WO2013076844A1 - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
WO2013076844A1
WO2013076844A1 PCT/JP2011/077068 JP2011077068W WO2013076844A1 WO 2013076844 A1 WO2013076844 A1 WO 2013076844A1 JP 2011077068 W JP2011077068 W JP 2011077068W WO 2013076844 A1 WO2013076844 A1 WO 2013076844A1
Authority
WO
WIPO (PCT)
Prior art keywords
bar portion
bar
movable
actuator
torsion
Prior art date
Application number
PCT/JP2011/077068
Other languages
French (fr)
Japanese (ja)
Inventor
健二郎 藤本
山村 雄一
Original Assignee
パイオニア株式会社
パイオニア・マイクロ・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, パイオニア・マイクロ・テクノロジー株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2011/077068 priority Critical patent/WO2013076844A1/en
Publication of WO2013076844A1 publication Critical patent/WO2013076844A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0067Mechanical properties
    • B81B3/0072For controlling internal stress or strain in moving or flexible elements, e.g. stress compensating layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/085Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/042Micromirrors, not used as optical switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0145Flexible holders
    • B81B2203/0154Torsion bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/07Interconnects

Definitions

  • the present invention relates to a technical field of an actuator such as a MEMS scanner that drives a movable part provided with, for example, a mirror.
  • MEMS Micro Electro Mechanical System
  • a MEMS scanner used for scanning a laser beam is known.
  • Such a MEMS scanner includes a movable plate, a frame-shaped support frame that surrounds the movable plate, and a torsion bar that pivotally supports the movable plate so as to be swingable with respect to the support frame.
  • a mirror is formed at the center of the surface of the movable plate, and a driving coil is formed around the mirror.
  • a pair of permanent magnets for generating a static magnetic field for the drive coil is disposed on the support frame.
  • an electromagnetic driving force (Lorentz force) is generated in the driving coil by supplying a control current to the driving coil. Accordingly, the movable plate on which the driving coil is formed is moved.
  • Patent Documents 1 to 5 are given as examples.
  • a driving control current is generally supplied to a driving coil formed on the movable plate from a power source formed outside the movable plate via a wiring formed on the torsion bar.
  • a driving control current is generally supplied to a driving coil formed on the movable plate from a power source formed outside the movable plate via a wiring formed on the torsion bar.
  • the movable plate (or any movable part) is not limited to the MEMS scanner that swings the movable plate (or any movable part) so as to rotate. The same can occur for a MSMS actuator that is swung.
  • the technical problem described above is connected not only to the wiring formed on the torsion bar so as to be connected to the drive coil formed on the movable plate, but also to an arbitrary processing circuit formed on the movable plate. The same may occur for the wiring formed on the torsion bar.
  • the present invention has been made in view of, for example, the conventional problems described above.
  • the movable portion supported by the torsion bar can be swung while suitably preventing disconnection of the wiring formed on the torsion bar. It is an object to provide an actuator.
  • the actuator includes a movable part, a support part surrounding the movable part, a torsion bar that connects the movable part and the support part so that the movable part can swing, And a processing circuit that performs a process related to the swinging of the movable part, and the torsion bar includes: (i) a first bar portion in which wiring connected to the processing circuit is formed; (Ii) a second bar portion in which the wiring is not formed, and the maximum value of stress applied to the first bar portion when the movable portion swings is the maximum value when the movable portion swings. It is smaller than the maximum value of stress applied to the 2 bar portion.
  • the actuator of the present embodiment is formed in the movable part, a support part surrounding the movable part, a torsion bar connecting the movable part and the support part so that the movable part can swing, and the movable part.
  • a processing circuit that performs processing related to the swinging of the movable part, and the torsion bar includes: (i) a first bar portion in which wiring connected to the processing circuit is formed; and (ii) A second bar portion on which the wiring is not formed, and a maximum value of stress applied to the first bar portion when the movable portion swings is the second bar portion when the movable portion swings. It is smaller than the maximum value of applied stress.
  • the movable part suspended by the torsion bar swings.
  • the movable portion may be swung so as to rotate about the direction in which the torsion bar extends as a central axis, or along the direction in which the torsion bar extends or in the direction intersecting with the direction in which the torsion bar extends. You may swing to move along.
  • the torsion bar may directly connect the movable part and the support part.
  • the torsion bar may indirectly connect the movable part and the support part (in other words, with an arbitrary member interposed therebetween).
  • a processing circuit is formed in the movable part.
  • the processing circuit may be formed on the surface of the movable part, or may be formed so as to be embedded in the movable part.
  • the processing circuit is, for example, a circuit that performs an arbitrary process related to the swinging of the movable part.
  • a processing circuit for example, a drive coil for generating a Lorentz force for swinging the movable part, a detection circuit for detecting a swinging mode (for example, inclination, swing amount, etc.) of the movable part, etc.
  • the processing circuit is supplied with a control current or a control signal related to the swaying of the movable part from a power source or a signal source provided in the actuator or prepared outside the actuator via a wiring described later.
  • the torsion bar includes a first bar portion and a second bar portion.
  • the first bar portion is a bar portion in which the maximum value of stress applied when the movable portion swings (for example, when the movable portion swings by a predetermined amount) becomes relatively small.
  • the maximum value of the stress applied to the first bar portion when the movable portion swings (for example, when the movable portion swings by a predetermined amount) is greater than the maximum stress applied to the second bar portion. This is the smaller bar part.
  • the first bar portion is a bar portion where wiring is formed.
  • the second bar portion is a bar portion in which the maximum value of stress applied when the movable portion swings (for example, when the movable portion swings by a predetermined amount) becomes relatively small.
  • the maximum value of stress applied when the movable portion swings (for example, when the movable portion swings by a predetermined amount) is greater than the maximum value of stress applied to the first bar portion.
  • This is the bar part that grows.
  • the second bar portion is a bar portion where no wiring is formed.
  • first bar portion and the second bar portion have a single torsion bar with or without the wiring described above and the maximum value of stress applied when the movable portion is swung (or with respect to the swing of the movable portion, which will be described later). It is preferable to have a shape, structure, or arrangement position that can be distinguished from the viewpoint of contribution, total length, width, thickness, and the like. However, the first bar portion and the second bar portion have a single torsion bar with or without the wiring described above and the maximum value of stress applied when the movable portion is swung (or with respect to the swing of the movable portion, which will be described later).
  • first bar portion and the second bar portion may be physically separated from each other, or may be partially overlapped (for example, integrated as described later). May be)
  • the torsion bar may further include a bar portion other than the first bar portion and the second bar portion.
  • the third bar portion where the maximum value of the stress applied when the movable part swings is relatively small (for example, smaller than the maximum value of the stress applied to the first bar portion) and no wiring is formed.
  • Even an actuator including such a third bar portion or a fourth bar portion is included in the scope of the actuator of the present embodiment as long as it includes the first bar portion and the second bar portion. it is obvious.
  • the movable part when the movable part swings, not only the first bar part where the wiring is formed but also the second bar part where the wiring is not formed also has the movable part.
  • the torsion bar bends or twists so as to swing.
  • the second bar portion when the movable portion swings, it is preferable that the second bar portion mainly defines the bending or twisting operation of the torsion bar, but the first bar portion mainly controls the bending or twisting operation of the torsion bar.
  • both the first bar portion and the second bar portion may equally regulate the torsion bar bending or twisting motion.
  • the stress applied to the second bar portion due to bending or twisting of the torsion bar becomes relatively large.
  • the torsion bar is not distinguished (in other words, separated) into the first bar portion and the second bar portion (that is, wiring is performed on one torsion bar). And the one torsion bar defines the torsion bar bending or twisting action), the wire is relatively less likely to break due to torsion bar bending or twisting.
  • the torsion bar is not distinguished from the first bar portion and the second bar portion (that is, the wiring is formed on one torsion bar and the one torsion bar defines the bending or twisting operation of the torsion bar.
  • the wiring formed in the first bar portion is relatively less likely to break due to bending or twisting of the torsion bar.
  • the actuator of this embodiment it is possible to move the movable part supported by the torsion bar while suitably preventing disconnection of the wiring formed on the torsion bar.
  • a countermeasure for preventing the disconnection of the wiring by devising the material of the wiring or the like for example, forming the wiring using a material having a high resistance to disconnection
  • the material of the wiring is restricted, it may lead to restrictions on the design of the actuator including the wiring.
  • disconnection of the wiring can be prevented without restricting the material of the wiring.
  • a countermeasure for suppressing the stress applied to the wiring formed on the torsion bar by increasing the entire length of the torsion bar without distinguishing between the first bar portion and the second bar portion can be considered.
  • the entire length of the torsion bar is simply increased in order to give priority to the suppression of stress applied to the wiring, there is a possibility that the swinging of the movable part, which is the original function of the torsion bar, may be restricted.
  • the swinging of the movable portion which is the original function of the torsion bar, is suppressed while suppressing the stress applied to the wiring. Is hardly affected.
  • the total length of the first bar portion is longer than the total length of the second bar portion.
  • the maximum value of the stress applied to the first bar portion can be relatively reduced by relatively increasing the overall length of the first bar portion.
  • the maximum value of the stress applied to the second bar portion can be relatively increased by relatively shortening the overall length of the second bar portion. That is, by making the total length of the first bar portion longer than the total length of the second bar portion, the maximum value of stress applied to the first bar portion can be made smaller than the maximum value of stress applied to the second bar portion.
  • the first bar portion extends in the direction in which the torsion bar extends from the support portion toward the movable portion. You may comprise so that it may have the shape bent at least once in the direction which crosses.
  • the full length of a 1st bar part is made comparatively long (that is, rather than the full length of a 2nd bar part). Can be longer).
  • the shape where the shape of the first bar portion is bent means, for example, that the first bar portion is once directed in a different direction with respect to the direction in which the torsion bar extends from the support portion toward the movable portion.
  • Examples include a shape that expands so as to return to the original direction after expansion, a shape that expands while the first bar portion meanders, a shape that expands while the first bar portion is bent in a zigzag shape, and the like.
  • the second bar portion has a shape that is not bent in a direction intersecting with a direction in which the torsion bar extends so as to go from the support portion to the movable portion.
  • the second bar portion has a shape that passes through the shortest path from the support portion toward the movable portion (or from the connection point between the support portion and the torsion bar to the connection point between the movable portion and the torsion bar). You may do it.
  • the second bar portion may have a shape that is bent in a direction intersecting with a direction in which the torsion bar extends so as to go from the support portion to the movable portion.
  • the second bar portion has a shape that does not pass through the shortest path from the support portion toward the movable portion (or from the connection point between the support portion and the torsion bar to the connection point between the movable portion and the torsion bar). You may have.
  • the first bar portion extends in the direction in which the torsion bar extends from the support portion toward the movable portion. May be configured to have a shape that is folded at least once in the opposite direction.
  • the full length of the 1st bar part is made relatively long (that is, from the full length of the 2nd bar part) Can also be long).
  • the shape of the first bar portion being folded back means, for example, that the first bar portion extending in the direction in which the torsion bar extends from the support portion toward the movable portion is
  • An example is a shape that is bent (that is, folded) at an angle of 90 degrees or more with respect to the direction.
  • the second bar portion preferably has a shape that is not folded back in the direction opposite to the direction in which the torsion bar extends so as to go from the support portion to the movable portion.
  • the second bar portion has a shape that passes through the shortest path from the support portion toward the movable portion (or from the connection point between the support portion and the torsion bar to the connection point between the movable portion and the torsion bar). You may do it.
  • the second bar portion may have a shape folded back in a direction opposite to the direction in which the torsion bar extends so as to go from the support portion to the movable portion.
  • the second bar portion has a shape that does not pass through the shortest path from the support portion toward the movable portion (or from the connection point between the support portion and the torsion bar to the connection point between the movable portion and the torsion bar). You may have.
  • the movable portion swings so as to rotate along a predetermined rotation axis, At least a part of the second bar portion is formed to extend in a direction different from the direction along the rotation axis, and the second bar portion is formed to extend in a direction along the rotation axis. May be.
  • the total length of the first bar portions can be made relatively long.
  • the first bar portion is thinner than the second bar portion.
  • the maximum value of the stress applied to the first bar portion can be relatively reduced by relatively reducing the thickness of the first bar portion.
  • the maximum value of the stress applied to the second bar portion can be relatively increased by relatively increasing the thickness of the second bar portion. That is, the maximum value of the stress applied to the first bar portion can be made smaller than the maximum value of the stress applied to the second bar portion by making the thickness of the first bar portion thinner than the thickness of the second bar portion. it can.
  • the contribution of the second bar part to the swing of the movable part is greater than the contribution of the first bar part to the swing of the movable part.
  • the second bar portion mainly defines the swinging aspect of the movable part. That is, the influence of the first bar portion on the swinging mode of the movable portion is smaller than the influence of the second bar portion.
  • the second bar portion mainly defines the bending or twisting motion of the torsion bar. That is, the influence of the first bar portion on the bending or twisting operation of the torsion bar is smaller than the influence of the second bar portion.
  • the “contribution to the swinging of the moving part” is the degree (or percentage) that defines the bending or twisting operation of the torsion bar. ).
  • the width of the first bar portion in the direction in which the first bar portion extends is greater than the width of the second bar portion in the direction in which the second bar portion extends.
  • the second bar portion since the wiring is formed, the second bar portion does not have such a restriction with respect to the first bar portion, which has a restriction that the predetermined width determined by the width of the wiring cannot be supplemented. .
  • the second bar portion can have an ideal thin rod-like shape as a so-called torsion bar, and as a result, it is possible to mainly define the mode of swinging of the movable portion.
  • the second bar portion can mainly define the bending or twisting motion of the torsion bar.
  • a relatively large stress is applied to the second bar portion because it mainly defines the bending or twisting motion of the torsion bar that causes the movable portion to swing.
  • no wiring is formed in the second bar portion, there is a relatively low possibility that the wiring is disconnected due to bending or twisting of the torsion bar.
  • the first bar portion is physically separated from the second bar portion.
  • the disconnection of the wiring can be more suitably prevented.
  • the first bar portion and the second bar portion intersect each other at least once, and at least a part of the first bar portion in the intersecting portion is the first bar portion.
  • the two bar portions are formed integrally with at least a part.
  • the first bar portion and the second bar portion are integrated at least once (in other words, joined), the first bar portion alone is bent or twisted (or resonated). It can prevent suitably. That is, it is possible to suitably prevent a situation in which the swinging mode of the movable part is adversely affected by the bending or twisting (or resonance) of the first bar portion alone.
  • the movable portion swings so as to rotate along a predetermined rotation axis, and the first bar portion is formed at a position different from the rotation axis, The second bar portion is formed on the rotation shaft.
  • the second bar portion is formed on the rotating shaft, it is possible to mainly define the bending or twisting operation of the torsion bar. As a result, the maximum value of stress applied to the second bar portion can be relatively increased.
  • the first bar portion is not formed on the rotation axis, the first bar portion rarely mainly defines the bending or twisting operation of the torsion bar. As a result, the maximum value of stress applied to the first bar portion can be relatively reduced. That is, the maximum value of stress applied to the first bar portion can be made smaller than the maximum value of stress applied to the second bar portion.
  • the torsion bars are a pair of torsion bars extending so as to sandwich the movable part from two opposite sides inside the support part, and the pair of torsion bars At least one includes the first bar portion and the second bar portion.
  • one of the pair of torsion bars sandwiching the movable portion includes both the first bar portion and the second bar portion. That is, in the actuator in which the torsion bars are arranged on both sides of the movable part, both the first bar part and the second bar part are arranged on one side of the movable part.
  • the movable portion swings so as to rotate along a predetermined rotation axis, and at least one of the first bar portion and the second bar portion is the rotation shaft.
  • the swinging of the movable part (that is, rotation along the rotation axis) is performed relatively smoothly. Therefore, the torsion bar can be distinguished from the first bar portion and the second bar portion without greatly affecting the normal swing of the movable portion.
  • the movable portion, the support portion, the torsion bar, and the drive coil are provided, and the torsion bar is formed with the first bar portion where the wiring is formed and the wiring.
  • the maximum value of the stress applied to the first bar portion is smaller than the maximum value of the stress applied to the second bar portion. Therefore, it is possible to move the movable part supported by the torsion bar while suitably preventing disconnection of the wiring formed on the torsion bar.
  • FIG. 1 is a plan view showing an example of the configuration of the actuator 101 of the first embodiment.
  • FIG. 2 is a detailed enlarged view showing details of the shapes of the torsion bar 130 and the wiring 140 included in the actuator 101 of the first embodiment.
  • the actuator 101 is a planar electromagnetic drive actuator (that is, a MEMS scanner) used for, for example, laser beam scanning.
  • the actuator 101 includes a support part 110, a movable part 120, a pair of torsion bars 130, and a pair of permanent magnets 160.
  • the support portion 110, the movable portion 120, and the pair of torsion bars 130 are integrally formed from a nonmagnetic substrate such as a silicon substrate, for example. That is, the support part 110, the movable part 120, and the pair of torsion bars 130 are formed by forming a gap by removing a part of a nonmagnetic substrate such as a silicon substrate. A MEMS process is preferably used as the formation process at this time. Instead of the silicon substrate, the support portion 110, the movable portion 120, and the pair of torsion bars 130 may be integrally formed from an arbitrary elastic material.
  • the support part 110 has a frame shape surrounding the movable part 120, and is located on both sides of the movable part 120 (in other words, sandwiching the movable part from both sides of the movable part 120) by a pair of torsion bars 130.
  • the movable part 120 is connected.
  • the movable part 120 is pivotally supported on the support part 110 by a pair of torsion bars 130 so as to be swingable.
  • a mirror (not shown) that reflects the laser light is formed on the surface of the movable portion 120.
  • a drive coil 140 is further formed on the surface of the movable portion 120. However, the drive coil 140 may be formed inside the movable part 120.
  • the drive coil 140 is, for example, a coil that extends so as to surround a mirror (not shown) formed on the surface of the movable part 120.
  • the drive coil 140 may be formed using, for example, a material having relatively high conductivity (for example, gold or copper).
  • the drive coil 140 may be formed using a semiconductor manufacturing process such as a plating process or a sputtering method.
  • the drive coil 140 may be embedded in a silicon substrate for forming the support part 110, the movable part 120, and the pair of torsion bars 130 using an implant method.
  • the outer shape of the drive coil 140 is simplified for the sake of easy viewing, but in actuality, the drive coil 140 is formed on the surface of the movable portion 120. It is constituted by one or a plurality of windings.
  • the drive coil 140 includes a power terminal 170 formed on the support 110 and a wiring 150 for electrically connecting the power terminal 170 and the drive coil 140, and is formed on the torsion bar 130.
  • a control current is supplied from the power supply via the wiring 150.
  • the control current is a control current for swinging the movable portion 120, and is typically an alternating current including a signal component having a frequency synchronized with the frequency at which the movable portion 120 swings.
  • the power source may be a power source provided in the actuator 101 itself, or a power source prepared outside the actuator 101.
  • the pair of torsion bars 130 connect the movable portion 120 and the support portion 110 so that the movable portion 120 can swing with respect to the support portion 110. Due to the elasticity of the pair of torsion bars 130, the movable portion 120 swings so as to rotate about an axis along the direction in which the pair of torsion bars 130 extends as a central axis (in other words, a rotation axis). That is, the movable unit 120 swings so as to rotate around the central axis with the axis along the left-right direction in FIG. 1 as the central axis.
  • the pair of permanent magnets 160 are attached to the outside of the support part 110.
  • the pair of permanent magnets 160 preferably have their magnetic poles appropriately set so that a predetermined static magnetic field can be applied to the drive coil 140.
  • a yoke may be added to the pair of permanent magnets 160 in order to increase the strength of the static magnetic field.
  • the actuator 101 When the actuator 101 according to the first embodiment operates (specifically, the movable unit 120 swings), first, from the power source to the drive coil 140 via the power terminal 170 and the wiring 150. In contrast, a control current is supplied. On the other hand, a static magnetic field is applied to the drive coil 140 by a pair of permanent magnets 160. Therefore, a force (that is, a Lorentz force) due to an electromagnetic interaction between the static magnetic field applied from the pair of permanent magnets 160 and the control current supplied to the drive coil 140 is generated in the drive coil 140.
  • a force that is, a Lorentz force
  • the movable part 120 in which the drive coil 140 is formed swings due to the Lorentz force resulting from the electromagnetic interaction between the static magnetic field applied from the pair of permanent magnets 160 and the control current supplied to the drive coil 140. To do. That is, the movable part 120 swings so as to rotate about the axis along the left and right direction in FIG.
  • each of the pair of torsion bars 130 includes a first bar portion 131 and a second bar portion 132.
  • the first bar portion 131 and the second bar portion 132 are preferably distinguished from two viewpoints described with reference to FIG. 2 below.
  • 2A is an enlarged plan view showing details of the shape of the torsion bar 130
  • FIG. 2B is an enlarged plan view showing details of the shape of the first bar portion 131 included in the torsion bar 130
  • FIG. 2B is an enlarged plan view showing details of the shape of the second bar portion 132 included in the torsion bar 130.
  • a wiring 150 indicated by a dotted line is also shown for easy understanding of the shape of the torsion bar 130.
  • FIG. 1 and 2 illustrate an example in which both of the pair of torsion bars 130 include the first bar portion 131 and the second bar portion 132, but only one of the pair of torsion bars 130 is included.
  • the first bar portion 131 and the second bar portion 132 may be included. That is, either one of the pair of torsion bars 130 may not include the first bar portion 131 and the second bar portion 132.
  • the first bar portion 131 and the second bar portion 132 are distinguished by the maximum value of stress applied when the movable portion 120 swings.
  • the maximum value of stress applied to the first bar portion 131 when the movable portion 120 swings by a predetermined amount is the stress applied to the second bar portion 132 when the movable portion 120 swings by a predetermined amount. Is less than the maximum value.
  • the maximum value of the stress applied to the second bar portion 132 when the movable portion 120 swings by a predetermined amount is the maximum value of the stress applied to the first bar portion 131 when the movable portion 120 swings by a predetermined amount. Greater than the value.
  • the total length of the first bar portion 131 (specifically, the total length in the direction in which the first bar portion 131 extends) and the total length of the second bar portion 132 (specifically, the second bar portion 132 is The total length in the extending direction) is different. More specifically, as shown in FIGS. 2A to 2C, the overall length of the first bar portion 131 is longer than the overall length of the second bar portion 132. In other words, as shown in FIGS.
  • the total length of the second bar portion 132 is shorter than the total length of the first bar portion 131. That is, the torsion bar 130 of the first embodiment includes a first bar portion 131 having a relatively long overall length and a second bar portion 132 having a relatively short overall length.
  • the shape of the first bar portion 131 and the shape of the second bar portion 132 are changed. It is different.
  • the second bar portion 132 has a direction in which the torsion bar 130 extends from the support portion 110 toward the movable portion 120 (specifically, the left and right directions in FIGS. 1 and 2). ). At this time, the second bar portion 132 extends along only the direction in which the torsion bar 130 extends from the support unit 110 toward the movable unit 120 (specifically, the left and right directions in FIGS. 1 and 2). May be.
  • the first bar portion 131 may extend not only in the direction in which the torsion bar 130 extends from the support part 110 toward the movable part 120 but also in a direction bent from the direction. More specifically, the first bar portion 131 extends in a direction (in the example of FIGS. 1 and 2, which is orthogonal to the direction in which the torsion bar 130 extends from the support portion 110 toward the movable portion 120. You may do it.
  • the direction in which the torsion bar 130 extends from the support part 110 toward the movable part 120 substantially coincides with the direction of the rotation axis of the movable part 120. Therefore, from the viewpoint of the rotation axis of the movable part 120, it can be said that the second bar portion 132 extends in a direction along the rotation axis of the movable part 120. On the other hand, it can be said that the first bar portion 131 extends in a direction different from the direction along the rotation axis of the movable portion 120.
  • the first bar portion 131 not only has a direction from the support portion 110 toward the movable portion 120 (a direction from the left side to the right side in FIGS. 1 and 2) but also a direction opposite to the direction (FIGS. 1 and 2). 2 in the direction from the right side to the left side).
  • the first bar portion 131 is not only the direction from the support portion 110 toward the movable portion 120 (the direction from the left side to the right side in FIGS. 1 and 2), but also the direction folded back from the direction (the direction).
  • the specific method for making the total length of the first bar portion 131 different from the total length of the second bar portion 132 is not limited to the above-described example. That is, the first bar portion 131 and the second bar portion 132 may be extended in other manners other than the example described above, so that the total length of the first bar portion 131 and the total length of the second bar portion 132 may be different. Needless to say.
  • the maximum value of the stress applied to the first bar portion 131 is different from the maximum value of the stress applied to the second bar portion 132 (when the movable portion 120 is swung by a predetermined amount, the first bar portion
  • the stress applied to 131 is smaller than the stress applied to the second bar portion 132 when the movable portion 120 is swung by the same predetermined amount), so that the second bar portion is moved when the movable portion 120 is swung. Stress can be concentrated at 132.
  • the degree to which the first bar portion 131 contributes (in other words, contributes) to the sway of the movable part 120 is different from the degree to which the second bar part 132 contributes to the sway of the movable part 120. It is preferable to become a thing. Specifically, it is preferable that the degree to which the first bar portion 131 contributes to the swing of the movable portion 120 is smaller than the degree to which the second bar portion 132 contributes to the swing of the movable portion 120. . In other words, it is preferable that the degree to which the second bar portion 132 contributes to the swing of the movable portion 120 is greater than the degree to which the first bar portion 131 contributes to the swing of the movable portion 120. In this case, the movable portion 120 swings mainly due to the bending or twisting of the second bar portion 132.
  • the second bar portion 132 is located on the rotation axis of the movable unit 120.
  • the second bar portion 132 may not be located on the rotation axis of the movable portion 120.
  • the degree to which the second bar portion 132 contributes to the swing of the movable portion 120 is determined with respect to the swing of the movable portion 120.
  • the degree to which the first bar portion 131 contributes can be increased.
  • it is preferable that at least a part of the first bar portion 131 is located on the rotation axis of the movable portion 120.
  • the first bar portion 131 may not be located on the rotation axis of the movable portion 120.
  • the second bar portion 132 is as hard as possible while satisfying the conditions or constraints described above or described later.
  • the second bar portion 132 is soft with respect to the rotation direction of the movable portion 120 but hard with respect to other directions.
  • the first bar portion 131 is as soft as possible while satisfying the conditions or restrictions described above or described later.
  • the relative hardness relationship between the first bar portion 131 and the second bar portion 132 is not always determined uniformly, and even if the first bar portion 131 is harder than the second bar portion 132.
  • the second bar portion 132 may be harder than the first bar portion 131.
  • the 1st bar part 131 is also hard with respect to the other direction like the 2nd bar part 132, although it is soft with respect to the rotation direction of the movable part 120.
  • the first bar portion 131 and the second bar portion 132 as a whole have a hardness that can act appropriately as a single torsion bar 130 with respect to the sway of the movable portion 120. Is preferred.
  • the degree to which the first bar portion 131 contributes to the swing of the movable portion 120 may be the same as the degree to which the second bar portion 132 contributes to the swing of the movable portion 120.
  • the degree to which the second bar portion 132 contributes to the swaying of the movable part 120 may be smaller than the degree to which the first bar part 131 contributes to the swaying of the movable part 120.
  • the total length of the first bar portion 131 is set to the second bar.
  • the total length of the portion 132 is different.
  • the total length of each of the first bar portion 131 and the second bar portion 132 is increased.
  • the other characteristics (for example, material, material, manufacturing method, etc.) of the first bar portion 131 and the second bar portion 132 may be different.
  • the maximum value of stress applied to the first bar portion 131 is different from the maximum value of stress applied to the second bar portion 132, or the maximum value of stress applied to the first bar portion 131 and the second bar portion.
  • the width of at least a part of the first bar portion 131 (specifically, Specifically, the width along the direction in which the first bar portion 131 extends and the width of at least a part of the second bar portion 132 (specifically, the width along the direction in which the second bar portion 132 extends). ) May be different. More specifically, as shown in FIGS.
  • the width of the first bar portion 131 may be larger than the width of the second bar portion 132.
  • the width of the second bar portion 132 may be narrower than the width of the first bar portion 131. That is, the torsion bar 130 of the first embodiment may include a first bar portion 131 having a relatively large width and a second bar portion 132 having a relatively small width.
  • the maximum value of stress applied to the first bar portion 131 is different from the maximum value of stress applied to the second bar portion 132, or the maximum value of stress applied to the first bar portion 131 and the second bar portion.
  • the thickness of at least a portion of the first bar portion 131 (specifically, the thickness along the thickness direction of the actuator 101).
  • the thickness of at least a part of the second bar portion 132 may be different. More specifically, for example, the thickness of the first bar portion 131 may be smaller than the thickness of the second bar portion 132. In other words, the thickness of the second bar portion 132 may be narrower than the thickness of the first bar portion 131. That is, the torsion bar 130 of the first embodiment may include a first bar portion 131 having a relatively small thickness and a second bar portion 132 having a relatively large thickness.
  • the maximum value of stress applied to the first bar portion 131 is different from the maximum value of stress applied to the second bar portion 132, or the maximum value of stress applied to the first bar portion 131 and the second bar portion.
  • other characteristics of the first bar portion 131 and the second bar portion 132 for example, materials, materials, manufacturing methods, etc.
  • the degree to which the first bar portion 131 contributes to the swing of the movable part 120 and the degree to which the second bar part 132 contributes to the swing of the movable part 120 may be different. Good.
  • the first bar portion 131 and the second bar portion 132 contribute to the sway of the movable part 120 instead of being distinguished by the maximum value of the stress applied when the movable part 120 sways. It is distinguished by the degree to do.
  • the first bar portion 131 and the second bar portion 132 are distinguished by whether or not the wiring 150 connected to the drive coil 140 is formed thereon. Specifically, a wiring 150 is formed in the first bar portion 131. On the other hand, the wiring 150 is not formed in the second bar portion 132.
  • an arbitrary wiring connected to an arbitrary circuit existing on the movable unit 120 and supplied with an effective signal related to the operation of the arbitrary circuit is formed.
  • the first bar portion 131 and the second bar portion 132 may be distinguished depending on whether or not they are set. In this case, an arbitrary wiring is formed on the first bar portion 131, while an arbitrary wiring is not formed on the second bar portion 132.
  • so-called dummy wiring for example, (i) a signal to be supplied is not used effectively for the operation of the actuator 101, or (ii) even if it is disconnected, it has no effect on the normal operation of the actuator 101. May be formed on the second bar portion 132.
  • the actuator 101 of the first embodiment when the movable part 120 swings, the torsion so that the first bar part 131 and the second bar part 132 swing the movable part 120 is performed.
  • the bar 130 bends or twists.
  • the stress applied to the relatively hard second bar portion 132 due to bending or twisting of the torsion bar 130 (in other words, the swing of the movable portion 120) becomes relatively large.
  • the torsion bar is not separated into the first bar portion and the second bar portion (that is, the wiring is formed on one torsion bar and Compared to the actuator of the comparative example (the one torsion bar defines the swing of the movable part), the possibility that the wiring 150 is disconnected due to the bending or twisting of the torsion bar 130 is relatively low.
  • the stress applied to the first bar portion 131 remains relatively small.
  • the stress applied to the first bar portion 131 is smaller than the stress applied to the second bar portion 132. Therefore, the torsion bar is not separated into the first bar portion and the second bar portion (that is, the wiring is formed on one torsion bar and the one torsion bar defines the swing of the movable portion).
  • the wiring 150 formed in the first bar portion 131 is relatively less likely to be disconnected due to the torsion bar 130 being bent or twisted.
  • the actuator 101 of the first embodiment it is possible to move the movable part 120 supported by the torsion bar 130 while suitably preventing the wire 150 formed on the torsion bar 130 from being disconnected.
  • the first bar portion 131 and the second bar portion 132 intersect at least once.
  • the 1st bar part 131 and the 2nd bar part 132 are integrated in the location which mutually crosses (in other words, coupling
  • the first bar portion 131 and the second bar portion 132 are rotated six times. Crossed. That is, in the actuator 101 shown in FIGS. 1 and 2, the first bar portion 131 and the second bar portion 132 are integrated at six locations.
  • the first bar portion 131 and the second bar portion 132 intersect at least once (in other words, at least one place is integrated), so that the first bar portion 131 resonates independently. There is almost no end. Therefore, even if the torsion bar 130 is separated into the first bar portion 131 and the second bar portion 132, the influence on the swing of the movable portion 120 is reduced or almost eliminated.
  • the torsion bar 130 may further include a bar portion other than the first bar portion 131 and the second bar portion 132.
  • the torsion bar 130 may further include a third bar portion that is relatively soft and the wiring 150 is not formed, and a fourth bar portion that is relatively hard and the wiring 150 is formed.
  • FIG. 3 is a plan view showing an example of the configuration of the actuator 102 of the second embodiment. Note that the same reference numerals are assigned to the same components as those provided in the actuator 101 of the first embodiment, and the detailed description thereof is omitted.
  • the actuator 102 of the second embodiment is physically separated from the entire first bar portion 131 and the entire second bar portion 132 as compared to the actuator 101 of the first embodiment.
  • the first bar portion 131 and the second bar portion 132 are supported independently of each other without crossing each other (in other words, never integrated).
  • the portion 110 extends toward the movable portion 120.
  • FIG. 4 is a plan view showing an example of the configuration of the actuator 103 of the third embodiment. Note that the same reference numerals are assigned to the same components as those provided in the actuator 101 of the first embodiment, and the detailed description thereof is omitted.
  • the actuator 103 of the third embodiment has a movable portion in a state where the first bar portion 131 and the second bar portion 132 are physically separated compared to the actuator 101 of the first embodiment. It is different in that it is connected to 120.
  • the first bar portion 131 and the second bar portion 132 are temporarily separated on the way from the support portion 110 to the movable portion 120, but the movable portion 120.
  • the first bar portion 131 and the second bar portion 132 cannot be distinguished from each other in the step of connecting to the first bar portion.
  • the first bar portion 131 and the second bar portion 132 are physically integrated (or the first bar portion 131 and the second bar portion 132 are distinguished from each other).
  • the actuator 101 is the same as the actuator 101 of the first embodiment in that it is connected to the support portion 110 in a state in which the actuator cannot be operated.
  • FIG. 5 is a plan view showing an example of the configuration of the actuator 104 of the fourth embodiment. Note that the same reference numerals are assigned to the same components as those provided in the actuator 101 of the first embodiment, and the detailed description thereof is omitted.
  • the actuator 104 of the fourth embodiment has a support portion in a state where the first bar portion 131 and the second bar portion 132 are physically separated as compared with the actuator 101 of the first embodiment. 110 is different in that it is connected to 110.
  • the first bar portion 131 and the second bar portion 132 are temporarily separated on the way from the support portion 110 to the movable portion 120, but the support portion 110.
  • the first bar portion 131 and the second bar portion 132 cannot be distinguished from each other in the step of connecting to the first bar portion.
  • the first bar portion 131 and the second bar portion 132 are physically integrated (or the first bar portion 131 and the second bar portion 132 are distinguished from each other.
  • the actuator 101 is the same as the actuator 101 of the first embodiment in that it is connected to the movable part 120 in a state in which the actuator 101 cannot be operated.
  • FIG. 6 is a plan view showing an example of the configuration of the actuator 105 of the fifth embodiment. Note that the same reference numerals are assigned to the same components as those provided in the actuator 101 of the first embodiment, and the detailed description thereof is omitted.
  • the actuator 105 of the fifth embodiment is folded back when the first bar portion 131 is viewed from the support portion 110 toward the movable portion 120 as compared to the actuator 101 of the first embodiment. It is different in that it does not extend in the other direction (in other words, it is not folded).
  • the actuator 101 of the first embodiment at least a part of the first bar portion 131 extends in a folded direction when viewed from the support portion 110 toward the movable portion 120.
  • FIG. 7 is a plan view showing an example of the configuration of the actuator 106 of the sixth embodiment. Note that the same reference numerals are assigned to the same components as those provided in the actuator 101 of the first embodiment, and the detailed description thereof is omitted.
  • the actuator 106 of the sixth embodiment is different from the actuator 101 of the first embodiment in that the movable portion 622 can be driven in two axes.
  • the actuator 106 of the sixth embodiment includes a support part 110, a movable frame 621, a movable part 622, a pair of torsion bars 130, a pair of torsion bars 630, and a pair of permanent magnets 160. I have.
  • the support part 110, the movable frame 621, the movable part 622, the pair of torsion bars 130, and the pair of torsion bars 630 are integrally formed from a nonmagnetic substrate such as a silicon substrate, for example.
  • the support portion 110, the movable frame 621, the movable portion 622, the pair of torsion bars 130, and the pair of torsion bars 630 have a gap formed by removing a part of a nonmagnetic substrate such as a silicon substrate. It is formed with.
  • a MEMS process is preferably used as the formation process at this time.
  • the support part 110, the movable frame 621, the movable part 622, the pair of torsion bars 130, and the pair of torsion bars 630 may be integrally formed from an arbitrary elastic material.
  • the support part 110 has a frame shape surrounding the movable frame 621 and is located on both sides of the movable frame 621 (in other words, sandwiching the movable frame 621 from both sides of the movable frame 621). Is connected to the movable frame 621.
  • the movable frame 621 has a frame shape surrounding the movable portion 622, and is pivotally supported on the support portion 110 by a pair of torsion bars 130 so as to be swingable.
  • a drive coil 140 is formed on the surface of the movable frame 120. However, the drive coil 140 may be formed inside the movable frame 621.
  • the drive coil 140 includes a power terminal 170 formed on the support 110 and a wiring 150 for electrically connecting the power terminal 170 and the drive coil 140, and is formed on the torsion bar 130.
  • a control current is supplied from the power supply via the wiring 150.
  • the control current is a control current for swinging the movable frame 621, and is typically an alternating current including a signal component having a frequency synchronized with the frequency at which the movable frame 621 swings.
  • the movable part 622 is pivotally supported on the movable frame part 621 by a pair of torsion bars 630 so as to be swingable.
  • a mirror (not shown) that reflects the laser light is formed on the surface of the movable portion 622.
  • the driving coil is also formed on the movable portion 622 in the same manner as the movable portion 120 included in the actuator 101 of the first embodiment. It is preferable.
  • the pair of torsion bars 130 connect the movable frame 621 and the support unit 110 so that the movable frame 621 can swing with respect to the support unit 110. Due to the elasticity of the pair of torsion bars 130, the movable frame 621 swings so as to rotate about an axis along the direction in which the pair of torsion bars 130 extends as a central axis (in other words, a rotation axis). That is, the movable frame 621 swings so as to rotate around the central axis with the axis along the left and right directions in FIG. 7 as the central axis. At this time, the movable portion 622 is connected to the movable frame 621 via a pair of torsion bars 630. Accordingly, as the movable frame 621 swings, the movable portion 622 substantially swings so as to rotate around the central axis with the axis along the left-right direction in FIG. 7 as the central axis. .
  • the pair of torsion bars 630 connect the movable part 622 and the movable frame 621 so that the movable part 622 can swing with respect to the movable frame 621. Due to the elasticity of the pair of torsion bars 630, the movable portion 622 swings so as to rotate about the axis along the direction in which the pair of torsion bars 630 extends as a central axis (in other words, a rotation axis). That is, the movable portion 622 swings so as to rotate around the central axis with the axis along the vertical direction in FIG. 7 as the central axis.
  • the pair of permanent magnets 160 are attached to the outside of the support part 110.
  • the pair of permanent magnets 160 preferably have their magnetic poles appropriately set so that a predetermined static magnetic field can be applied to the drive coil 140.
  • a yoke may be added to the pair of permanent magnets 160 in order to increase the strength of the static magnetic field.
  • the actuator 106 When the actuator 106 according to the sixth embodiment operates (specifically, the movable portion 120 swings), first, from the power source to the drive coil 140 via the power terminal 170 and the wiring 150. In contrast, a control current is supplied. At this time, the control current supplied to the drive coil 140 causes the signal for causing the movable frame 621 to swing (specifically, a signal synchronized with the swing period of the movable frame 621) and the movable unit 622. It is preferable that the current be superimposed on a signal to be moved (specifically, a signal synchronized with the swing period of the movable portion 622). On the other hand, a static magnetic field is applied to the drive coil 140 by a pair of permanent magnets 160.
  • a force that is, a Lorentz force
  • the movable frame 621 in which the drive coil 140 is formed swings due to the Lorentz force resulting from the electromagnetic interaction between the static magnetic field applied from the pair of permanent magnets 160 and the control current supplied to the drive coil 140.
  • the movable frame 621 swings so as to rotate about the axis along the left and right directions in FIG.
  • the movable portion 622 is connected to the movable frame 621 via a pair of torsion bars 630. Accordingly, as the movable frame 621 swings, the movable portion 622 substantially swings so as to rotate around the central axis with the axis along the left-right direction in FIG. 7 as the central axis. .
  • the Lorentz force resulting from the electromagnetic interaction between the static magnetic field applied from the pair of permanent magnets 160 and the control current supplied to the drive coil 140 is transmitted to the movable part 622 as an inertial force.
  • the movable part 622 swings so as to rotate about the axis along the vertical direction in FIG. 7 as the central axis.
  • the movable portion 622 is driven in two axes.
  • the biaxial drive of the movable portion 622 is performed by swinging the movable frame 621 using the Lorentz force itself and swinging the movable portion 622 using the Lorentz force as an inertial force.
  • a drive coil for generating a Lorentz force that causes the movable part 622 to swing may be formed on the movable part 622.
  • the pair of torsion bars 630 (and the movable frame 621, the pair of torsion bars 130, and the support unit 110) are connected to the drive coil on the movable unit 622 from the power terminal 170 on the support unit 110. It is preferable that a connecting wiring is formed.
  • At least one of the pair of torsion bars 630 includes a first bar portion 131 and a second bar portion 132, similarly to the torsion bar 130. Further, in this case, it is preferable that a pair of permanent magnets for applying a static magnetic field to the drive coil on the movable portion 622 is attached to the outside of the support portion 110.
  • FIG. 8 is a plan view showing an example of the configuration of the actuator 107 of the seventh embodiment. Note that the same reference numerals are assigned to the same components as those provided in the actuator 101 of the first embodiment, and the detailed description thereof is omitted.
  • the first bar portion 131 has a line-symmetric relationship with respect to the rotation axis of the movable portion 120 as compared to the actuator 101 of the first embodiment. It is different in that it does. That is, in the actuator 107 of the seventh embodiment, the first bar portion 131 branches in the left-right direction along the rotation axis of the movable portion 120, and the branch shape in the left-right direction becomes a virtual center line on the rotation axis. It is symmetrical with respect to the line.
  • the actuator 107 of the seventh embodiment Even with the actuator 107 of the seventh embodiment, various effects that can be enjoyed by the actuator 101 of the first embodiment can be suitably enjoyed.
  • the first bar portion 131 is axisymmetric with respect to the rotation axis, the presence of the first bar portion 131 has little or no significant adverse effect on the normal swing of the movable portion 120. Therefore, the smoother swing of the movable part 120 can be realized.
  • Example-7th Example you may combine suitably a part of each structure demonstrated in 1st Example-7th Example.
  • the physical separation of the first bar portion 131 and the second bar portion 132 described in the second embodiment may be combined with the biaxial drive described in the sixth embodiment.
  • the actuator obtained by appropriately combining a part of the configurations described in the first to seventh embodiments can suitably enjoy the various effects described above.
  • the description is advanced focusing on the MEMS scanner in which the movable unit 120 rotates about the axis along the direction in which the torsion bar 130 extends.
  • the various configurations described above may be applied to any actuator, not limited to the MEMS scanner.
  • the various configurations described above may be applied to the MEMS actuator that moves so that the movable unit 120 moves in parallel with the movement of the torsion bar 130. Even in this case, the above-described various effects are favorably enjoyed.

