WO2013077523A1 - 태양전지용 기판의 제조방법 - Google Patents
태양전지용 기판의 제조방법 Download PDFInfo
- Publication number
- WO2013077523A1 WO2013077523A1 PCT/KR2012/005436 KR2012005436W WO2013077523A1 WO 2013077523 A1 WO2013077523 A1 WO 2013077523A1 KR 2012005436 W KR2012005436 W KR 2012005436W WO 2013077523 A1 WO2013077523 A1 WO 2013077523A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pattern
- silicon oxide
- silicon
- substrate
- master
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 140
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 51
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 137
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 137
- 239000004205 dimethyl polysiloxane Substances 0.000 claims abstract description 107
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims abstract description 107
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 103
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 103
- 239000010703 silicon Substances 0.000 claims abstract description 103
- 238000005530 etching Methods 0.000 claims abstract description 12
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims abstract 29
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 claims abstract 29
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims abstract 29
- 238000000034 method Methods 0.000 claims description 65
- 239000000463 material Substances 0.000 claims description 15
- 239000012535 impurity Substances 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims 2
- 239000010410 layer Substances 0.000 description 71
- 239000000243 solution Substances 0.000 description 29
- 229910000608 Fe(NO3)3.9H2O Inorganic materials 0.000 description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- BUVBYQUZAIPDHT-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S.NC(N)=S BUVBYQUZAIPDHT-UHFFFAOYSA-N 0.000 description 6
- 238000001459 lithography Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- UMGDCJDMYOKAJW-UHFFFAOYSA-N aminothiocarboxamide Natural products NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 4
- ONRPGGOGHKMHDT-UHFFFAOYSA-N benzene-1,2-diol;ethane-1,2-diamine Chemical compound NCCN.OC1=CC=CC=C1O ONRPGGOGHKMHDT-UHFFFAOYSA-N 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 238000001039 wet etching Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Natural products CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0236—Special surface textures
- H01L31/02363—Special surface textures of the semiconductor body itself, e.g. textured active layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0236—Special surface textures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a method of manufacturing a substrate for a solar cell.
- the upper surface of the silicon substrate is textured to increase light absorption, and the lower surface of the substrate The back electrode is formed.
- d In order to form such a high efficiency solar cell and to form a back electrode, d generally requires a relatively expensive semiconductor process such as lithography. If the solar cell substrate is manufactured through an expensive semiconductor process such as lithography, it becomes a factor that increases the production cost.
- the present invention provides a method for manufacturing a solar cell substrate capable of forming a surface texture structure or a selective doped region of a solar cell substrate at low cost.
- Method for manufacturing a substrate for a solar cell preparing a silicon substrate having a silicon oxide layer formed on one surface; Transferring the ink to the silicon oxide layer using a PDMS stamp having a pattern of the textured structure with ink applied thereto; Removing a portion of the silicon oxide layer on which the ink is not transferred, using a first etching solution to form a silicon oxide pattern identical to the pattern transferred from the PDMS stamp; And removing a portion of the surface of the silicon substrate exposed by the silicon oxide pattern with a second etching solution to form a pattern of a texture structure on one surface of the silicon substrate.
- the Au or Au / Cr layer may be formed on the silicon oxide layer by using a PDMS stamp having a pattern of a texture structure coated with Au or Au / Cr material.
- the method may further include forming an intermediate layer including the layer.
- the method may further include removing the silicon oxide pattern remaining on one surface of the silicon substrate by using a HF solution after forming a pattern of a texture structure on one surface of the silicon substrate.
- the method of forming a PDMS stamp may include preparing a master on which a pattern of a texture structure is formed; Coating silicon on the pattern of the master; Pouring a PDMS solution into the pattern of the master coated with silicon; Curing the PDMS solution poured into the master pattern at room temperature; And separating the cured PDMS from the master.
- a method of manufacturing a solar cell substrate comprising: preparing a silicon substrate having a silicon oxide layer formed on one surface thereof; Transferring the ink to the silicon oxide layer using a PDMS stamp having an electrode line pattern coated with ink; Removing a portion of the silicon oxide layer on which the ink is not transferred, using a first etching solution to form a silicon oxide pattern identical to the pattern transferred from the PDMS stamp; And doping an impurity on a surface of the silicon substrate exposed by the silicon oxide pattern using the silicon oxide pattern as a mask.
- the Au or Au / Cr layer may be formed on the silicon oxide layer by using a PDMS stamp having a pattern of a texture structure coated with Au or Au / Cr material.
- the method may further include forming an intermediate layer including the layer.
- the method may further include removing the silicon oxide pattern remaining on one surface of the silicon substrate by using an HF solution after forming an electrode line pattern on one surface of the silicon substrate.
- the method of forming the PDMS stamp preparing a master on which the electrode line pattern is formed; Coating silicon on the pattern of the master; Pouring a PDMS solution into the pattern of the master coated with silicon; Curing the PDMS solution poured into the master pattern at room temperature; And separating the cured PDMS from the master.
- a method of manufacturing a solar cell substrate comprising: preparing a silicon substrate having a first silicon oxide layer formed on an upper surface thereof and a second silicon oxide layer formed on a lower surface thereof; Transferring the ink onto the first silicon oxide layer using a first PDMS stamp having a pattern of an ink-coated texture structure, and using a second PDMS stamp having an electrode line pattern coated with the ink, Transferring the ink to the second silicon oxide layer using a first etching solution to remove portions of the first silicon oxide layer and the second silicon oxide layer to which the ink is not transferred, thereby removing the first PDMS stamp; Forming a first silicon oxide pattern identical to the pattern transferred from the second silicon oxide pattern and a second silicon oxide pattern identical to the pattern transferred from the second PDMS stamp; Removing a portion of the upper surface of the silicon substrate exposed by the first silicon oxide pattern with a second etching solution to form a pattern of a texture structure on the top surface of the silicon substrate;
- the first silicon oxide layer and the second oxidation are performed by using a PDMS stamp having a pattern of a textured structure coated with Au or Au / Cr material.
- the method may further include forming respective intermediate layers including Au or Au / Cr layers on the silicon layer.
- the method may further include removing each of the second silicon oxide patterns remaining on the bottom surface of the silicon substrate.
- the method of forming the first PDMS stamp may include preparing a master on which a pattern of a texture structure is formed; Coating silicon on the pattern of the master; Pouring a PDMS solution into the pattern of the master coated with silicon; Curing the PDMS solution poured into the master pattern at room temperature; And separating the cured PDMS from the master.
- the method of forming the second PDMS stamp may include preparing a master on which an electrode line pattern is formed; Coating silicon on the pattern of the master; Pouring a PDMS solution into the pattern of the master coated with silicon; Curing the PDMS solution poured into the master pattern at room temperature; And separating the cured PDMS from the master.
- a solar cell substrate of the present invention can provide a method of forming a surface texture structure or a selective doped region of the solar cell substrate at a low cost.
- FIG. 1 is a perspective view showing the structure of a master according to an embodiment of the present invention.
- FIG. 2 is a perspective view showing a method of manufacturing a PDMS stamp according to an embodiment of the present invention.
- FIG. 3 is a schematic flowchart illustrating a method of manufacturing a substrate for a solar cell according to a first embodiment of the present invention.
- 4 to 10 are process flowcharts illustrating a method of manufacturing a solar cell substrate according to a first embodiment of the present invention.
- FIG. 11 is a perspective view illustrating a part of the solar cell substrate according to the first embodiment of the present invention.
- FIG. 12 is a schematic flowchart illustrating a method of manufacturing a solar cell substrate according to a second embodiment of the present invention.
- FIG. 13 to 19 are process flowcharts illustrating a method of manufacturing a solar cell substrate according to a second embodiment of the present invention.
- FIG. 20 is a schematic flowchart illustrating a method of manufacturing a solar cell substrate according to a third embodiment of the present invention.
- 21 to 27 are process flowcharts illustrating a method of manufacturing a solar cell substrate according to a third embodiment of the present invention.
- FIG. 1 is a perspective view showing the structure of a master 5 according to an embodiment of the present invention.
- a silicon wafer having an area substantially the same as a silicon substrate for a solar cell according to an embodiment of the present invention is prepared.
- the prepared silicon wafer is washed sequentially with distilled water, acetone and isopropyl alcohol (IPA), followed by drying.
- IPA isopropyl alcohol
- the photoresist is spin coated at about 1000 rpm for 30 seconds on the silicon wafer after cleaning and drying, and then dried at 100 ° C. for 10 minutes.
- the AZ-4620 may be used as the photo register.
- a mask having a texture pattern is applied to a silicon wafer coated with photoresist and exposed to an energy of about 300 mJ, followed by development for about 2 minutes with a developer.
- AZ-300K may be used as the developer.
- the width of the texture pattern may be about 0.1 to 0.2 ⁇ m, the width between the patterns may be about 5 to 10 ⁇ m.
- FIG. 2 is a perspective view showing a manufacturing method of the PDMS stamp 10 according to the embodiment of the present invention.
- the silicon is coated on the master (5) prepared in the above manner.
- the silicon can act so that the subsequent PDMS stamp 10 can be well separated from the master 5.
- the prepared PDMS solution 10a is poured into the master 5.
- the PDMS solution 10a is poured to completely cover the structure 5a of the master 5.
- the PDMS solution 10a poured into the master 5 is cured at room temperature to solidify, thereby forming the PDMS stamp 10.
- the PDMS stamp 10 is separated from the master 10. As shown in (b) of FIG. 2, the separated PDMS stamp 10 is formed with a pattern 11 having a texture structure complementary to the structures 5a formed on the master 5.
