WO2013073587A1 - Valve - Google Patents

Valve Download PDF

Info

Publication number
WO2013073587A1
WO2013073587A1 PCT/JP2012/079539 JP2012079539W WO2013073587A1 WO 2013073587 A1 WO2013073587 A1 WO 2013073587A1 JP 2012079539 W JP2012079539 W JP 2012079539W WO 2013073587 A1 WO2013073587 A1 WO 2013073587A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
valve
hole
communication
valve body
Prior art date
Application number
PCT/JP2012/079539
Other languages
French (fr)
Japanese (ja)
Inventor
久男 伊藤
和政 加藤
Original Assignee
独立行政法人海洋研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人海洋研究開発機構 filed Critical 独立行政法人海洋研究開発機構
Publication of WO2013073587A1 publication Critical patent/WO2013073587A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
    • F16K11/0708Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides comprising means to avoid jamming of the slide or means to modify the flow

Definitions

  • the present invention relates to a valve.
  • Patent Document 1 proposes a valve capable of switching the air flow path in multiple directions.
  • the connection of the flow paths can be switched by moving a piston provided in a cylinder in which a plurality of flow paths are communicated.
  • the axial direction of the piston of the valve described in the cited document 1 is perpendicular to the direction of the flow path through which fluid enters and exits the valve.
  • a drive source for moving the piston is provided on one end side of the piston. Therefore, an area for moving the piston and an area for providing a drive source are required in the axial direction of the piston.
  • the axial direction of the piston and the direction of the flow path through which fluid enters and exits the valve are perpendicular to each other.
  • a valve for feeding high-pressure fluid in a plurality of directions is required as a part (part) of a wireline downhole tool used for logging after excavating the ground.
  • the valve as a part (part) of the wire line downhaul tool needs to be miniaturized because it is put in the excavated hole.
  • a region for moving the piston in a direction perpendicular to the flow path and a region for providing drive reduction are required, and thus the size is reduced. It is difficult.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a valve that can be miniaturized so that it can be used as a part (part) of a wireline downhole tool. .
  • a valve according to an embodiment of the present invention is a valve including a piston and a valve body provided with a piston hole that accommodates the piston so as to be movable in the axial direction.
  • the valve body extends along the axial direction of the piston, has an opening in the valve body and allows flow of fluid, and communicates with each of the flow paths and in the axial direction of the piston.
  • a plurality of communication passages that communicate with the piston hole are provided at different positions, and the piston seals between the piston and the piston hole and communicates with the plurality of communication passages in the piston hole.
  • At least two seal members provided at intervals according to the interval between the seal member and the piston hole. There is a gap.
  • the piston is moved in the piston hole, and the position sealed by the seal member varies, so that the communication is established in the gap between the positions where the seal member is provided.
  • the passage can be changed to control the direction of the fluid.
  • the direction in which the flow path extends in the valve main body and the axial direction of the piston for controlling the direction of the fluid are the same direction. Can be reduced in size.
  • the valve of one embodiment of the present invention can be miniaturized so that it can be used as a part (part) of a wireline downhaul tool.
  • the piston hole of the valve body may be provided with a groove in the communication portion with the communication path. According to this configuration, the piston can be easily moved in the piston hole.
  • Each of the plurality of communication paths may be connected to the piston hole at an angle of 30 to 70 degrees. According to this configuration, the fluid in the valve can easily flow.
  • Each of the plurality of communication paths may have a structure in which a hole penetrating the outer surface of the valve body and the hole for the piston is closed with a welded plug on the outer surface side of the valve body. According to this configuration, the communication path can be easily configured and can withstand the pressure of the fluid in the valve.
  • the seal member may include an O-ring and backup rings provided on both sides of the O-ring. According to this configuration, the seal member can be configured easily and reliably.
  • the piston may be subjected to a surface treatment that improves low wear and hardness. According to this configuration, it is possible to configure a valve that can be used even in a high-pressure and high-temperature environment.
  • the valve may further include a drive unit that moves the piston in the axial direction. According to this structure, a piston can be moved and it can function as a valve reliably.
  • the drive unit may be a stepping motor that moves the piston via a lead screw. According to this configuration, the piston can be moved reliably and instantaneously and the valve can be downsized.
  • the direction in which the flow path extends in the valve main body and the axial direction of the piston for controlling the direction of the fluid are the same direction. Can be reduced in size. Thereby, the valve of one embodiment of the present invention can be miniaturized so that it can be used as a part (part) of a wireline downhaul tool.
  • bulb which concerns on embodiment of this invention. It is the upper side figure, sectional drawing, and bottom view of the valve
  • FIG. 1 shows a valve (valve mechanism) 10 according to this embodiment.
  • 2A is a top view of the valve 10
  • FIG. 2B is a cross-sectional view of the valve 10
  • FIG. 2C is a bottom view of the valve 10.
  • the valve 10 is used, for example, for excavation of the ground (inserted into a drilling hole) or the like as a part (part) of a wireline downhaul tool.
  • the valve 10 is a multi-directional valve, for example, provided with a plurality of fluid discharge ports, and switches the discharge port of the fluid that has flowed into the valve 10.
  • the fluid flowing into the valve 10 is a very high pressure fluid of 150 MPa.
  • the environment in which the valve 10 is used is a high pressure (for example, 150 MPa) and a high temperature (for example, 150 ° C.).
  • the valve 10 includes a cylindrical valve body 12.
  • the valve body 12 is formed of a metal having sufficient hardness as the valve 10. For example, a stainless steel material is used.
  • the valve body 12 is provided with a plurality of openings 14 serving as fluid inlets and outlets.
  • the valve 10 shown in the present embodiment is provided with one opening 14a on one surface of a cylindrical valve body 12 and two openings 14b and 14c on the other surface.
  • the surfaces on which the openings 14a, 14b, and 14c are provided are perpendicular to the axial direction of the piston 16 included in the valve 10 as will be described later.
  • the valve 10 discharges the fluid that has flowed into the opening 14a from one of the openings 14b and 14c.
  • FIG. 3A shows the surface of the valve body 12 in which the opening 14a is provided (the left side of the valve body 12 in FIG. 2)
  • FIG. 3B shows that the openings 14b and 14c in the valve body 12 are provided.
  • the surface (the right surface of the valve body 12 in FIG. 2) is shown.
  • the valve 10 includes a piston (piston cylinder) 16 accommodated in the valve body 12.
  • the valve body 12 is provided with a piston hole 18 for accommodating the piston 16 so as to be movable in the axial direction A.
  • the piston hole 18 has a cross-sectional shape similar to the cross-sectional shape (specifically circular) of the thickest portion of the piston 16, and the cross-sectional size is larger than that of the thickest portion of the piston 16. Is also slightly larger. That is, the inner circumference constituting the piston hole 18 is slightly larger than the diameter of the thickest portion of the piston 16.
  • the piston hole 18 also serves as a fluid passage as will be described later.
  • each flow path 20a, 20b, 20c is a circle having a smaller diameter than the piston hole 18.
  • the diameter of each flow path 20a, 20b, 20c can be determined as appropriate according to the application of the valve 10. For example, when used as a part (component) of the above-described wireline downhole tool, the diameter of each of the flow paths 20a, 20b, and 20c can be reduced (for example, about 5 mm or less).
  • These flow paths 20a, 20b, and 20c have openings 14a, 14b, and 14c in the valve body 12 at one end. As shown in FIG. 3, the positions of the openings 14 a, 14 b, and 14 c are respectively provided at different positions in the circumferential direction of the cylindrical valve body 12. Yes. Specifically, when viewed in the direction of FIG. 3A, the flow path 20a is at a position above the piston hole 18, and the flow path 20b is at a lower right position of the piston hole 18 (FIG. 3B). The flow path 20c is located at the lower left position of the piston hole 18 (lower right position when viewed in the direction of FIG. 3B). It extends along the axial direction of the piston hole 18).
  • FIG.2 (b) is a cross section along the flow path 20a, only the flow path 20a is shown, However, The flow paths 20b and 20c are provided in another position. 2 has an opening 14a on the left side of the valve body 12 in FIG. 2, but the flow paths 20b and 20c have openings 14b and 14c on the right side of the valve body 12 in FIG. ing.
  • valve body 12 is provided with a plurality of communication passages 22a, 22b, and 22c that can communicate with each of the flow paths 20a, 20b, and 20c and that can communicate with the piston hole 18 and allow fluid to flow therethrough.
  • Each of the communication passages 22a, 22b, and 22c is provided at a position similar to the position of the communication passages 22a, 22b, and 22c in the circumferential direction of the valve body 12 (see, for example, FIG. 2B).
  • each of the communication passages 22a, 22b, and 22c extends in the radial direction of the valve body 12 from the inner periphery of the piston hole 18, and is an end portion that is not on the side of the openings 14a, 14b, and 14c of the flow paths 20a, 20b, and 20c. Communicated with.
  • the communication passages 22a, 22b, and 22c have, for example, a circular shape with a cross section having the same diameter as the flow paths 20a, 20b, and 20c.
  • the communication passages 22a, 22b, and 22c are connected to the passages 20a, 20b, and 20c at an angle exceeding 90 degrees toward the piston hole 18 so that the fluid flowing in the valve 10 can easily flow.
  • angle ⁇ 1 shown in FIG. 2B may be an angle exceeding 90 degrees.
  • the communication passages 22a, 22b, and 22c are connected to the piston hole 18 at an angle, more specifically, at an angle of 30 to 70 degrees (the angle shown in FIG. 2B).
  • ⁇ 2 may be 30 degrees to 70 degrees.
  • the communication paths 22a, 22b, and 22c are connected to the piston hole 18 at an angle of 45 degrees in consideration of design space.
  • each of the flow paths 20a, 20b, and 20c communicates with the piston hole 18 at positions different from each other in the axial direction A of the piston 16.
  • the communication positions 24a, 24b, and 24c between the flow paths 20a, 20b, and 20c and the piston hole 18 are respectively the communication position 24b, the communication position 24a, and the communication position 24c in order from the right side in the positional relationship shown in FIG. It is in order. That is, here, the communication position 24a of the communication path 22a for allowing the fluid to flow in is located between the communication positions 24b and 24c of the communication paths 22b and 22c for discharging the fluid.
  • the intervals between the communication positions 24a, 24b, and 24c are substantially the same, and a seal member provided between the communication positions 24a, 24b, and 24c and the piston 16 is provided between the communication positions 24a, 24b, and 24c as described later. It is wide enough to seal between the piston hole 18.
  • each communication position (communication portion) 24a, 24b, 24c in the piston hole 18 of the valve body 12 is provided with a groove (concave portion), and the diameter of the piston hole 18 in this portion is larger than that of other portions. Slightly larger.
  • channel provided in the hole 18 for pistons may be provided over the inner periphery of the hole 18 for pistons, and may be provided only in the communication part 24 of the communication path 22. FIG. This is because, as will be described later, since the piston 16 has a thick part and a thin part, the piston 16 is prevented from being caught at the communication positions 24a, 24b, 24c when moving in the piston hole 18. It can be moved smoothly. Further, the edge of the communication portion 24 of the communication path 22 may have a curvature in order to eliminate damage to the piston 16 and a seal member described later.
  • the communication passages 22a, 22b, and 22c are formed by opening holes that penetrate from the outer peripheral surface of the valve body 12 to the piston hole 18 and closing the openings on the outer peripheral surface side of the valve main body 12 with plugs 26a, 26b, and 26c. It is good as well.
  • the plugs 26a, 26b, and 26c may be made of the same material as the valve body 12.
  • the plugs 26a, 26b, and 26c may be joined to the valve body 12 by welding.
  • the welding can be electronic welding (EBW).
  • ESW electronic welding
  • the valve body 12 is formed with a large diameter in advance, the plug 26 is joined by electronic welding, and then the surface of the valve body 12 is shaved so that the plug 26 is joined. 12 may be formed.
  • the communication paths 22a, 22b, and 22c can be easily configured and can withstand the pressure of the fluid in the valve 10.
  • the welding may be other than electronic welding, for example, TIG welding.
  • FIG. 5 (a) is a left side view of the piston 16
  • FIG. 5 (b) is a front view of the piston 16
  • FIG. 5 (c) is a right side view of the piston 16
  • FIG. 5 (d) is an axial view of the piston 16.
  • a sectional view along is shown.
  • the piston 16 is an elongated cylindrical member, and has a length exceeding at least the distance between the communication positions 24a, 24b, and 24c.
  • each seal member includes an O-ring 28 and two backup rings 30 provided on both sides of the O-ring 28.
  • An annular groove (concave portion) 32 is provided in a portion (position in the axial direction A) where the O-ring 28 and the two backup rings 30 of the piston 16 are provided, and the O-ring 28 and the two backup rings 30 are provided in the groove.
  • a backup ring 30 is accommodated.
  • a portion 34 between the two seal members 28a and 30a (inside of the four) in the piston 16 has a diameter (thickness) such that a gap is formed between the outer peripheral surface of the piston 16 and the piston hole. ). A fluid flows in this gap as will be described later. Therefore, the diameter of the portion 34 may be smaller (thinner) than the other portion of the piston 16 so that the fluid can easily flow, that is, the portion may be provided with a recess. In order to facilitate fluid flow, both end sides 34a of the narrowed portion 34 of the piston have a tapered shape that increases as it approaches the portion where the two seal members 28a and 30a are provided. It is good as well.
  • Seal members 28b and 30b may be further provided outside the portions where the seal members 28a and 30a on both sides of the recessed portion 34 of the piston 16 are provided. This is to more reliably seal between the piston 16 and the piston hole 18 and prevent the fluid from flowing into the communication path 22 where the fluid does not flow.
  • the interval between the two seal members 28a, 30a is configured to be larger than the interval between the two continuous communication positions 24c, 24a or the communication positions 24a, 24b in the piston hole 18.
  • the piston 16 needs a high strength material.
  • a titanium alloy that is a corrosion-resistant, high-strength material is used.
  • surface treatment for improving low wear and altitude is performed so that the valve operates properly even in a high temperature and high pressure environment. Also good.
  • fine particles of a material suitable for the purpose are mixed with a compressible gas and collided at a high speed to form a fine, tough and dense structure that reinforces the surface and improves frictional wear characteristics.
  • a treatment applied to the surface of the material is preferably performed.
  • the material of the O-ring 28 for example, fluororubber is used.
  • a material of the backup ring 30 for example, a plastic such as Teflon is used.
  • an O-ring 28 having a pressure of 150 MPa and a hardness of 90D may be used.
  • the valve 10 may further include a drive unit that moves the piston 16 in the axial direction A.
  • the valve body 12 has an opening for the piston hole 18 on one side (the right side surface of the valve body 12 in FIG. 2) side through a bracket (cylinder shaft cover) 36 as a drive unit.
  • a stepping motor 38 is attached on the axial direction A of the piston 16.
  • the bracket 36 is screwed and fixed to the surface of the valve body 12, and the stepping motor 38 is screwed to the bracket 36 and fixed.
  • the piston 16 is connected to a lead screw 40 that is axially aligned with the piston 16, and the lead screw 40 is connected to be rotated by a stepping motor (geared motor, pulse motor) 38.
  • the bracket 36 is provided with a hole communicating with the piston hole 18 of the valve body 12, and the piston 16 and the lead screw 40 are disposed in the hole 36. Further, a ball bearing is connected to the lead screw 40 to constitute a ball screw structure.
  • the stepping motor 38 rotates the lead screw 40, the piston 16 can move back and forth in the axial direction A. Further, the stepping motor 38 is integrated with the speed reducer.
  • the piston 16 can be moved instantaneously by taking such a structure. This makes it possible to open and close the fluid and change the flow path instantaneously (over 1 second). It can also be opened and closed over time.
  • a hollow type stepping motor 38 in which a ball screw can be passed through the center of the motor as shown in FIG. Since the cavity is provided in the center of the stepping motor 38, the connection relationship between the reduction gear and the stepping motor 38 can be reduced.
  • the stepping motor 38 may be, for example, one that can handle a high temperature of a maximum environmental temperature of 150 ° C. Further, the stepping motor 38 is operated by an external control signal. A stopper may be provided in the valve 10 so that the piston 16 does not move beyond a predetermined range when the piston 16 is moved by the stepping motor 38, or in order to position the piston 16. .
  • a pipe 42 for passing a fluid flowing into the valve 10 or a fluid discharged from the valve 10 may be connected to the opening 14 of the valve body 12.
  • FIG. 6 schematically shows a cross section of the valve 10 in order to make the operation easy to understand (in the valve shown in FIG. 2, the flow paths 20a, 20b, and 20c are not located on the same cross section as in FIG. However, the flow paths 20a, 20b, and 20c may be arranged on the same cross section as shown in FIG.
  • the flow line (fluid flow) can be instantaneously changed by moving the piston 16 back and forth in the axial direction by the drive unit.
  • the seal member 28, 30 is provided by moving the piston 16 in the piston hole 18 and changing the position sealed by the seal member 28, 30.
  • the communication path 22 communicated with the gap between the determined positions is changed, and the direction of the fluid can be controlled.
  • the direction in which the flow path 20 extends in the valve body 12 and the axial direction of the piston 16 for controlling the direction of the fluid are the same direction.
  • the size in the vertical direction can be reduced. That is, the size of the valve 10 (valve body 12) in the radial direction can be reduced, and a small-diameter valve 10 can be realized.
  • the valve 10 having a diameter of 100 mm or less can be realized.
  • valve 10 according to the present embodiment can be put in a relatively small hole such as a drilling hole, and can be used as a part (part) of a wireline downhole tool. Specifically, it can be used to investigate the pressure of the seabed ground.
  • valve 10 according to the present embodiment has a small number of parts, and therefore does not require a special tool for assembly and has good maintainability. Moreover, there are few replacement parts and it is excellent also in economical efficiency. Further, as described above, it is possible to configure so that the number of damaged portions is reduced.
  • the piston hole 18 of the valve body 12 may be provided with a groove in the communication portion 24 with the communication path 22. According to this configuration, the piston 16 and the sealing members 28 and 30 provided on the piston 16 are prevented from being caught by the communication portion 24 when moving, and the piston 16 can be easily moved in the piston hole 18. Can do.
  • the communication path 22 may be connected to the piston hole 18 at an angle. Specifically, it may be connected at an angle of 30 degrees to 70 degrees. According to this configuration, the fluid in the valve 10 can be easily flowed. In particular, even if the fluid is a liquid having a relatively high viscosity, it can be made easy to flow.
  • the communication path 22 may have a configuration in which the opening on the outer surface of the valve body 12 is closed with a welded plug (electronic welding, TIG welding, etc.). According to this configuration, the communication path 22 can be easily configured and can withstand the pressure of the fluid in the valve 10.
  • a recess may be provided in the portion 34 between which the fluid in the piston 16 passes and the seal members 28a and 30a are provided. According to this configuration, the space in which the fluid can flow in the piston hole 18 is widened, and the fluid can be easily flowed.
  • the sealing member may include an O-ring 28 and a backup ring 30 provided on both sides of the O-ring 28. According to this configuration, the seal member can be configured easily and reliably. However, it is sufficient that the space between the piston 16 and the piston hole 18 can be sealed, and the configuration other than the above may be adopted as the sealing member.
  • valve 10 that can be used even under a high pressure and high temperature environment.
  • the stepping motor 38 which is a drive part which moves the piston 16 to the axial direction A like this embodiment.
  • the piston can be moved instantaneously and can function reliably and instantaneously as a valve.
  • the valve 10 can be reduced in size by using the stepping motor 38 that passes the lead screw 40 through the center.
  • the drive part can move the piston 16 things other than the structure mentioned above may be used. For example, a system that can be opened and closed instantaneously in the following cases is required. When water pressure is used to make a crack in the inner wall of a borehole drilled in the ground, high water pressure is required.
  • valve 10 described above has three openings 14 through which fluid flows in or out, but may have a configuration having four or more openings. That is, it may be configured as a switching valve for four or more directions instead of the three-way valve. Also in this case, the connecting portion 24 between the communication passage 22 communicating with the opening 14 and the piston hole 18 is arranged shifted in the axial direction A, and the piston and the piston are connected by the seal member according to the position of the piston 16. By sealing between the holes 18, the flow line (fluid flow) can be switched.
  • the discharge ports 14b and 14c for the fluid flowing into the valve 10 are switched.
  • a plurality of inlets may be provided to switch the inlets that can flow into the valve 10. .
  • the valve of the present invention is used in the environment (for example, gas / steam / hydro turbine, oil refinery plant, natural gas processing plant, thermal / hydro power plant, steam power plant, geothermal power plant, nuclear power plant, nuclear reprocessing plant, mud water.
  • Plant deep sea water plant, vacuum transportation plant, water and sewage, subsea equipment (for seafloor installation)), science (eg underground exploration equipment, high temperature and high pressure test tank), transportation (eg automobile (fuel control, suspension, etc.)) , Ship, aircraft, submarine, railway), manufacture (eg plastic molding, robot, injection molding, metal molding, water jet), medical (eg rescue pressure mat), semiconductor (eg semiconductor plant), food (eg Application in fields such as food plant and soft ice cream manufacturing equipment).
  • manufacture eg plastic molding, robot, injection molding, metal molding, water jet
  • medical eg rescue pressure mat
  • semiconductor eg semiconductor plant
  • food eg Application in fields such as food plant and soft ice cream manufacturing equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Multiple-Way Valves (AREA)
  • Lift Valve (AREA)

Abstract

Provided is a valve that can be made smaller so as to be usable as a portion (part) of a wireline/downhole tool, etc. The valve (10) is provided with a piston (16) and a valve body (12) in which a piston hole (18) for accommodating the piston (16) is provided. The valve body (12) is provided with multiple channels (20) that extend along the axial direction of the piston (16) and have an opening (14), and multiple respective communicating passages (22) that communicate with the channels (20) and communicate with the piston hole (18) at positions (24) that differ from each other in the axial direction. Sealing members (28, 30), which seal between the piston (16) and the piston hole (18) and are provided at intervals corresponding to the spacing between the portions of the piston hole (18) that communicate with the multiple communicating passages (22), are provided on the piston (16). There is a gap between the outer surface of the area (34) of the piston (16) between the sealing members (28, 30) and the piston hole (18).

Description

バルブvalve
 本発明は、バルブに関する。 The present invention relates to a valve.
 従来から、流路を複数の方向に切り替えられるバルブが知られている。例えば、特許文献1では、空気の流路を多方向へ切り替えられるバルブが提案されている。特許文献1に記載されたバルブでは、複数の流路が連通されたシリンダ内に設けられるピストンを移動させて当該流路の連結を切り替えることができるようになっている。また、ピストンによって流路を切り替えるバルブとして、非特許文献1及び2に記載されているような、地球深部探査船のBOP(噴出防止装置)に使用されているバルブがある。 Conventionally, a valve capable of switching a flow path in a plurality of directions is known. For example, Patent Document 1 proposes a valve capable of switching the air flow path in multiple directions. In the valve described in Patent Document 1, the connection of the flow paths can be switched by moving a piston provided in a cylinder in which a plurality of flow paths are communicated. Moreover, as a valve which switches a flow path with a piston, there exists a valve currently used for BOP (spout prevention apparatus) of a deep-sea exploration ship as described in the nonpatent literature 1 and 2. FIG.
特開2002-250455号公報JP 2002-250455 A
 引用文献1に記載されたバルブのピストンの軸方向は、バルブに流体が出入りする流路の方向と垂直になっている。また、ピストンの一方の端部側にピストンを移動させるための駆動源が設けられている。従って、ピストンの軸方向には、ピストンが動くための領域と駆動源を設けるための領域とが必要となる。また、非特許文献1及び2に記載されたバルブも、ピストンの軸方向とバルブに流体が出入りする流路の方向とが垂直になっている。 The axial direction of the piston of the valve described in the cited document 1 is perpendicular to the direction of the flow path through which fluid enters and exits the valve. A drive source for moving the piston is provided on one end side of the piston. Therefore, an area for moving the piston and an area for providing a drive source are required in the axial direction of the piston. In the valves described in Non-Patent Documents 1 and 2, the axial direction of the piston and the direction of the flow path through which fluid enters and exits the valve are perpendicular to each other.
 ところで、海底地盤の調査等では、地盤を掘削した後の検層等で用いられるワイヤラインダウンホールツールの一部(部品)として高圧流体を複数の方向に送り込むバルブが必要となる。ワイヤラインダウンホールツールの一部(部品)としてのバルブは、掘削された穴に入れられるため小型化が必要になる。しかしながら、特許文献1に記載されたバルブのような構成では、上述したように流路と垂直な方向にピストンが動くための領域と駆動減を設けるための領域とが必要となるため小型化することが難しい。また、非特許文献1及び2に記載されたバルブのような構成でも、上述したように流路と垂直な方向にピストンが動くための領域が必要となるため小型化することが難しい。 By the way, in the investigation of the seabed ground, etc., a valve for feeding high-pressure fluid in a plurality of directions is required as a part (part) of a wireline downhole tool used for logging after excavating the ground. The valve as a part (part) of the wire line downhaul tool needs to be miniaturized because it is put in the excavated hole. However, in the configuration like the valve described in Patent Document 1, as described above, a region for moving the piston in a direction perpendicular to the flow path and a region for providing drive reduction are required, and thus the size is reduced. It is difficult. Further, even in the configuration such as the valve described in Non-Patent Documents 1 and 2, it is difficult to reduce the size because a region for moving the piston in the direction perpendicular to the flow path is required as described above.
 本発明は、上記の問題点を鑑みてなされたものであり、ワイヤラインダウンホールツールの一部(部品)等として利用可能なように小型化が可能であるバルブを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a valve that can be miniaturized so that it can be used as a part (part) of a wireline downhole tool. .
 上記の目的を達成するために、本発明の一実施形態に係るバルブは、ピストンと、当該ピストンを軸線方向に移動可能に収容するピストン用孔が設けられたバルブ本体とを備えるバルブであって、バルブ本体には、ピストンの軸線方向に沿って延びて当該バルブ本体に開口部を有すると共に流体が流れることが可能な複数の流路と、当該流路それぞれと連通すると共にピストンの軸線方向において互いに異なる位置においてピストン用孔と連通する複数の連通路とが設けられており、ピストンには、当該ピストンとピストン用孔との間をシールすると共にピストン用孔における複数の連通路との連通部分の間隔に応じた間隔で設けられる少なくとも2つのシール部材が設けられ、ピストンにおけるシール部材の間の外面とピストン用孔との間には隙間がある。 In order to achieve the above object, a valve according to an embodiment of the present invention is a valve including a piston and a valve body provided with a piston hole that accommodates the piston so as to be movable in the axial direction. The valve body extends along the axial direction of the piston, has an opening in the valve body and allows flow of fluid, and communicates with each of the flow paths and in the axial direction of the piston. A plurality of communication passages that communicate with the piston hole are provided at different positions, and the piston seals between the piston and the piston hole and communicates with the plurality of communication passages in the piston hole. At least two seal members provided at intervals according to the interval between the seal member and the piston hole. There is a gap.
 本発明の一実施形態のバルブでは、ピストン用孔内においてピストンが移動されて、シール部材によってシールされる位置が変動することによって、シール部材が設けられた位置の間の隙間で連通される連通路が変更され流体の方向を制御することができる。また、本発明の一実施形態のバルブでは、バルブ本体において流路が延びる方向と、流体の方向を制御するためのピストンの軸線方向とが同じ方向であるため、バルブにおける当該方向と垂直な方向の大きさを小さくすることができる。これにより、本発明の一実施形態のバルブは、ワイヤラインダウンホールツールの一部(部品)等として利用可能なように小型化が可能である。 In the valve according to the embodiment of the present invention, the piston is moved in the piston hole, and the position sealed by the seal member varies, so that the communication is established in the gap between the positions where the seal member is provided. The passage can be changed to control the direction of the fluid. In the valve according to the embodiment of the present invention, the direction in which the flow path extends in the valve main body and the axial direction of the piston for controlling the direction of the fluid are the same direction. Can be reduced in size. Thereby, the valve of one embodiment of the present invention can be miniaturized so that it can be used as a part (part) of a wireline downhaul tool.
 バルブ本体のピストン用孔には、連通路との連通部分に溝が設けられていることとしてもよい。この構成によれば、ピストン用孔内においてピストンを移動しやすくすることができる。 The piston hole of the valve body may be provided with a groove in the communication portion with the communication path. According to this configuration, the piston can be easily moved in the piston hole.
 複数の連通路それぞれは、ピストン用孔に対して30度~70度の角度で接続されていることとしてもよい。この構成によれば、バルブ内の流体を流れやすくすることができる。 Each of the plurality of communication paths may be connected to the piston hole at an angle of 30 to 70 degrees. According to this configuration, the fluid in the valve can easily flow.
 複数の連通路それぞれは、バルブ本体の外面とピストン用孔とを貫通する孔をバルブ本体の外面側の開口を溶接されたプラグで塞いだ構成となっていることとしてもよい。この構成によれば、連通路を容易に構成できると共にバルブ内の流体の圧力に耐えうるものにすることができる。 Each of the plurality of communication paths may have a structure in which a hole penetrating the outer surface of the valve body and the hole for the piston is closed with a welded plug on the outer surface side of the valve body. According to this configuration, the communication path can be easily configured and can withstand the pressure of the fluid in the valve.
 ピストンにおけるシール部材の間には窪みが設けられていることとしてもよい。この構成によれば、ピストン用孔内において流体を流れやすくすることができる。 It is good also as a hollow being provided between the sealing members in a piston. According to this configuration, the fluid can easily flow in the piston hole.
 シール部材は、OリングとOリングの両側に設けられたバックアップリングとを含んで構成されていることとしてもよい。この構成によれば、容易かつ確実にシール部材を構成することができる。 The seal member may include an O-ring and backup rings provided on both sides of the O-ring. According to this configuration, the seal member can be configured easily and reliably.
 ピストンは、低摩耗性及び硬度を向上させる表面処理がなされていることとしてもよい。この構成によれば、高圧高温の環境下でも利用可能なバルブを構成することができる。 The piston may be subjected to a surface treatment that improves low wear and hardness. According to this configuration, it is possible to configure a valve that can be used even in a high-pressure and high-temperature environment.
 バルブは、ピストンを軸線方向に移動させる駆動部を更に備えることとしてもよい。この構成によれば、ピストンを移動させることができ確実にバルブとして機能させることができる。 The valve may further include a drive unit that moves the piston in the axial direction. According to this structure, a piston can be moved and it can function as a valve reliably.
 駆動部は、リードスクリューを介してピストンを移動させるステッピングモータであることとしてもよい。この構成によれば、確実かつ瞬時にピストンを移動させると共にバルブの小型化を図ることができる。 The drive unit may be a stepping motor that moves the piston via a lead screw. According to this configuration, the piston can be moved reliably and instantaneously and the valve can be downsized.
 本発明の一実施形態のバルブでは、ピストン用孔内においてピストンが移動されて、シール部材によってシールされる位置が変動することによって、シール部材が設けられた位置の間で連通される連通路が変更され流体の方向を制御することができる。また、本発明の一実施形態のバルブでは、バルブ本体において流路が延びる方向と、流体の方向を制御するためのピストンの軸線方向とが同じ方向であるため、バルブにおける当該方向と垂直な方向の大きさを小さくすることができる。これにより、本発明の一実施形態のバルブは、ワイヤラインダウンホールツールの一部(部品)等として利用可能なように小型化が可能である。 In the valve according to the embodiment of the present invention, the communication path communicated between the positions where the seal member is provided by moving the piston in the piston hole and changing the position sealed by the seal member. It is possible to change the direction of the fluid. In the valve according to the embodiment of the present invention, the direction in which the flow path extends in the valve main body and the axial direction of the piston for controlling the direction of the fluid are the same direction. Can be reduced in size. Thereby, the valve of one embodiment of the present invention can be miniaturized so that it can be used as a part (part) of a wireline downhaul tool.
本発明の実施形態に係るバルブの斜視図である。It is a perspective view of the valve | bulb which concerns on embodiment of this invention. 本発明の実施形態に係るバルブの上面図、断面図及び下面図である。It is the upper side figure, sectional drawing, and bottom view of the valve | bulb which concerns on embodiment of this invention. バルブ本体の開口部が設けられた面を示す図である。It is a figure which shows the surface in which the opening part of the valve main body was provided. バルブ本体のプラグが設けられる部分の加工及び溶接プラグを説明するための図である。It is a figure for demonstrating the process of the part in which the plug of a valve body is provided, and a welding plug. バルブに用いられるピストンを示す図である。It is a figure which shows the piston used for a valve. 本発明の実施形態に係るバルブの動作を模式的に示す図である。It is a figure which shows typically operation | movement of the valve | bulb which concerns on embodiment of this invention.
 以下、図面と共に本発明に係るバルブの実施形態について詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。 Hereinafter, embodiments of the valve according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the dimensional ratios in the drawings do not necessarily match those described.
 図1に、本実施形態に係るバルブ(バルブ機構)10を示す。また、図2(a)にバルブ10の上面図、図2(b)にバルブ10の断面図、図2(c)にバルブ10の下面図をそれぞれ示す。バルブ10は、例えば、ワイヤラインダウンホールツールの一部(部品)として地盤の掘削(掘削孔に入れられる)等に用いられる。バルブ10は、多方向バルブであり、例えば、複数の流体の吐出口が設けられており、バルブ10に流入した流体の吐出口を切り替えるものである。バルブ10が、海底地盤の調査等のワイヤラインダウンホールツールの一部(部品)として用いられる場合は、バルブ10に流入する流体は150MPaの非常に高圧の流体である。また、そのような場合、バルブ10が用いられる環境は、高圧(例えば、150MPa)及び高温(例えば、150℃)となる。 FIG. 1 shows a valve (valve mechanism) 10 according to this embodiment. 2A is a top view of the valve 10, FIG. 2B is a cross-sectional view of the valve 10, and FIG. 2C is a bottom view of the valve 10. The valve 10 is used, for example, for excavation of the ground (inserted into a drilling hole) or the like as a part (part) of a wireline downhaul tool. The valve 10 is a multi-directional valve, for example, provided with a plurality of fluid discharge ports, and switches the discharge port of the fluid that has flowed into the valve 10. When the valve 10 is used as a part (component) of a wire line downhaul tool for surveying the seabed ground, the fluid flowing into the valve 10 is a very high pressure fluid of 150 MPa. In such a case, the environment in which the valve 10 is used is a high pressure (for example, 150 MPa) and a high temperature (for example, 150 ° C.).
 バルブ10は、円柱形状のバルブ本体12を備えている。バルブ本体12は、バルブ10として十分な硬度を有する金属によって形成される。例えば、ステンレス鋼材が用いられる。バルブ本体12には、流体の出入口となる複数の開口部14が設けられている。本実施形態に示すバルブ10は、円柱状のバルブ本体12の一方の面に一つの開口部14aと、他方の面に二つの開口部14b,14cとが設けられている。これらの開口部14a,14b,14cが設けられる面は、後述するようにバルブ10が備えるピストン16の軸線方向と垂直となっている。バルブ10は、開口部14aに流入させた流体を、開口部14b,14cの何れかから吐出する。図3(a)にバルブ本体12における開口部14aが設けられた面(図2におけるバルブ本体12の左側の面)、図3(b)にバルブ本体12における開口部14b,14cが設けられた面(図2におけるバルブ本体12の右側の面)を示す。 The valve 10 includes a cylindrical valve body 12. The valve body 12 is formed of a metal having sufficient hardness as the valve 10. For example, a stainless steel material is used. The valve body 12 is provided with a plurality of openings 14 serving as fluid inlets and outlets. The valve 10 shown in the present embodiment is provided with one opening 14a on one surface of a cylindrical valve body 12 and two openings 14b and 14c on the other surface. The surfaces on which the openings 14a, 14b, and 14c are provided are perpendicular to the axial direction of the piston 16 included in the valve 10 as will be described later. The valve 10 discharges the fluid that has flowed into the opening 14a from one of the openings 14b and 14c. FIG. 3A shows the surface of the valve body 12 in which the opening 14a is provided (the left side of the valve body 12 in FIG. 2), and FIG. 3B shows that the openings 14b and 14c in the valve body 12 are provided. The surface (the right surface of the valve body 12 in FIG. 2) is shown.
 図2(b)に示すように、バルブ10は、バルブ本体12に収容されるピストン(ピストンシリンダ)16を備えている。バルブ本体12には、ピストン16を軸線方向Aに移動可能に収容するピストン用孔18が設けられている。ピストン用孔18は、その断面の形状がピストン16の最も太い部分の断面の形状(具体的には円形)と同様の形状であり、その断面の大きさがピストン16の最も太い部分の断面よりもわずかに大きい。即ち、ピストン用孔18を構成する内周が、ピストン16の最も太い部分の径よりもわずかに大きくなっている。これにより、ピストン用孔18に収容されたピストン16が軸線方向Aのみ(図2の左方向及び右方向)に動けるような形状となっている。また、このピストン用孔18は、後述するように流体の通り道ともなる。 As shown in FIG. 2B, the valve 10 includes a piston (piston cylinder) 16 accommodated in the valve body 12. The valve body 12 is provided with a piston hole 18 for accommodating the piston 16 so as to be movable in the axial direction A. The piston hole 18 has a cross-sectional shape similar to the cross-sectional shape (specifically circular) of the thickest portion of the piston 16, and the cross-sectional size is larger than that of the thickest portion of the piston 16. Is also slightly larger. That is, the inner circumference constituting the piston hole 18 is slightly larger than the diameter of the thickest portion of the piston 16. As a result, the piston 16 accommodated in the piston hole 18 can move only in the axial direction A (the left direction and the right direction in FIG. 2). The piston hole 18 also serves as a fluid passage as will be described later.
 バルブ本体12の内部には、ピストン16の軸線方向に沿って延びると共に流体が流れることが可能な複数の流路20a,20b,20cが設けられている。各流路20a,20b,20cの軸線方向Aと垂直の断面は、ピストン用孔18よりも径が小さい円形となっている。各流路20a,20b,20cの直径は、バルブ10の用途に応じて適宜定めることができる。例えば、上記のワイヤラインダウンホールツールの一部(部品)として利用する場合には、各流路20a,20b,20cの直径は、細くすることができる(例えば、5mm程度以下)。 Inside the valve body 12, there are provided a plurality of flow paths 20a, 20b, 20c that extend along the axial direction of the piston 16 and allow fluid to flow. A cross section perpendicular to the axial direction A of each of the flow paths 20a, 20b, and 20c is a circle having a smaller diameter than the piston hole 18. The diameter of each flow path 20a, 20b, 20c can be determined as appropriate according to the application of the valve 10. For example, when used as a part (component) of the above-described wireline downhole tool, the diameter of each of the flow paths 20a, 20b, and 20c can be reduced (for example, about 5 mm or less).
 これらの流路20a,20b,20cは、一方の端部にバルブ本体12における開口部14a,14b,14cを有している。なお、図3に開口部14a,14b,14cの位置が示されているように、各流路20a,20b,20cそれぞれは、円柱形状のバルブ本体12の周方向における互いに異なる位置に設けられている。具体的には、図3(a)の向きに見た場合、流路20aはピストン用孔18の上の位置に、流路20bはピストン用孔18の右下の位置(図3(b)の向きに見た場合左下の位置となる)に、流路20cはピストン用孔18の左下の位置(図3(b)の向きに見た場合右下の位置となる)にそれぞれピストン16(ピストン用孔18)の軸線方向に沿って延びている。 These flow paths 20a, 20b, and 20c have openings 14a, 14b, and 14c in the valve body 12 at one end. As shown in FIG. 3, the positions of the openings 14 a, 14 b, and 14 c are respectively provided at different positions in the circumferential direction of the cylindrical valve body 12. Yes. Specifically, when viewed in the direction of FIG. 3A, the flow path 20a is at a position above the piston hole 18, and the flow path 20b is at a lower right position of the piston hole 18 (FIG. 3B). The flow path 20c is located at the lower left position of the piston hole 18 (lower right position when viewed in the direction of FIG. 3B). It extends along the axial direction of the piston hole 18).
 なお、図2(b)の図は、流路20aに沿った断面であるので流路20aしか示されていないが、別の位置に流路20b,20cが設けられている。また、流路20aは図2においてバルブ本体12の左方向に開口部14aを有しているが、流路20b,20cは図2においてバルブ本体12の右方向に開口部14b,14cを有している。 In addition, since the figure of FIG.2 (b) is a cross section along the flow path 20a, only the flow path 20a is shown, However, The flow paths 20b and 20c are provided in another position. 2 has an opening 14a on the left side of the valve body 12 in FIG. 2, but the flow paths 20b and 20c have openings 14b and 14c on the right side of the valve body 12 in FIG. ing.
 また、バルブ本体12には、流路20a,20b,20cのそれぞれと、ピストン用孔18と連通していると共に流体が流れることが可能な複数の連通路22a,22b,22cが設けられている。連通路22a,22b,22cそれぞれは、バルブ本体12の周方向における連通路22a,22b,22cの位置と同様の位置に設けられている(例えば、図2(b)参照)。また、連通路22a,22b,22cそれぞれは、ピストン用孔18の内周からバルブ本体12の径方向に延びて、流路20a,20b,20cそれぞれの開口部14a,14b,14c側でない端部と連通している。連通路22a,22b,22cは、例えば、断面が流路20a,20b,20cと同程度の径の大きさの円形となっている。 Further, the valve body 12 is provided with a plurality of communication passages 22a, 22b, and 22c that can communicate with each of the flow paths 20a, 20b, and 20c and that can communicate with the piston hole 18 and allow fluid to flow therethrough. . Each of the communication passages 22a, 22b, and 22c is provided at a position similar to the position of the communication passages 22a, 22b, and 22c in the circumferential direction of the valve body 12 (see, for example, FIG. 2B). Further, each of the communication passages 22a, 22b, and 22c extends in the radial direction of the valve body 12 from the inner periphery of the piston hole 18, and is an end portion that is not on the side of the openings 14a, 14b, and 14c of the flow paths 20a, 20b, and 20c. Communicated with. The communication passages 22a, 22b, and 22c have, for example, a circular shape with a cross section having the same diameter as the flow paths 20a, 20b, and 20c.
