WO2013076769A1 - Optical range finder - Google Patents

Optical range finder Download PDF

Info

Publication number
WO2013076769A1
WO2013076769A1 PCT/JP2011/006537 JP2011006537W WO2013076769A1 WO 2013076769 A1 WO2013076769 A1 WO 2013076769A1 JP 2011006537 W JP2011006537 W JP 2011006537W WO 2013076769 A1 WO2013076769 A1 WO 2013076769A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
reference signal
modulation
sensitivity
frequency
Prior art date
Application number
PCT/JP2011/006537
Other languages
French (fr)
Japanese (ja)
Inventor
勝治 今城
俊平 亀山
幹夫 高林
平野 嘉仁
石村 栄太郎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/006537 priority Critical patent/WO2013076769A1/en
Publication of WO2013076769A1 publication Critical patent/WO2013076769A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal

Definitions

  • the present invention relates to an optical distance measuring device including a photodetector that receives intensity-modulated light with a single-element photodetector and down-converts the modulation frequency to a low frequency side.
  • devices described in, for example, Patent Document 1 and Patent Document 2 are known as devices for down-converting the modulation frequency of intensity-modulated light to the low frequency side with a photodetector and measuring the distance from the phase difference. ing.
  • intensity-modulated light is down-converted using a pair of adjacent semiconductor elements.
  • the gain of the photodetector is directly modulated, and the output signal is directly down-converted.
  • the photodetector is a photodetector that performs photoelectric conversion by a photovoltaic effect such as an avalanche photodiode (hereinafter referred to as APD (Avalanche Photo Diode))
  • APD avalanche photodiode
  • the light receiving sensitivity characteristic with respect to the bias applied voltage is generally non-linear. For this reason, when the bias application voltage is sinusoidal modulation, the light receiving sensitivity cannot be modulated with the sinusoidal wave, and the efficiency when downconverting to the difference frequency from the frequency of the modulated light becomes very poor. As a result, there has been a problem that the reception signal-to-noise ratio is lowered and the ranging accuracy is low.
  • the present invention has been made to solve such a problem.
  • An optical distance measuring device capable of improving the efficiency when down-converting to a difference frequency from the frequency of modulated light and performing distance measurement with high accuracy is provided.
  • the purpose is to provide.
  • An optical distance measuring device shapes and irradiates a first oscillator that generates a modulation reference signal, a light source that outputs intensity-modulated light based on the modulation reference signal, and light output from the light source.
  • a waveform shaping circuit that shapes the modulation waveform to linearly modulate the sensitivity of the photodetector based on the sensitivity modulation reference signal, and a photodetector that outputs the difference frequency of the received modulated signal as a received signal;
  • a reference signal output unit that outputs a difference signal between the modulation reference signal and the sensitivity modulation reference signal as a reference signal, a phase detector that obtains a phase difference from the received signal and the reference signal, and a phase difference signal output from
  • the optical distance measuring device is provided with a waveform shaping circuit for shaping a modulation waveform signal for linearly modulating the sensitivity of the photodetector based on the sensitivity modulation reference signal output from the second oscillator,
  • the photodetector modulates sensitivity based on the waveform-shaped modulated waveform signal.
  • FIG. 1 is a configuration diagram of the optical distance measuring device according to the first embodiment.
  • the optical distance measuring device according to the present embodiment includes a first oscillator 1, a second oscillator 2, a light source 3, a transmission optical system 4, a waveform shaping circuit 5, a reception optical system 6, and a photodetector 7.
  • An amplifier 8 a mixer 9, a band pass filter (hereinafter referred to as BPF (Band Pass Filter)) 10, a phase detector 11, and a signal processing unit 12.
  • BPF Band Pass Filter
  • the first oscillator 1 and the second oscillator 2 are oscillators that output two different frequencies, respectively, and the first oscillator 1 has a function of generating a modulation reference signal of the light source 3, and the second oscillator 2 Has a function of generating a bias modulation reference signal for modulating the sensitivity of the photodetector 7.
  • the light source 3 is a light source that oscillates laser light that has been intensity-modulated at a frequency based on the modulation reference signal of the first oscillator 1.
  • the transmission optical system 4 is a transmission optical system for shaping the light generated from the light source 3.
  • the waveform shaping circuit 5 is a circuit that generates a bias modulation signal for linearly modulating the bias of the photodetector 7 based on the bias modulation reference signal of the second oscillator 2.
  • the receiving optical system 6 is a receiving optical system for condensing the light received from the transmitting optical system 4 reflected by an object (not shown) on the photodetector 7.
  • the photodetector 7 is a light receiver that modulates sensitivity based on the bias modulation signal shaped by the waveform shaping circuit 5 and outputs an electric signal having a difference frequency from the modulation frequency of the received reflected light.
  • the amplifier 8 is an amplifier such as a transimpedance amplifier that amplifies the difference frequency electrical signal output from the photodetector 7.
  • the mixer 9 is a mixer that mixes the modulation reference signal output from the first oscillator 1 and the bias modulation reference signal output from the second oscillator 2.
  • the BPF 10 is a filter that transmits only the difference frequency among the signals generated by the mixer 9.
  • the mixer 9 and the BPF 10 form a reference signal output unit 13 that outputs a reference signal.
  • the phase detector 11 has a function of detecting a phase difference between the reference signal obtained by the reference signal output unit 13 and the reception signal obtained by the photodetector 7, and generating a phase signal indicating the phase difference.
  • the signal processing unit 12 has a function of calculating a distance value based on the phase signal from the phase detector 11.
  • FIG. 2 shows modulation waveforms output from the first first oscillator 1 and the second oscillator 2.
  • the first oscillator 1 generates a modulation reference signal A having a frequency f m1 as shown in FIG. 2A
  • the second oscillator 2 receives a bias modulation reference signal B having a frequency f m2 as shown in FIG. 2B.
  • the frequency f m1 of the modulation reference signal and the frequency f m2 of the bias modulation reference signal are different frequencies.
  • the modulation reference signal having the frequency f m1 output from the first oscillator 1 is input to the light source 3, and the light source 3 generates intensity-modulated light based on the modulation reference signal having the frequency f m1 .
  • the transmission optical system 4 shapes the intensity-modulated light generated by the light source 3 and irradiates the object.
  • the bias modulation reference signal having the frequency fm2 output from the second oscillator 2 is input to the waveform shaping circuit 5, and the waveform shaping circuit 5 outputs a bias modulation waveform C as shown in FIG.
  • the photodetector 7 is an APD
  • the bias voltage-sensitivity characteristic is generally a non-linear characteristic D as shown in FIG. Therefore, the sensitivity modulation characteristic E shown in FIG. 2D is obtained by giving a certain offset to the bias voltage as shown in FIG. 2C and adding a non-linear modulation waveform.
  • the reflected light from the object is collected by the receiving optical system 6 and received by the photodetector 7.
  • the difference frequency f m1 ⁇ f m2 from the received modulation frequency f m1 is obtained as shown in the output waveform F of FIG.
  • An electric signal is output, and the electric signal is amplified by the amplifier 8 to obtain a received signal.
  • FIG. 3 shows the characteristics of the input conversion noise level with respect to the frequency when a transimpedance amplifier is used as the amplifier 8.
  • the frequency characteristics of the amplifier and the transimpedance gain are inversely proportional, so that the transimpedance gain can be increased if the amplifier has a low frequency characteristic. Accordingly, the noise level is limited by the 1 / f noise determined by the transimpedance amplifier used and the thermal noise determined by the transimpedance gain (see the input conversion noise level characteristic G in the figure), and there is a minimum value of the input conversion noise level.
  • the frequencies f m1 and f m2 are set so that the difference frequency f m1 ⁇ f m2 becomes the minimum value.
  • the mixer 9 mixes the modulated reference signal and a bias modulation reference signal, for generating a difference frequency f m1 -f m @ 2 of frequency f m1 and frequency f m @ 2.
  • the reference signal is generated through the BPF 10 that transmits only the frequency band near the difference frequency f m1 -f m2 .
  • the obtained reference signal and received signal are input to the phase detector 11 and a signal corresponding to the phase difference between the two signals is output. Further, the signal processing unit 12 calculates the distance to the object from the phase difference signal.
  • the waveform shaping circuit 5 can linearly modulate the sensitivity of the photodetector 7.
  • the light is converted into a difference frequency f m1 ⁇ f m2 between the intensity modulation frequency f m1 of the transmission light and the sensitivity modulation frequency f m2 of the photodetector.
  • the frequencies f m1 and f m2 are set so that the difference frequency f m1 -f m2 becomes the minimum value of the input conversion noise level of the transimpedance amplifier.
  • the received signal level since the received signal level is maintained, the signal can be received under the condition that the signal-to-noise ratio of the received signal is optimal, and the ranging accuracy can be improved.
  • a laser is used as an example of the light source 3.
  • a direct modulation method in which a modulation signal is directly input to the light source 3 may be used, or an external modulation method configuration in which an intensity modulator is provided outside to obtain modulated light may be used.
  • the other light source 3 a light emitting diode (LED: Light Emitting Diode) or a super luminescent diode (SLD: Super Luminescent Diode) may be used.
  • LED Light Emitting Diode
  • SLD Super Luminescent Diode
  • an example in which an APD is used for the photodetector 7 has been shown.
  • a photodiode (PD) or a photomultiplier tube (PMT) is used.
  • the BPF 10 may be a low pass filter (LPF) because the difference frequency f m1 ⁇ f m2 may be selected.
  • LPF low pass filter
  • the difference frequency f m1 -f m2 is configured to be the minimum value of the input equivalent noise level of the transimpedance gain, but from the input equivalent noise level of the modulation frequency f m1 of the light source 3. Any frequency region that can be lowered may be used.