- the manufacturing method described below may be applied to a manufacturing process of a high efficiency solar cell, such as a passivated emitter and rear locally diffused (PERL) cell or a passivated emitter solar cell (PESC), and may be applied to a manufacturing process of various types of high efficiency solar cells. Can be.
- a high efficiency solar cell such as a passivated emitter and rear locally diffused (PERL) cell or a passivated emitter solar cell (PESC)
- PESC passivated emitter solar cell
- the first embodiment of the present invention relates to a method of texturing a substrate for a solar cell using the PDMS stamp 10 manufactured by the above method, hereinafter, with reference to the accompanying drawings It will be described in detail for the manufacturing method of the solar cell substrate according to the embodiment.
- FIG. 3 is a schematic flowchart illustrating a method for manufacturing a solar cell substrate 100S according to a first embodiment of the present invention.
- 4 to 10 are process flowcharts illustrating a method (100s) of manufacturing a substrate for a solar cell according to the first embodiment of the present invention.
- a method for manufacturing a solar cell substrate 100S includes a substrate preparation step 110S, an ink transfer step 120S, a silicon oxide pattern forming step 130S, and a substrate patterning step. 140S, the silicon oxide pattern removing step 150S.
- a silicon substrate 100 for a solar cell having a silicon oxide (SiOX) layer 110 formed on one surface is prepared.
- an intermediate layer (not shown) may be formed on at least a portion of the silicon oxide layer 110.
- the intermediate layer (not shown) may be formed by transferring the Au or Au / Cr material onto the silicon oxide layer 110 using a PDMS stamp coated with Au or Au / Cr material, which will be described later. It may be formed in the same pattern as the ink 1 transferred by 10).
- the intermediate layer (not shown) may serve to improve wettability with subsequent ink.
- One surface of the silicon substrate 100 may be an upper surface of a conventional solar cell that is in direct contact with sunlight, and becomes a portion to be textured to increase light absorption.
- ink 1 is first applied to a PDMS stamp 10 prepared in advance.
- the ink 1 is applied to the pattern 11 of the texture structure formed on the PDMS stamp 10 and dried.
- the pattern 11 of the texture structure of the PDMS stamp 10 is formed of a substantially square intaglio pattern and a plurality of embossed patterns in the form of a border surrounding the intaglio pattern, and the width d1 of the intaglio pattern is The width d2 of the intaglio pattern may be about 0.1 ⁇ m to about 0.2 ⁇ m.
- the PDMS stamp 10 to which the ink 1 is applied is mounted on a printing system which can adjust the level.
- the PDMS stamp 10 coated with ink is printed while applying pressure to the silicon oxide layer 110 of the silicon substrate 100. Subsequently, as shown in FIG. 7, when the PDMS stamp 10 is separated from the silicon substrate 100, the ink 1 applied on the embossed pattern of the pattern 11 of the texture structure of the PDMS stamp 10 is formed. ) Is transferred directly to the silicon oxide layer 110 or an intermediate layer (not shown).
- the silicon oxide layer 110 is patterned in the same pattern as the pattern transferred from the PDMS stamp 10 (hereinafter referred to as silicon oxide pattern 110).
- the ink 1 on the silicon oxide pattern 110 may not be removed or partially removed, or may be removed during the subsequent process.
- a wet etching process of removing a portion of the upper surface of the silicon substrate 110 is performed using an ethylenediamine pyrocatechol (EDP) solution.
- EDP ethylenediamine pyrocatechol
- FIG. 9 an ethylenediamine pyrocatechol (EDP) solution is etched by a portion of the upper surface of the silicon substrate 110 exposed by the silicon oxide pattern 110, and is etched. The remaining part is not removed by the silicon oxide pattern 110 and remains as it is. Accordingly, a pattern 101 having a texture structure is formed on the upper surface of the silicon substrate 100.
- the silicon oxide pattern 110 remaining on the silicon substrate 100 is removed.
- an unnecessary silicon oxide material may be removed using an HF solution.
- an interlayer (not shown) including Au on the silicon oxide pattern 110 is present, Fe (NO 3 ) 3 .9H 2 O of about 13.3 mM and 20 mM Thiourea (Thiourea) are mixed.
- the Au may be removed by using an aqueous solution as an etchant.
- the Au component may be removed by an aqueous solution in which Fe (NO 3) 3.9H 2 O and Thiourea are mixed, and the Cr component is HF. Can be removed.
- FIG. 11 is a perspective view illustrating a part of the solar cell substrate 100 according to the first embodiment of the present invention.
- the pattern 101 of the textured structure formed on the solar cell substrate 100 according to the first embodiment of the present invention is similar to the pattern 11 of the textured structure of the PDMS stamp 10.
- the pattern 101 of the textured structure formed on the solar cell substrate 100 is repeatedly formed of a plurality of intaglio patterns of the V-shaped grooves and a plurality of embossed patterns having a border shape surrounding the intaglio patterns, and the width D1 of the intaglio patterns ) Is approximately 5 to 10 ⁇ m, and the width D2 of the intaglio pattern may be 0.1 to 0.2 ⁇ m.
- a pattern of a texture structure may be formed on one surface of the silicon substrate 100 only by a low-cost process such as printing and wet etching, without a high-cost semiconductor process like conventional lithography.
- the second embodiment of the present invention relates to a method of forming a selective doped region for forming an electrode on a substrate for a solar cell using the PDMS stamp 20 manufactured in the same manner as the first embodiment.
- the PDMS stamp according to the second embodiment of the present invention may not have a pattern of a texture structure but may have a predetermined pattern, for example, a pattern of an electrode line.
- the pattern of the electrode lines is described as an example of the stripe shape formed at predetermined intervals, but the present invention is not limited thereto.
- FIG. 12 is a schematic flowchart illustrating a method for manufacturing a solar cell substrate 200S according to a second embodiment of the present invention.
- a method of manufacturing a solar cell substrate 200S includes a substrate preparation step 210S, an ink transfer step 220S, a silicon oxide pattern forming step 230S, and an impurity doping step. 240S, the silicon oxide pattern removing step 250S.
- FIG. 13 to 19 are process flowcharts illustrating a method of manufacturing a solar cell substrate 200s according to a second embodiment of the present invention.
- a silicon substrate 200 for a solar cell having a silicon oxide (SiOX) layer 210 formed on one surface is prepared.
- an intermediate layer (not shown) may be formed on at least a portion of the silicon oxide layer 210.
- the intermediate layer (not shown) may be formed by transferring the Au or Au / Cr material onto the silicon oxide layer 210 using a PDMS stamp coated with Au or Au / Cr material. It can be formed in the same pattern as the ink 1 transferred by 20).
- the intermediate layer (not shown) may serve to improve wettability with subsequent ink.
- One surface of the silicon substrate 200 refers to a rear surface of the silicon substrate 200 on which electrodes are formed.
- the ink 1 is first applied to the PDMS stamp 20 prepared in advance.
- the ink 1 is applied to the pattern 21 of the electrode line formed on the PDMS stamp 20 and then dried.
- the pattern 21 of the electrode line of the PDMS stamp 20 may be formed of an intaglio stripe pattern and a flat relief pattern except for the stripe pattern.
- the PDMS stamp 20 to which the ink 1 is applied is mounted on a printing system which can adjust the level.
- the PDMS stamp 20 coated with ink is printed while applying pressure to the silicon oxide layer 210 of the silicon substrate 200.
- the ink 1 applied on the embossed pattern of the pattern 21 of the electrode line of the PDMS stamp 20 is formed. ) Is transferred directly to the silicon oxide layer 210 or an intermediate layer (not shown).
- the silicon oxide layer 210 is patterned in the same pattern as the pattern transferred from the PDMS stamp 20 (hereinafter referred to as silicon oxide pattern 210).
- the ink 1 on the silicon oxide pattern 210 may not be removed or partly removed, and may be removed during the subsequent process.
- the silicon substrate exposed by the silicon oxide pattern 210 as shown in FIG. 18, using the silicon oxide pattern 210 having the electrode line pattern formed thereon as a mask.
- a part of the surface of 200) is doped with impurities such as B, P, Ga, and Al. Accordingly, impurities are diffused to a portion of the silicon substrate 200 through the silicon oxide pattern 210, and a doped region 201 is formed on the surface of the silicon substrate 200 in a pattern of electrode lines. Thereafter, an electrode may be formed on the doped region 201 formed in the silicon substrate 200.
- the silicon oxide pattern 210 remaining on the silicon substrate 200 is removed.
- an unnecessary silicon oxide material may be removed using an HF solution.
- an interlayer (not shown) including Au is present on the silicon oxide pattern 210, about 13.3 mM Fe (NO 3 ) 3 .9H 2 O and 20 mM Thiourea (Thiourea) are mixed.
- the Au may be removed by using an aqueous solution as an etchant.
- the Au component may be removed by an aqueous solution in which Fe (NO 3) 3.9H 2 O and Thiourea are mixed, and the Cr component is HF. Can be removed.
- a doped region may be formed on one surface of the silicon substrate 200 only by a low-cost process such as a printing process without a high-cost semiconductor process such as conventional lithography.
- the present invention relates to a method of texturing a substrate for a solar cell and selectively forming a doped region.
- a method of manufacturing a substrate for a solar cell according to a third embodiment of the present invention will be described in detail with reference to the accompanying drawings. Do it.
- FIG. 20 is a schematic flowchart illustrating a method 300S for manufacturing a solar cell substrate according to a third exemplary embodiment of the present invention.