Abstract

An actuator (101) is provided with a movable section (120), a supporting section (110) surrounding the movable section, a torsion bar (130) for connecting the movable section and the supporting section so that the movable section is able to swing, and a processing circuit (140) formed on the movable section for processing related to the rocking motion of the movable section. The torsion bar comprises (i) a first bar part (131) having wiring (150) formed to establish a connection to the processing circuit and (ii) a second bar part (132) devoid of wiring. The maximum value of stress applied to the first bar part when the movable section rocks is smaller than the maximum value of stress applied to the second bar part when the movable section rocks.

Description

アクチュエータActuator
 本発明は、例えばミラー等が設けられた可動部を駆動するMEMSスキャナ等のアクチュエータの技術分野に関する。 The present invention relates to a technical field of an actuator such as a MEMS scanner that drives a movable part provided with, for example, a mirror.
 例えば、ディスプレイ、プリンティング装置、精密測定、精密加工、情報記録再生などの多様な技術分野において、半導体プロセス技術によって製造されるMEMS(Micro Electro Mechanical System)デバイスについての研究が活発に進められている。このようなMEMSデバイスとして、レーザ光のスキャニングに用いられるMEMSスキャナが知られている。このようなMEMSスキャナは、可動板と、可動板を取り囲む枠状の支持枠と、可動板を支持枠に対して揺動可能に軸支するトーションバーとを備えている。 For example, in various technical fields such as displays, printing apparatuses, precision measurement, precision processing, and information recording / reproduction, research on MEMS (Micro Electro Mechanical System) devices manufactured by semiconductor process technology has been actively promoted. As such a MEMS device, a MEMS scanner used for scanning a laser beam is known. Such a MEMS scanner includes a movable plate, a frame-shaped support frame that surrounds the movable plate, and a torsion bar that pivotally supports the movable plate so as to be swingable with respect to the support frame.
 ここで、一般的なMEMSスキャナでは、可動板の表面の中央にはミラーが形成され、当該ミラーの周囲に駆動用コイルが形成される。そして、駆動用コイルに対して静磁界を発生させるための1対の永久磁石が、支持枠に配置される。このように構成されたMEMSスキャナによれば、駆動用コイルに対して制御電流が供給されることで、駆動用コイルに電磁駆動力(ローレンツ力)が発生する。従って、駆動用コイルが形成されている可動板が遥動される。 Here, in a general MEMS scanner, a mirror is formed at the center of the surface of the movable plate, and a driving coil is formed around the mirror. A pair of permanent magnets for generating a static magnetic field for the drive coil is disposed on the support frame. According to the MEMS scanner configured as described above, an electromagnetic driving force (Lorentz force) is generated in the driving coil by supplying a control current to the driving coil. Accordingly, the movable plate on which the driving coil is formed is moved.
 このようなMEMSスキャナを開示する先行技術として、特許文献1から特許文献5が一例としてあげられる。 As a prior art disclosing such a MEMS scanner, Patent Documents 1 to 5 are given as examples.
特表2005-517990号公報JP 2005-517990 Gazette 特開2010-39496号公報JP 2010-39496 A 特表2007-525025号公報Special table 2007-525025 gazette 特表2007-522529号公報Special table 2007-522529 特開2007-295780号公報JP 2007-295780 A
 ところで、可動板に形成される駆動用コイルには、可動板の外部に形成される電源から、トーションバーに形成される配線を介して駆動用の制御電流が供給されるのが一般的である。しかしながら、可動板の遥動に伴ってトーションバーにねじれが生ずると、当該トーションバー上に形成されている配線にもまたねじれに起因した応力が加わる。その結果、当該応力によって配線の断線が生じてしまうという技術的な問題点が生ずる。 By the way, a driving control current is generally supplied to a driving coil formed on the movable plate from a power source formed outside the movable plate via a wiring formed on the torsion bar. . However, when the torsion bar is twisted as the movable plate is moved, stress due to the twist is also applied to the wiring formed on the torsion bar. As a result, there arises a technical problem that the wiring is disconnected due to the stress.
 尚、上述した技術的な問題点は、回転するように可動板(或いは、任意の可動部)を遥動させるMEMSスキャナのみならず、任意の態様で可動板(或いは、任意の可動部)を遥動させるMSMSアクチュエータに対しても同様に生じ得る。 The above-mentioned technical problem is that the movable plate (or any movable part) is not limited to the MEMS scanner that swings the movable plate (or any movable part) so as to rotate. The same can occur for a MSMS actuator that is swung.
 更には、上述した技術的な問題点は、可動板に形成される駆動コイルにつながるようにトーションバー上に形成される配線のみならず、可動板に形成される任意の処理回路につながるようにトーションバー上に形成される配線についても同様に生じ得る。 Furthermore, the technical problem described above is connected not only to the wiring formed on the torsion bar so as to be connected to the drive coil formed on the movable plate, but also to an arbitrary processing circuit formed on the movable plate. The same may occur for the wiring formed on the torsion bar.
 本発明は、例えば前述した従来の問題点に鑑みなされたものであり、例えばトーションバーに形成される配線の断線を好適に防ぎながらトーションバーによって支持される可動部を遥動させることが可能なアクチュエータを提供することを課題とする。 The present invention has been made in view of, for example, the conventional problems described above. For example, the movable portion supported by the torsion bar can be swung while suitably preventing disconnection of the wiring formed on the torsion bar. It is an object to provide an actuator.
 アクチュエータは、上記課題を解決するために、可動部と、当該可動部を取り囲む支持部と、前記可動部が揺動可能なように前記可動部と前記支持部とを接続するトーションバーと、前記可動部に形成されると共に当該可動部の遥動に関連する処理を行う処理回路とを備えており、前記トーションバーは、(i)前記処理回路につながる配線が形成される第1バー部分と、(ii)前記配線が形成されない第2バー部分とを含み、前記可動部が遥動した場合に前記第1バー部分に加わる応力の最大値は、前記可動部が遥動した場合に前記第2バー部分に加わる応力の最大値よりも小さい。 In order to solve the above problems, the actuator includes a movable part, a support part surrounding the movable part, a torsion bar that connects the movable part and the support part so that the movable part can swing, And a processing circuit that performs a process related to the swinging of the movable part, and the torsion bar includes: (i) a first bar portion in which wiring connected to the processing circuit is formed; (Ii) a second bar portion in which the wiring is not formed, and the maximum value of stress applied to the first bar portion when the movable portion swings is the maximum value when the movable portion swings. It is smaller than the maximum value of stress applied to the 2 bar portion.
 本発明の作用及び他の利得は次に説明する実施形態から明らかにされる。 The operation and other advantages of the present invention will be clarified from the embodiments described below.
第1実施例のアクチュエータの構成の一例を示す平面図である。It is a top view which shows an example of a structure of the actuator of 1st Example. 第1実施例のアクチュエータが備えるトーションバーの構成の詳細を示す平面図である。It is a top view which shows the detail of a structure of the torsion bar with which the actuator of 1st Example is provided. 第2実施例のアクチュエータの構成の一例を示す平面図である。It is a top view which shows an example of a structure of the actuator of 2nd Example. 第3実施例のアクチュエータの構成の一例を示す平面図である。It is a top view which shows an example of a structure of the actuator of 3rd Example. 第4実施例のアクチュエータの構成の一例を示す平面図である。It is a top view which shows an example of a structure of the actuator of 4th Example. 第5実施例のアクチュエータの構成の一例を示す平面図である。It is a top view which shows an example of a structure of the actuator of 5th Example. 第6実施例のアクチュエータの構成の一例を示す平面図である。It is a top view which shows an example of a structure of the actuator of 6th Example. 第7実施例のアクチュエータの構成の一例を示す平面図である。It is a top view which shows an example of a structure of the actuator of 7th Example.
 以下、アクチュエータの実施形態について順に説明する。 Hereinafter, embodiments of the actuator will be described in order.
 本実施形態のアクチュエータは、可動部と、当該可動部を取り囲む支持部と、前記可動部が揺動可能なように前記可動部と前記支持部とを接続するトーションバーと、前記可動部に形成されると共に当該可動部の遥動に関連する処理を行う処理回路とを備えており、前記トーションバーは、(i)前記処理回路につながる配線が形成される第1バー部分と、(ii)前記配線が形成されない第2バー部分とを含み、前記可動部が遥動した場合に前記第1バー部分に加わる応力の最大値は、前記可動部が遥動した場合に前記第2バー部分に加わる応力の最大値よりも小さい。 The actuator of the present embodiment is formed in the movable part, a support part surrounding the movable part, a torsion bar connecting the movable part and the support part so that the movable part can swing, and the movable part. And a processing circuit that performs processing related to the swinging of the movable part, and the torsion bar includes: (i) a first bar portion in which wiring connected to the processing circuit is formed; and (ii) A second bar portion on which the wiring is not formed, and a maximum value of stress applied to the first bar portion when the movable portion swings is the second bar portion when the movable portion swings. It is smaller than the maximum value of applied stress.
 本実施形態のアクチュエータによれば、トーションバーによって懸架された可動部が遥動する。可動部は、例えば、トーションバーが伸長する方向を中心軸として回転するように遥動してもよいし、或いは、トーションバーが伸長する方向に沿って又はトーションバーが伸長する方向と交わる方向に沿って移動するように遥動してもよい。 ¡According to the actuator of this embodiment, the movable part suspended by the torsion bar swings. For example, the movable portion may be swung so as to rotate about the direction in which the torsion bar extends as a central axis, or along the direction in which the torsion bar extends or in the direction intersecting with the direction in which the torsion bar extends. You may swing to move along.
 このとき、トーションバーは、可動部と支持部とを直接的に接続していてもよい。或いは、トーションバーは、可動部と支持部とを間接的に(言い換えれば、間に任意の部材を介在させた上で)接続してもよい。 At this time, the torsion bar may directly connect the movable part and the support part. Alternatively, the torsion bar may indirectly connect the movable part and the support part (in other words, with an arbitrary member interposed therebetween).
 可動部には、処理回路が形成されている。このとき、処理回路は、可動部の表面上に形成されていてもよいし、可動部の内部に埋め込まれるように形成されていてもよい。処理回路は、例えば、可動部の遥動に関連する任意の処理を行う回路である。このような処理回路として、例えば、可動部を遥動させるためのローレンツ力を発生させるための駆動コイルや、可動部の遥動の態様(例えば、傾きや遥動量等)を検出する検出回路等が一例としてあげられる。処理回路には、アクチュエータが備える又はアクチュエータの外部に用意される電源ないしは信号源から、後述する配線を介して、可動部を遥動に関連する制御電流ないしは制御信号等が供給される。 A processing circuit is formed in the movable part. At this time, the processing circuit may be formed on the surface of the movable part, or may be formed so as to be embedded in the movable part. The processing circuit is, for example, a circuit that performs an arbitrary process related to the swinging of the movable part. As such a processing circuit, for example, a drive coil for generating a Lorentz force for swinging the movable part, a detection circuit for detecting a swinging mode (for example, inclination, swing amount, etc.) of the movable part, etc. Is an example. The processing circuit is supplied with a control current or a control signal related to the swaying of the movable part from a power source or a signal source provided in the actuator or prepared outside the actuator via a wiring described later.
 本実施形態では、トーションバーは、第1バー部分と第2バー部分とを含んでいる。 In this embodiment, the torsion bar includes a first bar portion and a second bar portion.
 第1バー部分は、可動部が遥動した場合(例えば、可動部が所定量だけ遥動した場合)に加わる応力の最大値が、相対的に小さくなるバー部分である。言い換えれば、第1バー部分は、可動部が遥動した場合(例えば、可動部が所定量だけ遥動した場合)に加わる応力の最大値が、第2バー部分に加わる応力の最大値よりも小さくなるバー部分である。更に、第1バー部分は、配線が形成されているバー部分である。 The first bar portion is a bar portion in which the maximum value of stress applied when the movable portion swings (for example, when the movable portion swings by a predetermined amount) becomes relatively small. In other words, the maximum value of the stress applied to the first bar portion when the movable portion swings (for example, when the movable portion swings by a predetermined amount) is greater than the maximum stress applied to the second bar portion. This is the smaller bar part. Further, the first bar portion is a bar portion where wiring is formed.
 一方で、第2バー部分は、可動部が遥動した場合(例えば、可動部が所定量だけ遥動した場合)に加わる応力の最大値が、相対的に小さくなるバー部分である。言い換えれば、第2バー部分は、可動部が遥動した場合(例えば、可動部が所定量だけ遥動した場合)に加わる応力の最大値が、第1バー部分に加わる応力の最大値よりも大きくなるバー部分である。更に、第2バー部分は、配線が形成されていないバー部分である。 On the other hand, the second bar portion is a bar portion in which the maximum value of stress applied when the movable portion swings (for example, when the movable portion swings by a predetermined amount) becomes relatively small. In other words, in the second bar portion, the maximum value of stress applied when the movable portion swings (for example, when the movable portion swings by a predetermined amount) is greater than the maximum value of stress applied to the first bar portion. This is the bar part that grows. Furthermore, the second bar portion is a bar portion where no wiring is formed.
 尚、第1バー部分及び第2バー部分は、1つのトーションバーを上述した配線の有無や可動部が遥動した場合に加わる応力の最大値(或いは、更に後述する、可動部の遥動に対する寄与度や、全長や、幅や、厚さ等)の観点から区別できるような形状、構造又は配置位置を有していることが好ましい。但し、第1バー部分及び第2バー部分は、1つのトーションバーを上述した配線の有無や可動部が遥動した場合に加わる応力の最大値(或いは、更に後述する、可動部の遥動に対する寄与度や、全長や、幅や、厚さ等)の観点から区別できる限りは、どのような形態を有していてもよいとも言える。例えば、第1バー部分と第2バー部分とは、それらの全体が物理的に分離されていてもよいし、それらの一部が重複していてもよい(例えば、後述するように一体化していてもよい)。 Note that the first bar portion and the second bar portion have a single torsion bar with or without the wiring described above and the maximum value of stress applied when the movable portion is swung (or with respect to the swing of the movable portion, which will be described later). It is preferable to have a shape, structure, or arrangement position that can be distinguished from the viewpoint of contribution, total length, width, thickness, and the like. However, the first bar portion and the second bar portion have a single torsion bar with or without the wiring described above and the maximum value of stress applied when the movable portion is swung (or with respect to the swing of the movable portion, which will be described later). As long as it can be distinguished from the viewpoint of contribution, total length, width, thickness, etc., it can be said that it may have any form. For example, the first bar portion and the second bar portion may be physically separated from each other, or may be partially overlapped (for example, integrated as described later). May be)
 また、トーションバーは、第1バー部分及び第2バー部分以外のバー部分を更に含んでいてもよい。例えば、トーションバーは、可動部が遥動した場合に加わる応力の最大値が相対的に小さく(例えば、第1バー部分に加わる応力の最大値よりも小さく)且つ配線が形成されない第3バー部分や、可動部が遥動した場合に加わる応力の最大値が相対的に大きく(例えば、第2バー部分に加わる応力の最大値よりも大きく)且つ配線が形成される第4バー部分を更に含んでいてもよい。このような第3バー部分や第4バー部分を含んでいるアクチュエータであっても、第1バー部分及び第2バー部分を含んでいる限りは、本実施形態のアクチュエータの範囲に含まれることは明らかである。 The torsion bar may further include a bar portion other than the first bar portion and the second bar portion. For example, in the torsion bar, the third bar portion where the maximum value of the stress applied when the movable part swings is relatively small (for example, smaller than the maximum value of the stress applied to the first bar portion) and no wiring is formed. And a fourth bar portion in which the maximum value of stress applied when the movable portion is swung is relatively large (for example, larger than the maximum value of stress applied to the second bar portion) and the wiring is formed. You may go out. Even an actuator including such a third bar portion or a fourth bar portion is included in the scope of the actuator of the present embodiment as long as it includes the first bar portion and the second bar portion. it is obvious.
 このような本実施形態のアクチュエータによれば、可動部が遥動する場合には、配線が形成されている第1バー部分のみならず配線が形成されていない第2バー部分もまた可動部を遥動させるようにトーションバーが撓む又はねじれる。このとき、可動部が遥動する場合には、第2バー部分が主としてトーションバーの撓み又はねじれの動作を規定することが好ましいが、第1バー部分が主としてトーションバーの撓み又はねじれの動作を規定してもよいし、第1バー部分及び第2バー部分の双方が均等にトーションバーの撓み又はねじれの動作を規定してもよい。ここで、上述したように、トーションバーの撓み又はねじれに起因して第2バー部分に加わる応力は相対的に大きくなってしまう。しかるに、第2バー部分には配線が形成されていないため、トーションバーが第1バー部分と第2バー部分とに区別(言い換えれば、分離)されていない(つまり、1つのトーションバー上に配線が形成され且つ当該1つのトーションバーがトーションバーの撓み又はねじれの動作を規定する)アクチュエータと比較して、トーションバーの撓み又はねじれ等に起因して配線が断線するおそれは相対的に低い。 According to such an actuator of the present embodiment, when the movable part swings, not only the first bar part where the wiring is formed but also the second bar part where the wiring is not formed also has the movable part. The torsion bar bends or twists so as to swing. At this time, when the movable portion swings, it is preferable that the second bar portion mainly defines the bending or twisting operation of the torsion bar, but the first bar portion mainly controls the bending or twisting operation of the torsion bar. Alternatively, both the first bar portion and the second bar portion may equally regulate the torsion bar bending or twisting motion. Here, as described above, the stress applied to the second bar portion due to bending or twisting of the torsion bar becomes relatively large. However, since the wiring is not formed in the second bar portion, the torsion bar is not distinguished (in other words, separated) into the first bar portion and the second bar portion (that is, wiring is performed on one torsion bar). And the one torsion bar defines the torsion bar bending or twisting action), the wire is relatively less likely to break due to torsion bar bending or twisting.
 一方で、可動部が遥動する場合であっても、第1バー部分に加わる応力は相対的に小さくなる。従って、トーションバーが第1バー部分と第2バー部分とに区別されていない(つまり、1つのトーションバー上に配線が形成され且つ当該1つのトーションバーがトーションバーの撓み又はねじれの動作を規定する)アクチュエータと比較して、第1バー部分に形成された配線が、トーションバーの撓み又はねじれ等に起因して断線するおそれは相対的に低い。 On the other hand, even when the movable part swings, the stress applied to the first bar portion becomes relatively small. Therefore, the torsion bar is not distinguished from the first bar portion and the second bar portion (that is, the wiring is formed on one torsion bar and the one torsion bar defines the bending or twisting operation of the torsion bar. Compared with the actuator, the wiring formed in the first bar portion is relatively less likely to break due to bending or twisting of the torsion bar.
 その結果、本実施形態のアクチュエータによれば、トーションバーに形成される配線の断線を好適に防ぎながらトーションバーによって支持される可動部を遥動させることができる。 As a result, according to the actuator of this embodiment, it is possible to move the movable part supported by the torsion bar while suitably preventing disconnection of the wiring formed on the torsion bar.
 尚、配線の材料等を工夫する(例えば、断線に対する耐性が高い材料を用いて配線を形成する)ことで配線の断線を防止する対応策も考えられる。しかしながら、配線の材料が制約されてしまうがゆえに、配線を含むアクチュエータの設計上の制約につながりかねない。しかるに、本実施形態によれば、配線の材料を制約することなく、配線の断線を防止することができる。 It should be noted that a countermeasure for preventing the disconnection of the wiring by devising the material of the wiring or the like (for example, forming the wiring using a material having a high resistance to disconnection) can be considered. However, since the material of the wiring is restricted, it may lead to restrictions on the design of the actuator including the wiring. However, according to the present embodiment, disconnection of the wiring can be prevented without restricting the material of the wiring.
 更に、第1バー部分と第2バー部分とに区別することなくトーションバー全体の長さを長くすることで、当該トーションバー上に形成される配線に加わる応力を抑制する対応策も考えられる。しかしながら、配線に加わる応力の抑制を優先させるためにトーションバー全体の長さを長くするだけでは、トーションバーの本来の機能である可動部の遥動に制約が生ずるおそれがある。しかるに、本実施形態によれば、トーションバーを第1バー部分と第2バー部分とに区別しているため、配線に加わる応力を抑制しつつもトーションバーの本来の機能である可動部の遥動に影響を与えることは殆どない。 Furthermore, a countermeasure for suppressing the stress applied to the wiring formed on the torsion bar by increasing the entire length of the torsion bar without distinguishing between the first bar portion and the second bar portion can be considered. However, if the entire length of the torsion bar is simply increased in order to give priority to the suppression of stress applied to the wiring, there is a possibility that the swinging of the movable part, which is the original function of the torsion bar, may be restricted. However, according to this embodiment, since the torsion bar is distinguished from the first bar portion and the second bar portion, the swinging of the movable portion, which is the original function of the torsion bar, is suppressed while suppressing the stress applied to the wiring. Is hardly affected.