  • phase difference signal is output as a function of the phase detector 11, but it may have a function of outputting a signal corresponding to the amplitude.
  • the reflected light is received by irradiating the light.
  • the scanning optical system is used in the subsequent stage of the transmission optical system 4 to scan both the transmission beam and the reception visual field. It may be configured to. Further, for example, as shown in Japanese Patent Application Laid-Open No. 2010-271275, the reception field of view may be fixed and only the transmission beam may be scanned by the scanning optical system.
  • the modulation frequency of the intensity-modulated light is down-converted by the bias-modulated photodetector 7 to the low frequency side where the input equivalent noise level of the amplifier 8 is lowered. Therefore, it is possible to reduce the degradation of distance measurement accuracy due to the target distance difference and reflectance difference in each field of view of the adjacent light receiving element, which has been a problem in the prior art.
  • the sensitivity of the photodetector 7 can be linearly modulated even when an APD is used for the photodetector 7, and the received modulation signal is shifted to the low frequency side. Can be down-converted. Furthermore, by down-converting to the low frequency side, the received signal can be amplified in a frequency band where the amplifier noise (input converted noise current density) is low, and the signal band noise ratio can be improved. This makes it possible to convert the modulated light into an electrical signal and improve the accuracy of the distance measurement, increase the distance that can be measured, compared to a phase difference optical distance measuring device that detects the phase in the same frequency band, Cost reduction can be achieved by suppressing the output of the light source.
  • the first oscillator that generates the modulation reference signal, the light source that outputs the intensity-modulated light based on the modulation reference signal, and the light source A transmitting optical system for shaping and irradiating the output light, a receiving optical system for collecting reflected light from an object based on the irradiated light, and a second oscillator for generating a sensitivity modulation reference signal, and To modulate the sensitivity based on the modulated waveform signal and output the difference frequency with the received modulated signal as the received signal, and to linearly modulate the sensitivity of the photodetector based on the sensitivity modulation reference signal
  • the amplifier includes an amplifier that amplifies the difference frequency signal from the photodetector, and the difference frequency signal is lower than the input conversion noise level of the frequency of the modulation reference signal in the amplifier.
  • the modulation reference signal and sensitivity modulation reference signal are determined so that the frequency range is equivalent to the input-converted noise level, so the accuracy of distance measurement is increased, the measurable distance is increased, and the light source output is suppressed. The cost can be reduced.
  • FIG. The second embodiment is an example in which the light down-converting photodetector described in the first embodiment is formed in an array.
  • FIG. 4 is a block diagram showing the optical distance measuring device according to the second embodiment, and shows a case where two photodetectors 7a and 7b are used as an example.
  • the optical distance measuring device according to the second embodiment includes a first oscillator 1, a second oscillator 2, a light source 3, a transmission optical system 4, a waveform shaping circuit 5, a reception optical system 6, photodetectors 7a and 7b, and an amplifier 8a. 8b, mixer 9, BPF 10, phase detectors 11a and 11b, signal processing unit 12, multiplexer (hereinafter referred to as MUX circuit) 14, photodetectors 7a and 7b, amplifiers 8a and 8b, phase detector 11a. 11b is a photodetector array 15 having an array configuration. Further, the reference signal output unit 13 is configured by the mixer 9 and the BPF 10 as in the first embodiment.
  • each of the two photodetectors 7a and 7b is the same as that of the photodetector 7 of the first embodiment, and modulates the sensitivity of the photodetector based on the modulation waveform shaped by the waveform shaping circuit 5, and receives the signal.
  • An electric signal having a difference frequency from the modulation frequency of the reflected light is output.
  • the amplifiers 8a and 8b are connected to amplify the outputs of the photodetectors 7a and 7b, respectively.
  • the phase detectors 11a and 11b are configured to obtain phase information from the reference signal from the reference signal output unit 13 and the received signals a and b from the amplifiers 8a and 8b and output the phase information as phase signals a and b, respectively. Yes.
  • the MUX circuit 14 is a multiplexer that switches the phase signals a and b from the phase detectors 11 a and 11 b and outputs them to the signal processing unit 12. Since the configuration other than this is the same as that of the first embodiment, the same reference numerals are given to corresponding portions, and the description thereof is omitted.
  • the operation of the optical distance measuring device will be described. Since the basic operation as the optical distance measuring apparatus is the same as that of the first embodiment, only the characteristic operation of the second embodiment will be described. Reflected light from an object (not shown) is collected by the receiving optical system 6 and received by the photodetector 7a and the photodetector 7b. At this time, since the sensitivities of the photodetectors 7a and 7b are modulated at the frequency f m2 , the electric signal of the difference frequency f m1 ⁇ f m2 from the received modulation frequency f m1 as shown in FIG. Then, the electric signals are amplified by the amplifiers 8a and 8b to obtain a reception signal.
  • the frequencies f m1 and f m2 are set so that the difference frequency f m1 -f m2 becomes the minimum value of the input conversion noise level as in the first embodiment. It is the same.
  • the reference signal obtained by the reference signal output unit 13 and the received signals a and b which are the outputs of the amplifiers 8a and 8b are input to the phase detectors 11a and 11b, respectively, and the phase signal a corresponding to the phase difference between the two signals. And the phase signal b are output. Thereafter, the phase signal is switched by the MUX circuit 14, and the signal processing unit 12 calculates the distance to the object from the phase difference signal of the received signal measured by each of the photodetectors 7a and 7b.
  • the photodetector array 15 by using the photodetector array 15 using the plurality of photodetectors 7a and 7b, distance measurement in the light irradiation region can be performed without the need for a scanning optical system. At this time, a three-dimensional image of the object can be obtained by imaging the distance measurement value of each light receiving element.
  • a laser is used as an example of the light source 3.
  • a direct modulation method in which a modulation signal is directly input to the light source may be used, or an external modulation method configuration in which an intensity modulator is provided outside to obtain modulated light may be used.
  • a light emitting diode (LED) or a super luminescent diode (SLD) may be used as another light source.
  • the APD is used for the photodetectors 7a and 7b .
  • a photodiode (PD) or a photomultiplier tube (PMT) may be used.
  • the BPF 10 may be a low-pass filter (LPF) because the difference frequency f m1 -f m2 may be selected.
  • LPF low-pass filter
  • the amplifier 8a, 8b showed the example using the transimpedance amplifier, you may use a voltage amplifier.
  • the difference frequency f m1 ⁇ f m2 is configured to be the minimum value of the input equivalent noise level of the transimpedance gain, but is lower than the input equivalent noise level at the modulation frequency f m1 of the light source 3. Any frequency range may be used.
  • the phase difference signal is output as the function of the phase detectors 11a and 11b, but it may have a function of outputting a signal corresponding to the amplitude.
  • the waveform shaping circuit 5 is common to the photodetectors 7a and 7b of the photodetector array 15, the waveform shaping circuit 5 is also included in the photodetector array 15 and is associated with each of the photodetectors 7a and 7b. The structure to install may be sufficient. As a result, even if the sensitivity characteristics of the photodetectors 7a and 7b are different from each other, the waveform shaping circuit 5 can calibrate the nonlinear characteristics, and the difference between the minimum values of the input conversion noise levels of the amplifiers 8a and 8b.
  • the frequency f m1 -f m2 can be set.
  • the distance measurement is performed in the irradiation area without using the scanning optical system.
  • the reception field of view is fixed, and only the transmission beam is detected by the scanning optical system. It may be configured to scan.
  • the scanning optical system 16 and the synchronization circuit 17 are installed, and the MUX circuit 14 is synchronized. . That is, the synchronization circuit 17 synchronously controls the MUX circuit 14 so as to select the scanning direction of the scanning optical system 16 and the received signals from the photodetectors 7a and 7b that receive the reflected light from the object in the scanning direction.
  • the other configuration is the same as the configuration shown in FIG.
  • the photodetector array 15 includes the plurality of photodetectors 7a and 7b, the intensity and phase can be measured with one light receiving element. As a result, the number of effective pixels in the acquired image is not reduced.
  • the first oscillator that generates the modulation reference signal, the light source that outputs the intensity-modulated light based on the modulation reference signal, and the light source A transmitting optical system for shaping and irradiating the output light, a receiving optical system for collecting reflected light from an object based on the irradiated light, and a second oscillator for generating a sensitivity modulation reference signal, A plurality of photodetectors that modulate the sensitivity based on a signal of a given modulation waveform and output a difference frequency from the received modulation signal as a respective reception signal, and a plurality of light detections based on the sensitivity modulation reference signal A waveform shaping circuit that shapes the modulation waveform to linearly modulate the sensitivity of the detector, a reference signal output unit that outputs a difference signal between the modulation reference signal and the sensitivity modulation reference signal as a reference signal, and a plurality of received signals and reference signals Each phase difference A plurality
  • the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
  • the optical distance measuring device includes the light receiver that down-converts the modulation frequency to the low frequency side, and is suitable for use in a laser radar device or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