- the method 300S of manufacturing a substrate for a solar cell may include a substrate preparation step 310S, an ink transfer step 320S, a silicon oxide pattern forming step 330S, and a substrate patterning step. 340S, an impurity doping step 350S, and a silicon oxide pattern removing step 360S.
- 21 to 27 are process flowcharts illustrating a method 300S for manufacturing a solar cell substrate according to a third exemplary embodiment of the present invention.
- a first silicon oxide (SiOX) layer 310a is formed on an upper surface thereof, and a second silicon oxide (SiOX) layer 310b is formed on a lower surface thereof.
- the silicon substrate 300 is prepared.
- an intermediate layer may be formed on at least a portion of the first silicon oxide layer 310a and at least a portion of the second silicon oxide layer 310b.
- the intermediate layer (not shown) is coated with Au or Au / Cr material, and the Au or Au / Cr material is formed on the first and second silicon oxide layers 310a, by using two PDMS stamps having different patterns.
- It may be formed by transferring onto 310b, respectively, and may be formed in the same pattern as the ink 1 transferred by the first and second PDMS stamps 30a and 30b described below, respectively.
- the intermediate layer (not shown) may serve to improve wettability with subsequent ink.
- the ink 1 is applied to the first PDMS stamp 30a and the second PDMS stamp 30b prepared in advance.
- the first PDMS stamp 30a may be the PDMS stamp 10 according to the first embodiment described above
- the second PDMS stamp 30b may be the PDMS stamp 20 according to the second embodiment.
- the first and second PDMS stamps 30a and 30b to which the ink 1 is applied are mounted on a printing system which can be adjusted in level.
- the first PDMS stamp 30a is disposed to face the first silicon oxide layer 310a of the silicon substrate 300
- the second PDMS stamp 30b is the second silicon oxide of the silicon substrate 300. Placed facing the layer 310b.
- the first and second PDMS stamps 30a and 30b coated with ink are removed from the first and second silicon oxide layers 310a and 310b of the silicon substrate 300. Printing under pressure. Subsequently, as shown in FIG. 24, when the first and second PDMS stamps 30a and 30b are separated from the silicon substrate 100, the pattern 31a of the texture structure of the first PDMS stamp 30a may be obtained.
- the ink 1 coated on the relief pattern is transferred to the first silicon oxide layer 310a or an intermediate layer (not shown), and the relief pattern of the pattern 31b of the electrode line of the second PDMS stamp 30b.
- the ink 1 applied onto is transferred to the second silicon oxide layer 310b or an intermediate layer (not shown), respectively.
- the silicon oxide pattern forming step 330S As shown in FIG. 25, a portion of the first and second silicon oxide layers 310a and 310b in which the ink 1 is not transferred is removed using an HF solution. Remove When an intermediate layer (not shown) is formed on each of the first and second silicon oxide layers 310a and 310b, portions of the intermediate layer (not shown) to which the ink 1 is not transferred may be removed during the process. have. Accordingly, the first and second silicon oxide layers 310a and 310b may have the same pattern as the patterns transferred from the first and second PDMS stamps 30a and 30b (hereinafter, referred to as first and second silicon oxide layers). Patterns 310a and 310b). In this case, the ink 1 on the first and second silicon oxide patterns 310a and 310b may not be removed or partially removed, or may be removed during the subsequent process.
- a wet etching process of removing a portion of the upper surface of the silicon substrate 310 by using an ethylenediamine pyrocatechol (EDP) solution is performed.
- EDP ethylenediamine pyrocatechol
- an ethylenediamine pyrocatechol (EDP) solution is etched by a portion of the upper surface of the silicon substrate 300 exposed by the first and second silicon oxide patterns 310a and 310b, respectively.
- the remaining portion of the silicon substrate 310 is not removed by the first silicon oxide pattern 310a and remains as it is. Accordingly, a pattern 301 having a texture structure is formed on the upper surface of the silicon substrate 300.
- the second silicon oxide pattern 310b on which the pattern of the electrode line is formed is used as a mask, and as illustrated in FIG. 26, exposed by the second silicon oxide pattern 310b.
- a part of the lower surface of the silicon substrate 300 is doped with impurities such as B, P, Ga, and Al. Accordingly, impurities are diffused into a portion of the silicon substrate 300 through the second silicon oxide pattern 310b, and a doped region 302 is formed on the surface of the silicon substrate 300 in a pattern of electrode lines. do. Thereafter, an electrode may be formed on the doped region 302 formed in the silicon substrate 300.
- the silicon oxide pattern removing step 360S as shown in FIG. 27, the first and second silicon oxide patterns 310a and 310b remaining on the silicon substrate 300 are removed.
- an unnecessary silicon oxide material may be removed using an HF solution.
- an intermediate layer including Au not shown
- about 13.3 mM of Fe (NO 3 ) 3 .9H 2 O and 20 mM of thio Au may be removed by using an aqueous solution of urea (Thiourea) mixed as an etchant.
- the Au component may be removed by an aqueous solution in which Fe (NO 3) 3.9H 2 O and Thiourea are mixed, and the Cr component is HF. Can be removed.
- a pattern of a textured structure and a doped region may be selectively formed on the silicon substrate 300 only by a low-cost process such as printing and wet etching, without an expensive semiconductor process such as conventional lithography. .
- the present invention can be applied to the manufacturing process of a high efficiency solar cell, such as a passivated emitter and rear locally diffused (PERL) cell or a passivated emitter solar cell (PESC), and can be applied to a manufacturing process of various types of high efficiency solar cells.
- a high efficiency solar cell such as a passivated emitter and rear locally diffused (PERL) cell or a passivated emitter solar cell (PESC)
- PEL passivated emitter solar cell
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
본 발명은 태양전지용 기판의 제조방법에 관한 것이다. 일례로, 일면에 산화실리콘층이 형성된 실리콘 기판을 준비하는 단계; 잉크가 도포된 텍스처 구조의 패턴을 갖는 PDMS 스탬프를 상기 산화실리콘층 상에 프린팅하여, 상기 산화실리콘층에 상기 잉크를 전사하는 단계; 제 1 식각 용액으로, 상기 잉크가 전사되지 않은 상기 산화실리콘층의 일부를 제거하여, 상기 PDMS 스탬프로부터 전사된 패턴과 동일한 산화실리콘 패턴을 형성하는 단계; 및 제 2 식각 용액으로, 상기 산화실리콘 패턴에 의해 노출된 상기 실리콘 기판의 표면 일부를 제거하여, 상기 실리콘 기판의 일면에 텍스처 구조의 패턴을 형성하는 단계를 포함하는 태양전지용 기판의 제조방법을 개시한다.
Description
본 발명은 태양전지용 기판의 제조방법에 관한 것이다.
일반적으로, PERL(Passivated Emitter and Rear Locally diffused) 셀이나 PESC(passivated emitter solar cell)과 같은 고효율 태양전지에서, 실리콘 기판의 상부 표면은 광흡수를 높이기 위해 텍스처링(texturing)되며, 기판의 하부 표면에는 후면 전극이 형성된다.
이와 같은 고효율 태양전지의 텍스처링과 후면 전극을 형성하기 위해서는, d일반적으로 리소그래피와 같은 비교적 고가의 반도체 공정을 거쳐야만 한다. 태양전지용 기판을 리소그래피와 같은 고가의 반도체 공정을 통하여 제조할 경우 생산비용을 상승시키는 요인이 된다.
본 발명은 낮은 비용으로 태양전지용 기판의 표면 텍스처 구조 또는 선택적도핑 영역을 형성할 수 있는 태양전지용 기판의 제조 방법을 제공한다.
본 발명의 일 실시예에 따른 태양전지용 기판의 제조방법은, 일면에 산화실리콘층이 형성된 실리콘 기판을 준비하는 단계; 잉크가 도포된 텍스처 구조의 패턴을 갖는 PDMS 스탬프를 이용하여, 상기 산화실리콘층에 상기 잉크를 전사하는 단계; 제 1 식각 용액으로, 상기 잉크가 전사되지 않은 상기 산화실리콘층의 일부를 제거하여, 상기 PDMS 스탬프로부터 전사된 패턴과 동일한 산화실리콘 패턴을 형성하는 단계; 및 제 2 식각 용액으로, 상기 산화실리콘 패턴에 의해 노출된 상기 실리콘 기판의 표면 일부를 제거하여, 상기 실리콘 기판의 일면에 텍스처 구조의 패턴을 형성하는 단계를 포함한다.
또한, 상기 실리콘 기판을 준비하는 단계와 상기 잉크를 전사하는 단계 사이에, Au 또는 Au/Cr 물질이 도포된 텍스처 구조의 패턴을 갖는 PDMS 스탬프를 이용하여 상기 산화실리콘층 상에 Au 또는 Au/Cr 층을 포함하는 중간층을 형성하는 단계를 더 포함할 수 있다.
또한, 상기 실리콘 기판의 일면에 텍스처 구조의 패턴을 형성한 이후, HF 용액을 이용하여 상기 실리콘 기판의 일면에 남은 상기 산화실리콘 패턴을 제거하는 단계를 더 포함할 수 있다.
또한, 상기 PDMS 스탬프의 형성 방법은, 텍스처 구조의 패턴이 형성된 마스터를 준비하는 단계; 상기 마스터의 패턴 상에 실리콘을 코팅하는 단계; 상기 실리콘이 코팅된 상기 마스터의 패턴으로 PDMS 용액을 붓는 단계; 상기 마스터의 패턴에 부어진 PDMS 용액을 상온에서 큐어링하는 단계; 및 큐어링된 PDMS를 상기 마스터로부터 분리하는 단계를 포함할 수 있다.
