WO2013073637A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
WO2013073637A1
WO2013073637A1 PCT/JP2012/079701 JP2012079701W WO2013073637A1 WO 2013073637 A1 WO2013073637 A1 WO 2013073637A1 JP 2012079701 W JP2012079701 W JP 2012079701W WO 2013073637 A1 WO2013073637 A1 WO 2013073637A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
sealing material
cell module
mass
eva
Prior art date
Application number
PCT/JP2012/079701
Other languages
French (fr)
Japanese (ja)
Inventor
達章 坂野
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2013515444A priority Critical patent/JP5409966B2/en
Publication of WO2013073637A1 publication Critical patent/WO2013073637A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09J123/0853Vinylacetate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module using a sealing material mainly composed of an ethylene vinyl acetate copolymer (hereinafter referred to as EVA).
  • EVA ethylene vinyl acetate copolymer
  • a solar cell module has a sealing material disposed on the light receiving surface side and a sealing material disposed on the back surface side between the translucent light receiving surface side protective material and the back surface side protective material (back cover). It is set as the structure which sealed the some solar cell element pinched
  • EVA which is inexpensive and has high transparency and adhesiveness is preferably used (see, for example, Japanese Patent No. 3473605).
  • an EVA film containing 0.5% by mass or less of an acid acceptor of an inorganic powder having an average particle size of 5 ⁇ m or less as a transparent film used as a sealing material for a solar cell module (for example, (See JP 2005-29588 A). According to the EVA film containing this acid acceptor, it is possible to suppress the generation of acetic acid and improve the durability of the solar cell module.
  • the seals used on the light receiving surface side and the back surface side are used.
  • An effective means is to add an acid acceptor to the stopper.
  • the solar cell module 20 has a light receiving surface 20a on which light is irradiated and a back surface 20b located on the opposite side to the light receiving surface 20a.
  • the solar cell element 10 which is a solar cell in which electrodes (front surface electrode 16, back surface electrode 17) are arranged on the main surfaces facing the light receiving surface 20a and the back surface 20b of the solar cell module 20, and the solar cell element
  • the light-transmitting first protective material 11 disposed on the first surface 10a side which is the light receiving surface (front surface) of the solar cell element 10 and the first surface 10a of the solar cell element 10 are located on the opposite side.
  • the second protective material 14 disposed on the second surface 10b side, which is the back surface of the solar cell element 10, and the first sealing material disposed between the first surface 10a of the solar cell element 10 and the first protective material 11 12, and a second sealing material 13 disposed between the second surface 10 b of the solar cell element 10 and the second protective material 14.
  • At least one of the first sealing material 12 and the second sealing material 13 contains EVA and an organic compound that has a functional group having nitrogen and functions as an acid acceptor.
  • an organic compound having a functional group having nitrogen is referred to as an “organic nitrogen compound”.
  • at least one of the first sealing material 12 and the second sealing material 13 may be made of EVA containing an organic nitrogen compound.
  • at least one of the first sealing material 12 and the second sealing material 13 includes a first region including an organic nitrogen compound provided in the vicinity of a portion where the wiring member or the electrode is disposed, and other regions. And a second region made of EVA.
  • the solar cell may be a single solar cell element 10 or, as shown in FIGS. 1 and 2, a plurality of solar cell elements 10 are electrically connected in series or series-parallel to each other via a wiring member 15. It may be a solar cell element string or the like.
  • the plurality of solar cell elements 10 are disposed on the light receiving surface side of one adjacent solar cell element 10 and on the back surface side of the other solar cell element 10. The electrodes are electrically connected via the wiring member 15.
  • the solar cell module 20 may include a terminal box (not shown) for taking out the electric power generated by the solar cell element 10 outside the second protective material 14.
  • the adhesion between the second protective material 14 can be improved.
  • moisture content etc. to the inside of the solar cell module 20 is implement
  • At least one of the first sealing material 12 and the second sealing material 13 absorbs an acid such as acetic acid or has a high function of neutralizing an acid such as acetic acid.
  • the transparency of the sealing material can be ensured.
  • the amount is 0.01 with respect to 100 parts by mass of EVA.
  • the organic nitrogen compound of ⁇ 0.5 parts by mass the transparency of the first sealing material 12 can be ensured, and it is arranged inside the solar cell module 20 without deteriorating the power generation performance.
  • the solar cell module 20 having excellent durability and the like in which the generation of rust is reduced at least in the wiring member 15 or the electrode.
  • the first sealing material 12 disposed on the first surface 10a side by containing 0.075 to 0.3 parts by mass of an organic nitrogen compound with respect to 100 parts by mass of EVA. While ensuring high transparency of the material 12, the generation of rust can be reduced at least in the wiring member 15 or the electrode disposed inside the solar cell module 20, and the power generation performance can be further improved.
  • positioned at the 2nd surface 10b side of the solar cell element 10 contains EVA and an organic nitrogen compound, it is 0.01 mass part or more with respect to 100 mass parts EVA.
  • the organic nitrogen compound it is possible to provide the solar cell module 20 in which the occurrence of rust is reduced at least in the wiring member 15 or the electrode disposed inside the solar cell module 20 without reducing the power generation performance.
  • At least wiring disposed inside the solar cell module 20 is contained by including 0.15 to 1.0 part by mass of an organic nitrogen compound with respect to 100 parts by mass of EVA.
  • the occurrence of rust in the member 15 or the electrode can be further suitably reduced.
  • EVA and an organic nitrogen compound may be included in both the first sealing material 12 and the second sealing material 13.
  • the content of the organic nitrogen compound with respect to EVA in the second sealing material 13 is preferably larger than the content of the organic nitrogen compound with respect to EVA in the first sealing material 12. This is because moisture tends to enter from the side of the second sealing material 13 disposed on the second surface 10b side that is generally protected by the second protective material 14 that is thinner than the first protective member 11.
  • compounds having a urea bond typified by urea monocyclic, heterocyclic compounds or derivatives thereof having a nitrogen atom typified by pyridine, imidazole and carbazole, or the like, or There may be mentioned quaternary ammonium salts such as tetramethylammonium hydroxide.
  • Primary amines include methyl groups such as methylamine, ethylamine and propylamine, alkyl groups such as methyl, ethyl and propyl groups, Or an alkenyl group such as an ethenyl group and a propenyl group, Or a saturated or unsaturated aliphatic amine having 1 to 18 carbon atoms having an alkynyl group such as an ethynyl group or a propynyl group, Or a saturated or unsaturated aliphatic amine having 1 to 18 carbon atoms having a plurality of amino groups such as methylenediamine and ethylenediamine, Or a saturated, unsaturated aliphatic amine having 1 to 18 carbon atoms having a substituent containing a hydroxyl group such as trishydroxymethylaminomethane and ethanolamine, Or amino acids containing glycine, alanine and histidine, Or monosaccharides such as glucose and cellulose, amine derivatives
  • secondary amines examples include saturated aliphatic secondary amines or unsaturated aliphatic secondary amines having 1 to 18 carbon atoms such as diethylamine, N, N′-dimethylethylenediamine, and diethanolamine. Or aromatic secondary amines, such as diphenylamine, etc. are mentioned.
  • Tertiary amines include saturated aliphatic tertiary amines or unsaturated aliphatic tertiary amines having 1 to 18 carbon atoms such as triethylamine, N, N, N ′, N′-tetraethylethylenediamine, Or aromatic tertiary amines, such as a triphenylamine, etc. are mentioned.
  • imines include cyclic secondary amines such as ethyleneimine and piperazine represented by the general formula (CH 2 ) n NH, Examples thereof include N-methylethaneimine and propane-2-imine having a C ⁇ N double bond.
  • amides or imides examples include lauric acid, which is a saturated fatty acid having 4 to 30 carbon atoms, Or linoleic acid or linolenic acid which is an unsaturated fatty acid, Alternatively, amides or imides synthesized from aromatic benzoic acid, salicylic acid, phthalic acid, or the like can be given.
  • organic nitrogen compound examples include condensates, polymers, and copolymers of the above-described substances.
  • the second sealing material 13 preferably further contains a colorant.
  • a colorant For example, by using a white colorant, by reflecting light at the interface between the first sealing material 12 and the second sealing material 13 inside the solar cell module 20, or by irregular reflection of light by the colorant, etc. Light incident between the solar cell elements 10 or light that has passed through the solar cell element 10 can be diffusely reflected and incident on the solar cell element 10 again. Thereby, since the utilization efficiency of the light which injected into the solar cell module 20 increases, the power generation performance of the solar cell module 20 can be improved.
  • the 2nd sealing material 13 which can be confirmed from the light-receiving surface side of the solar cell module 20 becomes the same color as the solar cell element 10 by using a dark colorant, the appearance of the solar cell module 20 is aesthetically pleasing. Can be improved.
  • white colorants such as titanium oxide, calcium carbonate, zinc white (zinc oxide), lead white (basic lead carbonate), lithopone, barite, precipitated barium sulfate or gypsum, Or blue colorants such as ultramarine, Or a black colorant such as carbon black,
  • milky white colorants such as glass beads and light diffusing agents can be used.
  • the second sealing material 13 further contains a lubricant.
  • the adhesiveness of a sealing material improves and it becomes possible to reduce that a water
  • a phosphite compound is preferably used as the lubricant.
  • the phosphite compound include alkyl phosphites such as decyl phosphite, alkyl or aryl acid phosphates such as decyl acid phosphate and phenyl acid phosphate, Examples include trialkyl or triaryl phosphates such as trihexyl phosphate and tricresyl phosphate, or zinc dithiophosphate.
  • the content of the lubricant is preferably 0.01 to 5.0 parts by mass, particularly 0.1 to 0.4 parts by mass with respect to 100 parts by mass of EVA contained in the second sealing material 13.
  • At least one of the first sealing material 12 and the second sealing material 13 further includes a crosslinking agent.
  • EVA can be cross-linked and cured, and durability can be improved.
  • crosslinking agent it is preferable to use an organic peroxide because a sealing material with improved temperature dependency of adhesive strength, transparency, moisture resistance and penetration resistance can be obtained.
  • Organic peroxides can be used as long as they decompose at a temperature of 100 ° C. or higher and generate free radicals.
  • the organic peroxide is generally selected in consideration of the film formation temperature, the adjustment conditions of the composition, the curing temperature, the heat resistance and storage stability of the adherend. In particular, the one having a decomposition temperature of 70 ° C. or more with a half-life of 10 hours is preferable.
  • the content of the crosslinking agent in at least one of the first sealing material 12 and the second sealing material 13 is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 100 parts by mass with respect to 100 parts by mass of EVA. Suppose that it is 2 mass parts.
  • At least one of the first sealing material 12 and the second sealing material 13 may further contain a crosslinking aid as necessary.
  • the crosslinking aid can improve the gel fraction of EVA and improve durability.
  • crosslinking aid compound having a radical polymerizable group as a functional group
  • examples of the crosslinking aid include trifunctional crosslinking aids such as triallyl cyanurate and triallyl isocyanurate, and (meth) acrylic esters (for example, NK ester). And monofunctional or bifunctional crosslinking aids.
  • trifunctional crosslinking aids such as triallyl cyanurate and triallyl isocyanurate, and (meth) acrylic esters (for example, NK ester).
  • monofunctional or bifunctional crosslinking aids include triallyl cyanurate or triallyl isocyanurate, and triallyl isocyanurate is particularly preferred.
  • the content of the crosslinking assistant in at least one of the first sealing material 12 and the second sealing material 13 is 0.1 to 3 parts by mass, particularly 0.1 to 2.5 parts by mass with respect to 100 parts by mass EVA. It is preferable to set it as a mass part.
  • silane coupling agent can be used as an adhesion improver. This makes it possible to form a sealing material having an excellent adhesive force.
  • silane coupling agents include ⁇ -chloropropylmethoxysilane, vinylethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltrichlorosilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ⁇ - ( Mention may be made of aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇
  • the content of the silane coupling agent in at least one of the first sealing material 12 and the second sealing material 13 is 0.1 to 0.7 parts by mass, particularly 0.15 to 100 parts by mass with respect to 100 parts by mass of EVA.
  • the amount is preferably 0.65 parts by mass.
  • the plasticizer is not particularly limited, but polybasic acid esters and polyhydric alcohol esters are generally used. Examples thereof include dioctyl phthalate, dihexyl adipate, triethylene glycol-di-2-ethylbutyrate, butyl sebacate, tetraethylene glycol diheptanoate, and triethylene glycol dipelargonate.
  • a plasticizer may be used individually by 1 type in the above, and may be used in combination of 2 or more type.
  • the plasticizer content in each of the first sealing material 12 or the second sealing material 13 is preferably in the range of 5 parts by mass or less with respect to 100 parts by mass of EVA.
  • ester also include polyhydric alcohols such as ethylene glycol, triethylene glycol, polypropylene glycol, polyethylene glycol, trimethylolpropane, and pentaerythritol, and esters of acrylic acid or methacrylic acid.
  • polyhydric alcohols such as ethylene glycol, triethylene glycol, polypropylene glycol, polyethylene glycol, trimethylolpropane, and pentaerythritol, and esters of acrylic acid or methacrylic acid.
  • epoxy group-containing compound examples include triglycidyl tris (2-hydroxyethyl) isocyanurate, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, Examples thereof include phenol (ethyleneoxy) glycidyl ether, pt-butylphenyl glycidyl ether, adipic acid diglycidyl ester, phthalic acid diglycidyl ester, glycidyl methacrylate, and butyl glycidyl ether.
  • the content of the acryloxy group-containing compound, the methacryloxy group-containing compound, or the epoxy group-containing compound in at least one of the first sealing material 12 and the second sealing material 13 is 0.5 for 100 parts by mass of EVA. It is preferably 5 to 5 parts by mass, particularly 1 to 4 parts by mass.
  • At least one of the first sealing material 12 and the second sealing material 13 may include an ultraviolet absorber, a light stabilizer, and a deterioration inhibitor.
  • the sealing material 12 and the second sealing material 13 includes an ultraviolet absorber
  • EVA is deteriorated due to the influence of irradiated light or the like, and the sealing material is prevented from yellowing. Can do.
  • the ultraviolet absorber is not particularly limited, but 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-dodecyloxybenzophenone, 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone Preferred are benzophenone-based ultraviolet absorbers such as 2-hydroxy-4-n-octoxybenzophenone.
  • the content of the benzophenone-based ultraviolet absorber in each of at least one of the first sealing material 12 and the second sealing material 13 is 0.01 to 5 parts by mass with respect to 100 parts by mass of EVA. preferable.
  • the deterioration of EVA due to the influence of irradiated light or the like, and the yellowing of the sealing material are suppressed.
  • a light stabilizer a light stabilizer called a hindered amine type is preferably used.
  • LA-52, LA-57, LA-62, LA-63LA-63p, LA-67, LA-68 are also manufactured by ADEKA Corporation), Tinuvin 744, Tinuvin 770, Tinuvin 765, Tinuvin 144, Tinuvin 622LD, CHIMASSORB 944LD (all manufactured by Ciba Specialty Chemicals Co., Ltd.), UV-3034 (BF Goodrich) Etc.
  • the said light stabilizer may be used individually or may be used in combination of 2 or more type.
  • the blending amount of the light stabilizer in each of the first sealing material 12 or the second sealing material 13 is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of EVA.
  • degradation inhibitor examples include hindered phenol antioxidants such as N, N′-hexane-1,6-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamide]. , Phosphorus heat stabilizers, lactone heat stabilizers, vitamin E heat stabilizers or sulfur heat stabilizers.
  • the thickness of the first sealing material 12 is preferably thicker than the thickness of the second sealing material 13. Thereby, the first sealing material 12 can absorb more stress applied to the solar cell module 20 than the second sealing material 13. For this reason, it can suppress that a water
  • the thickness of the first sealing material 12 is preferably 0.4 mm to 1.2 mm, particularly preferably 0.6 mm to 1.0 mm.
  • the thickness of the second sealing material 13 is thinner than that of the first sealing material 12, and is preferably 0.2 mm to 0.8 mm, particularly 0.4 mm to 0.6 mm.
  • the first sealing material 12 and the second sealing material 13 described above may be formed according to a known method.
  • a sheet-like body can be produced from the composition containing the various components described above by a molding method such as ordinary extrusion molding or calendar molding (calendering).
  • a molding method such as ordinary extrusion molding or calendar molding (calendering).
  • the heating at this time is generally in the range of 50 to 90 ° C.
  • a member to be sealed such as the solar cell element 10 is interposed between the first sealing material 12 and the second sealing material 13, and this member to be sealed can be sealed.
  • the structure of the solar cell module 20 using the first sealing material 12 and the second sealing material 13 is not particularly limited. However, as shown in FIGS. 1 and 2, the second protective material 14 and the second sealing material are used. 13, the solar cell element 10, the 1st sealing material 12, and the translucent 1st protective material 11 are the structures arrange
  • the structure of the solar cell module 20 includes the first sealing material 12 that covers the translucent first protective material 11 and the second sealing material 13 that covers the second protective material 14.
  • the solar cell element 10 is disposed between the first sealing material 12 and the second sealing material 13 so as to come into contact with both the first sealing material 12 and the second sealing material 13. .
  • the solar cell element 10 is placed between the first sealing material 12 and the first sealing material 13. It can seal suitably.
  • the solar cell element 10 is not only a solar cell element made of a single crystal or polycrystalline silicon substrate such as a silicon power generation element, but also a thin film solar cell element such as amorphous silicon or a compound of copper-indium-gallium-selenium.
  • a solar cell element formed of a material such as CIGS or CdTc may be used.
  • the solar cell element 10 may adopt a back contact structure having electrodes only on the back surface.
  • the protective material 14 may be laminated in this order, and the first encapsulant 12 and the second encapsulant 13 may be cured according to a conventional method such as heating and pressurizing the obtained laminate.
  • the laminate is vacuum laminator at a temperature of 135 to 180 ° C., preferably 140 to 180 ° C., more preferably 155 to 180 ° C., degassing time 0.1 to 5 minutes, press pressure
  • the pressure bonding may be performed under conditions of 11 to 147 kPa and a press time of 5 to 15 minutes.
  • the translucent first protective material 11 may be a glass substrate such as silicate glass, for example.
  • the thickness of the glass substrate is generally from 0.1 to 10 mm, and preferably from 0.3 to 5 mm.
  • the glass substrate may generally be chemically or thermally reinforced.
  • the second protective material 14 is a plastic film such as PET (polyethylene terephthalate).
  • PET polyethylene terephthalate
  • a fluorinated polyethylene film particularly a fluorinated polyethylene film / Al / fluorinated polyethylene film in this order. Laminated films are preferred.
  • the present invention is not limited to the above-described embodiment, and it is needless to say that the embodiment can be arbitrary without departing from the gist of the present invention.
  • the first sealing material 12 is made of EVA containing an organic nitrogen compound that functions as an acid acceptor
  • the second sealing material 13 is a solar cell module made of non-ester thermoplastic resin without using EVA.
  • the non-ester thermoplastic resin is, for example, a thermoplastic resin obtained by polymerizing a polyethylene compound containing an ethylene- ⁇ -olefin copolymer as a main component. Moreover, it does not produce a corrosion product such as acetic acid by hydrolysis, and has only to be flexible so as to relieve the impact applied to the solar cell element 10, and the compound to be polymerized is a cyclic olefin compound or vinyl instead of the polyethylene compound.
  • Aromatic compounds, polyene compounds, propylene compounds, butene compounds, hexene compounds or octene compounds may be used, or one or more of these may be polymerized and used.
  • the propylene compound is propylene polymerized with an ethylene- ⁇ -olefin copolymer.
  • the butene compound is butene polymerized with an ethylene- ⁇ -olefin copolymer
  • the hexene compound is an ethylene- ⁇ -olefin.
  • the octene compound is 1-octene polymerized with the ethylene- ⁇ -olefin copolymer.
  • the second sealing material 13 does not contain ester-based vinyl acetate as a difference from the first sealing material 12, acetic acid, which is a corrosive product, is added along with hydrolysis due to moisture absorption. It does not occur.
  • the first sealing material 12 may be made of non-ester thermoplastic resin, and the second sealing material 13 may be made of EVA containing an organic nitrogen compound that functions as an acid acceptor. For example, it is preferable to use EVA for the first sealing material 12.
  • the organic nitrogen compound is not uniformly dispersed in the sealing material in at least one of the first sealing material 12 and the second sealing material 13, but on the solar cell element 10 side, particularly in the solar cell element 10.
  • the electrode and the wiring member 15 may be unevenly distributed so that the content thereof is larger than that of other regions.
  • the organic nitrogen compound is unevenly distributed on the solar cell element 10 side in at least one of the first sealing material 12 and the second sealing material 13, thereby reducing the total content of the organic nitrogen compound.
  • at least the generation of rust in the wiring member 15 or the electrode can be reliably and effectively reduced.
  • the outstanding solar cell module which improved durability etc., without reducing electric power generation performance can be provided.
  • sample No. which is a solar cell module 20 including one solar cell element 10 is manufactured by the manufacturing method described below. 1-15 was produced.
  • polycrystalline silicon substrates each having a square shape when viewed in plan, having a side of about 156 mm and a thickness of about 200 ⁇ m were prepared for each sample. These polycrystalline silicon substrates were doped with boron to exhibit a p-type conductivity type with a specific resistance of about 1.5 ⁇ ⁇ cm.
  • the surface electrode 16 formed on the first surface 10a of the solar cell element 10 was prepared by applying a conductive paste made of silver to a linear pattern as shown in FIG. .
  • the back electrode 17 formed on the second surface 10b of the solar cell element 10 is formed by first applying a conductive paste made of aluminum to a predetermined region by a screen printing method and then drying and baking simultaneously with the surface electrode 16. did. Thereafter, a conductive paste made of silver was applied to a linear pattern having the same shape as that of the front surface electrode 16 by a screen printing method, and then dried and baked to form a back electrode 17. Thereafter, lead wires made of copper foil having a predetermined length were soldered to the front electrode 16 and the back electrode 17 of the solar cell element 10.
  • the film-like second protective material 14 made of PET having a thickness of about 0.3 mm is laminated in this order, and the obtained laminate is subjected to the following heating and pressurizing method to form the first sealing material 12 and the second sealing material.
  • the stop material 13 was softened and then integrated to produce the solar cell module 20. Note that the lead wires soldered to the front surface electrode 16 and the back surface electrode 17 of the solar cell element 10 were led out of the laminate so that the output characteristics could be measured after the solar cell module 20 was completed.
  • both the first sealing material 12 and the second sealing material 13 are made of EVA, and when an acid acceptor is added to EVA, as shown in Table 1, with respect to 100 parts by mass of EVA.
  • the content (part by mass) of the organic nitrogen compound (diethanolamine) was set.
  • the thickness of the 1st sealing material 12 was 0.7 mm
  • the thickness of the 2nd sealing material 13 was 0.5 mm.
  • the heating and pressurization of the laminate was performed by pressing the laminate with a vacuum laminator at a temperature of about 170 ° C. under conditions of a deaeration time of about 3 minutes, a press pressure of about 108 kPa, and a press time of about 7 minutes.
  • the initial output is 4. particularly when the content of the organic nitrogen compound is 0.075 parts by mass or more and 0.3 parts by mass or less. It was 104 W or more and the output maintenance ratio was 0.965 or more, and the good initial characteristics and durability of the solar cell module 20 were confirmed.
  • the initial output is 4.123 W or more particularly when the content of the organic nitrogen compound is 0.15 parts by mass or more and 1 part by mass or less.
  • the output maintenance factor was 0.950 or more, and the favorable durability of the solar cell module 20 could be confirmed.
  • the output maintenance factor was a low value of 0.893 or less. This is probably because the content of the organic nitrogen compound was too small, or the content was too large, resulting in insufficient polymerization of EVA, and the durability of the solar cell module 20 was lowered.
  • the organic nitrogen compound may be contained in both the first sealing material 12 and the second sealing material 13, and the tendency is similar to that of the first sealing material 12 and the second sealing material 13. It was confirmed that the sample was the same as the sample containing an organic nitrogen compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

