WO2013073449A1 - Water treatment apparatus and method for treating water - Google Patents

Water treatment apparatus and method for treating water Download PDF

Info

Publication number
WO2013073449A1
WO2013073449A1 PCT/JP2012/079007 JP2012079007W WO2013073449A1 WO 2013073449 A1 WO2013073449 A1 WO 2013073449A1 JP 2012079007 W JP2012079007 W JP 2012079007W WO 2013073449 A1 WO2013073449 A1 WO 2013073449A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pipe
valve
water hammer
pressure
Prior art date
Application number
PCT/JP2012/079007
Other languages
French (fr)
Japanese (ja)
Inventor
永治 藤田
Original Assignee
坂倉 秀夫
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 坂倉 秀夫 filed Critical 坂倉 秀夫
Publication of WO2013073449A1 publication Critical patent/WO2013073449A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/42Nature of the water, waste water, sewage or sludge to be treated from bathing facilities, e.g. swimming pools
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • Patent Publication 2005-161292 Japanese Patent Publication No. 2005-238090 Patent Publication 2005-246178 Patent Publication 2005-246179 Patent Publication 2005-254138 Patent Publication 2005-271648 Patent Publication 2006-272147 Patent Publication 2006-007184
  • the water treatment apparatus of the present invention desirably has an accumulator between a pump or valve provided in the middle of the pipe and the water hammer apparatus.
  • the water hammer pressure generated by the water hammer device is absorbed by the accumulator, and the pumps and valves provided in the middle of the piping can be prevented from being affected by the water hammer pressure.
  • the pipes are arranged in parallel by being inverted 180 ° in the middle. Thereby, the water hammer force which generate
  • the water hammer device has a valve chamber and a water conduit that introduces water into the valve chamber, and the valve is rotatably supported on the downstream side of the valve chamber, and the water introduced from the water conduit.
  • a drain valve that closes by kinetic energy, applies water hammer pressure to the water in the valve chamber, and repeats reopening when the water hammer pressure propagates from the valve chamber into the water conduit can be used.
  • operates using the kinetic energy of the water introduce
  • the water hammer device can be configured to have an actuator that forcibly closes the valve. Thereby, it becomes possible to close a valve earlier than operating using the kinetic energy of the above-mentioned water, and it becomes possible to generate a larger water hammer pressure.
  • valve can be repeatedly opened and closed by electric control. As a result, the valve can be opened and closed more reliably than the valve that operates using the kinetic energy of water described above, and the water hammer treatment can be continued stably.
  • the water hammer device has a valve chamber and a water conduit that introduces water into the valve chamber, and the valve is rotatably supported on the downstream side of the valve chamber, and water introduced from the water conduit The movement of water introduced from the water conduit is closed by kinetic energy, applying water hammer pressure to the water in the valve chamber, and a drain valve that repeatedly opens when the water hammer pressure propagates from the valve chamber into the water conduit.
  • the water hammer device is activated using energy, and it is possible to perform water hammer processing without power, and the running cost can be kept low.
  • FIG. 1 It is a block diagram of the ballast water treatment apparatus in the embodiment of the present invention. It is a schematic block diagram of the water hammer apparatus of FIG. It is an expanded sectional view of the valve chamber of FIG. It is a figure which shows the relationship between critical velocity and water hammer pressure. It is a figure which shows the relationship between another critical velocity and water hammer pressure. It is sectional drawing which shows the structure of a drain valve forced operation apparatus. It is sectional drawing which shows the structure of an accumulator. It is a figure which shows the example of piping. It is a figure which shows another piping example.
  • FIG. 1 is a block diagram of a ballast water treatment apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic configuration diagram of the water hammer apparatus of FIG. 1
  • FIG. 3 is an enlarged sectional view of the valve chamber of FIG.
  • a ballast water treatment apparatus 1 is provided in the middle of a first pipe 3 that passes seawater as ballast water to a ballast tank 2, and includes a pump 4 and an accumulator 5.
  • the water hammer 6 and the first to third valves 7a, 7b, 7c and the like are configured.
  • the pump 4 is for sending seawater to the ballast tank 2 through the water hammer device 6.
  • the first valve 7 a is provided between the pump 4 and the water hammer device 6 in the middle of the first pipe 3.
  • the second valve 7 b is provided in the middle of the second pipe 8 a that releases the static pressure of the first pipe 3.
  • the third valve 7 c is provided in the middle of the third pipe 8 b that bypasses the discharge water of the pump 4.
  • the water hammer device 6 has a water guide pipe 60, a valve chamber 61, a drain pipe 62, a drain valve 63, a drain valve adjusting screw 64, and a stopper 65 as shown in FIG.
  • the drain valve 63 is rotatably supported on the downstream side in the valve chamber 61 by a rotating shaft 63a provided below.
  • water hammer pressure Pa is linearly proportional to the length of the piping 3 between the accumulator 5 and the water hammer apparatus 6 like following Formula.
  • the water in the vicinity of the drain valve 63 is instantaneously in a negative pressure state due to the reaction (reaction) of the force (F) applied to the water.
  • the drain valve 63 is opened by its own weight. Then, water flows again, and when the speed gradually increases and the speed of the water reaches the critical speed (Va), the drain valve 63 is closed again and water hammer pressure (Pa) is generated.
  • the water hammer device 6 repeats such a state indefinitely (see FIG. 4).
  • the Va and ⁇ t can be changed by adjusting the weight (W) of the drain valve 63, the valve chamber installation angle ( ⁇ ), and the drain valve mounting angle ( ⁇ ). If ⁇ is increased by the drain valve adjusting screw 64, Va is increased, that is, the water hammer pressure Pa is increased. However, if it is excessively increased, the drain valve 63 does not move (is not closed). Further, if ⁇ is increased, the return (opening) of the drain valve 63 is accelerated (maximum 90 °). The weight of the drain valve 63 can be adjusted by increasing or decreasing the number of adjusting plates 63b.
  • valves 7a, 7b, 7c when the water hammer process cannot be continued with the drain valve 63 closed will be described.
  • the drain valve 63 is raised and lowered until it gets on the water flow, thereby almost water hammering.
  • the cycle ta can be controlled. Thereby, the flow velocity Va at the time of water hammer can be brought close to the maximum flow velocity (Vmax) under the piping conditions at the time of installation, and the underwater microorganisms can be reliably destroyed and killed with a larger water hammer pressure.
  • the drain valve 63 is forcibly closed by the drain valve forced operation device 10 using the air cylinder 11, but the present invention is not limited to this, and the drain valve is operated by the repulsive force of the electromagnetic coil. It is also possible to use an actuator such as
  • FIG. 7 is a cross-sectional view showing the configuration of the accumulator 5.
  • the piston type accumulator 5 is shown, but the present invention is not limited to this, and a diaphragm type accumulator may be used. Further, nitrogen may be used instead of air. In this case, a nitrogen cylinder is used instead of the air compressor 55.
  • the water hammer generated by the water hammer device 6 is instantaneous, a large water hammer force is generated in the direction of water flow, so that it is necessary to sufficiently ensure the strength of the foundation on which the ballast water treatment device 1 is installed. Therefore, it is preferable that the pipes 3 are reversed 180 degrees in the middle and arranged in parallel with substantially the same length so as to cancel each water hammer force F.