본 발명의 다른 실시예에 따른 태양전지용 기판의 제조방법은, 일면에 산화실리콘층이 형성된 실리콘 기판을 준비하는 단계; 잉크가 도포된 전극 라인 패턴을 갖는 PDMS 스탬프를 이용하여, 상기 산화실리콘층에 상기 잉크를 전사하는 단계; 제 1 식각 용액으로, 상기 잉크가 전사되지 않은 상기 산화실리콘층의 일부를 제거하여, 상기 PDMS 스탬프로부터 전사된 패턴과 동일한 산화실리콘 패턴을 형성하는 단계; 및 상기 산화실리콘 패턴을 마스크로 하여, 상기 산화실리콘 패턴에 의해 노출된 상기 실리콘 기판의 표면에 불순물을 도핑하는 단계를 포함할 수 있다.
또한, 상기 실리콘 기판을 준비하는 단계와 상기 잉크를 전사하는 단계 사이에, Au 또는 Au/Cr 물질이 도포된 텍스처 구조의 패턴을 갖는 PDMS 스탬프를 이용하여 상기 산화실리콘층 상에 Au 또는 Au/Cr 층을 포함하는 중간층을 형성하는 단계를 더 포함할 수 있다.
또한, 상기 실리콘 기판의 일면에 전극 라인 패턴을 형성한 이후, HF 용액을 이용하여 상기 실리콘 기판의 일면에 남은 상기 산화실리콘 패턴을 제거하는 단계를 더 포함할 수 있다.
또한, 상기 PDMS 스탬프의 형성 방법은, 전극 라인 패턴이 형성된 마스터를 준비하는 단계; 상기 마스터의 패턴 상에 실리콘을 코팅하는 단계; 상기 실리콘이 코팅된 상기 마스터의 패턴으로 PDMS 용액을 붓는 단계; 상기 마스터의 패턴에 부어진 PDMS 용액을 상온에서 큐어링하는 단계; 및 큐어링된 PDMS를 상기 마스터로부터 분리하는 단계를 포함할 수 있다.
본 발명의 또 다른 실시예에 따른 태양전지용 기판의 제조방법은, 상면에 제 1 산화실리콘층과, 하면에 제 2 산화실리콘층이 형성된 실리콘 기판을 준비하는 단계; 잉크가 도포된 텍스처 구조의 패턴을 갖는 제 1 PDMS 스탬프를 이용하여, 상기 제 1 산화실리콘층 상에 상기 잉크를 전사하고, 상기 잉크가 도포된 전극 라인 패턴을 갖는 제 2 PDMS 스탬프를 이용하여, 상기 제 2 산화실리콘층에 상기 잉크를 전사하는 단계 제 1 식각 용액으로, 상기 잉크가 전사되지 않은 상기 제 1 산화실리콘층과 상기 제 2 산화실리콘층의 일부를 각각 제거하여, 상기 제 1 PDMS 스탬프로부터 전사된 패턴과 동일한 제 1 산화실리콘 패턴과, 상기 제 2 PDMS 스탬프로부터 전사된 패턴과 동일한 제 2 산화실리콘 패턴을 각각 형성하는 단계; 제 2 식각 용액으로, 상기 제 1 산화실리콘 패턴에 의해 노출된 상기 실리콘 기판의 상부 표면 일부를 제거하여, 상기 실리콘 기판의 상면에 텍스처 구조의 패턴을 형성하는 단계; 및 상기 제 2 산화실리콘 패턴을 마스크로 하여, 상기 제 2 산화실리콘 패턴에 의해 노출된 상기 실리콘 기판의 하면 일부에 불순물을 도핑하는 단계를 포함한다.
또한, 상기 실리콘 기판을 준비하는 단계와 상기 잉크를 전사하는 단계 사이에, Au 또는 Au/Cr 물질이 도포된 텍스처 구조의 패턴을 갖는 PDMS 스탬프를 이용하여 상기 제 1 산화실리콘층 및 상기 제 2 산화실리콘층 상에 Au 또는 Au/Cr 층을 포함하는 중간층을 각각 형성하는 단계를 더 포함할 수 있다.
또한, 상기 실리콘 기판의 상면에 텍스처 구조의 패턴과, 상기 실리콘 기판의 하면에 전극 라인 패턴을 각각 형성한 이후, HF 용액을 이용하여 상기 실리콘 기판의 상면에 남은 상기 제 1 산화실리콘 패턴과, 상기 실리콘 기판의 하면에 남은 상기 제 2 산화실리콘 패턴을 각각 제거하는 단계를 더 포함할 수 있다.
또한, 상기 제 1 PDMS 스탬프의 형성 방법은, 텍스처 구조의 패턴이 형성된 마스터를 준비하는 단계; 상기 마스터의 패턴 상에 실리콘을 코팅하는 단계; 상기 실리콘이 코팅된 상기 마스터의 패턴으로 PDMS 용액을 붓는 단계; 상기 마스터의 패턴에 부어진 PDMS 용액을 상온에서 큐어링하는 단계; 및 큐어링된 PDMS를 상기 마스터로부터 분리하는 단계를 포함할 수 있다.
또한, 상기 제 2 PDMS 스탬프의 형성 방법은, 전극 라인 패턴이 형성된 마스터를 준비하는 단계; 상기 마스터의 패턴 상에 실리콘을 코팅하는 단계; 상기 실리콘이 코팅된 상기 마스터의 패턴으로 PDMS 용액을 붓는 단계; 상기 마스터의 패턴에 부어진 PDMS 용액을 상온에서 큐어링하는 단계; 및 큐어링된 PDMS를 상기 마스터로부터 분리하는 단계를 포함할 수 있다.
본 발명의 태양전지용 기판의 제조방법에 따르면 낮은 비용으로 태양전지용 기판의 표면 텍스처 구조 또는 선택적 도핑 영역을 형성하는 방법을 제공할 수 있다.
도 1은 본 발명의 실시예에 따른 마스터의 구조를 나타낸 사시도이다.
도 2는 본 발명의 실시예에 따른 PDMS 스탬프의 제조방법을 나타낸 사시도이다.
도 3은 본 발명의 제 1 실시예에 따른 태양전지용 기판의 제조방법을 설명하기 위해 나타낸 개략적인 흐름도이다.
도 4 내지 도 10은 본 발명의 제 1 실시예에 따른 태양전지용 기판의 제조방법을 나타낸 공정 순서도이다.
도 11은 본 발명의 제 1 실시예에 따른 태양전지용 기판의 일부를 절취하여 나타낸 사시도이다.
도 12는 본 발명의 제 2 실시예에 따른 태양전지용 기판의 제조방법을 설명하기 위해 나타낸 개략적인 흐름도이다.
도 13 내지 도 19는 본 발명의 제 2 실시예에 따른 태양전지용 기판의 제조방법을 나타낸 공정 순서도이다.
도 20은 본 발명의 제 3 실시예에 따른 태양전지용 기판의 제조방법을 설명하기 위해 나타낸 개략적인 흐름도이다.
도 21 내지 도 27은 본 발명의 제 3 실시예에 따른 태양전지용 기판의 제조방법을 나타낸 공정 순서도이다.
본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 자가 용이하게 실시할 수 있을 정도로 본 발명의 바람직한 실시예를 도면을 참조하여 상세하게 설명한다.
이하에서는, 본 발명의 일 실시예에 따른 태양전지용 기판의 제조방법에 대하여 설명하기에 앞서, 상기 태양전지용 기판을 제조하기 위한 마스터와 PDMS(Polydimethylsiloxane) 스탬프를 제조하는 방법에 대하여 설명하도록 한다.
도 1은 본 발명의 실시예에 따른 마스터(5)의 구조를 나타낸 사시도이다.
먼저, 본 발명의 실시예에 따른 태양전지용 실리콘 기판과 대략 동일한 면적을 갖는 실리콘 웨이퍼를 준비한다.
다음, 준비된 실리콘 웨이퍼를 증류수, 아세톤 및 이소프로필 알코올(Isopropyl Alcohol, IPA)에 차례로 세정한 후, 건조한다.
다음, 세정 및 건조 과정을 마친 실리콘 웨이퍼에 포토 레지스터를 약 1000rpm으로 30초간 스핀 코팅한 후, 100℃에서 10분간 건조한다. 여기서, 상기 포토 레지스터로 AZ-4620을 사용할 수 있다.
다음, 포토 레지스트가 도포된 실리콘 웨이퍼에 텍스처 패턴을 갖는 마스크를 대고 약 300mJ의 에너지로 노광한 후, 현상액으로 약 2분간 현상한다. 여기서, 상기 현상액으로 AZ-300K를 사용할 수 있다. 여기서, 상기 텍스처 패턴의 폭은 약 0.1 내지 0.2μm이고, 패턴 간 폭은 약 5 내지 10μm일 수 있다. 상기와 같은 현상 과정 이후, 노광되지 않은 영역이 제거됨으로써, 양각의 형태의 구조물들(5a)이 마스터(5)의 텍스처 패턴을 이루게 된다.
도 2는 본 발명의 실시예에 따른 PDMS 스탬프(10)의 제조방법을 나타낸 사시도이다.
