WO2013077477A1 - Preparation method of foam glass using waste glass, and prediction method of foaming range of glass using dilatometer - Google Patents

Preparation method of foam glass using waste glass, and prediction method of foaming range of glass using dilatometer Download PDF

Info

Publication number
WO2013077477A1
WO2013077477A1 PCT/KR2011/008918 KR2011008918W WO2013077477A1 WO 2013077477 A1 WO2013077477 A1 WO 2013077477A1 KR 2011008918 W KR2011008918 W KR 2011008918W WO 2013077477 A1 WO2013077477 A1 WO 2013077477A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
temperature
foaming
waste glass
waste
Prior art date
Application number
PCT/KR2011/008918
Other languages
French (fr)
Korean (ko)
Inventor
박상엽
정준기
방희곤
김성진
Original Assignee
강릉원주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강릉원주대학교 산학협력단 filed Critical 강릉원주대학교 산학협력단
Priority to CN201180076280.9A priority Critical patent/CN104066692B/en
Priority to KR1020147010824A priority patent/KR101587568B1/en
Priority to PCT/KR2011/008918 priority patent/WO2013077477A1/en
Publication of WO2013077477A1 publication Critical patent/WO2013077477A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/08Other methods of shaping glass by foaming
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/002Use of waste materials, e.g. slags
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • C03C11/007Foam glass, e.g. obtained by incorporating a blowing agent and heating

Definitions

  • the present invention relates to a foamed glass manufacturing method and a foaming section prediction method, specifically, foamed to manufacture the foamed glass through the grinding and heat treatment process without the addition of foaming agent (or foaming agent) from waste glass as a raw material It relates to a method for predicting the foam section of the glass by using the glass manufacturing method and expansion coefficient measuring equipment.
  • Foamed glass is lightweight and shows excellent performance in flame protection, heat insulation, heat resistance, sound absorption, etc., and is used when industrial waterproof, heat resistance, and durability are required. Especially, it is used as a good thermal insulation material and sound absorbing material in structures or buildings.
  • foam glass was already proposed in the late 1930s.
  • a special composition of glass is mixed with a reducing agent, such as carbon, and a foaming agent containing an oxide, sulfate or other type of oxidizing component, pulverized, and then pulverized. It is fired until softened or melted.
  • an oxidation-reduction reaction occurs between carbon and sulfur oxides (or oxidants or oxides of glass), resulting in molten glass containing SO 2 , CO 2 , N 2 , H 2 S or other gases. It forms low-density, thermally conductive and radiation resistant materials and forms glass gases. As a result, for best results, the structure of the glass has a closed pore free from water, water vapor, or other liquids and gases.
  • the glass thus prepared is pulverized and mixed well by adding carbon, which is a foaming aid that reacts with other ingredients to produce a gas that acts as a direct blowing agent, and then mixes the mixed raw glass powder for producing foamed glass in a predetermined container.
  • carbon which is a foaming aid that reacts with other ingredients to produce a gas that acts as a direct blowing agent
  • the present invention is directed to solving this problem of the prior art, which utilizes waste glass to provide an efficient function with uniform pore distribution without the need for melting, hydrolysis or any other pre-processing of the glass to make a special composition. It is an object to provide a process for producing colorless or colored foamed glass without foaming agents.
  • Another object of the present invention is to provide a method for accurately predicting a foam section of glass according to various measurement parameters such as temperature section, temperature increase rate, temperature holding time and cooling rate using an expansion coefficient measuring device.
  • a foamed glass manufacturing method is provided.
  • At least one selected from the group consisting of water, ethyl alcohol, methyl alcohol, and acetone may be used as the solvent of the wet grinding process.
  • the method may further include dry grinding the sodium-silicate or boroalumino-silicate composition waste glass before the grinding by the wet grinding process.
  • the size of the waste glass powder may be in the range of 1 to 10 ⁇ m.
  • the waste glass powder may be a metal oxide added as a colorant, and the metal oxide may be any one or more of cobalt oxide (Co 3 O 4 ) or manganese oxide (MnO 3 ).
  • the metal oxide may be added to the waste glass powder prior to the firing and foaming step or may be added before the grinding step by the wet grinding process.
  • a method for predicting the foaming section of the glass to predict the foaming section of the unfoamed precursor using the shape change curve according to the temperature of the unfoamed precursor measured by the expansion coefficient measuring equipment is provided.
  • the shape change curve according to the temperature is charged with the unfoamed precursor in the expansion coefficient measuring equipment; And measuring the change in length or volume of the unfoamed precursor while raising the unfoamed precursor to a temperature above the foam start temperature of the unfoamed precursor.
  • the shape change curve can be obtained under the condition that the vertical load or the pushing force is 200 cN or less.
  • the shape change curve may be obtained by changing any one or more of a measurement temperature section, a temperature increase rate, a cooling rate, or a temperature holding time.
  • the measurement temperature range is from room temperature to 1400 °C
  • the temperature increase rate is 0.1 ⁇ 50 °C / min
  • the cooling rate is 0.1 ⁇ 50 °C / min
  • the holding time can be changed in the range of 24 hours or less. .
  • the unfoamed precursor may be in the form of a powder or bulk having a certain form.
  • the process is simplified to produce a foamed glass with excellent aesthetic characteristics with a uniform pore structure while easy process control. It can be used in various architectural and environmental articles.
  • the present invention it is possible to accurately predict the glass foam section having various variables by analysis through the expansion coefficient measuring equipment, which helps to control the process and optimize the production process. It can be usefully used for making glass.
  • FIG. 1 is a flow chart showing a foamed glass manufacturing process using waste glass according to the present invention.
  • Example 3 is a result of observing the appearance of the foamed glass prepared according to Example 1 of the present invention.
  • Figure 5 shows the shape change curve obtained by using the expansion coefficient measuring equipment according to an embodiment of the present invention.
  • Figure 6 shows the shape change curve using the expansion coefficient measuring equipment according to embodiments 9 to 12 of the present invention.
  • FIG. 8 is a result of observing the microstructure image of the foam shape before and after the boundary of the foaming point temperature shown in FIG. 7 with an electron microscope.
  • 9A and 9B are cross-sectional views of horizontal and vertical expansion coefficient measuring equipment according to one embodiment used in the method for predicting a foam section of glass of the present invention, respectively.
  • the present invention is characterized by producing foamed glass by directly foaming the waste glass without undergoing other special pretreatment process for the production of the foamed glass using waste glass, which is generally produced in life or industry.
  • Figure 1 shows a flow chart showing step by step the manufacturing method of foamed glass according to an embodiment of the present invention.
  • a method of manufacturing the foamed glass according to the embodiment of the present invention will be described with reference to FIG. 1.
  • sodium-silicate or boroalumino-silicate composition waste glass is prepared as a foamed glass raw material (S1). This is because when the sodium-silicate or boroalumino-silicate composition waste glass is used as a raw material of the foamed glass, the foamed glass can be manufactured without the addition of a foaming agent.
  • the prepared waste glass is ground to prepare a raw material powder for foaming (S2).
  • the prepared waste glass is pulverized by a wet grinding process using a grinding device such as a disk mill, a ball mill.
  • a grinding device such as a disk mill, a ball mill.
  • at least one solvent selected from the group consisting of water, ethyl alcohol, methyl alcohol and acetone may be used.
  • the grinding of the waste glass may proceed through a plurality of steps for efficient grinding.
  • the waste glass may be first coarsely pulverized by a dry method and then secondly pulverized into finer powders by a wet pulverization process.
  • the waste glass powder is immersed in the molding mold without adding a foaming agent, and is manufactured into a molded body by uniaxial and isotropic pressure (S3).
  • This molded body is made of foamed glass through a firing and foaming step (S4) at 600 to 1000 °C (S5).
  • Equation 1 when M in Equation 1 is Na such as a raw material glass having a specific composition, for example sodium-silicate, when water is added, H + ions in water and Na + ions in the glass are hydrolyzed. Are exchanged with each other to form an NaOH alkaline solution (1 Step). Next, OH - ions of the NaOH alkaline solution penetrate the glass and destroy the SiO 2 grazing structure (2Step). Subsequently, during the plastic foaming process, the hydrolysis resulted in the decomposition of the glassy water or OH - component contained in the glass to form bubbles in the softened or molten glass particles, and thus trapped inside the glass particles. As a result, bubbles are formed in the glass to form foamed glass.
  • Na such as a raw material glass having a specific composition
  • sodium-silicate when water is added, H + ions in water and Na + ions in the glass are hydrolyzed. Are exchanged with each other to form an NaOH alkaline solution (1 Step).
  • Foamed glass produced by the manufacturing process according to an embodiment of the present invention has a uniform fine pore structure and may have excellent mechanical properties and excellent aesthetics.
  • the physical properties of the foamed glass manufactured by the above method may exhibit a density value of 287 kg / m 3, porosity of 88%, compressive strength of 1.4 MPa, and thermal conductivity of 0.070 kcal / mh ° C. at 25 ° C. .
  • Colored foam glass can be realized by adding a metal oxide to the waste glass powder as a colorant.
  • the metal oxide used as the colorant may be, for example, cobalt oxide (Co 3 O 4 ) or manganese oxide (MnO 3 ).
  • Co 3 O 4 cobalt oxide
  • MnO 3 manganese oxide
  • Metal oxides which are colorants, may be added to the process of grinding the waste glass.
  • the waste glass powder may be prepared by adding the metal oxide to the waste glass powder prepared by primary coarse grinding of the prepared waste glass by dry grinding, and then performing the second fine grinding by the wet grinding process.
  • the metal oxide may be added to the powder completed until the second fine grinding, and then the subsequent process may be performed.
  • the metal oxide is added before the firing and foaming process, such as adding a metal oxide before crushing the prepared waste glass and proceeding the crushing process, or preparing a final waste glass powder by pulverizing the waste glass and then adding a metal oxide before molding. If it does, it can be any way.
  • the unfoamed precursor refers to a glass that is in a state in which foaming has not yet occurred or in a state in which foaming may occur as it is heated.
  • the unfoamed precursor may be a glass powder or a bulk form (including a molded body formed by pressing the glass powder) having a predetermined shape.
  • both the macroscopic and the microscopic viewpoints are measured by measuring the change in length or volume of the molded product generated by foaming under various conditions using an expansion coefficient measuring device without using such a high temperature microscope. It is possible to predict the foam generation zone and behavior of the glass to be satisfied.
  • the method for predicting the foam section of the glass of the present invention has a technical feature of observing the thermal behavior of the glass by using the curve for shrinkage or expansion through the coefficient of expansion coefficient measuring equipment more accurate foaming in the production of foam glass Enable temperature range setting.
  • Shrinkage and expansion behavior of the glass can be calculated through the following equations 2 and 3, it is possible to derive the change in the length or volume of the glass according to the temperature change based on the equations 2 and 3.
  • is called coefficient of liner expansion and means the ratio of length change to temperature change.
  • the coefficient of volume expansion ⁇ is defined as the ratio of the small change in volume with temperature change under constant pressure.
  • the thermal analysis technique for measuring the change in length ( ⁇ L) as a function of temperature and time under a constant load on the sample is based on the TMA method and It can be divided into dilatometry.
  • TMA is to measure the length change according to temperature and function under a constant load
  • dilato method is to measure the length change according to temperature and function under almost no load.
  • ASTM standard and the actual measurement it is common to measure tens of cN in TMA, and the dilato method also applies several tens of cN, so the distinction between the two measurement methods is not significant.
  • a dilatometer uses a displacement measuring sensor called a linear variable differential transformer (LVDT) to measure a change in length, and is composed of a furnace for controlling temperature and a holder for fixing a sample.
  • LVDT linear variable differential transformer
  • the expansion coefficient measuring device may be divided into a horizontal type as shown in FIG. 9A and a vertical type as shown in FIG. 9B.
  • the horizontal type loads the specimen holder 90a containing the specimen 91a horizontally into the heating furnace 92a, while the vertical type loads the specimen holder 90b containing the specimen 91b vertically into the heating furnace 92b.
  • Both horizontal and vertical may be equipped with thermocouples 94a and 94b for measuring the temperature of the specimens 91a and 91b.
  • the specimens 91a and 91b may be subjected to a predetermined load through pushrods 93a and 93b.
  • the horizontal expansion coefficient measuring equipment can be measured under the force of 200cN or less on the push rod 93a
  • the vertical expansion coefficient measuring equipment can be measured under the vertical load of 200cN by the push rod 93b. Can be measured at.
  • the vertical expansion coefficient measuring equipment it is also possible to apply by measuring only the vertical load corresponding to the self load of the push rod (93b).
  • Complementary measurement is possible through the measurement under the pushing force condition using the horizontal expansion coefficient measuring device and under the vertical load condition using the vertical expansion coefficient measuring device, which has the advantage of setting the optimum temperature condition for forming the foam glass. .
  • This expansion coefficient measuring device can be used to grasp the contraction and expansion behavior of the unfoamed precursors in real time to the process of conversion to foamed glass, and furthermore, to change the temperature rise rate, the holding time and cooling rate change in a certain temperature section.
  • the foaming behavior according to the present invention can be observed and analyzed from a macroscopic and microscopic perspective.
  • the temperature range of the temperature range from room temperature to 1400 ° C., the temperature increase rate from 0.1 ° C. to 50 ° C. per minute, the temperature holding time from 0 to 24 hours, and the cooling rate from 0.1 ° C. to 20 ° C. per minute Foaming behavior due to shrinkage and expansion can be observed in real time.
  • FIG. 5 shows a curve showing an example of shrinkage and expansion behavior of sodium-silicate glass obtained using a horizontal expansion coefficient measuring device (referred to as a shape change curve).
  • the shape change curve is charged with a molded product of sodium-silicate glass powder into the expansion coefficient measuring equipment, and heated at a temperature increase rate of 5 ° C./minute from room temperature to 700 ° C. under a load of 25 cN and maintained at 700 ° C. for 120 minutes. It is the result of measuring the change in shape such as the length or volume of the glass generated during the cooling time to room temperature at the cooling rate of °C / min.
  • the x-axis represents time
  • the y-axis on the left side represents linear shrinkage ( ⁇ L / L,%)
  • the y-axis on the right side represents temperature.
  • 5 shows a change in temperature with time
  • Section 3 represents the volume change of the glass according to the decrease of the temperature, it is possible to observe in real time the shrinkage of the foam glass and the occurrence of cracks during cooling due to the decrease in the cooling temperature.
  • the foaming section of the glass may be measured in real time by measuring a change in shape such as a length change or a volume change in the foaming process of the glass. Therefore, when the foaming section measurement method is utilized, the foaming characteristics according to various foaming conditions, for example, temperature conditions, temperature raising conditions, and holding time conditions, can be known. Optimization of various conditions suitable for the production of glass can be carried out.
  • Sodium-silicate composition waste glass was first ground using a disk mill. Grinding conditions were pulverized by recycling method up to three times. The primary milled powder (average 120 ⁇ m) was subjected to secondary wet milling (average 2 ⁇ m) for 1-72 hours at a speed of 100 ⁇ 400rpm using distilled water as a solvent using planetary mill.
  • the secondary pulverized powder was dried at 60 ° C. for 24 hours using an oven.
  • the dried powder was sieved using a 200 mesh sieve.
  • the powder, which was sieved as a non-foamed precursor was put into a molding mold and molded by a pressure press method to prepare a non-foamed precursor.
  • the foamed glass was manufactured by firing and foaming for 2 hours (Example) 1 to 4).
  • Table 1 shows the specific conditions of Examples 1-4.
  • Example 1 Example 2
  • Example 3 Example 4 Temperature rise rate (°C / min) One 5 10 20 Firing temperature 700 °C 700 °C 700 °C 700 °C Firing time (hours) 2 2 2 2 2
  • FIGS. 2A to 2D show the results of observing the microstructure of the foamed glass prepared according to Examples 1 to 4 of the present invention, respectively, with an electron microscope.
  • Figure 2a to 2d it can be seen that the produced foam glass is uniformly formed pores are distributed, the average size of the pores increases with increasing the temperature increase rate.
  • Figure 3 shows the result of observing the appearance of the foam glass of Example 2.
  • Examples 5 to 8 relate to color foamed glass in which a predetermined color is colored on the foamed glass of Examples 1 to 4.
  • the sodium-silicate composition waste glass was first pulverized using a disk mill. 1 or 2% by weight of cobalt oxide (Co 3 O 4 ) or manganese oxide (MnO 3 ) was added to the first pulverized powder (average 120 ⁇ m) as a colorant, followed by distilled water as a solvent. Secondary wet grinding (average 2 ⁇ m) was performed for a time.
  • the secondary milled powder was dried at 60 ° C. for 24 hours using an oven.
  • the dried powder was sieved using a 200 mesh sieve.
  • the sieved powder was put in a molding mold and molded by a pressure press method to prepare an unfoamed precursor.
  • the non-foamed precursor was used to prepare a foamed glass having various colors through a firing and foaming process at 700 ° C. for 2 hours at a temperature increase rate of 5 ° C. per minute.
  • Table 2 shows the specific conditions of Examples 5 to 8 and the color of the foamed glass.
  • Example 5 Example 6
  • Example 7 Ingredient Co 3 O 4 Co 3 O 4 MnO 3 MnO 3 Composition (% by weight) One 2 One 2 Firing temperature 700 °C 700 °C 700 °C 700 °C Firing time (hours) 2 2 2 2 color grey Dark blue Ultramarine Blue Mauve
  • Figure 4 shows the results of observing the color of the foamed glass prepared according to Examples 5 to 8 of the present invention in the order of the upper left, upper right, lower left and lower right, respectively.
  • Manganese Oxide (MnO 3 ) was added 1% by weight, the color was dark blue, and the density was 202 kg / m 3, but the addition of 2% by weight was light purple and the density was 306 kg / m 3.
  • the foamed glass having the desired color and density can be produced by appropriately adjusting the amount of the coloring agent in consideration of both the color and the density of the foamed glass.
  • An unfoamed precursor was prepared by forming a sieve of powder and molding using a molding mold to enable foam glass section prediction using a sodium-silicate composition glass.
  • the prepared unfoamed precursor was charged into an expansion coefficient measuring instrument and a 25cN load was applied to observe the behavior of the foamed glass in real time while changing the temperature increase rate to 1, 5, 10, 20 ° C / min as shown in Table 3. (Examples 9-12).
  • Example 10 Example 11
  • Example 12 Temperature rise rate (°C / min) One 5 10
  • Load change (cN) 25 25 25 25
  • FIG. 6 shows a shape change curve showing the shrinkage and expansion behavior of the unfoamed precursor when the temperature increase rate is changed to 1, 5, 10, and 20 ° C. per minute.
  • the unfoamed precursor contracts linearly but the volume expands linearly again due to bubbles formed by foaming at a predetermined temperature, that is, the foaming start temperature.
  • the foaming start temperature of the unfoamed precursor increases as the temperature increase rate increases.
  • FIG. 7 shows a shape change curve according to temperature when the temperature increase rate is 5 ° C./minute, and shows that the foaming start temperature is 693 ° C.
  • 8A, 8B and 8C show the microstructure of foamed glass at 673 ° C, 693 ° C and 713 ° C shown in FIG.
  • Porosity is not observed at a temperature lower than the foaming start temperature (FIG. 8A), but pores are observed at the foaming start temperature (FIG. 8B) and relatively coarse due to active foaming at a temperature higher than the foaming start temperature (FIG. 8C). It can be seen that the generated pores are observed.
  • the foamed glass having optimum physical properties can be produced by controlling the foaming conditions by using the foaming behavior curve in the foamed glass production.