  • FIG. 8 shows an example in which the pipe 3 is inverted 180 ° in the middle and arranged in parallel vertically as an upper pipe 3a and a lower pipe 3b.
  • the water hammer force F generated by the water hammer device 6 acts in the right direction of the figure in the upper pipe 3a and acts in the left direction of the figure in the lower pipe 3b, but water hammer is caused by these upper pipe 3a and lower pipe 3b.
  • the force F is offset.
  • FIG. 9 shows an example in which the pipe 3 is inverted 180 ° three times in the middle and arranged in parallel vertically and horizontally as pipes 3c-1, 3c-2, 3c-3, 3c-4.
  • the pipes 3 arranged in parallel are coupled to each other in the upper and lower sides and the left and right by the coupling member 9a and supported by the support member 9b in the same manner as in the example of FIG.
  • the pump 4 having a large pressure is required, but since the water hammer F and the bending moment M are all canceled out, it is not necessary to increase the strength of the foundation.
  • vibration can be prevented from propagating by sandwiching the cushion rubber 9c between the foundation and the support member 9b.
  • the water treatment apparatus and water treatment method of the present invention include a water treatment apparatus and water for killing not only seawater supplied into the ballast tank, but also various underwater microorganisms such as circulating bath water, pool water, sewage and industrial wastewater. It is useful as a processing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physical Water Treatments (AREA)

Abstract

Provided are a water treatment apparatus capable of destroying microorganisms in water such as ballast water without requiring a large amount of force, and a method for treating water. A water-hammer device (6) that is installed in a pipe (3) for passing water containing microorganisms and applies water-hammer pressure generated by quick closure of a valve to water in the pipe (3) to destroy and eradicate the microorganisms in the water or other water makes it possible to destroy and eradicate the microorganisms in the water such as ballast water without requiring a large amount of force or using any chemicals or the like. It is thereby possible to perform water treatment without any adverse effect on the environment and at a low cost.

Description

水処理装置および水処理方法Water treatment apparatus and water treatment method
 本発明は、バラスト水、循環浴水、プール水、下水や工場排水などの水中の微生物を死滅させる水処理装置および水処理方法に関する。 The present invention relates to a water treatment device and a water treatment method for killing microorganisms in water such as ballast water, circulating bath water, pool water, sewage and factory waste water.
 船舶のバラストタンクに注入されたバラスト水を寄港先でそのまま船外に排出すると、バラスト水に含まれていたプランクトンやバクテリアなどの微生物が船外に流出し、水質汚染や、移入生物により生態系などへ悪影響を及ぼす可能性がある。そこで、従来、このバラスト水中の微生物を死滅させることが試みられており、以下のような装置および方法が提案されている。 When ballast water injected into a ship's ballast tank is discharged out of the ship as it is at the port of call, microorganisms such as plankton and bacteria contained in the ballast water will flow out of the ship, resulting in ecosystems due to water pollution and transferred organisms. It may adversely affect Thus, conventionally, attempts have been made to kill microorganisms in the ballast water, and the following apparatuses and methods have been proposed.
(1)衝撃水圧を発生させる方法(例えば、特許文献1,2,3,4,5参照。)
(2)高速噴流による衝撃力やキャビテーションを発生させる方法(例えば、特許文献6,7参照。)
(3)超音波の衝撃波を利用する方法(例えば、特許文献8参照。)
(1) Method of generating impact hydraulic pressure (see, for example, Patent Documents 1, 2, 3, 4, and 5)
(2) A method of generating impact force or cavitation caused by a high-speed jet (for example, see Patent Documents 6 and 7).
(3) A method using an ultrasonic shock wave (for example, see Patent Document 8).
特許公開2005-161292公報Patent Publication 2005-161292 特許公開2005-238090公報Japanese Patent Publication No. 2005-238090 特許公開2005-246178公報Patent Publication 2005-246178 特許公開2005-246179公報Patent Publication 2005-246179 特許公開2005-254138公報Patent Publication 2005-254138 特許公開2005-271648公報Patent Publication 2005-271648 特許公開2006-272147公報Patent Publication 2006-272147 特許公開2006-007184公報Patent Publication 2006-007184
 ところが、これらの装置および方法を実現するためには、設備が非常に大掛かりなものとなり、コスト上の問題から実用化は困難である。 However, in order to realize these apparatuses and methods, the facilities become very large, and practical application is difficult due to cost problems.
 そこで、本発明においては、大きな動力を必要とせず、バラスト水などの水中の微生物を死滅させることが可能な水処理装置および水処理方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a water treatment apparatus and a water treatment method that do not require large power and can kill microorganisms in water such as ballast water.
 本発明の水処理装置は、微生物を含む水を通水する配管の途中に設けられ、弁の急閉鎖により発生する水撃圧を配管内の水に加えて水中の微生物を破壊し、死滅させる水撃装置を有するものである。また、本発明の水処理方法は、微生物を含む水を通水する配管の途中に設けられた弁の急閉鎖により水撃圧を発生し、配管内の水に加えることにより、水中の微生物を破壊し、死滅させることを特徴とする。 The water treatment apparatus of the present invention is provided in the middle of a pipe for passing water containing microorganisms, and applies water hammer pressure generated by the sudden closing of the valve to the water in the pipe to destroy and kill the microorganisms in the water. It has a water hammer device. In addition, the water treatment method of the present invention generates water hammer pressure by suddenly closing a valve provided in the middle of a pipe through which water containing microorganisms flows, and adds the water hammer to the water in the pipe, thereby It is characterized by destroying and killing.
 これらの発明によれば、微生物を含む水に水撃圧を加えることで、水撃作用により水中の微生物が破壊され、死滅する。なお、水撃(水鎚、水槌、ウォーターハンマー)作用とは、導管内の水流を急に締め切ったときに、水流の慣性によって導管内に衝撃水圧が発生する現象である。 According to these inventions, by applying water hammer pressure to water containing microorganisms, the water microorganisms are destroyed and killed by water hammer action. The water hammer (water tank, water tank, water hammer) action is a phenomenon in which impact water pressure is generated in the conduit due to the inertia of the water flow when the water flow in the conduit is suddenly closed.
 また、本発明の水処理装置は、配管の途中に設けられたポンプまたはバルブと水撃装置との間にはアキュムレータを有することが望ましい。これにより、水撃装置により発生する水撃圧をアキュムレータが吸収し、配管の途中に設けられたポンプやバルブが水撃圧の影響を受けるのを防止することができる。 In addition, the water treatment apparatus of the present invention desirably has an accumulator between a pump or valve provided in the middle of the pipe and the water hammer apparatus. As a result, the water hammer pressure generated by the water hammer device is absorbed by the accumulator, and the pumps and valves provided in the middle of the piping can be prevented from being affected by the water hammer pressure.
 また、配管は、途中で180°反転させて並列に配設されたものであることが望ましい。これにより、水の流れ方向を変える前後の配管に発生する水撃力を相殺することができる。 Also, it is desirable that the pipes are arranged in parallel by being inverted 180 ° in the middle. Thereby, the water hammer force which generate | occur | produces in piping before and behind changing the flow direction of water can be offset.