먼저, 상기와 같은 방법으로 제조된 마스터(5)에 실리콘을 코팅한다. 여기서, 실리콘은 후속의 PDMS 스탬프(10)가 마스터(5)로부터 잘 분리될 수 있도록 작용할 수 있다. 이후, 도 2의 (a)에 도시된 바와 같이, 준비된 PDMS 용액(10a)을 상기 마스터(5)에 붓는다. 이때, PDMS 용액(10a)을 상기 마스터(5)의 구조물(5a)을 완전히 덮도록 붓는다. 이후, 상기 마스터(5)로 부어진 PDMS 용액(10a)을 상온에서 큐어링(curing)하여 고체화시킴으로써, PDMS 스탬프(10)를 형성한다.
다음, PDMS 스탬프(10)를 상기 마스터(10)로부터 분리한다. 도 2의 (b)에 도시된 바와 같이, 분리된 PDMS 스탬프(10)에는 상기 마스터(5)에 형성된 구조물들(5a)과 상보적인 형태를 갖는 텍스처 구조의 패턴(11)이 형성된다.
이하에서 설명하는 제조방법은, PERL(Passivated Emitter and Rear Locally diffused) 셀 또는 PESC(passivated emitter solar cell)과 같은 고효율 태양전지의 제조공정에 적용될 수 있으며, 다양한 형태의 고효율 태양전지의 제조공정에 적용될 수 있다.
본 발명의 제 1 실시예에서는 상기와 같은 방법으로 제조된 PDMS 스탬프(10)를 이용하여 태양전지용 기판을 텍스처링(texturing)하는 방법에 관한 것이며, 이하에서는, 첨부된 도면을 참조하여 본 발명의 제 1 실시예에 따른 태양전지용 기판의 제조방법에 대하여 상세히 설명하도록 한다.
도 3은 본 발명의 제 1 실시예에 따른 태양전지용 기판의 제조방법(100S)을 설명하기 위해 나타낸 개략적인 흐름도이다. 도 4 내지 도 10은 본 발명의 제 1 실시예에 따른 태양전지용 기판의 제조방법(100s)을 나타낸 공정 순서도이다.
도 3을 참조하면, 본 발명의 제 1 실시예에 태양전지용 기판의 제조방법(100S)은 기판 준비 단계(110S), 잉크 전사 단계(120S), 산화실리콘 패턴 형성 단계(130S), 기판 패터닝 단계(140S), 산화실리콘 패턴 제거 단계(150S)를 포함한다.
상기 기판 준비 단계(110S)에서는, 도 4에 도시된 바와 같이, 일면에 산화실리콘(SiOX)층(110)이 형성된 태양전지용 실리콘 기판(100)을 준비한다. 이때, 상기 산화실리콘층(110) 상의 적어도 일부분에 중간층(미도시)이 형성될 수 있다. 상기 중간층(미도시)은 Au 또는 Au/Cr 물질이 도포된 PDMS 스탬프를 이용하여 상기 Au 또는 Au/Cr 물질이 상기 산화실리콘층(110) 상에 전사됨으로써 형성될 수 있으며, 후술하는 PDMS 스탬프(10)에 의해 전사된 잉크(1)와 동일한 패턴으로 형성될 수 있다. 상기 중간층(미도시)은 후속의 잉크와의 젖음성을 향상시키는 역할을 할 수 있다. 상기 실리콘 기판(100)의 일면은 태양광과 직접적으로 접촉하는 통상의 태양전지의 상면일 수 있으며, 광흡수를 높이기 위해 텍스처링될 부분이 된다.
상기 잉크 전사 단계(120S)에서는, 우선, 미리 준비된 PDMS 스탬프(10)에 잉크(1)를 도포한다. 여기서, 상기 잉크(1)는 PDMS 스탬프(10)에 형성된 텍스처 구조의 패턴(11)에 도포한 후 건조한다. 상기 PDMS 스탬프(10)의 텍스처 구조의 패턴(11)은 대략 정사각형의 음각 패턴과, 상기 음각 패턴을 둘러싸는 테두리 형태의 양각 패턴이 복수 개로 반복적으로 이루어지며, 상기 음각 패턴의 폭(d1)은 대략 약 5 내지 10μm이고, 상기 음각 패턴의 폭(d2)은 0.1 내지 0.2μm로 이루어질 수 있다.
다음, 상기 잉크(1)가 도포된 PDMS 스탬프(10)를, 수평도 조절이 가능한 프린팅 시스템에 장착한다.
다음, 도 5 및 도 6에 도시된 바와 같이, 잉크가 도포된 PDMS 스탬프(10)를 상기 실리콘 기판(100)의 산화실리콘층(110)으로 압력을 가하면서 프린팅(printing)한다. 이후, 도 7에 도시된 바와 같이, 상기 PDMS 스탬프(10)를 실리콘 기판(100)으로부터 분리하면, 상기 PDMS 스탬프(10)의 텍스처 구조의 패턴(11) 중 양각 패턴 상에 도포된 잉크(1)가 상기 산화실리콘층(110) 또는 중간층(미도시)에 그대로 전사된다.
상기 산화실리콘 패턴 형성 단계(130S)에서는, 도 8에 도시된 바와 같이, HF 용액을 이용하여 상기 산화실리콘층(110) 가운데 상기 잉크(1)가 전사되지 않은 일부분을 제거한다. 이에 따라, 상기 산화실리콘층(110)은 상기 PDMS 스탬프(10)로부터 전사된 패턴과 동일한 패턴(이하, 산화실리콘 패턴(110)이라고 함)으로 패터닝된다. 이때, 상기 산화실리콘 패턴(110) 상의 잉크(1)는 제거되지 않거나 일부가 제거될 수 있으며, 후속의 공정을 진행하는 중에 모두 제거될 수도 있다.
상기 기판 패터닝 단계(140S)에서는, EDP(ethylenediamine pyrocatechol) 용액을 이용하여 상기 실리콘 기판(110)의 상부 표면의 일부를 제거하는 습식 식각 공정을 진행한다. 도 9에 도시된 바와 같이, 상기 산화실리콘 패턴(110)에 의해 노출된 상기 실리콘 기판(110)의 상부 표면의 일부에 EDP(ethylenediamine pyrocatechol) 용액이 침투함으로써 식각되며, 상기 실리콘 기판(100)의 나머지 일부분은 상기 산화실리콘 패턴(110)에 의해 제거되지 않고 그대로 남아 있게 된다. 이에 따라, 상기 실리콘 기판(100)의 상부 표면에는 텍스처 구조의 패턴(101)이 형성된다.
상기 산화실리콘 패턴 제거 단계(150S)에서는, 도 10에 도시된 바와 같이, 상기 실리콘 기판(100)에 남아 있는 산화실리콘 패턴(110)을 제거한다. 이때, 상기 산화실리콘 패턴 형성 단계(130S)와 마찬가지로 HF 용액을 이용하여 불필요한 산화실리콘 물질을 제거할 수 있다. 이때, 상기 산화실리콘 패턴(110) 상에 Au를 포함하는 중간층(미도시)이 존재하는 경우, 약 13.3 mM의 Fe(NO3)3.9H2O와 20mM의 티오우레아(Thiourea)를 혼합한 수용액을 에천트(etchant)로 하여 상기 Au를 제거할 수 있다. 또한, Au/Cr을 포함하는 중간층(미도시)이 존재하는 경우, Au 성분은 상술한 Fe(NO3)3.9H2O와 티오우레아(Thiourea)를 혼합한 수용액으로 제거할 수 있으며, Cr 성분은 HF로 제거할 수 있다.
도 11은 본 발명의 제 1 실시예에 따른 태양전지용 기판(100)의 일부를 절취하여 나타낸 사시도이다.
본 발명의 제 1 실시예에 따른 태양전지용 기판(100)에 형성된 텍스처 구조의 패턴(101)은, 상기 PDMS 스탬프(10)의 텍스처 구조의 패턴(11)과 유사하다. 태양전지용 기판(100)에 형성된 텍스처 구조의 패턴(101)은 V자 홈의 음각 패턴과, 상기 음각 패턴을 둘러싸는 테두리 형태의 양각 패턴이 복수 개로 반복적으로 이루어지며, 상기 음각 패턴의 폭(D1)은 대략 약 5 내지 10μm이고, 상기 음각 패턴의 폭(D2)은 0.1 내지 0.2μm로 이루어질 수 있다.
상기와 같은 제조방법에 따라, 기존의 리소그래피와 같은 고비용의 반도체 공정 없이, 프린팅과 습식 식각과 같은 저비용의 공정만으로도 실리콘 기판(100)의 일면에 텍스처 구조의 패턴을 형성할 수 있다.
이하에서는, 본 발명의 제 2 실시예에 따른 태양전지용 기판의 제조방법에 대하여 상세히 설명하도록 한다.
본 발명의 제 2 실시예에는, 제 1 실시예와 같은 방법으로 제조된 PDMS 스탬프(20)를 이용하여 태양전지용 기판에 전극을 형성하기 위한 선택적 도핑 영역을 형성하는 방법에 관한 것이며, 이하에서는, 첨부된 도면을 참조하여 본 발명의 제 2 실시예에 따른 태양전지용 기판의 제조방법에 대하여 상세히 설명하도록 한다. 다만, 본 발명의 제 2 실시예에 따른 PDMS 스탬프는 제 1 실시예와 달리, 텍스처 구조의 패턴이 형성되어 있는 것이 아니라, 소정의 패턴, 예를 들어 전극 라인의 패턴이 형성되어 있을 수 있다. 본 발명의 실시예에서 전극 라인의 패턴은 소정의 간격을 두고 형성된 스트라이프 형태를 일례로 하여 설명하지만, 이를 한정하는 것은 아니며, 다양한 형태의 전극 라인의 패턴으로 실시할 수 있다.