 本実施形態のアクチュエータの他の態様では、前記第1バー部分の全長は、前記第2バー部分の全長よりも長い。 In another aspect of the actuator of the present embodiment, the total length of the first bar portion is longer than the total length of the second bar portion.
 この態様によれば、第1バー部分の全長を相対的に長くすることで、第1バー部分に加わる応力の最大値を相対的に小さくすることができる。同様に、第2バー部分の全長を相対的に短くすることで、第2バー部分に加わる応力の最大値を相対的に大きくすることができる。つまり、第1バー部分の全長を第2バー部分の全長よりも長くすることで、第1バー部分に加わる応力の最大値を第2バー部分に加わる応力の最大値よりも小さくすることができる。 According to this aspect, the maximum value of the stress applied to the first bar portion can be relatively reduced by relatively increasing the overall length of the first bar portion. Similarly, the maximum value of the stress applied to the second bar portion can be relatively increased by relatively shortening the overall length of the second bar portion. That is, by making the total length of the first bar portion longer than the total length of the second bar portion, the maximum value of stress applied to the first bar portion can be made smaller than the maximum value of stress applied to the second bar portion. .
 上述の如く第1バー部分の全長が第2バー部分の全長よりも長いアクチュエータの態様では、前記第1バー部分は、前記支持部から前記可動部に向かうように前記トーションバーが伸長する方向と交わる方向に少なくとも1回以上折れ曲がった形状を有しているように構成してもよい。 In the aspect of the actuator in which the total length of the first bar portion is longer than the total length of the second bar portion as described above, the first bar portion extends in the direction in which the torsion bar extends from the support portion toward the movable portion. You may comprise so that it may have the shape bent at least once in the direction which crosses.
 このように構成すれば、第1バー部分の少なくとも一部の形状を折れ曲がった形状するにすることで、第1バー部分の全長を相対的に長くする(つまり、第2バー部分の全長よりも長くする)ことができる。 If comprised in this way, by making the shape of at least one part of a 1st bar part into the bent shape, the full length of a 1st bar part is made comparatively long (that is, rather than the full length of a 2nd bar part). Can be longer).
 尚、第1バー部分の形状が折れ曲がった形状とは、例えば、前記支持部から前記可動部に向かうように前記トーションバーが伸長する方向に対して、第1バー部分が一旦異なる方向に向けて伸長した後に元の方向に戻るように伸長する形状や、第1バー部分が蛇行しながら伸長する形状や、第1バー部分がジグザグ状に折れ曲がりながら伸長する形状等が一例としてあげられる。 In addition, the shape where the shape of the first bar portion is bent means, for example, that the first bar portion is once directed in a different direction with respect to the direction in which the torsion bar extends from the support portion toward the movable portion. Examples include a shape that expands so as to return to the original direction after expansion, a shape that expands while the first bar portion meanders, a shape that expands while the first bar portion is bent in a zigzag shape, and the like.
 また、この場合には、第2バー部分は、支持部から可動部に向かうようにトーションバーが伸長する方向と交わる方向に折れ曲がっていない形状を有していることが好ましい。例えば、第2バー部分は、支持部から可動部に向けて(或いは、支持部とトーションバーとの接続点から可動部とトーションバーとの接続点に向けて)最短経路を通過する形状を有していてもよい。但し、第2バー部分は、支持部から可動部に向かうように前記トーションバーが伸長する方向と交わる方向に折れ曲がっている形状を有していてもよい。同様に、第2バー部分は、支持部から可動部に向けて(或いは、支持部とトーションバーとの接続点から可動部とトーションバーとの接続点に向けて)最短経路を通過しない形状を有していてもよい。 Further, in this case, it is preferable that the second bar portion has a shape that is not bent in a direction intersecting with a direction in which the torsion bar extends so as to go from the support portion to the movable portion. For example, the second bar portion has a shape that passes through the shortest path from the support portion toward the movable portion (or from the connection point between the support portion and the torsion bar to the connection point between the movable portion and the torsion bar). You may do it. However, the second bar portion may have a shape that is bent in a direction intersecting with a direction in which the torsion bar extends so as to go from the support portion to the movable portion. Similarly, the second bar portion has a shape that does not pass through the shortest path from the support portion toward the movable portion (or from the connection point between the support portion and the torsion bar to the connection point between the movable portion and the torsion bar). You may have.
 上述の如く第1バー部分の全長が第2バー部分の全長よりも長いアクチュエータの態様では、前記第1バー部分は、前記支持部から前記可動部に向かうように前記トーションバーが伸長する方向とは逆の方向に向かって少なくとも1回以上折り返された形状を有しているように構成してもよい。 In the aspect of the actuator in which the total length of the first bar portion is longer than the total length of the second bar portion as described above, the first bar portion extends in the direction in which the torsion bar extends from the support portion toward the movable portion. May be configured to have a shape that is folded at least once in the opposite direction.
 このように構成すれば、第1バー部分の少なくとも一部の形状を折り返された形状するにすることで、第1バー部分の全長を相対的に長くする(つまり、第2バー部分の全長よりも長くする)ことができる。 If comprised in this way, by making the shape of at least one part of the 1st bar part into the shape where it turned up, the full length of the 1st bar part is made relatively long (that is, from the full length of the 2nd bar part) Can also be long).
 尚、第1バー部分の形状が折り返された形状とは、例えば、前記支持部から前記可動部に向かうように前記トーションバーが伸長する方向に対して伸長している第1バー部分が、当該方向に対して90度以上の角度を有して折れ曲がる(つまり、折り返される)形状等が一例としてあげられる。 Note that the shape of the first bar portion being folded back means, for example, that the first bar portion extending in the direction in which the torsion bar extends from the support portion toward the movable portion is An example is a shape that is bent (that is, folded) at an angle of 90 degrees or more with respect to the direction.
 また、この場合には、第2バー部分は、支持部から可動部に向かうようにトーションバーが伸長する方向とは逆の方向に向かって折り返されていない形状を有していることが好ましい。例えば、第2バー部分は、支持部から可動部に向けて(或いは、支持部とトーションバーとの接続点から可動部とトーションバーとの接続点に向けて)最短経路を通過する形状を有していてもよい。但し、第2バー部分は、支持部から可動部に向かうように前記トーションバーが伸長する方向とは逆の方向に向かって折り返された形状を有していてもよい。同様に、第2バー部分は、支持部から可動部に向けて(或いは、支持部とトーションバーとの接続点から可動部とトーションバーとの接続点に向けて)最短経路を通過しない形状を有していてもよい。 In this case, the second bar portion preferably has a shape that is not folded back in the direction opposite to the direction in which the torsion bar extends so as to go from the support portion to the movable portion. For example, the second bar portion has a shape that passes through the shortest path from the support portion toward the movable portion (or from the connection point between the support portion and the torsion bar to the connection point between the movable portion and the torsion bar). You may do it. However, the second bar portion may have a shape folded back in a direction opposite to the direction in which the torsion bar extends so as to go from the support portion to the movable portion. Similarly, the second bar portion has a shape that does not pass through the shortest path from the support portion toward the movable portion (or from the connection point between the support portion and the torsion bar to the connection point between the movable portion and the torsion bar). You may have.
 上述の如く第1バー部分の全長が第2バー部分の全長よりも長いアクチュエータの態様では、前記可動部は、所定の回転軸に沿って回転するように遥動し、前記第1バー部分の少なくとも一部は、前記回転軸に沿った方向とは異なる方向に伸長するように形成され、前記第2バー部分は、前記回転軸に沿った方向に伸長するように形成されるように構成してもよい。 As described above, in the aspect of the actuator in which the total length of the first bar portion is longer than the total length of the second bar portion, the movable portion swings so as to rotate along a predetermined rotation axis, At least a part of the second bar portion is formed to extend in a direction different from the direction along the rotation axis, and the second bar portion is formed to extend in a direction along the rotation axis. May be.
 このように構成すれば、第1バー部分の形状を回転軸に沿った方向とは異なる方向に伸長する形状するにすることで、回転軸に沿った方向に伸長する形状を有している第2バー部分の全長と比較して、第1バー部分の全長を相対的に長くすることができる。 If comprised in this way, it has the shape extended in the direction along a rotating shaft by making the shape of a 1st bar part the shape extended in a direction different from the direction along a rotating shaft. Compared to the total length of the two bar portions, the total length of the first bar portions can be made relatively long.
 本実施形態のアクチュエータの他の態様では、前記第1バー部分は、前記第2バー部分よりも薄い。 In another aspect of the actuator of the present embodiment, the first bar portion is thinner than the second bar portion.
 この態様によれば、第1バー部分の厚さを相対的に薄くすることで、第1バー部分に加わる応力の最大値を相対的に小さくすることができる。同様に、第2バー部分の厚さを相対的に厚くすることで、第2バー部分に加わる応力の最大値を相対的に大きくすることができる。つまり、第1バー部分の厚さを第2バー部分の厚さよりも薄くすることで、第1バー部分に加わる応力の最大値を第2バー部分に加わる応力の最大値よりも小さくすることができる。 According to this aspect, the maximum value of the stress applied to the first bar portion can be relatively reduced by relatively reducing the thickness of the first bar portion. Similarly, the maximum value of the stress applied to the second bar portion can be relatively increased by relatively increasing the thickness of the second bar portion. That is, the maximum value of the stress applied to the first bar portion can be made smaller than the maximum value of the stress applied to the second bar portion by making the thickness of the first bar portion thinner than the thickness of the second bar portion. it can.
 本実施形態のアクチュエータの他の態様では、前記可動部の遥動に対する前記第2バー部分の寄与度は、前記可動部の遥動に対する前記第1バー部分の寄与度よりも大きい。 In another aspect of the actuator of the present embodiment, the contribution of the second bar part to the swing of the movable part is greater than the contribution of the first bar part to the swing of the movable part.
 この態様によれば、第2バー部分が主として可動部の遥動の態様を規定する。つまり、可動部の遥動の態様に対して第1バー部分が与える影響は、第2バー部分が与える影響よりも小さくなる。言い換えれば、第2バー部分が主としてトーションバーの撓み又はねじれの動作を規定する。つまり、トーションバーの撓み又はねじれの動作に対して、第1バー部分が与える影響は、第2バー部分が与える影響よりも小さくなる。 According to this aspect, the second bar portion mainly defines the swinging aspect of the movable part. That is, the influence of the first bar portion on the swinging mode of the movable portion is smaller than the influence of the second bar portion. In other words, the second bar portion mainly defines the bending or twisting motion of the torsion bar. That is, the influence of the first bar portion on the bending or twisting operation of the torsion bar is smaller than the influence of the second bar portion.
 その結果、可動部を遥動させるトーションバーの撓み又はねじれの動作を主として規定するがゆえに、第2バー部分には、相対的に大きな応力が加わる。しかしながら、第2バー部分には配線が形成されていないため、トーションバーの撓み又はねじれ等に起因して配線が断線するおそれは相対的に低い。一方で、可動部を遥動させるトーションバーの撓み又はねじれの動作を主として規定していないがゆえに、第1バー部分に加わる応力は、可動部を遥動させるトーションバーの撓み又はねじれの動作を主として規定する第2バー部分に加わる応力よりも小さくなる。従って、第1バー部分に形成された配線が、トーションバーの撓み又はねじれ等に起因して断線するおそれは相対的に低い。 As a result, a relatively large stress is applied to the second bar portion because it mainly regulates the bending or twisting motion of the torsion bar that causes the movable portion to move farther. However, since no wiring is formed in the second bar portion, there is a relatively low possibility that the wiring is disconnected due to bending or twisting of the torsion bar. On the other hand, since the bending or twisting operation of the torsion bar that swings the movable part is not mainly defined, the stress applied to the first bar portion causes the bending or twisting operation of the torsion bar that swings the movable part. It becomes smaller than the stress applied to the second bar portion which is mainly defined. Therefore, there is a relatively low possibility that the wiring formed in the first bar portion will be disconnected due to bending or twisting of the torsion bar.
 尚、トーションバーの撓み又はねじれによって可動部が遥動することを考慮すれば、「可動部の遥動に対する寄与度」とは、トーションバーの撓み又はねじれの動作を規定する度合い(ないしは、割合)を示すとも言える。 In consideration of the fact that the movable part swings due to the bending or twisting of the torsion bar, the “contribution to the swinging of the moving part” is the degree (or percentage) that defines the bending or twisting operation of the torsion bar. ).
 本実施形態のアクチュエータの他の態様では、前記第1バー部分が伸長する方向における前記第1バー部分の幅は、前記第2バー部分が伸長する方向における前記第2バー部分の幅よりも太い。 In another aspect of the actuator of the present embodiment, the width of the first bar portion in the direction in which the first bar portion extends is greater than the width of the second bar portion in the direction in which the second bar portion extends. .
 この態様によれば、配線を形成するがゆえに当該配線の幅によって定まる所定幅よりも補足することができないという制約がある第1バー部分に対して、第2バー部分はそのような制約がない。このため、第2バー部分は、いわゆるトーションバーとして理想的な細い棒状の形状を有することができ、結果として、主として可動部の遥動の態様を規定することができる。言い換えれば、第2バー部分が主としてトーションバーの撓み又はねじれの動作を規定することができる。その結果、可動部を遥動させるトーションバーの撓み又はねじれの動作を主として規定するがゆえに、第2バー部分には、相対的に大きな応力が加わる。しかしながら、第2バー部分には配線が形成されていないため、トーションバーの撓み又はねじれ等に起因して配線が断線するおそれは相対的に低い。 According to this aspect, since the wiring is formed, the second bar portion does not have such a restriction with respect to the first bar portion, which has a restriction that the predetermined width determined by the width of the wiring cannot be supplemented. . For this reason, the second bar portion can have an ideal thin rod-like shape as a so-called torsion bar, and as a result, it is possible to mainly define the mode of swinging of the movable portion. In other words, the second bar portion can mainly define the bending or twisting motion of the torsion bar. As a result, a relatively large stress is applied to the second bar portion because it mainly defines the bending or twisting motion of the torsion bar that causes the movable portion to swing. However, since no wiring is formed in the second bar portion, there is a relatively low possibility that the wiring is disconnected due to bending or twisting of the torsion bar.
 本実施形態のアクチュエータの他の態様では、前記第1バー部分は、前記第2バー部分と物理的に分離している。 In another aspect of the actuator of the present embodiment, the first bar portion is physically separated from the second bar portion.
 この態様によれば、配線が形成される第1バー部分と配線が形成される第2バー部分とを物理的に分離することができるため、配線の断線をより一層好適に防ぐことができる。 According to this aspect, since the first bar portion where the wiring is formed and the second bar portion where the wiring is formed can be physically separated, the disconnection of the wiring can be more suitably prevented.
 本実施形態のアクチュエータの他の態様では、前記第1バー部分と前記第2バー部分とは少なくとも1回以上互いに交差すると共に、当該交差する部分において前記第1バー部分の少なくとも一部が前記第2バー部分の少なくとも一部と一体的に形成されている。 In another aspect of the actuator of the present embodiment, the first bar portion and the second bar portion intersect each other at least once, and at least a part of the first bar portion in the intersecting portion is the first bar portion. The two bar portions are formed integrally with at least a part.
 この態様では、第1バー部分と第2バー部分とが少なくとも1回以上一体化される(言い換えれば、接合される)ため、第1バー部分の単独での撓み又はねじれ(或いは、共振)を好適に防ぐことができる。つまり、第1バー部分の単独での撓み又はねじれ(或いは、共振)によって可動部の遥動の態様に悪影響が生ずる事態を好適に防ぐことができる。 In this aspect, since the first bar portion and the second bar portion are integrated at least once (in other words, joined), the first bar portion alone is bent or twisted (or resonated). It can prevent suitably. That is, it is possible to suitably prevent a situation in which the swinging mode of the movable part is adversely affected by the bending or twisting (or resonance) of the first bar portion alone.
 本実施形態のアクチュエータの他の態様では、前記可動部は、所定の回転軸に沿って回転するように遥動し、前記第1バー部分は、前記回転軸とは異なる位置に形成され、前記第2バー部分は、前記回転軸上に形成される。 In another aspect of the actuator of the present embodiment, the movable portion swings so as to rotate along a predetermined rotation axis, and the first bar portion is formed at a position different from the rotation axis, The second bar portion is formed on the rotation shaft.
 この態様では、第2バー部分は、回転軸上に形成されるがゆえに、トーションバーの撓み又はねじれの動作を主として規定することができる。その結果、第2バー部分に加わる応力の最大値を相対的に大きくすることができる。一方で、第1バー部分は、回転軸上に形成されないがゆえに、トーションバーの撓み又はねじれの動作を主として規定することがあまりない。その結果、第1バー部分に加わる応力の最大値を相対的に小さくすることができる。つまり、第1バー部分に加わる応力の最大値を第2バー部分に加わる応力の最大値よりも小さくすることができる。 In this aspect, since the second bar portion is formed on the rotating shaft, it is possible to mainly define the bending or twisting operation of the torsion bar. As a result, the maximum value of stress applied to the second bar portion can be relatively increased. On the other hand, since the first bar portion is not formed on the rotation axis, the first bar portion rarely mainly defines the bending or twisting operation of the torsion bar. As a result, the maximum value of stress applied to the first bar portion can be relatively reduced. That is, the maximum value of stress applied to the first bar portion can be made smaller than the maximum value of stress applied to the second bar portion.
 本実施形態のアクチュエータの他の態様では、前記トーションバーは、前記支持部の内側の相対向する2つの辺から前記可動部を挟み込むように伸びる1対のトーションバーであり、前記一対のトーションバーの少なくとも一方は、前記第1バー部分と前記第2バー部分とを含む。 In another aspect of the actuator of the present embodiment, the torsion bars are a pair of torsion bars extending so as to sandwich the movable part from two opposite sides inside the support part, and the pair of torsion bars At least one includes the first bar portion and the second bar portion.
 この態様では、可動部を挟みこむ一対のトーションバーのうちの一方が、第1バー部分と第2バー部分の双方を含む。つまり、可動部の両側にトーションバーが配置されるアクチュエータにおいて、可動部の片側に、第1バー部分と第2バー部分の双方が配置される。 In this aspect, one of the pair of torsion bars sandwiching the movable portion includes both the first bar portion and the second bar portion. That is, in the actuator in which the torsion bars are arranged on both sides of the movable part, both the first bar part and the second bar part are arranged on one side of the movable part.
 本実施形態のアクチュエータの他の態様では、前記可動部は、所定の回転軸に沿って回転するように遥動し、前記第1バー部分及び前記第2バー部分の少なくとも一方は、前記回転軸に対して対称となる形状を有している。 In another aspect of the actuator of the present embodiment, the movable portion swings so as to rotate along a predetermined rotation axis, and at least one of the first bar portion and the second bar portion is the rotation shaft. Have a symmetrical shape.
 この態様によれば、可動部の遥動(つまり、回転軸に沿った回転)が相対的にスムーズに行われる。従って、可動部の通常の遥動に大きな影響を与えることなく、トーションバーを、第1バー部分と第2バー部分とに区別することができる。 According to this aspect, the swinging of the movable part (that is, rotation along the rotation axis) is performed relatively smoothly. Therefore, the torsion bar can be distinguished from the first bar portion and the second bar portion without greatly affecting the normal swing of the movable portion.
 本実施形態のこのような作用及び他の利得は次に説明する実施例から明らかにされる。 Such an operation and other advantages of the present embodiment will be clarified from examples described below.
 以上説明したように、本実施形態のアクチュエータによれば、可動部と、支持部と、トーションバーと、駆動コイルとを備え、トーションバーは、配線が形成される第1バー部分及び配線が形成されない第2バー部分を含み、第1バー部分に加わる応力の最大値が第2バー部分に加わる応力の最大値よりも小さくなる。従って、トーションバーに形成される配線の断線を好適に防ぎながらトーションバーによって支持される可動部を遥動させることができる。 As described above, according to the actuator of the present embodiment, the movable portion, the support portion, the torsion bar, and the drive coil are provided, and the torsion bar is formed with the first bar portion where the wiring is formed and the wiring. The maximum value of the stress applied to the first bar portion is smaller than the maximum value of the stress applied to the second bar portion. Therefore, it is possible to move the movable part supported by the torsion bar while suitably preventing disconnection of the wiring formed on the torsion bar.
 以下、実施例について図を参照しつつ説明する。 Hereinafter, examples will be described with reference to the drawings.
 (1)第1実施例
 以下、図1及びを参照して、第1実施例のアクチュエータ101について説明する。図1は、第1実施例のアクチュエータ101の構成の一例を示す平面図である。図2は、第1実施例のアクチュエータ101が備えるトーションバー130及び配線140の形状の詳細を示す詳細拡大図である。