In order to provide s solar cell module which has further improved durability by reducing the formation of rust at least on a wiring member or an electrode arranged within the solar cell module without lowering the power generation performance, the solar cell module is provided with: a solar cell (for example, a solar cell element (10)) which has a first surface that serves as a light-receiving surface and a second surface that is on the reverse side of the first surface; a light-transmitting first protective member (11) which is arranged on the first surface side of the solar cell; a second protective member (14) which is arranged on the second surface side of the solar cell; a first sealing member (12) which is arranged between the first surface of the solar cell and the first protective member (11); and a second sealing member (13) which is arranged between the second surface of the solar cell and the second protective member (14). The first sealing member (12) and/or the second sealing member (13) contains an ethylene-vinyl acetate copolymer and an organic compound that has a functional group containing nitrogen and functions as an acid acceptor.

Description

太陽電池モジュールSolar cell module
 本発明はエチレン酢酸ビニル共重合体(以下、EVAという)を主成分とする封止材を用いた太陽電池モジュールに関する。 The present invention relates to a solar cell module using a sealing material mainly composed of an ethylene vinyl acetate copolymer (hereinafter referred to as EVA).
 近年、資源の有効利用および環境問題の対策等の面から、太陽光を電気エネルギーに直接、変換する太陽電池モジュールが世界中で広く使用されており、この太陽電池モジュールのさらなる開発が進められている。 In recent years, solar cell modules that directly convert sunlight into electrical energy have been widely used around the world in terms of effective use of resources and countermeasures for environmental problems, and further development of this solar cell module has been promoted. Yes.
 一般に、太陽電池モジュールは、透光性の受光面側保護材と裏面側保護材(バックカバー)との間に、受光面側に配置される封止材および裏面側に配置される封止材で挟まれた複数個の太陽電池素子を封止した構成とされている。 Generally, a solar cell module has a sealing material disposed on the light receiving surface side and a sealing material disposed on the back surface side between the translucent light receiving surface side protective material and the back surface side protective material (back cover). It is set as the structure which sealed the some solar cell element pinched | interposed by.
 受光面側および裏面側のそれぞれの側に用いられる封止材としては、安価であり高い透明性および接着性を有するEVAが好ましく用いられている(例えば特許第3473605号公報を参照)。 As the sealing material used on each of the light-receiving surface side and the back surface side, EVA which is inexpensive and has high transparency and adhesiveness is preferably used (see, for example, Japanese Patent No. 3473605).
 太陽電池モジュールが高温高湿の環境下または風雨に曝される室外等の環境下で長期に亘って使用されると、太陽電池モジュール内部に湿気または水等が浸入する場合がある。例えば、EVAからなる封止材を用いた場合には、EVAがその成分として酢酸ビニルを含むため、高温時における湿気または水等の浸入によって、EVAは経時的に加水分解して酢酸を生じ易い。そして、このようにして生じた酢酸が太陽電池モジュール内部に配置されている少なくとも配線部材または太陽電池素子の電極と接触して、これらの部材において錆の発生を促進させることが明らかになっている。 When the solar cell module is used over a long period of time in an environment of high temperature and high humidity or exposed to wind and rain, moisture or water may enter the solar cell module. For example, when a sealing material made of EVA is used, since EVA contains vinyl acetate as its component, EVA tends to hydrolyze over time due to infiltration of moisture or water at a high temperature to generate acetic acid. . And it has become clear that the acetic acid generated in this way contacts at least the wiring member or the electrode of the solar cell element arranged inside the solar cell module and promotes the generation of rust in these members. .
 そこで、太陽電池モジュールの封止材に用いられる透明フィルムとして、平均粒径5μm以下である無機粉体の受酸剤を0.5質量%以下含むEVAフィルムを用いることが提案されている(例えば特開2005-29588号公報を参照)。この受酸剤を含むEVAフィルムによれば、酢酸の発生を抑制して、太陽電池モジュールの耐久性を向上させることが可能になる。 Therefore, it has been proposed to use an EVA film containing 0.5% by mass or less of an acid acceptor of an inorganic powder having an average particle size of 5 μm or less as a transparent film used as a sealing material for a solar cell module (for example, (See JP 2005-29588 A). According to the EVA film containing this acid acceptor, it is possible to suppress the generation of acetic acid and improve the durability of the solar cell module.
 上述した通り、太陽電池モジュール内部に配置されている少なくとも配線部材または電極における錆の発生を低減して、太陽電池モジュールの耐久性を向上させるためには、受光面側および裏面側に用いられる封止材に受酸剤を添加するのが有効な手段である。 As described above, in order to reduce the occurrence of rust in at least the wiring members or electrodes arranged inside the solar cell module and improve the durability of the solar cell module, the seals used on the light receiving surface side and the back surface side are used. An effective means is to add an acid acceptor to the stopper.
 しかしながら、無機粉体の受酸剤の添加は封止材の透明性の低下を招く場合があるので、耐久性を向上させるために受酸剤を単に添加しただけでは太陽電池モジュールの発電性能を低下させる虞がある。 However, the addition of an acid acceptor for inorganic powders may lead to a decrease in the transparency of the encapsulant. Therefore, simply adding an acid acceptor to improve durability will improve the power generation performance of the solar cell module. There is a risk of lowering.
 そこで、本発明は発電性能を低下させずに、太陽電池モジュール内部の少なくとも配線部材または電極における錆の発生を低減することによって、耐久性がさらに向上された太陽電池モジュールを提供することを目的の1つとする。 Therefore, the present invention aims to provide a solar cell module with further improved durability by reducing the occurrence of rust in at least wiring members or electrodes inside the solar cell module without degrading the power generation performance. One.
 本発明に係る太陽電池モジュールは、受光面である第1面および該第1面に対して反対側に位置する第2面を有する太陽電池と、該太陽電池の前記第1面側に配置されている透光性の第1保護材と、前記太陽電池の前記第2面側に配置されている第2保護材と、前記太陽電池の前記第1面と前記第1保護材との間に配置されている第1封止材と、前記太陽電池の前記第2面と前記第2保護材との間に配置されている第2封止材とを備えているとともに、前記第1封止材および前記第2封止材のうち少なくとも一方が、EVAと、窒素を有する官能基を持ち受酸剤として機能する有機化合物とを含んでいる。 The solar cell module according to the present invention is disposed on the first surface side of the solar cell, the solar cell having a first surface that is a light receiving surface and a second surface that is located on the opposite side of the first surface. A translucent first protective material, a second protective material disposed on the second surface side of the solar cell, and between the first surface of the solar cell and the first protective material. A first sealing material disposed; a second sealing material disposed between the second surface of the solar cell and the second protective material; and the first sealing material. At least one of the material and the second sealing material includes EVA and an organic compound having a functional group having nitrogen and functioning as an acid acceptor.
 上記構成の太陽電池モジュールによれば、前記第1封止材および前記第2封止材のうち少なくとも一方が、EVAと、受酸剤として機能する有機化合物とを含んでいることから、封止材の透明性を維持して発電性能が低下することなく、太陽電池モジュールの内部に配置されている少なくとも配線部材または電極における錆の発生を低減することができて、長期間に亘って高い発電性能を発揮することが可能であり、耐久性に優れた太陽電池モジュールを提供できる。 According to the solar cell module having the above configuration, at least one of the first sealing material and the second sealing material contains EVA and an organic compound that functions as an acid acceptor. It is possible to reduce the generation of rust in at least wiring members or electrodes arranged inside the solar cell module without maintaining the transparency of the material and reducing the power generation performance, and high power generation over a long period of time. It is possible to provide a solar cell module that can exhibit performance and has excellent durability.
本発明に係る太陽電池モジュールの一実施形態を模式的に示す図であり、受光面側から見た平面図である。It is a figure which shows typically one Embodiment of the solar cell module which concerns on this invention, and is the top view seen from the light-receiving surface side. 本発明に係る太陽電池モジュールの一実施形態を模式的に示す図であり、図1におけるA-A’線で切断した断面図である。FIG. 2 is a diagram schematically showing one embodiment of a solar cell module according to the present invention, and is a cross-sectional view taken along the line A-A ′ in FIG. 1.
 以下、本発明に係る太陽電池モジュールの一実施形態について図面を参照しつつ詳細に説明する。なお、図面において、同様な構成要素については同一符号を付すものとし、重複した説明を省略する。また、図面は模式的に示したものであるので、各図における構成要素のサイズおよび位置関係等は適宜変更できる。 Hereinafter, an embodiment of a solar cell module according to the present invention will be described in detail with reference to the drawings. In the drawings, similar constituent elements are denoted by the same reference numerals, and redundant description is omitted. Further, since the drawings are schematically shown, the sizes and positional relationships of the constituent elements in each drawing can be appropriately changed.
 図1および図2に示すように、太陽電池モジュール20は光が照射される側である受光面20aおよびこの受光面20aに対して反対側に位置する裏面20bを有している。また、太陽電池モジュール20の受光面20aおよび裏面20bのそれぞれに面した主面に電極(表面電極16,裏面電極17)が配置されている太陽電池である太陽電池素子10と、この太陽電池素子10の受光面(おもて面)である第1面10a側に配置されている透光性の第1保護材11と、太陽電池素子10の第1面10aに対して反対側に位置している裏面である第2面10b側に配置されている第2保護材14と、太陽電池素子10の第1面10aと第1保護材11との間に配置されている第1封止材12と、太陽電池素子10の第2面10bと第2保護材14との間に配置されている第2封止材13とを備えている。 As shown in FIG. 1 and FIG. 2, the solar cell module 20 has a light receiving surface 20a on which light is irradiated and a back surface 20b located on the opposite side to the light receiving surface 20a. Further, the solar cell element 10 which is a solar cell in which electrodes (front surface electrode 16, back surface electrode 17) are arranged on the main surfaces facing the light receiving surface 20a and the back surface 20b of the solar cell module 20, and the solar cell element The light-transmitting first protective material 11 disposed on the first surface 10a side which is the light receiving surface (front surface) of the solar cell element 10 and the first surface 10a of the solar cell element 10 are located on the opposite side. The second protective material 14 disposed on the second surface 10b side, which is the back surface of the solar cell element 10, and the first sealing material disposed between the first surface 10a of the solar cell element 10 and the first protective material 11 12, and a second sealing material 13 disposed between the second surface 10 b of the solar cell element 10 and the second protective material 14.
 そして、第1封止材12および第2封止材13のうち少なくとも一方が、EVAと、窒素を有する官能基を持ち受酸剤として機能する有機化合物とを含んでいる。以下、窒素を有する官能基を持つ有機化合物を「有機窒素化合物」と称する。例えば、第1封止材12および第2封止材13のうち少なくとも一方が、有機窒素化合物が含有されたEVAから構成されていてもよい。また、第1封止材12および第2封止材13のうち少なくとも一方が、配線部材または電極が配置されている部位の近傍に設けられた有機窒素化合物を含む第1領域と、その他の領域であるEVAから成る第2領域とで構成されていてもよい。 And at least one of the first sealing material 12 and the second sealing material 13 contains EVA and an organic compound that has a functional group having nitrogen and functions as an acid acceptor. Hereinafter, an organic compound having a functional group having nitrogen is referred to as an “organic nitrogen compound”. For example, at least one of the first sealing material 12 and the second sealing material 13 may be made of EVA containing an organic nitrogen compound. In addition, at least one of the first sealing material 12 and the second sealing material 13 includes a first region including an organic nitrogen compound provided in the vicinity of a portion where the wiring member or the electrode is disposed, and other regions. And a second region made of EVA.
 上記太陽電池は、1枚の太陽電池素子10でもよいし、図1および図2に示すように、複数個の太陽電池素子10が互いに配線部材15を介して直列または直並列に電気的に接続されている太陽電池素子ストリング等でもよい。太陽電池モジュール20において、複数個の太陽電池素子10同士は、隣接する一方の太陽電池素子10の受光面側に配置されている電極と、他方の太陽電池素子10の裏面側に配置されている電極とが、配線部材15を介して電気的に接続されている。 The solar cell may be a single solar cell element 10 or, as shown in FIGS. 1 and 2, a plurality of solar cell elements 10 are electrically connected in series or series-parallel to each other via a wiring member 15. It may be a solar cell element string or the like. In the solar cell module 20, the plurality of solar cell elements 10 are disposed on the light receiving surface side of one adjacent solar cell element 10 and on the back surface side of the other solar cell element 10. The electrodes are electrically connected via the wiring member 15.
 なお、太陽電池モジュール20は、第2保護材14の外側に、太陽電池素子10で発電された電力を外部に取り出すための端子ボックス(不図示)を備えていてもよい。 In addition, the solar cell module 20 may include a terminal box (not shown) for taking out the electric power generated by the solar cell element 10 outside the second protective material 14.