 ここで、水撃装置は、弁室と、弁室に水を導入する導水管とを有し、弁は、弁室の下流側に回動可能に支持され、導水管から導入される水の運動エネルギーにより閉じ、弁室内の水に水撃圧を加えるとともに、水撃圧が弁室から導水管内へ伝播すると再び開くことを繰り返す排水弁である構成とすることができる。これにより、導水管から導入される水の運動エネルギーを利用して水撃装置が作動する。 Here, the water hammer device has a valve chamber and a water conduit that introduces water into the valve chamber, and the valve is rotatably supported on the downstream side of the valve chamber, and the water introduced from the water conduit. A drain valve that closes by kinetic energy, applies water hammer pressure to the water in the valve chamber, and repeats reopening when the water hammer pressure propagates from the valve chamber into the water conduit can be used. Thereby, a water hammer apparatus act | operates using the kinetic energy of the water introduce | transduced from a water conduit.
 また、水撃装置は、弁を強制的に閉じるアクチュエータを有する構成とすることができる。これにより、上述の水の運動エネルギーを利用して作動させるよりも早く弁を閉じることが可能となり、より大きな水撃圧を発生させることが可能となる。 Also, the water hammer device can be configured to have an actuator that forcibly closes the valve. Thereby, it becomes possible to close a valve earlier than operating using the kinetic energy of the above-mentioned water, and it becomes possible to generate a larger water hammer pressure.
 また、弁は、電気制御により開閉を繰り返すものとすることができる。これにより、上述の水の運動エネルギーを利用して作動させる弁よりも確実に弁を開閉させることが可能となり、水撃処理を安定して継続することが可能となる。 Also, the valve can be repeatedly opened and closed by electric control. As a result, the valve can be opened and closed more reliably than the valve that operates using the kinetic energy of water described above, and the water hammer treatment can be continued stably.
(1)微生物を含む水を通水する配管の途中に設けられた弁の急閉鎖により水撃圧を発生し、配管内の水に加えることにより、水中の微生物を破壊し、死滅させる構成により、大きな動力を必要とせず、また、薬剤などを使用することなく、バラスト水などの水中の微生物を破壊し、死滅させることができるので、環境に悪影響を及ぼすことのなく、安価に水処理を行うことが可能となる。 (1) By the construction that destroys and kills microorganisms in the water by generating water hammer pressure by sudden closing of a valve provided in the middle of the pipe through which water containing microorganisms flows, and adding it to the water in the pipe Because it can destroy and kill microbes in the water such as ballast water without using large power and without using chemicals, water treatment can be done at low cost without adversely affecting the environment. Can be done.
(2)配管の途中に設けられたポンプまたはバルブと水撃装置との間にはアキュムレータを有することにより、配管の途中に設けられたポンプやバルブが水撃圧の影響を受けるのを防止することができ、ポンプやバルブの誤動作や破壊を防止することができる。 (2) By having an accumulator between the pump or valve provided in the middle of the pipe and the water hammer device, the pump or valve provided in the middle of the pipe is prevented from being affected by the water hammer pressure. It is possible to prevent malfunction and destruction of the pump and the valve.
(3)配管が、途中で180°反転させて並列に配設されたものであることにより、水の流れ方向を変える前後の配管に発生する水撃力を相殺して、配管を設置する基礎への負担を抑えることができ、基礎の強度を大きくする必要がなくなる。 (3) The foundation for installing the pipe by offsetting the water hammer force generated in the pipe before and after changing the water flow direction by arranging the pipe in a 180-degree inversion in the middle It is possible to reduce the burden on the foundation and eliminate the need to increase the strength of the foundation.
(4)水撃装置が、弁室と、弁室に水を導入する導水管とを有し、弁は、弁室の下流側に回動可能に支持され、導水管から導入される水の運動エネルギーにより閉じ、弁室内の水に水撃圧を加えるとともに、水撃圧が弁室から導水管内へ伝播すると再び開くことを繰り返す排水弁である構成により、導水管から導入される水の運動エネルギーを利用して水撃装置が作動し、無動力により水撃処理を行うことが可能となり、ランニングコストを低く抑えることができる。 (4) The water hammer device has a valve chamber and a water conduit that introduces water into the valve chamber, and the valve is rotatably supported on the downstream side of the valve chamber, and water introduced from the water conduit The movement of water introduced from the water conduit is closed by kinetic energy, applying water hammer pressure to the water in the valve chamber, and a drain valve that repeatedly opens when the water hammer pressure propagates from the valve chamber into the water conduit. The water hammer device is activated using energy, and it is possible to perform water hammer processing without power, and the running cost can be kept low.
(5)水撃装置が、弁を強制的に閉じるアクチュエータを有する構成により、水の運動エネルギーを利用して作動させるよりも早く弁を閉じることが可能となり、より大きな水撃圧を発生させて、効率良く水撃処理を行うことが可能となる。 (5) The configuration in which the water hammer device has an actuator for forcibly closing the valve makes it possible to close the valve earlier than the operation using the kinetic energy of water, thereby generating a larger water hammer pressure. It becomes possible to perform the water hammer treatment efficiently.
(6)弁が、電気制御により開閉を繰り返すものであることにより、水の運動エネルギーを利用して作動させる弁よりも確実に弁を開閉させることが可能となり、水撃処理を安定して継続することが可能となる。 (6) Since the valve is repeatedly opened and closed by electrical control, it is possible to open and close the valve more reliably than the valve that operates using the kinetic energy of water, and the water hammer treatment can be continued stably. It becomes possible to do.
本発明の実施の形態におけるバラスト水処理装置のブロック図である。It is a block diagram of the ballast water treatment apparatus in the embodiment of the present invention. 図1の水撃装置の概略構成図である。It is a schematic block diagram of the water hammer apparatus of FIG. 図2の弁室の拡大断面図である。It is an expanded sectional view of the valve chamber of FIG. 臨界速度と水撃圧との関係を示す図である。It is a figure which shows the relationship between critical velocity and water hammer pressure. 別の臨界速度と水撃圧との関係を示す図である。It is a figure which shows the relationship between another critical velocity and water hammer pressure. 排水弁強制作動装置の構成を示す断面図である。It is sectional drawing which shows the structure of a drain valve forced operation apparatus. アキュムレータの構成を示す断面図である。It is sectional drawing which shows the structure of an accumulator. 配管例を示す図である。It is a figure which shows the example of piping. 別の配管例を示す図である。It is a figure which shows another piping example.
 図1は本発明の実施の形態におけるバラスト水処理装置のブロック図、図2は図1の水撃装置の概略構成図、図3は図2の弁室の拡大断面図である。 1 is a block diagram of a ballast water treatment apparatus according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram of the water hammer apparatus of FIG. 1, and FIG. 3 is an enlarged sectional view of the valve chamber of FIG.
 図1において、本発明の実施の形態におけるバラスト水処理装置1は、バラストタンク2へバラスト水としての海水を通水する第1の配管3の途中に設けられるものであり、ポンプ4、アキュムレータ5、水撃装置6や第1~第3のバルブ7a,7b,7c等により構成されている。ポンプ4は、海水を、水撃装置6を通じてバラストタンク2へ送り込むためのものである。第1のバルブ7aは第1の配管3の途中のポンプ4と水撃装置6との間に設けられている。第2のバルブ7bは第1の配管3の静圧を抜く第2の配管8aの途中に設けられている。第3のバルブ7cはポンプ4の吐出水をバイパスする第3の配管8bの途中に設けられている。 In FIG. 1, a ballast water treatment apparatus 1 according to an embodiment of the present invention is provided in the middle of a first pipe 3 that passes seawater as ballast water to a ballast tank 2, and includes a pump 4 and an accumulator 5. The water hammer 6 and the first to third valves 7a, 7b, 7c and the like are configured. The pump 4 is for sending seawater to the ballast tank 2 through the water hammer device 6. The first valve 7 a is provided between the pump 4 and the water hammer device 6 in the middle of the first pipe 3. The second valve 7 b is provided in the middle of the second pipe 8 a that releases the static pressure of the first pipe 3. The third valve 7 c is provided in the middle of the third pipe 8 b that bypasses the discharge water of the pump 4.
 アキュムレータ5は、配管3の途中のポンプ4およびバルブ7a~7cと水撃装置6との間に設けられている。アキュムレータ5は、水撃装置6により発生する水撃圧を吸収することにより、ポンプ4やバルブ7a~7cに水撃圧の影響を受けないようにするためのものである。なお、ポンプ4は、より確実に水撃圧の影響を受けないようにするため、「非定容積型ポンプ」を使用することが望ましい。 The accumulator 5 is provided between the pump 4 and valves 7 a to 7 c in the middle of the pipe 3 and the water hammer device 6. The accumulator 5 is for absorbing the water hammer pressure generated by the water hammer device 6 so that the pump 4 and the valves 7a to 7c are not affected by the water hammer pressure. In order to prevent the pump 4 from being affected by the water hammer pressure more reliably, it is desirable to use a “non-constant volume pump”.
 水撃装置6は、図2に示すように導水管60、弁室61、排水管62、排水弁63、排水弁調整ねじ64およびストッパ65を有する。排水弁63は、下方に設けられた回転軸63aによって、弁室61内の下流側に回動可能に支持されている。 The water hammer device 6 has a water guide pipe 60, a valve chamber 61, a drain pipe 62, a drain valve 63, a drain valve adjusting screw 64, and a stopper 65 as shown in FIG. The drain valve 63 is rotatably supported on the downstream side in the valve chamber 61 by a rotating shaft 63a provided below.
 水撃装置6は、初期状態では排水弁63が開いており、ポンプ4により配管3を通じて導水管60から海水が入ってくると、その運動エネルギーにより排水弁63を閉じさせる。この排水弁63が閉じたときに自重で開きやすいように、排水弁63には、図3に示すように複数枚の調整板63bを設けて、その重量が調整されている。また、排水弁調整ねじ64は、排水弁63が開いたときの傾斜角度θを調整するためのものであり、排水弁63が当接する先端部分には緩衝用のクッション64aが設けられている。 In the water hammer device 6, the drain valve 63 is open in the initial state, and when the seawater enters from the water conduit 60 through the pipe 3 by the pump 4, the drain valve 63 is closed by the kinetic energy. As shown in FIG. 3, the drain valve 63 is provided with a plurality of adjusting plates 63b so that the weight thereof is adjusted so that the drain valve 63 can be easily opened by its own weight when the drain valve 63 is closed. Further, the drain valve adjusting screw 64 is for adjusting the inclination angle θ when the drain valve 63 is opened, and a cushion cushion 64a is provided at a tip portion where the drain valve 63 abuts.
 排水弁63が閉じると、導水管60内の流水の運動量によって水撃作用が起き、弁室61内の海水に水撃圧が加えられ、海水中の微生物が破壊され、死滅する。そして、水撃圧が弁室61内から導水管60内を経て配管3へ抜けると、排水弁63は再び開き、上記過程が繰り返される。処理後の海水は、排水管62からバラストタンク2へ供給される。 When the drain valve 63 is closed, a water hammer action occurs due to the momentum of the flowing water in the conduit 60, water hammer pressure is applied to the seawater in the valve chamber 61, and microorganisms in the seawater are destroyed and killed. Then, when the water hammer pressure passes from the valve chamber 61 through the water conduit 60 to the pipe 3, the drain valve 63 opens again, and the above process is repeated. The treated seawater is supplied from the drain pipe 62 to the ballast tank 2.
 なお、通常、水撃装置6が作動するとき、水撃圧の反動(反作用)のタイミングによっては排水弁63が閉じたままになることがある。その場合、排水弁63に静圧がかかり、排水弁63は動かなくなるので、図1に示すバルブ7aを閉、バルブ7bを開にして静圧を解放する。その際、バルブ7a,7bの開閉に伴い、ポンプ4をオン(駆動)-オフ(停止)しても良いが、頻繁にオン-オフを繰り返すと、ポンプ4のモータが発熱することがあるため、本実施形態においては、ポンプ4は停止せずに、バルブ7cを開にして海水をポンプ4の吸い込み側にバイパスする。このとき、ポンプ4をインバータ制御することにより、回転数を小さくして省エネルギー運転することも可能である。 Normally, when the water hammer device 6 operates, the drain valve 63 may remain closed depending on the timing of the reaction (reaction) of the water hammer pressure. In that case, since the static pressure is applied to the drain valve 63 and the drain valve 63 does not move, the valve 7a shown in FIG. 1 is closed and the valve 7b is opened to release the static pressure. At that time, the pump 4 may be turned on (driven) -off (stopped) as the valves 7a, 7b are opened / closed. However, if the on / off is repeated frequently, the motor of the pump 4 may generate heat. In this embodiment, the pump 4 is not stopped, and the valve 7c is opened to bypass the seawater to the suction side of the pump 4. At this time, by controlling the pump 4 with an inverter, it is possible to reduce the number of rotations and perform energy saving operation.
 ここで、水撃装置6の動作について詳細に説明する。排水弁63が開いている状態で、水の速度がVa(臨界速度)に達したとき、排水弁63は閉じる方向に動き始める。すると、さらに水流の動圧を受けて排水弁63は加速的に閉じる動きをする。そして弁が閉じた瞬間、水流は完全に停止する。このとき、大きな水撃圧(Pa)が発生する。 Here, the operation of the water hammer device 6 will be described in detail. When the speed of water reaches Va (critical speed) with the drain valve 63 open, the drain valve 63 starts to move in the closing direction. Then, the drain valve 63 is accelerated and closed by receiving the dynamic pressure of the water flow. And the moment the valve closes, the water flow stops completely. At this time, a large water hammer pressure (Pa) is generated.
 以下に理論的に説明する。
 質量mの物質が加速度aで動いているときの力Fは、
  F=m×a(ニュートンの運動方程式)
で表わされる。
 ここで、微小時間(Δt)の間に、微小速度変化(Δv)したときの加速度は、
  a=Δv÷Δt
で表わされるので、
  F=m×a=m×Δv÷Δt
となる。
The following is a theoretical explanation.
The force F when a mass m is moving at an acceleration a is
F = m × a (Newton's equation of motion)
It is represented by
Here, the acceleration when a minute speed change (Δv) is made during a minute time (Δt) is
a = Δv ÷ Δt
Is represented by
F = m × a = m × Δv ÷ Δt
It becomes.
 上式を変形すると
  F×Δt=m×Δv
となる。
 すなわち、アキュムレータ5から水撃装置6までの間の配管3内の水の質量をmとすると、水の速度が短時間(Δt)でゼロとなるときの運動量変化(m×Δv)は、水に加えられた力積(F×Δt)に等しいことを意味する。
When the above equation is modified, F × Δt = m × Δv
It becomes.
That is, assuming that the mass of water in the pipe 3 between the accumulator 5 and the water hammer device 6 is m, the momentum change (m × Δv) when the water speed becomes zero in a short time (Δt) Is equal to the impulse (F × Δt) applied to.
 また、質量mは海水密度γ、アキュムレータ5から水撃装置6までの間の配管3の長さL、配管断面積Aより、
  m=γ×L×A
と表わされるので、
 排水弁63に働く力(F)は、
  F=γ×L×A×Δv÷Δt
となり、
 速度変化Δv(≒Va)より、
  F≒γ×L×A×Va÷Δt
となる。
The mass m is the seawater density γ, the length L of the pipe 3 between the accumulator 5 and the water hammer device 6, and the pipe cross-sectional area A.
m = γ × L × A
It is expressed as
The force (F) acting on the drain valve 63 is
F = γ × L × A × Δv ÷ Δt
And
From the speed change Δv (≒ Va)
F≈γ × L × A × Va / Δt
It becomes.
 これにより、Δv(≒Va)が大きく、Δtが小さいほど、排水弁63に働く力(F)は大きくなることが分かる。この水に加えられた力(F)は、水撃圧(Pa)という形で圧力波となって、水の中を音速で伝わって行く。このときアキュムレータ5から水撃装置6までの間の配管3に入っている海水中の微生物が破壊され、死滅する。 Thus, it can be seen that the force (F) acting on the drain valve 63 increases as Δv (≈Va) increases and Δt decreases. The force (F) applied to the water becomes a pressure wave in the form of water hammer pressure (Pa), and travels through the water at the speed of sound. At this time, microorganisms in the seawater contained in the pipe 3 between the accumulator 5 and the water hammer device 6 are destroyed and killed.
 なお、水撃圧Paは、次式のように、アキュムレータ5から水撃装置6までの間の配管3の長さに一次比例することが分かる。
 Pa=F÷A=(γ×L×A×Va÷Δt)÷A=γ×L×Va÷Δt
In addition, it turns out that water hammer pressure Pa is linearly proportional to the length of the piping 3 between the accumulator 5 and the water hammer apparatus 6 like following Formula.
Pa = F ÷ A = (γ × L × A × Va / Δt) / A = γ × L × Va / Δt
 また、水撃圧発生直後、水に加えられた力(F)の反動(反作用)により、瞬間的に排水弁63近傍の水は負圧状態となる。このとき、排水弁63は自重により開く動きをする。すると、再び水が流れ出し、徐々に速度を増して水の速度が臨界速度(Va)に達したとき、再び排水弁63は閉じて水撃圧(Pa)が発生する。水撃装置6は、このような状態を無限に繰り返す(図4参照。)。 Also, immediately after the water hammer pressure is generated, the water in the vicinity of the drain valve 63 is instantaneously in a negative pressure state due to the reaction (reaction) of the force (F) applied to the water. At this time, the drain valve 63 is opened by its own weight. Then, water flows again, and when the speed gradually increases and the speed of the water reaches the critical speed (Va), the drain valve 63 is closed again and water hammer pressure (Pa) is generated. The water hammer device 6 repeats such a state indefinitely (see FIG. 4).
 ここで、ポンプ圧力(ΔP)と流速(V)の関係は、次式で表わされる(配管が直管の場合)。
  ΔP=λ×γ×V2×L÷(2×g×D)
 但し、λ:配管の摩擦抵抗、γ:水の密度、g:重力加速度、L:配管長さ、D:配管径である。
Here, the relationship between the pump pressure (ΔP) and the flow velocity (V) is expressed by the following equation (when the pipe is a straight pipe).
ΔP = λ × γ × V 2 × L ÷ (2 × g × D)
Where λ: friction resistance of the pipe, γ: density of water, g: acceleration of gravity, L: pipe length, D: pipe diameter.
 実際の配管では、エルボやバルブなどの抵抗が付加されるが、ポンプ圧力と配管条件が決まれば、水の流速は一義的に決まる。このときの流速が、この配管条件での最大流速(Vmax)となる。水撃圧が発生する臨界速度(Va)をできるだけ、この最大流速(Vmax)に近づけるように水撃サイクルtaを長くすれば、水撃圧(Pa)が大きくなり、また水処理能力も大きくなる。 In actual piping, resistances such as elbows and valves are added, but if the pump pressure and piping conditions are determined, the flow rate of water is uniquely determined. The flow velocity at this time is the maximum flow velocity (Vmax) under this piping condition. If the water hammer cycle ta is increased so that the critical velocity (Va) at which the water hammer pressure is generated is as close as possible to the maximum flow velocity (Vmax), the water hammer pressure (Pa) is increased and the water treatment capacity is also increased. .
 このVa、Δtは、排水弁63の重量(W)と弁室設置角度(α)、排水弁取付角度(θ)を調整することによって変えることができる。排水弁調整ねじ64でθを大きくすればVaは大きく、すなわち水撃圧Paも大きくなるが、大きくし過ぎると排水弁63が動かなく(閉じなく)なる。また、αを大きくすれば、排水弁63の戻り(開き)が早くなる(最大90°)。排水弁63の重量は、調整板63bの枚数を増減することにより調整することができる。 The Va and Δt can be changed by adjusting the weight (W) of the drain valve 63, the valve chamber installation angle (α), and the drain valve mounting angle (θ). If θ is increased by the drain valve adjusting screw 64, Va is increased, that is, the water hammer pressure Pa is increased. However, if it is excessively increased, the drain valve 63 does not move (is not closed). Further, if α is increased, the return (opening) of the drain valve 63 is accelerated (maximum 90 °). The weight of the drain valve 63 can be adjusted by increasing or decreasing the number of adjusting plates 63b.
 なお、水中微生物を破壊し、死滅させるための水撃圧Paは、実験より5MPa以上、排水弁作動時間Δt=0.025秒以下、昇圧速度Pa/Δt=200MPa/秒以上とすることが好ましい。 The water hammer pressure Pa for destroying and killing the microorganisms in the water is preferably 5 MPa or more from the experiment, the drain valve operating time Δt = 0.025 seconds or less, and the pressure increase rate Pa / Δt = 200 MPa / second or more. .
 上記構成のバラスト水処理装置1によれば、バラストタンク2へ配管3を通じてポンプ4により供給する海水に水撃装置6により水撃圧を加えることで、水撃作用により水中の微生物が破壊され、死滅する。したがって、バラストタンク2には微生物が死滅した海水が注入されるため、このバラストタンク2に注入された海水を寄港先で船外へ排出しても、環境に悪影響を及ぼすことがない。すなわち、本実施形態におけるバラスト水処理装置1では、極めて単純な排水弁63の開閉による水撃圧により、水中の微生物を破壊、死滅させることが可能であり、安価に水処理を行うことが可能である。 According to the ballast water treatment device 1 configured as described above, by applying water hammer pressure to the seawater supplied by the pump 4 to the ballast tank 2 through the pipe 3, the water hammer device 6 destroys microorganisms in the water by the water hammer action. To die. Therefore, since the seawater in which microorganisms have been killed is injected into the ballast tank 2, even if the seawater injected into the ballast tank 2 is discharged out of the ship at the port of call, there is no adverse effect on the environment. That is, in the ballast water treatment apparatus 1 according to the present embodiment, it is possible to destroy and kill microbes in the water by water hammer pressure by opening and closing a very simple drain valve 63, and water treatment can be performed at low cost. It is.
 また、このバラスト水処理装置1では、水撃装置6が導水管60から導入される水の運動エネルギーを利用して作動し、無動力により水撃処理を行うことが可能であるため、ランニングコストを低く抑えることが可能となっている。 Moreover, in this ballast water treatment apparatus 1, since the water hammer apparatus 6 operates using the kinetic energy of the water introduced from the water conduit 60 and can perform the water hammer process without power, the running cost is reduced. Can be kept low.
 次に、排水弁63が閉じたままで水撃処理が継続できない場合のバルブ7a,7b,7cの操作について説明する。 Next, the operation of the valves 7a, 7b, 7c when the water hammer process cannot be continued with the drain valve 63 closed will be described.
 バルブ7aが閉、バルブ7bが開、バルブ7cが開の時間をt1,排水弁63の作動タイミング(水撃装置6に水が流入開始してから排水弁63が動作するまでの時間)をt2とすると、図5に示すような水撃サイクルta(=Δt+t1+t2)になる。しかし、水撃時間Δtと排水弁63が作動するタイミングt2は、排水弁調整ねじ64で概略決められるが、成り行きに任せている面がある。そこで、積極的に水撃時間Δtとt2、ひいては水撃サイクルtaを制御するため、排水弁63を強制的に閉じるアクチュエータを設けることが好ましい。 The time when the valve 7a is closed, the valve 7b is opened, and the valve 7c is opened is t1, the operation timing of the drain valve 63 (the time from when water starts to flow into the water hammer device 6 until the drain valve 63 operates) is t2. Then, a water hammer cycle ta (= Δt + t1 + t2) as shown in FIG. 5 is obtained. However, although the water hammer time Δt and the timing t2 at which the drain valve 63 operates are roughly determined by the drain valve adjusting screw 64, there are aspects that are left to the future. Therefore, in order to positively control the water hammer time Δt and t2, and consequently the water hammer cycle ta, it is preferable to provide an actuator for forcibly closing the drain valve 63.
 図6は、この排水弁63を強制的に閉じるアクチュエータとしての排水弁強制作動装置の構成を示す断面図である。図6に示す排水弁強制作動装置10は、エアーシリンダ11と、エアーシリンダ11内で摺動するピストン12と、ピストン12に固定され、ピストン12とともに動作するプッシュロッド13と、プッシュロッド13を元の位置へ復帰させるためのスプリング14とを備えている。なお、この場合の排水弁63の傾斜角度θは、ほぼ0°としている。 FIG. 6 is a cross-sectional view showing a configuration of a drain valve forced operation device as an actuator for forcibly closing the drain valve 63. A drain valve forced operation device 10 shown in FIG. 6 includes an air cylinder 11, a piston 12 that slides in the air cylinder 11, a push rod 13 that is fixed to the piston 12 and operates together with the piston 12, and the push rod 13. And a spring 14 for returning to the position. In this case, the inclination angle θ of the drain valve 63 is approximately 0 °.
 この排水弁強制作動装置10では、排水弁63を作動させるタイミングでプッシュロッド13を伸長させるようにエアーシリンダ11の室11aにエアーを供給する。これにより、プッシュロッド13が押し出され、排水弁63を強制的に閉じる。その後、エアー供給が停止されると、スプリング14の復元力によってプッシュロッド13は元の位置へ復帰するとともに、排水弁63が開く。 In this drain valve forced operation device 10, air is supplied to the chamber 11a of the air cylinder 11 so that the push rod 13 is extended at the timing when the drain valve 63 is actuated. Thereby, the push rod 13 is pushed out and the drain valve 63 is forcibly closed. Thereafter, when the air supply is stopped, the push rod 13 returns to the original position by the restoring force of the spring 14 and the drain valve 63 opens.
 このように、排水弁63の傾斜角度θをほぼ0°とし、t2時間で排水弁強制作動装置10を強制的に作動させて,排水弁63を水流に乗るまで起伏させることにより,ほぼ水撃サイクルtaを制御することが可能となる。これにより、水撃時の流速Vaを設置時の配管条件での最大流速(Vmax)に近づけることができ、より大きな水撃圧で、確実に水中微生物を破壊し、死滅させることができる。 In this way, by setting the inclination angle θ of the drain valve 63 to approximately 0 ° and forcibly operating the drain valve forced operation device 10 for t2 hours, the drain valve 63 is raised and lowered until it gets on the water flow, thereby almost water hammering. The cycle ta can be controlled. Thereby, the flow velocity Va at the time of water hammer can be brought close to the maximum flow velocity (Vmax) under the piping conditions at the time of installation, and the underwater microorganisms can be reliably destroyed and killed with a larger water hammer pressure.
 なお、この例ではエアーシリンダ11を用いた排水弁強制作動装置10により排水弁63を強制的に閉じているが、これに限定されるものでなく、電磁コイルによる反発力で排水弁を作動させる等のアクチュエータを使用することも可能である。 In this example, the drain valve 63 is forcibly closed by the drain valve forced operation device 10 using the air cylinder 11, but the present invention is not limited to this, and the drain valve is operated by the repulsive force of the electromagnetic coil. It is also possible to use an actuator such as
 次に、アキュムレータ5の例について説明する。図7はアキュムレータ5の構成を示す断面図である。 Next, an example of the accumulator 5 will be described. FIG. 7 is a cross-sectional view showing the configuration of the accumulator 5.
 図7に示すアキュムレータ5は、配管3を分岐してエアーシリンダ50を接続したものである。エアーシリンダ50には、このエアーシリンダ50内で摺動するピストン51と、ピストン51に固定され、ピストン51とともに動作するロッド52とが設けられている。また、ロッド52側の室50aには、配管3内の水流の最大圧力(0.3MPa)より少し高い圧力(0.4MPa)のエアーが充填された圧力タンク53が接続されている。この圧力タンク53には、減圧弁54を介してエアーコンプレッサ55からエアーが供給されている。 The accumulator 5 shown in FIG. 7 is one in which a pipe 3 is branched and an air cylinder 50 is connected. The air cylinder 50 is provided with a piston 51 that slides in the air cylinder 50 and a rod 52 that is fixed to the piston 51 and operates together with the piston 51. Further, a pressure tank 53 filled with air having a pressure (0.4 MPa) slightly higher than the maximum pressure (0.3 MPa) of the water flow in the pipe 3 is connected to the chamber 50a on the rod 52 side. Air is supplied to the pressure tank 53 from an air compressor 55 via a pressure reducing valve 54.
 排水弁63の作動により配管3内に水撃圧が発生すると、ピストン51が急速に作動し、ロッド52側の室50a内のエアーが圧縮される。これにより、配管3内の水撃圧を緩和し、ポンプ4やバルブ7a~7cが水撃圧の影響を受けるのを防止する。水撃圧が緩和されると、この圧縮エアーにより、ピストン51がストッパ56の位置(元の位置)に戻る。すなわち、本実施形態におけるバラスト水処理装置1では、このアキュムレータ5により、ポンプ4やバルブ7a~7cの誤動作や破壊を防止している。 When the water hammer pressure is generated in the pipe 3 by the operation of the drain valve 63, the piston 51 is rapidly operated, and the air in the chamber 50a on the rod 52 side is compressed. Thereby, the water hammer pressure in the pipe 3 is relieved and the pump 4 and the valves 7a to 7c are prevented from being affected by the water hammer pressure. When the water hammer pressure is relaxed, the compressed air returns the piston 51 to the position of the stopper 56 (original position). That is, in the ballast water treatment apparatus 1 according to the present embodiment, the accumulator 5 prevents malfunction and destruction of the pump 4 and the valves 7a to 7c.
 なお、本実施形態では、ピストン型のアキュムレータ5を示したが、これに限ることはなく、ダイヤフラム式のアキュムレータでも良い。また、エアーの代りに窒素を使用しても良い。この場合、エアーコンプレッサ55に代えて窒素ボンベを使用する。 In this embodiment, the piston type accumulator 5 is shown, but the present invention is not limited to this, and a diaphragm type accumulator may be used. Further, nitrogen may be used instead of air. In this case, a nitrogen cylinder is used instead of the air compressor 55.
 次に、配管3が、途中に水の流れ方向を180°変えるように配設された例について、図8および図9を参照して説明する。 Next, an example in which the pipe 3 is arranged so as to change the flow direction of water by 180 ° in the middle will be described with reference to FIGS. 8 and 9.
 水撃装置6により発生させる水撃は瞬間ではあるが、水の流れ方向に大きな水撃力を発生するため、バラスト水処理装置1を設置する基礎の強度を十分に確保する必要がある。そのため、配管3を途中で180°反転させてほぼ同じ長さで並列に配設し、それぞれの水撃力Fを相殺するように構成することが好ましい。 Although the water hammer generated by the water hammer device 6 is instantaneous, a large water hammer force is generated in the direction of water flow, so that it is necessary to sufficiently ensure the strength of the foundation on which the ballast water treatment device 1 is installed. Therefore, it is preferable that the pipes 3 are reversed 180 degrees in the middle and arranged in parallel with substantially the same length so as to cancel each water hammer force F.
 図8は配管3を途中で180°反転させ、上配管3aおよび下配管3bとして上下に並列に配設した例を示している。水撃装置6により発生した水撃力Fは、上配管3aでは図の右方向に作用し、下配管3bでは図の左方向に作用するが、これらの上配管3aおよび下配管3bにより水撃力Fを相殺している。これにより、配管3を設置する基礎への負担を抑えることができ、基礎の強度を大きくする必要がなくなる。但し、上配管3aと下配管3bとの距離Lにより、曲げモーメントM(=F×L)が発生するので、この曲げモーメントMに耐えうるように、上配管3aおよび下配管3bは結合部材9aにより結合し、支持部材9bにより基礎に支持しておく。 FIG. 8 shows an example in which the pipe 3 is inverted 180 ° in the middle and arranged in parallel vertically as an upper pipe 3a and a lower pipe 3b. The water hammer force F generated by the water hammer device 6 acts in the right direction of the figure in the upper pipe 3a and acts in the left direction of the figure in the lower pipe 3b, but water hammer is caused by these upper pipe 3a and lower pipe 3b. The force F is offset. Thereby, the burden to the foundation which installs the piping 3 can be suppressed, and it becomes unnecessary to increase the intensity | strength of a foundation. However, since a bending moment M (= F × L) is generated by the distance L between the upper pipe 3a and the lower pipe 3b, the upper pipe 3a and the lower pipe 3b are connected to the coupling member 9a so as to withstand the bending moment M. And are supported on the foundation by the support member 9b.
 図9は配管3を途中で3回180°反転させ、配管3c-1,3c-2,3c-3,3c-4として上下左右に並列に配設した例を示している。なお、図示例では、並列された配管3は、図8の例と同様に上下および左右を結合部材9aにより結合し、支持部材9bにより基礎に支持している。この例では、圧力の大きいポンプ4が必要となるが、水撃力Fと曲げモーメントMがすべて相殺されるため、基礎の強度を大きくする必要がない。また、基礎と支持部材9bとの間にクッションゴム9cを挟むことで、振動の伝播を防ぐことができる。 FIG. 9 shows an example in which the pipe 3 is inverted 180 ° three times in the middle and arranged in parallel vertically and horizontally as pipes 3c-1, 3c-2, 3c-3, 3c-4. In the illustrated example, the pipes 3 arranged in parallel are coupled to each other in the upper and lower sides and the left and right by the coupling member 9a and supported by the support member 9b in the same manner as in the example of FIG. In this example, the pump 4 having a large pressure is required, but since the water hammer F and the bending moment M are all canceled out, it is not necessary to increase the strength of the foundation. In addition, vibration can be prevented from propagating by sandwiching the cushion rubber 9c between the foundation and the support member 9b.
 なお、上記実施の形態においては、回転軸63aを中心に回動する回転式の排水弁63を有する水撃装置6としたが、この回転式の排水弁63に代えて、電気制御により開閉を繰り返す開閉弁、例えば、ギロチンタイプのバルブ、回転式のバタフライバルブやボールバルブなどを用いることが可能である。駆動方式としては、電動、油圧駆動や空気圧駆動などを採用することが可能である。また、水撃弁は、極力高速で閉じるものが好ましく、例えば、電気信号が閉のとき遮断されるスプリングリターン式のバルブが好ましい。電動よりも速く作動するスプリングリターン式のバルブによれば、水撃圧力を大きくすることが可能である。 In the above embodiment, the water hammer device 6 has the rotary drain valve 63 that rotates about the rotary shaft 63a. However, instead of the rotary drain valve 63, the water hammer device 6 is opened and closed by electrical control. It is possible to use a repetitive opening / closing valve, for example, a guillotine type valve, a rotary butterfly valve or a ball valve. As a drive system, electric, hydraulic drive, pneumatic drive, or the like can be employed. Further, the water hammer valve is preferably closed at a high speed as much as possible. For example, a spring return type valve that is shut off when the electrical signal is closed is preferable. According to the spring return type valve that operates faster than electric operation, it is possible to increase the water hammer pressure.
 回転式の排水弁63では、θとα、排水弁63の重量、水量や水の圧力等の因子が複雑に関与するため、排水弁63の開閉時間の制御が難しくなるが、電気制御により開閉を繰り返す開閉弁を用いることで、開閉時間を任意に設定することができ、図4および図5に示す水撃サイクルtaの時間を制御することが可能となる。 In the rotary drain valve 63, factors such as θ and α, the weight of the drain valve 63, the amount of water and the pressure of the water are complicatedly involved, so it becomes difficult to control the opening and closing time of the drain valve 63. By using the on-off valve that repeats the above, it is possible to arbitrarily set the open / close time, and it is possible to control the time of the water hammer cycle ta shown in FIGS. 4 and 5.
 また、電気制御により強制的に開閉弁を開閉するため、排水弁63のように閉じたまま開かなくなることがなく、水撃処理を安定して継続することが可能となる。 Further, since the on / off valve is forcibly opened / closed by electric control, the water hammer treatment can be stably continued without being closed and not being opened like the drain valve 63.
 本発明の水処理装置および水処理方法は、上記バラストタンク内に供給する海水のみならず、循環浴水、プール水、下水や工場排水などの様々な水中の微生物を死滅させる水処理装置および水処理方法として有用である。 The water treatment apparatus and water treatment method of the present invention include a water treatment apparatus and water for killing not only seawater supplied into the ballast tank, but also various underwater microorganisms such as circulating bath water, pool water, sewage and industrial wastewater. It is useful as a processing method.