(1) First Embodiment Hereinafter, the actuator 101 of the first embodiment will be described with reference to FIG. FIG. 1 is a plan view showing an example of the configuration of the actuator 101 of the first embodiment. FIG. 2 is a detailed enlarged view showing details of the shapes of the torsion bar 130 and the wiring 140 included in the actuator 101 of the first embodiment.
 図1に示すように、第1実施例のアクチュエータ101は、例えばレーザ光のスキャニングに用いられるプレーナ型電磁駆動アクチュエータ(即ち、MEMSスキャナ)である。アクチュエータ101は、支持部110と、可動部120と、一対のトーションバー130と、一対の永久磁石160とを備えている。 As shown in FIG. 1, the actuator 101 according to the first embodiment is a planar electromagnetic drive actuator (that is, a MEMS scanner) used for, for example, laser beam scanning. The actuator 101 includes a support part 110, a movable part 120, a pair of torsion bars 130, and a pair of permanent magnets 160.
 支持部110、可動部120及び一対のトーションバー130は、例えばシリコン基板等の非磁性基板から一体的に形成されている。即ち、支持部110、可動部120及び一対のトーションバー130は、例えばシリコン基板等の非磁性基板の一部が除去されることにより間隙が形成されることで形成されている。このときの形成プロセスとして、MEMSプロセスが用いられることが好ましい。尚、シリコン基板に代えて、任意の弾性材料から、支持部110、可動部120及び一対のトーションバー130が一体的に形成されてもよい。 The support portion 110, the movable portion 120, and the pair of torsion bars 130 are integrally formed from a nonmagnetic substrate such as a silicon substrate, for example. That is, the support part 110, the movable part 120, and the pair of torsion bars 130 are formed by forming a gap by removing a part of a nonmagnetic substrate such as a silicon substrate. A MEMS process is preferably used as the formation process at this time. Instead of the silicon substrate, the support portion 110, the movable portion 120, and the pair of torsion bars 130 may be integrally formed from an arbitrary elastic material.
 支持部110は、可動部120を取り囲むような枠形状を有しており、可動部120の両側に位置する(言い換えれば、可動部120の両側から当該可動部を挟み込む)一対のトーションバー130によって可動部120と接続されている。 The support part 110 has a frame shape surrounding the movable part 120, and is located on both sides of the movable part 120 (in other words, sandwiching the movable part from both sides of the movable part 120) by a pair of torsion bars 130. The movable part 120 is connected.
 可動部120は、揺動可能なように一対のトーションバー130によって支持部110に軸支されている。可動部120の表面には、レーザ光を反射する不図示のミラーが形成される。可動部120の表面には、更に、駆動コイル140が形成されている。但し、駆動コイル140は、可動部120の内部に形成されてもよい。 The movable part 120 is pivotally supported on the support part 110 by a pair of torsion bars 130 so as to be swingable. A mirror (not shown) that reflects the laser light is formed on the surface of the movable portion 120. A drive coil 140 is further formed on the surface of the movable portion 120. However, the drive coil 140 may be formed inside the movable part 120.
 駆動コイル140は、例えば、可動部120の表面に形成される不図示のミラーを取り囲むように伸長するコイルである。駆動コイル140は、例えば相対的に導電率の高い材料(例えば、金や銅等)を用いて形成されてもよい。また、駆動コイル140は、めっきプロセスやスパッタリング法等の半導体製造プロセスを用いて形成されてもよい。或いは、駆動コイル140は、支持部110、可動部120及び一対のトーションバー130を形成するためのシリコン基板に対してインプラント法を用いて埋め込まれてもよい。尚、図1上では、図面の見やすさを重視して、駆動コイル140の外形を簡略化して記載してあるが、実際には、駆動コイル140は、可動部120の表面上に形成された一又は複数の巻き線によって構成されている。 The drive coil 140 is, for example, a coil that extends so as to surround a mirror (not shown) formed on the surface of the movable part 120. The drive coil 140 may be formed using, for example, a material having relatively high conductivity (for example, gold or copper). The drive coil 140 may be formed using a semiconductor manufacturing process such as a plating process or a sputtering method. Alternatively, the drive coil 140 may be embedded in a silicon substrate for forming the support part 110, the movable part 120, and the pair of torsion bars 130 using an implant method. In FIG. 1, the outer shape of the drive coil 140 is simplified for the sake of easy viewing, but in actuality, the drive coil 140 is formed on the surface of the movable portion 120. It is constituted by one or a plurality of windings.
 駆動コイル140には、支持部110上に形成されている電源端子170及び当該電源端子170と駆動コイル140とを電気的に接続するための配線150であって且つトーションバー130上に形成された配線150を介して、電源から制御電流が供給される。制御電流は、可動部120を遥動させるための制御電流であって、典型的には、可動部120が遥動する周波数と同期した周波数の信号成分を含む交流電流である。尚、電源は、アクチュエータ101自身が備えている電源であってもよいし、アクチュエータ101の外部に用意される電源であってもよい。 The drive coil 140 includes a power terminal 170 formed on the support 110 and a wiring 150 for electrically connecting the power terminal 170 and the drive coil 140, and is formed on the torsion bar 130. A control current is supplied from the power supply via the wiring 150. The control current is a control current for swinging the movable portion 120, and is typically an alternating current including a signal component having a frequency synchronized with the frequency at which the movable portion 120 swings. The power source may be a power source provided in the actuator 101 itself, or a power source prepared outside the actuator 101.
 一対のトーションバー130は、可動部120が支持部110に対して揺動可能なように、可動部120と支持部110とを接続する。一対のトーションバー130の弾性によって、可動部120は、一対のトーションバー130が伸長する方向に沿った軸を中心軸(言い換えれば、回転軸)として回転するように遥動する。つまり、可動部120は、図1における左右の方向に沿った軸を中心軸として、当該中心軸の周りで回転するように遥動する。 The pair of torsion bars 130 connect the movable portion 120 and the support portion 110 so that the movable portion 120 can swing with respect to the support portion 110. Due to the elasticity of the pair of torsion bars 130, the movable portion 120 swings so as to rotate about an axis along the direction in which the pair of torsion bars 130 extends as a central axis (in other words, a rotation axis). That is, the movable unit 120 swings so as to rotate around the central axis with the axis along the left-right direction in FIG. 1 as the central axis.
 一対の永久磁石160は、支持部110の外部に取り付けられている。一対の永久磁石160は、駆動コイル140に対して所定の静磁界を印加することができるように、その磁極の向きが適切に設定されていることが好ましい。尚、一対の永久磁石160には、静磁界の強度を高めるために、ヨークが付加されていてもよい。 The pair of permanent magnets 160 are attached to the outside of the support part 110. The pair of permanent magnets 160 preferably have their magnetic poles appropriately set so that a predetermined static magnetic field can be applied to the drive coil 140. Note that a yoke may be added to the pair of permanent magnets 160 in order to increase the strength of the static magnetic field.
 このような第1実施例のアクチュエータ101が動作する(具体的には、可動部120が遥動する)場合には、まず、電源から、電源端子170及び配線150を介して、駆動コイル140に対して制御電流が供給される。一方で、駆動コイル140には、一対の永久磁石160によって静磁界が印加されている。従って、駆動コイル140には、一対の永久磁石160から印加される静磁界と駆動コイル140に供給される制御電流との電磁相互作用に起因した力(つまり、ローレンツ力)が生ずる。その結果、駆動コイル140が形成されている可動部120は、一対の永久磁石160から印加される静磁界と駆動コイル140に供給される制御電流との電磁相互作用に起因したローレンツ力によって遥動する。つまり、可動部120は、図1における左右の方向に沿った軸を中心軸として回転するように遥動する。 When the actuator 101 according to the first embodiment operates (specifically, the movable unit 120 swings), first, from the power source to the drive coil 140 via the power terminal 170 and the wiring 150. In contrast, a control current is supplied. On the other hand, a static magnetic field is applied to the drive coil 140 by a pair of permanent magnets 160. Therefore, a force (that is, a Lorentz force) due to an electromagnetic interaction between the static magnetic field applied from the pair of permanent magnets 160 and the control current supplied to the drive coil 140 is generated in the drive coil 140. As a result, the movable part 120 in which the drive coil 140 is formed swings due to the Lorentz force resulting from the electromagnetic interaction between the static magnetic field applied from the pair of permanent magnets 160 and the control current supplied to the drive coil 140. To do. That is, the movable part 120 swings so as to rotate about the axis along the left and right direction in FIG.
 第1実施例では特に、一対のトーションバー130の夫々は、第1バー部分131と、第2バー部分132とを含んでいる。第1バー部分131と第2バー部分132とは、以下の図2を用いて説明される2つの視点から区別されることが好ましい。ここに、図2(a)は、トーションバー130の形状の詳細を示す拡大平面図であり、図2(b)は、トーションバー130が含む第1バー部分131の形状の詳細を示す拡大平面図であり、図2(b)は、トーションバー130が含む第2バー部分132の形状の詳細を示す拡大平面図である。尚、図2(a)から図2(c)では、トーションバー130の形状を分かりやすく説明するために、点線で示す配線150が併記されている。更に、図1及び図2では、一対のトーションバー130の双方が第1バー部分131と第2バー部分132とを含む例を説明しているが、一対のトーションバー130のいずれか一方のみが第1バー部分131と第2バー部分132とを含んでいてもよい。つまり、一対のトーションバー130のいずれか他方は、第1バー部分131と第2バー部分132とを含んでいなくともよい。 Particularly in the first embodiment, each of the pair of torsion bars 130 includes a first bar portion 131 and a second bar portion 132. The first bar portion 131 and the second bar portion 132 are preferably distinguished from two viewpoints described with reference to FIG. 2 below. 2A is an enlarged plan view showing details of the shape of the torsion bar 130, and FIG. 2B is an enlarged plan view showing details of the shape of the first bar portion 131 included in the torsion bar 130. FIG. 2B is an enlarged plan view showing details of the shape of the second bar portion 132 included in the torsion bar 130. In FIG. 2A to FIG. 2C, a wiring 150 indicated by a dotted line is also shown for easy understanding of the shape of the torsion bar 130. 1 and 2 illustrate an example in which both of the pair of torsion bars 130 include the first bar portion 131 and the second bar portion 132, but only one of the pair of torsion bars 130 is included. The first bar portion 131 and the second bar portion 132 may be included. That is, either one of the pair of torsion bars 130 may not include the first bar portion 131 and the second bar portion 132.
 まず、第1の視点として、第1バー部分131と第2バー部分132とは、可動部120が遥動した場合に加わる応力の最大値によって区別される。具体的には、可動部120が所定量だけ遥動した場合に第1バー部分131に加わる応力の最大値は、可動部120が所定量だけ遥動した場合に第2バー部分132に加わる応力の最大値よりも小さい。言い換えれば、可動部120が所定量だけ遥動した場合に第2バー部分132に加わる応力の最大値は、可動部120が所定量だけ遥動した場合に第1バー部分131に加わる応力の最大値よりも大きい。 First, as a first viewpoint, the first bar portion 131 and the second bar portion 132 are distinguished by the maximum value of stress applied when the movable portion 120 swings. Specifically, the maximum value of stress applied to the first bar portion 131 when the movable portion 120 swings by a predetermined amount is the stress applied to the second bar portion 132 when the movable portion 120 swings by a predetermined amount. Is less than the maximum value. In other words, the maximum value of the stress applied to the second bar portion 132 when the movable portion 120 swings by a predetermined amount is the maximum value of the stress applied to the first bar portion 131 when the movable portion 120 swings by a predetermined amount. Greater than the value.
 第1バー部分131に加わる応力の最大値と第2バー部分132に加わる応力の最大値とを異なるものとするために、第1実施例では、図2(a)から図2(c)に示すように、第1バー部分131の全長(具体的には、第1バー部分131が伸長する方向における全長)と、第2バー部分132の全長(具体的には、第2バー部分132が伸長する方向における全長)とを異なるものとしている。より具体的には、図2(a)から図2(c)に示すように、第1バー部分131の全長は、第2バー部分132の全長よりも長くなっている。言い換えれば、図2(a)から図2(c)に示すように、第2バー部分132の全長は、第1バー部分131の全長よりも短くなっている。つまり、第1実施例のトーションバー130は、全長が相対的に長い第1バー部分131と全長が相対的に短い第2バー部分132とを含んでいる。 In order to make the maximum value of the stress applied to the first bar portion 131 different from the maximum value of the stress applied to the second bar portion 132, in the first embodiment, from FIG. 2A to FIG. 2C. As shown, the total length of the first bar portion 131 (specifically, the total length in the direction in which the first bar portion 131 extends) and the total length of the second bar portion 132 (specifically, the second bar portion 132 is The total length in the extending direction) is different. More specifically, as shown in FIGS. 2A to 2C, the overall length of the first bar portion 131 is longer than the overall length of the second bar portion 132. In other words, as shown in FIGS. 2A to 2C, the total length of the second bar portion 132 is shorter than the total length of the first bar portion 131. That is, the torsion bar 130 of the first embodiment includes a first bar portion 131 having a relatively long overall length and a second bar portion 132 having a relatively short overall length.
 このように第1バー部分131の全長と第2バー部分132の全長とを異なるものとするために、第1実施例では、第1バー部分131の形状と第2バー部分132の形状とを異なるものとしている。 In this way, in order to make the total length of the first bar portion 131 different from the total length of the second bar portion 132, in the first embodiment, the shape of the first bar portion 131 and the shape of the second bar portion 132 are changed. It is different.
 具体的には、第1実施例では、第2バー部分132は、支持部110から可動部120に向かってトーションバー130が伸長する方向(具体的には、図1及び図2の左右の方向)に沿って伸長している。このとき、第2バー部分132は、支持部110から可動部120に向かってトーションバー130が伸長する方向(具体的には、図1及び図2の左右の方向)のみに沿って伸長していてもよい。一方で、第1バー部分131は、支持部110から可動部120に向かってトーションバー130が伸長する方向のみならず、当該方向から折れ曲がった方向にも伸長していてもよい。より具体的には、第1バー部分131は、支持部110から可動部120に向かってトーションバー130が伸長する方向と交わる方向(図1及び図2の例では、直交する方向)にも伸長していてもよい。 Specifically, in the first embodiment, the second bar portion 132 has a direction in which the torsion bar 130 extends from the support portion 110 toward the movable portion 120 (specifically, the left and right directions in FIGS. 1 and 2). ). At this time, the second bar portion 132 extends along only the direction in which the torsion bar 130 extends from the support unit 110 toward the movable unit 120 (specifically, the left and right directions in FIGS. 1 and 2). May be. On the other hand, the first bar portion 131 may extend not only in the direction in which the torsion bar 130 extends from the support part 110 toward the movable part 120 but also in a direction bent from the direction. More specifically, the first bar portion 131 extends in a direction (in the example of FIGS. 1 and 2, which is orthogonal to the direction in which the torsion bar 130 extends from the support portion 110 toward the movable portion 120. You may do it.
 尚、支持部110から可動部120に向かってトーションバー130が伸長する方向は、実質的には、可動部120の回転軸の方向と一致している。従って、可動部120の回転軸という観点から見れば、第2バー部分132は、可動部120の回転軸に沿った方向に伸長していると言える。一方で、第1バー部分131は、可動部120の回転軸に沿った方向とは異なる方向にも伸長していると言える。 The direction in which the torsion bar 130 extends from the support part 110 toward the movable part 120 substantially coincides with the direction of the rotation axis of the movable part 120. Therefore, from the viewpoint of the rotation axis of the movable part 120, it can be said that the second bar portion 132 extends in a direction along the rotation axis of the movable part 120. On the other hand, it can be said that the first bar portion 131 extends in a direction different from the direction along the rotation axis of the movable portion 120.
 更に、第1バー部分131は、支持部110から可動部120に向かう方向(図1及び図2における、左側から右側へ向かう方向)のみならず、当該方向とは逆の方向(図1及び図2における、右側から左側へ向かう方向)にも伸長していてもよい。或いは、第1バー部分131は、支持部110から可動部120に向かう方向(図1及び図2における、左側から右側へ向かう方向)のみならず、当該方向から見て折り返された方向(当該方向を基準として、少なくとも90度以上の角度を有して折り返された方向であって、図1及び図2における右側から左側へ向かう方向)にも伸長していてもよい。 Further, the first bar portion 131 not only has a direction from the support portion 110 toward the movable portion 120 (a direction from the left side to the right side in FIGS. 1 and 2) but also a direction opposite to the direction (FIGS. 1 and 2). 2 in the direction from the right side to the left side). Alternatively, the first bar portion 131 is not only the direction from the support portion 110 toward the movable portion 120 (the direction from the left side to the right side in FIGS. 1 and 2), but also the direction folded back from the direction (the direction). , And a direction folded at an angle of at least 90 degrees and extending in the direction from the right side to the left side in FIGS. 1 and 2.
 但し、第1バー部分131の全長と第2バー部分132の全長とを異なるものとするための具体的な手法が上述した例に限定されないことは言うまでもない。つまり、上述した例以外のその他の態様で第1バー部分131及び第2バー部分132を伸長させることで、第1バー部分131の全長と第2バー部分132の全長とを異なるものとしてもよいことは言うまでもない。 However, it goes without saying that the specific method for making the total length of the first bar portion 131 different from the total length of the second bar portion 132 is not limited to the above-described example. That is, the first bar portion 131 and the second bar portion 132 may be extended in other manners other than the example described above, so that the total length of the first bar portion 131 and the total length of the second bar portion 132 may be different. Needless to say.
 このように、第1バー部分131に加わる応力の最大値と第2バー部分132に加わる応力の最大値とを異なるものとする(可動部120が所定量だけ遥動した場合に第1バー部分131に加わる応力が、可動部120が同一の所定量だけ遥動した場合に第2バー部分132に加わる応力よりも小さくする)ことで、可動部120が遥動した場合に、第2バー部分132に応力を集中させることができる。 As described above, the maximum value of the stress applied to the first bar portion 131 is different from the maximum value of the stress applied to the second bar portion 132 (when the movable portion 120 is swung by a predetermined amount, the first bar portion The stress applied to 131 is smaller than the stress applied to the second bar portion 132 when the movable portion 120 is swung by the same predetermined amount), so that the second bar portion is moved when the movable portion 120 is swung. Stress can be concentrated at 132.
 このとき、可動部120の遥動に対して第1バー部分131が寄与する(言い換えれば、貢献する)度合と可動部120の遥動に対して第2バー部分132が寄与する度合いとが異なるものとなることが好ましい。具体的には、可動部120の遥動に対して第1バー部分131が寄与する度合を、可動部120の遥動に対して第2バー部分132が寄与する度合いよりも小さくすることが好ましい。言い換えれば、可動部120の遥動に対して第2バー部分132が寄与する度合を、可動部120の遥動に対して第1バー部分131が寄与する度合いよりも大きくすることが好ましい。この場合、可動部120は、主として、第2バー部分132の撓み又はねじれに起因して遥動する。 At this time, the degree to which the first bar portion 131 contributes (in other words, contributes) to the sway of the movable part 120 is different from the degree to which the second bar part 132 contributes to the sway of the movable part 120. It is preferable to become a thing. Specifically, it is preferable that the degree to which the first bar portion 131 contributes to the swing of the movable portion 120 is smaller than the degree to which the second bar portion 132 contributes to the swing of the movable portion 120. . In other words, it is preferable that the degree to which the second bar portion 132 contributes to the swing of the movable portion 120 is greater than the degree to which the first bar portion 131 contributes to the swing of the movable portion 120. In this case, the movable portion 120 swings mainly due to the bending or twisting of the second bar portion 132.
 尚、可動部120の遥動に対する寄与度を相対的に大きくするという観点から見れば、少なくとも第2バー部分132は、可動部120の回転軸上に位置することが好ましい。但し、第2バー部分132が可動部120の回転軸上に位置しなくともよい。第2バー部分132が可動部120の回転軸上に位置しない場合であっても、可動部120の遥動に対して第2バー部分132が寄与する度合を、可動部120の遥動に対して第1バー部分131が寄与する度合いよりも大きくすることができる。また、第1バー部分131もまた、その少なくとも一部が可動部120の回転軸上に位置していることが好ましい。但し、第1バー部分131は、可動部120の回転軸上に位置していなくともよい。 Note that, from the viewpoint of relatively increasing the contribution of the movable unit 120 to the swing, it is preferable that at least the second bar portion 132 is located on the rotation axis of the movable unit 120. However, the second bar portion 132 may not be located on the rotation axis of the movable portion 120. Even when the second bar portion 132 is not positioned on the rotation axis of the movable portion 120, the degree to which the second bar portion 132 contributes to the swing of the movable portion 120 is determined with respect to the swing of the movable portion 120. Thus, the degree to which the first bar portion 131 contributes can be increased. In addition, it is preferable that at least a part of the first bar portion 131 is located on the rotation axis of the movable portion 120. However, the first bar portion 131 may not be located on the rotation axis of the movable portion 120.