 第1封止材12および第2封止材13のうち少なくとも一方に、EVAを含ませることによって、第1封止材12および第2封止材13のうち少なくとも一方と、第1保護材11または第2保護材14との間の接着性を良好にすることができる。そして、太陽電池モジュール20の内部への水分等の浸入を低減できる簡便な封止が実現される。 By including EVA in at least one of the first sealing material 12 and the second sealing material 13, at least one of the first sealing material 12 and the second sealing material 13 and the first protective material 11. Alternatively, the adhesion between the second protective material 14 can be improved. And the simple sealing which can reduce permeation | transmission of the water | moisture content etc. to the inside of the solar cell module 20 is implement | achieved.
 また、本実施形態では、第1封止材12および第2封止材13のうち少なくとも一方に、酢酸等の酸を吸収したり、酢酸等の酸を中和する機能が高い、受酸剤として機能する有機窒素化合物を含ませている。 In this embodiment, at least one of the first sealing material 12 and the second sealing material 13 absorbs an acid such as acetic acid or has a high function of neutralizing an acid such as acetic acid. Organic nitrogen compounds that function as
 これにより、従来の無機粉体からなる受酸剤に比べて、有機窒素化合物は同じく有機物であるEVAに対して均一に分散しやすい。 This makes it easier for organic nitrogen compounds to be uniformly dispersed in EVA, which is also an organic substance, as compared with conventional acid acceptors made of inorganic powders.
 さらに、EVAの有機窒素化合物の含有率を多くしても、封止材の透明性を確保することができる。 Furthermore, even if the content of the organic nitrogen compound of EVA is increased, the transparency of the sealing material can be ensured.
 これらのことから、太陽電池モジュール20の発電性能を低下させずに、太陽電池モジュール20の内部に配置されている少なくも配線部材15または電極において錆の発生が低減された耐久性等に優れた太陽電池モジュール20を提供できる。 From these things, it was excellent in the durability etc. by which generation | occurrence | production of the rust was reduced at least in the wiring member 15 or electrode arrange | positioned inside the solar cell module 20, without reducing the electric power generation performance of the solar cell module 20 The solar cell module 20 can be provided.
 具体的には、太陽電池素子10の第1面10a側に配置されている第1封止材12がEVAと有機窒素化合物とを含む場合には、100質量部のEVAに対して0.01~0.5質量部の有機窒素化合物を含有させることによって、第1封止材12の透明性を確保することができて、発電性能を低下させずに、太陽電池モジュール20の内部に配置されている少なくとも配線部材15または電極において錆の発生が低減された耐久性等に優れた太陽電池モジュール20を提供できる。 Specifically, when the first sealing material 12 disposed on the first surface 10a side of the solar cell element 10 includes EVA and an organic nitrogen compound, the amount is 0.01 with respect to 100 parts by mass of EVA. By containing the organic nitrogen compound of ˜0.5 parts by mass, the transparency of the first sealing material 12 can be ensured, and it is arranged inside the solar cell module 20 without deteriorating the power generation performance. Thus, it is possible to provide the solar cell module 20 having excellent durability and the like in which the generation of rust is reduced at least in the wiring member 15 or the electrode.
 特に、第1封止材12において、100質量部のEVAに対して0.075~0.3質量部の有機窒素化合物を含有させることによって、第1面10a側に配置される第1封止材12の高い透明度を確保しつつ、太陽電池モジュール20の内部に配置されている少なくとも配線部材15または電極において錆の発生を低減することができて、発電性能をさらに向上させることができる。 In particular, in the first sealing material 12, the first sealing material disposed on the first surface 10a side by containing 0.075 to 0.3 parts by mass of an organic nitrogen compound with respect to 100 parts by mass of EVA. While ensuring high transparency of the material 12, the generation of rust can be reduced at least in the wiring member 15 or the electrode disposed inside the solar cell module 20, and the power generation performance can be further improved.
 また、太陽電池素子10の第2面10b側に配置される第2封止材13がEVAと有機窒素化合物とを含む場合には、100質量部のEVAに対して0.01質量部以上の有機窒素化合物を含ませることによって、発電性能を低下させずに、太陽電池モジュール20の内部に配置されている少なくとも配線部材15または電極において錆の発生が低減された太陽電池モジュール20を提供できる。 Moreover, when the 2nd sealing material 13 arrange | positioned at the 2nd surface 10b side of the solar cell element 10 contains EVA and an organic nitrogen compound, it is 0.01 mass part or more with respect to 100 mass parts EVA. By including the organic nitrogen compound, it is possible to provide the solar cell module 20 in which the occurrence of rust is reduced at least in the wiring member 15 or the electrode disposed inside the solar cell module 20 without reducing the power generation performance.
 特に、第2封止材13において、100質量部のEVAに対して0.15~1.0質量部の有機窒素化合物を含ませることによって、太陽電池モジュール20の内部に配置されている少なくとも配線部材15または電極において錆の発生をさらに好適に低減することができる。 In particular, in the second sealing material 13, at least wiring disposed inside the solar cell module 20 is contained by including 0.15 to 1.0 part by mass of an organic nitrogen compound with respect to 100 parts by mass of EVA. The occurrence of rust in the member 15 or the electrode can be further suitably reduced.
 また、第1封止材12および第2封止材13の双方に対して、EVAと有機窒素化合物とを含ませてもよい。この場合、特に、第2封止材13中のEVAに対する有機窒素化合物の含有率が、第1封止材12中のEVAに対する有機窒素化合物の含有率よりも大きくするとよい。なぜなら、一般に第1保護部材11よりも薄い第2保護材14保護されている第2面10b側に配置された第2封止材13側から水分が浸入しやすいからである。 Moreover, EVA and an organic nitrogen compound may be included in both the first sealing material 12 and the second sealing material 13. In this case, in particular, the content of the organic nitrogen compound with respect to EVA in the second sealing material 13 is preferably larger than the content of the organic nitrogen compound with respect to EVA in the first sealing material 12. This is because moisture tends to enter from the side of the second sealing material 13 disposed on the second surface 10b side that is generally protected by the second protective material 14 that is thinner than the first protective member 11.
 有機窒素化合物としては、第1級アミン、第2級アミンおよび第3級アミンからなるアミン類、または、イミン類、アミド類、イミド類および>C=N?OHで表される構造を有するオキシム等を挙げることができる。その他の有機窒素化合物としては、尿素に代表されるウレア結合を有する化合物、ピリジン、イミダゾールおよびカルバゾール等に代表される、窒素原子を有する、単環式、複素環式化合物もしくはそれらの誘導体、または、水酸化テトラメチルアンモニウム等の第4級アンモニウム塩を挙げることができる。 Examples of organic nitrogen compounds include primary amines, amines composed of secondary amines and tertiary amines, or oximes having a structure represented by imines, amides, imides, and> C = N? OH. Etc. As other organic nitrogen compounds, compounds having a urea bond typified by urea, monocyclic, heterocyclic compounds or derivatives thereof having a nitrogen atom typified by pyridine, imidazole and carbazole, or the like, or There may be mentioned quaternary ammonium salts such as tetramethylammonium hydroxide.
 第1級アミンとしては、メチルアミン、エチルアミンおよびプロピルアミン等の、メチル基、エチル基およびプロピル基等のアルキル基、
または、エテニル基およびプロペニル基等のアルケニル基、
または、エチニル基、プロピニル基等のアルキニル基等を有する、炭素数1~18の飽和、不飽和脂肪族アミン、
または、メチレンジアミンおよびエチレンジアミン等のアミノ基を複数個有する、炭素数1~18の飽和、不飽和脂肪族アミン、
または、トリスヒドロキシメチルアミノメタンおよびエタノールアミン等のヒドロキシル基を含む置換基を有する、炭素数1~18の飽和、不飽和脂肪族アミン、
または、グリシン、アラニンおよびヒスチジン等が含まれるアミノ酸類、
または、グルコースおよびセルロース等の単糖類、多糖類のアミン誘導体、
または、アニリンおよびトルイジン等の芳香族アミン等が挙げられる。
Primary amines include methyl groups such as methylamine, ethylamine and propylamine, alkyl groups such as methyl, ethyl and propyl groups,
Or an alkenyl group such as an ethenyl group and a propenyl group,
Or a saturated or unsaturated aliphatic amine having 1 to 18 carbon atoms having an alkynyl group such as an ethynyl group or a propynyl group,
Or a saturated or unsaturated aliphatic amine having 1 to 18 carbon atoms having a plurality of amino groups such as methylenediamine and ethylenediamine,
Or a saturated, unsaturated aliphatic amine having 1 to 18 carbon atoms having a substituent containing a hydroxyl group such as trishydroxymethylaminomethane and ethanolamine,
Or amino acids containing glycine, alanine and histidine,
Or monosaccharides such as glucose and cellulose, amine derivatives of polysaccharides,
Or aromatic amines, such as aniline and toluidine, etc. are mentioned.
 第2級アミンとしては、ジエチルアミン、N,N’-ジメチルエチレンジアミン、ジエタノールアミン等の炭素数1~18の飽和脂肪族第2級アミンもしくは不飽和脂肪族第2級アミン、
または、ジフェニルアミン等の芳香族第2級アミン等が挙げられる。
Examples of secondary amines include saturated aliphatic secondary amines or unsaturated aliphatic secondary amines having 1 to 18 carbon atoms such as diethylamine, N, N′-dimethylethylenediamine, and diethanolamine.
Or aromatic secondary amines, such as diphenylamine, etc. are mentioned.
 第3級アミンとしてはトリエチルアミン、N,N,N’,N’-テトラエチルエチレンジアミン等の炭素数1~18の飽和脂肪族第3級アミンもしくは不飽和脂肪族第3級アミン、
または、トリフェニルアミン等の芳香族第3級アミン等が挙げられる。
Tertiary amines include saturated aliphatic tertiary amines or unsaturated aliphatic tertiary amines having 1 to 18 carbon atoms such as triethylamine, N, N, N ′, N′-tetraethylethylenediamine,
Or aromatic tertiary amines, such as a triphenylamine, etc. are mentioned.
 イミン類としては、一般式(CHNHで示されるエチレンイミン、ピペラジン等の環状第二級アミン、
または、C=N二重結合を有するN-メチルエタンイミン、プロパン-2-イミン等が挙げられる。
Examples of imines include cyclic secondary amines such as ethyleneimine and piperazine represented by the general formula (CH 2 ) n NH,
Examples thereof include N-methylethaneimine and propane-2-imine having a C═N double bond.
 アミド類またはイミド類としては、炭素原子数が4~30である飽和脂肪酸であるラウリル酸等、
または、不飽和脂肪酸であるリノール酸もしくはリノレン酸等、
または、芳香族である安息香酸、サリチル酸もしくはフタル酸等から合成される、アミドまたはイミドが挙げられる。
Examples of amides or imides include lauric acid, which is a saturated fatty acid having 4 to 30 carbon atoms,
Or linoleic acid or linolenic acid which is an unsaturated fatty acid,
Alternatively, amides or imides synthesized from aromatic benzoic acid, salicylic acid, phthalic acid, or the like can be given.
 また、有機窒素化合物としては、上述した物質の縮合体、重合体または共重合体を挙げることができる。 Further, examples of the organic nitrogen compound include condensates, polymers, and copolymers of the above-described substances.
 第2封止材13は着色剤をさらに含むものが好ましい。例えば、白色系の着色剤を用いることによって、太陽電池モジュール20内部における第1封止材12と第2封止材13との界面における光の反射、または、着色剤による光の乱反射等によって、太陽電池素子10同士の間に入射した光、または、太陽電池素子10を通過した光等を乱反射させて、再度、太陽電池素子10に入射させることができる。これにより、太陽電池モジュール20に入射した光の利用効率が高まるので、太陽電池モジュール20の発電性能を向上させることができる。また、暗色系の着色剤を用いることによって、太陽電池モジュール20の受光面側から確認できる第2封止材13が太陽電池素子10と同系色となるため、太陽電池モジュール20の外観上の美観を向上させることができる。 The second sealing material 13 preferably further contains a colorant. For example, by using a white colorant, by reflecting light at the interface between the first sealing material 12 and the second sealing material 13 inside the solar cell module 20, or by irregular reflection of light by the colorant, etc. Light incident between the solar cell elements 10 or light that has passed through the solar cell element 10 can be diffusely reflected and incident on the solar cell element 10 again. Thereby, since the utilization efficiency of the light which injected into the solar cell module 20 increases, the power generation performance of the solar cell module 20 can be improved. Moreover, since the 2nd sealing material 13 which can be confirmed from the light-receiving surface side of the solar cell module 20 becomes the same color as the solar cell element 10 by using a dark colorant, the appearance of the solar cell module 20 is aesthetically pleasing. Can be improved.
 着色剤としては、酸化チタン、炭酸カルシウム、亜鉛華(酸化亜鉛)、鉛白(塩基性炭酸鉛)、リトポン、バライト、沈降性硫酸バリウムもしくは石膏等の白色着色剤、
または、ウルトラマリン等の青色着色剤、
または、カーボンブラック等の黒色着色剤、
または、ガラスビーズおよび光拡散剤等の乳白色着色剤等を使用することができる。これらの中でも、特に白色着色剤を使用するのが発電性能を向上させる点で好ましい。
As colorants, white colorants such as titanium oxide, calcium carbonate, zinc white (zinc oxide), lead white (basic lead carbonate), lithopone, barite, precipitated barium sulfate or gypsum,
Or blue colorants such as ultramarine,
Or a black colorant such as carbon black,
Alternatively, milky white colorants such as glass beads and light diffusing agents can be used. Among these, it is particularly preferable to use a white colorant in terms of improving power generation performance.
 着色剤は、第2封止材13に含まれる100質量部のEVAに対して、好ましくは2~10質量部、より好ましくは3~6質量部含まれることとする。そして、着色剤の平均粒子径は0.01~10μmとして、特に0.1~5μmとするのが好ましい。これにより入射光の利用効率を高くすることができる。なお、着色剤の平均粒子径は第2封止材13の断面を透過型電子顕微鏡を用いて倍率100万倍程度で観測することによって、少なくとも100個の着色剤の投影面積円相当径を求めた平均値とする。 The colorant is preferably contained in 2 to 10 parts by mass, more preferably 3 to 6 parts by mass with respect to 100 parts by mass of EVA contained in the second sealing material 13. The average particle diameter of the colorant is preferably 0.01 to 10 μm, particularly preferably 0.1 to 5 μm. Thereby, the utilization efficiency of incident light can be increased. The average particle diameter of the colorant is obtained by observing the cross section of the second sealing material 13 at a magnification of about 1,000,000 using a transmission electron microscope, thereby obtaining a projected area circle equivalent diameter of at least 100 colorants. The average value.
 第2封止材13はさらに滑剤を含むのが好ましい。これにより、封止材の接着性が向上して、太陽電池モジュール20内部へ水分等が浸入するのを低減することが可能となる。 It is preferable that the second sealing material 13 further contains a lubricant. Thereby, the adhesiveness of a sealing material improves and it becomes possible to reduce that a water | moisture content etc. permeate into the solar cell module 20 inside.
 滑剤としてはホスファイト系化合物を用いることが好ましい。ホスファイト系化合物としては、デシルホスファイト等のアルキルホスファイト、デシルアシッドホスフェート、フェニルアシッドホスフェート等のアルキルもしくはアリールアシッドホスフェート、