 また、バルブ10内を流れる流体が流れやすいように、連通路22a,22b,22cは、流路20a,20b,20cとはピストン用孔18に向かって、90度を超える角度で接続されている(図2(b)に示す角度θ1が90度を超える角度)こととしてもよい。また、同様に、連通路22a,22b,22cは、ピストン用孔18に対して斜めに、より具体的には30度~70度の角度で接続されている(図2(b)に示す角度θ2が30度~70度)こととしてもよい。本実施形態の例では、設計上のスペースを考慮して、連通路22a,22b,22cはピストン用孔18に対して45度の角度で接続されている。 Further, the communication passages 22a, 22b, and 22c are connected to the passages 20a, 20b, and 20c at an angle exceeding 90 degrees toward the piston hole 18 so that the fluid flowing in the valve 10 can easily flow. (An angle θ1 shown in FIG. 2B may be an angle exceeding 90 degrees). Similarly, the communication passages 22a, 22b, and 22c are connected to the piston hole 18 at an angle, more specifically, at an angle of 30 to 70 degrees (the angle shown in FIG. 2B). θ2 may be 30 degrees to 70 degrees. In the example of this embodiment, the communication paths 22a, 22b, and 22c are connected to the piston hole 18 at an angle of 45 degrees in consideration of design space.
 また、流路20a,20b,20cのそれぞれは、ピストン16の軸線方向Aにおいて互いに異なる位置においてピストン用孔18と連通している。流路20a,20b,20cのそれぞれとピストン用孔18との連通位置24a,24b,24cは、図2(b)に示す位置関係において右側から順に連通位置24b、連通位置24a、連通位置24cの順番になっている。即ち、ここでは、流体を流入させる連通路22aの連通位置24aが、流体を吐出させる連通路22b,22cの連通位置24b、24cの間に位置するようになっている。なお、各連通位置24a,24b,24cの間の間隔は、同程度の広さであり、後述するように各連通位置24a,24b,24cの間をピストン16に設けられるシール部材でピストン16とピストン用孔18との間をシールできるような広さとなっている。 Further, each of the flow paths 20a, 20b, and 20c communicates with the piston hole 18 at positions different from each other in the axial direction A of the piston 16. The communication positions 24a, 24b, and 24c between the flow paths 20a, 20b, and 20c and the piston hole 18 are respectively the communication position 24b, the communication position 24a, and the communication position 24c in order from the right side in the positional relationship shown in FIG. It is in order. That is, here, the communication position 24a of the communication path 22a for allowing the fluid to flow in is located between the communication positions 24b and 24c of the communication paths 22b and 22c for discharging the fluid. The intervals between the communication positions 24a, 24b, and 24c are substantially the same, and a seal member provided between the communication positions 24a, 24b, and 24c and the piston 16 is provided between the communication positions 24a, 24b, and 24c as described later. It is wide enough to seal between the piston hole 18.
 また、バルブ本体12のピストン用孔18における各連通位置(連通部分)24a,24b,24cには溝(凹部)が設けられており、この部分のピストン用孔18の径が他の部分と比べてわずかに大きくなっている。なお、ピストン用孔18に設けられる溝は、ピストン用孔18の内周に渡って設けられていてもよいし、連通路22の連通部分24にのみ設けられていてもよい。これは、後述するようにピストン16には、径が太い部分と細い部分とがあるため、ピストン16がピストン用孔18内を移動する際に連通位置24a,24b,24cで引っかかることを防止して、スムーズに移動できるようにしたものである。また、連通路22の連通部分24のエッジは、ピストン16及び後述するシール部材との損傷をなくすため曲率をつけておくこととしてもよい。 Further, each communication position (communication portion) 24a, 24b, 24c in the piston hole 18 of the valve body 12 is provided with a groove (concave portion), and the diameter of the piston hole 18 in this portion is larger than that of other portions. Slightly larger. In addition, the groove | channel provided in the hole 18 for pistons may be provided over the inner periphery of the hole 18 for pistons, and may be provided only in the communication part 24 of the communication path 22. FIG. This is because, as will be described later, since the piston 16 has a thick part and a thin part, the piston 16 is prevented from being caught at the communication positions 24a, 24b, 24c when moving in the piston hole 18. It can be moved smoothly. Further, the edge of the communication portion 24 of the communication path 22 may have a curvature in order to eliminate damage to the piston 16 and a seal member described later.
 また、連通路22a,22b,22cは、バルブ本体12の外周面からピストン用孔18に貫通する孔を開けてバルブ本体12の外周面側の開口をプラグ26a,26b,26cで塞いで形成することとしてもよい。なお、プラグ26a,26b,26cは、バルブ本体12と同じ材質を用いることとすればよい。また、プラグ26a,26b,26cは、バルブ本体12に対して溶接で接合することとしてもよい。具体的には、溶接は電子溶接(EBW)とすることができる。この場合、図4に示すようにバルブ本体12の径を予め大きく形成しておき、プラグ26を電子溶接で接合した後、バルブ本体12の表面を削ることによって、プラグ26が接合されたバルブ本体12を形成してもよい。上記の構成によって、連通路22a,22b,22cを容易に構成できると共にバルブ10内の流体の圧力に耐えうるものにすることができる。また、溶接は、電子溶接以外でもよく、例えばティグ溶接でもよい。 The communication passages 22a, 22b, and 22c are formed by opening holes that penetrate from the outer peripheral surface of the valve body 12 to the piston hole 18 and closing the openings on the outer peripheral surface side of the valve main body 12 with plugs 26a, 26b, and 26c. It is good as well. The plugs 26a, 26b, and 26c may be made of the same material as the valve body 12. The plugs 26a, 26b, and 26c may be joined to the valve body 12 by welding. Specifically, the welding can be electronic welding (EBW). In this case, as shown in FIG. 4, the valve body 12 is formed with a large diameter in advance, the plug 26 is joined by electronic welding, and then the surface of the valve body 12 is shaved so that the plug 26 is joined. 12 may be formed. With the above configuration, the communication paths 22a, 22b, and 22c can be easily configured and can withstand the pressure of the fluid in the valve 10. The welding may be other than electronic welding, for example, TIG welding.
 図5(a)にピストン16の左側面図、図5(b)にピストン16の正面図、図5(c)にピストン16の右側面図、図5(d)にピストン16の軸方向に沿った断面図を示す。ピストン16は、細長い円柱状の部材であり、少なくとも各連通位置24a,24b,24cの間の間隔を超える長さを有している。 5 (a) is a left side view of the piston 16, FIG. 5 (b) is a front view of the piston 16, FIG. 5 (c) is a right side view of the piston 16, and FIG. 5 (d) is an axial view of the piston 16. A sectional view along is shown. The piston 16 is an elongated cylindrical member, and has a length exceeding at least the distance between the communication positions 24a, 24b, and 24c.
 ピストン16には、ピストン16とピストン用孔18との間をシールすると共にピストン用孔18における複数の連通路との連通部分24a,24b,24cの間隔に応じた間隔で設けられる少なくとも2つのシール部材が設けられる。具体的には、個々のシール部材は、Oリング28とOリング28の両側に設けられた2つのバックアップリング30とを含んで構成されている。ピストン16のOリング28と2つのバックアップリング30とが設けられる部分(軸線方向Aの位置)には、環状の溝(凹部)32が設けられており、当該溝内にOリング28と2つのバックアップリング30が収容される。 The piston 16 seals between the piston 16 and the piston hole 18 and is provided with at least two seals provided at intervals corresponding to the intervals of the communication portions 24a, 24b, and 24c with the plurality of communication paths in the piston hole 18. A member is provided. Specifically, each seal member includes an O-ring 28 and two backup rings 30 provided on both sides of the O-ring 28. An annular groove (concave portion) 32 is provided in a portion (position in the axial direction A) where the O-ring 28 and the two backup rings 30 of the piston 16 are provided, and the O-ring 28 and the two backup rings 30 are provided in the groove. A backup ring 30 is accommodated.
 ピストン16における(4つあるうちの内側)2つのシール部材28a,30aの間の部分34は、ピストン16の外周面とピストン用孔との間に隙間ができるような径の大きさ(太さ)となっている。この隙間には、後述するように流体が流れる。従って、流体が流れやすいようにこの部分34は、ピストン16の他の部分よりも径が小さく(細く)なっている、即ち、当該部分には窪みが設けられていることとしてもよい。また、流体を流れやすくするため、ピストンの細くなっている部分34の両端側34aは、2つのシール部材28a,30aが設けられている部分に近くなるにつれて大きくなるテーパー状の形状となっていることとしてもよい。 A portion 34 between the two seal members 28a and 30a (inside of the four) in the piston 16 has a diameter (thickness) such that a gap is formed between the outer peripheral surface of the piston 16 and the piston hole. ). A fluid flows in this gap as will be described later. Therefore, the diameter of the portion 34 may be smaller (thinner) than the other portion of the piston 16 so that the fluid can easily flow, that is, the portion may be provided with a recess. In order to facilitate fluid flow, both end sides 34a of the narrowed portion 34 of the piston have a tapered shape that increases as it approaches the portion where the two seal members 28a and 30a are provided. It is good as well.
 ピストン16の窪み部分34の両側のシール部材28a,30aが設けられている部分の外側には、更にシール部材28b,30bが設けられていてもよい。これは、ピストン16とピストン用孔18との間をより確実にシールすると共に流体が流れない連通路22に流体が流れ込まないようにするためである。 Seal members 28b and 30b may be further provided outside the portions where the seal members 28a and 30a on both sides of the recessed portion 34 of the piston 16 are provided. This is to more reliably seal between the piston 16 and the piston hole 18 and prevent the fluid from flowing into the communication path 22 where the fluid does not flow.
 2つのシール部材28a,30aの間の間隔は、ピストン用孔18における連続した2つの連通位置24c,24a又は連通位置24a,24bの間隔よりも大きく構成されている。これによって、ピストン16の右側のシール部材28a,30aが右側の連通位置24bよりも左にある場合(図2(b)に示す状態)には、連通路22aと連通路24cとが、ピストン16の窪み部分34を介して接続された状態(流体が流れえる状態)となる。また、ピストン16の左側のシール部材28a,30aが左側の連通位置24cよりも右にある場合には、連通路22aと連通路24bとが、ピストン16の窪み部分34を介して接続された状態(流体が流れえる状態)となる。 The interval between the two seal members 28a, 30a is configured to be larger than the interval between the two continuous communication positions 24c, 24a or the communication positions 24a, 24b in the piston hole 18. Thus, when the right seal members 28a and 30a of the piston 16 are on the left side of the right communication position 24b (the state shown in FIG. 2B), the communication path 22a and the communication path 24c are connected to the piston 16 It will be in the state connected via the hollow part 34 (state which a fluid can flow). Further, when the left seal members 28a and 30a of the piston 16 are on the right side of the left communication position 24c, the communication path 22a and the communication path 24b are connected via the recessed portion 34 of the piston 16. (A state in which fluid can flow).