In the present invention, a first oscillator (1) generates a modulation reference signal, and a second oscillator (2) generates a sensitivity modulation reference signal. A waveform shaping circuit (5) shapes a modulation waveform signal for linearly modulating the sensitivity of a photodetector (7) on the basis of the sensitivity modulation reference signal. The photodetector (7) modulates the sensitivity on the basis of the waveform-shaped modulation waveform signal. The signal obtained by the photodetector (7) is amplified by an amplifier (8) and inputted as a reception signal into a phase detector (11). The phase detector (11) determines the phase difference from the reception signal and a referred signal, and a signal processor (12) measures the distance to the subject from the phase difference signal.

Description

光測距装置Optical distance measuring device
 本発明は、強度変調光を単素子の光検出器で受信し、変調周波数を低周波側にダウンコンバートする光検出器を備えた光測距装置に関するものである。 The present invention relates to an optical distance measuring device including a photodetector that receives intensity-modulated light with a single-element photodetector and down-converts the modulation frequency to a low frequency side.
 従来技術として、強度変調光の変調周波数を光検出器で低周波側にダウンコンバートし、その位相差から測距する装置としては、例えば特許文献1や特許文献2に記載されたものが知られている。特許文献1に記載の装置では、隣接する一対の半導体素子を用いて強度変調光をダウンコンバートしている。また、特許文献2に記載の装置では、光検出器のゲインに直接変調をかけ、出力信号を直接ダウンコンバートしている。 As a conventional technique, devices described in, for example, Patent Document 1 and Patent Document 2 are known as devices for down-converting the modulation frequency of intensity-modulated light to the low frequency side with a photodetector and measuring the distance from the phase difference. ing. In the apparatus described in Patent Document 1, intensity-modulated light is down-converted using a pair of adjacent semiconductor elements. In the apparatus described in Patent Document 2, the gain of the photodetector is directly modulated, and the output signal is directly down-converted.
特表2004-525351号公報Special table 2004-525351 gazette 特開平11-108623号公報Japanese Patent Laid-Open No. 11-108623
 上記の特許文献1の記載されたシステムでは、強度変調光の変調周波数を、低周波側にダウンコンバートするために、少なくとも2つ以上の受光素子を用いる必要がある。それぞれの受光素子にて受信視野が異なっていた場合、異なる反射率や距離からの反射光を受信するため、強度変調光の変調周波数を低周波側にダウンコンバートした測定値に誤差が生じるという問題があった。また、アレイ状の受光素子をもつ光検出器であった場合、取得画像の有効画素数は実際の受光素子数より減少してしまう課題もあった。 In the system described in Patent Document 1, it is necessary to use at least two light receiving elements in order to down-convert the modulation frequency of the intensity-modulated light to the low frequency side. If each light receiving element has a different reception field of view, it receives reflected light from different reflectivities and distances, resulting in an error in the measurement value obtained by down-converting the modulation frequency of the intensity-modulated light to the low frequency side. was there. Further, in the case of a photodetector having an array of light receiving elements, there is a problem that the number of effective pixels of the acquired image is smaller than the actual number of light receiving elements.
 また、特許文献2に記載された装置では、光検出器がアバランシェフォトダイオード(以下、APD(Avalanche Photo Diode)という)のような光起電力効果による光電変換を行う光検出器であった場合、そのバイアス印加電圧に対する受光感度特性は一般的に非線形である。そのため、バイアス印加電圧が正弦波変調であった場合、受光感度を正弦波で変調することはできず、変調光の周波数との差周波にダウンコンバートするときの効率が非常に悪くなる。これにより、結果的に受信信号対雑音比が低下し、測距精度が低いという課題があった。 In the device described in Patent Document 2, when the photodetector is a photodetector that performs photoelectric conversion by a photovoltaic effect such as an avalanche photodiode (hereinafter referred to as APD (Avalanche Photo Diode)), The light receiving sensitivity characteristic with respect to the bias applied voltage is generally non-linear. For this reason, when the bias application voltage is sinusoidal modulation, the light receiving sensitivity cannot be modulated with the sinusoidal wave, and the efficiency when downconverting to the difference frequency from the frequency of the modulated light becomes very poor. As a result, there has been a problem that the reception signal-to-noise ratio is lowered and the ranging accuracy is low.
 この発明は、かかる問題を解決するためになされたもので、変調光の周波数との差周波にダウンコンバートするときの効率を向上させ、高精度に測距を行うことができる光測距装置を提供することを目的とする。 The present invention has been made to solve such a problem. An optical distance measuring device capable of improving the efficiency when down-converting to a difference frequency from the frequency of modulated light and performing distance measurement with high accuracy is provided. The purpose is to provide.
 この発明に係る光測距装置は、変調基準信号を発生する第1の発振器と、変調基準信号に基づき、強度変調された光を出力する光源と、光源より出力した光を整形し、照射する送信光学系と、照射された光に基づく対象物からの反射光を集光する受信光学系と、感度変調基準信号を発生する第2の発振器と、与えられた変調波形の信号に基づいて感度を変調し、受光した変調信号との差周波を受信信号として出力する光検出器と、感度変調基準信号に基づき、光検出器の感度を線形に変調するため変調波形を整形する波形整形回路と、変調基準信号と感度変調基準信号の差信号を参照信号として出力する参照信号出力部と、受信信号と参照信号から位相差を求める位相検波器と、位相検波器から出力される位相差信号から、距離を計測する信号処理部とを備えたものである。 An optical distance measuring device according to the present invention shapes and irradiates a first oscillator that generates a modulation reference signal, a light source that outputs intensity-modulated light based on the modulation reference signal, and light output from the light source. A transmission optical system, a reception optical system that collects reflected light from an object based on the irradiated light, a second oscillator that generates a sensitivity modulation reference signal, and a sensitivity based on a signal of a given modulation waveform And a waveform shaping circuit that shapes the modulation waveform to linearly modulate the sensitivity of the photodetector based on the sensitivity modulation reference signal, and a photodetector that outputs the difference frequency of the received modulated signal as a received signal; A reference signal output unit that outputs a difference signal between the modulation reference signal and the sensitivity modulation reference signal as a reference signal, a phase detector that obtains a phase difference from the received signal and the reference signal, and a phase difference signal output from the phase detector , Measure distance It is obtained by a No. processor.
 この発明に係る光測距装置は、第2の発振器から出力される感度変調基準信号に基づいて、光検出器の感度を線形に変調するための変調波形信号を整形する波形整形回路を設け、光検出器は、波形整形された変調波形信号に基づいて感度を変調するようにしたものである。これにより、変調光の周波数との差周波にダウンコンバートするときの効率を向上させることができる。 The optical distance measuring device according to the present invention is provided with a waveform shaping circuit for shaping a modulation waveform signal for linearly modulating the sensitivity of the photodetector based on the sensitivity modulation reference signal output from the second oscillator, The photodetector modulates sensitivity based on the waveform-shaped modulated waveform signal. Thereby, the efficiency at the time of down-conversion to the difference frequency with the frequency of modulated light can be improved.
この発明の実施の形態1の光測距装置を示す構成図である。It is a block diagram which shows the optical ranging apparatus of Embodiment 1 of this invention. この発明の光測距装置における各部の出力波形を示す説明図である。It is explanatory drawing which shows the output waveform of each part in the optical distance measuring device of this invention. この発明の光測距装置におけるトランスインピーダンスアンプの雑音特性と差周波との関係を示す説明図である。It is explanatory drawing which shows the relationship between the noise characteristic of a transimpedance amplifier in the optical ranging apparatus of this invention, and a difference frequency. この発明の実施の形態2の光測距装置を示す構成図である。It is a block diagram which shows the optical ranging apparatus of Embodiment 2 of this invention. この発明の実施の形態2の光測距装置の他の例を示す構成図である。It is a block diagram which shows the other example of the optical distance measuring device of Embodiment 2 of this invention.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1による光測距装置の構成図である。
 本実施の形態による光測距装置は、図示のように、第1の発振器1、第2の発振器2、光源3、送信光学系4、波形整形回路5、受信光学系6、光検出器7、アンプ8、ミキサ9、バンドパスフィルタ(以下、BPF(Band Pass Filter)という)10、位相検波器11、信号処理部12を備えている。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of the optical distance measuring device according to the first embodiment.
As shown in the figure, the optical distance measuring device according to the present embodiment includes a first oscillator 1, a second oscillator 2, a light source 3, a transmission optical system 4, a waveform shaping circuit 5, a reception optical system 6, and a photodetector 7. , An amplifier 8, a mixer 9, a band pass filter (hereinafter referred to as BPF (Band Pass Filter)) 10, a phase detector 11, and a signal processing unit 12.
 第1の発振器1及び第2の発振器2は、それぞれ二つの異なる周波数を出力する発振器であり、第1の発振器1は光源3の変調基準信号を発生する機能を有し、第2の発振器2は光検出器7の感度を変調するためのバイアス変調基準信号を発生する機能を有している。光源3は、第1の発振器1の変調基準信号に基づいた周波数で強度変調をかけたレーザ光を発振する光源である。送信光学系4は、光源3から発生した光を整形するための送信光学系である。波形整形回路5は、第2の発振器2のバイアス変調基準信号に基づき、光検出器7のバイアスを線形に変調するためのバイアス変調信号を生成する回路である。 The first oscillator 1 and the second oscillator 2 are oscillators that output two different frequencies, respectively, and the first oscillator 1 has a function of generating a modulation reference signal of the light source 3, and the second oscillator 2 Has a function of generating a bias modulation reference signal for modulating the sensitivity of the photodetector 7. The light source 3 is a light source that oscillates laser light that has been intensity-modulated at a frequency based on the modulation reference signal of the first oscillator 1. The transmission optical system 4 is a transmission optical system for shaping the light generated from the light source 3. The waveform shaping circuit 5 is a circuit that generates a bias modulation signal for linearly modulating the bias of the photodetector 7 based on the bias modulation reference signal of the second oscillator 2.