도 12는 본 발명의 제 2 실시예에 따른 태양전지용 기판의 제조방법(200S)을 설명하기 위해 나타낸 개략적인 흐름도이다.
도 12를 참조하면, 본 발명의 제 2 실시예에 태양전지용 기판의 제조방법(200S)은 기판 준비 단계(210S), 잉크 전사 단계(220S), 산화실리콘 패턴 형성 단계(230S), 불순물 도핑 단계(240S), 산화실리콘 패턴 제거 단계(250S)를 포함한다.
도 13 내지 도 19는 본 발명의 제 2 실시예에 따른 태양전지용 기판의 제조방법(200s)을 나타낸 공정 순서도이다.
상기 기판 준비 단계(210S)에서는, 도 13에 도시된 바와 같이, 일면에 산화실리콘(SiOX)층(210)이 형성된 태양전지용 실리콘 기판(200)을 준비한다. 이때, 상기 산화실리콘층(210) 상의 적어도 일부분에 중간층(미도시)이 형성될 수 있다. 상기 중간층(미도시)은 Au 또는 Au/Cr 물질이 도포된 PDMS 스탬프를 이용하여 상기 Au 또는 Au/Cr 물질이 상기 산화실리콘층(210) 상에 전사됨으로써 형성될 수 있으며, 후술하는 PDMS 스탬프(20)에 의해 전사된 잉크(1)와 동일한 패턴으로 형성될 수 있다. 상기 중간층(미도시)은 후속의 잉크와의 젖음성을 향상시키는 역할을 할 수 있다. 상기 실리콘 기판(200)의 일면은 전극이 형성되는 실리콘 기판(200)의 후면을 의미한다.
상기 잉크 전사 단계(220S)에서는, 우선, 미리 준비된 PDMS 스탬프(20)에 잉크(1)를 도포한다. 여기서, 상기 잉크(1)는 PDMS 스탬프(20)에 형성된 전극 라인의 패턴(21)에 도포한 후 건조한다. 상기 PDMS 스탬프(20)의 전극 라인의 패턴(21)은 음각의 스트라이프 패턴과, 상기 스트라이프 패턴을 제외한 평평한 양각 패턴으로 이루어질 수 있다.
다음, 상기 잉크(1)가 도포된 PDMS 스탬프(20)를, 수평도 조절이 가능한 프린팅 시스템에 장착한다.
다음, 도 14 및 도 15에 도시된 바와 같이, 잉크가 도포된 PDMS 스탬프(20)를 상기 실리콘 기판(200)의 산화실리콘층(210)으로 압력을 가하면서 프린팅(printing)한다. 이후, 도 16에 도시된 바와 같이, 상기 PDMS 스탬프(20)를 실리콘 기판(200)으로부터 분리하면, 상기 PDMS 스탬프(20)의 전극 라인의 패턴(21) 중 양각 패턴 상에 도포된 잉크(1)가 상기 산화실리콘층(210) 또는 중간층(미도시)에 그대로 전사된다.
상기 산화실리콘 패턴 형성 단계(230S)에서는, 도 17에 도시된 바와 같이, HF 용액을 이용하여 상기 산화실리콘층(210) 가운데 상기 잉크(1)가 전사되지 않은 일부분을 제거한다. 이에 따라, 상기 산화실리콘층(210)은 상기 PDMS 스탬프(20)로부터 전사된 패턴과 동일한 패턴(이하, 산화실리콘 패턴(210)이라고 함)으로 패터닝된다. 이때, 상기 산화실리콘 패턴(210) 상의 잉크(1)는 제거되지 않거나 일부가 제거될 수 있으며, 후속의 공정을 진행하는 중에 모두 제거될 수도 있다.
상기 불순물 도핑 단계(240S)에서는, 상기 전극 라인의 패턴이 형성된 산화실리콘 패턴(210)을 마스크로 하여, 도 18에 도시된 바와 같이, 상기 산화실리콘 패턴(210)에 의해 노출된 상기 실리콘 기판(200)의 표면의 일부에 B, P, Ga, Al 등의 불순물을 도핑한다. 이에 따라, 산화실리콘 패턴(210)을 통해 상기 실리콘 기판(200)의 일부분으로 불순물이 확산되며, 상기 실리콘 기판(200)의 표면에는 전극 라인의 패턴으로 도핑 영역(201)이 형성된다. 이후, 상기 실리콘 기판(200)에 형성된 도핑 영역(201) 상에는 전극이 형성될 수 있다.
상기 산화실리콘 패턴 제거 단계(250S)에서는, 도 19에 도시된 바와 같이, 상기 실리콘 기판(200)에 남아 있는 산화실리콘 패턴(210)을 제거한다. 이때, 상기 산화실리콘 패턴 형성 단계(230S)와 마찬가지로 HF 용액을 이용하여 불필요한 산화실리콘 물질을 제거할 수 있다. 이때, 상기 산화실리콘 패턴(210) 상에 Au를 포함하는 중간층(미도시)이 존재하는 경우, 약 13.3 mM의 Fe(NO3)3.9H2O와 20mM의 티오우레아(Thiourea)를 혼합한 수용액을 에천트(etchant)로 하여 상기 Au를 제거할 수 있다. 또한, Au/Cr을 포함하는 중간층(미도시)이 존재하는 경우, Au 성분은 상술한 Fe(NO3)3.9H2O와 티오우레아(Thiourea)를 혼합한 수용액으로 제거할 수 있으며, Cr 성분은 HF로 제거할 수 있다.
상기와 같은 제조방법에 따라, 기존의 리소그래피와 같은 고비용의 반도체 공정 없이, 프린팅 공정과 같은 저비용의 공정만으로도 실리콘 기판(200)의 일면에 도핑 영역을 형성할 수 있다.
이하에서는, 본 발명의 제 3 실시예에 따른 태양전지용 기판의 제조방법에 대하여 상세히 설명하도록 한다.
본 발명의 제 3 실시예에는, 제 1 실시예와 같은 방법으로 제조된 제 1 PDMS 스탬프(10)와, 제 2 실시예와 같은 방법으로 제조된 제 2 PDMS 스탬프(20)를 각각 이용하여, 태양전지용 기판을 텍스처링(texturing)하고, 선택적으로 도핑 영역을 형성하는 방법에 관한 것이며, 이하에서는, 첨부된 도면을 참조하여 본 발명의 제 3 실시예에 따른 태양전지용 기판의 제조방법에 대하여 상세히 설명하도록 한다.
도 20은 본 발명의 제 3 실시예에 따른 태양전지용 기판의 제조방법(300S)을 설명하기 위해 나타낸 개략적인 흐름도이다.
도 20을 참조하면, 본 발명의 제 3 실시예에 태양전지용 기판의 제조방법(300S)은 기판 준비 단계(310S), 잉크 전사 단계(320S), 산화실리콘 패턴 형성 단계(330S), 기판 패터닝 단계(340S), 불순물 도핑 단계(350S), 및 산화실리콘 패턴 제거 단계(360S)를 포함한다.
도 21 내지 도 27은 본 발명의 제 3 실시예에 따른 태양전지용 기판의 제조방법(300S)을 나타낸 공정 순서도이다.
상기 기판 준비 단계(310S)에서는, 도 21에 도시된 바와 같이, 상면에 제 1 산화실리콘(SiOX)층(310a)이 형성되고, 하면에 제 2 산화실리콘(SiOX)층(310b)된 태양전지용 실리콘 기판(300)을 준비한다. 이때, 상기 제 1 산화실리콘층(310a) 상의 적어도 일부분과, 상기 제 2 산화실리콘(310b) 상의 적어도 일부분에 중간층(미도시)이 각각 형성될 수 있다. 상기 중간층(미도시)은 Au 또는 Au/Cr 물질이 도포되며, 서로 다른 패턴을 갖는 두 개의 PDMS 스탬프를 이용하여, 상기 Au 또는 Au/Cr 물질을 상기 제 1 및 제 2 산화실리콘층(310a, 310b) 상에 각각 전사함으로써 형성될 수 있으며, 후술하는 제 1 및 제 2 PDMS 스탬프(30a, 30b)에 의해 각각 전사된 잉크(1)와 동일한 패턴으로 형성될 수 있다. 여기서, 상기 중간층(미도시)은 후속의 잉크와의 젖음성을 향상시키는 역할을 할 수 있다.
상기 잉크 전사 단계(320S)에서는, 우선, 미리 준비된 제 1 PDMS 스탬프(30a)와 제 2 PDMS 스탬프(30b)에 잉크(1)를 각각 도포한다. 여기서, 제 1 PDMS 스탬프(30a)는 상술한 제 1 실시예에 따른 PDMS 스탬프(10)이며, 제 2 PDMS 스탬프(30b)는 제 2 실시예에 따른 PDMS 스탬프(20)일 수 있다.
다음, 상기 잉크(1)가 도포된 제 1 및 제 2 PDMS 스탬프(30a, 30b)를, 수평도 조절이 가능한 프린팅 시스템에 장착한다. 이때, 제 1 PDMS 스탬프(30a)는 상기 실리콘 기판(300)의 제 1 산화실리콘층(310a)과 대향하도록 배치하고, 제 2 PDMS 스탬프(30b)는 상기 실리콘 기판(300)의 제 2 산화실리콘층(310b)과 대향하도록 배치한다.
