제거함으로써 다수의 돌출부를 포함하는 초발수 기판을 제조한다.  2) It develops after irradiating an ultraviolet-ray to the said photosensitive agent layer through the photomask manufactured by (1). By removing the unexposed areas after development, a super water-repellent substrate including a plurality of protrusions is produced.
제조된 초발수 기판의 일 표면에 형성되어 있는 다수의 돌출부는 의사임의분포로 배열되며, 그 돌출부간 평균 간격이 20 이고, 상기 돌출부의 직경은 3 , 높이는 10 이다. A plurality of protrusions formed on one surface of the manufactured super water-repellent substrate is arranged in a pseudo random distribution, the average interval between the protrusions is 20, the diameter of the protrusions is 3, the height is 10.
(3) 기판 표면에 소수성 물질 코팅 (3) coating hydrophobic material on the substrate surface
상기 제조된 초발수 기판의 표면에 폴리테트라플루오로에틸렌 (PolyTetraFluoroEthylene, PTFE)올 코팅한다. 비교예 The surface of the prepared super water-repellent substrate is coated with polytetrafluoroethylene (PolyTetraFluoroEthylene, PTFE). Comparative example
다수의 다이아몬드 형상이 일렬로 배열된 패턴을 설계하여 포토마스크의 패턴을 형성한 점을 제외하고는 실시예와 동일한 방법으로 발수 기판을 제조하였다. 도 4는 비교예에 따른 발수 기판의 표면 형상을 나타내는 도면이다. 도 4를 참조하면, 비교예에 따른 발수 기판의 일 표면에 형성되어 있는 다수의 돌출부는 다이아몬드 형상이며 2차원에 일렬로 배열되며, 그 돌출부간 평균 간격이 20 이고, 상기 돌출부의 직경은 3//m, 높이는 lOim이다. 상술한 결과로부터, 실시예에 따른 발수 기판은 그 표면에 형성된 돌출부간 평균 간격이 가시광 파장보다 크다는 점에서 비교예에 따른 발수 기판과 유사하나, 돌출부가 의사임의분포로 배열되어 있다는 점에서 비교예에 따.른 발수 기판과 상이하다 . 실험예 A water repellent substrate was manufactured in the same manner as in Example, except that a pattern in which a plurality of diamond shapes were arranged in a line was formed to form a pattern of a photomask. 4 is a view showing the surface shape of a water repellent substrate according to a comparative example. Referring to FIG. 4, a plurality of protrusions formed on one surface of the water repellent substrate according to the comparative example are diamond-shaped and are arranged in a line in two dimensions, and the average spacing between the protrusions is 20, and the diameter of the protrusions is 3 /. / m, height is lOim From the above results, the water repellent substrate according to the embodiment is similar to the water repellent substrate according to the comparative example in that the average spacing between the protrusions formed on the surface thereof is larger than the visible light wavelength. It differs from the water repellent substrate according to the comparative example in that the protrusions are arranged in a pseudo random distribution. Experimental Example
(1) 접촉각의 측정  (1) measuring the contact angle
Kruss dsa-100 측정기를 이용하여 초발수 기판 표면에서의 접촉각을 측정하였다.  The contact angle at the surface of the super water-repellent substrate was measured using a Kruss dsa-100 meter.
(2) 헤이즈의 측정 (2) measurement of haze
Murakami color research lab의 HR-100을 이용하여 초발수 기판의 투명도를 측정하였다. 실시예에 의해 제조된 초발수 기판은, 그 표면에서의 접촉각을 측정한 결과 154。로 측정되었으며, 헤이즈 값은 1.7이었다. 비교예에 의해 제조된 발수기판은, 그 표면에서의 접촉각을 측정한 결과 1510이며, 해이즈 값은 18.7이었다. The transparency of the super water-repellent substrate was measured using HR-100 of Murakami color research lab. The super water-repellent substrate prepared in the example was measured at 154 ° as a result of measuring the contact angle on the surface thereof, and the haze value was 1.7. As for the water-repellent board manufactured by the comparative example, when the contact angle in the surface was measured, it was 151 0 and haze value was 18.7.
상술한 결과로부터, 실시예에 따른 발수 기판은 비교예에 따른 발수 기판에 비해 접촉각이 우수하면서 동시에 투명도도 우수함을 확인할 수 있었다. 이는, 비교예와 달리 실시예에 따른 돌출부는 그 간격이 가시광 파장 이상이나 의사임의분포로 배열되어 있어 투명도를 확보할 수 있기 때문이다. 이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다. From the above results, it was confirmed that the water-repellent substrate according to the embodiment was superior in contact angle and transparency at the same time as compared to the water-repellent substrate in the comparative example. This is because, unlike the comparative example, the protrusions according to the example are arranged at a distance of visible light or pseudorandom distribution so that transparency can be ensured. Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and variations can be made without departing from the technical spirit of the present invention described in the claims. It will be obvious to those of ordinary skill in the field.