 受信光学系6は、送信光学系4から照射された光が図示しない対象物で反射した受信光を光検出器7に集光するための受信光学系である。光検出器7は、波形整形回路5で整形されたバイアス変調信号に基づいて感度を変調し、受信する反射光の変調周波数との差周波の電気信号を出力する受光器である。アンプ8は、光検出器7から出力された差周波の電気信号を増幅するトランスインピーダンスアンプといった増幅器である。ミキサ9は、第1の発振器1から出力された変調基準信号と、第2の発振器2から出力されたバイアス変調基準信号とをミキシングするミキサである。BPF10は、ミキサ9で生成された信号のうち、差周波のみを透過するフィルタである。また、これらミキサ9とBPF10とにより、参照信号を出力する参照信号出力部13が形成されている。位相検波器11は、参照信号出力部13で得られる参照信号と、光検出器7で得られる受信信号との位相差を検出し、その位相差を示す位相信号を発生する機能を有し、信号処理部12は、位相検波器11からの位相信号に基づき、距離値を算出する機能を有する。 The receiving optical system 6 is a receiving optical system for condensing the light received from the transmitting optical system 4 reflected by an object (not shown) on the photodetector 7. The photodetector 7 is a light receiver that modulates sensitivity based on the bias modulation signal shaped by the waveform shaping circuit 5 and outputs an electric signal having a difference frequency from the modulation frequency of the received reflected light. The amplifier 8 is an amplifier such as a transimpedance amplifier that amplifies the difference frequency electrical signal output from the photodetector 7. The mixer 9 is a mixer that mixes the modulation reference signal output from the first oscillator 1 and the bias modulation reference signal output from the second oscillator 2. The BPF 10 is a filter that transmits only the difference frequency among the signals generated by the mixer 9. The mixer 9 and the BPF 10 form a reference signal output unit 13 that outputs a reference signal. The phase detector 11 has a function of detecting a phase difference between the reference signal obtained by the reference signal output unit 13 and the reception signal obtained by the photodetector 7, and generating a phase signal indicating the phase difference. The signal processing unit 12 has a function of calculating a distance value based on the phase signal from the phase detector 11.
 次に、実施の形態1の光測距装置の動作について説明する。
 図2は、第1の第1の発振器1と第2の発振器2で出力される変調波形を示したものである。第1の発振器1では図2(a)のような周波数fm1の変調基準信号Aを発生し、第2の発振器2では図2(b)のような周波数fm2のバイアス変調基準信号Bを発生する。このとき、変調基準信号の周波数fm1とバイアス変調基準信号の周波数fm2は異なった周波数である。
Next, the operation of the optical distance measuring device according to the first embodiment will be described.
FIG. 2 shows modulation waveforms output from the first first oscillator 1 and the second oscillator 2. The first oscillator 1 generates a modulation reference signal A having a frequency f m1 as shown in FIG. 2A, and the second oscillator 2 receives a bias modulation reference signal B having a frequency f m2 as shown in FIG. 2B. appear. At this time, the frequency f m1 of the modulation reference signal and the frequency f m2 of the bias modulation reference signal are different frequencies.
 第1の発振器1から出力された周波数fm1の変調基準信号は光源3に入力され、光源3では、周波数fm1の変調基準信号に基づいた強度変調光を発生する。送信光学系4では、光源3で発生した強度変調光を整形して対象物に照射する。 The modulation reference signal having the frequency f m1 output from the first oscillator 1 is input to the light source 3, and the light source 3 generates intensity-modulated light based on the modulation reference signal having the frequency f m1 . The transmission optical system 4 shapes the intensity-modulated light generated by the light source 3 and irradiates the object.
 また、第2の発振器2から出力された周波数fm2のバイアス変調基準信号は波形整形回路5に入力され、波形整形回路5では、図2(c)のようなバイアス変調波形Cを出力する。ここで、光検出器7がAPDの場合、一般的にバイアス電圧-感度特性は図2(d)のような非線形特性Dである。従って、図2(c)のようなバイアス電圧に一定のオフセットを持たせ、さらに非線形の変調波形を加えることで、図2(d)に記載の感度変調特性Eを得る。 The bias modulation reference signal having the frequency fm2 output from the second oscillator 2 is input to the waveform shaping circuit 5, and the waveform shaping circuit 5 outputs a bias modulation waveform C as shown in FIG. Here, when the photodetector 7 is an APD, the bias voltage-sensitivity characteristic is generally a non-linear characteristic D as shown in FIG. Therefore, the sensitivity modulation characteristic E shown in FIG. 2D is obtained by giving a certain offset to the bias voltage as shown in FIG. 2C and adding a non-linear modulation waveform.
 対象物からの反射光を受信光学系6で集光し、光検出器7で受光する。このとき、光検出器7の感度は周波数fm2で変調されているため、図2(e)の出力波形Fに示すように、受信する変調周波数fm1との差周波fm1-fm2の電気信号を出力し、アンプ8でその電気信号を増幅して受信信号を得る。 The reflected light from the object is collected by the receiving optical system 6 and received by the photodetector 7. At this time, since the sensitivity of the photodetector 7 is modulated at the frequency f m2 , the difference frequency f m1 −f m2 from the received modulation frequency f m1 is obtained as shown in the output waveform F of FIG. An electric signal is output, and the electric signal is amplified by the amplifier 8 to obtain a received signal.
 図3にアンプ8にトランスインピーダンスアンプを用いた場合の周波数に対する入力換算雑音レベルの特性を示す。一般的に、アンプの周波数特性とトランスインピーダンスゲインは逆比例しているため、低周波特性のアンプであればトランスインピーダンスゲインを高くすることができる。従って、雑音レベルは使用するトランスインピーダンスアンプで決まる1/f雑音とトランスインピーダンスゲインで決まる熱雑音によって制限され(図中、入力換算雑音レベル特性G参照)、入力換算雑音レベルの最小値が存在する。本装置では、差周波fm1-fm2をその最小値となるように周波数fm1とfm2を設定する。 FIG. 3 shows the characteristics of the input conversion noise level with respect to the frequency when a transimpedance amplifier is used as the amplifier 8. In general, the frequency characteristics of the amplifier and the transimpedance gain are inversely proportional, so that the transimpedance gain can be increased if the amplifier has a low frequency characteristic. Accordingly, the noise level is limited by the 1 / f noise determined by the transimpedance amplifier used and the thermal noise determined by the transimpedance gain (see the input conversion noise level characteristic G in the figure), and there is a minimum value of the input conversion noise level. . In this apparatus, the frequencies f m1 and f m2 are set so that the difference frequency f m1 −f m2 becomes the minimum value.
 一方、ミキサ9によって、変調基準信号とバイアス変調基準信号をミキシングし、周波数fm1と周波数fm2の差周波fm1-fm2を発生する。このとき、周波数fm1と周波数fm2の和周波fm1+fm2も同時に発生するため、差周波fm1-fm2付近の周波数帯のみを透過するBPF10を通し、参照信号を生成する。 On the other hand, the mixer 9 mixes the modulated reference signal and a bias modulation reference signal, for generating a difference frequency f m1 -f m @ 2 of frequency f m1 and frequency f m @ 2. At this time, since the sum frequency f m1 + f m2 of the frequency f m1 and the frequency f m2 is also generated at the same time, the reference signal is generated through the BPF 10 that transmits only the frequency band near the difference frequency f m1 -f m2 .
 得られた参照信号と受信信号を位相検波器11に入力し、二つの信号の位相差に相当する信号を出力する。さらに信号処理部12で、位相差信号より対象物までの距離を算出する。 The obtained reference signal and received signal are input to the phase detector 11 and a signal corresponding to the phase difference between the two signals is output. Further, the signal processing unit 12 calculates the distance to the object from the phase difference signal.
 本発明の実施の形態1に係わる光測距装置では、波形整形回路5によって光検出器7の感度に対して線形に変調をかけることができる。これにより、光検出器7の光電変換領域において、送信光の強度変調周波数fm1と光検出器の感度変調周波数fm2の差周波fm1-fm2に変換する。このとき、差周波fm1-fm2をトランスインピーダンスアンプの入力換算雑音レベルの最小値となるように周波数fm1とfm2を設定する。一方、受信信号レベルは保持されるため、受信信号の信号対雑音比が最良となる条件で信号を受信することができ、測距精度を改善することができる。 In the optical distance measuring device according to Embodiment 1 of the present invention, the waveform shaping circuit 5 can linearly modulate the sensitivity of the photodetector 7. Thus, in the photoelectric conversion region of the photodetector 7, the light is converted into a difference frequency f m1 −f m2 between the intensity modulation frequency f m1 of the transmission light and the sensitivity modulation frequency f m2 of the photodetector. At this time, the frequencies f m1 and f m2 are set so that the difference frequency f m1 -f m2 becomes the minimum value of the input conversion noise level of the transimpedance amplifier. On the other hand, since the received signal level is maintained, the signal can be received under the condition that the signal-to-noise ratio of the received signal is optimal, and the ranging accuracy can be improved.
 ここで、光源3の例としてレーザを使用する。このとき、光源3に直接変調信号を入力する直接変調方式でもよいし、外部に強度変調器を設置して変調光を得る外部変調方式の構成でもよい。また、その他の光源3として、発光ダイオード(LED:Light Emitting Diode)やスーパールミネッセントダイオード(SLD:Super Luminescent Diode)でもよい。 Here, a laser is used as an example of the light source 3. At this time, a direct modulation method in which a modulation signal is directly input to the light source 3 may be used, or an external modulation method configuration in which an intensity modulator is provided outside to obtain modulated light may be used. Further, as the other light source 3, a light emitting diode (LED: Light Emitting Diode) or a super luminescent diode (SLD: Super Luminescent Diode) may be used.
 本発明の実施の形態1に係わる光測距装置では、光検出器7にAPDを用いた例を示したが、例えば、フォトダイオード(PD:Photo Diode)や光電子増倍管(PMT:Photomultiplier Tube)でもよい。また、BPF10は差周波fm1-fm2を選定すればよいため、ローパスフィルタ(LPF:Low Pass Filter)でもよい。また、アンプ8にトランスインピーダンスアンプを用いた例を示したが、電圧アンプを用いてもよい。 In the optical distance measuring apparatus according to the first embodiment of the present invention, an example in which an APD is used for the photodetector 7 has been shown. For example, a photodiode (PD) or a photomultiplier tube (PMT) is used. ) The BPF 10 may be a low pass filter (LPF) because the difference frequency f m1 −f m2 may be selected. Moreover, although the example which used the transimpedance amplifier for the amplifier 8 was shown, you may use a voltage amplifier.
 実施の形態1の光測距装置では、差周波fm1-fm2をトランスインピーダンスゲインの入力換算雑音レベルの最小値となる構成としたが、光源3の変調周波数fm1の入力換算雑音レベルより低くなる周波数領域であれば良い。 In the optical distance measuring device of the first embodiment, the difference frequency f m1 -f m2 is configured to be the minimum value of the input equivalent noise level of the transimpedance gain, but from the input equivalent noise level of the modulation frequency f m1 of the light source 3. Any frequency region that can be lowered may be used.