다음, 도 22 및 도 23에 도시된 바와 같이, 잉크가 도포된 제 1 및 제 2 PDMS 스탬프(30a, 30b)를 을 상기 실리콘 기판(300)의 제 1 및 제 2 산화실리콘층(310a, 310b)으로 압력을 가하면서 프린팅(printing)한다. 이후, 도 24에 도시된 바와 같이, 상기 제 1 및 제 2 PDMS 스탬프(30a, 30b)를 실리콘 기판(100)으로부터 각각 분리하면, 상기 제 1 PDMS 스탬프(30a)의 텍스처 구조의 패턴(31a) 중 양각 패턴 상에 도포된 잉크(1)가 상기 제 1 산화실리콘층(310a) 또는 중간층(미도시)에 전사되며, 상기 제 2 PDMS 스탬프(30b)의 전극 라인의 패턴(31b) 중 양각 패턴 상에 도포된 잉크(1)가 상기 제 2 산화실리콘층(310b) 또는 중간층(미도시)에 각각 전사된다.
상기 산화실리콘 패턴 형성 단계(330S)에서는, 도 25에 도시된 바와 같이, HF 용액을 이용하여 상기 제 1 및 제 2 산화실리콘층(310a, 310b) 가운데 상기 잉크(1)가 전사되지 않은 일부분을 제거한다. 상기 제 1 및 제 2 산화실리콘층(310a, 310b) 상에 각각 중간층(미도시)이 형성되는 경우, 상기 중간층(미도시) 중 상기 잉크(1)가 전사되지 않은 부분은 공정 중에 제거될 수 있다. 이에 따라, 상기 제 1 및 제 2 산화실리콘층(310a, 310b)은, 상기 제 1 및 제 2 PDMS 스탬프(30a, 30b)로부터 전사된 패턴들과 동일한 패턴(이하, 제 1 및 제 2 산화실리콘 패턴(310a, 310b)이라고 함)으로 각각 패터닝된다. 이때, 상기 제 1 및 제 2 산화실리콘 패턴(310a, 310b) 상의 잉크(1)는 제거되지 않거나 일부가 제거될 수 있으며, 후속의 공정을 진행하는 중에 모두 제거될 수도 있다.
상기 기판 패터닝 단계(340S)에서는, EDP(ethylenediamine pyrocatechol) 용액을 이용하여 상기 실리콘 기판(310)의 상부 표면의 일부를 제거하는 습식 식각 공정을 진행한다. 도 26에 도시된 바와 같이, 상기 제 1 및 제 2 산화실리콘 패턴(310a, 310b)에 의해 각각 노출된 상기 실리콘 기판(300)의 상부 표면의 일부에 EDP(ethylenediamine pyrocatechol) 용액이 침투함으로써 식각되며, 상기 실리콘 기판(310)의 나머지 일부분은 상기 제 1 산화실리콘 패턴(310a)에 의해 제거되지 않고 그대로 남아 있게 된다. 이에 따라, 상기 실리콘 기판(300)의 상부 표면에는 텍스처 구조의 패턴(301)이 형성된다.
상기 불순물 도핑 단계(350S)에서는, 상기 전극 라인의 패턴이 형성된 제 2 산화실리콘 패턴(310b)을 마스크로 하여, 도 26에 도시된 바와 같이, 상기 제 2 산화실리콘 패턴(310b)에 의해 노출된 상기 실리콘 기판(300)의 하부 표면의 일부에 B, P, Ga, Al 등의 불순물을 도핑한다. 이에 따라, 상기 제 2 산화실리콘 패턴(310b)을 통해 상기 실리콘 기판(300)의 일부분으로 불순물이 확산되며되며, 상기 실리콘 기판(300)의 표면에는 전극 라인의 패턴으로 도핑 영역(302)이 형성된다. 이후, 상기 실리콘 기판(300)에 형성된 도핑 영역(302) 상에는 전극이 형성될 수 있다.
상기 산화실리콘 패턴 제거 단계(360S)에서는, 도 27에 도시된 바와 같이, 상기 실리콘 기판(300)에 남아 있는 제 1 및 제 2 산화실리콘 패턴(310a, 310b)을 제거한다. 이때, 상기 산화실리콘 패턴 형성 단계(330S)와 마찬가지로 HF 용액을 이용하여 불필요한 산화실리콘 물질을 제거할 수 있다. 이때, 상기 제 1 및 제 2 산화실리콘 패턴(310a, 310b) 상에 Au를 포함하는 중간층(미도시)이 존재하는 경우, 약 13.3 mM의 Fe(NO3)3.9H2O와 20mM의 티오우레아(Thiourea)를 혼합한 수용액을 에천트(etchant)로 하여 상기 Au를 제거할 수 있다. 또한, Au/Cr을 포함하는 중간층(미도시)이 존재하는 경우, Au 성분은 상술한 Fe(NO3)3.9H2O와 티오우레아(Thiourea)를 혼합한 수용액으로 제거할 수 있으며, Cr 성분은 HF로 제거할 수 있다.
상기와 같은 제조방법에 따라, 기존의 리소그래피와 같은 고가의 반도체 공정 없이, 프린팅 및 습식 식각과 같은 저가의 공정만으로도 실리콘 기판(300)에 텍스처 구조의 패턴과, 도핑 영역을 선택적으로 형성할 수 있다.
본 발명은 PERL(Passivated Emitter and Rear Locally diffused) 셀 또는 PESC(passivated emitter solar cell)과 같은 고효율 태양전지의 제조공정에 적용될 수 있으며, 다양한 형태의 고효율 태양전지의 제조공정에 적용될 수 있다.
Claims (13)
- 일면에 산화실리콘층이 형성된 실리콘 기판을 준비하는 단계;잉크가 도포된 텍스처 구조의 패턴을 갖는 PDMS 스탬프를 이용하여, 상기 산화실리콘층에 상기 잉크를 전사하는 단계;제 1 식각 용액으로, 상기 잉크가 전사되지 않은 상기 산화실리콘층의 일부를 제거하여, 상기 PDMS 스탬프로부터 전사된 패턴과 동일한 산화실리콘 패턴을 형성하는 단계; 및제 2 식각 용액으로, 상기 산화실리콘 패턴에 의해 노출된 상기 실리콘 기판의 표면 일부를 제거하여, 상기 실리콘 기판의 일면에 텍스처 구조의 패턴을 형성하는 단계를 포함하는 것을 특징으로 하는 태양전지용 기판의 제조방법.
- 제 1 항에 있어서,상기 실리콘 기판을 준비하는 단계와 상기 잉크를 전사하는 단계 사이에, Au 또는 Au/Cr 물질이 도포된 텍스처 구조의 패턴을 갖는 PDMS 스탬프를 이용하여 상기 산화실리콘층 상에 Au 또는 Au/Cr 층을 포함하는 중간층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 태양전지용 기판의 제조방법.
- 제 1 항에 있어서,상기 실리콘 기판의 일면에 텍스처 구조의 패턴을 형성한 이후, HF 용액을 이용하여 상기 실리콘 기판의 일면에 남은 상기 산화실리콘 패턴을 제거하는 단계를 더 포함하는 것을 특징으로 하는 태양전지용 기판의 제조방법.
- 제 1 항에 있어서,상기 PDMS 스탬프의 형성 방법은,텍스처 구조의 패턴이 형성된 마스터를 준비하는 단계;상기 마스터의 패턴 상에 실리콘을 코팅하는 단계;상기 실리콘이 코팅된 상기 마스터의 패턴으로 PDMS 용액을 붓는 단계;상기 마스터의 패턴에 부어진 PDMS 용액을 상온에서 큐어링하는 단계; 및큐어링된 PDMS를 상기 마스터로부터 분리하는 단계를 포함하는 것을 특징으로 하는 태양전지용 기판의 제조방법.
- 일면에 산화실리콘층이 형성된 실리콘 기판을 준비하는 단계;잉크가 도포된 전극 라인 패턴을 갖는 PDMS 스탬프를 이용하여, 상기 산화실리콘층에 상기 잉크를 전사하는 단계;제 1 식각 용액으로, 상기 잉크가 전사되지 않은 상기 산화실리콘층의 일부를 제거하여, 상기 PDMS 스탬프로부터 전사된 패턴과 동일한 산화실리콘 패턴을 형성하는 단계; 및상기 산화실리콘 패턴을 마스크로 하여, 상기 산화실리콘 패턴에 의해 노출된 상기 실리콘 기판의 표면 일부에 불순물을 도핑하는 단계를 포함하는 것을 특징으로 하는 태양전지용 기판의 제조방법.
- 제 5 항에 있어서,상기 실리콘 기판을 준비하는 단계와 상기 잉크를 전사하는 단계 사이에, Au 또는 Au/Cr 물질이 도포된 텍스처 구조의 패턴을 갖는 PDMS 스탬프를 이용하여 상기 산화실리콘층 상에 Au 또는 Au/Cr 층을 포함하는 중간층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 태양전지용 기판의 제조방법.
- 제 5 항에 있어서,상기 실리콘 기판의 일면에 전극 라인 패턴을 형성한 이후, HF 용액을 이용하여 상기 실리콘 기판의 일면에 남은 상기 산화실리콘 패턴을 제거하는 단계를 더 포함하는 것을 특징으로 하는 태양전지용 기판의 제조방법.
- 제 5 항에 있어서,상기 PDMS 스탬프의 형성 방법은,전극 라인 패턴이 형성된 마스터를 준비하는 단계;상기 마스터의 패턴 상에 실리콘을 코팅하는 단계;상기 실리콘이 코팅된 상기 마스터의 패턴으로 PDMS 용액을 붓는 단계;상기 마스터의 패턴에 부어진 PDMS 용액을 상온에서 큐어링하는 단계; 및큐어링된 PDMS를 상기 마스터로부터 분리하는 단계를 포함하는 것을 특징으로 하는 태양전지용 기판의 제조방법.