Abstract

According to one aspect of the present invention, provided is a preparation method of foam glass using waste glass comprising the steps of: pressurizing a waste glass powder comprising sodium silicate or boroaluminosilicate without adding a foaming agent in a mold to prepare a molded product; and firing and foaming the molded product at 600-1000 ℃, wherein a preparation method of the waste glass powder comprises the step of pulverizing waste glass comprising sodium silicate or boroaluminosilicate by wet pulverization.

Description

폐유리를 이용한 발포유리 제조방법 및 팽창계수 측정 장비를 이용한 유리의 발포구간 예측방법Foam glass manufacturing method using waste glass and foam section prediction method of glass using expansion coefficient measuring equipment
본 발명은 발포유리 제조방법 및 발포구간의 예측방법에 관한 것으로서, 구체적으로는 폐유리를 원료로 하여 발포형성제(또는 기포형성제)의 첨가 없이도 분쇄와 열처리 공정을 통하여 발포유리를 제조하는 발포유리 제조방법 및 팽창계수 측정 장비를 이용하여 유리의 발포구간을 예측하는 방법에 관한 것이다. The present invention relates to a foamed glass manufacturing method and a foaming section prediction method, specifically, foamed to manufacture the foamed glass through the grinding and heat treatment process without the addition of foaming agent (or foaming agent) from waste glass as a raw material It relates to a method for predicting the foam section of the glass by using the glass manufacturing method and expansion coefficient measuring equipment.
발포유리는 경량이면서 불꽃차단, 단열, 내열, 흡음 등에 탁월한 성능을 발휘하여 산업상 방수, 내열성, 내구성이 요구되는 경우에 사용되며, 특히 구조물이나 건축물에 있어서 훌륭한 보온단열재 및 흡음재로 쓰인다.Foamed glass is lightweight and shows excellent performance in flame protection, heat insulation, heat resistance, sound absorption, etc., and is used when industrial waterproof, heat resistance, and durability are required. Especially, it is used as a good thermal insulation material and sound absorbing material in structures or buildings.
발포유리의 제조 원리는 1930년대 후반에 이미 제안된 바 있다. 그 일예로서 특별한 조성의 유리에 탄소와 같은 환원제와 산화물, 설페이트(sulfate) 또는 다른 형태의 산화성분들을 함유하는 기포형성제를 함께 혼합하여 이를 분쇄한 후, 이 분쇄된 혼합물을 일정한 용기 또는 틀에 넣어 연화 또는 용융 전까지 소성시키는 것이다. The production principle of foam glass was already proposed in the late 1930s. For example, a special composition of glass is mixed with a reducing agent, such as carbon, and a foaming agent containing an oxide, sulfate or other type of oxidizing component, pulverized, and then pulverized. It is fired until softened or melted.
이 열처리 과정에서 탄소와 황산화물(또는 산화제 또는 유리의 산화물) 사이에 산화-환원반응이 일어나고 그 결과 용융된 유리는 SO2 , CO2 , N2 , H2S 또는 다른 가스를 함유하게 되며 이것이 저밀도이며 열전도 및 복사에 저항이 되는 구조를 형성하게 하는 물질을 만들며 유리가스를 형성한다. 그 결과 가장 최상의 결과를 얻을 경우 유리의 구조는 물 또는 수증기, 또는 다른 액체 및 기체 등이 스며들지 않는 밀폐기공을 갖게 된다.During this heat treatment, an oxidation-reduction reaction occurs between carbon and sulfur oxides (or oxidants or oxides of glass), resulting in molten glass containing SO 2 , CO 2 , N 2 , H 2 S or other gases. It forms low-density, thermally conductive and radiation resistant materials and forms glass gases. As a result, for best results, the structure of the glass has a closed pore free from water, water vapor, or other liquids and gases.
이와 같은 제조 원리에 따라 제조되는 발포유리 블록의 제조 공정에 대해서는 많은 연구결과 및 관련 특허가 제안된 바 있다. 미국의 피츠버그 코닝(Pittsburg Corning)사에서 상용화한 발포유리를 제조하기 위해서는 일차적으로 특별한 조성의 발포유리 제조용 원료유리를 제조하여야 한다. 이를 위해서 통상의 유리 제조용 원료 성분에다 발포유리가 될 수 있도록 Na2SO4, CaCO3, MgCO3, Na2O, As2O3 등의 여러 성분을 가하여 1300∼1600℃의 용융과정을 거쳐 발포유리를 만들 수 있는 발포유리제조용 원료유리를 만들고 있다. 그리고 이렇게 만들어진 유리를 분쇄하고 여기에 다른 성분과 반응하여 직접적인 발포제 역할을 하는 기체를 생성하는 발포조제인 탄소 등을 첨가하여 잘 혼합한 다음, 이 혼합된 발포유리 제조용 원료유리 분말을 일정한 용기에 담아 400∼650℃에서 예열하고, 800∼900℃의 조건하에서 발포과정을 거친 후 안정화를 위한 냉각, 서냉 등의 열처리 과정을 거친 것을 일정한 크기로 절단하여 포장 판매하고 있다. Many research results and related patents have been proposed for the manufacturing process of the foamed glass block manufactured according to such a manufacturing principle. In order to manufacture foam glass commercialized by Pittsburg Corning, USA, raw glass for manufacturing foam glass of a special composition should be manufactured. To this end, various components such as Na 2 SO 4 , CaCO 3 , MgCO 3 , Na 2 O, As 2 O 3, etc. are added to the raw material for manufacturing glass to form foamed glass, followed by melting at 1300 to 1600 ° C. We are making raw glass for making foamed glass that can make glass. The glass thus prepared is pulverized and mixed well by adding carbon, which is a foaming aid that reacts with other ingredients to produce a gas that acts as a direct blowing agent, and then mixes the mixed raw glass powder for producing foamed glass in a predetermined container. Pre-heated at 400-650 ° C, foamed under 800-900 ° C, and heat-treated processes such as cooling and slow cooling for stabilization are cut and sold.
그러나 이 공정은 발포유리 제조용 원료유리를 만드는 과정에서 상기한 바와 같이 열처리 온도가 1300∼1600℃로 되어 다량의 에너지가 소요되고, 그에 따른 시설투자 및 관리비용이 필요하기 때문에, 발포유리 제조용 원료유리의 생산비용이 발포유리 생산원가의 절반 이상을 차지하고 있다. However, this process requires a large amount of energy due to the heat treatment temperature of 1300 ~ 1600 ℃ as described above in the process of making the raw glass for foam glass manufacturing, and thus requires a facility investment and management costs, raw glass for foam glass production Production costs account for more than half of the cost of producing foamed glass.
한편, 발포유리를 제조함에 있어서 유리의 발포구간을 가능한 정확하게 예측하는 것이 매우 중요하다. 그러나 이와 같은 제조원리에 따라 발포유리 블록의 제조 공정에 대해서는 많은 연구결과 및 관련 특허가 제안된 바 있으나, 발포유리 생성구간에 대한 연구는 미미하였다. On the other hand, in producing foamed glass, it is very important to predict the foaming section of the glass as accurately as possible. However, according to the manufacturing principle, many research results and related patents have been proposed for the manufacturing process of the foam glass block, but the research on the foam glass generation section is insignificant.
종래부터 발포유리 생성구간에 대한 정확한 예측을 위한 실험은 고온현미경 등을 이용한 실시간적인 이미지를 통하여 거시적인 단계에서 진행되고 있는 것이 현실이었다. 이는 유리의 정확한 발포구간을 예측할 수가 없으며 단위 또한 밀리미터(mm)단위로 밖에 측정을 할 수가 없는 한계가 있었다.Conventionally, the experiment for accurate prediction of the foamed glass generation section was carried out at a macroscopic stage through a real-time image using a high temperature microscope. This could not predict the exact foam section of the glass and there was a limit that can only measure in millimeters (mm).
본 발명은 이러한 종래기술의 문제점을 해결하기 위한 것으로서, 폐유리를 이용함으로써 특별한 조성을 만들기 위한 유리의 용융, 가수분해 또는 기타의 어떠한 사전 공정도 필요로 하지 않으면서도 균일한 기공분포를 갖는 효율적인 기능의 무색 또는 컬러 발포유리를 발포형성제 없이 제조하는 방법을 제공하는 것을 목적으로 한다.SUMMARY OF THE INVENTION The present invention is directed to solving this problem of the prior art, which utilizes waste glass to provide an efficient function with uniform pore distribution without the need for melting, hydrolysis or any other pre-processing of the glass to make a special composition. It is an object to provide a process for producing colorless or colored foamed glass without foaming agents.
또한 본 발명은 팽창계수 측정 장비를 이용하여 온도구간, 승온속도, 온도유지시간 및 냉각속도 등의 여러 측정 변수에 따른 유리의 발포구간을 정확히 예측할 수 있는 방법의 제공을 또 다른 목적으로 한다.Another object of the present invention is to provide a method for accurately predicting a foam section of glass according to various measurement parameters such as temperature section, temperature increase rate, temperature holding time and cooling rate using an expansion coefficient measuring device.
본 발명의 일 관점에 의하면, 소듐-실리케이트 또는 보로알루미노-실리케이트조성의 폐유리 분말을 발포형성제 첨가 없이 성형몰드에서 가압하여 성형체를 제조하는 단계; 및 상기 성형체를 600 내지 1000℃ 온도범위에서 소성 및 발포시키는 단계를 포함하며, 상기 폐유리 분말은 소듐-실리케이트 또는 보로알루미노-실리케이트조성 폐유리를 습식분쇄공정으로 분쇄하여 제조하는, 폐유리를 이용한 발포유리 제조방법이 제공된다. According to an aspect of the invention, the step of preparing a molded body by pressing the waste glass powder of sodium-silicate or boroalumino-silicate composition in a molding mold without adding a foaming agent; And calcining and foaming the molded body in a temperature range of 600 to 1000 ° C., wherein the waste glass powder is prepared by pulverizing sodium-silicate or boroalumino-silicate composition waste glass by a wet grinding process. Provided is a foamed glass manufacturing method.
이때 상기 습식분쇄공정의 용매로는 물, 에틸 알코올, 메틸 알코올 및 아세톤으로 이루어지는 군으로부터 선택되는 적어도 하나 이상을 이용할 수 있다. In this case, at least one selected from the group consisting of water, ethyl alcohol, methyl alcohol, and acetone may be used as the solvent of the wet grinding process.
또한 상기 습식분쇄공정으로 분쇄하는 단계 전에 상기 소듐-실리케이트 또는 보로알루미노-실리케이트조성 폐유리를 건식분쇄하는 단계를 더 포함할 수 있다. The method may further include dry grinding the sodium-silicate or boroalumino-silicate composition waste glass before the grinding by the wet grinding process.
상기 폐유리 분말의 크기는 1 내지 10㎛ 범위에 있을 수 있다. The size of the waste glass powder may be in the range of 1 to 10 μm.