 また、可動部120の遥動に対する寄与度を相対的に大きくするという観点から見れば、第2バー部分132は、上述した又は後述する条件若しくは制約を満たししつつも、できるだけ硬いことが好ましい。特に、第2バー部分132は、可動部120の回転方向に対しては柔らかい一方でそれ以外の方向に対して硬いことが好ましい。また、第1バー部分131は、上述した又は後述する条件若しくは制約を満たししつつも、できるだけ柔らかいことが好ましい。但し、第1バー部分131と第2バー部分132との間の相対的な硬さの関係は一律に決まるとは限らず、第1バー部分131が第2バー部分132よりも硬くなってもよいし、第2バー部分132が第1バー部分131よりも硬くなってもよい。尚、第1バー部分131も、第2バー部分132と同様に、可動部120の回転方向に対しては柔らかい一方でそれ以外の方向に対して硬いことが好ましい。結果、第1バー部分131及び第2バー部分132は、全体として、可動部120の遥動に対してはいわば1本のトーションバー130として適切に作用する程度の硬さを有していることが好ましい。 Further, from the viewpoint of relatively increasing the degree of contribution of the movable part 120 to the sway, it is preferable that the second bar portion 132 is as hard as possible while satisfying the conditions or constraints described above or described later. In particular, it is preferable that the second bar portion 132 is soft with respect to the rotation direction of the movable portion 120 but hard with respect to other directions. Further, it is preferable that the first bar portion 131 is as soft as possible while satisfying the conditions or restrictions described above or described later. However, the relative hardness relationship between the first bar portion 131 and the second bar portion 132 is not always determined uniformly, and even if the first bar portion 131 is harder than the second bar portion 132. Alternatively, the second bar portion 132 may be harder than the first bar portion 131. In addition, it is preferable that the 1st bar part 131 is also hard with respect to the other direction like the 2nd bar part 132, although it is soft with respect to the rotation direction of the movable part 120. As a result, the first bar portion 131 and the second bar portion 132 as a whole have a hardness that can act appropriately as a single torsion bar 130 with respect to the sway of the movable portion 120. Is preferred.
 但し、可動部120の遥動に対して第1バー部分131が寄与する度合と可動部120の遥動に対して第2バー部分132が寄与する度合いとが同一であってもよい。或いは、可動部120の遥動に対して第2バー部分132が寄与する度合が、可動部120の遥動に対して第1バー部分131が寄与する度合いよりも小さくなってもよい。 However, the degree to which the first bar portion 131 contributes to the swing of the movable portion 120 may be the same as the degree to which the second bar portion 132 contributes to the swing of the movable portion 120. Alternatively, the degree to which the second bar portion 132 contributes to the swaying of the movable part 120 may be smaller than the degree to which the first bar part 131 contributes to the swaying of the movable part 120.
 尚、上述の説明では、第1バー部分131に加わる応力の最大値と第2バー部分132に加わる応力の最大値とを異なるものとするために、第1バー部分131の全長を第2バー部分132の全長と異なるものとしている。しかしながら、第1バー部分131に加わる応力の最大値と第2バー部分132に加わる応力の最大値とを異なるものとするために、第1バー部分131及び第2バー部分132の夫々の全長を異なるものとすることに加えて又は代えて、第1バー部分131及び第2バー部分132の夫々のその他の特性(例えば、材料や材質や製造方法等)を異なるものとしてよい。 In the above description, in order to make the maximum value of the stress applied to the first bar portion 131 different from the maximum value of the stress applied to the second bar portion 132, the total length of the first bar portion 131 is set to the second bar. The total length of the portion 132 is different. However, in order to make the maximum value of the stress applied to the first bar portion 131 different from the maximum value of the stress applied to the second bar portion 132, the total length of each of the first bar portion 131 and the second bar portion 132 is increased. In addition to or instead of being different, the other characteristics (for example, material, material, manufacturing method, etc.) of the first bar portion 131 and the second bar portion 132 may be different.
 或いは、第1バー部分131に加わる応力の最大値と第2バー部分132に加わる応力の最大値とを異なるものとするために又は第1バー部分131に加わる応力の最大値と第2バー部分132に加わる応力の最大値とを異なるものとすることに加えて若しくは代えて、図2(a)から図2(c)に示すように、第1バー部分131の少なくとも一部の幅(具体的には、第1バー部分131が伸長する方向に沿った幅)と、第2バー部分132の少なくとも一部の幅(具体的には、第2バー部分132が伸長する方向に沿った幅)とを異なるものとしてもよい。より具体的には、図2(a)から図2(c)に示すように、第1バー部分131の幅は、第2バー部分132の幅よりも太くしてもよい。言い換えれば、図2(a)から図2(c)に示すように、第2バー部分132の幅は、第1バー部分131の幅よりも狭くしてもよい。つまり、第1実施例のトーションバー130は、幅が相対的に太い第1バー部分131と幅が相対的に狭い第2バー部分132とを含んでいてもよい。 Alternatively, the maximum value of stress applied to the first bar portion 131 is different from the maximum value of stress applied to the second bar portion 132, or the maximum value of stress applied to the first bar portion 131 and the second bar portion. In addition to or instead of making the maximum stress applied to 132 different, as shown in FIGS. 2 (a) to 2 (c), the width of at least a part of the first bar portion 131 (specifically, Specifically, the width along the direction in which the first bar portion 131 extends and the width of at least a part of the second bar portion 132 (specifically, the width along the direction in which the second bar portion 132 extends). ) May be different. More specifically, as shown in FIGS. 2A to 2C, the width of the first bar portion 131 may be larger than the width of the second bar portion 132. In other words, as shown in FIGS. 2A to 2C, the width of the second bar portion 132 may be narrower than the width of the first bar portion 131. That is, the torsion bar 130 of the first embodiment may include a first bar portion 131 having a relatively large width and a second bar portion 132 having a relatively small width.
 或いは、第1バー部分131に加わる応力の最大値と第2バー部分132に加わる応力の最大値とを異なるものとするために又は第1バー部分131に加わる応力の最大値と第2バー部分132に加わる応力の最大値とを異なるものとすることに加えて若しくは代えて、第1バー部分131の少なくとも一部の厚さ(具体的には、アクチュエータ101の厚み方向に沿った大きさ)と、第2バー部分132の少なくとも一部の厚さとを異なるものとしてもよい。より具体的には、例えば、第1バー部分131の厚さは、第2バー部分132の厚さよりも薄くしてもよい。言い換えれば、第2バー部分132の厚さは、第1バー部分131の厚さよりも狭くしてもよい。つまり、第1実施例のトーションバー130は、厚さが相対的に薄い第1バー部分131と厚さが相対的に厚い第2バー部分132とを含んでいてもよい。 Alternatively, the maximum value of stress applied to the first bar portion 131 is different from the maximum value of stress applied to the second bar portion 132, or the maximum value of stress applied to the first bar portion 131 and the second bar portion. In addition to or instead of making the maximum value of the stress applied to 132 different, the thickness of at least a portion of the first bar portion 131 (specifically, the thickness along the thickness direction of the actuator 101). The thickness of at least a part of the second bar portion 132 may be different. More specifically, for example, the thickness of the first bar portion 131 may be smaller than the thickness of the second bar portion 132. In other words, the thickness of the second bar portion 132 may be narrower than the thickness of the first bar portion 131. That is, the torsion bar 130 of the first embodiment may include a first bar portion 131 having a relatively small thickness and a second bar portion 132 having a relatively large thickness.
 或いは、第1バー部分131に加わる応力の最大値と第2バー部分132に加わる応力の最大値とを異なるものとするために又は第1バー部分131に加わる応力の最大値と第2バー部分132に加わる応力の最大値とを異なるものとすることに加えて若しくは代えて、第1バー部分131及び第2バー部分132の夫々のその他の特性(例えば、材料や材質や製造方法等)を異なるものとすることで、可動部120の遥動に対して第1バー部分131が寄与する度合と可動部120の遥動に対して第2バー部分132が寄与する度合いとを異なるものとしてもよい。この場合、第1バー部分131と第2バー部分132とは、可動部120が遥動した場合に加わる応力の最大値によって区別されることに代えて、可動部120の遥動に対して寄与する度合いによって区別される。 Alternatively, the maximum value of stress applied to the first bar portion 131 is different from the maximum value of stress applied to the second bar portion 132, or the maximum value of stress applied to the first bar portion 131 and the second bar portion. In addition to or instead of making the maximum stress applied to 132 different, other characteristics of the first bar portion 131 and the second bar portion 132 (for example, materials, materials, manufacturing methods, etc.) By making them different, the degree to which the first bar portion 131 contributes to the swing of the movable part 120 and the degree to which the second bar part 132 contributes to the swing of the movable part 120 may be different. Good. In this case, the first bar portion 131 and the second bar portion 132 contribute to the sway of the movable part 120 instead of being distinguished by the maximum value of the stress applied when the movable part 120 sways. It is distinguished by the degree to do.
 更に、第2の視点として、第1バー部分131と第2バー部分132とは、その上に駆動コイル140につながる配線150が形成されているか否かによって区別される。具体的には、第1バー部分131には、配線150が形成されている。一方で、第2バー部分132には、配線150が形成されていない。 Furthermore, as a second viewpoint, the first bar portion 131 and the second bar portion 132 are distinguished by whether or not the wiring 150 connected to the drive coil 140 is formed thereon. Specifically, a wiring 150 is formed in the first bar portion 131. On the other hand, the wiring 150 is not formed in the second bar portion 132.
 尚、駆動コイル140につながる配線150に加えて又は代えて、可動部120上に存在する任意の回路につながると共に当該任意の回路の動作に関連する有効な信号が供給される任意の配線が形成されているか否かによって、第1バー部分131と第2バー部分132とが区別されてもよい。この場合、第1バー部分131には、任意の配線が形成されている一方で、第2バー部分132には、任意の配線が形成されていない。 In addition to or instead of the wiring 150 connected to the drive coil 140, an arbitrary wiring connected to an arbitrary circuit existing on the movable unit 120 and supplied with an effective signal related to the operation of the arbitrary circuit is formed. The first bar portion 131 and the second bar portion 132 may be distinguished depending on whether or not they are set. In this case, an arbitrary wiring is formed on the first bar portion 131, while an arbitrary wiring is not formed on the second bar portion 132.
 但し、いわゆるダミーの配線(例えば、(i)供給される信号が、アクチュエータ101の動作に対して有効に使用されない配線や、(ii)断線したとしてもアクチュエータ101の正常な動作に対して何ら影響を及ぼさない配線等)については、第2バー部分132上に形成されていてもよい。 However, so-called dummy wiring (for example, (i) a signal to be supplied is not used effectively for the operation of the actuator 101, or (ii) even if it is disconnected, it has no effect on the normal operation of the actuator 101. May be formed on the second bar portion 132.
 以上説明したように、第1実施例のアクチュエータ101によれば、可動部120が遥動する場合には、第1バー部分131や第2バー部分132が可動部120を遥動させるようにトーションバー130が撓む又はねじれる。このとき、トーションバー130の撓み又はねじれ(言い換えれば、可動部120の遥動)に起因して相対的に硬い第2バー部分132に加わる応力は相対的に大きくなってしまう。しかるに、第2バー部分132には配線150が形成されていないため、トーションバーが第1バー部分と第2バー部分とに分離していない(つまり、1つのトーションバー上に配線が形成され且つ当該1つのトーションバーが可動部の遥動を規定する)比較例のアクチュエータと比較して、トーションバー130の撓み又はねじれ等に起因して配線150が断線するおそれは相対的に低い。 As described above, according to the actuator 101 of the first embodiment, when the movable part 120 swings, the torsion so that the first bar part 131 and the second bar part 132 swing the movable part 120 is performed. The bar 130 bends or twists. At this time, the stress applied to the relatively hard second bar portion 132 due to bending or twisting of the torsion bar 130 (in other words, the swing of the movable portion 120) becomes relatively large. However, since the wiring 150 is not formed in the second bar portion 132, the torsion bar is not separated into the first bar portion and the second bar portion (that is, the wiring is formed on one torsion bar and Compared to the actuator of the comparative example (the one torsion bar defines the swing of the movable part), the possibility that the wiring 150 is disconnected due to the bending or twisting of the torsion bar 130 is relatively low.
 一方で、可動部120が遥動する場合であっても、第1バー部分131に加わる応力は相対的に小さいままである。言い換えれば、可動部120が遥動する場合であっても、第1バー部分131に加わる応力は、第2バー部分132に加わる応力よりも小さくなる。従って、トーションバーが第1バー部分と第2バー部分とに分離していない(つまり、1つのトーションバー上に配線が形成され且つ当該1つのトーションバーが可動部の遥動を規定する)アクチュエータと比較して、第1バー部分131に形成された配線150が、トーションバー130の撓み又はねじれ等に起因して断線するおそれは相対的に低い。 On the other hand, even when the movable part 120 swings, the stress applied to the first bar portion 131 remains relatively small. In other words, even when the movable part 120 swings, the stress applied to the first bar portion 131 is smaller than the stress applied to the second bar portion 132. Therefore, the torsion bar is not separated into the first bar portion and the second bar portion (that is, the wiring is formed on one torsion bar and the one torsion bar defines the swing of the movable portion). Compared to the above, the wiring 150 formed in the first bar portion 131 is relatively less likely to be disconnected due to the torsion bar 130 being bent or twisted.
 その結果、第1実施例のアクチュエータ101によれば、トーションバー130に形成される配線150の断線を好適に防ぎながらトーションバー130によって支持される可動部120を遥動させることができる。 As a result, according to the actuator 101 of the first embodiment, it is possible to move the movable part 120 supported by the torsion bar 130 while suitably preventing the wire 150 formed on the torsion bar 130 from being disconnected.
 尚、第1実施例のアクチュエータ101によれば、第1バー部分131と第2バー部分132とが少なくとも1回以上交差している。尚、第1バー部分131と第2バー部分132とは、互いに交差する箇所で一体化されている(言い換えれば、結合ないしは統合されている)ことが好ましい。例えば、図1及び図2に示すアクチュエータ101では、各第2バー部分132の両端で第1バー部分131と交差しているため、第1バー部分131と第2バー部分132とは、6回交差している。つまり、図1及び図2に示すアクチュエータ101では、第1バー部分131と第2バー部分132とは、6箇所で一体化している。このように、第1バー部分131と第2バー部分132とが少なくとも1回以上交差する(言い換えれば、少なくとも1ヶ所以上で一体化する)ことで、第1バー部分131が単独で共振してしまうことが殆どなくなる。従って、トーションバー130を第1バー部分131と第2バー部分132とに分離したとしても、可動部120の遥動に与える影響は小さくなる又は殆どなくなる。 Note that, according to the actuator 101 of the first embodiment, the first bar portion 131 and the second bar portion 132 intersect at least once. In addition, it is preferable that the 1st bar part 131 and the 2nd bar part 132 are integrated in the location which mutually crosses (in other words, coupling | bonding or integration). For example, in the actuator 101 shown in FIGS. 1 and 2, since the first bar portion 131 intersects with the first bar portion 131 at both ends of each second bar portion 132, the first bar portion 131 and the second bar portion 132 are rotated six times. Crossed. That is, in the actuator 101 shown in FIGS. 1 and 2, the first bar portion 131 and the second bar portion 132 are integrated at six locations. As described above, the first bar portion 131 and the second bar portion 132 intersect at least once (in other words, at least one place is integrated), so that the first bar portion 131 resonates independently. There is almost no end. Therefore, even if the torsion bar 130 is separated into the first bar portion 131 and the second bar portion 132, the influence on the swing of the movable portion 120 is reduced or almost eliminated.
 また、トーションバー130は、第1バー部分131及び第2バー部分132以外のバー部分を更に含んでいてもよい。例えば、トーションバー130は、相対的に柔らかく且つ配線150が形成されない第3バー部分や、相対的に硬く且つ配線150が形成される第4バー部分を更に含んでいてもよい。 Further, the torsion bar 130 may further include a bar portion other than the first bar portion 131 and the second bar portion 132. For example, the torsion bar 130 may further include a third bar portion that is relatively soft and the wiring 150 is not formed, and a fourth bar portion that is relatively hard and the wiring 150 is formed.
 (2)第2実施例
 続いて、図3を参照して、第2実施例のアクチュエータ102について説明する。図3は、第2実施例のアクチュエータ102の構成の一例を示す平面図である。尚、第1実施例のアクチュエータ101が備える構成要素と同一の構成要素については、同一の参照符号を付してその詳細な説明については省略する。
(2) Second Embodiment Next, an actuator 102 according to a second embodiment will be described with reference to FIG. FIG. 3 is a plan view showing an example of the configuration of the actuator 102 of the second embodiment. Note that the same reference numerals are assigned to the same components as those provided in the actuator 101 of the first embodiment, and the detailed description thereof is omitted.
 図3に示すように、第2実施例のアクチュエータ102は、第1実施例のアクチュエータ101と比較して、第1バー部分131の全体と第2バー部分132の全体とが物理的に分断されている(言い換えれば、分離されている)という点で異なっている。つまり、第2実施例のアクチュエータ102では、第1バー部分131と第2バー部分132とが互いに1回も交差することなく(言い換えれば、一度も一体化することなく)、互いに別個独立に支持部110から可動部120に向かって伸長している。 As shown in FIG. 3, the actuator 102 of the second embodiment is physically separated from the entire first bar portion 131 and the entire second bar portion 132 as compared to the actuator 101 of the first embodiment. Are different (in other words, separated). In other words, in the actuator 102 of the second embodiment, the first bar portion 131 and the second bar portion 132 are supported independently of each other without crossing each other (in other words, never integrated). The portion 110 extends toward the movable portion 120.
 このような第2実施例のアクチュエータ102であっても、第1実施例のアクチュエータ101が享受することができる各種効果を好適に享受することができる。加えて、第1バー部分131と第2バー部分132とを完全に分離されているため、可動部120が遥動した場合の応力を第2バー部分132により一層集中させることができる。その結果、第1バー部分131上に形成される配線150の断線をより一層好適に防ぐことができる。 Even in the actuator 102 of the second embodiment, various effects that can be enjoyed by the actuator 101 of the first embodiment can be suitably enjoyed. In addition, since the first bar portion 131 and the second bar portion 132 are completely separated, the stress when the movable part 120 swings can be more concentrated on the second bar portion 132. As a result, disconnection of the wiring 150 formed on the first bar portion 131 can be more suitably prevented.
 (3)第3実施例
 続いて、図4を参照して、第3実施例のアクチュエータ103について説明する。図4は、第3実施例のアクチュエータ103の構成の一例を示す平面図である。尚、第1実施例のアクチュエータ101が備える構成要素と同一の構成要素については、同一の参照符号を付してその詳細な説明については省略する。
(3) Third Embodiment Next, the actuator 103 of the third embodiment will be described with reference to FIG. FIG. 4 is a plan view showing an example of the configuration of the actuator 103 of the third embodiment. Note that the same reference numerals are assigned to the same components as those provided in the actuator 101 of the first embodiment, and the detailed description thereof is omitted.
 図4に示すように、第3実施例のアクチュエータ103は、第1実施例のアクチュエータ101と比較して、第1バー部分131と第2バー部分132とが物理的に分離した状態で可動部120と接続されているという点で異なっている。尚、第1実施例のアクチュエータ101では、第1バー部分131と第2バー部分132とは、支持部110から可動部120に向かう途中の経路では一時的に分離しているものの、可動部120に接続する段階では一体化されている(或いは、第1バー部分131と第2バー部分132とを区別することができない)。尚、第3実施例のアクチュエータ103は、第1バー部分131と第2バー部分132とが物理的に一体化した状態(或いは、第1バー部分131と第2バー部分132とを区別することができない状態)で支持部110に接続されているという点では、第1実施例のアクチュエータ101と同一である。 As shown in FIG. 4, the actuator 103 of the third embodiment has a movable portion in a state where the first bar portion 131 and the second bar portion 132 are physically separated compared to the actuator 101 of the first embodiment. It is different in that it is connected to 120. In the actuator 101 of the first embodiment, the first bar portion 131 and the second bar portion 132 are temporarily separated on the way from the support portion 110 to the movable portion 120, but the movable portion 120. The first bar portion 131 and the second bar portion 132 cannot be distinguished from each other in the step of connecting to the first bar portion. In the actuator 103 of the third embodiment, the first bar portion 131 and the second bar portion 132 are physically integrated (or the first bar portion 131 and the second bar portion 132 are distinguished from each other). The actuator 101 is the same as the actuator 101 of the first embodiment in that it is connected to the support portion 110 in a state in which the actuator cannot be operated.
 このような第3実施例のアクチュエータ103であっても、第1実施例のアクチュエータ101が享受することができる各種効果を好適に享受することができる。 Even in the actuator 103 of the third embodiment, various effects that can be enjoyed by the actuator 101 of the first embodiment can be suitably enjoyed.
 (4)第4実施例
 続いて、図5を参照して、第4実施例のアクチュエータ104について説明する。図5は、第4実施例のアクチュエータ104の構成の一例を示す平面図である。尚、第1実施例のアクチュエータ101が備える構成要素と同一の構成要素については、同一の参照符号を付してその詳細な説明については省略する。
(4) Fourth Embodiment Next, an actuator 104 according to a fourth embodiment will be described with reference to FIG. FIG. 5 is a plan view showing an example of the configuration of the actuator 104 of the fourth embodiment. Note that the same reference numerals are assigned to the same components as those provided in the actuator 101 of the first embodiment, and the detailed description thereof is omitted.