- 상면에 제 1 산화실리콘층과, 하면에 제 2 산화실리콘층이 형성된 실리콘 기판을 준비하는 단계;잉크가 도포된 텍스처 구조의 패턴을 갖는 제 1 PDMS 스탬프를 이용하여, 상기 제 1 산화실리콘층 상에 상기 잉크를 전사하고, 상기 잉크가 도포된 전극 라인 패턴을 갖는 제 2 PDMS 스탬프를 이용하여, 상기 제 2 산화실리콘층에 상기 잉크를 전사하는 단계;제 1 식각 용액으로, 상기 잉크가 전사되지 않은 상기 제 1 산화실리콘층과 상기 제 2 산화실리콘층의 일부를 각각 제거하여, 상기 제 1 PDMS 스탬프로부터 전사된 패턴과 동일한 제 1 산화실리콘 패턴과, 상기 제 2 PDMS 스탬프로부터 전사된 패턴과 동일한 제 2 산화실리콘 패턴을 각각 형성하는 단계;제 2 식각 용액으로, 상기 제 1 산화실리콘 패턴에 의해 노출된 상기 실리콘 기판의 상부 표면 일부를 제거하여, 상기 실리콘 기판의 상면에 텍스처 구조의 패턴을 형성하는 단계; 및상기 제 2 산화실리콘 패턴을 마스크로 하여, 상기 제 2 산화실리콘 패턴에 의해 노출된 상기 실리콘 기판의 하면 일부에 불순물을 도핑하는 단계를 포함하는 것을 특징으로 하는 태양전지용 기판의 제조방법.
- 제 9 항에 있어서,상기 실리콘 기판을 준비하는 단계와 상기 잉크를 전사하는 단계 사이에, Au 또는 Au/Cr 물질이 도포된 텍스처 구조의 패턴을 갖는 PDMS 스탬프를 이용하여 상기 제 1 산화실리콘층 및 상기 제 2 산화실리콘층 상에 Au 또는 Au/Cr 층을 포함하는 중간층을 각각 형성하는 단계를 더 포함하는 것을 특징으로 하는 태양전지용 기판의 제조방법.
- 제 9 항에 있어서,상기 실리콘 기판의 상면에 텍스처 구조의 패턴과, 상기 실리콘 기판의 하면에 전극 라인 패턴을 각각 형성한 이후, HF 용액을 이용하여 상기 실리콘 기판의 상면에 남은 상기 제 1 산화실리콘 패턴과, 상기 실리콘 기판의 하면에 남은 상기 제 2 산화실리콘 패턴을 각각 제거하는 단계를 더 포함하는 것을 특징으로 하는 태양전지용 기판의 제조방법.
- 제 9 항에 있어서,상기 제 1 PDMS 스탬프의 형성 방법은,텍스처 구조의 패턴이 형성된 마스터를 준비하는 단계;상기 마스터의 패턴 상에 실리콘을 코팅하는 단계;상기 실리콘이 코팅된 상기 마스터의 패턴으로 PDMS 용액을 붓는 단계;상기 마스터의 패턴에 부어진 PDMS 용액을 상온에서 큐어링하는 단계; 및큐어링된 PDMS를 상기 마스터로부터 분리하는 단계를 포함하는 것을 특징으로 하는 태양전지용 기판의 제조방법.
- 제 9 항에 있어서,상기 제 2 PDMS 스탬프의 형성 방법은,전극 라인 패턴이 형성된 마스터를 준비하는 단계;상기 마스터의 패턴 상에 실리콘을 코팅하는 단계;상기 실리콘이 코팅된 상기 마스터의 패턴으로 PDMS 용액을 붓는 단계;상기 마스터의 패턴에 부어진 PDMS 용액을 상온에서 큐어링하는 단계; 및큐어링된 PDMS를 상기 마스터로부터 분리하는 단계를 포함하는 것을 특징으로 하는 태양전지용 기판의 제조방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0123219 | 2011-11-23 | ||
KR1020110123219A KR101334590B1 (ko) | 2011-11-23 | 2011-11-23 | 태양전지용 기판의 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013077523A1 true WO2013077523A1 (ko) | 2013-05-30 |
Family
ID=48469938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/005436 WO2013077523A1 (ko) | 2011-11-23 | 2012-07-09 | 태양전지용 기판의 제조방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101334590B1 (ko) |
WO (1) | WO2013077523A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102096180B1 (ko) * | 2018-10-29 | 2020-04-01 | 연세대학교 산학협력단 | 산화막 임프린팅 기법을 이용한 기판 패턴 형성 장치 및 방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000022185A (ja) * | 1998-07-03 | 2000-01-21 | Sharp Corp | 太陽電池セル及びその製造方法 |
KR20060123117A (ko) * | 2003-10-11 | 2006-12-01 | 코닌클리즈케 필립스 일렉트로닉스 엔.브이. | 엘라스토메릭 스탬프, 잉크 프린팅 방법 및 엘라스토메릭스탬프 생성 방법 |
KR100855682B1 (ko) * | 2007-04-16 | 2008-09-03 | 고려대학교 산학협력단 | 태양전지의 실리콘 표면 텍스쳐링 방법 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101038487B1 (ko) * | 2008-02-13 | 2011-06-02 | 엘지전자 주식회사 | 금속 촉매를 이용한 태양전지의 습식 텍스처링 방법 |
-
2011
- 2011-11-23 KR KR1020110123219A patent/KR101334590B1/ko not_active IP Right Cessation
-
2012
- 2012-07-09 WO PCT/KR2012/005436 patent/WO2013077523A1/ko active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000022185A (ja) * | 1998-07-03 | 2000-01-21 | Sharp Corp | 太陽電池セル及びその製造方法 |
KR20060123117A (ko) * | 2003-10-11 | 2006-12-01 | 코닌클리즈케 필립스 일렉트로닉스 엔.브이. | 엘라스토메릭 스탬프, 잉크 프린팅 방법 및 엘라스토메릭스탬프 생성 방법 |
KR100855682B1 (ko) * | 2007-04-16 | 2008-09-03 | 고려대학교 산학협력단 | 태양전지의 실리콘 표면 텍스쳐링 방법 |
Also Published As
Publication number | Publication date |
---|---|
KR101334590B1 (ko) | 2013-11-29 |
KR20130057359A (ko) | 2013-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010030109A2 (ko) | 전력 손실이 최소화된 태양전지용 전면 전극 및 이를 포함하는 태양전지 | |
EP2263263A2 (en) | Solar cell and method for manufacturing the same | |
WO2010093177A2 (en) | Solar cell and method for manufacturing the same | |
WO2009104899A2 (en) | Method of etching asymmetric wafer, solar cell including the asymmetrically etched wafer, and method of manufacturing the same | |
WO2013191341A1 (en) | Method of manufacturing stamp for plasmonic nanolithography apparatus and plasmonic nanolithography apparatus | |
WO2010013956A2 (en) | Solar cell, method of manufacturing the same, and solar cell module | |
WO2012081813A1 (ko) | 후면전극형 태양전지 및 그 제조방법 | |
WO2009088198A2 (ko) | 발광 다이오드 코팅 방법 | |
WO2014117477A1 (zh) | 双层透明导电膜及其制备方法 | |
WO2012134061A2 (en) | Solar cell and method for manufacturing the same | |
WO2013077523A1 (ko) | 태양전지용 기판의 제조방법 | |
WO2024185960A1 (ko) | 가스누설 감지센서 및 그 제조방법 | |
WO2017082699A1 (ko) | 태양전지 제조 방법 | |
WO2017018830A1 (ko) | 포토마스크, 상기 포토마스크를 포함하는 적층체, 상기 포토마스크의 제조방법, 상기 포토마스크를 이용하는 패턴형성장치 및 상기 포토마스크를 이용하는 패턴형성방법 | |
WO2009107943A2 (ko) | 마이크로렌즈를 이용한 태양전지 장치 및 그 제조 방법 | |
WO2011129503A1 (en) | Solar cell and method for manufacturing the same | |
WO2019109445A1 (zh) | Tft 阵列基板的制作方法及显示装置的制作方法 | |
WO2013081329A1 (ko) | 도트형 전극을 갖는 저가 양산의 고효율 태양전지 및 그 제조방법 | |
WO2020246855A1 (ko) | 마이크로 led 전사 방법 | |
WO2017200199A1 (ko) | 멤스 디바이스 제조 방법 및 이에 의해 제조되는 멤스 디바이스 | |
WO2022220359A1 (ko) | 용액공정을 이용한 마이크로 슈퍼커패시터의 제조방법 및 이의 제조방법에 의해 제조된 마이크로 슈퍼커패시터 | |
WO2022189841A1 (en) | Method of manufacturing window-glass having print pattern for smartphone camera | |
WO2023244092A2 (ko) | 대전체를 이용한 고해상도 oled 패널 제조용 파인 메탈 마스크 제조 방법 | |
WO2014058215A1 (ko) | 태양전지 셀 연결부재 및 이의 제조방법, 태양전지 셀 연결부재 제조장치 | |
WO2024147624A1 (ko) | 보호층 증착을 통한 다공성 euv 펠리클의 제조 방법, 및 이에 사용되는 구조체 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12851286 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12851286 Country of ref document: EP Kind code of ref document: A1 |