상기 폐유리 분말은 착색제로서 금속산화물이 첨가된 것일 수 있으며, 상기 금속산화물은 코발트산화물(Co3O4) 또는 망간산화물(MnO3) 중 어느 하나 이상일 수 있다.The waste glass powder may be a metal oxide added as a colorant, and the metal oxide may be any one or more of cobalt oxide (Co 3 O 4 ) or manganese oxide (MnO 3 ).
상기 금속산화물은 상기 소성 및 발포단계 전에 상기 폐유리 분말에 첨가되거나 혹은 상기 습식분쇄공정으로 분쇄하는 단계 전에 첨가될 수 있다.  The metal oxide may be added to the waste glass powder prior to the firing and foaming step or may be added before the grinding step by the wet grinding process.
본 발명의 다른 관점에 의하면, 팽창계수 측정장비로 측정한 미발포 전구체의 온도에 따른 형상변화곡선을 이용하여 상기 미발포 전구체의 발포구간을 예측하는, 유리의 발포구간 예측방법이 제공된다. According to another aspect of the present invention, there is provided a method for predicting the foaming section of the glass to predict the foaming section of the unfoamed precursor using the shape change curve according to the temperature of the unfoamed precursor measured by the expansion coefficient measuring equipment.
상기 온도에 따른 형상변화곡선은 팽창계수 측정장비에 미발포 전구체를 장입하는 단계; 및 상기 미발포 전구체를 상기 미발포 전구체의 발포개시온도 이상까지 승온시키면서 상기 미발포 전구체의 길이변화 또는 부피변화를 측정하는 단계;를 통해 획득될 수 있다.The shape change curve according to the temperature is charged with the unfoamed precursor in the expansion coefficient measuring equipment; And measuring the change in length or volume of the unfoamed precursor while raising the unfoamed precursor to a temperature above the foam start temperature of the unfoamed precursor.
상기 형상변화곡선은 수직 하중 또는 미는 힘이 200cN 이하인 조건에서 획득될 수 있다.The shape change curve can be obtained under the condition that the vertical load or the pushing force is 200 cN or less.
상기 형상변화곡선은 측정온도구간, 승온속도, 냉각속도 또는 온도유지시간 중 어느 하나 이상을 변화시키면서 획득한 것일 수 있다. 예를 들어, 상기 측정온도구간은 상온 내지 1400℃, 상기 승온속도는 0.1 ~ 50℃/분, 상기 냉각속도는 0.1 ~ 50℃/분, 상기 유지시간은 24시간 이하의 범위에서 변화시킬 수 있다.The shape change curve may be obtained by changing any one or more of a measurement temperature section, a temperature increase rate, a cooling rate, or a temperature holding time. For example, the measurement temperature range is from room temperature to 1400 ℃, the temperature increase rate is 0.1 ~ 50 ℃ / min, the cooling rate is 0.1 ~ 50 ℃ / min, the holding time can be changed in the range of 24 hours or less. .
상기 미발포 전구체는 분말형태 또는 일정한 형태를 가지는 벌크형태일 수 있다.The unfoamed precursor may be in the form of a powder or bulk having a certain form.
본 발명에서는 폐기처분되는 폐유리를 이용하여 발포형성제의 첨가 없이 공정제어를 통하여 발포유리를 제조하므로 공정이 단순화되어 공정제어가 용이하면서도 균일한 기공구조를 가진 심미적 특성이 우수한 발포유리를 제조할 수 있으므로 다양한 건축 및 환경관련 물품에 사용될 수 있다.In the present invention, by manufacturing the foamed glass through the process control without the addition of the foaming agent using the waste glass to be disposed of, the process is simplified to produce a foamed glass with excellent aesthetic characteristics with a uniform pore structure while easy process control. It can be used in various architectural and environmental articles.
또한 본 발명에서는 팽창계수 측정장비를 통한 분석으로 다양한 변수를 가지는 유리 발포구간의 정확한 예측이 가능하므로, 공정제어 및 생산 공정 최적화에 도움이 되며, 이에 따라 정확한 발포 온도 설정 및 최적의 밀도를 가지는 발포유리 제조에 유용하게 사용될 수 있다. In addition, in the present invention, it is possible to accurately predict the glass foam section having various variables by analysis through the expansion coefficient measuring equipment, which helps to control the process and optimize the production process. It can be usefully used for making glass.
본 발명의 효과는 이상에서 언급한 것으로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to those mentioned above, and other effects, which are not mentioned above, will be clearly understood by those skilled in the art from the following description.
도 1은 본 발명에 따른 폐유리를 이용한 발포유리 제조공정을 나타내는 흐름도이다.1 is a flow chart showing a foamed glass manufacturing process using waste glass according to the present invention.
도 2는 본 발명의 실시예 1 내지 4에 따라 제조되는 발포유리의 미세구조를 나타내는 결과이다. 2 is a result showing the microstructure of the foamed glass prepared according to Examples 1 to 4 of the present invention.
도 3은 본 발명의 실시예 1에 따라 제조되는 발포유리의 외관을 관찰한 결과이다. 3 is a result of observing the appearance of the foamed glass prepared according to Example 1 of the present invention.
도 4는 본 발명의 실시예 5 내지 8에 따라 제조된 발포유리의 외관을 관찰한 결과이다. 4 is a result of observing the appearance of the foamed glass prepared according to Examples 5 to 8 of the present invention.
도 5는 본 발명의 일 실시예에 따라 팽창계수 측정 장비를 이용하여 얻은 형상변화곡선을 나타낸 것이다.Figure 5 shows the shape change curve obtained by using the expansion coefficient measuring equipment according to an embodiment of the present invention.
도 6은 본 발명의 실시예 9 내지 12에 따른 팽창계수 측정 장비를 이용한 형상변화곡선을 나타낸 것이다.Figure 6 shows the shape change curve using the expansion coefficient measuring equipment according to embodiments 9 to 12 of the present invention.
도 7은 본 발명의 실시예 10에 따른 형상변화곡선을 따로 나타낸 것이다.7 shows a shape change curve according to the tenth embodiment of the present invention.
도 8은 도 7에서 보여준 발포시점 온도를 경계 및 그 전후의 발포형상의 미세구조 이미지를 전자현미경으로 관찰한 결과이다.FIG. 8 is a result of observing the microstructure image of the foam shape before and after the boundary of the foaming point temperature shown in FIG. 7 with an electron microscope.
도 9a 및 9b는 각각 본 발명의 유리의 발포구간 예측방법에 사용되는 일 실시예에 따른 수평 및 수직형 팽창계수 측정 장비의 단면도이다.9A and 9B are cross-sectional views of horizontal and vertical expansion coefficient measuring equipment according to one embodiment used in the method for predicting a foam section of glass of the present invention, respectively.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various forms, and the following embodiments are intended to complete the disclosure of the present invention, the scope of the invention to those skilled in the art It is provided to inform you completely. In addition, the components may be exaggerated or reduced in size in the drawings for convenience of description.
본 발명은 일반적으로 생활상이나 산업적으로 발생되는 폐유리를 이용하여 발포유리의 제조를 위한 다른 특별한 전처리공정을 거치지 않고 폐유리를 직접 발포시켜 발포유리를 제조하는 것을 특징으로 한다. 도 1에는 본 발명의 실시예를 따르는 발포유리의 제조방법을 단계별로 표시한 순서도가 나타나 있다. 이하 도 1을 참조하여 본 발명의 실시예를 따르는 발포유리의 제조방법을 설명한다. The present invention is characterized by producing foamed glass by directly foaming the waste glass without undergoing other special pretreatment process for the production of the foamed glass using waste glass, which is generally produced in life or industry. Figure 1 shows a flow chart showing step by step the manufacturing method of foamed glass according to an embodiment of the present invention. Hereinafter, a method of manufacturing the foamed glass according to the embodiment of the present invention will be described with reference to FIG. 1.
도 1을 참조하면, 발포유리 원료로서의 소듐-실리케이트(sodium-silicate) 또는 보로알루미노-실리케이트(boroalumino-silicate)조성 폐유리를 준비한다(S1). 이러한 소듐-실리케이트 또는 보로알루미노-실리케이트조성 폐유리를 발포유리의 원료로 사용하는 경우에는 별도의 발포형성제의 첨가 없이도 발포유리의 제조가 가능하기 때문이다.Referring to FIG. 1, sodium-silicate or boroalumino-silicate composition waste glass is prepared as a foamed glass raw material (S1). This is because when the sodium-silicate or boroalumino-silicate composition waste glass is used as a raw material of the foamed glass, the foamed glass can be manufactured without the addition of a foaming agent.
다음, 준비된 폐유리를 분쇄하여 발포용 원료분말을 제조한다(S2). 이때 준비된 폐유리는 디스크밀, 볼밀 등의 분쇄장치을 이용한 습식분쇄공정으로 분쇄된다. 이때 용매로는 물, 에틸 알코올, 메틸 알코올 및 아세톤으로 이루어지는 군으로부터 선택되는 적어도 하나의 용매를 사용할 수 있다. Next, the prepared waste glass is ground to prepare a raw material powder for foaming (S2). At this time, the prepared waste glass is pulverized by a wet grinding process using a grinding device such as a disk mill, a ball mill. In this case, at least one solvent selected from the group consisting of water, ethyl alcohol, methyl alcohol and acetone may be used.
효율적인 분쇄를 위해 상기 폐유리의 분쇄는 복수의 단계를 거쳐 진행될 수 있다. 예를 들어, 폐유리를 건식방법으로 1차 조분쇄한 후, 이를 습식분쇄공정으로 더욱 미세한 분말로 2차 미분쇄할 수 있다.The grinding of the waste glass may proceed through a plurality of steps for efficient grinding. For example, the waste glass may be first coarsely pulverized by a dry method and then secondly pulverized into finer powders by a wet pulverization process.
최종적으로 분쇄된 분말의 입도는 미세할수록 바람직하나, 분말의 제조에 투입되는 경제적인 비용을 고려하여 분말의 크기가 1 내지 10㎛ 크기가 되도록 조절할 수 있다. The finer the particle size of the finally pulverized powder is, the better, but may be adjusted so that the size of the powder is 1 to 10 μm in consideration of the economical cost of the powder.
이후 폐유리 분말은 발포형성제 첨가 없이 성형몰드에 담겨져 1축 및 등방가압에 의하여 성형체로 제조된다(S3). 이러한 성형체는 600 내지 1000℃에서 소성 및 발포 단계(S4)를 거쳐 발포유리로 제조된다(S5).Thereafter, the waste glass powder is immersed in the molding mold without adding a foaming agent, and is manufactured into a molded body by uniaxial and isotropic pressure (S3). This molded body is made of foamed glass through a firing and foaming step (S4) at 600 to 1000 ℃ (S5).
본 발명에 있어서, 발포유리의 생성 메카니즘을 아래 식 1을 참조하여 설명한다.In the present invention, the production mechanism of the foamed glass will be described with reference to Equation 1 below.