 ピストン16は、高強度な材料が必要である。例えば、耐食性、高強度材であるチタン合金が用いられる。また、上述したようにピストン16には細くなっている部分34があるため、高温及び高圧環境下でも適切にバルブが動作するように低摩耗性及び高度を向上させる表面処理がなされていることとしてもよい。具体的には、目的に応じた材質の微粒子を圧縮性の気体に混合して、高速衝突させて微細で靭性に富む緻密な組織が形成され表面を強化し、摩擦磨耗特性を向上させる粒子を材料表面に当てた処理を行うこととするのがよい。 The piston 16 needs a high strength material. For example, a titanium alloy that is a corrosion-resistant, high-strength material is used. Further, as described above, since the piston 16 has the thinned portion 34, it is assumed that surface treatment for improving low wear and altitude is performed so that the valve operates properly even in a high temperature and high pressure environment. Also good. Specifically, fine particles of a material suitable for the purpose are mixed with a compressible gas and collided at a high speed to form a fine, tough and dense structure that reinforces the surface and improves frictional wear characteristics. A treatment applied to the surface of the material is preferably performed.
 Oリング28の材料としては、例えば、フッ素ゴムが用いられる。バックアップリング30の材料としては、例えば、テフロン等のプラスチックが用いられる。また、上述した高圧及び高温環境下では、例えば、150MPaの圧力及び90Dの硬度のOリング28を用いることとしてもよい。 As the material of the O-ring 28, for example, fluororubber is used. As a material of the backup ring 30, for example, a plastic such as Teflon is used. Further, in the above-described high pressure and high temperature environment, for example, an O-ring 28 having a pressure of 150 MPa and a hardness of 90D may be used.
 バルブ10は、ピストン16を軸線方向Aに移動させる駆動部を更に備えていてもよい。具体的には、バルブ本体12のピストン用孔18の開口がある一方の面(図2におけるバルブ本体12の右側の面)側に、ブラケット(シリンダシャフトカバー)36を介して、駆動部としてのステッピングモータ38がピストン16の軸線方向A上に取り付けられている。ブラケット36は、バルブ本体12の上記の面にねじ止めされて固定されており、ステッピングモータ38は、ブラケット36にねじ止めされて固定されている。 The valve 10 may further include a drive unit that moves the piston 16 in the axial direction A. Specifically, the valve body 12 has an opening for the piston hole 18 on one side (the right side surface of the valve body 12 in FIG. 2) side through a bracket (cylinder shaft cover) 36 as a drive unit. A stepping motor 38 is attached on the axial direction A of the piston 16. The bracket 36 is screwed and fixed to the surface of the valve body 12, and the stepping motor 38 is screwed to the bracket 36 and fixed.
 ピストン16は、ピストン16と軸線方向を共にするリードスクリュー40に接続されており、リードスクリュー40はステッピングモータ(ギヤードモータ、パルスモータ)38に回転されるように接続されている。ブラケット36には、バルブ本体12のピストン用孔18に連通する孔が設けられており、その孔にピストン16とリードスクリュー40とが配置される。また、リードスクリュー40には、ボールベアリングが接続されており、ボールねじ構造を構成している。ステッピングモータ38がリードスクリュー40を回転させることによって、ピストン16は軸線方向Aの前後に移動することができる。また、ステッピングモータ38は、減速機と一体となっている。 The piston 16 is connected to a lead screw 40 that is axially aligned with the piston 16, and the lead screw 40 is connected to be rotated by a stepping motor (geared motor, pulse motor) 38. The bracket 36 is provided with a hole communicating with the piston hole 18 of the valve body 12, and the piston 16 and the lead screw 40 are disposed in the hole 36. Further, a ball bearing is connected to the lead screw 40 to constitute a ball screw structure. When the stepping motor 38 rotates the lead screw 40, the piston 16 can move back and forth in the axial direction A. Further, the stepping motor 38 is integrated with the speed reducer.
 このようなボールねじ構造を取ることによって、例えば、150MPaの圧力及び90Dの硬度のOリング28でシールを行った場合でも十分な推進力を有する。また、このような構成をとることによって、ピストン16を瞬時に移動させることができる。これにより、瞬時(1秒強)に流体の開閉や流路変更が可能になる。また、時間をかけて開閉することもできる。 By adopting such a ball screw structure, for example, even when sealing is performed with an O-ring 28 having a pressure of 150 MPa and a hardness of 90 D, sufficient thrust is provided. Moreover, the piston 16 can be moved instantaneously by taking such a structure. This makes it possible to open and close the fluid and change the flow path instantaneously (over 1 second). It can also be opened and closed over time.
 スペースを削減するため、ステッピングモータ38は、図2に示すようにモータの中心部にボールねじが通せる、中空タイプのものを用いることとするのがよい。ステッピングモータ38の中央に空洞を設けているので、減速機とステッピングモータ38の接続関係を小さくすることができる。また、ステッピングモータ38は、例えば、最大環境温度150℃の高温対応のものを用いることとしてもよい。また、ステッピングモータ38は、外部からの制御信号により動作させられる。また、ピストン16がステッピングモータ38によって動かされたときにピストン16が所定の範囲を超えて動かないように、あるいはピストン16の位置決めを行うために、バルブ10内にストッパが設けられていてもよい。 In order to reduce the space, it is preferable to use a hollow type stepping motor 38 in which a ball screw can be passed through the center of the motor as shown in FIG. Since the cavity is provided in the center of the stepping motor 38, the connection relationship between the reduction gear and the stepping motor 38 can be reduced. The stepping motor 38 may be, for example, one that can handle a high temperature of a maximum environmental temperature of 150 ° C. Further, the stepping motor 38 is operated by an external control signal. A stopper may be provided in the valve 10 so that the piston 16 does not move beyond a predetermined range when the piston 16 is moved by the stepping motor 38, or in order to position the piston 16. .
 また、図2に示すように、バルブ本体12の開口部14には、バルブ10に流入する流体、又はバルブ10から吐出する流体を通すための配管42が接続されてもよい。 Further, as shown in FIG. 2, a pipe 42 for passing a fluid flowing into the valve 10 or a fluid discharged from the valve 10 may be connected to the opening 14 of the valve body 12.
 引き続いて、図6を用いて本発明の実施形態に係るバルブ10の動作を説明する。動作を分かりやすくするため図6ではバルブ10の断面を模式的に示す(図2に示したバルブでは、図6のように各流路20a,20b,20cは同一断面上には位置していない。但し、図6のように各流路20a,20b,20cは同一断面上には位置するような構成であってもよい)。 Subsequently, the operation of the valve 10 according to the embodiment of the present invention will be described with reference to FIG. 6 schematically shows a cross section of the valve 10 in order to make the operation easy to understand (in the valve shown in FIG. 2, the flow paths 20a, 20b, and 20c are not located on the same cross section as in FIG. However, the flow paths 20a, 20b, and 20c may be arranged on the same cross section as shown in FIG.
 まず、図6(a)に示す位置(中央)にピストン16が位置していた場合には、開口部14aから流路20aに流入した流体は、連通路22aを通って、ピストン用孔18におけるピストン16のシール部材の間の部分34に流入する。当該部分34の両側は、シール部材でシールされているので、流体はピストン16の当該部分34の周りを通って、連通路22bに流入して、流路20bを通って開口部14bから吐出される。即ち、この場合、流路20a、連通路22a、ピストン用孔18、連通路22b及び流路20bの順に流体が通るフローラインができる。 First, when the piston 16 is located at the position (center) shown in FIG. 6A, the fluid that has flowed into the flow path 20a from the opening 14a passes through the communication path 22a and enters the piston hole 18. It flows into the part 34 between the sealing members of the piston 16. Since both sides of the portion 34 are sealed with a sealing member, the fluid passes around the portion 34 of the piston 16 and flows into the communication passage 22b, and is discharged from the opening 14b through the flow path 20b. The That is, in this case, there is a flow line through which the fluid passes in the order of the flow path 20a, the communication path 22a, the piston hole 18, the communication path 22b, and the flow path 20b.
 一方で、図6(b)に示す位置(左側)にピストン16が位置していた場合には、開口部14aから流路20aに流入した流体は、連通路22aを通って、ピストン用孔18におけるピストン16のシール部材の間の部分34に流入する。当該部分34の両側は、シール部材でシールされているので、流体はピストン16の当該部分34の周りを通って、連通路22cに流入して、流路20bを通って開口部14cから吐出される。即ち、この場合、流路20a、連通路22a、ピストン用孔18、連通路22c及び流路20cの順に流体が通る図6(a)の場合とは別のフローラインができる。 On the other hand, when the piston 16 is positioned at the position (left side) shown in FIG. 6B, the fluid that has flowed into the flow path 20a from the opening 14a passes through the communication path 22a and passes through the piston hole 18. At a portion 34 between the sealing members of the piston 16. Since both sides of the portion 34 are sealed with a sealing member, the fluid passes around the portion 34 of the piston 16 and flows into the communication passage 22c, and is discharged from the opening 14c through the flow path 20b. The That is, in this case, a flow line different from the case of FIG. 6A in which the fluid passes in the order of the flow path 20a, the communication path 22a, the piston hole 18, the communication path 22c, and the flow path 20c is formed.
 このように、ピストン16を駆動部によって軸線方向に前後に動かすことによって、フローライン(流体の流れ)を瞬時に変えることができる。 Thus, the flow line (fluid flow) can be instantaneously changed by moving the piston 16 back and forth in the axial direction by the drive unit.
 本実施形態に係るバルブ10では、上述したように、ピストン用孔18内においてピストン16が移動されて、シール部材28,30によってシールされる位置が変動することによって、シール部材28,30が設けられた位置の間の隙間で連通される連通路22が変更され流体の方向を制御することができる。また、本実施形態に係るバルブ10では、バルブ本体12において流路20が延びる方向と、流体の方向を制御するためのピストン16の軸線方向とが同じ方向であるため、バルブ10における当該方向と垂直な方向の大きさを小さくすることができる。即ち、バルブ10(バルブ本体12)の径方向の大きさを小さくすることができ、小口径のバルブ10を実現することができる。例えば、上述した本実施形態のバルブ10の例では、直径が100mm以下のバルブ10を実現することができる。 In the valve 10 according to the present embodiment, as described above, the seal member 28, 30 is provided by moving the piston 16 in the piston hole 18 and changing the position sealed by the seal member 28, 30. The communication path 22 communicated with the gap between the determined positions is changed, and the direction of the fluid can be controlled. In the valve 10 according to the present embodiment, the direction in which the flow path 20 extends in the valve body 12 and the axial direction of the piston 16 for controlling the direction of the fluid are the same direction. The size in the vertical direction can be reduced. That is, the size of the valve 10 (valve body 12) in the radial direction can be reduced, and a small-diameter valve 10 can be realized. For example, in the example of the valve 10 of the present embodiment described above, the valve 10 having a diameter of 100 mm or less can be realized.