 実施の形態1の光測距装置では、位相検波器11の機能として位相差信号のみを出力しているが、振幅に相当する信号を出力する機能を有していてもよい。 In the optical distance measuring device of the first embodiment, only the phase difference signal is output as a function of the phase detector 11, but it may have a function of outputting a signal corresponding to the amplitude.
 実施の形態1の光測距装置では、光を照射して反射光を受光する構成であったが、送信光学系4の後段に走査光学系を用いて、送信ビームと受信視野の両方をスキャンする構成であってもよい。また、例えば特開2010-271275号公報に示すように、受信視野を固定し、送信ビームのみを走査光学系でスキャンする構成であってもよい。 In the optical distance measuring device according to the first embodiment, the reflected light is received by irradiating the light. However, the scanning optical system is used in the subsequent stage of the transmission optical system 4 to scan both the transmission beam and the reception visual field. It may be configured to. Further, for example, as shown in Japanese Patent Application Laid-Open No. 2010-271275, the reception field of view may be fixed and only the transmission beam may be scanned by the scanning optical system.
 このように、実施の形態1の光測距装置では、バイアス変調された光検出器7で、強度変調光の変調周波数を、アンプ8の入力換算雑音レベルが低くなる低周波側にダウンコンバートするため、従来技術で課題となっていた隣接受光素子の各視野におけるターゲットの距離差や反射率差による測距精度の劣化を低減することができる。 As described above, in the optical distance measuring device according to the first embodiment, the modulation frequency of the intensity-modulated light is down-converted by the bias-modulated photodetector 7 to the low frequency side where the input equivalent noise level of the amplifier 8 is lowered. Therefore, it is possible to reduce the degradation of distance measurement accuracy due to the target distance difference and reflectance difference in each field of view of the adjacent light receiving element, which has been a problem in the prior art.
 また、波形整形回路5によって変調波形を整形することにより、光検出器7にAPDを用いた場合でも光検出器7の感度を線形に変調することができ、受信した変調信号を低周波側にダウンコンバートすることができる。さらに、低周波側にダウンコンバートすることにより、アンプ雑音(入力換算雑音電流密度)が低い周波数帯で受信信号を増幅することができ、信号帯雑音比を改善することができる。これにより、変調光を電気信号に変換し、同様の周波数帯で位相検波している位相差方式の光測距装置と比べて、測距精度の高精度化、測定可能距離の長距離化、光源の出力を抑えることによる低コスト化を図ることができる。 Further, by shaping the modulation waveform by the waveform shaping circuit 5, the sensitivity of the photodetector 7 can be linearly modulated even when an APD is used for the photodetector 7, and the received modulation signal is shifted to the low frequency side. Can be down-converted. Furthermore, by down-converting to the low frequency side, the received signal can be amplified in a frequency band where the amplifier noise (input converted noise current density) is low, and the signal band noise ratio can be improved. This makes it possible to convert the modulated light into an electrical signal and improve the accuracy of the distance measurement, increase the distance that can be measured, compared to a phase difference optical distance measuring device that detects the phase in the same frequency band, Cost reduction can be achieved by suppressing the output of the light source.
 以上説明したように、実施の形態1の光測距装置によれば、変調基準信号を発生する第1の発振器と、変調基準信号に基づき、強度変調された光を出力する光源と、光源より出力した光を整形し、照射する送信光学系と、照射された光に基づく対象物からの反射光を集光する受信光学系と、感度変調基準信号を発生する第2の発振器と、与えられた変調波形の信号に基づいて感度を変調し、受光した変調信号との差周波を受信信号として出力する光検出器と、感度変調基準信号に基づき、光検出器の感度を線形に変調するため変調波形を整形する波形整形回路と、変調基準信号と感度変調基準信号の差信号を参照信号として出力する参照信号出力部と、受信信号と参照信号から位相差を求める位相検波器と、位相検波器から出力される位相差信号から、距離を計測する信号処理部とを備えたので、変調光の周波数との差周波にダウンコンバートするときの効率が向上し、測距精度の向上に寄与することができる。 As described above, according to the optical distance measuring device of the first embodiment, the first oscillator that generates the modulation reference signal, the light source that outputs the intensity-modulated light based on the modulation reference signal, and the light source A transmitting optical system for shaping and irradiating the output light, a receiving optical system for collecting reflected light from an object based on the irradiated light, and a second oscillator for generating a sensitivity modulation reference signal, and To modulate the sensitivity based on the modulated waveform signal and output the difference frequency with the received modulated signal as the received signal, and to linearly modulate the sensitivity of the photodetector based on the sensitivity modulation reference signal A waveform shaping circuit for shaping the modulation waveform, a reference signal output unit for outputting a difference signal between the modulation reference signal and the sensitivity modulation reference signal as a reference signal, a phase detector for obtaining a phase difference from the received signal and the reference signal, and phase detection Phase output from the detector From the signal, since a signal processing unit for measuring the distance, it improves efficiency when down-converted to a difference frequency between the frequency of the modulated light, it is possible to contribute to improvement of accuracy of distance measurement.
 また、実施の形態1の光測距装置によれば、光検出器からの差周波信号を増幅するアンプを備えると共に、差周波信号が、アンプにおける変調基準信号の周波数の入力換算雑音レベルより低い入力換算雑音レベルとなる周波数領域となるよう変調基準信号と感度変調基準信号とを決定するようにしたので、測距精度の高精度化、測定可能距離の長距離化、光源の出力を抑えることによる低コスト化を図ることができる。 Further, according to the optical distance measuring device of the first embodiment, the amplifier includes an amplifier that amplifies the difference frequency signal from the photodetector, and the difference frequency signal is lower than the input conversion noise level of the frequency of the modulation reference signal in the amplifier. The modulation reference signal and sensitivity modulation reference signal are determined so that the frequency range is equivalent to the input-converted noise level, so the accuracy of distance measurement is increased, the measurable distance is increased, and the light source output is suppressed. The cost can be reduced.
実施の形態2.
 実施の形態2は、実施の形態1で説明した光ダウンコンバートする光検出器をアレイ状とした場合の例である。
Embodiment 2. FIG.
The second embodiment is an example in which the light down-converting photodetector described in the first embodiment is formed in an array.
 図4は、実施の形態2における光測距装置を示す構成図であり、例として2つの光検出器7a,7bを用いた場合を示している。
 実施の形態2の光測距装置は、第1の発振器1、第2の発振器2、光源3、送信光学系4、波形整形回路5、受信光学系6、光検出器7a,7b、アンプ8a,8b、ミキサ9、BPF10、位相検波器11a,11b、信号処理部12、マルチプレクサ(以下、MUX回路という)14を備えており、光検出器7a,7b、アンプ8a,8b、位相検波器11a,11bはアレイ構成の光検出器アレイ15となっている。また、ミキサ9とBPF10で参照信号出力部13が構成されているのは実施の形態1と同様である。
FIG. 4 is a block diagram showing the optical distance measuring device according to the second embodiment, and shows a case where two photodetectors 7a and 7b are used as an example.
The optical distance measuring device according to the second embodiment includes a first oscillator 1, a second oscillator 2, a light source 3, a transmission optical system 4, a waveform shaping circuit 5, a reception optical system 6, photodetectors 7a and 7b, and an amplifier 8a. 8b, mixer 9, BPF 10, phase detectors 11a and 11b, signal processing unit 12, multiplexer (hereinafter referred to as MUX circuit) 14, photodetectors 7a and 7b, amplifiers 8a and 8b, phase detector 11a. 11b is a photodetector array 15 having an array configuration. Further, the reference signal output unit 13 is configured by the mixer 9 and the BPF 10 as in the first embodiment.
 二つの光検出器7a,7bのそれぞれの構成は実施の形態1の光検出器7と同様であり、波形整形回路5で整形された変調波形に基づいて光検出器の感度を変調し、受信する反射光の変調周波数との差周波の電気信号を出力するよう構成されている。また、アンプ8a,8bは、それぞれ光検出器7a,7bの出力を増幅するよう接続されている。位相検波器11a,11bは、それぞれ、参照信号出力部13からの参照信号とアンプ8a,8bからの受信信号a,bから位相情報を得て、位相信号a,bとして出力するよう構成されている。MUX回路14は、位相検波器11a,11bからの位相信号a,bを切り替えて信号処理部12に出力するマルチプレクサである。これ以外の構成は、実施の形態1と同様であるため、対応する部分に同一符号を付してその説明を省略する。 The configuration of each of the two photodetectors 7a and 7b is the same as that of the photodetector 7 of the first embodiment, and modulates the sensitivity of the photodetector based on the modulation waveform shaped by the waveform shaping circuit 5, and receives the signal. An electric signal having a difference frequency from the modulation frequency of the reflected light is output. The amplifiers 8a and 8b are connected to amplify the outputs of the photodetectors 7a and 7b, respectively. The phase detectors 11a and 11b are configured to obtain phase information from the reference signal from the reference signal output unit 13 and the received signals a and b from the amplifiers 8a and 8b and output the phase information as phase signals a and b, respectively. Yes. The MUX circuit 14 is a multiplexer that switches the phase signals a and b from the phase detectors 11 a and 11 b and outputs them to the signal processing unit 12. Since the configuration other than this is the same as that of the first embodiment, the same reference numerals are given to corresponding portions, and the description thereof is omitted.
 次に、実施の形態2の光測距装置の動作について説明する。なお、光測距装置としての基本的な動作は実施の形態1と同様であるため、実施の形態2の特徴的な動作についてのみ説明する。
 図示しない対象物からの反射光を受信光学系6で集光し、光検出器7aと光検出器7bとで受光する。このとき、光検出器7a,7bそれぞれの感度は周波数fm2で変調されているため、図2(e)のような受信する変調周波数fm1との差周波fm1-fm2の電気信号を出力し、アンプ8a,8bでその電気信号を増幅して受信信号を得る。また、アンプ8a,8bにトランスインピーダンスアンプを用いた場合の、差周波fm1-fm2が入力換算雑音レベルの最小値となるよう周波数fm1とfm2を設定するのは実施の形態1と同様である。
Next, the operation of the optical distance measuring device according to the second embodiment will be described. Since the basic operation as the optical distance measuring apparatus is the same as that of the first embodiment, only the characteristic operation of the second embodiment will be described.