식1)Equation 1)
Figure PCTKR2011008918-appb-I000001
Figure PCTKR2011008918-appb-I000001
식 1에 에 나타나는 바와 같이, 특정 조성을 가지는 원료유리, 예를 들어 소듐-실리케이트와 같이 상기 식 1의 M이 Na인 경우, 물을 가하면 가수분해에 의하여 물속의 H+ 이온과 유리의 Na+ 이온이 서로 교환되며 NaOH 알칼리 용액이 형성되게 된다(1Step). 다음, NaOH 알칼리 용액의 OH- 이온이 유리에 침투하며 SiO2 방목구조를 파괴하게 된다(2Step). 이후 소성 발포 공정을 거치면서, 가수분해결과 유리에 함유된 유리상태 수분 또는 OH- 성분이 분해되어 연화 또는 용융된 유리입자의 내부에 기포를 형성하게 되고 이와 같이 유리입자 내부에 트랩(trapped)된 결과 유리 내에 기포가 형성되어 발포유리가 된다.As shown in Equation 1, when M in Equation 1 is Na such as a raw material glass having a specific composition, for example sodium-silicate, when water is added, H + ions in water and Na + ions in the glass are hydrolyzed. Are exchanged with each other to form an NaOH alkaline solution (1 Step). Next, OH - ions of the NaOH alkaline solution penetrate the glass and destroy the SiO 2 grazing structure (2Step). Subsequently, during the plastic foaming process, the hydrolysis resulted in the decomposition of the glassy water or OH - component contained in the glass to form bubbles in the softened or molten glass particles, and thus trapped inside the glass particles. As a result, bubbles are formed in the glass to form foamed glass.
본 발명의 실시예를 따르는 제조공정에 의하여 제조된 발포유리는 균일한 미세 기공구조를 가지며 우수한 기계적 특성과 더불어 뛰어난 심미성까지 가질 수 있다. 일 예로서, 상기 제조방법에 의하여 제조된 발포유리의 물성은 287 ㎏/㎥의 밀도값과 88%의 기공율, 1.4 MPa의 압축강도, 그리고 25℃에서 0.070 kcal/mh℃ 열전도도를 나타낼 수 있다.Foamed glass produced by the manufacturing process according to an embodiment of the present invention has a uniform fine pore structure and may have excellent mechanical properties and excellent aesthetics. As an example, the physical properties of the foamed glass manufactured by the above method may exhibit a density value of 287 kg / m 3, porosity of 88%, compressive strength of 1.4 MPa, and thermal conductivity of 0.070 kcal / mh ° C. at 25 ° C. .
본 발명의 다른 실시예로서 다양한 색상을 가지는 컬러 발포유리의 제조방법이 제공될 수 있다. 컬러 발포유리는 착색제로서 금속산화물을 폐유리 분말에 첨가함으로써 구현할 수 있다. 이때 착색제로서 이용되는 금속산화물은 예를 들어, 코발트산화물(Co3O4) 또는 망간산화물(MnO3)일 수 있다. 이러한 금속산화물이 첨가된 폐유리 분말을 소성 및 발포하는 경우 특정한 색상이 착색된 컬러 발포유리를 제조할 수 있다. As another embodiment of the present invention can be provided a method for producing a colored foam glass having a variety of colors. Colored foam glass can be realized by adding a metal oxide to the waste glass powder as a colorant. In this case, the metal oxide used as the colorant may be, for example, cobalt oxide (Co 3 O 4 ) or manganese oxide (MnO 3 ). When firing and foaming the waste glass powder to which the metal oxide is added, it is possible to produce a colored foam colored with a specific color.
착색제인 금속산화물은 폐유리를 분쇄하는 과정에 첨가될 수 있다. 예를 들어, 준비된 폐유리를 건식분쇄공정으로 1차 조분쇄하여 제조한 폐유리 분말에 상기 금속산화물를 첨가한 후 습식분쇄공정으로 2차 미분쇄를 실시하여 폐유리 분말을 제조할 수 있다. 혹은 2차 미분쇄까지 완료된 분말에 상기 금속산화물을 첨가한 후 이후의 공정을 진행하는 것도 가능하다. 이 이외에도 준비된 폐유리의 분쇄 전에 금속산화물을 첨가한 후 분쇄과정을 진행하거나 혹은 폐유리를 분쇄하여 최종 폐유리 분말을 제조한 후 성형 전에 금속산화물을 첨가하는 등 소성 및 발포과정 전에 금속산화물을 첨가하는 것이라면 어떠한 방법이라도 무방하다. Metal oxides, which are colorants, may be added to the process of grinding the waste glass. For example, the waste glass powder may be prepared by adding the metal oxide to the waste glass powder prepared by primary coarse grinding of the prepared waste glass by dry grinding, and then performing the second fine grinding by the wet grinding process. Alternatively, the metal oxide may be added to the powder completed until the second fine grinding, and then the subsequent process may be performed. In addition to this, the metal oxide is added before the firing and foaming process, such as adding a metal oxide before crushing the prepared waste glass and proceeding the crushing process, or preparing a final waste glass powder by pulverizing the waste glass and then adding a metal oxide before molding. If it does, it can be any way.
이러한 본 발명의 실시예와 같은 발포유리 제조는 기본적으로 미발포 전구체가 승온되는 과정에서 발포되는 단계를 거치게 된다. 여기서 미발포 전구체란 아직 발포가 일어나지 않은 상태이나 가열됨에 따라 발포가 일어날 수 있는 상태에 놓인 유리를 말한다. 이때 미발포 전구체는 유리분말 또는 일정한 형태를 가진 벌크형태(유리분말을 가압하여 성형한 성형체를 포함한다)일 수 있다. 이러한 미발포 전구체의 발포구간을 정확히 예측함으로써 발포유리 제조공정의 제어를 보다 정밀하게 수행할 수 있게 된다.   Production of foam glass, such as an embodiment of the present invention is basically subjected to a step of foaming in the process of raising the unfoamed precursor. Here, the unfoamed precursor refers to a glass that is in a state in which foaming has not yet occurred or in a state in which foaming may occur as it is heated. In this case, the unfoamed precursor may be a glass powder or a bulk form (including a molded body formed by pressing the glass powder) having a predetermined shape. By accurately predicting the foam section of the non-foamed precursor, it is possible to more precisely control the foam glass manufacturing process.
종래에는 통상적으로 발포유리의 구간을 예측하기 위해서는 거시적 관점에서 고온현미경을 이용하였다,. 그러나 본 발명의 유리의 발포구간 예측방법에 의하면, 이러한 고온현미경을 이용하지 않고 여러 조건 하에서 발포 시 발생되는 성형체의 길이변화 또는 부피변화를 팽창계수 측정장비를 이용하여 측정함으로써 거시적, 미시적 관점 모두를 만족시키는 유리의 발포 생성구간과 거동을 예측할 수 있다. 이와 같이 본 발명의 유리의 발포구간 예측방법에 의하면 팽창계수 측정장비를 통하여 나오는 수축 또는 팽창에 대한 곡선을 이용하여 유리의 열적거동을 관찰하는 기술적 특징을 가지므로 발포유리의 제조에 있어서 더 정확한 발포온도구간 설정을 가능하게 한다.Conventionally, in order to predict the interval of foam glass, a high-temperature microscope was used from a macroscopic viewpoint. However, according to the method for predicting the foaming section of the glass of the present invention, both the macroscopic and the microscopic viewpoints are measured by measuring the change in length or volume of the molded product generated by foaming under various conditions using an expansion coefficient measuring device without using such a high temperature microscope. It is possible to predict the foam generation zone and behavior of the glass to be satisfied. Thus, according to the method for predicting the foam section of the glass of the present invention has a technical feature of observing the thermal behavior of the glass by using the curve for shrinkage or expansion through the coefficient of expansion coefficient measuring equipment more accurate foaming in the production of foam glass Enable temperature range setting.
유리의 수축 및 팽창 거동은 하기의 식 2 및 식 3을 통하여 계산될 수 있으며, 이러한 식 2 및 식 3을 바탕으로 온도변화에 따른 유리의 길이변화 또는 부피변화를 도출할 수 있다.Shrinkage and expansion behavior of the glass can be calculated through the following equations 2 and 3, it is possible to derive the change in the length or volume of the glass according to the temperature change based on the equations 2 and 3.
식2)Equation 2)
Figure PCTKR2011008918-appb-I000002
Figure PCTKR2011008918-appb-I000002
Figure PCTKR2011008918-appb-I000003
Figure PCTKR2011008918-appb-I000003
Figure PCTKR2011008918-appb-I000004
= 초기온도에서 시료의 길이
Figure PCTKR2011008918-appb-I000004
= Length of sample at initial temperature
Figure PCTKR2011008918-appb-I000005
= 낮은 온도 T1에서 시료의 길이
Figure PCTKR2011008918-appb-I000005
= Length of sample at low temperature T1
Figure PCTKR2011008918-appb-I000006
= 높은 온도 T2에서 시료의 길이
Figure PCTKR2011008918-appb-I000006
= Length of sample at high temperature T2
여기서 α는 선팽창계수(coefficient of liner expansion)라 부르며, 온도변화에 대한 길이 변화율과의 비로 나타낸 것을 의미한다.Where α is called coefficient of liner expansion and means the ratio of length change to temperature change.
식3)Equation 3)
Figure PCTKR2011008918-appb-I000007
Figure PCTKR2011008918-appb-I000007
Figure PCTKR2011008918-appb-I000008
Figure PCTKR2011008918-appb-I000008
Figure PCTKR2011008918-appb-I000009
Figure PCTKR2011008918-appb-I000009
Figure PCTKR2011008918-appb-I000010
Figure PCTKR2011008918-appb-I000010
부피팽창계수(coefficient of volume expansion) β는 일정한 압력하에서 온도 변화에 따른 체적의 미소변화와의 비로 정의한다.The coefficient of volume expansion β is defined as the ratio of the small change in volume with temperature change under constant pressure.
이러한 식에 필요한 길이변화 또는 부피변화를 획득하기 위한 기술로서, 시료에 일정한 하중을 가한 상태에서 온도 및 시간 함수에 따른 길이 변화(ΔL)를 측정하는 열분석 기법은 하중을 가하는 정도에 따라 TMA법과 딜라토법(Dilatometry)으로 구분할 수 있다. As a technique for acquiring the length change or volume change required for this equation, the thermal analysis technique for measuring the change in length (ΔL) as a function of temperature and time under a constant load on the sample is based on the TMA method and It can be divided into dilatometry.
TMA는 일정한 하중을 가한 상태에서 온도 및 함수에 따른 길이 변화를 측정하는 것이고, 딜라토법은 하중을 거의 가하지 않은 상태에서 온도 및 함수에 따른 길이 변화를 측정하는 방법을 말한다. 그러나 ASTM 규격과 실제 측정에서는 TMA에서 수십 cN의 힘을 가하면서 측정하는 것이 일반적이고, 딜라토법 또한 수십 cN의 하중을 가하기 때문에 두 가지 측정방법의 구분은 큰 의미가 없다.TMA is to measure the length change according to temperature and function under a constant load, and the dilato method is to measure the length change according to temperature and function under almost no load. However, in the ASTM standard and the actual measurement, it is common to measure tens of cN in TMA, and the dilato method also applies several tens of cN, so the distinction between the two measurement methods is not significant.