 これにより、本実施形態に係るバルブ10は、掘削孔等の比較的小さい穴に入れることができ、ワイヤラインダウンホールツールの一部(部品)等として利用可能である。具体的には、海底地盤の圧力の調査等に用いることができる。 Thereby, the valve 10 according to the present embodiment can be put in a relatively small hole such as a drilling hole, and can be used as a part (part) of a wireline downhole tool. Specifically, it can be used to investigate the pressure of the seabed ground.
 また、上述したように本実施形態に係るバルブ10は、部品点数が少ないため、組立に特殊工具を必要とせず、メンテナンス性がよい。また、交換部品が少なく経済性の点でも優れている。また、上述したように損傷箇所が少なくなるように構成することが可能である。 Further, as described above, the valve 10 according to the present embodiment has a small number of parts, and therefore does not require a special tool for assembly and has good maintainability. Moreover, there are few replacement parts and it is excellent also in economical efficiency. Further, as described above, it is possible to configure so that the number of damaged portions is reduced.
 また、本実施形態のようにバルブ本体12のピストン用孔18には、連通路22との連通部分24に溝を設けることととしてもよい。この構成によれば、ピストン16及びピストン16に設けられたシール部材28,30が移動する際に連通部分24で引っかかることを防止して、ピストン用孔18内においてピストン16を移動しやすくすることができる。 Further, as in the present embodiment, the piston hole 18 of the valve body 12 may be provided with a groove in the communication portion 24 with the communication path 22. According to this configuration, the piston 16 and the sealing members 28 and 30 provided on the piston 16 are prevented from being caught by the communication portion 24 when moving, and the piston 16 can be easily moved in the piston hole 18. Can do.
 また、本実施形態のように連通路22は、ピストン用孔18に対して斜めに接続されていることとしてもよい。具体的には、30度~70度の角度で接続されていることとしてもよい。この構成によれば、バルブ10内の流体を流れやすくすることができる。特に、流体が比較的高い粘度を有する液体であっても流れやすくすることができる。 Further, as in the present embodiment, the communication path 22 may be connected to the piston hole 18 at an angle. Specifically, it may be connected at an angle of 30 degrees to 70 degrees. According to this configuration, the fluid in the valve 10 can be easily flowed. In particular, even if the fluid is a liquid having a relatively high viscosity, it can be made easy to flow.
 また、本実施形態のように連通路22は、バルブ本体12の外面の開口を溶接(電子溶接、ティグ溶接等)されたプラグで塞いだ構成とすることとしてもよい。この構成によれば、連通路22を容易に構成できると共にバルブ10内の流体の圧力に耐えうるものにすることができる。 Further, as in the present embodiment, the communication path 22 may have a configuration in which the opening on the outer surface of the valve body 12 is closed with a welded plug (electronic welding, TIG welding, etc.). According to this configuration, the communication path 22 can be easily configured and can withstand the pressure of the fluid in the valve 10.
 また、ピストン16における流体が通過する、シール部材28a,30aが設けられた間部分34には、窪みが設けることとしてもよい。この構成によれば、ピストン用孔18内において流体が流れることができるスペースが広がり、流体を流れやすくすることができる。 Further, a recess may be provided in the portion 34 between which the fluid in the piston 16 passes and the seal members 28a and 30a are provided. According to this configuration, the space in which the fluid can flow in the piston hole 18 is widened, and the fluid can be easily flowed.
 また、本実施形態のようにシール部材は、Oリング28とOリング28の両側に設けられたバックアップリング30とを含んで構成されていることとしてもよい。この構成によれば、容易かつ確実にシール部材を構成することができる。但し、ピストン16とピストン用孔18との間をシールすることができればよく、シール部材として上記以外の構成をとることとしてもよい。 Further, as in the present embodiment, the sealing member may include an O-ring 28 and a backup ring 30 provided on both sides of the O-ring 28. According to this configuration, the seal member can be configured easily and reliably. However, it is sufficient that the space between the piston 16 and the piston hole 18 can be sealed, and the configuration other than the above may be adopted as the sealing member.
 また、ピストン16は、低摩耗性及び硬度を向上させる表面処理がなされているこの構成によれば、高圧高温の環境下でも利用可能なバルブ10を構成することができる。 Further, according to this configuration in which the piston 16 is subjected to a surface treatment for improving low wear and hardness, it is possible to configure the valve 10 that can be used even under a high pressure and high temperature environment.
 また、本実施形態のようにピストン16を軸線方向Aに移動させる駆動部であるステッピングモータ38を備えていることとしてもよい。この構成によれば、ピストンを瞬時に移動させることができ確実かつ瞬時にバルブとして機能させることができる。また、中心部にリードスクリュー40を通すステッピングモータ38を用いることによって、バルブ10の小型化を図ることができる。なお、駆動部はピストン16を移動させることができれば、上述した構成以外のものが用いられてもよい。例えば、以下のような場合に瞬時に開閉ができるシステムが必要となる。水圧を用いて、地盤に開けられた孔井の孔内壁に割れを作る場合高水圧を必要とする。科学的調査として、流体の流れを瞬時に止めて計測が必要になる。孔井内の流体圧を変化させて、その後の流体圧変化から地層の水理特性(浸透率等)を推定する際、変化させる流体圧変化が瞬時でないと、その後の流体圧変化に影響する。また、水圧破砕による応力測定では、流体圧により破砕を行い、その際の流体圧変化から応力を算出するため、瞬時の流体圧制御が必要になる。 Moreover, it is good also as providing the stepping motor 38 which is a drive part which moves the piston 16 to the axial direction A like this embodiment. According to this configuration, the piston can be moved instantaneously and can function reliably and instantaneously as a valve. Further, the valve 10 can be reduced in size by using the stepping motor 38 that passes the lead screw 40 through the center. In addition, as long as the drive part can move the piston 16, things other than the structure mentioned above may be used. For example, a system that can be opened and closed instantaneously in the following cases is required. When water pressure is used to make a crack in the inner wall of a borehole drilled in the ground, high water pressure is required. As a scientific investigation, it is necessary to stop the flow of fluid instantaneously and measure it. When the fluid pressure in the borehole is changed and the hydraulic characteristics (permeability, etc.) of the formation are estimated from the subsequent fluid pressure change, if the changed fluid pressure change is not instantaneous, the subsequent fluid pressure change is affected. Moreover, in the stress measurement by hydraulic crushing, since the crushing is performed by the fluid pressure and the stress is calculated from the fluid pressure change at that time, instantaneous fluid pressure control is required.
 なお、上述したバルブ10は、流体が流入あるいは吐出する開口部14が3つあったが、4つ以上の開口部がある構成としてもよい。即ち、3方向バルブではなく、4方向以上の切替バルブとして構成することとしてもよい。その場合も、開口部14に連通している連通路22とピストン用孔18との接続部分24を軸線方向Aにずらして配置して、ピストン16の位置に応じてシール部材によってピストンとピストン用孔18との間をシールすることで、フローライン(流体の流れ)の切替が可能になる。 Note that the valve 10 described above has three openings 14 through which fluid flows in or out, but may have a configuration having four or more openings. That is, it may be configured as a switching valve for four or more directions instead of the three-way valve. Also in this case, the connecting portion 24 between the communication passage 22 communicating with the opening 14 and the piston hole 18 is arranged shifted in the axial direction A, and the piston and the piston are connected by the seal member according to the position of the piston 16. By sealing between the holes 18, the flow line (fluid flow) can be switched.
 また、本実施形態では、バルブ10に流入した流体の吐出口14b,14cを切り替えるものであったが、複数の流入口を設けてバルブ10に流入可能な流入口を切り替えるものであってもよい。 Further, in the present embodiment, the discharge ports 14b and 14c for the fluid flowing into the valve 10 are switched. However, a plurality of inlets may be provided to switch the inlets that can flow into the valve 10. .
 本発明のバルブは、環境(例えば、ガス・蒸気・水力タービン、石油精製プラント、天然ガス処理プラント、火力・水力発電プラント、蒸気発電プラント、地熱発電プラント、原子力発電プラント、原子力再処理プラント、泥水プラント、海洋深層水プラント、真空輸送プラント、上下水道、サブシー機器(海底設置用))、科学(例えば、地下探査機器、高温高圧試験水槽)、運輸(例えば、自動車(燃料制御、サスペンション、等)、船舶、航空機、潜水艦、鉄道)、製造(例えば、プラスチック成型、ロボット、射出成型、金属成形、ウォータージェット)、医療(例えば、救助用圧力マット)、半導体(例えば、半導体プラント)、食品(例えば、食品プラント、ソフトアイスクリーム製造器)等の分野での応用が期待できる。 The valve of the present invention is used in the environment (for example, gas / steam / hydro turbine, oil refinery plant, natural gas processing plant, thermal / hydro power plant, steam power plant, geothermal power plant, nuclear power plant, nuclear reprocessing plant, mud water. Plant, deep sea water plant, vacuum transportation plant, water and sewage, subsea equipment (for seafloor installation)), science (eg underground exploration equipment, high temperature and high pressure test tank), transportation (eg automobile (fuel control, suspension, etc.)) , Ship, aircraft, submarine, railway), manufacture (eg plastic molding, robot, injection molding, metal molding, water jet), medical (eg rescue pressure mat), semiconductor (eg semiconductor plant), food (eg Application in fields such as food plant and soft ice cream manufacturing equipment).
 10…バルブ、12…バルブ本体、14…開口部、16…ピストン、18…ピストン用孔、20…流路、22…連通路、26…プラグ、28…Oリング、30…バックアップリング、36…ブラケット、38…ステッピングモータ、40…リードスクリュー、42…配管。 DESCRIPTION OF SYMBOLS 10 ... Valve, 12 ... Valve body, 14 ... Opening part, 16 ... Piston, 18 ... Piston hole, 20 ... Flow path, 22 ... Communication path, 26 ... Plug, 28 ... O-ring, 30 ... Backup ring, 36 ... Bracket, 38 ... stepping motor, 40 ... lead screw, 42 ... piping.