 図5に示すように、第4実施例のアクチュエータ104は、第1実施例のアクチュエータ101と比較して、第1バー部分131と第2バー部分132とが物理的に分離した状態で支持部110と接続しているという点で異なっている。尚、第1実施例のアクチュエータ101では、第1バー部分131と第2バー部分132とは、支持部110から可動部120に向かう途中の経路では一時的に分離しているものの、支持部110に接続する段階では一体化されている(或いは、第1バー部分131と第2バー部分132とを区別することができない)。尚、第4実施例のアクチュエータ104は、第1バー部分131と第2バー部分132とが物理的に一体化した状態(或いは、第1バー部分131と第2バー部分132とを区別することができない状態)で可動部120と接続しているという点では、第1実施例のアクチュエータ101と同一である。 As shown in FIG. 5, the actuator 104 of the fourth embodiment has a support portion in a state where the first bar portion 131 and the second bar portion 132 are physically separated as compared with the actuator 101 of the first embodiment. 110 is different in that it is connected to 110. In the actuator 101 of the first embodiment, the first bar portion 131 and the second bar portion 132 are temporarily separated on the way from the support portion 110 to the movable portion 120, but the support portion 110. The first bar portion 131 and the second bar portion 132 cannot be distinguished from each other in the step of connecting to the first bar portion. In the actuator 104 of the fourth embodiment, the first bar portion 131 and the second bar portion 132 are physically integrated (or the first bar portion 131 and the second bar portion 132 are distinguished from each other. The actuator 101 is the same as the actuator 101 of the first embodiment in that it is connected to the movable part 120 in a state in which the actuator 101 cannot be operated.
 このような第4実施例のアクチュエータ104であっても、第1実施例のアクチュエータ101が享受することができる各種効果を好適に享受することができる。 Even in the actuator 104 of the fourth embodiment, various effects that can be enjoyed by the actuator 101 of the first embodiment can be suitably enjoyed.
 (5)第5実施例
 続いて、図6を参照して、第5実施例のアクチュエータ105について説明する。図6は、第5実施例のアクチュエータ105の構成の一例を示す平面図である。尚、第1実施例のアクチュエータ101が備える構成要素と同一の構成要素については、同一の参照符号を付してその詳細な説明については省略する。
(5) Fifth Embodiment Next, an actuator 105 according to a fifth embodiment will be described with reference to FIG. FIG. 6 is a plan view showing an example of the configuration of the actuator 105 of the fifth embodiment. Note that the same reference numerals are assigned to the same components as those provided in the actuator 101 of the first embodiment, and the detailed description thereof is omitted.
 図6に示すように、第5実施例のアクチュエータ105は、第1実施例のアクチュエータ101と比較して、第1バー部分131が、支持部110から可動部120に向かう方向から見て折り返された方向に伸長していない(言い換えれば、折り返されていない)という点で異なっている。尚、第1実施例のアクチュエータ101では、第1バー部分131は、その少なくとも一部が、支持部110から可動部120に向かう方向から見て折り返された方向に伸長している。 As shown in FIG. 6, the actuator 105 of the fifth embodiment is folded back when the first bar portion 131 is viewed from the support portion 110 toward the movable portion 120 as compared to the actuator 101 of the first embodiment. It is different in that it does not extend in the other direction (in other words, it is not folded). In the actuator 101 of the first embodiment, at least a part of the first bar portion 131 extends in a folded direction when viewed from the support portion 110 toward the movable portion 120.
 このような第5実施例のアクチュエータ105であっても、第1実施例のアクチュエータ101が享受することができる各種効果を好適に享受することができる。 Even in the actuator 105 of the fifth embodiment, various effects that can be enjoyed by the actuator 101 of the first embodiment can be suitably enjoyed.
 (6)第6実施例
 続いて、図7を参照して、第6実施例のアクチュエータ106について説明する。図7は、第6実施例のアクチュエータ106の構成の一例を示す平面図である。尚、第1実施例のアクチュエータ101が備える構成要素と同一の構成要素については、同一の参照符号を付してその詳細な説明については省略する。
(6) Sixth Embodiment Next, an actuator 106 according to a sixth embodiment will be described with reference to FIG. FIG. 7 is a plan view showing an example of the configuration of the actuator 106 of the sixth embodiment. Note that the same reference numerals are assigned to the same components as those provided in the actuator 101 of the first embodiment, and the detailed description thereof is omitted.
 図7に示すように、第6実施例のアクチュエータ106は、第1実施例のアクチュエータ101と比較して、可動部622の2軸駆動を行うことができるという点で異なっている。具体的には、第6実施例のアクチュエータ106は、支持部110と、可動枠621と、可動部622と、一対のトーションバー130と、一対のトーションバー630と、一対の永久磁石160とを備えている。 As shown in FIG. 7, the actuator 106 of the sixth embodiment is different from the actuator 101 of the first embodiment in that the movable portion 622 can be driven in two axes. Specifically, the actuator 106 of the sixth embodiment includes a support part 110, a movable frame 621, a movable part 622, a pair of torsion bars 130, a pair of torsion bars 630, and a pair of permanent magnets 160. I have.
 支持部110、可動枠621、可動部622、一対のトーションバー130及び一対のトーションバー630は、例えばシリコン基板等の非磁性基板から一体的に形成されている。即ち、支持部110、可動枠621、可動部622、一対のトーションバー130及び一対のトーションバー630は、例えばシリコン基板等の非磁性基板の一部が除去されることにより間隙が形成されることで形成されている。このときの形成プロセスとして、MEMSプロセスが用いられることが好ましい。尚、シリコン基板に代えて、任意の弾性材料から、支持部110、可動枠621、可動部622、一対のトーションバー130及び一対のトーションバー630が一体的に形成されてもよい。 The support part 110, the movable frame 621, the movable part 622, the pair of torsion bars 130, and the pair of torsion bars 630 are integrally formed from a nonmagnetic substrate such as a silicon substrate, for example. In other words, the support portion 110, the movable frame 621, the movable portion 622, the pair of torsion bars 130, and the pair of torsion bars 630 have a gap formed by removing a part of a nonmagnetic substrate such as a silicon substrate. It is formed with. A MEMS process is preferably used as the formation process at this time. Instead of the silicon substrate, the support part 110, the movable frame 621, the movable part 622, the pair of torsion bars 130, and the pair of torsion bars 630 may be integrally formed from an arbitrary elastic material.
 支持部110は、可動枠621を取り囲むような枠形状を有しており、可動枠621の両側に位置する(言い換えれば、可動枠621の両側から当該可動枠621を挟み込む)一対のトーションバー130によって可動枠621と接続されている。 The support part 110 has a frame shape surrounding the movable frame 621 and is located on both sides of the movable frame 621 (in other words, sandwiching the movable frame 621 from both sides of the movable frame 621). Is connected to the movable frame 621.
 可動枠621は、可動部622を取り囲むような枠形状を有しており、揺動可能なように一対のトーションバー130によって支持部110に軸支されている。可動枠120の表面には、駆動コイル140が形成されている。但し、駆動コイル140は、可動枠621の内部に形成されてもよい。 The movable frame 621 has a frame shape surrounding the movable portion 622, and is pivotally supported on the support portion 110 by a pair of torsion bars 130 so as to be swingable. A drive coil 140 is formed on the surface of the movable frame 120. However, the drive coil 140 may be formed inside the movable frame 621.
 駆動コイル140には、支持部110上に形成されている電源端子170及び当該電源端子170と駆動コイル140とを電気的に接続するための配線150であって且つトーションバー130上に形成された配線150を介して、電源から制御電流が供給される。制御電流は、可動枠621を遥動させるための制御電流であって、典型的には、可動枠621が遥動する周波数と同期した周波数の信号成分を含む交流電流である。 The drive coil 140 includes a power terminal 170 formed on the support 110 and a wiring 150 for electrically connecting the power terminal 170 and the drive coil 140, and is formed on the torsion bar 130. A control current is supplied from the power supply via the wiring 150. The control current is a control current for swinging the movable frame 621, and is typically an alternating current including a signal component having a frequency synchronized with the frequency at which the movable frame 621 swings.
 可動部622は、揺動可能なように一対のトーションバー630によって可動枠部621に軸支されている。可動部622の表面には、レーザ光を反射する不図示のミラーが形成される。 The movable part 622 is pivotally supported on the movable frame part 621 by a pair of torsion bars 630 so as to be swingable. A mirror (not shown) that reflects the laser light is formed on the surface of the movable portion 622.
 また、図面の見やすさを重視して図7上では図示していないものの、可動部622上にもまた、第1実施例のアクチュエータ101が備える可動部120と同様に、駆動コイルが形成されることが好ましい。 Although not shown in FIG. 7 for the sake of easy viewing, the driving coil is also formed on the movable portion 622 in the same manner as the movable portion 120 included in the actuator 101 of the first embodiment. It is preferable.
 一対のトーションバー130は、可動枠621が支持部110に対して揺動可能なように、可動枠621と支持部110とを接続する。一対のトーションバー130の弾性によって、可動枠621は、一対のトーションバー130が伸長する方向に沿った軸を中心軸(言い換えれば、回転軸)として回転するように遥動する。つまり、可動枠621は、図7における左右の方向に沿った軸を中心軸として、当該中心軸の周りで回転するように遥動する。このとき、可動部622は、一対のトーションバー630を介して可動枠621に接続されている。従って、可動枠621の遥動に伴って、可動部622は、実質的には、図7における左右の方向に沿った軸を中心軸として、当該中心軸の周りで回転するように遥動する。 The pair of torsion bars 130 connect the movable frame 621 and the support unit 110 so that the movable frame 621 can swing with respect to the support unit 110. Due to the elasticity of the pair of torsion bars 130, the movable frame 621 swings so as to rotate about an axis along the direction in which the pair of torsion bars 130 extends as a central axis (in other words, a rotation axis). That is, the movable frame 621 swings so as to rotate around the central axis with the axis along the left and right directions in FIG. 7 as the central axis. At this time, the movable portion 622 is connected to the movable frame 621 via a pair of torsion bars 630. Accordingly, as the movable frame 621 swings, the movable portion 622 substantially swings so as to rotate around the central axis with the axis along the left-right direction in FIG. 7 as the central axis. .
 一対のトーションバー630は、可動部622が可動枠621に対して揺動可能なように、可動部622と可動枠621とを接続する。一対のトーションバー630の弾性によって、可動部622は、一対のトーションバー630が伸長する方向に沿った軸を中心軸(言い換えれば、回転軸)として回転するように遥動する。つまり、可動部622は、図7における上下の方向に沿った軸を中心軸として、当該中心軸の周りで回転するように遥動する。 The pair of torsion bars 630 connect the movable part 622 and the movable frame 621 so that the movable part 622 can swing with respect to the movable frame 621. Due to the elasticity of the pair of torsion bars 630, the movable portion 622 swings so as to rotate about the axis along the direction in which the pair of torsion bars 630 extends as a central axis (in other words, a rotation axis). That is, the movable portion 622 swings so as to rotate around the central axis with the axis along the vertical direction in FIG. 7 as the central axis.
 一対の永久磁石160は、支持部110の外部に取り付けられている。一対の永久磁石160は、駆動コイル140に対して所定の静磁界を印加することができるように、その磁極の向きが適切に設定されていることが好ましい。尚、一対の永久磁石160には、静磁界の強度を高めるために、ヨークが付加されていてもよい。 The pair of permanent magnets 160 are attached to the outside of the support part 110. The pair of permanent magnets 160 preferably have their magnetic poles appropriately set so that a predetermined static magnetic field can be applied to the drive coil 140. Note that a yoke may be added to the pair of permanent magnets 160 in order to increase the strength of the static magnetic field.
 このような第6実施例のアクチュエータ106が動作する(具体的には、可動部120が遥動する)場合には、まず、電源から、電源端子170及び配線150を介して、駆動コイル140に対して制御電流が供給される。このとき駆動コイル140に対して供給される制御電流は、可動枠621を遥動させるための信号(具体的には、可動枠621の遥動の周期に同期した信号)と可動部622を遥動させるための信号(具体的には、可動部622の遥動の周期に同期した信号)とが重畳された電流であることが好ましい。一方で、駆動コイル140には、一対の永久磁石160によって静磁界が印加されている。従って、駆動コイル140には、一対の永久磁石160から印加される静磁界と駆動コイル140に供給される制御電流との電磁相互作用に起因した力(つまり、ローレンツ力)が生ずる。その結果、駆動コイル140が形成されている可動枠621は、一対の永久磁石160から印加される静磁界と駆動コイル140に供給される制御電流との電磁相互作用に起因したローレンツ力によって遥動する。つまり、可動枠621は、図7における左右の方向に沿った軸を中心軸として回転するように遥動する。このとき、可動部622は、一対のトーションバー630を介して可動枠621に接続されている。従って、可動枠621の遥動に伴って、可動部622は、実質的には、図7における左右の方向に沿った軸を中心軸として、当該中心軸の周りで回転するように遥動する。 When the actuator 106 according to the sixth embodiment operates (specifically, the movable portion 120 swings), first, from the power source to the drive coil 140 via the power terminal 170 and the wiring 150. In contrast, a control current is supplied. At this time, the control current supplied to the drive coil 140 causes the signal for causing the movable frame 621 to swing (specifically, a signal synchronized with the swing period of the movable frame 621) and the movable unit 622. It is preferable that the current be superimposed on a signal to be moved (specifically, a signal synchronized with the swing period of the movable portion 622). On the other hand, a static magnetic field is applied to the drive coil 140 by a pair of permanent magnets 160. Therefore, a force (that is, a Lorentz force) due to an electromagnetic interaction between the static magnetic field applied from the pair of permanent magnets 160 and the control current supplied to the drive coil 140 is generated in the drive coil 140. As a result, the movable frame 621 in which the drive coil 140 is formed swings due to the Lorentz force resulting from the electromagnetic interaction between the static magnetic field applied from the pair of permanent magnets 160 and the control current supplied to the drive coil 140. To do. That is, the movable frame 621 swings so as to rotate about the axis along the left and right directions in FIG. At this time, the movable portion 622 is connected to the movable frame 621 via a pair of torsion bars 630. Accordingly, as the movable frame 621 swings, the movable portion 622 substantially swings so as to rotate around the central axis with the axis along the left-right direction in FIG. 7 as the central axis. .
 加えて、一対の永久磁石160から印加される静磁界と駆動コイル140に供給される制御電流との電磁相互作用に起因したローレンツ力は、慣性力として可動部622に伝達される。その結果、可動部622は、図7における上下の方向に沿った軸を中心軸として回転するように遥動する。 In addition, the Lorentz force resulting from the electromagnetic interaction between the static magnetic field applied from the pair of permanent magnets 160 and the control current supplied to the drive coil 140 is transmitted to the movable part 622 as an inertial force. As a result, the movable part 622 swings so as to rotate about the axis along the vertical direction in FIG. 7 as the central axis.
 このように、第6実施例のアクチュエータ106によれば、可動部622の2軸駆動が行われる。 Thus, according to the actuator 106 of the sixth embodiment, the movable portion 622 is driven in two axes.
 尚、第6実施例では、ローレンツ力そのものを用いて可動枠621を遥動させ且つローレンツ力を慣性力として用いて可動部622を遥動させることで、可動部622の2軸駆動が行われている。しかしながら、可動部622を遥動させるローレンツ力を発生させるための駆動コイルを、可動部622上に形成してもよい。この場合には、一対のトーションバー630には(更には、可動枠621や一対のトーションバー130や支持部110)には、支持部110上の電源端子170から可動部622上の駆動コイルにつながる配線が形成されることが好ましい。この場合、一対のトーションバー630の少なくとも一方は、トーションバー130と同様に、第1バー部分131と第2バー部分132とを含んでいることが好ましい。更に、この場合には、可動部622上の駆動コイルに対して静磁界を印加する一対の永久磁石が支持部110の外部に取り付けられていることが好ましい。 In the sixth embodiment, the biaxial drive of the movable portion 622 is performed by swinging the movable frame 621 using the Lorentz force itself and swinging the movable portion 622 using the Lorentz force as an inertial force. ing. However, a drive coil for generating a Lorentz force that causes the movable part 622 to swing may be formed on the movable part 622. In this case, the pair of torsion bars 630 (and the movable frame 621, the pair of torsion bars 130, and the support unit 110) are connected to the drive coil on the movable unit 622 from the power terminal 170 on the support unit 110. It is preferable that a connecting wiring is formed. In this case, it is preferable that at least one of the pair of torsion bars 630 includes a first bar portion 131 and a second bar portion 132, similarly to the torsion bar 130. Further, in this case, it is preferable that a pair of permanent magnets for applying a static magnetic field to the drive coil on the movable portion 622 is attached to the outside of the support portion 110.
 このような第6実施例のアクチュエータ106であっても、第1実施例のアクチュエータ101が享受することができる各種効果を好適に享受することができる。 Even in the actuator 106 of the sixth embodiment, various effects that can be enjoyed by the actuator 101 of the first embodiment can be suitably enjoyed.
 (7)第7実施例
 続いて、図8を参照して、第7実施例のアクチュエータ107について説明する。図8は、第7実施例のアクチュエータ107の構成の一例を示す平面図である。尚、第1実施例のアクチュエータ101が備える構成要素と同一の構成要素については、同一の参照符号を付してその詳細な説明については省略する。
(7) Seventh Embodiment Next, an actuator 107 according to a seventh embodiment will be described with reference to FIG. FIG. 8 is a plan view showing an example of the configuration of the actuator 107 of the seventh embodiment. Note that the same reference numerals are assigned to the same components as those provided in the actuator 101 of the first embodiment, and the detailed description thereof is omitted.
 図8に示すように、第7実施例のアクチュエータ107は、第1実施例のアクチュエータ101と比較して、第1バー部分131が、可動部120の回転軸に対して線対称な関係を有しているという点で異なっている。つまり、第7実施例のアクチュエータ107では、第1バー部分131は、可動部120の回転軸に沿って左右方向に分岐しつつ当該左右方向の分岐形状が回転軸上の仮想的な中心線に対して線対称になっている。 As shown in FIG. 8, in the actuator 107 of the seventh embodiment, the first bar portion 131 has a line-symmetric relationship with respect to the rotation axis of the movable portion 120 as compared to the actuator 101 of the first embodiment. It is different in that it does. That is, in the actuator 107 of the seventh embodiment, the first bar portion 131 branches in the left-right direction along the rotation axis of the movable portion 120, and the branch shape in the left-right direction becomes a virtual center line on the rotation axis. It is symmetrical with respect to the line.
 このような第7実施例のアクチュエータ107であっても、第1実施例のアクチュエータ101が享受することができる各種効果を好適に享受することができる。加えて、第1バー部分131が回転軸に対して線対称となるため、第1バー部分131の存在が可動部120の通常の遥動に対して大きな悪影響を与えることは殆ど又は全くない。従って、可動部120のより一層のスムーズな遥動を実現できる。 Even with the actuator 107 of the seventh embodiment, various effects that can be enjoyed by the actuator 101 of the first embodiment can be suitably enjoyed. In addition, since the first bar portion 131 is axisymmetric with respect to the rotation axis, the presence of the first bar portion 131 has little or no significant adverse effect on the normal swing of the movable portion 120. Therefore, the smoother swing of the movable part 120 can be realized.
 尚、第1実施例から第7実施例で説明した各構成の一部を適宜組み合わせてもよい。例えば、第6実施例で説明した2軸駆動に対して、第2実施例で説明した第1バー部分131と第2バー部分132との物理的な分離を組み合わせてもよい。この場合であっても、第1実施例から第7実施例で説明した各構成の一部を適宜組み合わせることで得られるアクチュエータは、上述した各種効果を好適に享受することができる。 In addition, you may combine suitably a part of each structure demonstrated in 1st Example-7th Example. For example, the physical separation of the first bar portion 131 and the second bar portion 132 described in the second embodiment may be combined with the biaxial drive described in the sixth embodiment. Even in this case, the actuator obtained by appropriately combining a part of the configurations described in the first to seventh embodiments can suitably enjoy the various effects described above.
 尚、上述の説明では、可動部120がトーションバー130の伸長する方向に沿った軸を中心軸として回転するMEMSスキャナに着目して説明を進めている。しかしながら、MEMSスキャナに限らず、任意のアクチュエータに対して上述した各種構成が適用されてもよい。例えば、可動部120がトーションバー130の遥動に従って平行移動するように遥動するMEMSアクチュエータに対して、上述した各種構成が適用されてもよい。この場合であっても、上述した各種効果は好適に享受される。 In the above description, the description is advanced focusing on the MEMS scanner in which the movable unit 120 rotates about the axis along the direction in which the torsion bar 130 extends. However, the various configurations described above may be applied to any actuator, not limited to the MEMS scanner. For example, the various configurations described above may be applied to the MEMS actuator that moves so that the movable unit 120 moves in parallel with the movement of the torsion bar 130. Even in this case, the above-described various effects are favorably enjoyed.
 本発明は、前述した実施例に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴うアクチュエータもまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit or concept of the invention which can be read from the claims and the entire specification. It is included in the technical scope of the invention.
 110 支持部
 120 可動部
 130 トーションバー
 131 第1バー部分
 132 第2バー部分
 140 駆動コイル
 150 配線
 160 永久磁石
DESCRIPTION OF SYMBOLS 110 Support part 120 Movable part 130 Torsion bar 131 1st bar part 132 2nd bar part 140 Drive coil 150 Wiring 160 Permanent magnet