일반적으로 팽창계수 측정장비(Dilatometer)는 길이변화를 측정하기 위해 LVDT(Linear Variable Differential Transformer)라는 변위 측정 센서를 사용하며 온도를 조절하기 위한 가열로와 시료 고정을 위한 홀더부로 구성된다. In general, a dilatometer uses a displacement measuring sensor called a linear variable differential transformer (LVDT) to measure a change in length, and is composed of a furnace for controlling temperature and a holder for fixing a sample.
팽창계수 측정장비는 도 9a와 같은 수평형과 도 9b와 같은 수직형으로 나눌 수 있다. 수평형은 시편(91a)을 담은 시편홀더(90a)를 가열로(92a)에 수평으로 장입하는 반면, 수직형은 시편(91b)를 담은 시편홀더(90b)를 가열로(92b)에 수직으로 장입한다. 수평형 및 수직형 모두 시편(91a, 91b)의 온도를 측정하기 위한 열전대(94a, 94b)를 구비할 수 있다. 시편(91a, 91b)에는 푸시로드(pushrod, 93a, 93b)를 통해 소정의 하중을 가할 수 있다. 예를 들어 수평형 팽창계수 측정장비의 경우에는 푸시로드(93a)에 미는 힘 200cN 이하의 조건에서 측정이 가능하며, 수직형 팽창계수 측정장비의 경우에는 푸시로드(93b)에 수직하중 200cN 이하조건에서 측정할 수 있다. 수직형 팽창계수 측정장비의 경우에는 푸시로드(93b)의 자체하중에 해당되는 수직하중만을 인가하여 측정하는 것도 가능하다. The expansion coefficient measuring device may be divided into a horizontal type as shown in FIG. 9A and a vertical type as shown in FIG. 9B. The horizontal type loads the specimen holder 90a containing the specimen 91a horizontally into the heating furnace 92a, while the vertical type loads the specimen holder 90b containing the specimen 91b vertically into the heating furnace 92b. Charge. Both horizontal and vertical may be equipped with thermocouples 94a and 94b for measuring the temperature of the specimens 91a and 91b. The specimens 91a and 91b may be subjected to a predetermined load through pushrods 93a and 93b. For example, the horizontal expansion coefficient measuring equipment can be measured under the force of 200cN or less on the push rod 93a, and the vertical expansion coefficient measuring equipment can be measured under the vertical load of 200cN by the push rod 93b. Can be measured at. In the case of the vertical expansion coefficient measuring equipment, it is also possible to apply by measuring only the vertical load corresponding to the self load of the push rod (93b).
수평형 팽창계수 측정장비를 이용한 미는 힘 조건 하에서의 측정과 수직 팽창계수 측정장비를 이용한 수직 하중 조건 하에서의 측정을 통하여 상호 보완적인 측정이 가능하므로 최적의 발포유리의 형성온도조건을 설정할 수 있는 장점이 있다.Complementary measurement is possible through the measurement under the pushing force condition using the horizontal expansion coefficient measuring device and under the vertical load condition using the vertical expansion coefficient measuring device, which has the advantage of setting the optimum temperature condition for forming the foam glass. .
이러한 팽창계수 측정장비를 이용하면 미발포 전구체의 수축과 팽창거동을 파악하여 발포유리로의 전환과정을 실시간으로 파악할 수 있으며, 나아가 승온속도의 변화, 일정온도 구간에서의 유지시간 및 냉각속도 변화에 따른 발포생성거동을 거시적, 미시적 관점에서 관찰 및 분석할 수 있다.This expansion coefficient measuring device can be used to grasp the contraction and expansion behavior of the unfoamed precursors in real time to the process of conversion to foamed glass, and furthermore, to change the temperature rise rate, the holding time and cooling rate change in a certain temperature section. The foaming behavior according to the present invention can be observed and analyzed from a macroscopic and microscopic perspective.
예를 들어, 온구구간을 상온 내지 1400℃의 범위, 승온속도를 분당 0.1℃ 내지 50℃ 범위, 온도유지시간을 0 내지 24시간의 범위, 냉각속도를 분당 0.1℃-20℃ 범위에서 변경하면서 유리 수축 및 팽창에 의한 발포 거동을 실시간적으로 관찰할 수 있다. For example, the temperature range of the temperature range from room temperature to 1400 ° C., the temperature increase rate from 0.1 ° C. to 50 ° C. per minute, the temperature holding time from 0 to 24 hours, and the cooling rate from 0.1 ° C. to 20 ° C. per minute Foaming behavior due to shrinkage and expansion can be observed in real time.
이하에서는 유리의 발포구간 예측방법에 대하여 도면을 참조하여 자세히 설명한다.Hereinafter, a method for predicting the foam section of the glass will be described in detail with reference to the accompanying drawings.
도 5는 수평형 팽창계수 측정장비를 이용하여 획득한 소듐-실리케이트 유리의 수축 및 팽창 거동의 예를 보여 주는 곡선(이를 형상변화곡선이라 한다)을 나타낸 것이다. 구체적으로 상기 형상변화곡선은 소듐-실리케이트 유리 분말의 성형체를 팽창계수 측정장비에 장입하고 25cN의 하중하에서 상온에서 700℃까지 5℃/분의 승온속도로 승온하여 700℃에서 120분간 유지한 후 5℃/분 냉각속도로 상온까지 냉각하는 시간동안 발생되는 유리의 길이 또는 체적과 같은 형상의 변화를 측정한 결과이다. FIG. 5 shows a curve showing an example of shrinkage and expansion behavior of sodium-silicate glass obtained using a horizontal expansion coefficient measuring device (referred to as a shape change curve). Specifically, the shape change curve is charged with a molded product of sodium-silicate glass powder into the expansion coefficient measuring equipment, and heated at a temperature increase rate of 5 ° C./minute from room temperature to 700 ° C. under a load of 25 cN and maintained at 700 ° C. for 120 minutes. It is the result of measuring the change in shape such as the length or volume of the glass generated during the cooling time to room temperature at the cooling rate of ℃ / min.
도 5에서 x축은 시간을 나타내고, 좌측의 y축은 선형수축률(Linear shrinkage, △L/L, %)을 나타내며, 우측의 y축은 온도를 나타낸다. 도 5의 (a)는 시간에 따른 온도의 변화를 나타내며, (b)는 이러한 온도변화에 대응되어 나타나는 소듐-실리케이트 유리의 수축 및 팽창 거동을 나타내는 형상변화곡선을 나타낸다.   In FIG. 5, the x-axis represents time, the y-axis on the left side represents linear shrinkage (ΔL / L,%), and the y-axis on the right side represents temperature. 5 (a) shows a change in temperature with time, (b) shows a shape change curve showing the shrinkage and expansion behavior of sodium-silicate glass corresponding to the temperature change.
도 5에 나타난 형상변화곡선을 참조하면, 온도가 증가됨에 따라 유리의 수축이 발포시점까지 선형적으로 일어나게 되나, 약 600℃ 부근의 발포시점(foaming point)을 기점으로 유지시간이 증가함에 따라 미발포 전구체의 발포가 일어남에 따라 구간 2와 같은 양상으로 부피가 선형적으로 증가되는 구간이 발생된다. 구간 3은 온도의 감소에 따른 유리의 부피변화를 나타내며, 냉각 온도의 감소에 따른 발포유리의 수축 및 냉각 중에 발생하는 균열의 발생 등을 실시간적으로 관찰할 수가 있다. Referring to the shape change curve shown in FIG. 5, as the temperature increases, the shrinkage of the glass occurs linearly until the foaming point, but as the holding time increases from the foaming point around 600 ° C. As foaming of the foaming precursor occurs, a section in which the volume increases linearly in the same manner as section 2 occurs. Section 3 represents the volume change of the glass according to the decrease of the temperature, it is possible to observe in real time the shrinkage of the foam glass and the occurrence of cracks during cooling due to the decrease in the cooling temperature.
이와 같이 본 발명의 실시예를 따르는 발포구간 측정방법에 의하면, 유리의 발포과정에서의 길이변화 또는 부피변화와 같은 형상의 변화를 측정함으로써 유리의 발포구간을 실시간적으로 측정할 수 있다. 따라서 이러한 발포구간 측정방법을 활용할 경우, 여러 가지 발포조건, 예를 들어 온도조건, 승온조건, 유지시간조건에 따른 발포특성을 알 수 있으므로 이러한 발포특성에 대한 데이터를 바탕으로 목적하는 물성을 갖는 발포유리의 제조에 적합한 여러 조건의 최적화를 수행할 수 있게 된다. As described above, according to the foaming section measuring method according to the embodiment of the present invention, the foaming section of the glass may be measured in real time by measuring a change in shape such as a length change or a volume change in the foaming process of the glass. Therefore, when the foaming section measurement method is utilized, the foaming characteristics according to various foaming conditions, for example, temperature conditions, temperature raising conditions, and holding time conditions, can be known. Optimization of various conditions suitable for the production of glass can be carried out.
이하, 실시예를 통하여 본 발명을 구체적으로 설명하지만, 본 발명이 하기의 실시예들에 제한되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples.
실시예 1 ~ 4: 폐유리를 이용한 발포유리의 제조Examples 1 to 4: Preparation of Foam Glass Using Waste Glass
소듐-실리케이트(sodium-silicate)조성 폐유리를 디스크밀을 이용하여 1차 분쇄하였다. 분쇄조건은 3회까지 리사이클링 방법으로 분쇄하였다. 1차 분쇄된 분말(평균 120㎛)을 유성밀을 이용하여 증류수를 용매로 하여 100~400rpm의 속도로 1~72시간 동안 2차 습식분쇄(평균 2㎛) 하였다. Sodium-silicate composition waste glass was first ground using a disk mill. Grinding conditions were pulverized by recycling method up to three times. The primary milled powder (average 120㎛) was subjected to secondary wet milling (average 2㎛) for 1-72 hours at a speed of 100 ~ 400rpm using distilled water as a solvent using planetary mill.
2차 분쇄분말은 오븐을 이용하여 60℃에서 24시간 건조하였다. 건조된 분말은 200메쉬(mesh) 체를 이용하여 체거름을 하였다. 미발포 전구체로서 체거름된 분말을 성형 몰드에 넣어 가압프레스방법으로 성형하여 미발포 전구체를 제조하였다. 상기 미발포 전구체를 전기로를 이용하여 상온에서 700℃까지 승온속도를 1, 5, 10 및 20℃/분으로 변화시키며 승온시킨 후 2시간의 소성 및 발포공정을 거쳐 발포유리를 제조하였다(실시예 1 내지 4). 표 1에는 실시예 1 내지 4의 구체적인 조건이 나타나 있다. The secondary pulverized powder was dried at 60 ° C. for 24 hours using an oven. The dried powder was sieved using a 200 mesh sieve. The powder, which was sieved as a non-foamed precursor, was put into a molding mold and molded by a pressure press method to prepare a non-foamed precursor. After raising the temperature of the unfoamed precursor from room temperature to 700 ° C. using an electric furnace at 1, 5, 10, and 20 ° C./min, the foamed glass was manufactured by firing and foaming for 2 hours (Example) 1 to 4). Table 1 shows the specific conditions of Examples 1-4.