Reflected light from an object (not shown) is collected by the receiving optical system 6 and received by the photodetector 7a and the photodetector 7b. At this time, since the sensitivities of the photodetectors 7a and 7b are modulated at the frequency f m2 , the electric signal of the difference frequency f m1 −f m2 from the received modulation frequency f m1 as shown in FIG. Then, the electric signals are amplified by the amplifiers 8a and 8b to obtain a reception signal. Further, when the transimpedance amplifier is used as the amplifiers 8a and 8b, the frequencies f m1 and f m2 are set so that the difference frequency f m1 -f m2 becomes the minimum value of the input conversion noise level as in the first embodiment. It is the same.
 参照信号出力部13で得られた参照信号と、アンプ8a,8bの出力である受信信号a,bをそれぞれ位相検波器11a,11bに入力し、二つの信号の位相差に相当する位相信号aと位相信号bを出力する。その後、MUX回路14で位相信号を切り替え、信号処理部12で、各光検出器7a,7bで測定された受信信号の位相差信号より対象物までの距離を算出する。 The reference signal obtained by the reference signal output unit 13 and the received signals a and b which are the outputs of the amplifiers 8a and 8b are input to the phase detectors 11a and 11b, respectively, and the phase signal a corresponding to the phase difference between the two signals. And the phase signal b are output. Thereafter, the phase signal is switched by the MUX circuit 14, and the signal processing unit 12 calculates the distance to the object from the phase difference signal of the received signal measured by each of the photodetectors 7a and 7b.
 実施の形態2では、複数の光検出器7a,7bを用いた光検出器アレイ15とすることにより、走査光学系を必要とすることなく、光照射領域中の測距を行うことができる。このとき各受光素子の測距値を画像化することにより、対象物の3次元画像を取得することができる。 In the second embodiment, by using the photodetector array 15 using the plurality of photodetectors 7a and 7b, distance measurement in the light irradiation region can be performed without the need for a scanning optical system. At this time, a three-dimensional image of the object can be obtained by imaging the distance measurement value of each light receiving element.
 ここで、光源3の例としてレーザを使用する。このとき、光源に直接変調信号を入力する直接変調方式でもよいし、外部に強度変調器を設置して変調光を得る外部変調方式の構成でもよい。また、その他の光源として、発光ダイオード(LED)やスーパールミネッセントダイオード(SLD)でもよい。 Here, a laser is used as an example of the light source 3. At this time, a direct modulation method in which a modulation signal is directly input to the light source may be used, or an external modulation method configuration in which an intensity modulator is provided outside to obtain modulated light may be used. Further, as another light source, a light emitting diode (LED) or a super luminescent diode (SLD) may be used.
 さらに、実施の形態2では、光検出器7a,7bにAPDを用いた例を示したが、例えばフォトダイオード(PD)や光電子増倍管(PMT)でもよい。また、BPF10は差周波fm1-fm2を選定すればよいため、ローパスフィルタ(LPF)でもよい。また、アンプ8a,8bはトランスインピーダンスアンプを用いた例を示したが、電圧アンプを用いてもよい。 Furthermore, in the second embodiment, an example in which the APD is used for the photodetectors 7a and 7b has been described. However, for example, a photodiode (PD) or a photomultiplier tube (PMT) may be used. The BPF 10 may be a low-pass filter (LPF) because the difference frequency f m1 -f m2 may be selected. Moreover, although the amplifier 8a, 8b showed the example using the transimpedance amplifier, you may use a voltage amplifier.
 また、実施の形態2では、差周波fm1-fm2をトランスインピーダンスゲインの入力換算雑音レベルの最小値となる構成としたが、光源3の変調周波数fm1のときの入力換算雑音レベルより低くなる周波数領域であれば良い。 In the second embodiment, the difference frequency f m1 −f m2 is configured to be the minimum value of the input equivalent noise level of the transimpedance gain, but is lower than the input equivalent noise level at the modulation frequency f m1 of the light source 3. Any frequency range may be used.
 また、実施の形態2では、位相検波器11a,11bの機能として位相差信号のみを出力しているが、振幅に相当する信号を出力する機能を有していてもよい。さらに、波形整形回路5は光検出器アレイ15の光検出器7a,7bに対して共通としたが、波形整形回路5も光検出器アレイ15に含め、各光検出器7a,7bに対して設置する構成でもよい。これにより、各光検出器7a,7bの感度特性が異なっていた場合でも、波形整形回路5でその非線形特性を校正することができ、各アンプ8a,8bの入力換算雑音レベルの最小値に差周波fm1-fm2を設定することができる。 In the second embodiment, only the phase difference signal is output as the function of the phase detectors 11a and 11b, but it may have a function of outputting a signal corresponding to the amplitude. Further, although the waveform shaping circuit 5 is common to the photodetectors 7a and 7b of the photodetector array 15, the waveform shaping circuit 5 is also included in the photodetector array 15 and is associated with each of the photodetectors 7a and 7b. The structure to install may be sufficient. As a result, even if the sensitivity characteristics of the photodetectors 7a and 7b are different from each other, the waveform shaping circuit 5 can calibrate the nonlinear characteristics, and the difference between the minimum values of the input conversion noise levels of the amplifiers 8a and 8b. The frequency f m1 -f m2 can be set.
 また、上記の実施の形態2の光測距装置では、走査光学系を用いずに照射領域中の測距を行う構成であったが、受信視野を固定し、送信ビームのみを走査光学系でスキャンする構成でもよい。このとき、光の照射方向と光検出器7a,7bにおける受光スポットは同期するため、図5に示すように、走査光学系16と同期回路17を設置し、MUX回路14を同期する構成とする。すなわち、同期回路17は、走査光学系16の走査方向と、その走査方向における対象物からの反射光をうける光検出器7a,7bからの受信信号を選択するようMUX回路14を同期制御する。他の構成は図4に示した構成と同様であるため、ここでの説明は省略する。 In the optical distance measuring apparatus of the second embodiment, the distance measurement is performed in the irradiation area without using the scanning optical system. However, the reception field of view is fixed, and only the transmission beam is detected by the scanning optical system. It may be configured to scan. At this time, since the light irradiation direction and the light receiving spots in the photodetectors 7a and 7b are synchronized, as shown in FIG. 5, the scanning optical system 16 and the synchronization circuit 17 are installed, and the MUX circuit 14 is synchronized. . That is, the synchronization circuit 17 synchronously controls the MUX circuit 14 so as to select the scanning direction of the scanning optical system 16 and the received signals from the photodetectors 7a and 7b that receive the reflected light from the object in the scanning direction. The other configuration is the same as the configuration shown in FIG.
 このように、実施の形態2の光測距装置によれば、複数の光検出器7a,7bを備えた光検出器アレイ15としたので、一つ受光素子で強度・位相を測定することができるため、取得画像の有効画素数の減少がなくなる。 As described above, according to the optical distance measuring device of the second embodiment, since the photodetector array 15 includes the plurality of photodetectors 7a and 7b, the intensity and phase can be measured with one light receiving element. As a result, the number of effective pixels in the acquired image is not reduced.
 以上説明したように、実施の形態2の光測距装置によれば、変調基準信号を発生する第1の発振器と、変調基準信号に基づき、強度変調された光を出力する光源と、光源より出力した光を整形し、照射する送信光学系と、照射された光に基づく対象物からの反射光を集光する受信光学系と、感度変調基準信号を発生する第2の発振器と、それぞれが、与えられた変調波形の信号に基づいて感度を変調し、受光した変調信号との差周波をそれぞれの受信信号として出力する複数の光検出器と、感度変調基準信号に基づき、複数の光検出器の感度を線形に変調するため変調波形を整形する波形整形回路と、変調基準信号と感度変調基準信号の差信号を参照信号として出力する参照信号出力部と、複数の受信信号と参照信号からそれぞれ位相差を求める複数の位相検波器と、複数の位相検波器からの出力を切り替えるマルチプレクサと、マルチプレクサで切り替えられた位相差信号から、前記各光検出器に対応する距離を計測する信号処理部とを備えたので、複数の光検出器を有する光測距装置であっても、変調光の周波数との差周波にダウンコンバートするときの効率を向上させることができる。 As described above, according to the optical distance measuring device of the second embodiment, the first oscillator that generates the modulation reference signal, the light source that outputs the intensity-modulated light based on the modulation reference signal, and the light source A transmitting optical system for shaping and irradiating the output light, a receiving optical system for collecting reflected light from an object based on the irradiated light, and a second oscillator for generating a sensitivity modulation reference signal, A plurality of photodetectors that modulate the sensitivity based on a signal of a given modulation waveform and output a difference frequency from the received modulation signal as a respective reception signal, and a plurality of light detections based on the sensitivity modulation reference signal A waveform shaping circuit that shapes the modulation waveform to linearly modulate the sensitivity of the detector, a reference signal output unit that outputs a difference signal between the modulation reference signal and the sensitivity modulation reference signal as a reference signal, and a plurality of received signals and reference signals Each phase difference A plurality of phase detectors, a multiplexer that switches outputs from the plurality of phase detectors, and a signal processing unit that measures a distance corresponding to each photodetector from the phase difference signal switched by the multiplexer. Therefore, even an optical distance measuring device having a plurality of photodetectors can improve efficiency when down-converting to a difference frequency from the frequency of the modulated light.
 また、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 Further, within the scope of the present invention, the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
 以上のように、この発明に係る光測距装置は、変調周波数を低周波側にダウンコンバートする受光器を備えたものであり、レーザレーダ装置等に用いるのに適している。 As described above, the optical distance measuring device according to the present invention includes the light receiver that down-converts the modulation frequency to the low frequency side, and is suitable for use in a laser radar device or the like.
 1 第1の発振器、2 第2の発振器、3 光源、4 送信光学系、5 波形整形回路、6 受信光学系、7,7a,7b 光検出器、8,8a,8b アンプ、9 ミキサ、10 バンドパスフィルタ(BPF)、11,11a,11b 位相検波器、12 信号処理部、13 参照信号出力部、14 マルチプレクサ(MUX回路)、15 光検出器アレイ、16 走査光学系、17 同期回路。 1. 1st oscillator, 2nd oscillator, 3 light source, 4 transmission optical system, 5 waveform shaping circuit, 6 reception optical system, 7, 7a, 7b photodetector, 8, 8a, 8b amplifier, 9 mixer, 10 Bandpass filter (BPF), 11, 11a, 11b phase detector, 12 signal processing unit, 13 reference signal output unit, 14 multiplexer (MUX circuit), 15 photodetector array, 16 scanning optical system, 17 synchronization circuit.