トリヘキシルホスフェート、トリクレシルホスフェート等のトリアルキルもしくはトリアリールホスフェート、または、ジチオリン酸亜鉛等が挙げられる。
A phosphite compound is preferably used as the lubricant. Examples of the phosphite compound include alkyl phosphites such as decyl phosphite, alkyl or aryl acid phosphates such as decyl acid phosphate and phenyl acid phosphate,
Examples include trialkyl or triaryl phosphates such as trihexyl phosphate and tricresyl phosphate, or zinc dithiophosphate.
 滑剤の含有量は、第2封止材13に含まれる100質量部のEVAに対して、0.01~5.0質量部、特に0.1~0.4質量部であるのが好ましい。 The content of the lubricant is preferably 0.01 to 5.0 parts by mass, particularly 0.1 to 0.4 parts by mass with respect to 100 parts by mass of EVA contained in the second sealing material 13.
 第1封止材12および第2封止材13のうち少なくとも一方はEVAを含んでいる。EVAにおける酢酸ビニルの含有量は、100質量部のEVAに対して、20~35質量部、さらには22~30質量部、特に24~28質量部とするのが好ましい。酢酸ビニルの含有量を上記範囲とすることによって、高温で架橋硬化させた場合に得られる封止材の透明性を確保することできる。 At least one of the first sealing material 12 and the second sealing material 13 contains EVA. The content of vinyl acetate in EVA is preferably 20 to 35 parts by mass, more preferably 22 to 30 parts by mass, and particularly preferably 24 to 28 parts by mass with respect to 100 parts by mass of EVA. By setting the content of vinyl acetate within the above range, it is possible to ensure the transparency of the encapsulant obtained when crosslinked and cured at a high temperature.
 第1封止材12および第2封止材13の少なくとも一方は架橋剤をさらに含むのが好ましい。これによりEVAを架橋硬化させることができて、耐久性を向上することができる。 It is preferable that at least one of the first sealing material 12 and the second sealing material 13 further includes a crosslinking agent. Thereby, EVA can be cross-linked and cured, and durability can be improved.
 架橋剤としては接着力、透明性、耐湿性および耐貫通性の温度依存性が改善された封止材が得られることから、有機過酸化物を用いるのが好ましい。 As the crosslinking agent, it is preferable to use an organic peroxide because a sealing material with improved temperature dependency of adhesive strength, transparency, moisture resistance and penetration resistance can be obtained.
 有機過酸化物としては、100℃以上の温度で分解してフリーラジカルを発生するものであれば使用することができる。有機過酸化物は、一般に、成膜温度、組成物の調整条件、硬化温度、被着体の耐熱性および貯蔵安定性等を考慮して選択される。特に、半減期10時間の分解温度が70℃以上のものが好ましい。 Organic peroxides can be used as long as they decompose at a temperature of 100 ° C. or higher and generate free radicals. The organic peroxide is generally selected in consideration of the film formation temperature, the adjustment conditions of the composition, the curing temperature, the heat resistance and storage stability of the adherend. In particular, the one having a decomposition temperature of 70 ° C. or more with a half-life of 10 hours is preferable.
 有機過酸化物としては、樹脂の加工温度・貯蔵安定性の観点から、例えば、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、3-ジ-tert-ブチルパーオキサイド、tert-ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキシン、ジクミルパーオキサイド、tert-ブチルクミルパーオキサイド、α,α′-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、α,α′-ビス(tert-ブチルパーオキシ)ジイソプロピルベンゼン、n-ブチル-4,4-ビス(tert-ブチルパーオキシ)ブタン、2,2-ビス(tert-ブチルパーオキシ)ブタン、1,1-ビス(tert-ブチルパーオキシ)シクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、tert-ブチルパーオキシベンゾエート、ベンゾイルパーオキサイド等が好ましく挙げられる。これらは1種単独で用いられてもよく、2種以上を混合して用いられてもよい。 Examples of the organic peroxide include 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-di (tert) from the viewpoint of the processing temperature and storage stability of the resin. -Butylperoxy) hexane, 3-di-tert-butyl peroxide, tert-dicumyl peroxide, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, 2,5- Dimethyl-2,5-bis (tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexyne, dicumyl peroxide, tert-butylcumyl peroxide, α, α'-bis (tert-butylperoxyisopropyl) benzene, α, α'-bis (tert-butylperoxy) diisopropyl Rubenzene, n-butyl-4,4-bis (tert-butylperoxy) butane, 2,2-bis (tert-butylperoxy) butane, 1,1-bis (tert-butylperoxy) cyclohexane, 1, Preferable examples include 1-bis (tert-butylperoxy) 3,3,5-trimethylcyclohexane, tert-butylperoxybenzoate, benzoyl peroxide and the like. These may be used individually by 1 type, and 2 or more types may be mixed and used for them.
 第1封止材12および第2封止材13の少なくとも一方における架橋剤の含有量は、100質量部のEVAに対して、好ましくは0.1~5質量部、より好ましくは0.5~2質量部であることとする。架橋剤の含有量を上記範囲とすることによって、封止材の透明性を維持しつつ、共重合体との相溶性を良くすることができる。 The content of the crosslinking agent in at least one of the first sealing material 12 and the second sealing material 13 is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 100 parts by mass with respect to 100 parts by mass of EVA. Suppose that it is 2 mass parts. By making content of a crosslinking agent into the said range, compatibility with a copolymer can be improved, maintaining the transparency of a sealing material.
 第1封止材12および第2封止材13の少なくとも一方は、必要に応じて、さらに架橋助剤を含んでいてもよい。架橋助剤は、EVAのゲル分率を向上させて、耐久性を向上させることができる。 At least one of the first sealing material 12 and the second sealing material 13 may further contain a crosslinking aid as necessary. The crosslinking aid can improve the gel fraction of EVA and improve durability.
 架橋助剤(官能基としてラジカル重合性基を有する化合物)としては、トリアリルシアヌレート、トリアリルイソシアヌレート等の3官能の架橋助剤の他、(メタ)アクリルエステル(例えば、NKエステル等)の単官能または2官能の架橋助剤等を挙げることができる。これらの内、特にトリアリルシアヌレートまたはトリアリルイソシアヌレートが好ましく、特にトリアリルイソシアヌレートが好ましい。 Examples of the crosslinking aid (compound having a radical polymerizable group as a functional group) include trifunctional crosslinking aids such as triallyl cyanurate and triallyl isocyanurate, and (meth) acrylic esters (for example, NK ester). And monofunctional or bifunctional crosslinking aids. Of these, triallyl cyanurate or triallyl isocyanurate is particularly preferred, and triallyl isocyanurate is particularly preferred.
 第1封止材12および第2封止材13の少なくとも一方における架橋助剤の含有量は、100質量部のEVAに対して、0.1~3質量部、特に0.1~2.5質量部とするのが好ましい。 The content of the crosslinking assistant in at least one of the first sealing material 12 and the second sealing material 13 is 0.1 to 3 parts by mass, particularly 0.1 to 2.5 parts by mass with respect to 100 parts by mass EVA. It is preferable to set it as a mass part.
 第1封止材12および第2封止材13の少なくとも一方は、太陽電池モジュール20の内部の封止性能を考慮すると、優れた接着力を有するのが好ましい。したがって、第1封止材12および第2封止材13の少なくとも一方は接着向上剤をさらに含んでいるのがよい。 It is preferable that at least one of the first sealing material 12 and the second sealing material 13 has an excellent adhesive force in view of the sealing performance inside the solar cell module 20. Therefore, at least one of the first sealing material 12 and the second sealing material 13 may further include an adhesion improver.
 接着向上剤としてはシランカップリング剤を用いることができる。これにより優れた接着力を有する封止材を形成することが可能となる。シランカップリング剤としてはγ-クロロプロピルメトキシシラン、ビニルエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリクロロシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシランを挙げることができる。これらシランカップリング剤は単独または2種以上組み合わせて使用することができる。これらの内、γ-メタクリロキシプロピルトリメトキシシランが特に好ましく用いることができる。 シ ラ ン A silane coupling agent can be used as an adhesion improver. This makes it possible to form a sealing material having an excellent adhesive force. Examples of silane coupling agents include γ-chloropropylmethoxysilane, vinylethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltrichlorosilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β- ( Mention may be made of aminoethyl) -γ-aminopropyltrimethoxysilane. These silane coupling agents can be used alone or in combination of two or more. Of these, γ-methacryloxypropyltrimethoxysilane can be particularly preferably used.
 第1封止材12および第2封止材13の少なくとも一方におけるシランカップリング剤の含有量は、100質量部のEVAに対して、0.1~0.7質量部、特に0.15~0.65質量部であることが好ましい。 The content of the silane coupling agent in at least one of the first sealing material 12 and the second sealing material 13 is 0.1 to 0.7 parts by mass, particularly 0.15 to 100 parts by mass with respect to 100 parts by mass of EVA. The amount is preferably 0.65 parts by mass.
 第1封止材12および第2封止材13の少なくとも一方は、膜の種々の物性(機械的強度、透明性等の光学的特性、耐熱性、耐光性、架橋速度等)の改良または調整のため、必要に応じて、可塑剤、アクリロキシ基含有化合物、メタクリロキシ基含有化合物およびエポキシ基含有化合物等から選択される1種以上の添加剤をさらに含んでいてもよい。 At least one of the first sealing material 12 and the second sealing material 13 is an improvement or adjustment of various physical properties of the film (optical properties such as mechanical strength and transparency, heat resistance, light resistance, and crosslinking speed). Therefore, if necessary, it may further contain one or more additives selected from a plasticizer, an acryloxy group-containing compound, a methacryloxy group-containing compound, an epoxy group-containing compound, and the like.
 可塑剤としては特に限定されるものではないが、一般に多塩基酸のエステル、多価アルコールのエステルが使用される。その例としては、ジオクチルフタレート、ジヘキシルアジペート、トリエチレングリコール-ジ-2-エチルブチレート、ブチルセバケート、テトラエチレングリコールジヘプタノエート、トリエチレングリコールジペラルゴネートを挙げることができる。可塑剤は上記のうちの1種を単独で用いてもよく、2種以上を組み合わせて使用してもよい。第1封止材12または第2封止材13のそれぞれにおける可塑剤の含有量は、100質量部のEVAに対して5質量部以下の範囲が好ましい。 The plasticizer is not particularly limited, but polybasic acid esters and polyhydric alcohol esters are generally used. Examples thereof include dioctyl phthalate, dihexyl adipate, triethylene glycol-di-2-ethylbutyrate, butyl sebacate, tetraethylene glycol diheptanoate, and triethylene glycol dipelargonate. A plasticizer may be used individually by 1 type in the above, and may be used in combination of 2 or more type. The plasticizer content in each of the first sealing material 12 or the second sealing material 13 is preferably in the range of 5 parts by mass or less with respect to 100 parts by mass of EVA.
 アクリロキシ基含有化合物およびメタクリロキシ基含有化合物としては、一般にアクリル酸またはメタクリル酸の誘導体であり、例えばアクリル酸またはメタクリル酸のエステルを挙げることができる。エステル残基の例としてはメチル、エチル、ドデシル、ステアリル、ラウリル等の直鎖状のアルキル基、シクロヘキシル基、テトラヒドルフルフリル基、アミノエチル基、2-ヒドロキシエチル基、3-ヒドロキシプロピル基、3-クロロ-2-ヒドロキシプオピル基を挙げることができる。 The acryloxy group-containing compound and the methacryloxy group-containing compound are generally derivatives of acrylic acid or methacrylic acid, and examples include esters of acrylic acid or methacrylic acid. Examples of ester residues include linear alkyl groups such as methyl, ethyl, dodecyl, stearyl, lauryl, cyclohexyl group, tetrahydrfurfuryl group, aminoethyl group, 2-hydroxyethyl group, 3-hydroxypropyl group And 3-chloro-2-hydroxypropyl group.
 また、エステルとしては、エチレングリコール、トリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコール、トリメチロールプロパン、ペンタエリスリトール等の多価アルコール、アクリル酸またはメタクリル酸のエステルも挙げることができる。 Examples of the ester also include polyhydric alcohols such as ethylene glycol, triethylene glycol, polypropylene glycol, polyethylene glycol, trimethylolpropane, and pentaerythritol, and esters of acrylic acid or methacrylic acid.
 エポキシ基含有化合物としては、トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレート、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、フェノール(エチレンオキシ)グリシジルエーテル、p-t-ブチルフェニルグリシジルエーテル、アジピン酸ジグリシジルエステル、フタル酸ジグリシジルエステル、グリシジルメタクリレートまたはブチルグリシジルエーテル等を挙げることができる。 Examples of the epoxy group-containing compound include triglycidyl tris (2-hydroxyethyl) isocyanurate, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, Examples thereof include phenol (ethyleneoxy) glycidyl ether, pt-butylphenyl glycidyl ether, adipic acid diglycidyl ester, phthalic acid diglycidyl ester, glycidyl methacrylate, and butyl glycidyl ether.
 第1封止材12および第2封止材13の少なくとも一方におけるアクリロキシ基含有化合物、メタクリロキシ基含有化合物、またはエポキシ基含有化合物の含有量は、それぞれ100質量部のEVAに対して、0.5~5質量部、特に1~4質量部であるのが好ましい。 The content of the acryloxy group-containing compound, the methacryloxy group-containing compound, or the epoxy group-containing compound in at least one of the first sealing material 12 and the second sealing material 13 is 0.5 for 100 parts by mass of EVA. It is preferably 5 to 5 parts by mass, particularly 1 to 4 parts by mass.
 さらに、第1封止材12および第2封止材13の少なくとも一方は、紫外線吸収剤、光安定剤および劣化抑制剤を含んでいてもよい。 Furthermore, at least one of the first sealing material 12 and the second sealing material 13 may include an ultraviolet absorber, a light stabilizer, and a deterioration inhibitor.
 第1封止材12および第2封止材13の少なくとも一方が紫外線吸収剤を含むことによって、照射された光等の影響によってEVAが劣化し、封止材が黄変するのを抑制することができる。紫外線吸収剤としては特に制限されないが、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-ドデシロキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン等のベンゾフェノン系紫外線吸収剤が好ましく挙げられる。なお、第1封止材12および第2封止材13の少なくとも一方のそれぞれにおけるベンゾフェノン系紫外線吸収剤の含有量は、100質量部のEVAに対して0.01~5質量部であることが好ましい。 When at least one of the first sealing material 12 and the second sealing material 13 includes an ultraviolet absorber, EVA is deteriorated due to the influence of irradiated light or the like, and the sealing material is prevented from yellowing. Can do. The ultraviolet absorber is not particularly limited, but 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-dodecyloxybenzophenone, 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone Preferred are benzophenone-based ultraviolet absorbers such as 2-hydroxy-4-n-octoxybenzophenone. The content of the benzophenone-based ultraviolet absorber in each of at least one of the first sealing material 12 and the second sealing material 13 is 0.01 to 5 parts by mass with respect to 100 parts by mass of EVA. preferable.