Claims (9)

  1.  ピストンと、当該ピストンを軸線方向に移動可能に収容するピストン用孔が設けられたバルブ本体とを備えるバルブであって、
     前記バルブ本体には、前記ピストンの軸線方向に沿って延びて当該バルブ本体に開口部を有すると共に流体が流れることが可能な複数の流路と、当該流路それぞれと連通すると共にピストンの軸線方向において互いに異なる位置においてピストン用孔と連通する複数の連通路とが設けられており、
     前記ピストンには、当該ピストンと前記ピストン用孔との間をシールすると共にピストン用孔における複数の連通路との連通部分の間隔に応じた間隔で設けられる少なくとも2つのシール部材が設けられ、
     前記ピストンにおける前記シール部材の間の外面と前記ピストン用孔との間には隙間があるバルブ。
    A valve comprising a piston and a valve body provided with a piston hole for accommodating the piston movably in the axial direction,
    The valve body has a plurality of flow paths that extend along the axial direction of the piston and have openings in the valve main body and through which fluid can flow, and communicate with each of the flow paths and the axial direction of the piston And a plurality of communication passages communicating with the piston hole at different positions in FIG.
    The piston is provided with at least two seal members that seal between the piston and the piston hole and are provided at intervals according to the intervals of the communication portions with the plurality of communication paths in the piston hole.
    The valve which has a clearance gap between the outer surface between the said sealing members in the said piston, and the said hole for pistons.
  2.  前記バルブ本体のピストン用孔には、前記連通路との連通部分に溝が設けられている請求項1に記載のバルブ。 The valve according to claim 1, wherein a groove is provided in a communication portion with the communication path in the piston hole of the valve body.
  3.  前記複数の連通路それぞれは、前記ピストン用孔に対して30度~70度の角度で接続されている請求項1又は2に記載のバルブ。 The valve according to claim 1 or 2, wherein each of the plurality of communication paths is connected to the piston hole at an angle of 30 degrees to 70 degrees.
  4.  前記複数の連通路それぞれは、前記バルブ本体の外面とピストン用孔とを貫通する孔を前記バルブ本体の外面側の開口を溶接されたプラグで塞いだ構成となっている請求項1~3の何れか一項に記載のバルブ。 Each of the plurality of communication paths has a configuration in which a hole penetrating the outer surface of the valve body and the hole for the piston is closed with an opening on the outer surface side of the valve body with a welded plug. The valve according to any one of the above.
  5.  前記ピストンにおける前記シール部材の間には窪みが設けられている請求項1~4の何れか一項に記載のバルブ。 The valve according to any one of claims 1 to 4, wherein a recess is provided between the seal members of the piston.
  6.  前記シール部材は、OリングとOリングの両側に設けられたバックアップリングとを含んで構成されている請求項1~5の何れか一項に記載のバルブ。 The valve according to any one of claims 1 to 5, wherein the seal member includes an O-ring and backup rings provided on both sides of the O-ring.
  7.  前記ピストンは、低摩耗性及び硬度を向上させる表面処理がなされている請求項1~6の何れか一項に記載のバルブ。 The valve according to any one of claims 1 to 6, wherein the piston is subjected to a surface treatment for improving low wear and hardness.
  8.  前記ピストンを軸線方向に移動させる駆動部を更に備える請求項1~7の何れか一項に記載のバルブ。 The valve according to any one of claims 1 to 7, further comprising a drive unit that moves the piston in the axial direction.
  9.  前記駆動部は、リードスクリューを介してピストンを移動させるステッピングモータである請求項8に記載のバルブ。 The valve according to claim 8, wherein the driving unit is a stepping motor that moves a piston via a lead screw.
PCT/JP2012/079539 2011-11-18 2012-11-14 Valve WO2013073587A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011252902A JP5896350B2 (en) 2011-11-18 2011-11-18 valve
JP2011-252902 2011-11-18