Claims (3)

  1.  変調基準信号を発生する第1の発振器と、
     前記変調基準信号に基づき、強度変調された光を出力する光源と、
     前記光源より出力した光を整形し、照射する送信光学系と、
     前記照射された光に基づく対象物からの反射光を集光する受信光学系と、
     感度変調基準信号を発生する第2の発振器と、
     与えられた変調波形の信号に基づいて感度を変調し、受光した変調信号との差周波を受信信号として出力する光検出器と、
     前記感度変調基準信号に基づき、前記光検出器の感度を線形に変調するための変調波形を整形する波形整形回路と、
     前記変調基準信号と前記感度変調基準信号の差信号を参照信号として出力する参照信号出力部と、
     前記受信信号と前記参照信号から位相差を求める位相検波器と、
     前記位相検波器から出力される位相差信号から、距離を計測する信号処理部とを備えた光測距装置。
    A first oscillator for generating a modulation reference signal;
    A light source that outputs intensity-modulated light based on the modulation reference signal;
    A transmission optical system for shaping and irradiating the light output from the light source;
    A receiving optical system for collecting reflected light from the object based on the irradiated light;
    A second oscillator for generating a sensitivity modulation reference signal;
    A photodetector that modulates sensitivity based on a signal of a given modulation waveform and outputs a difference frequency with the received modulation signal as a received signal;
    A waveform shaping circuit for shaping a modulation waveform for linearly modulating the sensitivity of the photodetector based on the sensitivity modulation reference signal;
    A reference signal output unit that outputs a difference signal between the modulation reference signal and the sensitivity modulation reference signal as a reference signal;
    A phase detector for obtaining a phase difference from the received signal and the reference signal;
    An optical distance measuring device comprising: a signal processing unit for measuring a distance from a phase difference signal output from the phase detector.
  2.  変調基準信号を発生する第1の発振器と、
     前記変調基準信号に基づき、強度変調された光を出力する光源と、
     前記光源より出力した光を整形し、照射する送信光学系と、
     前記照射された光に基づく対象物からの反射光を集光する受信光学系と、
     感度変調基準信号を発生する第2の発振器と、
     それぞれが、与えられた変調波形の信号に基づいて感度を変調し、受光した変調信号との差周波をそれぞれの受信信号として出力する複数の光検出器と、
     前記感度変調基準信号に基づき、前記複数の光検出器の感度を線形に変調するための変調波形を整形する波形整形回路と、
     前記変調基準信号と前記感度変調基準信号の差信号を参照信号として出力する参照信号出力部と、
     前記複数の受信信号と前記参照信号からそれぞれ位相差を求める複数の位相検波器と、
     前記複数の位相検波器からの出力を切り替えるマルチプレクサと、
     前記マルチプレクサで切り替えられた位相差信号から、前記各光検出器に対応する距離を計測する信号処理部とを備えた光測距装置。
    A first oscillator for generating a modulation reference signal;
    A light source that outputs intensity-modulated light based on the modulation reference signal;
    A transmission optical system for shaping and irradiating the light output from the light source;
    A receiving optical system for collecting reflected light from the object based on the irradiated light;
    A second oscillator for generating a sensitivity modulation reference signal;
    A plurality of photodetectors each for modulating the sensitivity based on a signal of a given modulation waveform and outputting a difference frequency from the received modulation signal as a respective reception signal;
    A waveform shaping circuit for shaping a modulation waveform for linearly modulating the sensitivity of the plurality of photodetectors based on the sensitivity modulation reference signal;
    A reference signal output unit that outputs a difference signal between the modulation reference signal and the sensitivity modulation reference signal as a reference signal;
    A plurality of phase detectors for respectively obtaining a phase difference from the plurality of received signals and the reference signal;
    A multiplexer that switches the output from the plurality of phase detectors;
    An optical distance measuring device comprising: a signal processing unit that measures a distance corresponding to each of the photodetectors from the phase difference signal switched by the multiplexer.
  3.  光検出器からの差周波信号を増幅するアンプを備えると共に、
     前記差周波信号が、前記アンプにおける変調基準信号の周波数の入力換算雑音レベルより低い入力換算雑音レベルとなる周波数領域となるよう前記変調基準信号と感度変調基準信号とを決定することを特徴とする請求項1記載の光測距装置。
    With an amplifier that amplifies the difference frequency signal from the photodetector,
    The modulation reference signal and the sensitivity modulation reference signal are determined so that the difference frequency signal is in a frequency region where the input conversion noise level is lower than the input conversion noise level of the frequency of the modulation reference signal in the amplifier. The optical distance measuring device according to claim 1.
PCT/JP2011/006537 2011-11-24 2011-11-24 Optical range finder WO2013076769A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/006537 WO2013076769A1 (en) 2011-11-24 2011-11-24 Optical range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/006537 WO2013076769A1 (en) 2011-11-24 2011-11-24 Optical range finder