표 1
실시예 1 실시예 2 실시예 3 실시예 4
승온속도(℃/분) 1 5 10 20
소성온도 700℃ 700℃ 700℃ 700℃
소성시간(시간) 2 2 2 2
Table 1
Example 1 Example 2 Example 3 Example 4
Temperature rise rate (℃ / min) One 5 10 20
Firing temperature 700 700 700 700 ℃
Firing time (hours) 2 2 2 2
도 2a 내지 2d는 각각 본 발명의 실시예 1 내지 4에 따라 제조되는 발포유리의 미세구조를 전자현미경으로 관찰한 결과가 나타나 있다. 도 2a 내지 2d를 참조하면, 제조된 발포유리는 균일하게 형성된 기공이 분포되어 있음을 알 수 있으며, 승온속도 증가에 따라 기공의 평균 크기가 증대하는 것을 관찰할 수가 있다. 또한 그 외관을 관찰한 결과 우수한 심미성을 나타내었으며, 예시적으로 도 3에는 실시예 2의 발포유리의 외관을 관찰한 결과가 나타나 있다.2A to 2D show the results of observing the microstructure of the foamed glass prepared according to Examples 1 to 4 of the present invention, respectively, with an electron microscope. Referring to Figure 2a to 2d, it can be seen that the produced foam glass is uniformly formed pores are distributed, the average size of the pores increases with increasing the temperature increase rate. In addition, the result of observing the appearance showed excellent aesthetics, for example, Figure 3 shows the result of observing the appearance of the foam glass of Example 2.
실시예 5 ~ 8: 폐유리를 이용한 심미성을 가지는 발포유리의 제조Examples 5 to 8: Preparation of foamed glass having aesthetics using waste glass
실시예 5 내지 8은 실시예 1 내지 4의 발포유리에 소정의 색상을 착색한 컬러 발포유리에 대한 것이다. 구체적으로 실시예 1 내지 4와 같은 방식으로 소듐-실리케이트(sodium-silicate)조성 폐유리를 디스크밀을 이용하여 1차 분쇄하였다. 1차 분쇄된 분말(평균 120㎛)에 착색제로서 코발트산화물(Co3O4) 또는 망간산화물(MnO3)을 1 또는 2중량% 첨가한 후 증류수를 용매로 하여 유성밀에서 200rpm의 속도로 8시간 동안 2차 습식분쇄(평균 2㎛) 하였다. Examples 5 to 8 relate to color foamed glass in which a predetermined color is colored on the foamed glass of Examples 1 to 4. Specifically, in the same manner as in Examples 1 to 4, the sodium-silicate composition waste glass was first pulverized using a disk mill. 1 or 2% by weight of cobalt oxide (Co 3 O 4 ) or manganese oxide (MnO 3 ) was added to the first pulverized powder (average 120 μm) as a colorant, followed by distilled water as a solvent. Secondary wet grinding (average 2 μm) was performed for a time.
2차 분쇄된 분말은 오븐을 이용하여 60℃에서 24시간 건조하였다. 건조된 분말은 200메쉬(mesh) 체를 이용하여 체거름을 하였다. 체거름된 분말을 성형 몰드에 넣어 가압프레스방법으로 성형하여 미발포 전구체를 제조하였다. 상기 미발포 전구체를 전기로를 이용하여 승온속도 분당 5℃조건하에서 700℃에서 2시간의 소성 및 발포공정을 거쳐 여러 색상을 가지는 발포유리를 제조하였다. 표 2에는 실시예 5 내지 8의 구체적인 조건 및 발포유리의 색상이 나타나 있다. The secondary milled powder was dried at 60 ° C. for 24 hours using an oven. The dried powder was sieved using a 200 mesh sieve. The sieved powder was put in a molding mold and molded by a pressure press method to prepare an unfoamed precursor. The non-foamed precursor was used to prepare a foamed glass having various colors through a firing and foaming process at 700 ° C. for 2 hours at a temperature increase rate of 5 ° C. per minute. Table 2 shows the specific conditions of Examples 5 to 8 and the color of the foamed glass.
표 2
실시예 5 실시예 6 실시예 7 실시예 8
첨가성분 Co3O4 Co3O4 MnO3 MnO3
조성(중량%) 1 2 1 2
소성온도 700℃ 700℃ 700℃ 700℃
소성시간(시간) 2 2 2 2
색상 회색 진한청색 군청색 연보라
TABLE 2
Example 5 Example 6 Example 7 Example 8
Ingredient Co 3 O 4 Co 3 O 4 MnO 3 MnO 3
Composition (% by weight) One 2 One 2
Firing temperature 700 700 700 700 ℃
Firing time (hours) 2 2 2 2
color grey Dark blue Ultramarine Blue Mauve
도 4에는 좌상, 우상, 좌하 및 우하의 순서로 각각 본 발명의 실시예 5 내지 8에 따라 제조된 발포유리의 색상을 관찰한 결과가 나타나 있다.Figure 4 shows the results of observing the color of the foamed glass prepared according to Examples 5 to 8 of the present invention in the order of the upper left, upper right, lower left and lower right, respectively.
도 4의 좌상 및 우상을 참조하면, 코발트산화물(Co3O4)이 1중량% 첨가된 경우 회색과 297㎏/㎥의 밀도를 나타내었으나, 코발트산화물의 함량이 2중량%로 증가함에 따라 발포유리의 색은 매우 우수한 심미성 가지는 밝은 청색계통을 나타내었으며, 밀도는 476㎏/㎥로 증가하였다 이는 코발트산화물(Co3O4)의 첨가량에 따라 유리의 발포특성이 달라지기 때문으로 사료된다. Referring to the upper left and the upper right of FIG. 4, when 1 wt% of cobalt oxide (Co 3 O 4 ) is added, the density is gray and 297 kg / m 3, but as the content of cobalt oxide increases to 2 wt%, foaming is performed. The color of the glass showed a bright blue color with very good aesthetics and the density increased to 476㎏ / ㎥. This is because the foaming properties of the glass depend on the amount of cobalt oxide (Co 3 O 4 ) added.
한편, 도 4의 좌하 및 우하를 참조하면, 망간산화물(MnO3)이 1중량% 첨가된 경우 군청색을 나타내며 밀도는 202㎏/㎥을 나타내었으나, 2중량% 첨가된 경우 연보라색을 나타내었으며 밀도는 306㎏/㎥이었다.Meanwhile, referring to the lower left and lower right of FIG. 4, Manganese Oxide (MnO3) Was added 1% by weight, the color was dark blue, and the density was 202 kg / m 3, but the addition of 2% by weight was light purple and the density was 306 kg / m 3.
이로부터 발포유리의 색상과 밀도를 모두 고려하여 착색제의 첨가량을 적절하게 조절함으로써 목적하는 색상 및 밀도를 가지는 발포유리를 제조할 수 있음을 알 수 있다. From this, it can be seen that the foamed glass having the desired color and density can be produced by appropriately adjusting the amount of the coloring agent in consideration of both the color and the density of the foamed glass.
실시예 9 ~ 12 : 팽창계수 측정 장비를 이용한 유리의 발포구간 예측Examples 9 to 12 prediction of the foam section of the glass using the coefficient of expansion measurement equipment
소듐-실리케이트(sodium-silicate)조성 유리를 이용하여 발포유리 구간예측이 가능하도록 분말의 체거름 및 성형몰드를 이용한 성형을 통하여 미발포 전구체를 제조하였다. 제조된 미발포 전구체를 팽창계수 측정장비 내에 장입하고 25cN의 하중을 인가하면서 표 3에 나타낸 것과 같이 승온속도를 1, 5, 10, 20℃/분 으로 변화시키면서 발포유리의 거동을 실시간적으로 관찰하였다(실시예 9 내지 12).An unfoamed precursor was prepared by forming a sieve of powder and molding using a molding mold to enable foam glass section prediction using a sodium-silicate composition glass. The prepared unfoamed precursor was charged into an expansion coefficient measuring instrument and a 25cN load was applied to observe the behavior of the foamed glass in real time while changing the temperature increase rate to 1, 5, 10, 20 ° C / min as shown in Table 3. (Examples 9-12).
표 3
실시예 9 실시예 10 실시예 11 실시예 12
승온속도(℃/분) 1 5 10 20
하중변화(cN) 25 25 25 25
냉각속도(℃/분) - - - -
유지시간(min) - - - -
TABLE 3
Example 9 Example 10 Example 11 Example 12
Temperature rise rate (℃ / min) One 5 10 20
Load change (cN) 25 25 25 25
Cooling rate (℃ / min) - - - -
Holding time (min) - - - -
도 6에는 승온속도를 분당 1, 5, 10, 20℃로 변화할 때의 미발포 전구체의 수축 및 팽창 거동을 나타내는 형상변화곡선이 도시되어 있다. 도 6을 참조하면, 온도가 증가되면 미발포 전구체는 선형적으로 수축되나 일정온도, 즉 발포개시온도를 기점으로 발포에 의해 형성된 기포로 인하여 부피가 다시 선형적으로 팽창됨을 알 수 있다. 이때 승온속도가 증가함에 따라 미발포 전구체의 발포개시온도는 증가하는 경향을 보임을 확인할 수 있다. FIG. 6 shows a shape change curve showing the shrinkage and expansion behavior of the unfoamed precursor when the temperature increase rate is changed to 1, 5, 10, and 20 ° C. per minute. Referring to FIG. 6, it can be seen that when the temperature is increased, the unfoamed precursor contracts linearly but the volume expands linearly again due to bubbles formed by foaming at a predetermined temperature, that is, the foaming start temperature. At this time, it can be seen that the foaming start temperature of the unfoamed precursor increases as the temperature increase rate increases.
도 7은 그 중 승온속도가 5℃/분 일 경우에 온도에 따른 형상변화곡선을 따로 도시한 것으로서, 발포개시온도가 693℃임이 나타나 있다. FIG. 7 shows a shape change curve according to temperature when the temperature increase rate is 5 ° C./minute, and shows that the foaming start temperature is 693 ° C. FIG.
도 8a, 8b 및 8c에는 도 7에 도시된 673℃, 693℃ 및 713℃에서의 발포유리의 미세구조가 나타나 있다. 8A, 8B and 8C show the microstructure of foamed glass at 673 ° C, 693 ° C and 713 ° C shown in FIG.
발포개시온도 보다 낮은 온도(도 8a)에서는 기공이 관찰되지 않으나, 발포개시온도(도 8b)에서는 기공이 관찰되며, 발포개시온도 보다 높은 온도(도 8c)에서는 활발한 발포현상으로 인하여 상대적으로 조대하게 생성된 기공이 관찰됨을 알 수 있다.  Porosity is not observed at a temperature lower than the foaming start temperature (FIG. 8A), but pores are observed at the foaming start temperature (FIG. 8B) and relatively coarse due to active foaming at a temperature higher than the foaming start temperature (FIG. 8C). It can be seen that the generated pores are observed.
이러한 결과로부터 발포유리 제조에 있어서 발포거동곡선을 이용하여 발포조건을 제어 설정함으로써 최적의 물성을 가지는 발포유리를 제조할 수 있다는 것을 확인할 수 있다. From these results, it can be confirmed that the foamed glass having optimum physical properties can be produced by controlling the foaming conditions by using the foaming behavior curve in the foamed glass production.
발명의 특정 실시예들에 대한 이상의 설명은 예시 및 설명을 목적으로 제공되었다. 따라서 본 발명은 상기 실시예들에 한정되지 않으며, 본 발명의 기술적 사상 내에서 해당 분야에서 통상의 지식을 가진 자에 의하여 상기 실시예들을 조합하여 실시하는 등 여러 가지 많은 수정 및 변경이 가능함은 명백하다.The foregoing description of specific embodiments of the invention has been presented for purposes of illustration and description. Therefore, the present invention is not limited to the above embodiments, and various modifications and changes can be made by those skilled in the art within the technical spirit of the present invention in combination with the above embodiments. Do.

Claims (14)

  1. 소듐-실리케이트 또는 보로알루미노-실리케이트조성의 폐유리 분말을 발포형성제 첨가 없이 성형몰드에서 가압하여 성형체를 제조하는 단계; 및 Pressurizing the waste glass powder of sodium-silicate or boroalumino-silicate composition in a molding mold without adding a foaming agent to prepare a molded body; And
    상기 성형체를 600 내지 1000℃ 온도범위에서 소성 및 발포시키는 단계를 포함하며, Firing and foaming the molded body in the temperature range of 600 to 1000 ℃,
    상기 폐유리 분말의 제조방법은, The manufacturing method of the waste glass powder,
    소듐-실리케이트 또는 보로알루미노-실리케이트조성 폐유리를 습식분쇄공정으로 분쇄하는 단계를 포함하는, 폐유리를 이용한 발포유리 제조방법. Sodium-silicate or boroalumino-silicate composition comprising the step of grinding the waste glass by the wet grinding process, foamed glass manufacturing method using waste glass.
  2. 제1항에 있어서, 상기 습식분쇄공정의 용매로는 물, 에틸 알코올, 메틸 알코올 및 아세톤으로 이루어지는 군으로부터 선택되는 적어도 하나 이상을 이용하는, 폐유리를 이용한 발포유리 제조방법. The foamed glass production method according to claim 1, wherein at least one selected from the group consisting of water, ethyl alcohol, methyl alcohol, and acetone is used as the solvent of the wet grinding process.
  3. 제1항에 있어서, 상기 습식분쇄공정으로 분쇄하는 단계 전에 상기 소듐-실리케이트 또는 보로알루미노-실리케이트조성 폐유리를 건식분쇄하는 단계를 더 포함하는, 폐유리를 이용한 발포유리 제조방법. The method of claim 1, further comprising the step of dry grinding the sodium-silicate or boroalumino-silicate composition waste glass before the grinding step by the wet grinding process.
  4. 제1항에 있어서, 상기 폐유리 분말의 크기는 1 내지 10㎛ 범위에 있는, 폐유리를 이용한 발포유리 제조방법.The method of claim 1, wherein the size of the waste glass powder is in the range of 1 to 10㎛, foamed glass manufacturing method using waste glass.
  5. 제1항에 있어서, 상기 폐유리 분말은 착색제로서 금속산화물이 첨가된 것인, 폐유리를 이용한 발포유리 제조방법.The method of claim 1, wherein the waste glass powder is a metal oxide is added as a colorant, foamed glass manufacturing method using waste glass.
  6. 제5항에 있어서, 상기 금속산화물은 코발트산화물(Co3O4) 또는 망간산화물(MnO3) 중 어느 하나 이상인, 폐유리를 이용한 발포유리 제조방법.The method of claim 5, wherein the metal oxide is any one or more of cobalt oxide (Co 3 O 4 ) or manganese oxide (MnO 3 ).
  7. 제6항에 있어서, 상기 금속산화물은 상기 소성 및 발포단계 전에 상기 폐유리 분말에 첨가되는, 폐유리를 이용한 발포유리 제조방법.The method of claim 6, wherein the metal oxide is added to the waste glass powder before the firing and foaming step.
  8. 제7항에 있어서, 상기 금속산화물은 상기 습식분쇄공정으로 분쇄하는 단계 전에 첨가되는, 폐유리를 이용한 발포유리 제조방법.The method of claim 7, wherein the metal oxide is added before the grinding of the wet grinding process.
  9. 팽창계수 측정장비로 측정한 미발포 전구체의 온도에 따른 형상변화곡선을 이용하여 상기 미발포 전구체의 발포구간을 예측하는, 유리의 발포구간 예측방법. A method of predicting the foaming section of the glass to predict the foaming section of the unfoamed precursor by using a shape change curve according to the temperature of the unfoamed precursor measured by the expansion coefficient measuring equipment.
  10. 제9항에 있어서, 상기 온도에 따른 형상변화곡선은 The shape change curve according to claim 9, wherein
    팽창계수 측정장비에 미발포 전구체를 장입하는 단계; 및Charging an unfoamed precursor to an expansion coefficient measuring device; And
    상기 미발포 전구체를 상기 미발포 전구체의 발포개시온도 이상까지 승온시키면서 상기 미발포 전구체의 길이변화 또는 부피변화를 측정하여 단계;Measuring the change in length or volume of the unfoamed precursor while raising the unfoamed precursor to a temperature above the foam start temperature of the unfoamed precursor;
    를 통해 획득되는, 유리의 발포구간 예측방법. Obtained through, foam section prediction method of the glass.
  11. 제9항에 있어서, 상기 형상변화곡선은 수직 하중 또는 미는 힘이 200cN 이하인 조건에서 획득되는, 유리의 발포구간 예측방법.10. The method of claim 9, wherein the shape change curve is obtained under a condition that the vertical load or the pushing force is 200 cN or less.
  12. 제9항에 있어서, 상기 형상변화곡선은 측정온도구간, 승온속도, 냉각속도 또는 온도유지시간 중 어느 하나 이상을 변화시키면서 획득한 것인, 유리의 발포구간 예측방법.The method of claim 9, wherein the shape change curve is obtained by changing any one or more of a measurement temperature section, a heating rate, a cooling rate, or a temperature holding time.
  13. 제11항에 있어서, 상기 측정온도구간은 상온 내지 1400℃, 상기 승온속도는 0.1 ~ 50℃/분, 상기 냉각속도는 0.1 ~ 50℃/분, 상기 유지시간은 24시간 이하의 범위에서 변화시키는, 유리의 발포구간 예측방법.The method of claim 11, wherein the measurement temperature range is from room temperature to 1400 ℃, the temperature increase rate is 0.1 to 50 ℃ / min, the cooling rate is 0.1 to 50 ℃ / min, the holding time is changed in the range of 24 hours or less , Prediction method of foam section of glass.
  14. 제9항에 있어서, 상기 미발포 전구체는 분말형태 또는 일정한 형태를 가지는 벌크형태인, 유리의 발포구간 예측방법. The method of claim 9, wherein the unfoamed precursor is in the form of a powder or a bulk having a predetermined form.
PCT/KR2011/008918 2011-11-22 2011-11-22 Preparation method of foam glass using waste glass, and prediction method of foaming range of glass using dilatometer WO2013077477A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180076280.9A CN104066692B (en) 2011-11-22 2011-11-22 Use the method for cullet manufacture foam glass and the method for the foaming scope using dilatometer prediction glass
KR1020147010824A KR101587568B1 (en) 2011-11-22 2011-11-22 Preparation method of foam glass using waste glass
PCT/KR2011/008918 WO2013077477A1 (en) 2011-11-22 2011-11-22 Preparation method of foam glass using waste glass, and prediction method of foaming range of glass using dilatometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/008918 WO2013077477A1 (en) 2011-11-22 2011-11-22 Preparation method of foam glass using waste glass, and prediction method of foaming range of glass using dilatometer