Claims

【청구의 범위】  [Range of request]
【청구항 11  [Claim 11
일 표면에 의사임의분포 (Pseudo random distribution)로 배열된 다수의 돌출부를 포함하고, 상기 돌출부간 평균 간격이 가시광 파장보다 큰 초발수 기판. A super water-repellent substrate comprising a plurality of protrusions arranged in a pseudo random distribution on one surface, the average spacing between the protrusions is larger than the visible light wavelength.
【청구항 2]  [Claim 2]
제 1항에 있어서, The method of claim 1,
상기 돌출부간 평균 간격은 0.4 내지 100 ^인 초발수 기판. The average spacing between the protrusions is 0.4 to 100 ^ super water-repellent substrate.
【청구항 3]  [Claim 3]
제 1항에 있어서, The method of claim 1,
상기 다수의 돌출부는 인접한 돌출부들 사이의 간격이 정규분포를 만족하는 초발수 기판. And a plurality of protrusions having a spacing between adjacent protrusions satisfying a normal distribution.
【청구항 4]  [Claim 4]
제 3항에 있어서, The method of claim 3,
상기 정규분포의 표준 편차는 상기 돌출부간 평균 간격의 1/20 내지 1/4인 초발수 기판. The standard deviation of the normal distribution is 1/20 to 1/4 of the average distance between the protrusions.
【청구항 5]  [Claim 5]
거 U항에 있어서, In U,
상기 돌출부의 직경은 상기 돌출부간 평균 간격의 5% 내지 30%인 초발수 기판.The diameter of the protrusion is a super water-repellent substrate is 5% to 30% of the average spacing between the protrusions.
【청구항 6】 [Claim 6]
제 1항에 있어서, The method of claim 1,
상기 초발수 기판의 헤이즈는 2 이하인 초발수 기판. The super water-repellent board | substrate of which the haze of the said super water-repellent board | substrate is 2 or less.
【청구항 7】  [Claim 7]
제 1항에 있어서, The method of claim 1,
상기 다수의 돌출부를 포함하는 표면에 소수성 물질의 코팅충을 더 포함하는 초발수 기판. The super water-repellent substrate further comprises a coating of hydrophobic material on the surface including the plurality of protrusions.
【청구항 8]  [Claim 8]
거 17항에 있어서, According to claim 17,
상기 소수성 물질은 불소계 화합물 또는 실란계 화합물인 초발수 기판. The hydrophobic material is a super water-repellent substrate is a fluorine compound or a silane compound.
【청구항 9】 a) 의사임의분포로 배열된 다수의 광 투과부 또는 광 차단부를 가지고, 상기 다수의 광 투과부 또는 광 차단부의 평균 간격이 가시광 파장보다 큰 포토마스크를 제조하는 단계 ; 및 [Claim 9] a) manufacturing a photomask having a plurality of light transmitting parts or light blocking parts arranged in a pseudo-random distribution, wherein the average spacing of the plurality of light transmitting parts or light blocking parts is larger than a visible light wavelength; And
b) 상기 a)단계에서 제조된 포토마스크를 이용하여 기판의 표면에 다수의 돌출부를 형성하는 단계를 포함하는 초발수 기판의 제조방법. b) forming a plurality of protrusions on the surface of the substrate using the photomask prepared in step a).
【청구항 10]  [Claim 10]
게 9항에 있어서, According to claim 9,
상기 a)단계는 보로노이 다이어그램 (voronoi diagram)을 이용한 패턴설계방법을 이용하는 초발수 기판의 제조방법. Step a) is a method of manufacturing a super water-repellent substrate using a pattern design method using a voronoi diagram.
【청구항 11]  [Claim 11]
거 19항에 있어서, The method of claim 19,
상기 a)단계의 광 투과부 또는 광 차단부의 직경이 상기 광 투과부 또는 광 차단부간 평균 간격의 5% 내지 30%인 초발수 기판의 제조방법 . The method of manufacturing a super water-repellent substrate, wherein the diameter of the light transmitting part or the light blocking part of step a) is 5% to 30% of the average interval between the light transmitting part or the light blocking part.
【청구항 12】  [Claim 12]
제 9항에 있어서, The method of claim 9,
상기 다수의 돌출부가 형성된 기판의 표면에 소수성 물질을 코팅하는 단계를 더 포함하는 초발수 기판의 제조방법 . The method of manufacturing a super water-repellent substrate further comprising coating a hydrophobic material on the surface of the substrate on which the plurality of protrusions are formed.
【청구항 13】  [Claim 13]
제 1항 내지 제 8항 중 어느 한 항의 초발수 기판을 포함하는 디스플레이장치. 【청구항 14】 A display apparatus comprising the super water-repellent substrate of any one of claims 1 to 8. [Claim 14]
제 1항 내지 제 8항 중 어느 한 항의 초발수 기판올 포함하는 자동차 유리 . An automotive glass comprising the super water-repellent substrate of any one of claims 1 to 8.
PCT/KR2012/010040 2011-11-25 2012-11-26 Superhydrophobic substrate and method for manufacturing same WO2013077691A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013553382A JP5961906B2 (en) 2011-11-25 2012-11-26 Super water-repellent substrate and manufacturing method thereof
CN201280012424.9A CN103443660B (en) 2011-11-25 2012-11-26 Superhydrophobic substrate and manufacture method thereof
US13/951,180 US9376341B2 (en) 2011-11-25 2013-07-25 Superhydrophobic substrate and method of manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0124442 2011-11-25
KR20110124442 2011-11-25
KR10-2012-0133682 2012-11-23
KR1020120133682A KR101541583B1 (en) 2011-11-25 2012-11-23 Superhydrophobic substrate and the method manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/951,180 Continuation US9376341B2 (en) 2011-11-25 2013-07-25 Superhydrophobic substrate and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2013077691A1 true WO2013077691A1 (en) 2013-05-30