Publications (1)

Publication Number Publication Date
WO2013073587A1 true WO2013073587A1 (en) 2013-05-23

Family

ID=48429642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079539 WO2013073587A1 (en) 2011-11-18 2012-11-14 Valve

Country Status (2)

Country Link
JP (1) JP5896350B2 (en)
WO (1) WO2013073587A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200101584A1 (en) * 2018-10-02 2020-04-02 Alta Devices, Inc. Automated linear vacuum distribution valve

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034154U (en) * 1984-04-28 1985-03-08 株式会社日立製作所 Leak prevention structure of fluid control valve
JPS60116475U (en) * 1984-01-14 1985-08-06 株式会社 小金井製作所 directional valve
JPS6185775U (en) * 1984-11-12 1986-06-05
JPS63170546A (en) * 1987-01-05 1988-07-14 Fujikura Ltd Piston of internal combustion engine
JPH0221375U (en) * 1988-07-18 1990-02-13
JPH0288072U (en) * 1988-12-27 1990-07-12
JPH0579142U (en) * 1992-03-31 1993-10-26 エスエムシー株式会社 Spool valve
JPH08303600A (en) * 1995-05-10 1996-11-19 Toto Ltd Lip packing for rotary valve

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972310A (en) * 1995-09-01 1997-03-18 Nok Corp Sealing device for piston
JP4874468B2 (en) * 2001-02-28 2012-02-15 シーケーディ株式会社 Pilot type solenoid valve and fluid pressure cylinder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116475U (en) * 1984-01-14 1985-08-06 株式会社 小金井製作所 directional valve
JPS6034154U (en) * 1984-04-28 1985-03-08 株式会社日立製作所 Leak prevention structure of fluid control valve
JPS6185775U (en) * 1984-11-12 1986-06-05
JPS63170546A (en) * 1987-01-05 1988-07-14 Fujikura Ltd Piston of internal combustion engine
JPH0221375U (en) * 1988-07-18 1990-02-13
JPH0288072U (en) * 1988-12-27 1990-07-12
JPH0579142U (en) * 1992-03-31 1993-10-26 エスエムシー株式会社 Spool valve
JPH08303600A (en) * 1995-05-10 1996-11-19 Toto Ltd Lip packing for rotary valve

Also Published As

Publication number Publication date
JP5896350B2 (en) 2016-03-30
JP2013108552A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
US11105426B2 (en) Gate valve with full-bore protective sleeve
US10995584B2 (en) Fully electric tool for downhole inflow control
JP5998174B2 (en) Device for sealing a propeller shaft of a ship and method for manufacturing such a device
EP3105481B1 (en) In-line control valve
US9874092B2 (en) Fluid pressure pulse generator for a downhole telemetry tool
US9347571B2 (en) Diverter valve
US20170051845A1 (en) Cage Valve with Instrumentation
US20140160891A1 (en) Drillstring combination pressure reducing and signaling valve
WO2015020826A1 (en) Fluid-actuated butterfly valve
CN105333194B (en) The rotation process driving device of underwater gate valve
JP5896350B2 (en) valve
US10107721B2 (en) Fluid sampling assembly and method of taking a fluid sample
US10180059B2 (en) Telemetry tool with a fluid pressure pulse generator
RU2217269C1 (en) Apparatus for drilling pressurized equipment
EP3516277B1 (en) Subsea control valve
US11230893B2 (en) Method of manufacturing a side pocket mandrel body
US11448242B2 (en) Hydraulic system for use under water with a hydraulic actuating drive
US9695949B2 (en) Method and system of a valve
KR101619119B1 (en) Sysyem for opening and closing valve of vessel
US11828140B2 (en) System and methods of use for a blind plug
US8397824B2 (en) Hydraulic control system for actuating downhole tools
US20210071779A1 (en) Tapered Anti-Cavitation Cage
CN105526385A (en) Sampling device and method for industrial analysis
Ahmadli et al. Design Assessment and Optimization of a Barrier Valve for Subsea Applications
CN105526387A (en) Industrial analysis sampling device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849650

Country of ref document: EP

Kind code of ref document: A1