Publications (1)

Publication Number Publication Date
WO2013077477A1 true WO2013077477A1 (en) 2013-05-30

Family

ID=48469898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008918 WO2013077477A1 (en) 2011-11-22 2011-11-22 Preparation method of foam glass using waste glass, and prediction method of foaming range of glass using dilatometer

Country Status (3)

Country Link
KR (1) KR101587568B1 (en)
CN (1) CN104066692B (en)
WO (1) WO2013077477A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105198193A (en) * 2015-09-30 2015-12-30 江苏耀兴安全玻璃有限公司 Preparation method of foam glass insulation plate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170091053A (en) * 2016-01-29 2017-08-08 단국대학교 산학협력단 Process For Manufacturing Sound-absorbing Insulation Foam With The Recycling Of Waste Borosilicate Glass And The Sound-absorbing Insulation Foam Made By The Process
CN107417099A (en) * 2016-05-24 2017-12-01 胡斯友 A kind of preparation method of high-performance environment-friendly pumice
CN110668700B (en) * 2019-11-12 2021-09-03 上海超高环保科技股份有限公司 Manufacturing method of high-temperature-resistant sintered filter plate by using waste glass
CN114436536A (en) * 2020-11-02 2022-05-06 毛闻达 Spodumene microcrystalline foam glass and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010061337A (en) * 1999-12-28 2001-07-07 이철태 Method for manufacturing lightweight heat insulating forming glass by direct forming
KR20050038947A (en) * 2003-10-23 2005-04-29 한국원자력연구소 Composition for foam glass and method for preparing foam glass precusor using them
KR20110128541A (en) * 2010-05-24 2011-11-30 강릉원주대학교산학협력단 Method for manufacturing foamed glass from waste glass

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6914656A (en) * 1968-11-14 1970-05-19
AU477460B2 (en) * 1972-03-10 1973-09-13 Guang Motor Company Pty. Limited Energy conversion device
US5830189A (en) * 1995-06-07 1998-11-03 Johnson & Johnson Medical, Inc. Catheter hub to nose engagement
KR20060025097A (en) * 2004-09-15 2006-03-20 와이앤드비소재테크(주) Recovery of wasted lcd trim glass
CN2864635Y (en) * 2006-01-10 2007-01-31 陕西科技大学 Foaming temperature measuring device for foam glass
JP4162704B2 (en) * 2008-01-17 2008-10-08 日本建設技術株式会社 Foamed glass and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010061337A (en) * 1999-12-28 2001-07-07 이철태 Method for manufacturing lightweight heat insulating forming glass by direct forming
KR20050038947A (en) * 2003-10-23 2005-04-29 한국원자력연구소 Composition for foam glass and method for preparing foam glass precusor using them
KR20110128541A (en) * 2010-05-24 2011-11-30 강릉원주대학교산학협력단 Method for manufacturing foamed glass from waste glass

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIM, DONG GYU ET AL., JOURNAL OF KOREAN CERAMICS SOCIETY, vol. 46, no. 3, 2009, pages 275 - 281 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105198193A (en) * 2015-09-30 2015-12-30 江苏耀兴安全玻璃有限公司 Preparation method of foam glass insulation plate

Also Published As

Publication number Publication date
KR101587568B1 (en) 2016-01-21
CN104066692B (en) 2018-01-12
KR20140082722A (en) 2014-07-02
CN104066692A (en) 2014-09-24

Similar Documents

Publication Publication Date Title
WO2013077477A1 (en) Preparation method of foam glass using waste glass, and prediction method of foaming range of glass using dilatometer
Qu et al. Lightweight and high-strength glass foams prepared by a novel green spheres hollowing technique
KR101582710B1 (en) Production method for the colorful foamed glass block and the colorful foamed glass block by the method
Francis et al. Processing, structures and compressive properties of porous glass-ceramic composites prepared from secondary by-product materials
Liao et al. Glass foam from the mixture of reservoir sediment and Na2CO3
WO2016105159A1 (en) Lightweight sound-absorbing refractory thermal insulating material using expanded graphite and swellable clay, and method for manufacturing same
Reddy et al. Study of calcium–magnesium–aluminum–silicate (CMAS) glass and glass-ceramic sealant for solid oxide fuel cells
CN100528799C (en) Super-white polished brick
Ercenk The effect of clay on foaming and mechanical properties of glass foam insulating material
CN106542843A (en) A kind of method that utilization solid waste prepares light heat-insulation wall material
WO2017043850A1 (en) Granular type foamed glass, method for forming foamed glass coating layer, and non-flammable heat insulator using same
Goltsman et al. Production of foam glass materials from silicate raw materials by hydrate mechanism
KR101758634B1 (en) COMPOSITION AND MANUFACTURING METHOD OF POROUS CERAMIC INSULATED AND INTERIOR COMPOSITION USING Waste Glass
CN100376503C (en) Technology of sintering waste glass for preparing fluoro mica glass ceramic
Goel et al. Crystallization behaviour, structure and properties of sintered glasses in the diopside–Ca-Tschermak system
CN109160741A (en) A kind of direct sintering coal ash for manufacturing for devitrified glass method
WO2014058204A1 (en) Method for manufacturing foamed glass by using waste glass and foamed glass manufactured thereby
Zilli et al. Production and characterization of ceramic foams from industrial solid waste
Oberžan et al. High-alumina porcelain with the addition of a Li2O-bearing fluxing agent
KR20130067712A (en) Flame retardant insulation material comprising recycled resource having microporous structure and method for preparing the same
CN112209735A (en) Method for manufacturing high-strength foamed ceramic
CN102344251A (en) Preparation method for lepidolite glass ceramic
KR100999782B1 (en) Fabrication method of high-performance clay bricks and clay floor bricks using broken glass
Shahsavari et al. High Strength Pyroxene-Based Glass-Ceramic Foams in the Presence of Fe²O³.
Kansal et al. Effect of some rare-earth oxides on structure, devitrification and properties of diopside based glasses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876107

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147010824

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876107

Country of ref document: EP

Kind code of ref document: A1