Claims (13)

  1.  可動部と、
     当該可動部を取り囲む支持部と、
     前記可動部が揺動可能なように前記可動部と前記支持部とを接続するトーションバーと、
     前記可動部に形成されると共に当該可動部の遥動に関連する処理を行う処理回路と
     を備えており、
     前記トーションバーは、(i)前記処理回路につながる配線が形成される第1バー部分と、(ii)前記配線が形成されない第2バー部分とを含み、
     前記可動部が遥動した場合に前記第1バー部分に加わる応力の最大値は、前記可動部が遥動した場合に前記第2バー部分に加わる応力の最大値よりも小さいことを特徴とするアクチュエータ。
    Moving parts;
    A support part surrounding the movable part;
    A torsion bar that connects the movable part and the support part so that the movable part can swing;
    A processing circuit that is formed in the movable part and performs processing related to the swinging of the movable part,
    The torsion bar includes (i) a first bar portion where a wiring connected to the processing circuit is formed, and (ii) a second bar portion where the wiring is not formed,
    The maximum value of stress applied to the first bar part when the movable part swings is smaller than the maximum value of stress applied to the second bar part when the movable part swings. Actuator.
  2.  前記第1バー部分の全長は、前記第2バー部分の全長よりも長いことを特徴とする請求項1に記載のアクチュエータ。 2. The actuator according to claim 1, wherein a total length of the first bar portion is longer than a total length of the second bar portion.
  3.  前記第1バー部分は、前記支持部から前記可動部に向かうように前記トーションバーが伸長する方向と交わる方向に少なくとも1回以上折れ曲がった形状を有していることを特徴とする請求項2に記載のアクチュエータ。 The first bar portion has a shape bent at least once in a direction intersecting a direction in which the torsion bar extends so as to go from the support portion to the movable portion. The actuator described.
  4.  前記第1バー部分は、前記支持部から前記可動部に向かうように前記トーションバーが伸長する方向とは逆の方向に向かって少なくとも1回以上折り返された形状を有していることを特徴とする請求項2に記載のアクチュエータ。 The first bar portion has a shape folded at least once in a direction opposite to a direction in which the torsion bar extends so as to go from the support portion to the movable portion. The actuator according to claim 2.
  5.  前記可動部は、所定の回転軸に沿って回転するように遥動し、
     前記第1バー部分の少なくとも一部は、前記回転軸に沿った方向とは異なる方向に伸長するように形成され、
     前記第2バー部分は、前記回転軸に沿った方向に伸長するように形成されることを特徴とする請求項2に記載のアクチュエータ。
    The movable part swings so as to rotate along a predetermined rotation axis,
    At least a portion of the first bar portion is formed to extend in a direction different from the direction along the rotation axis;
    The actuator according to claim 2, wherein the second bar portion is formed to extend in a direction along the rotation axis.
  6.  前記第1バー部分は、前記第2バー部分よりも薄いことを特徴とする請求項1に記載のアクチュエータ。 The actuator according to claim 1, wherein the first bar portion is thinner than the second bar portion.
  7.  前記可動部の遥動に対する前記第2バー部分の寄与度は、前記可動部の遥動に対する前記第1バー部分の寄与度よりも大きいことを特徴とする請求項1に記載のアクチュエータ。 2. The actuator according to claim 1, wherein the contribution degree of the second bar part to the swing of the movable part is larger than the contribution degree of the first bar part to the swing of the movable part.
  8.  前記第1バー部分が伸長する方向における前記第1バー部分の幅は、前記第2バー部分が伸長する方向における前記第2バー部分の幅よりも太いことを特徴とする請求項1に記載のアクチュエータ。 The width of the first bar portion in the direction in which the first bar portion extends is greater than the width of the second bar portion in the direction in which the second bar portion extends. Actuator.
  9.  前記第1バー部分は、前記第2バー部分と物理的に分離していることを特徴とする請求項1に記載のアクチュエータ。 2. The actuator according to claim 1, wherein the first bar portion is physically separated from the second bar portion.
  10.  前記第1バー部分と前記第2バー部分とは少なくとも1回以上互いに交差すると共に、当該交差する部分において前記第1バー部分の少なくとも一部が前記第2バー部分の少なくとも一部と一体的に形成されていることを特徴とする請求項1に記載のアクチュエータ。 The first bar portion and the second bar portion intersect each other at least once, and at least a part of the first bar portion is integrated with at least a part of the second bar portion at the intersecting portion. The actuator according to claim 1, wherein the actuator is formed.
  11.  前記可動部は、所定の回転軸に沿って回転するように遥動し、
     前記第1バー部分は、前記回転軸とは異なる位置に形成され、
     前記第2バー部分は、前記回転軸上に形成されることを特徴とする請求項1に記載のアクチュエータ。
    The movable part swings so as to rotate along a predetermined rotation axis,
    The first bar portion is formed at a position different from the rotation axis,
    The actuator according to claim 1, wherein the second bar portion is formed on the rotation shaft.
  12.  前記トーションバーは、前記支持部の内側の相対向する2つの辺から前記可動部を挟み込むように伸びる1対のトーションバーであり、
     前記一対のトーションバーの少なくとも一方は、前記第1バー部分と前記第2バー部分とを含むことを特徴とする請求項1に記載のアクチュエータ。
    The torsion bars are a pair of torsion bars extending so as to sandwich the movable part from two opposite sides inside the support part,
    2. The actuator according to claim 1, wherein at least one of the pair of torsion bars includes the first bar portion and the second bar portion.
  13.  前記可動部は、所定の回転軸に沿って回転するように遥動し、
     前記第1バー部分及び前記第2バー部分の少なくとも一方は、前記回転軸に対して対称となる形状を有していることを特徴とする請求項1に記載のアクチュエータ。
    The movable part swings so as to rotate along a predetermined rotation axis,
    2. The actuator according to claim 1, wherein at least one of the first bar portion and the second bar portion has a symmetrical shape with respect to the rotation axis.
PCT/JP2011/077068 2011-11-24 2011-11-24 Actuator WO2013076844A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/077068 WO2013076844A1 (en) 2011-11-24 2011-11-24 Actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/077068 WO2013076844A1 (en) 2011-11-24 2011-11-24 Actuator