 第1封止材12および第2封止材13の少なくとも一方が光安定剤を含むことによっても、照射された光等の影響によってEVAが劣化して、封止材が黄変するのを抑制することができる。光安定剤としては、ヒンダードアミン系と呼ばれる光安定剤を用いることが好ましく、例えば、LA-52、LA-57、LA-62、LA-63LA-63p、LA-67、LA-68(これらはいずれも株式会社ADEKA製)、Tinuvin744、Tinuvin 770、Tinuvin 765、Tinuvin144、Tinuvin 622LD、CHIMASSORB 944LD(これらはいずれもチバ・スペシャリティ・ケミカルズ株式会社製)、UV-3034(B.F.グッドリッチ社製)等を挙げることができる。なお、上記光安定剤は単独で使用しても、2種以上組み合わせて用いてもよい。第1封止材12または第2封止材13のそれぞれにおける光安定剤の配合量は、100質量部のEVAに対して0.01~5質量部であることが好ましい。 Even when at least one of the first sealing material 12 and the second sealing material 13 includes a light stabilizer, the deterioration of EVA due to the influence of irradiated light or the like, and the yellowing of the sealing material are suppressed. can do. As the light stabilizer, a light stabilizer called a hindered amine type is preferably used. For example, LA-52, LA-57, LA-62, LA-63LA-63p, LA-67, LA-68 Are also manufactured by ADEKA Corporation), Tinuvin 744, Tinuvin 770, Tinuvin 765, Tinuvin 144, Tinuvin 622LD, CHIMASSORB 944LD (all manufactured by Ciba Specialty Chemicals Co., Ltd.), UV-3034 (BF Goodrich) Etc. In addition, the said light stabilizer may be used individually or may be used in combination of 2 or more type. The blending amount of the light stabilizer in each of the first sealing material 12 or the second sealing material 13 is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of EVA.
 劣化抑制剤としては、例えば、N,N′-ヘキサン-1,6-ジイルビス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナミド〕等のヒンダードフェノール系酸化防止剤、リン系熱安定剤、ラクトン系熱安定剤、ビタミンE系熱安定剤またはイオウ系熱安定剤等が挙げられる。 Examples of the degradation inhibitor include hindered phenol antioxidants such as N, N′-hexane-1,6-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamide]. , Phosphorus heat stabilizers, lactone heat stabilizers, vitamin E heat stabilizers or sulfur heat stabilizers.
 第1封止材12の厚さは第2封止材13の厚さよりも厚いことが好ましい。これにより太陽電池モジュール20に加わった応力を第1封止材12が第2封止材13よりも多く吸収できる。このため、第1封止材12と第1保護材11との界面における剥離によって、太陽電池モジュール20の内部に水分等が浸入するのを抑制することができて、錆の発生を好適に低減することが可能となる。第1封止材12の厚さは、0.4mm~1.2mm、特に0.6mm~1.0mmとするのが好ましい。一方、第2封止材13の厚さは、第1封止材12よりも薄くて、且つ0.2mm~0.8mm、特に0.4mm~0.6mmとするのが好ましい。 The thickness of the first sealing material 12 is preferably thicker than the thickness of the second sealing material 13. Thereby, the first sealing material 12 can absorb more stress applied to the solar cell module 20 than the second sealing material 13. For this reason, it can suppress that a water | moisture content etc. permeate the inside of the solar cell module 20 by peeling in the interface of the 1st sealing material 12 and the 1st protective material 11, and reduce generation | occurrence | production of a rust suitably. It becomes possible to do. The thickness of the first sealing material 12 is preferably 0.4 mm to 1.2 mm, particularly preferably 0.6 mm to 1.0 mm. On the other hand, the thickness of the second sealing material 13 is thinner than that of the first sealing material 12, and is preferably 0.2 mm to 0.8 mm, particularly 0.4 mm to 0.6 mm.
 上述した第1封止材12および第2封止材13を形成するには、公知の方法に準じて行なえばよい。例えば、上述した各種成分を含む組成物を、通常の押出成形またはカレンダ成形(カレンダリング)等の成形方法によってシート状体を製造することができる。特に、押出成形等の成形方法を用いて加熱圧延することによって成形する場合、このときの加熱は一般に50~90℃の範囲である。 The first sealing material 12 and the second sealing material 13 described above may be formed according to a known method. For example, a sheet-like body can be produced from the composition containing the various components described above by a molding method such as ordinary extrusion molding or calendar molding (calendering). In particular, when molding is performed by hot rolling using a molding method such as extrusion molding, the heating at this time is generally in the range of 50 to 90 ° C.
 着色剤を含む第2封止材13を作製する場合には、予め高濃度の着色剤をEVAと混合してマスターバッチを作製して、このマスターバッチに上述した他の成分をさらに混合して組成物を得るのが着色剤を高く分散する上で好ましい。 When producing the 2nd sealing material 13 containing a coloring agent, a high concentration coloring agent is mixed with EVA beforehand, a masterbatch is produced, and other components mentioned above are further mixed with this masterbatch. It is preferable to obtain a composition from the viewpoint of highly dispersing the colorant.
 また、前記組成物を溶剤に溶解させて、この溶液を適当な塗布機(コーター)で適当な支持体上に塗布して、その後、乾燥させて塗膜を形成することによってシート状体を得ることもできる。 Further, the composition is dissolved in a solvent, and this solution is coated on a suitable support with a suitable coating machine (coater), and then dried to form a coating film to obtain a sheet-like body. You can also.
 以上のようにして、第1封止材12および第2封止材13の間に太陽電池素子10等の被封止部材を介在させて、この被封止部材を封止することができる。 As described above, a member to be sealed such as the solar cell element 10 is interposed between the first sealing material 12 and the second sealing material 13, and this member to be sealed can be sealed.
 太陽電池素子10は、光を受けて発電するものであり、一般的な太陽電池モジュール20では高い起電力を得るために、複数の太陽電池素子10を直列または直並列に接続されて、第1封止材12および第2封止材13の間に封止される。 The solar cell element 10 generates light by receiving light. In order to obtain a high electromotive force in the general solar cell module 20, a plurality of solar cell elements 10 are connected in series or in series and parallel to each other. It is sealed between the sealing material 12 and the second sealing material 13.
 第1封止材12および第2封止材13を用いた太陽電池モジュール20の構造は、特に制限されないが、図1および図2に示すように、第2保護材14、第2封止材13、太陽電池素子10、第1封止材12、および透光性の第1保護材11が、これらの順に配置された構造である。換言すれば、上記太陽電池モジュール20の構造は、透光性の第1保護材11を被覆する第1封止材12と、第2保護材14を被覆する第2封止材13とを有しており、第1封止材12および第2封止材13の双方に接触するように、第1封止材12および第2封止材13の間に太陽電池素子10が配置されている。 The structure of the solar cell module 20 using the first sealing material 12 and the second sealing material 13 is not particularly limited. However, as shown in FIGS. 1 and 2, the second protective material 14 and the second sealing material are used. 13, the solar cell element 10, the 1st sealing material 12, and the translucent 1st protective material 11 are the structures arrange | positioned in these order. In other words, the structure of the solar cell module 20 includes the first sealing material 12 that covers the translucent first protective material 11 and the second sealing material 13 that covers the second protective material 14. The solar cell element 10 is disposed between the first sealing material 12 and the second sealing material 13 so as to come into contact with both the first sealing material 12 and the second sealing material 13. .
 第1封止材12および第2封止材13の少なくとも一方に含まれるEVAを架橋硬化させることによって、これらの第1封止材12および第の封止材13の間に太陽電池素子10を好適に封止することができる。なお、太陽電池素子10は、シリコン発電素子のような単結晶または多結晶シリコン基板からなる太陽電池素子だけでなく、アモルファスシリコン等の薄膜太陽電池素子または銅-インジウム-ガリウム-セレンの化合物からなるCIGSもしくはCdTc等の材料で形成された太陽電池素子でもよい。また、太陽電池素子10は裏面のみに電極を有するバックコンタクト構造を採用したものであっても構わない。 By cross-linking and curing EVA contained in at least one of the first sealing material 12 and the second sealing material 13, the solar cell element 10 is placed between the first sealing material 12 and the first sealing material 13. It can seal suitably. The solar cell element 10 is not only a solar cell element made of a single crystal or polycrystalline silicon substrate such as a silicon power generation element, but also a thin film solar cell element such as amorphous silicon or a compound of copper-indium-gallium-selenium. A solar cell element formed of a material such as CIGS or CdTc may be used. Moreover, the solar cell element 10 may adopt a back contact structure having electrodes only on the back surface.
 太陽電池モジュール20において、太陽電池素子10を十分に封止するには、透光性の第1保護材11、第1封止材12、太陽電池素子10、第2封止材13および第2保護材14をこの順で積層して、得られた積層体を加熱加圧等の常法に従って、第1封止材12および第2封止材13を硬化させればよい。 In the solar cell module 20, in order to sufficiently seal the solar cell element 10, the transparent first protective material 11, the first sealing material 12, the solar cell element 10, the second sealing material 13, and the second. The protective material 14 may be laminated in this order, and the first encapsulant 12 and the second encapsulant 13 may be cured according to a conventional method such as heating and pressurizing the obtained laminate.
 加熱加圧するには、例えば、積層体を真空ラミネータで温度135~180℃、好適には140~180℃、さらに好適には155~180℃において、脱気時間0.1~5分間、プレス圧力11~147kPa、プレス時間5~15分間の条件で圧着すればよい。 For heating and pressurizing, for example, the laminate is vacuum laminator at a temperature of 135 to 180 ° C., preferably 140 to 180 ° C., more preferably 155 to 180 ° C., degassing time 0.1 to 5 minutes, press pressure The pressure bonding may be performed under conditions of 11 to 147 kPa and a press time of 5 to 15 minutes.
 透光性の第1保護材11は、例えば、珪酸塩ガラス等のガラス基板であるのがよい。ガラス基板の厚さは、0.1~10mmが一般的であり、0.3~5mmが好ましい。ガラス基板は一般に、化学的に或いは熱的に強化させたものであってもよい。 The translucent first protective material 11 may be a glass substrate such as silicate glass, for example. The thickness of the glass substrate is generally from 0.1 to 10 mm, and preferably from 0.3 to 5 mm. The glass substrate may generally be chemically or thermally reinforced.
 第2保護材14は、PET(ポリエチレンテレフタレート)等のプラスチックフィルムであるが、耐熱性、耐湿熱性を考慮してフッ化ポリエチレンフィルム、特にフッ化ポリエチレンフィルム/Al/フッ化ポリエチレンフィルムをこの順で積層させたフィルムが好ましい。 The second protective material 14 is a plastic film such as PET (polyethylene terephthalate). In consideration of heat resistance and heat-and-moisture resistance, a fluorinated polyethylene film, particularly a fluorinated polyethylene film / Al / fluorinated polyethylene film in this order. Laminated films are preferred.
 なお、太陽電池モジュール20は透光性の第1保護材11、第2保護材14、および太陽電池素子10等の封止材以外の部材については、従来公知の太陽電池モジュール20と同様の構成を有していればよく、特に制限されない。 The solar cell module 20 has the same configuration as the conventionally known solar cell module 20 with respect to members other than the sealing material such as the translucent first protective material 11, the second protective material 14, and the solar cell element 10. As long as it has, there is no particular limitation.
 以上、本発明に係る実施形態について例示したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない限り任意のものとすることができることはいうまでもない。 As mentioned above, although the embodiment according to the present invention has been illustrated, the present invention is not limited to the above-described embodiment, and it is needless to say that the embodiment can be arbitrary without departing from the gist of the present invention.
 例えば、第1封止材12が受酸剤として機能する有機窒素化合物を含むEVAからなり、第2封止材13はEVAを用いず、非エステル系の熱可塑性樹脂からなる太陽電池モジュールであっても構わない。この非エステル系の熱可塑性樹脂とは、例えば、エチレン-α-オレフィン共重合体を主成分とし、ポリエチレン化合物を重合した熱可塑性樹脂である。また、加水分解によって酢酸等の腐食生成物を生じず、太陽電池素子10に加わる衝撃を緩和する柔軟性を持つものであればよく、重合する化合物はポリエチレン化合物に代えて、環状オレフィン化合物またはビニル芳香族化合物、ポリエン化合物、プロピレン化合物、ブテン化合物、ヘキセン化合物もしくはオクテン化合物を用いてもよく、または、これらのうち1種以上を重合して用いてもよい。なお、プロピレン化合物とはエチレン-α-オレフィン共重合体と重合したプロピレンであり、同様にブテン化合物はエチレン-α-オレフィン共重合体と重合したブテンであり、ヘキセン化合物とはエチレン-α-オレフィン共重合体と重合した1-ヘキセンであり、オクテン化合物とはエチレン-α-オレフィン共重合体と重合した1-オクテンである。 For example, the first sealing material 12 is made of EVA containing an organic nitrogen compound that functions as an acid acceptor, and the second sealing material 13 is a solar cell module made of non-ester thermoplastic resin without using EVA. It doesn't matter. The non-ester thermoplastic resin is, for example, a thermoplastic resin obtained by polymerizing a polyethylene compound containing an ethylene-α-olefin copolymer as a main component. Moreover, it does not produce a corrosion product such as acetic acid by hydrolysis, and has only to be flexible so as to relieve the impact applied to the solar cell element 10, and the compound to be polymerized is a cyclic olefin compound or vinyl instead of the polyethylene compound. Aromatic compounds, polyene compounds, propylene compounds, butene compounds, hexene compounds or octene compounds may be used, or one or more of these may be polymerized and used. The propylene compound is propylene polymerized with an ethylene-α-olefin copolymer. Similarly, the butene compound is butene polymerized with an ethylene-α-olefin copolymer, and the hexene compound is an ethylene-α-olefin. 1-hexene polymerized with the copolymer, and the octene compound is 1-octene polymerized with the ethylene-α-olefin copolymer.
 このような第2封止材13は、第1封止材12との相違点として、エステル系の酢酸ビニルを含まないことから、吸湿による加水分解に伴って、腐食性生成物である酢酸を生じることがない。なお、第1封止材12に非エステル系の熱可塑性樹脂を、第2封止材13に受酸剤として機能する有機窒素化合物を含むEVAを用いても構わないが、透明性を考慮すれば、第1封止材12にEVAを用いることが好ましい。 Since the second sealing material 13 does not contain ester-based vinyl acetate as a difference from the first sealing material 12, acetic acid, which is a corrosive product, is added along with hydrolysis due to moisture absorption. It does not occur. The first sealing material 12 may be made of non-ester thermoplastic resin, and the second sealing material 13 may be made of EVA containing an organic nitrogen compound that functions as an acid acceptor. For example, it is preferable to use EVA for the first sealing material 12.
 また、有機窒素化合物は、第1封止材12および第2封止材13のうち少なくとも一方において、封止材中に均一に分散させるのではなく、太陽電池素子10側、特に太陽電池素子10に配置されている電極および配線部材15側に、その含有量が他の領域よりも多くなるように偏在させるようにしてもよい。 Further, the organic nitrogen compound is not uniformly dispersed in the sealing material in at least one of the first sealing material 12 and the second sealing material 13, but on the solar cell element 10 side, particularly in the solar cell element 10. The electrode and the wiring member 15 may be unevenly distributed so that the content thereof is larger than that of other regions.
 この場合、まず、例えば太陽電池素子10を十分に封止する前に、電極および配線部材15の上に予め有機窒素化合物の濃度が高い封止材を配置しておき、少なくとも第1封止材11または第2封止材12の一部を形成しておく。その後、第1保護材11、(残りの)第1封止材12となる部材、太陽電池素子10、(残りの)第2封止材13となる部材および第2保護材14をこの順で積層して積層体を形成する。そして、上述したように、得られた積層体を加熱加圧等常法に従って、第1封止材12および第2封止材13を硬化させればよい。 In this case, first, for example, before the solar cell element 10 is sufficiently sealed, a sealing material having a high concentration of the organic nitrogen compound is previously disposed on the electrode and the wiring member 15, and at least the first sealing material. 11 or a part of the second sealing material 12 is formed. Thereafter, the first protective material 11, the (remaining) first sealing material 12, the solar cell element 10, the (remaining) second sealing material 13 and the second protective material 14 are arranged in this order. Laminate to form a laminate. And as above-mentioned, what is necessary is just to harden the 1st sealing material 12 and the 2nd sealing material 13 according to conventional methods, such as heating and pressurizing, to the obtained laminated body.
 このようにして、第1封止材12および第2封止材13のうち少なくとも一方において、有機窒素化合物が太陽電池素子10側に偏在させることによって、有機窒素化合物の全体の含有量を少なくすることができて、少なくとも配線部材15または電極における錆の発生を確実に効果的に低減することができる。ひいては、発電性能を低下させずに耐久性等を向上させた優れた太陽電池モジュールを提供することができる。 Thus, the organic nitrogen compound is unevenly distributed on the solar cell element 10 side in at least one of the first sealing material 12 and the second sealing material 13, thereby reducing the total content of the organic nitrogen compound. Thus, at least the generation of rust in the wiring member 15 or the electrode can be reliably and effectively reduced. As a result, the outstanding solar cell module which improved durability etc., without reducing electric power generation performance can be provided.
 次に、上述した実施形態をさらに具体化した実施例について説明する。 Next, an example that further embodies the above-described embodiment will be described.
 まず、以下に述べる製造方法によって、1個の太陽電池素子10を備えた太陽電池モジュール20である試料No.1-15を作製した。 First, sample No. which is a solar cell module 20 including one solar cell element 10 is manufactured by the manufacturing method described below. 1-15 was produced.
 太陽電池素子10に用いる半導体基板として、平面視した場合に正方形であり、その正方形の1辺が約156mm、厚さが約200μmの多結晶シリコン基板を各試料につき5個を用意した。これらの多結晶シリコン基板は、ボロンをドープすることによって、比抵抗1.5Ω・cm程度のp型の導電型を呈するようにした。 As the semiconductor substrate used for the solar cell element 10, five polycrystalline silicon substrates each having a square shape when viewed in plan, having a side of about 156 mm and a thickness of about 200 μm were prepared for each sample. These polycrystalline silicon substrates were doped with boron to exhibit a p-type conductivity type with a specific resistance of about 1.5 Ω · cm.
 また、この多結晶シリコン基板における第1面10a側に、RIE(Reactive Ion Etching)法を用いて凹凸構造(テクスチャ)を形成した。次に、オキシ塩化リン(POCl)を拡散源とした気相熱拡散法によってリンを拡散させて、シート抵抗が90Ω/□程度のn型層を各多結晶シリコン基板の第1面10a側に形成した。 In addition, a concavo-convex structure (texture) was formed on the first surface 10a side of the polycrystalline silicon substrate by using the RIE (Reactive Ion Etching) method. Next, phosphorus is diffused by a vapor phase thermal diffusion method using phosphorus oxychloride (POCl 3 ) as a diffusion source, and an n-type layer having a sheet resistance of about 90 Ω / □ is formed on the first surface 10a side of each polycrystalline silicon substrate. Formed.
 太陽電池素子10の第1面10aに形成した表面電極16は、銀からなる導電性ペーストを、図1に示すような直線状パターンにスクリーン印刷法で塗布した後に乾燥させて焼成して作製した。 The surface electrode 16 formed on the first surface 10a of the solar cell element 10 was prepared by applying a conductive paste made of silver to a linear pattern as shown in FIG. .
 また、太陽電池素子10の第2面10bに形成した裏面電極17は、まず、アルミニウムからなる導電性ペーストを所定領域にスクリーン印刷法で塗布した後に乾燥させて表面電極16と同時に焼成して形成した。その後、銀からなる導電性ペーストを、表面電極16と同様な形状の直線状パターンにスクリーン印刷法で塗布した後に乾燥させて焼成して裏面電極17を形成した。その後、太陽電池素子10の表面電極16および裏面電極17に、所定長さの銅箔からなるリード線をハンダ付けした。 Further, the back electrode 17 formed on the second surface 10b of the solar cell element 10 is formed by first applying a conductive paste made of aluminum to a predetermined region by a screen printing method and then drying and baking simultaneously with the surface electrode 16. did. Thereafter, a conductive paste made of silver was applied to a linear pattern having the same shape as that of the front surface electrode 16 by a screen printing method, and then dried and baked to form a back electrode 17. Thereafter, lead wires made of copper foil having a predetermined length were soldered to the front electrode 16 and the back electrode 17 of the solar cell element 10.
 次に、大きさ約180mm角、厚さ約3.2mmの白板強化ガラスの第1保護材11、後述する第1封止材12、上記太陽電池素子10、後述する第2封止材13および厚さ約0.3mmのPETからなるフィルム状の第2保護材14を、この順で積層して、得られた積層体を下記の加熱加圧法によって、第1封止材12および第2封止材13を軟化させて、その後一体化して太陽電池モジュール20を作製した。なお、太陽電池素子10の表面電極16および裏面電極17にハンダ付けしたリード線は、太陽電池モジュール20が完成した後、その出力特性を測定できるように、この積層体の外側に導出した。 Next, a first protective material 11 of white plate tempered glass having a size of about 180 mm square and a thickness of about 3.2 mm, a first sealing material 12 described later, the solar cell element 10, a second sealing material 13 described later The film-like second protective material 14 made of PET having a thickness of about 0.3 mm is laminated in this order, and the obtained laminate is subjected to the following heating and pressurizing method to form the first sealing material 12 and the second sealing material. The stop material 13 was softened and then integrated to produce the solar cell module 20. Note that the lead wires soldered to the front surface electrode 16 and the back surface electrode 17 of the solar cell element 10 were led out of the laminate so that the output characteristics could be measured after the solar cell module 20 was completed.
 ここで、第1封止材12および第2封止材13はいずれもEVAからなるものであり、EVA中に受酸剤を添加した場合、表1に示すように、100質量部のEVAに対する有機窒素化合物(ジエタノールアミン)の含有率(質量部)を設定した。また、第1封止材12の厚さは0.7mmとし、第2封止材13の厚さは0.5mmとした。 Here, both the first sealing material 12 and the second sealing material 13 are made of EVA, and when an acid acceptor is added to EVA, as shown in Table 1, with respect to 100 parts by mass of EVA. The content (part by mass) of the organic nitrogen compound (diethanolamine) was set. Moreover, the thickness of the 1st sealing material 12 was 0.7 mm, and the thickness of the 2nd sealing material 13 was 0.5 mm.
 上記積層体の加熱加圧は、積層体を真空ラミネータで、温度約170℃において、脱気時間約3分間、プレス圧力約108kPa、プレス時間約7分間の条件で圧着を行った。 The heating and pressurization of the laminate was performed by pressing the laminate with a vacuum laminator at a temperature of about 170 ° C. under conditions of a deaeration time of about 3 minutes, a press pressure of about 108 kPa, and a press time of about 7 minutes.
 次に、試料No.1-15(各試料5個)の太陽電池モジュールを、温度125℃、相対湿度95%の恒温恒湿試験機に投入して、表1に示すように、初期出力(0時間)、200時間後および400時間後における出力を測定して各試料の平均値を求めた。さらに、各試料を上記恒温恒湿試験機に投入してから400時間後の出力の維持率について、400時間後の出力を初期出力で除した値(以下、出力維持率という)を表1に示す。なお、出力の測定はJISC 8913に準拠して、AM(Air Mass)1.5および100mW/cmの照射の条件下にて行った。 Next, sample No. 1-15 (5 samples each) solar cell module was put into a constant temperature and humidity tester with a temperature of 125 ° C. and a relative humidity of 95%, and as shown in Table 1, the initial output (0 hour), 200 hours After and after 400 hours, the output was measured and the average value of each sample was determined. Further, Table 1 shows values obtained by dividing the output after 400 hours by the initial output (hereinafter referred to as output maintenance rate) for the output retention rate after 400 hours from the introduction of each sample into the constant temperature and humidity tester. Show. The output was measured under AM (Air Mass) 1.5 and 100 mW / cm 2 irradiation conditions in accordance with JISC 8913.
 また、試料No.1-15について、太陽電池素子10の表裏に設けた電極の劣化について目視により観察した。 Sample No. Regarding 1-15, deterioration of the electrodes provided on the front and back surfaces of the solar cell element 10 was visually observed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、第1封止材12および第2封止材13の双方に上記有機窒素化合物を添加しなかった太陽電池モジュール20の試料No.15では、出力維持率が0.650と低い値であり、さらに太陽電池素子10の電極の劣化を目視で確認した。この結果に対して、第1封止材12および第2封止材13の少なくとも一方に、上記有機窒素化合物を添加した太陽電池モジュールの試料No.1-14では、いずれも出力維持率が0.700以上であり、太陽電池素子10の電極の劣化も確認されず、太陽電池モジュール20の耐久性が向上したことを確認した。 As shown in Table 1, sample No. of solar cell module 20 in which the above organic nitrogen compound was not added to both the first sealing material 12 and the second sealing material 13. 15, the output maintenance ratio was as low as 0.650, and the deterioration of the electrode of the solar cell element 10 was confirmed visually. In response to this result, sample No. of a solar cell module in which the organic nitrogen compound was added to at least one of the first sealing material 12 and the second sealing material 13. In 1-14, the output maintenance ratio was 0.700 or more, and no deterioration of the electrode of the solar cell element 10 was confirmed, and it was confirmed that the durability of the solar cell module 20 was improved.
 また、試料No.1-14の内、第1封止材のEVAにのみ受酸剤を含有させる場合、特に上記有機窒素化合物の含有率が0.075質量部以上0.3質量部以下では初期出力が4.104W以上であり、かつ出力維持率が0.965以上であり、太陽電池モジュール20の良好な初期特性および耐久性を確認した。 Sample No. 1-14, when the acid acceptor is contained only in EVA of the first sealing material, the initial output is 4. particularly when the content of the organic nitrogen compound is 0.075 parts by mass or more and 0.3 parts by mass or less. It was 104 W or more and the output maintenance ratio was 0.965 or more, and the good initial characteristics and durability of the solar cell module 20 were confirmed.
 また、試料No.8-13の内、第2封止材のEVAにのみ受酸剤を含有させる場合、特に上記有機窒素化合物の含有率が0.15質量部以上1質量部以下では初期出力が4.123W以上で、かつ出力維持率が0.950以上であり、太陽電池モジュール20の良好な耐久性を確認することができた。また有機窒素化合物の含有率が0.01質量部以下および1.5質量部のものでは、出力維持率が0.893以下の低い値であった。これは有機窒素化合物の含有率が小さすぎたためか、含有率が大きすぎてEVAの重合が不十分となり太陽電池モジュール20の耐久性が低下したと思われる。 Sample No. 8-13, when the acid acceptor is contained only in EVA of the second sealing material, the initial output is 4.123 W or more particularly when the content of the organic nitrogen compound is 0.15 parts by mass or more and 1 part by mass or less. And the output maintenance factor was 0.950 or more, and the favorable durability of the solar cell module 20 could be confirmed. Moreover, in the thing whose content rate of an organic nitrogen compound is 0.01 mass part or less and 1.5 mass parts, the output maintenance factor was a low value of 0.893 or less. This is probably because the content of the organic nitrogen compound was too small, or the content was too large, resulting in insufficient polymerization of EVA, and the durability of the solar cell module 20 was lowered.
 さらに、試料No.14からわかるように、上記有機窒素化合物は第1封止材12および第2封止材13の双方に含有させてもよく、その傾向は第1封止材12および第2封止材13の一方に有機窒素化合物を含有させた試料と同様であることを確認した。 Furthermore, sample no. As can be seen from FIG. 14, the organic nitrogen compound may be contained in both the first sealing material 12 and the second sealing material 13, and the tendency is similar to that of the first sealing material 12 and the second sealing material 13. It was confirmed that the sample was the same as the sample containing an organic nitrogen compound.
10 :太陽電池素子
11 :第1保護材
12 :第1封止材
13 :第2封止材
14 :第2保護材
15 :配線部材
20 :太陽電池モジュール
DESCRIPTION OF SYMBOLS 10: Solar cell element 11: 1st protective material 12: 1st sealing material 13: 2nd sealing material 14: 2nd protective material 15: Wiring member 20: Solar cell module

Claims (10)

  1.  受光面である第1面および該第1面に対して反対側に位置する第2面を有する太陽電池と、
    該太陽電池の前記第1面側に配置されている透光性の第1保護材と、
    前記太陽電池の前記第2面側に配置されている第2保護材と、
    前記太陽電池の前記第1面と前記第1保護材との間に配置されている第1封止材と、
    前記太陽電池の前記第2面と前記第2保護材との間に配置されている第2封止材とを備えているとともに、
    前記第1封止材および前記第2封止材のうち少なくとも一方が、エチレン酢酸ビニル共重合体と、窒素を有する官能基を持ち受酸剤として機能する有機化合物とを含んでいる太陽電池モジュール。
    A solar cell having a first surface which is a light receiving surface and a second surface located on the opposite side to the first surface;
    A translucent first protective material disposed on the first surface side of the solar cell;
    A second protective material disposed on the second surface side of the solar cell;
    A first encapsulant disposed between the first surface of the solar cell and the first protective material;
    A second encapsulant disposed between the second surface of the solar cell and the second protective material;
    At least one of the first sealing material and the second sealing material includes an ethylene vinyl acetate copolymer and an organic compound having a functional group having nitrogen and functioning as an acid acceptor. .
  2.  前記有機化合物がジエタノールアミンである請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the organic compound is diethanolamine.
  3.  前記第1封止材が、前記エチレン酢酸ビニル共重合体と前記有機化合物とを含んでおり、100質量部の前記エチレン酢酸ビニル共重合体に対して0.075~0.3質量部の前記有機化合物を含んでいる請求項1または2に記載の太陽電池モジュール。 The first sealing material contains the ethylene vinyl acetate copolymer and the organic compound, and 0.075 to 0.3 parts by mass of the ethylene vinyl acetate copolymer with respect to 100 parts by mass of the ethylene vinyl acetate copolymer. The solar cell module of Claim 1 or 2 containing the organic compound.
  4.  前記第2封止材が、前記エチレン酢酸ビニル共重合体と前記有機化合物とを含んでおり、100質量部の前記エチレン酢酸ビニル共重合体に対して0.15~1.0質量部の前記有機化合物を含んでいる請求項1乃至3のいずれかに記載の太陽電池モジュール。 The second sealing material contains the ethylene vinyl acetate copolymer and the organic compound, and 0.15 to 1.0 part by mass of the ethylene vinyl acetate copolymer with respect to 100 parts by mass of the ethylene vinyl acetate copolymer. The solar cell module according to any one of claims 1 to 3, comprising an organic compound.
  5.  前記第1封止材および前記第2封止材が、エチレン酢酸ビニル共重合体と、窒素を有する官能基を持ち受酸剤として機能する有機化合物とを含んでおり、前記第2封止材中の前記エチレン酢酸ビニル共重合体に対する前記有機化合物の含有率が、前記第1封止材中の前記エチレン酢酸ビニル共重合体に対する前記有機化合物の含有率よりも大きい請求項1乃至4のいずれかに記載の太陽電池モジュール。 The first sealing material and the second sealing material contain an ethylene vinyl acetate copolymer and an organic compound having a functional group having nitrogen and functioning as an acid acceptor, and the second sealing material. The content of the organic compound with respect to the ethylene vinyl acetate copolymer in the inside is larger than the content of the organic compound with respect to the ethylene vinyl acetate copolymer in the first sealing material. A solar cell module according to claim 1.
  6.  前記第2封止材が着色剤をさらに含んでいる請求項1乃至5のいずれかに記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 5, wherein the second sealing material further contains a colorant.
  7.  前記第2封止材が滑剤をさらに含んでいる請求項1乃至6のいずれかに記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 6, wherein the second sealing material further contains a lubricant.
  8.  前記滑剤がホスファイト系化合物である請求項7に記載の太陽電池モジュール。 The solar cell module according to claim 7, wherein the lubricant is a phosphite compound.
  9.  前記第1封止材の厚さが前記第2封止材の厚さよりも厚い請求項1乃至8のいずれかに記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 8, wherein a thickness of the first sealing material is thicker than a thickness of the second sealing material.
  10.  前記第1封止材および前記第2封止材のうち少なくとも一方において、前記有機化合物が前記太陽電池側に偏在している請求項1乃至9のいずれかに記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 9, wherein the organic compound is unevenly distributed on the solar cell side in at least one of the first sealing material and the second sealing material.
PCT/JP2012/079701 2011-11-15 2012-11-15 Solar cell module WO2013073637A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013515444A JP5409966B2 (en) 2011-11-15 2012-11-15 Solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011249837 2011-11-15
JP2011-249837 2011-11-15

Publications (1)

Publication Number Publication Date
WO2013073637A1 true WO2013073637A1 (en) 2013-05-23

Family

ID=48429691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079701 WO2013073637A1 (en) 2011-11-15 2012-11-15 Solar cell module

Country Status (2)

Country Link
JP (1) JP5409966B2 (en)
WO (1) WO2013073637A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012117A (en) * 2013-06-28 2015-01-19 デクセリアルズ株式会社 Solar cell module and manufacturing method therefor
JP2015056493A (en) * 2013-09-11 2015-03-23 株式会社カネカ Solar cell module
JP2015070084A (en) * 2013-09-27 2015-04-13 シーアイ化成株式会社 Encapsulant for solar cell module and solar cell module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261085A (en) * 1998-03-10 1999-09-24 Mitsubishi Plastics Ind Ltd Backside protective sheet for solar battery
WO2009116638A1 (en) * 2008-03-21 2009-09-24 株式会社ブリヂストン Pair of sealing films and solar battery using the pair of sealing films
JP2010219174A (en) * 2009-03-16 2010-09-30 Sekisui Chem Co Ltd Sealing sheet for solar cell
JP2010225926A (en) * 2009-03-24 2010-10-07 Sekisui Chem Co Ltd Sealing sheet for solar cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009010222A (en) * 2007-06-28 2009-01-15 Kyocera Corp Solar cell module, and solar cell module apparatus
JP5416345B2 (en) * 2007-08-10 2014-02-12 株式会社ブリヂストン Method for producing sealing film for solar cell
TWI545014B (en) * 2009-09-17 2016-08-11 東洋油墨製造股份有限公司 Back protection sheet for solar cell, its manufacturing method and solar cell module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261085A (en) * 1998-03-10 1999-09-24 Mitsubishi Plastics Ind Ltd Backside protective sheet for solar battery
WO2009116638A1 (en) * 2008-03-21 2009-09-24 株式会社ブリヂストン Pair of sealing films and solar battery using the pair of sealing films
JP2010219174A (en) * 2009-03-16 2010-09-30 Sekisui Chem Co Ltd Sealing sheet for solar cell
JP2010225926A (en) * 2009-03-24 2010-10-07 Sekisui Chem Co Ltd Sealing sheet for solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012117A (en) * 2013-06-28 2015-01-19 デクセリアルズ株式会社 Solar cell module and manufacturing method therefor
JP2015056493A (en) * 2013-09-11 2015-03-23 株式会社カネカ Solar cell module
JP2015070084A (en) * 2013-09-27 2015-04-13 シーアイ化成株式会社 Encapsulant for solar cell module and solar cell module

Also Published As

Publication number Publication date
JP5409966B2 (en) 2014-02-05
JPWO2013073637A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5385896B2 (en) A pair of sealing films and a solar cell using the same
JP5613683B2 (en) Solar cell sealing film and solar cell
US9368663B2 (en) Solar cell sealing film and solar cell using the sealing film
JP2008205448A (en) Sealing film for solar cells and solar cells using the same
WO2014017282A1 (en) Sealing film for solar cells, solar cell module, and method for selecting sealing film for solar cells
WO2011132560A1 (en) Sealing film for solar cell and solar cell using same
US20140116499A1 (en) Process for manufacturing solar cell modules
WO2011102242A1 (en) Sealing film for photovoltaic modules and photovoltaic modules using same
WO2010140608A1 (en) Sealing film for solar cell, and solar cell utilizing same
US9123836B2 (en) Solar cell sealing film and solar cell using the same
JP2012004146A (en) Sealing film for solar cell and solar cell using the same
JP2007329240A (en) Solar cell module
JP2011111515A (en) Sealing film for solar cell and solar cell
JP2008235882A (en) Sealing film for solar cell and solar cell using the same
US20140311571A1 (en) Solar cell sealing film and solar cell using the same
JP5409966B2 (en) Solar cell module
JP5755950B2 (en) Solar cell sealing film and solar cell using the same
JP6054664B2 (en) Solar cell sealing film and method for selecting the same
JP5351630B2 (en) Solar cell sealing film and solar cell using the same
JP4740101B2 (en) Solar cell sealing film and solar cell using the same
JP5624898B2 (en) Manufacturing method of back surface side protective member integrated sealing film for solar cell, solar cell using the same, and manufacturing method thereof
JP2013077622A (en) Sealant for solar battery, and solar battery module
JP5806373B2 (en) Solar cell sealing film and solar cell using the same
JP2011238862A (en) Solar cell encapsulation film and solar cell using the same
JP2010177398A (en) Sealing film for solar cell, and solar cell using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013515444

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12848801

Country of ref document: EP

Kind code of ref document: A1