Publications (1)

Publication Number Publication Date
WO2013076769A1 true WO2013076769A1 (en) 2013-05-30

Family

ID=48469254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006537 WO2013076769A1 (en) 2011-11-24 2011-11-24 Optical range finder

Country Status (1)

Country Link
WO (1) WO2013076769A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646502A (en) * 2016-11-10 2017-05-10 深圳市摩天射频技术有限公司 Novel laser ranging device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437133A (en) * 1987-08-01 1989-02-07 Nec Corp Optical reception circuit
JPH02108907A (en) * 1988-10-19 1990-04-20 Canon Inc Distance/shape measuring instrument
JP2001507168A (en) * 1997-06-06 2001-05-29 アルカテル Avalanche photodiode device
JP2001289951A (en) * 2000-04-11 2001-10-19 Yokogawa Electric Corp Distance measuring device
JP2005534940A (en) * 2002-08-03 2005-11-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Optical distance measuring method and optical distance measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437133A (en) * 1987-08-01 1989-02-07 Nec Corp Optical reception circuit
JPH02108907A (en) * 1988-10-19 1990-04-20 Canon Inc Distance/shape measuring instrument
JP2001507168A (en) * 1997-06-06 2001-05-29 アルカテル Avalanche photodiode device
JP2001289951A (en) * 2000-04-11 2001-10-19 Yokogawa Electric Corp Distance measuring device
JP2005534940A (en) * 2002-08-03 2005-11-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Optical distance measuring method and optical distance measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646502A (en) * 2016-11-10 2017-05-10 深圳市摩天射频技术有限公司 Novel laser ranging device and method
CN106646502B (en) * 2016-11-10 2023-12-08 深圳市摩天射频技术有限公司 Laser ranging equipment and method

Similar Documents

Publication Publication Date Title
US10901089B2 (en) Coherent LIDAR method and apparatus
US7675610B2 (en) Photon counting, chirped AM LADAR system and related methods
KR100844284B1 (en) System and method for signal acquisition in a distance meter
JP5590884B2 (en) Optical distance measuring method and optical distance measuring apparatus using the same
US9007600B2 (en) Laser radar system
US7742152B2 (en) Coherent detection scheme for FM chirped laser radar
KR100967530B1 (en) Method and device for optically measuring distance
US11391824B2 (en) Distance measuring device and distance measuring method
US11740340B2 (en) Techniques for amplification of return signal in LIDAR system
JP2013104784A (en) Optical three-dimensional camera
JP2009524072A (en) Measuring method of light propagation time
US9041918B2 (en) Measuring apparatus and referencing method for a digital laser distance meter, and laser distance meter
JP2010271275A (en) Laser image measurement device
JP2015222234A (en) Laser radar device
JP2010032454A (en) Gas analyzer and gas analysis method
US7555062B2 (en) Method and device for delay-sensitive measurement of a signal
US20130341486A1 (en) Apparatus for obtaining 3d information using photodetector array
US20220276382A1 (en) Homodyne receive architecture in a spatial estimation system
WO2013076769A1 (en) Optical range finder
JP2013108840A (en) Laser radar device
WO2019181695A1 (en) Distance measuring device
JP6833105B2 (en) How to provide a detection signal to an object to be detected
JP4934691B2 (en) Spectroscopic system
JP2015155901A (en) Distance measuring sensor and method for measuring distance of object in monitoring area
JP2007218728A (en) Range finder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP