WO2013073540A1 - Pipe connection structure and pipe connection method - Google Patents

Pipe connection structure and pipe connection method Download PDF

Info

Publication number
WO2013073540A1
WO2013073540A1 PCT/JP2012/079436 JP2012079436W WO2013073540A1 WO 2013073540 A1 WO2013073540 A1 WO 2013073540A1 JP 2012079436 W JP2012079436 W JP 2012079436W WO 2013073540 A1 WO2013073540 A1 WO 2013073540A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
connection structure
elastic tube
pipes
pipe connection
Prior art date
Application number
PCT/JP2012/079436
Other languages
French (fr)
Japanese (ja)
Inventor
暁 小路口
吉川 実
坂本 仁
正樹 千葉
賢一 稲葉
有仁 松永
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013073540A1 publication Critical patent/WO2013073540A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/004Shrunk pipe-joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/12Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints with a seal made of lead, caulked packing, or the like
    • F16L13/122Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints with a seal made of lead, caulked packing, or the like for male-female connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L21/00Joints with sleeve or socket
    • F16L21/002Sleeves or nipples for pipes of the same diameter; Reduction pieces
    • F16L21/005Sleeves or nipples for pipes of the same diameter; Reduction pieces made of elastic material, e.g. partly or completely surrounded by clamping devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L21/00Joints with sleeve or socket
    • F16L21/08Joints with sleeve or socket with additional locking means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • F16L47/02Welded joints; Adhesive joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • F16L47/20Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics based principally on specific properties of plastics
    • F16L47/22Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics based principally on specific properties of plastics using shrink-down material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L2011/047Hoses, i.e. flexible pipes made of rubber or flexible plastics with a diffusion barrier layer

Definitions

  • the present invention relates to a pipe connection structure and a pipe connection method, and more particularly to a pipe connection structure and a pipe connection method for connecting pipes in which a highly reactive substance flows inside.
  • the boiling cooling device when the boiling cooling device is arranged in an electronic device that guarantees long-term operation, the boiling cooling device is required to guarantee long-term confidentiality in order to continue the circulation of heat by the refrigerant.
  • a connection structure that can maintain high airtightness for a long period of time at a low cost is required in the boiling part, the condensing part, and the pipe butt part.
  • the technique regarding the connection structure of piping is disclosed by patent document 1 and patent document 2, for example.
  • Patent Document 1 After the connecting surfaces of a pair of pipes are chamfered into a taper shape and fitted, an adhesive is applied to the fitting portion, and the connection pipe is slid upward. To cure. Finally, the boundary between the pipe and the connecting pipe is fixed using an adhesive tape.
  • JP 2000-213671 A Japanese Patent Laid-Open No. 2008-0775809
  • the present invention has been made in view of the above points, and provides a pipe connection structure and a pipe connection method that solve the problem that the airtightness of the pipe butt portion cannot be maintained over a long period of time when a reactive substance is caused to flow in the pipe.
  • the purpose is to do.
  • the pipe connection structure according to the present invention is formed of two pipes in which a reactive substance flows and one end is abutted, and a material having low reactivity with the reactive substance.
  • the sealing means for sealing the reactive substance in the pipe by being disposed in the region including the butted portion whose ends are butted together, and the butting portion sealed by the sealing means, 2
  • the pipe connection method according to the present invention butts one end of two pipes through which a reactive substance flows, and butts the end part of a material having low reactivity with the reactive substance.
  • the reactive substance is sealed in the pipe by arranging it in the region including the butted part, and the two pipes are connected by being arranged in the sealed butted part, and the two pipes are connected. Reinforce the damaged state.
  • FIG. 1 is a cross-sectional view of a pipe connection structure 10 according to a first embodiment of the present invention. It is sectional drawing of the piping connection structure 100 which concerns on the 2nd Embodiment of this invention. It is sectional drawing of another piping connection structure 100B which concerns on the 2nd Embodiment of this invention. It is sectional drawing of another piping connection structure 100C which concerns on the 2nd Embodiment of this invention. It is sectional drawing of another piping connection structure 100D which concerns on the 2nd Embodiment of this invention. It is sectional drawing of the piping connection structure 200 which concerns on the 3rd Embodiment of this invention. It is sectional drawing of another piping connection structure 200B which concerns on the 3rd Embodiment of this invention.
  • the pipe connection structure 10 includes two pipes 20 and 30, a sealing unit 40, a coupling unit 50, and a reinforcing unit 60.
  • the pipes 20 and 30 are metal pipes through which a gaseous or liquid medium (hereinafter referred to as “reactive substance”) having high reactivity with the resin flows.
  • the reactive substance is a relatively low boiling point antifreeze or the like.
  • the sealing unit 40 is formed of a material having low reactivity with the reactive substance flowing in the pipes 20 and 30.
  • the sealing means 40 is disposed in a region including the butt portion on the upper surface of the pipes 20 and 30.
  • the reactive substance is sealed in the pipes 20 and 30 by disposing the sealing means 40 in the region including the butt portion on the upper surface of the pipes 20 and 30.
  • the sealing unit 40 is formed of a metal having low hardness such as aluminum.
  • the connecting means 50 connects the pipes 20 and 30 by being disposed above the sealing means 40.
  • the connecting means 50 is formed of, for example, an elastic tube, a heat shrinkable tube, or a resin.
  • the reinforcing means 60 reinforces the connected state of the pipes 20 and 30 by the connecting means 50.
  • the reinforcing means 60 is formed by, for example, a fixing metal or an adhesive.
  • the end portions of the pipes 20 and 30 are abutted, and the sealing means 40, the coupling means 50, and the reinforcing means 60 are arranged in this order in the region including the abutting portion.
  • the pipes 20 and 30 are connected.
  • the sealing means 40 is disposed in a region including the butt portion on the upper surface of the pipes 20 and 30, thereby preventing the reactive substance from flowing out from the butt portion. be able to. Therefore, the airtightness in the pipes 20 and 30 can be improved. Since the sealing means 40 is formed of a material having low reactivity with the reactive substance flowing in the pipes 20 and 30, the sealing means 40 reacts with the reactive substance and the sealing means 40.
  • the two pipes 20, 30 are connected by disposing the connecting means 50 at the butt portion of the pipes 20, 30 sealed with the reactive substance by the sealing means 40. To do. Thereby, the piping 20 and 30 can be connected, without the member which comprises the connection means 50, and the reactive substance reacting and the member which comprises the connection means 50 deteriorates. Further, in the pipe connection structure 10 described above, since the connection state of the pipes 20 and 30 is reinforced using the reinforcing means 60, the airtightness of the butt portion can be maintained over a long period of time.
  • the pipe connection structure 10 can maintain the airtightness of the pipe connection portion over a long period of time even when the reactive substance is flowed.
  • the edge part which the piping 20 and 30 is faced is planarized. In this case, the amount of the reactive substance flowing out from the butt portion of the pipes 20 and 30 can be minimized. Therefore, the airtightness in the pipes 20 and 30 can be further enhanced.
  • an elastic tube can be applied as the connecting means 50.
  • a metal film (metal plating) disposed on the inner surface of the elastic tube or a metal film (metal foil) disposed in the upper surface region of the pipes 20 and 30 including the butt portion is applied as the sealing means 40.
  • a fixing bracket including a ring-shaped band portion and a tightening portion that adjusts the ring diameter of the band portion can be applied as the reinforcing means 60.
  • the elastic tube can be heated and contracted to act as the reinforcing means 60.
  • a metal film wound around the upper surface region of the pipes 20 and 30 including the butt portions as the sealing means 40, and a resin member covering the upper surface region including the butt portions of the pipes 20 and 30 as the connecting means 50 are provided. Can be applied. In this case, the adhesiveness of the resin member acts as the reinforcing means 60. Even with these configurations, the airtightness of the pipe butt can be maintained for a long time when the reactive substance is caused to flow.
  • the pipe connection structure 100 includes two boiling cooling pipes 110 and 120, an elastic tube 130 having an inner surface provided with metal plating 131, and two fasteners 140 and 150.
  • the boiling cooling pipes 110 and 120 are metal pipes whose ends (butting surfaces) are processed to be flat, and a refrigerant for boiling cooling flows inside.
  • the refrigerant for boiling cooling is an antifreeze having a relatively low boiling point, and for example, organic refrigerants such as HFC (hydrofluorocarbon) and HFE (hydrofluoroether) can be applied.
  • an aluminum pipe having a diameter of about 12 mm is applied as the boiling cooling pipes 110 and 120.
  • the elastic tube 130 whose inner surface is provided with the metal plating 131 is a tube formed of an elastic body having high stretchability.
  • the elastic tube 130 is a rubber hose made of butyl rubber having an inner diameter of about 11.5 mm, an outer diameter of about 17.5 mm, and a length of about 3 cm, and aluminum is plated on the inner surface using an electroplating method or the like. .
  • aluminum having a low hardness as the plating metal it is possible to suppress the occurrence of cracks after plating.
  • a general hose clamp is applied to the fasteners 140 and 150.
  • the butt portions of the boiling cooling pipes 110 and 120 are flattened with a file or the like. Process. By flattening the butting portions of the boiling cooling pipes 110 and 120, the amount of refrigerant flowing out from the butting portions can be minimized. Further, since the processing for the boiling cooling pipes 110 and 120 is only flattening of the end face using a file or the like, the processing cost can be kept low.
  • the elastic tube 130 having the inner surface provided with the metal plating 131 is passed through one of the boiling cooling pipes 110 and 120, and the ends of the boiling cooling pipes 110 and 120 are brought into contact with each other. Thereafter, the elastic tube 130 passed in advance is slid above the butt portion of the pipes 110 and 120, and the boiling cooling pipes 110 and 120 are connected. In this state, both ends of the elastic tube 130 are pressed toward the center using the fasteners 140 and 150 to reinforce the connection state of the boiling cooling pipes 110 and 120.
  • the pipe connection structure 100 can maintain the airtightness of the connection portion of the boiling cooling pipes 110 and 120 for a long period even when a highly reactive refrigerant flows.
  • the elastic tube 130 is passed through one of the boiling cooling pipes 110 and 120 in advance, and the elastic tube 130 is slid above the butt portion of the pipes 110 and 120.
  • the present invention is not limited to this, and the boiling cooling pipes 110 and 120 may be inserted from both ends of the elastic tube 130, and the ends of the pipes 110 and 120 may be butted together inside the elastic tube 130.
  • FIG. 3 shows an example in which the end portion of the boiling cooling pipe is obliquely cut and butted, and the butted portion is connected using an elastic tube 130B having metal plating 131B on the inner surface and fasteners 140B and 150B. Indicates.
  • the end of the boiling cooling pipe 110B is obtained by cutting the end of the boiling cooling pipe 110B obliquely at an angle ⁇ from the inner side surface to the outer side surface of the pipe.
  • the inner side surface is formed in a tapered shape.
  • the end portion of the boiling cooling pipe 120B is formed in a tapered shape with the outer surface protruding by cutting in an oblique direction at an angle ⁇ from the outer surface toward the inner surface.
  • the tapered surfaces of each other are fitted to each other, so that the connection state of the boiling cooling pipes 110B and 120B is orthogonal to the longitudinal direction of the pipes. Shifting in the radial direction is suppressed.
  • the boiling cooling pipe is formed of a soft metal (for example, aluminum) that is easy to process, the end may be flattened and processed so that the outer diameter gradually decreases toward the end. .
  • a soft metal for example, aluminum
  • the outer diameter of the region in the vicinity of the ends of the boiling cooling pipes 110C and 120C is gradually reduced, and the butt portion is used with the elastic tube 130C having the metal plating 131C applied on the inner surface and the fasteners 140C and 150C.
  • An example of reinforcement is shown.
  • the boiling cooling pipes 110C and 120C are processed so that the outer diameter gradually decreases toward the end.
  • the boiling cooling pipes 110C and 120C can be smoothly inserted into the elastic tube 130C. Therefore, it is possible to prevent the metal plating 131C of the elastic tube 130C from being damaged when the boiling cooling pipes 110C and 120C are inserted.
  • FIG. 5 shows an example in which the boiling cooling pipes 110D and 120D are connected using a heat shrinkable tube 160D having a metal plating 161D on the inside.
  • the metal plating 161D applied to the inside of the heat shrinkable tube 160D corresponds to the sealing means
  • the tube main body of the heat shrinkable tube 160D corresponds to the connecting means
  • the heat shrinkability of the heat shrinkable tube 160D functions as the reinforcing means.
  • the pipe connection structure 100D shown in FIG. 5 is formed as follows.
  • the ends of the boiling cooling pipes 110D and 120D are flattened, and the heat shrinkable tube 160D having the metal plating 161D on the inside is passed through one of the boiling cooling pipes 110D and 120D. Thereafter, the end portions of each other are butted together, and the heat-shrinkable tube 160D previously passed is slid above the butted portion, and the heat-shrinkable tube 160D is heated in this state.
  • an elastic tube made of butyl rubber or the like it is necessary to use an elastic tube having an inner diameter equivalent to the outer diameter of the boiling cooling pipe, whereas when using a heat-shrinkable tube, the heat-shrinkable tube is heated by being heated.
  • one type of heat shrinkable tube can be used for boiling cooling pipes having various outer diameters.
  • the inner diameter of the heat-shrinkable tube before heating can be designed to be larger than the outer diameter of the boiling cooling pipe, compared with the case where an elastic tube having an inner diameter equivalent to the outer diameter of the boiling cooling pipe is used.
  • the heat-shrinkable tube can be easily disposed above the butt portion of the boiling cooling pipe. Furthermore, the heat-shrinkable tube shrinks over the entire length of the boiling cooling pipe when heated.
  • the pipe connection structure 200 according to the present embodiment includes two boiling cooling pipes 210 and 220, a metal foil 230, and a heat shrinkable tube 240.
  • Boiling cooling pipes 210 and 220 are aluminum pipes whose ends are flattened, and a refrigerant for boiling cooling flows inside.
  • the metal foil 230 is a metal foil having a thickness of about 0.05 to 0.1 mm.
  • the metal foil 230 As the material of the metal foil 230, it is desirable to apply a metal having good flexibility, shape following property and strength.
  • an aluminum foil having a thickness of about 0.1 mm, a width of about 30 mm, and a length of about 40 mm is applied as the metal foil 230.
  • the heat-shrinkable tube 240 is a tube having the characteristics of a fluoropolymer that stores a shape, and shrinks in the radial direction when heated.
  • the tube main body of the heat shrinkable tube 240 corresponds to the connecting means, and the heat shrinkability of the heat shrinkable tube 240 functions as a reinforcing means.
  • the boiling cooling pipes 210 and 220 are connected using the metal foil 230 and the heat-shrinkable tube 240, first, the ends of the boiling cooling pipes 210 and 220 are flattened with a file or the like, and the boiling cooling pipes 210 and 220 are connected.
  • the heat shrinkable tube 240 is passed through one of them. Subsequently, the ends of the boiling cooling pipes 210 and 220 are brought into contact with each other. Further, after winding the metal foil 230 a plurality of times above the butting portion, the heat shrinkable tube 240 previously passed above the metal foil 230 is slid. In this state, the heat-shrinkable tube 240 is heated and contracted, and the boiling cooling pipes 210 and 220 and the metal foil 230 are connected.
  • the refrigerant leaks to the outside from the butt portion of the boiling cooling pipes 210 and 220 by winding the metal foil 230 around the entire circumference of the butt portion of the boiling cooling pipes 210 and 220.
  • the metal foil 230 between the butted portions of the boiling cooling pipes 210 and 220 and the heat shrinkable tube 240, the refrigerant and the heat shrinkable tube 240 come into contact with each other and react, and the heat shrinkable tube 240 deteriorates. To suppress.
  • the heat-shrinkable tube 240 is heated to connect and fix the butting portions of the boiling cooling pipes 210 and 220, thereby maintaining the connected state of the boiling cooling pipes 210 and 220 over a long period of time. Therefore, the pipe connection structure 200 according to the present embodiment can maintain the airtightness of the pipe connection portion for a long period of time even when a highly reactive refrigerant is flowed.
  • aluminum foil having a relatively low hardness is used as the winding member of the butt portion, aluminum is provided along the surfaces of the boiling cooling pipes 210 and 220 as compared with the case of using a metal foil made of a metal having high hardness. The foil is deformed.
  • FIG. 7 shows an example in which the boiling cooling pipes 210B and 220B are connected using the metal foil 230B and the resin adhesive 250B.
  • the resin-based adhesive 250B is a resin-based adhesive that is cured by heating, irradiation with ultraviolet rays, or addition of a solvent, and is, for example, an adhesive made of an epoxy resin.
  • the resin adhesive 250B is applied so as to cover the entire metal foil 230B, and the resin adhesive It is formed by curing agent 250B.
  • the resin adhesive 250B is cured, the connection state of the boiling cooling pipes 210B and 220B and the metal foil 230B is fixed.
  • the resin-based adhesive 250B functions as a connecting means by being applied to the butted portions of the pipes 210B and 220B around which the metal foil 230B is wound. Further, the resin adhesive 250B acts as a reinforcing means by being cured.
  • FIG. 8 shows a cross-sectional view of a pipe connection structure 200C in which the butted portions of the boiling cooling pipes 210C and 220C are connected using a metal foil 230C, an elastic tube 260C, and fasteners 270C and 280C.
  • the elastic tube 260C is used, the ends of the boiling cooling pipes 210C and 220C are butted together while the elastic tube 260C is passed through one of the boiling cooling pipes 210C and 220C.
  • the pipe connection structure 300 includes two boiling cooling pipes 310 and 320 having grooves 311 and 321 formed on the outer peripheral surface, an elastic tube 330 provided with metal plating 331, and two Fasteners 340 and 350 are provided.
  • the boiling cooling pipes 310 and 320 are aluminum pipes whose ends are flattened, for example, having a diameter of about 12 mm, and a refrigerant for boiling cooling flows inside. Grooves 311 and 321 are formed on the outer peripheral surface at a position away from the ends of the boiling cooling pipes 310 and 320 by a predetermined distance.
  • grooves 311 and 321 having a square cross section with a depth of about 1 mm and a width of about 10 mm are formed on the outer peripheral surfaces of the boiling cooling pipes 310 and 320 at a distance of about 5 to 15 mm from the end. It is formed all around.
  • the elastic tube 330 is a stretchable tube having a metal plating 331 on the inner surface.
  • a rubber hose made of butyl rubber having an inner diameter of about 11.5 mm, an outer diameter of about 17.5 mm, and a length of about 40 mm is used as the elastic tube 330, and aluminum is plated on the inner surface using an electroplating method or the like.
  • the fasteners 340 and 350 include fixed band portions 341 and 351 and fastening portions 342 and 352, respectively.
  • the fixed band portions 341 and 351 have a ring shape in which a long body having a width smaller than the width of the grooves 311 and 321 of the boiling cooling pipes 310 and 320 is wound once.
  • the fixed band portions 341 and 351 have a ring shape in which a long stainless steel tape having a width of about 7 mm is wound once.
  • the tightening portions 342 and 352 have screw holes, and the ring diameters of the fixed band portions 341 and 351 change by rotating the screw holes in a predetermined direction by a driver or the like.
  • the objects to be fixed are fixed by tightening the fixing band portions 341 and 351 in the direction in which the ring diameter of the fixing band portions 341 and 351 is reduced using the tightening portions 342 and 352.
  • a mark for positioning the elastic tube 330 is attached with a magic or the like at a position half the length of the elastic tube 330 from the ends of the boiling cooling pipes 310 and 320.
  • “x” marks are applied to the surfaces 20 mm inside from the ends of the boiling cooling pipes 310 and 320 using magic.
  • the ring-shaped fixing band portions 341 and 351 of the fasteners 340 and 350 are passed through the boiling cooling pipes 310 and 320, respectively, and the elastic tube 330 is passed through one of the boiling cooling pipes 310 and 320.
  • the ends of the boiling cooling pipes 310 and 320 are butted together, and the elastic tube 330 that has been passed in advance is disposed between the X mark and the X mark attached to the surface of the boiling cooling pipes 310 and 320. Slide so that. Thereafter, the fixed band portions 341 and 351 previously inserted through the boiling cooling pipes 310 and 320 are moved into the marking areas printed on the elastic tube 330, and the screw holes of the tightening portions 342 and 352 are screwed or the like.
  • the elastic tube 330 is fastened and fixed.
  • the marking 332 printed on the elastic tube 330 is positioned above the grooves 311 and 321 formed in the pipes 310 and 320, and the width (about 7 mm) of the fixed band portion 341 is larger than the width (about 10 mm) of the groove 311. Is also small. Accordingly, by reducing the diameters of the fixed band portions 341 and 351 using the tightening portions 342 and 352, the elastic tube 330 is pressed by the fixed band portion 341 and deformed along the wall surfaces of the grooves 311 and 321. Is inserted into the grooves 311 and 321.
  • FIG. 11 shows a state where the upper position of the groove 311 formed in the pipe 310 is pressed by the fastener 340.
  • the elastic tube 330 and a part of the fixed band portion 341 are fitted into the groove 311, the elastic tube 330 is suppressed from moving in the longitudinal direction of the pipes 310 and 320. Therefore, the connection strength between the elastic tube 330 and the pipe 310 is increased, and the connection state of the boiling cooling pipe 310 can be firmly maintained.
  • the butted portions of the boiling cooling pipes 310 and 320 are connected by the elastic tube 330 to which the metal plating 331 is applied. Further, by reinforcing the connection state by the elastic tube 330 using the fasteners 340 and 350, the airtightness of the pipe butt portion can be maintained over a long period of time even when a highly reactive refrigerant flows.
  • grooves 311 and 321 are formed on the outer peripheral surfaces of the boiling cooling pipes 310 and 320, and the upper portions of the grooves 311 and 321 are pressed and fixed by using fasteners 340 and 350. Then, a part of the elastic tube 330 and the fasteners 340 and 350 were fitted into the grooves 311 and 321. Accordingly, the elastic tube 330 and the fasteners 340 and 350 are prevented from moving in the longitudinal direction of the pipes 310 and 320. Therefore, the elastic tube 330 can be stably fixed to the boiling cooling pipes 310 and 320, and the long-term reliability of the butt portion of the boiling cooling pipes 310 and 320 can be improved.
  • FIG. 12 shows a cross-sectional view of a pipe connection structure 300B in which boiling cooling pipes 310B and 320B in which grooves 311B and 321B are formed are connected using a metal foil 360B and a heat shrinkable tube 370B.
  • a thin metal tape having a width approximately equal to the distance from the center position of the groove 311B of the pipe 310B to the center position of the groove 321B of the pipe 320B is used as the metal foil 360B.
  • the ends of the boiling cooling pipes 310B and 320B are first flattened, and one of the boiling cooling pipes 310B and 320B is flattened. After passing the heat-shrinkable tube 370B, the ends of each other are butted together.
  • the metal foil 360B is wound around the butted portions of the pipes 310B and 320B so that both ends of the metal foil 360B are located above the grooves 311B and 321B of the pipes 310B and 320B.
  • the width of the metal foil 360B is formed to be the same as the distance from the center position of the groove 311B of the pipe 310B to the center position of the groove 321B of the 320B, both ends of the metal foil 360B are grooves 311B. , 321B.
  • both ends of the metal foil 360B are folded inside the grooves 311B and 321B along the wall surfaces of the grooves 311B and 321B.
  • the heat-shrinkable tube 370B passed in advance is slid above the metal foil 360B, and the heat-shrinkable tube 370B is heated and contracted in this state, thereby fixing the pipes 310B and 320B and the metal foil 360B. Even when the boiling cooling pipes 310B and 320B are connected using the metal foil 360B and the heat-shrinkable tube 370B or when a highly reactive refrigerant flows, the airtightness of the pipe connection part is maintained for a long period of time. can do.
  • the both ends of the metal foil 360B are folded inside the grooves 311B and 321B along the wall surfaces of the grooves 311B and 321B, so that the adhesion between the boiling cooling pipes 310B and 320B and the metal foil 360B is improved. This increases the airtightness of the pipe connection. Further, in the pipe connection structure 300B, the heat shrinkable tube 370B is heated and the heat shrinkable tube 370B contracts, so that part of the heat shrinkable tube 370B is fitted into the grooves 311B and 321B.
  • FIG. 13 is a cross-sectional view of a pipe connection structure 300C in which boiling cooling pipes 310C and 320C in which grooves 311C and 321C are formed are connected using a metal foil 360C and a resin adhesive 380C.
  • the metal foil 360C is wound around the butting portions of the boiling cooling pipes 310C and 320C, and the metal foil 360C is covered with both ends of the metal foil 360C being folded inside the grooves 311C and 321C. In this way, a resin adhesive 380C is applied. Then, the piping 310C, 320C and the metal foil 360C are fixed by curing the resin adhesive 380C. Even when the boiling cooling pipes 310C and 320C are connected using the metal foil 360C and the resin adhesive 380C, or when a highly reactive refrigerant is allowed to flow, the airtightness of the pipe connecting part is maintained over a long period of time. Can be held.
  • the resin adhesive 380C is cured while being filled in the grooves 311C and 321C.
  • the adhesiveness between the boiling cooling pipes 310C and 320C and the resin adhesive 380C is increased, and the airtightness and long-term reliability of the pipe connection part are further improved.
  • the resin adhesive 380C it is desirable to form the grooves 311C and 321C in a reverse taper shape.
  • FIG. 14 shows a state in which the metal foil 360C is folded into a groove 321C formed in an inversely tapered shape and further fixed using a resin adhesive 380C.
  • the metal foil 360C folded along the inner wall of the groove 321C is firmly fixed in the groove 321C. Therefore, the connection state of the boiling cooling pipes 310C and 320C is more stably maintained.
  • the outer peripheral surface of the boiling cooling pipe is formed in an uneven shape, or the surface of the boiling cooling pipe is roughened by shaving with a file etc. You can also do it. In this case, due to the anchor effect, the elastic tube, the heat shrinkable tube, the resin adhesive, etc.
  • connection structure applied to the piping used in the boiling cooling device has been described.
  • connection structure may be applied to a piping connection structure other than the boiling cooling device that causes a medium that reacts with an organic material or the like to flow. it can.
  • this invention was demonstrated with reference to embodiment, this invention is not limited to the said embodiment.
  • the present invention can be applied to all devices, systems, and services using pipes through which highly reactive substances flow.
  • Piping connection structure 20 30 Piping 40 Sealing means 50 Connecting means 60 Reinforcing means 100, 100B, 100C, 100D Piping connection structure 110, 110B, 110C, 110D Boiling cooling pipe 120, 120B, 120C, 120D Boiling cooling pipe 130, 130B, 130C Metal plated elastic tube 131, 131B, 131C Metal plated 140, 140B, 140C Fastener 150, 150B, 150C Fastener 160D Heat-shrinkable tube 161D metal plated 200D, 200B , 200C Piping connection structure 210, 210B, 210C Boiling cooling piping 220, 220B, 220C Boiling cooling piping 230, 230B, 230C Metal foil 240 Heat shrinkable tube 250B Resin adhesive 260C Elasticity Tube 270C, 280C Fastener 300, 300B, 300C Pipe connection structure 310, 310B, 310C Boiling cooling pipe 311, 311B, 311C Groove 320, 320B

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Joints With Sleeves (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)

Abstract

This pipe connection structure comprises: two pipes having one end section of each abutting the other, and through which a reactive substance flows; a sealing means formed by a material having low reactivity to the reactive substance, said sealing means arranged in an area including the abutted section, and sealing the reactive substance inside the pipes; a coupling means that couples the two pipes by being arranged in the abutted section sealed by the sealing means; and a reinforcing means that reinforces the coupling means.

Description

配管接続構造および配管接続方法Piping connection structure and piping connection method
 本発明は配管接続構造および配管接続方法に関し、特に、内部に反応性が高い物質が流動する配管同士を接続するための配管接続構造および配管接続方法に関する。 The present invention relates to a pipe connection structure and a pipe connection method, and more particularly to a pipe connection structure and a pipe connection method for connecting pipes in which a highly reactive substance flows inside.
 電子機器内に配置された部品の実装密度が大きくなることに伴い、電子機器から発せられる熱量の密度が増大している。さらに、部品の実装密度が大きくなることによって、各部品から発せられた熱を取り除く冷却システムを、発熱部品の近傍に配置することが困難になっている。そこで、部品から発せられた熱を発熱部品から離れたところに輸送して冷却する技術が提案されている。
 その技術の一つとして、冷媒の相変化を利用した沸騰冷却装置がある。沸騰冷却装置では、沸騰と凝縮を繰り返す冷媒を、発熱部品近傍に配置した沸騰部と外気に近い位置に配置した凝縮部との間で配管を用いて循環させることにより、部品から発せられた熱を外気に放熱する。
 ここで、長期間の動作を保証する電子機器に沸騰冷却装置を配置する場合、冷媒による熱の循環を継続するために、沸騰冷却装置には長期間の機密性の保証が要求される。特に、沸騰部、凝縮部および配管の突合せ部においては、低コストで長期間にわたって高気密性を保持できる接続構造が要求される。
 配管の接続構造に関する技術は、例えば、特許文献1や特許文献2に開示されている。特許文献1の配管の接続方法においては、一対の配管の接続面をテーパ状に面取りして嵌合させた後、嵌合部に接着剤を塗布し、接続管を嵌合部上方にスライドさせて硬化させる。そして、最後に粘着テープを用いて配管と接続管の境界を固着する。
 一方、特許文献2の配管の接続方法は、一対の金属管をそれぞれ樹脂スリーブの両端から挿入し、金属スリーブおよび熱収縮チューブで覆う。これによって、金属管の突合せ部が樹脂スリーブ、金属スリーブおよび熱収縮チューブによってシールされる。
As the mounting density of components arranged in an electronic device increases, the density of heat generated from the electronic device increases. Furthermore, as the mounting density of components increases, it is difficult to arrange a cooling system that removes heat generated from each component in the vicinity of the heat generating component. In view of this, a technique has been proposed in which heat generated from a component is transported away from the heat generating component and cooled.
As one of the technologies, there is a boiling cooling device using a phase change of a refrigerant. In the boiling cooling device, the heat generated from the parts is circulated using a pipe between the boiling part arranged near the heat-generating part and the condensing part arranged near the outside air. To dissipate heat to the outside air.
Here, when the boiling cooling device is arranged in an electronic device that guarantees long-term operation, the boiling cooling device is required to guarantee long-term confidentiality in order to continue the circulation of heat by the refrigerant. In particular, a connection structure that can maintain high airtightness for a long period of time at a low cost is required in the boiling part, the condensing part, and the pipe butt part.
The technique regarding the connection structure of piping is disclosed by patent document 1 and patent document 2, for example. In the pipe connection method disclosed in Patent Document 1, after the connecting surfaces of a pair of pipes are chamfered into a taper shape and fitted, an adhesive is applied to the fitting portion, and the connection pipe is slid upward. To cure. Finally, the boundary between the pipe and the connecting pipe is fixed using an adhesive tape.
On the other hand, in the pipe connection method of Patent Document 2, a pair of metal tubes are inserted from both ends of the resin sleeve, and covered with the metal sleeve and the heat shrinkable tube. Thereby, the butt portion of the metal tube is sealed by the resin sleeve, the metal sleeve, and the heat shrinkable tube.
特開2000−213671号公報JP 2000-213671 A 特開2008−075809号公報Japanese Patent Laid-Open No. 2008-0775809
 しかし、特許文献1や特許文献2の技術を沸騰冷却装置に用いられる配管の接続に適用する場合、接着剤や樹脂スリーブが配管内を流動している冷媒と接触して反応する。接着剤と冷媒、または、樹脂スリーブと冷媒が長期間にわたって反応し続けることにより、接着剤または樹脂スリーブが劣化し、気密性が低下する。このように、特許文献1や特許文献2の配管接続構造においては、配管に反応性が高い物質(以下、「反応性物質」と記載する。)を流動させると、長期間にわたって気密性を保持できないという課題があった。
 本発明は上記の点に鑑みなされたもので、配管に反応性物質を流動させると、長期間にわたって配管突合せ部の気密性を保持できない、という課題を解決する配管接続構造および配管接続方法を提供することを目的とする。
However, when the techniques of Patent Document 1 and Patent Document 2 are applied to the connection of piping used in the boiling cooling device, the adhesive or the resin sleeve reacts with the refrigerant flowing in the piping. When the adhesive and the refrigerant, or the resin sleeve and the refrigerant continue to react over a long period of time, the adhesive or the resin sleeve is deteriorated and the airtightness is lowered. As described above, in the pipe connection structures of Patent Document 1 and Patent Document 2, when a highly reactive substance (hereinafter referred to as “reactive substance”) is caused to flow in the pipe, airtightness is maintained for a long period of time. There was a problem that it was not possible.
The present invention has been made in view of the above points, and provides a pipe connection structure and a pipe connection method that solve the problem that the airtightness of the pipe butt portion cannot be maintained over a long period of time when a reactive substance is caused to flow in the pipe. The purpose is to do.
 上記目的を達成するために本発明に係る配管接続構造は、反応性物質が流動し、一方の端部同士が突き合わされた2本の配管と、反応性物質との反応性が低い材料によって形成され、端部が突き合わされた突合せ部を含む領域に配置されて反応性物質を配管内に封止する封止手段と、封止手段によって封止された突合せ部に配置されることによって、2本の配管を連結する連結手段と、連結手段を補強する補強手段、とを備える。
 上記目的を達成するために本発明に係る配管接続方法は、反応性物質が流動する2本の配管の一方の端部同士を突合せ、反応性物質との反応性が低い材料を端部を突合せた突合せ部を含む領域に配置することによって、反応性物質を配管内に封止し、封止された突合せ部に配置されることによって、2本の配管を連結し、2本の配管が連結した状態を補強する。
In order to achieve the above object, the pipe connection structure according to the present invention is formed of two pipes in which a reactive substance flows and one end is abutted, and a material having low reactivity with the reactive substance. The sealing means for sealing the reactive substance in the pipe by being disposed in the region including the butted portion whose ends are butted together, and the butting portion sealed by the sealing means, 2 A connecting means for connecting the pipes of the book; and a reinforcing means for reinforcing the connecting means.
In order to achieve the above object, the pipe connection method according to the present invention butts one end of two pipes through which a reactive substance flows, and butts the end part of a material having low reactivity with the reactive substance. The reactive substance is sealed in the pipe by arranging it in the region including the butted part, and the two pipes are connected by being arranged in the sealed butted part, and the two pipes are connected. Reinforce the damaged state.
 本発明によれば、反応性が高い物質(反応性物質)を流動させる場合であっても、長期間にわたって配管突合せ部の気密性を保持することができる配管接続構造および配管接続方法が得られる。 ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where a highly reactive substance (reactive substance) is made to flow, the piping connection structure and piping connection method which can maintain the airtightness of a pipe butt | matching part over a long period of time are obtained. .
本発明の第1の実施形態に係る配管接続構造10の断面図である。1 is a cross-sectional view of a pipe connection structure 10 according to a first embodiment of the present invention. 本発明の第2の実施形態に係る配管接続構造100の断面図である。It is sectional drawing of the piping connection structure 100 which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る別の配管接続構造100Bの断面図である。It is sectional drawing of another piping connection structure 100B which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る別の配管接続構造100Cの断面図である。It is sectional drawing of another piping connection structure 100C which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る別の配管接続構造100Dの断面図である。It is sectional drawing of another piping connection structure 100D which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る配管接続構造200の断面図である。It is sectional drawing of the piping connection structure 200 which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る別の配管接続構造200Bの断面図である。It is sectional drawing of another piping connection structure 200B which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る別の配管接続構造200Cの断面図である。It is sectional drawing of another piping connection structure 200C which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る配管接続構造300の断面図である。It is sectional drawing of the piping connection structure 300 which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る弾性チューブ330の外観斜視図である。It is an external appearance perspective view of the elastic tube 330 which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る配管接続構造300の溝311近傍の拡大図である。It is an enlarged view near the groove | channel 311 of the pipe connection structure 300 which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る別の配管接続構造300Bの断面図である。It is sectional drawing of another piping connection structure 300B which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る別の配管接続構造300Cの断面図である。It is sectional drawing of another piping connection structure 300C which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る別の配管接続構造300Cの溝311C近傍の拡大図である。It is an enlarged view near the groove | channel 311C of another pipe connection structure 300C which concerns on the 4th Embodiment of this invention.
 (第1の実施形態)
 第1の実施形態について説明する。本実施形態に係る配管接続構造の断面図を図1に示す。図1において、本実施形態に係る配管接続構造10は、2本の配管20、30、封止手段40、連結手段50および補強手段60を備える。
 配管20、30は、内部に樹脂との反応性が高い気体状または液体状の媒体(以下、「反応性物質」と記載する。)が流動する金属製の管である。ここで、反応性物質は、比較的低沸点の不凍液等である。配管20、30において、互いに突き合わされる端部は、それぞれ平坦に加工されている。
 封止手段40は、配管20、30内を流動する反応性物質との反応性が低い材料によって形成される。封止手段40は、配管20、30上面の突合せ部を含んだ領域に配置される。封止手段40を配管20、30上面の突合せ部を含んだ領域に配置することにより、反応性物質が配管20、30内に封止される。封止手段40は、例えば、アルミニウム等の硬度の低い金属で形成される。
 連結手段50は、封止手段40の上方に配置されることによって、配管20、30を連結する。連結手段50は、例えば、弾性チューブ、熱収縮チューブまたは樹脂等によって形成される。
 補強手段60は、連結手段50による配管20、30の連結状態を補強する。補強手段60は、例えば、固定金具や接着剤等によって形成される。
 本実施形態に係る配管接続構造10は、配管20、30の端部を突合せ、突合せ部を含んだ領域に、封止手段40、連結手段50、補強手段60をこの順番で配置することにより、配管20、30を接続する。
 以上のように構成された配管接続構造10においては、配管20、30上面の突合せ部を含んだ領域に封止手段40を配置することにより、突合せ部から反応性物質が流出するのを阻止することができる。従って、配管20、30内の気密性を高めることができる。なお、封止手段40は、配管20、30内を流動する反応性物質との反応性が低い材料によって形成されているので、封止手段40と反応性物質とが反応して封止手段40が劣化することを抑制することができる。
 また、上記の配管接続構造10においては、封止手段40によって反応性物質が封止された配管20、30の突合せ部に連結手段50を配置することにより、2本の配管20、30を連結する。これにより、連結手段50を構成する部材と反応性物質とが反応して連結手段50を構成する部材が劣化することなしに、配管20、30を連結することができる。
 さらに、上記の配管接続構造10においては、補強手段60を用いて配管20、30の連結状態を補強していることから、突合せ部の気密性を長期にわたって保持することができる。
 以上のように、本実施形態に係る配管接続構造10は、反応性物質を流動させる場合であっても、長期間にわたって配管接続部の気密性を保持することができる。
 なお、本実施形態に係る配管接続構造10においては、配管20、30の突き合わされる端部を平坦化する。この場合、配管20、30の突合せ部から流出する反応性物質の量を最小限にすることができる。従って、配管20、30内の気密性をさらに高めることができる。なお、配管20、30に対する加工は、やすり等を用いた平坦化のみであるため、加工コストを低く抑えることができる。
 ここで、連結手段50として、弾性チューブを適用することができる。この場合、封止手段40として、弾性チューブの内面に配置された金属膜(金属めっき)や、突合せ部を含む配管20、30の上面領域に配置された金属膜(金属箔)を適用することができる。さらにこの場合、補強手段60として、例えば、リング状のバンド部とバンド部のリング径を調整する締め付け部とを備えた固定金具を適用することができる。また、弾性チューブを加熱して収縮させることにより、補強手段60として作用させることもできる。
 さらに、封止手段40として突合せ部を含む配管20、30の上面領域に巻き付けられた金属膜(金属箔)を、連結手段50として配管20、30の突合せ部を含む上面領域を覆う樹脂部材を適用することができる。この場合、樹脂部材の固着性が補強手段60として作用する。
 これらの構成によっても、反応性物質を流動させる場合に長期間にわたって配管突合せ部の気密性を保持することができる。
 (第2の実施形態)
 第2の実施形態について説明する。本実施形態に係る配管接続構造の断面図を図2に示す。図2において、本実施形態に係る配管接続構造100は、2本の沸騰冷却用配管110、120、内面に金属めっき131が施された弾性チューブ130および2つの締め金具140、150を備える。
 沸騰冷却用配管110、120は、端部(突合せ面)が平坦に加工された金属製の配管であり、内部を沸騰冷却用の冷媒が流動する。沸騰冷却用の冷媒は、比較的低沸点の不凍液であり、例えば、HFC(ハイドロフルオロカーボン)やHFE(ハイドロフルオロエーテル)等の有機冷媒を適用することができる。本実施形態において、沸騰冷却用配管110、120として、直径が約12mmのアルミ管を適用する。沸騰冷却用配管110、120として安価で硬度が低いアルミ管を適用することにより、材料コストを低く抑えることができると共に端部を容易に平坦化することができ、加工コストを低く抑えることができる。
 内面に金属めっき131が施された弾性チューブ130は、伸縮性が高い弾性体によって形成されたチューブである。本実施形態において、弾性チューブ130は、内径約11.5mm、外径約17.5mm、長さ約3cmのブチルゴム製のゴムホースであり、電界めっき法等を用いて内面にアルミニウムがめっきされている。めっき金属として、硬度が低いアルミニウムを適用することにより、めっき後に割れが発生することを抑制することができる。
 締め金具140、150は、例えば、一般的なホースクランプが適用される。
 沸騰冷却用配管110、120を、金属めっき131が施された弾性チューブ130および締め金具140、150を用いて接続する場合、先ず、沸騰冷却用配管110、120の突合せ部をやすり等によって平坦に加工する。沸騰冷却用配管110、120の突合せ部を平坦化することによって、突合せ部から流出する冷媒の量を最小限にすることができる。また、沸騰冷却用配管110、120に対する加工は、やすり等を用いた端面の平坦化のみであるため、加工コストを低く抑えることができる。
 そして、内面に金属めっき131が施された弾性チューブ130を沸騰冷却用配管110、120の一方に通し、沸騰冷却用配管110、120の互いの端部を突合せる。その後、配管110、120の突合せ部の上方に、予め通しておいた弾性チューブ130をスライドさせ、沸騰冷却用配管110、120を連結させる。この状態で、弾性チューブ130の両端を締め金具140、150を用いて中心方向に押圧することにより、沸騰冷却用配管110、120の連結状態を補強する。
 上述の配管接続構造100において、弾性チューブ130の内面に金属めっき131が施されていることから、沸騰冷却用配管110、120の突合せ部から流出する冷媒と、弾性チューブ130を構成する有機材料とが直接接触することを回避することができる。その結果、冷媒との反応によって弾性チューブ130が劣化することが抑制される。
 また、弾性チューブ130上方から沸騰冷却用配管110、120を締め金具140、150を用いて補強していることから、沸騰冷却用配管110、120と弾性チューブ130との密着性を高めることができ、沸騰冷却用配管110、120の連結状態を長期にわたって保持することができる。なお、締め金具140、150は、一般的なホースクランプ等を適用することができるため、材料コストを低く抑えることができる。
 従って、本実施形態に係る配管接続構造100は、反応性が高い冷媒を流動させる場合であっても、沸騰冷却用配管110、120の接続部の気密性を長期間にわたって保持することができる。
 上記の説明では、予め弾性チューブ130を沸騰冷却用配管110、120の一方に通しておき、配管110、120の突合せ部上方に弾性チューブ130をスライドさせることとした。しかしこれに限らず、弾性チューブ130の両端から沸騰冷却用配管110、120をそれぞれ挿入して、弾性チューブ130の内部で配管110、120の端部を突合せることもできる。
 また、沸騰冷却用配管の長手方向と直交する端面を平坦化する代わりに、端部を斜めに切断した面を平坦化することもできる。図3に、沸騰冷却用配管の端部を斜めに切断した面を平坦化して突合せ、突合せ部を内面に金属めっき131Bが施された弾性チューブ130Bおよび締め金具140B、150Bを用いて接続した例を示す。
 図3に示した配管接続構造100Bにおいて、沸騰冷却用配管110Bの端部を配管の内側面から外側面に向かって角度θで斜め方向に切断することにより、沸騰冷却用配管110Bの端部は内側面が突出したテーパ状に形成されている。一方、沸騰冷却用配管120Bの端部は、外側面から内側面に向かって角度θで斜め方向に切断することにより、外側面が突出したテーパ状に形成されている。
 沸騰冷却用配管110B、120Bの端部を斜め方向に切断して突合せた場合、互いのテーパ面が嵌合し合うので、沸騰冷却用配管110B、120Bの連結状態が配管の長手方向と直交する半径方向にずれることが抑制される。
 一方、沸騰冷却用配管を加工が容易な柔らかい金属(例えば、アルミニウム)によって形成する場合、端部を平坦化すると共に、外径が端部に向かって徐々に細くなるように加工してもよい。図4に、沸騰冷却用配管110C、120Cの端部の近傍領域の外径を徐々に縮小し、突合せ部を内面に金属めっき131Cが施された弾性チューブ130Cおよび締め金具140C、150Cを用いて補強した例を示す。
 図4に示した配管接続構造100Cにおいて、沸騰冷却用配管110C、120Cは、外径が端部に向かって徐々に細くなるように加工されている。沸騰冷却用配管110C、120Cの外径を端部に向かって徐々に細くすることにより、沸騰冷却用配管110C、120Cの弾性チューブ130Cへの挿入がスムーズになる。そのため、沸騰冷却用配管110C、120Cを差し込む際に弾性チューブ130Cの金属めっき131Cが損傷することを抑制できる。
 さらに、上述の配管接続構造100、100B、100Cにおいて、内面に金属めっきが施された弾性チューブおよび締め金具の代わりに、内側に金属めっきを施した熱収縮チューブを用いることもできる。図5に、内側に金属めっき161Dが施された熱収縮チューブ160Dを用いて沸騰冷却用配管110D、120Dを接続した例を示す。熱収縮チューブ160Dの内側に施された金属めっき161Dが封止手段に、熱収縮チューブ160Dのチューブ本体が連結手段に相当し、熱収縮チューブ160Dの熱収縮性が補強手段として機能する。
 図5に示した配管接続構造100Dは、下記のように形成される。すなわち、沸騰冷却用配管110D、120Dの端部をそれぞれ平坦化し、沸騰冷却用配管110D、120Dの一方に、内側に金属めっき161Dが施された熱収縮チューブ160Dを通す。その後、互いの端部を突合せ、予め通しておいた熱収縮チューブ160Dを突合せ部の上方にスライドさせ、その状態で熱収縮チューブ160Dを加熱する。
 ブチルゴム等から成る弾性チューブを用いる場合、沸騰冷却用配管の外径と同等の内径を有する弾性チューブを用いる必要があるのに対し、熱収縮チューブを用いる場合、加熱されることによって熱収縮チューブの内径が沸騰冷却用配管の外径まで縮小するため、1種類の熱収縮チューブで、様々な外径の沸騰冷却用配管に対応することができる。
 また、加熱前の熱収縮チューブの内径を沸騰冷却用配管の外径よりも大きく設計することができるため、沸騰冷却用配管の外径と同等の内径を有する弾性チューブを用いる場合と比較して、熱収縮チューブを沸騰冷却用配管の突合せ部上方に容易に配置することができる。
 さらに、熱収縮チューブは、加熱された時に沸騰冷却用配管の長手方向全体にわたって収縮する。従って、ブチルゴム等から成る弾性チューブを用いる場合と比較して、沸騰冷却用配管との密着性を向上させることができ、接続部の気密信頼性を向上させることができる。
 (第3の実施形態)
 第3の実施形態について説明する。本実施形態に係る配管接続構造の断面図を図6に示す。図6において、本実施形態に係る配管接続構造200は、2本の沸騰冷却用配管210、220、金属箔230および熱収縮チューブ240を備える。
 沸騰冷却用配管210、220は、端部が平坦化されたアルミ管であり、内部を沸騰冷却用の冷媒が流動する。
 金属箔230は、厚さ約0.05~0.1mmの金属箔である。金属箔230の材料は、良好な柔軟性、形状追随性および強度を有する金属が適用されることが望ましい。本実施形態では、金属箔230として、厚さ約0.1mm、幅約30mmおよび長さ約40mmのアルミ箔を適用する。
 熱収縮チューブ240は、形状を記憶するフッ素ポリマーの特性を備えるチューブであり、加熱されることによって半径方向に収縮する。ここで、熱収縮チューブ240のチューブ本体が連結手段に相当し、熱収縮チューブ240の熱収縮性が補強手段として機能する。
 沸騰冷却用配管210、220を、金属箔230および熱収縮チューブ240を用いて接続する場合、先ず、沸騰冷却用配管210、220の端部をやすり等によって平坦化し、沸騰冷却用配管210、220の一方に熱収縮チューブ240を通す。続いて、沸騰冷却用配管210、220の端部を突合せる。さらに、突合せ部の上方に金属箔230を複数回巻き付けた後、金属箔230の上方に予め通しておいた熱収縮チューブ240をスライドさせる。その状態で、熱収縮チューブ240を加熱して収縮させ、沸騰冷却用配管210、220および金属箔230を接続する。
 本実施形態に係る配管接続構造200においては、沸騰冷却用配管210、220の突合せ部の全周に金属箔230を巻き付けることにより、沸騰冷却用配管210、220の突合せ部から外部へ冷媒が漏出することを抑制する。さらに、沸騰冷却用配管210、220の突合せ部と熱収縮チューブ240との間に金属箔230を配置することにより、冷媒と熱収縮チューブ240とが接触して反応し、熱収縮チューブ240が劣化することを抑制する。
 さらに、熱収縮チューブ240を加熱して沸騰冷却用配管210、220の突合せ部を連結固定することにより、沸騰冷却用配管210、220の連結状態を長期にわたって保持する。
 従って、本実施形態に係る配管接続構造200は、反応性が高い冷媒を流動させる場合であっても、長期間にわたって配管接続部の気密性を保持することができる。
 ここで、突合せ部の巻き付け部材として、硬度が比較的小さいアルミ箔を用いる場合、硬度が大きい金属から成る金属箔を用いる場合と比較して、沸騰冷却用配管210、220の表面に沿ってアルミ箔が変形する。その結果、冷媒が沸騰冷却用配管210、220とアルミ箔との隙間から外部へ漏出することが抑制される。
 なお、熱収縮チューブ240の代わりに、樹脂系接着剤を用いることもできる。図7に、沸騰冷却用配管210B、220Bを、金属箔230Bおよび樹脂系接着剤250Bを用いて接続した例を示す。樹脂系接着剤250Bは、加熱、紫外線照射または溶剤を加えることによって硬化する樹脂系の接着剤であり、例えば、エポキシ樹脂から成る接着剤である。
 図7に示した配管接続構造200Bは、沸騰冷却用配管210B、220Bの突合せ部に金属箔230Bを巻き付けた後、金属箔230B全体を覆うように樹脂系接着剤250Bを塗布し、樹脂系接着剤250Bを硬化させることによって形成される。樹脂系接着剤250Bが硬化することにより、沸騰冷却用配管210B、220Bおよび金属箔230Bの連結状態が固定される。
 ここで、樹脂系接着剤250Bは、金属箔230Bが巻き付けられた配管210B、220Bの突合せ部に塗布されることにより、連結手段として機能する。また、樹脂系接着剤250Bは、硬化することによって補強手段として作用する。
 一方、熱収縮チューブや樹脂系接着剤の代わりに、弾性チューブおよび締め金具を用いることもできる。図8に、沸騰冷却用配管210C、220Cの突合せ部を金属箔230C、弾性チューブ260Cおよび締め金具270C、280Cを用いて接続した配管接続構造200Cの断面図を示す。
 弾性チューブ260Cを用いる場合、沸騰冷却用配管210C、220Cの一方に弾性チューブ260Cを通した状態で、沸騰冷却用配管210C、220Cの端部を突合せる。その状態で、突合せ部の上方に金属箔230Cを複数回巻き付け、金属箔230Cの上に予め通しておいた弾性チューブ260Cをスライドさせる。さらに、弾性チューブ260Cの両端をそれぞれ締め金具270C、280Cを用いて中心方向に押圧することにより、沸騰冷却用配管210C、220C、金属箔230Cおよび弾性チューブ260Cの連結状態を補強する。
 配管接続構造200B、200Cを適用することにより、反応性が高い冷媒を流動させる場合であっても長期間にわたって配管接続部の気密性を保持することができる。
 (第4の実施形態)
 第4の実施形態について説明する。本実施形態に係る配管接続構造の断面図を図9に示す。図9において、本実施形態に係る配管接続構造300は、外周面に溝311、321が形成された2本の沸騰冷却用配管310、320、金属めっき331が施された弾性チューブ330および2つの締め金具340、350を備える。
 沸騰冷却用配管310、320は、端部が平坦化された、例えば、直径が約12mmのアルミ管であり、内部に沸騰冷却用の冷媒が流動する。また、沸騰冷却用配管310、320の端部から所定の距離だけ離れた位置の外周面には、溝311、321が形成されている。本実施形態において、沸騰冷却用配管310、320の外周面には、端部から約5~15mm離れた領域に、深さが約1mm、幅が約10mmの断面が方形の溝311、321が全周にわたって形成されている。
 弾性チューブ330は、内面に金属めっき331が施された伸縮性を有するチューブである。本実施形態において、弾性チューブ330として、内径約11.5mm、外径約17.5mm、長さ約40mmのブチルゴム製のゴムホースを用い、電界めっき法等を用いて内面にアルミニウムをめっきした。また、弾性チューブ330の表面には、中心位置からそれぞれ約5~15mm離れた領域にマーキング332が印刷されている。弾性チューブ330の外観の例を図10に示す。
 締め金具340、350はそれぞれ、固定バンド部341、351および締め付け部342、352を備える。固定バンド部341、351は、沸騰冷却用配管310、320の溝311、321の幅よりも狭い幅の長尺体を1回巻きしたリング形状である。本実施形態においては、固定バンド部341、351は、幅が約7mmの長尺のステンレステープを1回巻きしたリング形状である。一方、締め付け部342、352はねじ穴を有し、このねじ穴をドライバ等によって所定方向に回転させることにより、固定バンド部341、351のリング径が変化する。固定バンド部341、351を被固定物に巻き付けた後、締め付け部342、352を用いて固定バンド部341、351のリング径が縮小する方向に締め付けることにより、被固定物が固定される。
 そして、金属めっき331が施された弾性チューブ330および締め金具340、350を用いて沸騰冷却用配管310、320を接続する場合、まず、沸騰冷却用配管310、320の端部をやすり等によって平坦化する。
 次に、沸騰冷却用配管310、320表面の端部から弾性チューブ330の長さの1/2の位置にそれぞれ、弾性チューブ330を位置決めするための印をマジック等で付ける。本実施形態では、沸騰冷却用配管310、320の端部から20mm内側の表面にそれぞれ、マジックを用いて×印を付けた。×印に弾性チューブ330の端部を合わせることにより、弾性チューブ330に印刷されたマーキング332と沸騰冷却用配管310、320に形成した溝311、321との長手方向の位置が一致する。
 さらに、沸騰冷却用配管310、320にそれぞれ、締め金具340、350のリング状の固定バンド部341、351を通し、沸騰冷却用配管310、320の一方に弾性チューブ330を通す。
 この状態で、沸騰冷却用配管310、320の端部を突合せ、予め通しておいた弾性チューブ330を、沸騰冷却用配管310、320の表面に付けた×印と×印との間に配置されるようにスライドさせる。その後、沸騰冷却用配管310、320に予め挿通しておいた固定バンド部341、351を、弾性チューブ330に印刷されたマーキング領域内にそれぞれ移動させ、締め付け部342、352のねじ穴をドライバ等によって回転させて、弾性チューブ330を締め付け固定する。
 弾性チューブ330に印刷されたマーキング332は、配管310、320に形成されている溝311、321の上方に位置し、固定バンド部341の幅(約7mm)が溝311の幅(約10mm)よりも小さい。従って、締め付け部342、352を用いて固定バンド部341、351の径を縮小させることにより、弾性チューブ330は固定バンド部341に押圧されて溝311、321の壁面に沿って変形し、一部が溝311、321内に嵌入する。配管310に形成されている溝311の上方位置を締め金具340によって押圧した状態を図11に示す。溝311内に弾性チューブ330および固定バンド部341の一部が嵌入することにより、弾性チューブ330が配管310、320の長手方向に移動することが抑制される。従って、弾性チューブ330と配管310との接続強度が高まり、沸騰冷却用配管310の接続状態を強固に保持することができる。
 以上のように、本実施形態に係る配管接続構造300は、沸騰冷却用配管310、320の突合せ部を金属めっき331が施された弾性チューブ330で連結する。さらに、締め金具340、350を用いて弾性チューブ330による連結状態を補強することにより、反応性が高い冷媒を流動させる場合であっても、長期間にわたって配管突合せ部の気密性を保持することができる。
 また、本実施形態に係る配管接続構造300は、沸騰冷却用配管310、320の外周面に溝311、321を形成し、この溝311、321の上方を締め金具340、350を用いて押圧固定し、弾性チューブ330および締め金具340、350の一部を溝311、321内に嵌入させた。これによって、弾性チューブ330および締め金具340、350は、配管310、320の長手方向への移動が抑制される。従って、弾性チューブ330を沸騰冷却用配管310、320に安定的に固定することができ、沸騰冷却用配管310、320の突合せ部の長期信頼性を向上させることができる。
 ここで、内面に金属めっき331が施された弾性チューブ330および締め金具340、350の代わりに、内側に金属めっきが施された熱収縮チューブを用いることもできる。また、弾性チューブや熱収縮チューブに金属めっきを施す替わりに、弾性チューブまたは熱収縮チューブの内面側に金属箔を配置することもできる。
 図12に、溝311B、321Bが形成された沸騰冷却用配管310B、320Bを、金属箔360Bおよび熱収縮チューブ370Bを用いて接続した配管接続構造300Bの断面図を示す。なお、本実施形態では、金属箔360Bとして、配管310Bの溝311Bの中心位置から配管320Bの溝321Bの中心位置までの距離と同程度の幅を有する薄手の金属テープを用いる。
 そして、金属箔360Bおよび熱収縮チューブ370Bを用いて沸騰冷却用配管310B、320Bを接続する場合、先ず、沸騰冷却用配管310B、320Bの端部を平坦化し、沸騰冷却用配管310B、320Bの一方に熱収縮チューブ370Bを通した後、互いの端部を突合せる。
 そして、金属箔360Bの両端が配管310B、320Bの溝311B、321Bの上方に位置するように、金属箔360Bを配管310B、320Bの突合せ部に巻き付ける。ここで、本実施形態では、金属箔360Bの幅を配管310Bの溝311Bの中心位置から320Bの溝321Bの中心位置までの距離と同程度に形成したことから、金属箔360Bの両端は溝311B、321Bの上方に位置する。そして、金属箔360Bの両端を溝311B、321Bの壁面に沿って溝311B、321Bの内側へ折り込む。その後、予め通しておいた熱収縮チューブ370Bを金属箔360Bの上方にスライドし、その状態で熱収縮チューブ370Bを加熱し、収縮させることによって、配管310B、320Bおよび金属箔360Bを固定する。
 沸騰冷却用配管310B、320Bを、金属箔360Bおよび熱収縮チューブ370Bを用いて接続した場合も、反応性が高い冷媒を流動させる場合であっても、長期間にわたって配管接続部の気密性を保持することができる。
 さらに、配管接続構造300Bにおいて、金属箔360Bの両端を溝311B、321Bの壁面に沿って溝311B、321Bの内側へ折り込むことにより、沸騰冷却用配管310B、320Bと金属箔360Bとの密着性が高まり、配管接続部の気密性が向上する。
 また、配管接続構造300Bにおいて、熱収縮チューブ370Bを加熱し、熱収縮チューブ370Bが収縮することにより、熱収縮チューブ370Bの一部は溝311B、321Bの内部に嵌入する。この場合、沸騰冷却用配管310B、320Bと熱収縮チューブ370Bとの密着性が高まり、配管接続部の気密性および長期信頼性がさらに向上する。
 一方、熱収縮チューブ370Bの代わりに、樹脂系接着剤を用いて金属箔および沸騰冷却用配管を固定することもできる。図13に、溝311C、321Cが形成された沸騰冷却用配管310C、320Cを、金属箔360Cおよび樹脂系接着剤380Cを用いて接続した配管接続構造300Cの断面図を示す。
 樹脂系接着剤380Cを用いる場合、沸騰冷却用配管310C、320Cの突合せ部に金属箔360Cを巻き付けて、金属箔360Cの両端を溝311C、321Cの内側へ折り込んだ状態で、金属箔360Cを覆うように樹脂系接着剤380Cを塗布する。そして、樹脂系接着剤380Cを硬化させることによって、配管310C、320Cおよび金属箔360Cを固定する。
 沸騰冷却用配管310C、320Cを、金属箔360Cおよび樹脂系接着剤380Cを用いて接続した場合も、反応性が高い冷媒を流動させる場合であっても、長期間にわたって配管接続部の気密性を保持することができる。
 さらに、配管接続構造300Cにおいて、樹脂系接着剤380Cは溝311C、321C内に充填された状態で硬化する。この場合、沸騰冷却用配管310C、320Cと樹脂系接着剤380Cとの密着性が高まり、配管接続部の気密性および長期信頼性がさらに向上する。
 なお、樹脂系接着剤380Cを用いる場合、溝311C、321Cの形状を逆テーパ型に形成することが望ましい。逆テーパ型に形成された溝321C内に金属箔360Cを折り込み、さらに、樹脂系接着剤380Cを用いて固定した状態を図14に示す。逆テーパ型に形成された溝321C内に樹脂系接着剤380Cが充填されることにより、溝321Cの内壁に沿って折り込まれた金属箔360Cが、溝321C内に強固に固定される。従って、沸騰冷却用配管310C、320Cの接続状態がさらに安定的に保持される。
 ここで、沸騰冷却用配管の外周面に溝を形成する代わりに、沸騰冷却用配管の外周面を凸凹状に形成したり、沸騰冷却用配管の表面をやすり等によって削ることにより表面を粗く形成したりすることもできる。この場合、アンカー効果により、弾性チューブ、熱収縮チューブおよび樹脂系接着剤等を沸騰冷却用配管に強固に固定することができ、沸騰冷却用配管の突合せ部の気密性および長期信頼性を向上させることができる。ここで、アンカー効果とは、接続において、接着面の微細な凹凸に突合せ部材が入り込み、接着力が高まる効果をいう。
 なお、上述の実施形態では、沸騰冷却装置に用いられる配管に適用する接続構造について説明したが、有機材料等と反応する媒体を流動させる、沸騰冷却装置以外の配管の接続構造に適用することもできる。また、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。
 この出願は、2011年11月17日に出願された日本出願特願2011−251845を基礎とする優先権を主張し、その開示の全てをここに取り込む。
(First embodiment)
A first embodiment will be described. A cross-sectional view of the pipe connection structure according to this embodiment is shown in FIG. In FIG. 1, the pipe connection structure 10 according to the present embodiment includes two pipes 20 and 30, a sealing unit 40, a coupling unit 50, and a reinforcing unit 60.
The pipes 20 and 30 are metal pipes through which a gaseous or liquid medium (hereinafter referred to as “reactive substance”) having high reactivity with the resin flows. Here, the reactive substance is a relatively low boiling point antifreeze or the like. In the pipes 20 and 30, the end portions that face each other are processed flat.
The sealing unit 40 is formed of a material having low reactivity with the reactive substance flowing in the pipes 20 and 30. The sealing means 40 is disposed in a region including the butt portion on the upper surface of the pipes 20 and 30. The reactive substance is sealed in the pipes 20 and 30 by disposing the sealing means 40 in the region including the butt portion on the upper surface of the pipes 20 and 30. The sealing unit 40 is formed of a metal having low hardness such as aluminum.
The connecting means 50 connects the pipes 20 and 30 by being disposed above the sealing means 40. The connecting means 50 is formed of, for example, an elastic tube, a heat shrinkable tube, or a resin.
The reinforcing means 60 reinforces the connected state of the pipes 20 and 30 by the connecting means 50. The reinforcing means 60 is formed by, for example, a fixing metal or an adhesive.
In the pipe connection structure 10 according to the present embodiment, the end portions of the pipes 20 and 30 are abutted, and the sealing means 40, the coupling means 50, and the reinforcing means 60 are arranged in this order in the region including the abutting portion. The pipes 20 and 30 are connected.
In the pipe connection structure 10 configured as described above, the sealing means 40 is disposed in a region including the butt portion on the upper surface of the pipes 20 and 30, thereby preventing the reactive substance from flowing out from the butt portion. be able to. Therefore, the airtightness in the pipes 20 and 30 can be improved. Since the sealing means 40 is formed of a material having low reactivity with the reactive substance flowing in the pipes 20 and 30, the sealing means 40 reacts with the reactive substance and the sealing means 40. Can be prevented from deteriorating.
In the above-described pipe connection structure 10, the two pipes 20, 30 are connected by disposing the connecting means 50 at the butt portion of the pipes 20, 30 sealed with the reactive substance by the sealing means 40. To do. Thereby, the piping 20 and 30 can be connected, without the member which comprises the connection means 50, and the reactive substance reacting and the member which comprises the connection means 50 deteriorates.
Further, in the pipe connection structure 10 described above, since the connection state of the pipes 20 and 30 is reinforced using the reinforcing means 60, the airtightness of the butt portion can be maintained over a long period of time.
As described above, the pipe connection structure 10 according to the present embodiment can maintain the airtightness of the pipe connection portion over a long period of time even when the reactive substance is flowed.
In addition, in the piping connection structure 10 which concerns on this embodiment, the edge part which the piping 20 and 30 is faced is planarized. In this case, the amount of the reactive substance flowing out from the butt portion of the pipes 20 and 30 can be minimized. Therefore, the airtightness in the pipes 20 and 30 can be further enhanced. In addition, since the process with respect to the piping 20 and 30 is only flattening using a file etc., a process cost can be restrained low.
Here, an elastic tube can be applied as the connecting means 50. In this case, a metal film (metal plating) disposed on the inner surface of the elastic tube or a metal film (metal foil) disposed in the upper surface region of the pipes 20 and 30 including the butt portion is applied as the sealing means 40. Can do. Furthermore, in this case, for example, a fixing bracket including a ring-shaped band portion and a tightening portion that adjusts the ring diameter of the band portion can be applied as the reinforcing means 60. Further, the elastic tube can be heated and contracted to act as the reinforcing means 60.
Further, a metal film (metal foil) wound around the upper surface region of the pipes 20 and 30 including the butt portions as the sealing means 40, and a resin member covering the upper surface region including the butt portions of the pipes 20 and 30 as the connecting means 50 are provided. Can be applied. In this case, the adhesiveness of the resin member acts as the reinforcing means 60.
Even with these configurations, the airtightness of the pipe butt can be maintained for a long time when the reactive substance is caused to flow.
(Second Embodiment)
A second embodiment will be described. A cross-sectional view of the pipe connection structure according to the present embodiment is shown in FIG. In FIG. 2, the pipe connection structure 100 according to this embodiment includes two boiling cooling pipes 110 and 120, an elastic tube 130 having an inner surface provided with metal plating 131, and two fasteners 140 and 150.
The boiling cooling pipes 110 and 120 are metal pipes whose ends (butting surfaces) are processed to be flat, and a refrigerant for boiling cooling flows inside. The refrigerant for boiling cooling is an antifreeze having a relatively low boiling point, and for example, organic refrigerants such as HFC (hydrofluorocarbon) and HFE (hydrofluoroether) can be applied. In this embodiment, an aluminum pipe having a diameter of about 12 mm is applied as the boiling cooling pipes 110 and 120. By applying inexpensive and low hardness aluminum pipes as the boiling cooling pipes 110 and 120, the material cost can be kept low, the end can be easily flattened, and the processing cost can be kept low. .
The elastic tube 130 whose inner surface is provided with the metal plating 131 is a tube formed of an elastic body having high stretchability. In the present embodiment, the elastic tube 130 is a rubber hose made of butyl rubber having an inner diameter of about 11.5 mm, an outer diameter of about 17.5 mm, and a length of about 3 cm, and aluminum is plated on the inner surface using an electroplating method or the like. . By applying aluminum having a low hardness as the plating metal, it is possible to suppress the occurrence of cracks after plating.
For example, a general hose clamp is applied to the fasteners 140 and 150.
When connecting the boiling cooling pipes 110 and 120 using the elastic tube 130 and the fasteners 140 and 150 to which the metal plating 131 is applied, first, the butt portions of the boiling cooling pipes 110 and 120 are flattened with a file or the like. Process. By flattening the butting portions of the boiling cooling pipes 110 and 120, the amount of refrigerant flowing out from the butting portions can be minimized. Further, since the processing for the boiling cooling pipes 110 and 120 is only flattening of the end face using a file or the like, the processing cost can be kept low.
Then, the elastic tube 130 having the inner surface provided with the metal plating 131 is passed through one of the boiling cooling pipes 110 and 120, and the ends of the boiling cooling pipes 110 and 120 are brought into contact with each other. Thereafter, the elastic tube 130 passed in advance is slid above the butt portion of the pipes 110 and 120, and the boiling cooling pipes 110 and 120 are connected. In this state, both ends of the elastic tube 130 are pressed toward the center using the fasteners 140 and 150 to reinforce the connection state of the boiling cooling pipes 110 and 120.
In the above-described pipe connection structure 100, since the metal plating 131 is applied to the inner surface of the elastic tube 130, the refrigerant flowing out from the butt portion of the boiling cooling pipes 110 and 120, the organic material constituting the elastic tube 130, and Can be prevented from contacting directly. As a result, deterioration of the elastic tube 130 due to reaction with the refrigerant is suppressed.
In addition, since the boiling cooling pipes 110 and 120 are reinforced by the fasteners 140 and 150 from above the elastic tube 130, the adhesion between the boiling cooling pipes 110 and 120 and the elastic tube 130 can be improved. The connected state of the boiling cooling pipes 110 and 120 can be maintained over a long period of time. In addition, since a general hose clamp etc. can be applied to the fasteners 140 and 150, material cost can be suppressed low.
Therefore, the pipe connection structure 100 according to the present embodiment can maintain the airtightness of the connection portion of the boiling cooling pipes 110 and 120 for a long period even when a highly reactive refrigerant flows.
In the above description, the elastic tube 130 is passed through one of the boiling cooling pipes 110 and 120 in advance, and the elastic tube 130 is slid above the butt portion of the pipes 110 and 120. However, the present invention is not limited to this, and the boiling cooling pipes 110 and 120 may be inserted from both ends of the elastic tube 130, and the ends of the pipes 110 and 120 may be butted together inside the elastic tube 130.
Further, instead of flattening the end face orthogonal to the longitudinal direction of the boiling cooling pipe, the face obtained by obliquely cutting the end part can be flattened. FIG. 3 shows an example in which the end portion of the boiling cooling pipe is obliquely cut and butted, and the butted portion is connected using an elastic tube 130B having metal plating 131B on the inner surface and fasteners 140B and 150B. Indicates.
In the pipe connection structure 100B shown in FIG. 3, the end of the boiling cooling pipe 110B is obtained by cutting the end of the boiling cooling pipe 110B obliquely at an angle θ from the inner side surface to the outer side surface of the pipe. The inner side surface is formed in a tapered shape. On the other hand, the end portion of the boiling cooling pipe 120B is formed in a tapered shape with the outer surface protruding by cutting in an oblique direction at an angle θ from the outer surface toward the inner surface.
When the end portions of the boiling cooling pipes 110B and 120B are cut and abutted in an oblique direction, the tapered surfaces of each other are fitted to each other, so that the connection state of the boiling cooling pipes 110B and 120B is orthogonal to the longitudinal direction of the pipes. Shifting in the radial direction is suppressed.
On the other hand, when the boiling cooling pipe is formed of a soft metal (for example, aluminum) that is easy to process, the end may be flattened and processed so that the outer diameter gradually decreases toward the end. . In FIG. 4, the outer diameter of the region in the vicinity of the ends of the boiling cooling pipes 110C and 120C is gradually reduced, and the butt portion is used with the elastic tube 130C having the metal plating 131C applied on the inner surface and the fasteners 140C and 150C. An example of reinforcement is shown.
In the pipe connection structure 100C shown in FIG. 4, the boiling cooling pipes 110C and 120C are processed so that the outer diameter gradually decreases toward the end. By gradually reducing the outer diameters of the boiling cooling pipes 110C and 120C toward the ends, the boiling cooling pipes 110C and 120C can be smoothly inserted into the elastic tube 130C. Therefore, it is possible to prevent the metal plating 131C of the elastic tube 130C from being damaged when the boiling cooling pipes 110C and 120C are inserted.
Furthermore, in the above-described pipe connection structures 100, 100B, and 100C, a heat-shrinkable tube having a metal plating on the inner side can be used instead of the elastic tube and the fastener having the metal plating on the inner surface. FIG. 5 shows an example in which the boiling cooling pipes 110D and 120D are connected using a heat shrinkable tube 160D having a metal plating 161D on the inside. The metal plating 161D applied to the inside of the heat shrinkable tube 160D corresponds to the sealing means, and the tube main body of the heat shrinkable tube 160D corresponds to the connecting means, and the heat shrinkability of the heat shrinkable tube 160D functions as the reinforcing means.
The pipe connection structure 100D shown in FIG. 5 is formed as follows. That is, the ends of the boiling cooling pipes 110D and 120D are flattened, and the heat shrinkable tube 160D having the metal plating 161D on the inside is passed through one of the boiling cooling pipes 110D and 120D. Thereafter, the end portions of each other are butted together, and the heat-shrinkable tube 160D previously passed is slid above the butted portion, and the heat-shrinkable tube 160D is heated in this state.
When using an elastic tube made of butyl rubber or the like, it is necessary to use an elastic tube having an inner diameter equivalent to the outer diameter of the boiling cooling pipe, whereas when using a heat-shrinkable tube, the heat-shrinkable tube is heated by being heated. Since the inner diameter is reduced to the outer diameter of the boiling cooling pipe, one type of heat shrinkable tube can be used for boiling cooling pipes having various outer diameters.
In addition, since the inner diameter of the heat-shrinkable tube before heating can be designed to be larger than the outer diameter of the boiling cooling pipe, compared with the case where an elastic tube having an inner diameter equivalent to the outer diameter of the boiling cooling pipe is used. The heat-shrinkable tube can be easily disposed above the butt portion of the boiling cooling pipe.
Furthermore, the heat-shrinkable tube shrinks over the entire length of the boiling cooling pipe when heated. Therefore, compared with the case where an elastic tube made of butyl rubber or the like is used, the adhesion to the boiling cooling pipe can be improved, and the airtight reliability of the connecting portion can be improved.
(Third embodiment)
A third embodiment will be described. A cross-sectional view of the pipe connection structure according to this embodiment is shown in FIG. In FIG. 6, the pipe connection structure 200 according to the present embodiment includes two boiling cooling pipes 210 and 220, a metal foil 230, and a heat shrinkable tube 240.
Boiling cooling pipes 210 and 220 are aluminum pipes whose ends are flattened, and a refrigerant for boiling cooling flows inside.
The metal foil 230 is a metal foil having a thickness of about 0.05 to 0.1 mm. As the material of the metal foil 230, it is desirable to apply a metal having good flexibility, shape following property and strength. In the present embodiment, an aluminum foil having a thickness of about 0.1 mm, a width of about 30 mm, and a length of about 40 mm is applied as the metal foil 230.
The heat-shrinkable tube 240 is a tube having the characteristics of a fluoropolymer that stores a shape, and shrinks in the radial direction when heated. Here, the tube main body of the heat shrinkable tube 240 corresponds to the connecting means, and the heat shrinkability of the heat shrinkable tube 240 functions as a reinforcing means.
When the boiling cooling pipes 210 and 220 are connected using the metal foil 230 and the heat-shrinkable tube 240, first, the ends of the boiling cooling pipes 210 and 220 are flattened with a file or the like, and the boiling cooling pipes 210 and 220 are connected. The heat shrinkable tube 240 is passed through one of them. Subsequently, the ends of the boiling cooling pipes 210 and 220 are brought into contact with each other. Further, after winding the metal foil 230 a plurality of times above the butting portion, the heat shrinkable tube 240 previously passed above the metal foil 230 is slid. In this state, the heat-shrinkable tube 240 is heated and contracted, and the boiling cooling pipes 210 and 220 and the metal foil 230 are connected.
In the pipe connection structure 200 according to the present embodiment, the refrigerant leaks to the outside from the butt portion of the boiling cooling pipes 210 and 220 by winding the metal foil 230 around the entire circumference of the butt portion of the boiling cooling pipes 210 and 220. To suppress. Furthermore, by disposing the metal foil 230 between the butted portions of the boiling cooling pipes 210 and 220 and the heat shrinkable tube 240, the refrigerant and the heat shrinkable tube 240 come into contact with each other and react, and the heat shrinkable tube 240 deteriorates. To suppress.
Furthermore, the heat-shrinkable tube 240 is heated to connect and fix the butting portions of the boiling cooling pipes 210 and 220, thereby maintaining the connected state of the boiling cooling pipes 210 and 220 over a long period of time.
Therefore, the pipe connection structure 200 according to the present embodiment can maintain the airtightness of the pipe connection portion for a long period of time even when a highly reactive refrigerant is flowed.
Here, when aluminum foil having a relatively low hardness is used as the winding member of the butt portion, aluminum is provided along the surfaces of the boiling cooling pipes 210 and 220 as compared with the case of using a metal foil made of a metal having high hardness. The foil is deformed. As a result, the refrigerant is prevented from leaking outside through the gap between the boiling cooling pipes 210 and 220 and the aluminum foil.
Instead of the heat shrinkable tube 240, a resin adhesive can be used. FIG. 7 shows an example in which the boiling cooling pipes 210B and 220B are connected using the metal foil 230B and the resin adhesive 250B. The resin-based adhesive 250B is a resin-based adhesive that is cured by heating, irradiation with ultraviolet rays, or addition of a solvent, and is, for example, an adhesive made of an epoxy resin.
In the pipe connection structure 200B shown in FIG. 7, after the metal foil 230B is wound around the butt portion of the boiling cooling pipes 210B and 220B, the resin adhesive 250B is applied so as to cover the entire metal foil 230B, and the resin adhesive It is formed by curing agent 250B. When the resin adhesive 250B is cured, the connection state of the boiling cooling pipes 210B and 220B and the metal foil 230B is fixed.
Here, the resin-based adhesive 250B functions as a connecting means by being applied to the butted portions of the pipes 210B and 220B around which the metal foil 230B is wound. Further, the resin adhesive 250B acts as a reinforcing means by being cured.
On the other hand, an elastic tube and a fastener can be used instead of the heat-shrinkable tube and the resin adhesive. FIG. 8 shows a cross-sectional view of a pipe connection structure 200C in which the butted portions of the boiling cooling pipes 210C and 220C are connected using a metal foil 230C, an elastic tube 260C, and fasteners 270C and 280C.
When the elastic tube 260C is used, the ends of the boiling cooling pipes 210C and 220C are butted together while the elastic tube 260C is passed through one of the boiling cooling pipes 210C and 220C. In this state, the metal foil 230C is wound a plurality of times above the butted portion, and the elastic tube 260C previously passed over the metal foil 230C is slid. Further, by pressing both ends of the elastic tube 260C in the center direction using fasteners 270C and 280C, respectively, the connection state of the boiling cooling pipes 210C and 220C, the metal foil 230C and the elastic tube 260C is reinforced.
By applying the pipe connection structures 200 </ b> B and 200 </ b> C, the air tightness of the pipe connection portion can be maintained over a long period of time even when a highly reactive refrigerant flows.
(Fourth embodiment)
A fourth embodiment will be described. FIG. 9 shows a cross-sectional view of the pipe connection structure according to this embodiment. 9, the pipe connection structure 300 according to this embodiment includes two boiling cooling pipes 310 and 320 having grooves 311 and 321 formed on the outer peripheral surface, an elastic tube 330 provided with metal plating 331, and two Fasteners 340 and 350 are provided.
The boiling cooling pipes 310 and 320 are aluminum pipes whose ends are flattened, for example, having a diameter of about 12 mm, and a refrigerant for boiling cooling flows inside. Grooves 311 and 321 are formed on the outer peripheral surface at a position away from the ends of the boiling cooling pipes 310 and 320 by a predetermined distance. In the present embodiment, grooves 311 and 321 having a square cross section with a depth of about 1 mm and a width of about 10 mm are formed on the outer peripheral surfaces of the boiling cooling pipes 310 and 320 at a distance of about 5 to 15 mm from the end. It is formed all around.
The elastic tube 330 is a stretchable tube having a metal plating 331 on the inner surface. In this embodiment, a rubber hose made of butyl rubber having an inner diameter of about 11.5 mm, an outer diameter of about 17.5 mm, and a length of about 40 mm is used as the elastic tube 330, and aluminum is plated on the inner surface using an electroplating method or the like. Further, on the surface of the elastic tube 330, a marking 332 is printed in an area about 5 to 15 mm away from the center position. An example of the appearance of the elastic tube 330 is shown in FIG.
The fasteners 340 and 350 include fixed band portions 341 and 351 and fastening portions 342 and 352, respectively. The fixed band portions 341 and 351 have a ring shape in which a long body having a width smaller than the width of the grooves 311 and 321 of the boiling cooling pipes 310 and 320 is wound once. In the present embodiment, the fixed band portions 341 and 351 have a ring shape in which a long stainless steel tape having a width of about 7 mm is wound once. On the other hand, the tightening portions 342 and 352 have screw holes, and the ring diameters of the fixed band portions 341 and 351 change by rotating the screw holes in a predetermined direction by a driver or the like. After the fixing band portions 341 and 351 are wound around the object to be fixed, the objects to be fixed are fixed by tightening the fixing band portions 341 and 351 in the direction in which the ring diameter of the fixing band portions 341 and 351 is reduced using the tightening portions 342 and 352.
When the boiling cooling pipes 310 and 320 are connected using the elastic tube 330 and the fasteners 340 and 350 to which the metal plating 331 is applied, first, the ends of the boiling cooling pipes 310 and 320 are flattened with a file or the like. Turn into.
Next, a mark for positioning the elastic tube 330 is attached with a magic or the like at a position half the length of the elastic tube 330 from the ends of the boiling cooling pipes 310 and 320. In the present embodiment, “x” marks are applied to the surfaces 20 mm inside from the ends of the boiling cooling pipes 310 and 320 using magic. By aligning the end portion of the elastic tube 330 with the X mark, the longitudinal positions of the markings 332 printed on the elastic tube 330 and the grooves 311 and 321 formed in the boiling cooling pipes 310 and 320 coincide with each other.
Further, the ring-shaped fixing band portions 341 and 351 of the fasteners 340 and 350 are passed through the boiling cooling pipes 310 and 320, respectively, and the elastic tube 330 is passed through one of the boiling cooling pipes 310 and 320.
In this state, the ends of the boiling cooling pipes 310 and 320 are butted together, and the elastic tube 330 that has been passed in advance is disposed between the X mark and the X mark attached to the surface of the boiling cooling pipes 310 and 320. Slide so that. Thereafter, the fixed band portions 341 and 351 previously inserted through the boiling cooling pipes 310 and 320 are moved into the marking areas printed on the elastic tube 330, and the screw holes of the tightening portions 342 and 352 are screwed or the like. And the elastic tube 330 is fastened and fixed.
The marking 332 printed on the elastic tube 330 is positioned above the grooves 311 and 321 formed in the pipes 310 and 320, and the width (about 7 mm) of the fixed band portion 341 is larger than the width (about 10 mm) of the groove 311. Is also small. Accordingly, by reducing the diameters of the fixed band portions 341 and 351 using the tightening portions 342 and 352, the elastic tube 330 is pressed by the fixed band portion 341 and deformed along the wall surfaces of the grooves 311 and 321. Is inserted into the grooves 311 and 321. FIG. 11 shows a state where the upper position of the groove 311 formed in the pipe 310 is pressed by the fastener 340. When the elastic tube 330 and a part of the fixed band portion 341 are fitted into the groove 311, the elastic tube 330 is suppressed from moving in the longitudinal direction of the pipes 310 and 320. Therefore, the connection strength between the elastic tube 330 and the pipe 310 is increased, and the connection state of the boiling cooling pipe 310 can be firmly maintained.
As described above, in the pipe connection structure 300 according to the present embodiment, the butted portions of the boiling cooling pipes 310 and 320 are connected by the elastic tube 330 to which the metal plating 331 is applied. Further, by reinforcing the connection state by the elastic tube 330 using the fasteners 340 and 350, the airtightness of the pipe butt portion can be maintained over a long period of time even when a highly reactive refrigerant flows. it can.
Further, in the pipe connection structure 300 according to the present embodiment, grooves 311 and 321 are formed on the outer peripheral surfaces of the boiling cooling pipes 310 and 320, and the upper portions of the grooves 311 and 321 are pressed and fixed by using fasteners 340 and 350. Then, a part of the elastic tube 330 and the fasteners 340 and 350 were fitted into the grooves 311 and 321. Accordingly, the elastic tube 330 and the fasteners 340 and 350 are prevented from moving in the longitudinal direction of the pipes 310 and 320. Therefore, the elastic tube 330 can be stably fixed to the boiling cooling pipes 310 and 320, and the long-term reliability of the butt portion of the boiling cooling pipes 310 and 320 can be improved.
Here, instead of the elastic tube 330 and the fasteners 340 and 350 having the metal plating 331 on the inner surface, a heat-shrinkable tube having the metal plating on the inner side may be used. Further, instead of metal plating on the elastic tube or the heat shrinkable tube, a metal foil can be arranged on the inner surface side of the elastic tube or the heat shrinkable tube.
FIG. 12 shows a cross-sectional view of a pipe connection structure 300B in which boiling cooling pipes 310B and 320B in which grooves 311B and 321B are formed are connected using a metal foil 360B and a heat shrinkable tube 370B. In the present embodiment, a thin metal tape having a width approximately equal to the distance from the center position of the groove 311B of the pipe 310B to the center position of the groove 321B of the pipe 320B is used as the metal foil 360B.
When the boiling cooling pipes 310B and 320B are connected using the metal foil 360B and the heat shrinkable tube 370B, the ends of the boiling cooling pipes 310B and 320B are first flattened, and one of the boiling cooling pipes 310B and 320B is flattened. After passing the heat-shrinkable tube 370B, the ends of each other are butted together.
Then, the metal foil 360B is wound around the butted portions of the pipes 310B and 320B so that both ends of the metal foil 360B are located above the grooves 311B and 321B of the pipes 310B and 320B. Here, in this embodiment, since the width of the metal foil 360B is formed to be the same as the distance from the center position of the groove 311B of the pipe 310B to the center position of the groove 321B of the 320B, both ends of the metal foil 360B are grooves 311B. , 321B. Then, both ends of the metal foil 360B are folded inside the grooves 311B and 321B along the wall surfaces of the grooves 311B and 321B. Thereafter, the heat-shrinkable tube 370B passed in advance is slid above the metal foil 360B, and the heat-shrinkable tube 370B is heated and contracted in this state, thereby fixing the pipes 310B and 320B and the metal foil 360B.
Even when the boiling cooling pipes 310B and 320B are connected using the metal foil 360B and the heat-shrinkable tube 370B or when a highly reactive refrigerant flows, the airtightness of the pipe connection part is maintained for a long period of time. can do.
Furthermore, in the pipe connection structure 300B, the both ends of the metal foil 360B are folded inside the grooves 311B and 321B along the wall surfaces of the grooves 311B and 321B, so that the adhesion between the boiling cooling pipes 310B and 320B and the metal foil 360B is improved. This increases the airtightness of the pipe connection.
Further, in the pipe connection structure 300B, the heat shrinkable tube 370B is heated and the heat shrinkable tube 370B contracts, so that part of the heat shrinkable tube 370B is fitted into the grooves 311B and 321B. In this case, the adhesiveness between the boiling cooling pipes 310B and 320B and the heat shrinkable tube 370B is increased, and the airtightness and long-term reliability of the pipe connection part are further improved.
On the other hand, instead of the heat-shrinkable tube 370B, the metal foil and the piping for boiling cooling can be fixed using a resin adhesive. FIG. 13 is a cross-sectional view of a pipe connection structure 300C in which boiling cooling pipes 310C and 320C in which grooves 311C and 321C are formed are connected using a metal foil 360C and a resin adhesive 380C.
When the resin-based adhesive 380C is used, the metal foil 360C is wound around the butting portions of the boiling cooling pipes 310C and 320C, and the metal foil 360C is covered with both ends of the metal foil 360C being folded inside the grooves 311C and 321C. In this way, a resin adhesive 380C is applied. Then, the piping 310C, 320C and the metal foil 360C are fixed by curing the resin adhesive 380C.
Even when the boiling cooling pipes 310C and 320C are connected using the metal foil 360C and the resin adhesive 380C, or when a highly reactive refrigerant is allowed to flow, the airtightness of the pipe connecting part is maintained over a long period of time. Can be held.
Further, in the pipe connection structure 300C, the resin adhesive 380C is cured while being filled in the grooves 311C and 321C. In this case, the adhesiveness between the boiling cooling pipes 310C and 320C and the resin adhesive 380C is increased, and the airtightness and long-term reliability of the pipe connection part are further improved.
Note that when the resin adhesive 380C is used, it is desirable to form the grooves 311C and 321C in a reverse taper shape. FIG. 14 shows a state in which the metal foil 360C is folded into a groove 321C formed in an inversely tapered shape and further fixed using a resin adhesive 380C. By filling the resin adhesive 380C into the groove 321C formed in the reverse taper type, the metal foil 360C folded along the inner wall of the groove 321C is firmly fixed in the groove 321C. Therefore, the connection state of the boiling cooling pipes 310C and 320C is more stably maintained.
Here, instead of forming grooves on the outer peripheral surface of the boiling cooling pipe, the outer peripheral surface of the boiling cooling pipe is formed in an uneven shape, or the surface of the boiling cooling pipe is roughened by shaving with a file etc. You can also do it. In this case, due to the anchor effect, the elastic tube, the heat shrinkable tube, the resin adhesive, etc. can be firmly fixed to the boiling cooling pipe, and the airtightness and long-term reliability of the butt portion of the boiling cooling pipe are improved. be able to. Here, the anchor effect refers to an effect that the butt member enters the fine irregularities of the bonding surface and increases the adhesive force in connection.
In the above-described embodiment, the connection structure applied to the piping used in the boiling cooling device has been described. However, the connection structure may be applied to a piping connection structure other than the boiling cooling device that causes a medium that reacts with an organic material or the like to flow. it can. Moreover, although this invention was demonstrated with reference to embodiment, this invention is not limited to the said embodiment. Any design change or the like within a range not departing from the gist of the present invention is also included in the present invention.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2011-251845 for which it applied on November 17, 2011, and takes in those the indications of all here.
 本発明は、内部に反応性が高い物質が流動させる配管を用いる装置、システムおよびサービス全般に適用できる。 The present invention can be applied to all devices, systems, and services using pipes through which highly reactive substances flow.
 10 配管接続構造
 20、30 配管
 40 封止手段
 50 連結手段
 60 補強手段
 100、100B、100C、100D 配管接続構造
 110、110B、110C、110D 沸騰冷却用配管
 120、120B、120C、120D 沸騰冷却用配管
 130、130B、130C 金属めっきが施された弾性チューブ
 131、131B、131C 金属めっき
 140、140B、140C 締め金具
 150、150B、150C 締め金具
 160D 金属めっきが施された熱収縮チューブ
 161D 金属めっき
 200、200B、200C 配管接続構造
 210、210B、210C 沸騰冷却用配管
 220、220B、220C 沸騰冷却用配管
 230、230B、230C 金属箔
 240 熱収縮チューブ
 250B 樹脂系接着剤
 260C 弾性チューブ
 270C、280C 締め金具
 300、300B、300C 配管接続構造
 310、310B、310C 沸騰冷却用配管
 311、311B、311C 溝
 320、320B、320C 沸騰冷却用配管
 321、321B、321C 溝
 330 金属めっきが施された弾性チューブ
 331 金属めっき
 332 マーキング
 340、350 締め金具
 341、351 固定バンド部
 342、352 締め付け部
 360B、360C 金属箔
 370B 熱収縮チューブ
 380C 樹脂系接着剤
10 Piping connection structure 20, 30 Piping 40 Sealing means 50 Connecting means 60 Reinforcing means 100, 100B, 100C, 100D Piping connection structure 110, 110B, 110C, 110D Boiling cooling pipe 120, 120B, 120C, 120D Boiling cooling pipe 130, 130B, 130C Metal plated elastic tube 131, 131B, 131C Metal plated 140, 140B, 140C Fastener 150, 150B, 150C Fastener 160D Heat-shrinkable tube 161D metal plated 200D, 200B , 200C Piping connection structure 210, 210B, 210C Boiling cooling piping 220, 220B, 220C Boiling cooling piping 230, 230B, 230C Metal foil 240 Heat shrinkable tube 250B Resin adhesive 260C Elasticity Tube 270C, 280C Fastener 300, 300B, 300C Pipe connection structure 310, 310B, 310C Boiling cooling pipe 311, 311B, 311C Groove 320, 320B, 320C Boiling cooling pipe 321, 321B, 321C Groove 330 Metal plating is applied Elastic tube 331 Metal plating 332 Marking 340, 350 Fastening bracket 341, 351 Fixed band part 342, 352 Fastening part 360B, 360C Metal foil 370B Heat shrinkable tube 380C Resin adhesive

Claims (15)

  1.  反応性物質が流動し、一方の端部同士が突き合わされた2本の配管と、
    前記反応性物質との反応性が低い材料によって形成され、前記端部が突き合わされた突合せ部を含む領域に配置されて前記反応性物質を前記配管内に封止する封止手段と、
    前記封止手段によって封止された前記突合せ部に配置されることによって、前記2本の配管を連結する連結手段と、
    前記連結手段を補強する補強手段と、
    を備える配管接続構造。
    Two pipes in which a reactive substance flows and one end is abutted,
    A sealing unit that is formed of a material having low reactivity with the reactive substance and is disposed in a region including a butted portion with which the end is butted, and seals the reactive substance in the pipe;
    A connecting means for connecting the two pipes by being arranged in the butting portion sealed by the sealing means;
    Reinforcing means for reinforcing the connecting means;
    Piping connection structure.
  2.  前記連結手段は、中空部を前記配管が貫通する弾性チューブであり、
    前記封止手段は、前記弾性チューブの内面に配置された金属膜であり、
    前記弾性チューブは、熱収縮することによって前記補強手段として作用する、
    請求項1記載の配管接続構造。
    The connecting means is an elastic tube through which the pipe passes through a hollow portion,
    The sealing means is a metal film disposed on the inner surface of the elastic tube,
    The elastic tube acts as the reinforcing means by heat shrinking.
    The pipe connection structure according to claim 1.
  3.  前記配管は、前記突合せ部の近傍の外周面に溝を備え、
    前記弾性チューブの一部は、前記溝の内部に配置している、
    請求項2記載の配管接続構造。
    The pipe includes a groove on an outer peripheral surface in the vicinity of the butt portion,
    A part of the elastic tube is disposed inside the groove.
    The pipe connection structure according to claim 2.
  4.  前記連結手段は、中空部を前記配管が貫通する弾性チューブであり、
    前記封止手段は、前記突合せ部を含む前記配管の外周面に配置された金属膜であり、
    前記弾性チューブは、熱収縮することによって前記補強手段として作用する、
    請求項1記載の配管接続構造。
    The connecting means is an elastic tube through which the pipe passes through a hollow portion,
    The sealing means is a metal film disposed on the outer peripheral surface of the pipe including the butt portion,
    The elastic tube acts as the reinforcing means by heat shrinking.
    The pipe connection structure according to claim 1.
  5.  前記配管は、前記突合せ部の近傍の外周面に溝を備え、
    前記弾性チューブは、前記溝を被覆し、
    前記弾性チューブの一部と前記突合せ部を含む前記配管の外周面に配置された金属膜の一部とが、前記溝の内部に配置している、
    請求項4記載の配管接続構造。
    The pipe includes a groove on an outer peripheral surface in the vicinity of the butt portion,
    The elastic tube covers the groove;
    A part of the elastic tube and a part of the metal film disposed on the outer peripheral surface of the pipe including the butting portion are disposed inside the groove.
    The pipe connection structure according to claim 4.
  6.  前記連結手段は、中空部を前記配管が貫通する弾性チューブであり、
    前記封止手段は、前記弾性チューブの内面に配置された金属膜であり、
    前記補強手段は、リング状のバンド部と該バンド部のリング径を調整する締め付け部とを備えた固定金具である、
    請求項1記載の配管接続構造。
    The connecting means is an elastic tube through which the pipe passes through a hollow portion,
    The sealing means is a metal film disposed on the inner surface of the elastic tube,
    The reinforcing means is a fixture having a ring-shaped band part and a tightening part for adjusting the ring diameter of the band part.
    The pipe connection structure according to claim 1.
  7.  前記配管は、前記突合せ部の近傍の外周面に溝を備え、
    前記バンド部は、前記溝の幅より狭い幅を有し、
    前記弾性チューブの一部と前記バンド部の一部とが、前記溝の内部に配置している、
    請求項6記載の配管接続構造。
    The pipe includes a groove on an outer peripheral surface in the vicinity of the butt portion,
    The band portion has a width narrower than the width of the groove,
    A part of the elastic tube and a part of the band part are disposed inside the groove.
    The pipe connection structure according to claim 6.
  8.  前記連結手段は、中空部を前記配管が貫通する弾性チューブであり、
    前記封止手段は、前記突合せ部を含む前記配管の外周面に配置された金属膜であり、
    前記補強手段は、リング状のバンド部と該バンド部のリング径を調整する締め付け部とを備えた固定金具である、
    請求項1記載の配管接続構造。
    The connecting means is an elastic tube through which the pipe passes through a hollow portion,
    The sealing means is a metal film disposed on the outer peripheral surface of the pipe including the butt portion,
    The reinforcing means is a fixture having a ring-shaped band part and a tightening part for adjusting the ring diameter of the band part.
    The pipe connection structure according to claim 1.
  9.  前記配管は、前記突合せ部の近傍の外周面に溝を備え、
    前記バンド部は、前記溝の幅より狭い幅を有し、
    前記弾性チューブの一部と前記突合せ部を含む前記配管の外周面に配置された金属膜の一部と前記バンド部の一部とが、前記溝の内部に配置している、
    請求項8記載の配管接続構造。
    The pipe includes a groove on an outer peripheral surface in the vicinity of the butt portion,
    The band portion has a width narrower than the width of the groove,
    A portion of the elastic tube and a portion of the metal film disposed on the outer peripheral surface of the pipe including the butting portion and a portion of the band portion are disposed inside the groove;
    The pipe connection structure according to claim 8.
  10.  前記封止手段は、前記突合せ部を含む前記配管の外周面に配置された金属膜であり、
    前記連結手段は、前記突合せ部を含む領域を覆う樹脂部材であり、
    前記樹脂部材は、固着性を有することによって前記補強手段として作用する、
    請求項1記載の配管接続構造。
    The sealing means is a metal film disposed on the outer peripheral surface of the pipe including the butt portion,
    The connecting means is a resin member that covers a region including the butt portion,
    The resin member acts as the reinforcing means by having adhesiveness.
    The pipe connection structure according to claim 1.
  11.  前記配管は、前記突合せ部の近傍の外周面に溝を備え、
    前記突合せ部を含む前記配管の外周面に配置された金属膜の一部と前記樹脂部材の一部とが、前記溝の内部に配置している、
    請求項10記載の配管接続構造。
    The pipe includes a groove on an outer peripheral surface in the vicinity of the butt portion,
    A part of the metal film disposed on the outer peripheral surface of the pipe including the butt portion and a part of the resin member are disposed inside the groove.
    The pipe connection structure according to claim 10.
  12.  前記配管は、前記端部の突合せ面が平坦化されている、請求項1乃至11のいずれか1項記載の配管接続構造。 The pipe connection structure according to any one of claims 1 to 11, wherein the end face of the pipe is flattened.
  13.  反応性物質が流動する2本の配管の一方の端部同士を突合せ、
    前記反応性物質との反応性が低い材料を前記端部を突合せた突合せ部を含む領域に配置することによって、前記反応性物質を前記配管内に封止し、
    前記封止された突合せ部に配置されることによって、前記2本の配管を連結し、
    前記2本の配管が連結した状態を補強する、
    配管接続方法。
    Butt one end of two pipes where reactive substances flow,
    By disposing a material having low reactivity with the reactive substance in a region including the butted portion where the end portions are butted, the reactive substance is sealed in the pipe,
    By connecting the two pipes by being arranged in the sealed butt portion,
    Reinforcing the state where the two pipes are connected,
    Piping connection method.
  14.  前記配管の前記突合せ部の近傍の外周面に溝を形成する、請求項13記載の配管接続方法。 The pipe connection method according to claim 13, wherein a groove is formed on an outer peripheral surface of the pipe in the vicinity of the butt portion.
  15.  前記配管の前記端部の突合せる面を平坦化する、請求項13または14記載の配管接続方法。 The pipe connection method according to claim 13 or 14, wherein a surface to be abutted at the end of the pipe is flattened.
PCT/JP2012/079436 2011-11-17 2012-11-07 Pipe connection structure and pipe connection method WO2013073540A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-251845 2011-11-17
JP2011251845 2011-11-17

Publications (1)

Publication Number Publication Date
WO2013073540A1 true WO2013073540A1 (en) 2013-05-23

Family

ID=48429596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079436 WO2013073540A1 (en) 2011-11-17 2012-11-07 Pipe connection structure and pipe connection method

Country Status (2)

Country Link
JP (1) JPWO2013073540A1 (en)
WO (1) WO2013073540A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102119703B1 (en) * 2020-02-05 2020-06-08 한국철도기술연구원 Reduction device of pressure rising in tunnel by using high performance cross-section nozzle
KR20210122453A (en) * 2020-04-01 2021-10-12 박영은 Pipe assembly for drain pipe

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1518788A (en) * 1975-07-22 1978-07-26 Raychem Ltd Heatrecoverable article
JPS561518B2 (en) * 1975-11-14 1981-01-13
JPS616487A (en) * 1984-06-20 1986-01-13 東北金属工業株式会社 Method of connecting pipe by using shape memory alloy
JPH0324394A (en) * 1989-06-19 1991-02-01 Furukawa Electric Co Ltd:The Pipe connecting method using joint made of shape memory alloy
JPH0450588A (en) * 1990-06-18 1992-02-19 Nippondenso Co Ltd Pipe connection
JPH05312281A (en) * 1992-05-07 1993-11-22 Furukawa Electric Co Ltd:The Pipe joint
JP2839372B2 (en) * 1993-09-15 1998-12-16 アバ オブ スウェーデン アーベー Improved hose clamp
JPH11182767A (en) * 1997-12-24 1999-07-06 Calsonic Corp Connecting structure of flexible tube
JP2002188764A (en) * 2000-12-25 2002-07-05 Piolax Inc Method of connecting pipe
JP2004324677A (en) * 2003-04-22 2004-11-18 Awaji Sangyo Kk Method and structure for joining metallic member
WO2006035536A1 (en) * 2004-09-27 2006-04-06 Bussan Nanotech Research Institute, Inc. Tube end connection body
JP2007046755A (en) * 2005-08-12 2007-02-22 Bussan Nanotech Research Institute Inc Tube end connecting body and zeolite separation membrane element
JP2008075809A (en) * 2006-09-22 2008-04-03 Sanei Kogyo Kk Road heating pipe connection structure, and anticorrosive sleeve to be used for the same and connection method using the same
JP2011515635A (en) * 2008-03-18 2011-05-19 サン−ゴバン パフォーマンス プラスティックス コーポレイション Fluid transfer assembly and related methods

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1518788A (en) * 1975-07-22 1978-07-26 Raychem Ltd Heatrecoverable article
JPS561518B2 (en) * 1975-11-14 1981-01-13
JPS616487A (en) * 1984-06-20 1986-01-13 東北金属工業株式会社 Method of connecting pipe by using shape memory alloy
JPH0324394A (en) * 1989-06-19 1991-02-01 Furukawa Electric Co Ltd:The Pipe connecting method using joint made of shape memory alloy
JPH0450588A (en) * 1990-06-18 1992-02-19 Nippondenso Co Ltd Pipe connection
JPH05312281A (en) * 1992-05-07 1993-11-22 Furukawa Electric Co Ltd:The Pipe joint
JP2839372B2 (en) * 1993-09-15 1998-12-16 アバ オブ スウェーデン アーベー Improved hose clamp
JPH11182767A (en) * 1997-12-24 1999-07-06 Calsonic Corp Connecting structure of flexible tube
JP2002188764A (en) * 2000-12-25 2002-07-05 Piolax Inc Method of connecting pipe
JP2004324677A (en) * 2003-04-22 2004-11-18 Awaji Sangyo Kk Method and structure for joining metallic member
WO2006035536A1 (en) * 2004-09-27 2006-04-06 Bussan Nanotech Research Institute, Inc. Tube end connection body
JP2007046755A (en) * 2005-08-12 2007-02-22 Bussan Nanotech Research Institute Inc Tube end connecting body and zeolite separation membrane element
JP2008075809A (en) * 2006-09-22 2008-04-03 Sanei Kogyo Kk Road heating pipe connection structure, and anticorrosive sleeve to be used for the same and connection method using the same
JP2011515635A (en) * 2008-03-18 2011-05-19 サン−ゴバン パフォーマンス プラスティックス コーポレイション Fluid transfer assembly and related methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102119703B1 (en) * 2020-02-05 2020-06-08 한국철도기술연구원 Reduction device of pressure rising in tunnel by using high performance cross-section nozzle
KR20210122453A (en) * 2020-04-01 2021-10-12 박영은 Pipe assembly for drain pipe
KR102408466B1 (en) 2020-04-01 2022-06-10 박영은 Pipe assembly for drain pipe

Also Published As

Publication number Publication date
JPWO2013073540A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
RU2010130359A (en) PIPELINE, PIPELINE SECTION AND METHOD OF ITS MANUFACTURE
KR101561031B1 (en) Device for protecting and sealing of pipe connecting part, sealing method of pipe connecting part
US8419071B2 (en) Pipe connector production method
WO2013073540A1 (en) Pipe connection structure and pipe connection method
US20030146624A1 (en) Pipe joint and pipe joint structure
US9845903B2 (en) Hose joint with adhesive
CA2974570C (en) Two-layered injection molded field joint for pipeline applications
JP2010127426A (en) Structure and method for joining aluminum flat pipe with copper pipe
JP2004130669A (en) Method of producing multiple layer-coated curved metal pipe
JP2015033259A (en) Gas leak repair method of communication line
CA2308802A1 (en) Polypropylene-covered article having a secondary covering
AU2008202859B2 (en) Bamboo pipe for use as conduits for water/wastewater delivery
RU2616723C2 (en) Jointing pipes and method of forming pipe connections
US1755387A (en) Shaft protector and method of manufacturing the same
US20120061388A1 (en) Pipe and Pipe Joint Covering Apparatus
EP2894773B1 (en) Resolver
WO2014136438A1 (en) Pipe connection structure and pipe connection method
JP2011179552A (en) Piping repairing method
US20210331422A1 (en) Method for connecting two individual fluid transport pipe elements using rigid shells
JP6497929B2 (en) Piping connection method and piping joint device
WO2014038266A1 (en) Pipe connection structure, and electronic equipent and optical equipment each having pipe connection structure
JPS598064Y2 (en) Piping assembly for refrigeration equipment, etc.
JP5848072B2 (en) Repair jig and repair method using the same
JP2006333674A (en) Repair tool for oil leaked portion of of cable, and repairing method of oil leaked portion
US20110244968A1 (en) Flexible Coupler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013544276

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849451

Country of ref document: EP

Kind code of ref document: A1