Publications (1)

Publication Number Publication Date
WO2013076844A1 true WO2013076844A1 (en) 2013-05-30

Family

ID=48469322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077068 WO2013076844A1 (en) 2011-11-24 2011-11-24 Actuator

Country Status (1)

Country Link
WO (1) WO2013076844A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110703429A (en) * 2019-09-04 2020-01-17 深圳市镭神智能系统有限公司 Scanning galvanometer and laser radar

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11305162A (en) * 1998-04-27 1999-11-05 Olympus Optical Co Ltd Optical scanner
JP2009069340A (en) * 2007-09-12 2009-04-02 Seiko Epson Corp Actuator, optical scanner, and image forming apparatus
JP2009077595A (en) * 2007-09-21 2009-04-09 Seiko Epson Corp Actuator, optical scanner, and image forming apparatus
JP2010002926A (en) * 1997-12-09 2010-01-07 Olympus Corp Method for producing optical deflector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002926A (en) * 1997-12-09 2010-01-07 Olympus Corp Method for producing optical deflector
JPH11305162A (en) * 1998-04-27 1999-11-05 Olympus Optical Co Ltd Optical scanner
JP2009069340A (en) * 2007-09-12 2009-04-02 Seiko Epson Corp Actuator, optical scanner, and image forming apparatus
JP2009077595A (en) * 2007-09-21 2009-04-09 Seiko Epson Corp Actuator, optical scanner, and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110703429A (en) * 2019-09-04 2020-01-17 深圳市镭神智能系统有限公司 Scanning galvanometer and laser radar
CN110703429B (en) * 2019-09-04 2022-08-09 深圳市镭神智能系统有限公司 Scanning galvanometer and laser radar

Similar Documents

Publication Publication Date Title
JP6253915B2 (en) Actuator device and mirror drive device
JP5976132B2 (en) Actuator
JP5860066B2 (en) Actuator
JP6805225B2 (en) Drive
JP2005165276A (en) Optical deflector
JP4968760B1 (en) Actuator
JP6038319B2 (en) Actuator
WO2013076844A1 (en) Actuator
WO2014002183A1 (en) Actuator
WO2014162521A1 (en) Actuator
WO2013111266A1 (en) Actuator
JP2014199326A (en) Driving device
JP2016095519A (en) Actuator
JP2015014753A (en) Actuator
JP6241736B2 (en) Actuator
JP2019056935A (en) Actuator
JP2013034301A (en) Planar type electromagnetic actuator
WO2013168273A1 (en) Drive device
JP2016186660A (en) Actuator
JP2019144592A (en) Actuator
WO2014020769A1 (en) Drive unit
JP2017146617A (en) Actuator
WO2013168275A1 (en) Drive device
WO2013011551A1 (en) Actuator
WO2013168269A1 (en) Drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876343

Country of ref document: EP

Kind code of ref document: A1