Family

ID=48470065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010040 WO2013077691A1 (en) 2011-11-25 2012-11-26 Superhydrophobic substrate and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2013077691A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236955A (en) * 2002-02-19 2003-08-26 Toto Ltd Ultra-water-repellent material
JP2006083244A (en) * 2004-09-15 2006-03-30 Citizen Seimitsu Co Ltd Molded article having extremely water-repelling surface and method for producing the same
KR20100008579A (en) * 2008-07-16 2010-01-26 한국과학기술원 Patterns having super-hydrophobic and super-hydrorepellent surface and method of forming the same
US20100021692A1 (en) * 2006-09-21 2010-01-28 Edward Bormashenko Superhydrophobic nanotextured polymer and metal surfaces
KR20100099387A (en) * 2009-03-03 2010-09-13 주식회사 엘지화학 Method for desigining diffusing film having irregular spherical shaped patterns

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236955A (en) * 2002-02-19 2003-08-26 Toto Ltd Ultra-water-repellent material
JP2006083244A (en) * 2004-09-15 2006-03-30 Citizen Seimitsu Co Ltd Molded article having extremely water-repelling surface and method for producing the same
US20100021692A1 (en) * 2006-09-21 2010-01-28 Edward Bormashenko Superhydrophobic nanotextured polymer and metal surfaces
KR20100008579A (en) * 2008-07-16 2010-01-26 한국과학기술원 Patterns having super-hydrophobic and super-hydrorepellent surface and method of forming the same
KR20100099387A (en) * 2009-03-03 2010-09-13 주식회사 엘지화학 Method for desigining diffusing film having irregular spherical shaped patterns

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMAHA ET AL.: "Modeling drag reduction and meniscus stability of superhydrophobic surfaces comprised of random roughness", PHYSICS OF FLUIDS, vol. 23, no. 012001, January 2011 (2011-01-01), pages 1 - 8, XP055069901 *

Similar Documents

Publication Publication Date Title
Sun et al. Biomimetic moth-eye nanofabrication: enhanced antireflection with superior self-cleaning characteristic
Kuo et al. Moth-eye-inspired biophotonic surfaces with antireflective and hydrophobic characteristics
KR101541583B1 (en) Superhydrophobic substrate and the method manufacturing the same
KR101639519B1 (en) Methode for manufacturing conductive mesh pattern, mesh electrode manufactured by the methode and laminate
US20130266762A1 (en) Structured Smudge-Resistant Coatings and Methods of Making and Using the Same
CN104937697B (en) Exposure device
CN110228950B (en) Preparation method of anti-glare glass
JP2011032159A (en) Method for producing functional surface
US9081134B2 (en) Substrate having low reflection and high contact angle, and production method for same
CN102520591A (en) Negative photoresist-based diffuser photo-etching process
US10444407B2 (en) Optical element including a plurality of concavities
CN112534313B (en) Light diffusion plate, image display device and lighting device
WO2016009826A1 (en) Optical element
CN107102386B (en) With cover board for resisting dizzy function and preparation method thereof and display panel
Ju et al. Fabrication of high-transmittance and low-reflectance meter-scale moth-eye film via roll-to-roll printing
Chien et al. Dragonfly-wing-inspired inclined irregular conical structures for broadband omnidirectional antireflection coatings
KR20100070516A (en) Manufacturing method for anti-reflective surface and super water-repellent surface
Yamashita et al. Development of a High‐Performance, Anti‐Fouling Optical Diffuser Inspired by Morpho Butterfly's Nanostructure
Mao et al. Nanopatterning using a simple bi-layer lift-off process for the fabrication of a photonic crystal nanostructure
WO2013077691A1 (en) Superhydrophobic substrate and method for manufacturing same
WO2015014073A1 (en) Display substrate and manufacturing method therefor, and display device
KR101449633B1 (en) High Brightness and Moire Free Mirco Lens Film and Method of Manufacturing the Mirco Lens Film and Backlight Unit Containing the Mirco Lens Film and Mirco lens Array Apparatus
KR101545781B1 (en) Water- repellent and oil- repellent substrate and the method thereof
Lin et al. New high fill-factor triangular micro-lens array fabrication method using UV proximity printing
Hung et al. Semiellipsoid microlens fabrication method using the lift-off and alignment exposure processes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013553382

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850790

Country of ref document: EP

Kind code of ref document: A1