 1 バラスト水処理装置
 2 バラストタンク
 3 配管
 4 ポンプ
 5 アキュムレータ
 6 水撃装置
 60 導水管
 61 弁室
 62 排水管
 63 排水弁
 63a 回転軸
 63b 調整板
 64 排水弁調整ねじ
 64a クッション
 65 ストッパ
 7a,7b,7c バルブ
 8a,8b 配管
 9a 結合部材
 9b 支持部材
 9c クッションゴム
 10 排水弁強制作動装置
 11 エアーシリンダ
 12 ピストン
 13 プッシュロッド
 14 スプリング
 50 エアーシリンダ
 51 ピストン
 52 ロッド
 53 圧力タンク
 54 減圧弁
 55 エアーコンプレッサ
 56 ストッパ
DESCRIPTION OF SYMBOLS 1 Ballast water treatment apparatus 2 Ballast tank 3 Piping 4 Pump 5 Accumulator 6 Water hammer 60 Water guide pipe 61 Valve chamber 62 Drain pipe 63 Drain valve 63a Rotating shaft 63b Adjustment plate 64 Drain valve adjustment screw 64a Cushion 65 Stopper 7a, 7b, 7c Valve 8a, 8b Piping 9a Coupling member 9b Support member 9c Cushion rubber 10 Drain valve forced operation device 11 Air cylinder 12 Piston 13 Push rod 14 Spring 50 Air cylinder 51 Piston 52 Rod 53 Pressure tank 54 Pressure reducing valve 55 Air compressor 56 Stopper

Claims (13)

  1.  微生物を含む水を通水する配管の途中に設けられ、弁の急閉鎖により発生する水撃圧を前記配管内の水に加えて水中の微生物を破壊し、死滅させる水撃装置を有する水処理装置。 Water treatment having a water hammer device that is provided in the middle of a pipe through which water containing microorganisms flows and applies water hammer pressure generated by the sudden closing of the valve to the water in the pipe to destroy and kill microorganisms in the water apparatus.
  2.  前記水撃圧は5MPa以上、かつ昇圧速度は200MPa/秒以上である請求項1記載の水処理装置。 The water treatment apparatus according to claim 1, wherein the water hammer pressure is 5 MPa or more and the pressure increase rate is 200 MPa / second or more.
  3.  前記配管の途中に設けられたポンプまたはバルブと前記水撃装置との間にアキュムレータを有する請求項1記載の水処理装置。 The water treatment device according to claim 1, further comprising an accumulator between a pump or valve provided in the middle of the pipe and the water hammer device.
  4.  前記配管の途中に設けられたポンプまたはバルブと前記水撃装置との間にアキュムレータを有する請求項2記載の水処理装置。 The water treatment device according to claim 2, further comprising an accumulator between a pump or valve provided in the middle of the pipe and the water hammer device.
  5.  前記配管は、バラストタンクへ水を注水する配管である請求項1から4のいずれかに記載の水処理装置。 The water treatment apparatus according to any one of claims 1 to 4, wherein the pipe is a pipe for injecting water into a ballast tank.
  6.  前記配管は、途中で180°反転させて並列に配設されたものである請求項1から4のいずれかに記載の水処理装置。 The water treatment apparatus according to any one of claims 1 to 4, wherein the pipes are arranged in parallel by being inverted 180 ° in the middle.
  7.  前記水撃装置は、弁室と、前記弁室に前記水を導入する導水管とを有し、前記弁は、前記弁室の下流側に回動可能に支持され、前記導水管から導入される前記水の運動エネルギーにより閉じ、前記弁室内の水に水撃圧を加えるとともに、前記水撃圧が前記弁室から前記導水管内へ伝播すると再び開くことを繰り返す排水弁である請求項1から4のいずれかに記載の水処理装置。 The water hammer device includes a valve chamber and a water conduit that introduces the water into the valve chamber, and the valve is rotatably supported on the downstream side of the valve chamber and is introduced from the water conduit. The drain valve is closed by the kinetic energy of the water, applies water hammer pressure to the water in the valve chamber, and repeatedly opens again when the water hammer pressure propagates from the valve chamber into the water conduit. The water treatment apparatus according to any one of 4.
  8.  前記水撃装置は、前記弁を強制的に閉じるアクチュエータを有する請求項1から4のいずれかに記載の水処理装置。 The water treatment apparatus according to any one of claims 1 to 4, wherein the water hammer apparatus includes an actuator that forcibly closes the valve.
  9.  前記弁は、電気制御により開閉を繰り返すものである請求項1から4のいずれかに記載の水処理装置。 The water treatment apparatus according to any one of claims 1 to 4, wherein the valve repeats opening and closing by electric control.
  10.  微生物を含む水を通水する第1の配管の途中に設けられる排水弁を有する水撃装置であり、前記排水弁の急閉鎖により発生する5MPa以上の水撃圧を前記第1の配管内の水に200MPa/秒以上の昇圧速度で加えて水中の微生物を破壊し、死滅させるとともに、前記水撃圧が前記第1の配管内へ伝播すると前記排水弁を開くことを繰り返す水撃装置と、
     前記第1の配管の途中に設けられ、前期水を前記水撃装置へ送り込むポンプと、
     前記第1の配管の途中の前記ポンプと前記水撃装置との間に設けられ、前記排水弁が閉じたままになったときに閉とする第1のバルブと、
     前記第1の配管の静圧を抜く第2の配管の途中に設けられ、前記排水弁が閉じたままになったときに開とする第2のバルブと
    を有する水処理装置。
    A water hammer device having a drain valve provided in the middle of a first pipe for passing water containing microorganisms, and a water hammer pressure of 5 MPa or more generated by a sudden closure of the drain valve in the first pipe A water hammer device that adds to the water at a pressure increase rate of 200 MPa / second or more to destroy and kill microorganisms in the water and repeatedly opens the drain valve when the water hammer pressure propagates into the first pipe;
    A pump which is provided in the middle of the first pipe and feeds water from the previous period to the water hammer device;
    A first valve that is provided between the pump and the water hammer in the middle of the first pipe and is closed when the drain valve remains closed;
    A water treatment apparatus comprising: a second valve provided in the middle of the second pipe for releasing the static pressure of the first pipe and opened when the drain valve remains closed.
  11.  前記ポンプの吐出水を前記ポンプの吸い込み側にバイパスする第3の配管の途中に設けられ、前記排水弁が閉じたままになったときに開とする第3のバルブを有する請求項10記載の水処理装置。 11. The third valve according to claim 10, wherein the third valve is provided in the middle of a third pipe that bypasses the discharge water of the pump to the suction side of the pump, and is opened when the drain valve remains closed. Water treatment equipment.
  12.  微生物を含む水を通水する配管の途中に設けられた弁の急閉鎖により水撃圧を発生し、前記配管内の水に加えることにより、水中の微生物を破壊し、死滅させる水処理方法。 A water treatment method in which water hammer pressure is generated by suddenly closing a valve provided in the pipe through which water containing microorganisms flows, and is added to the water in the pipe to destroy and kill microorganisms in the water.
  13.  微生物を含む水をポンプにより通水する第1の配管の途中に設けられる排水弁の急閉鎖により5MPa以上の水撃圧を発生し、前記第1の配管内の水に200MPa/秒以上の昇圧速度で加えることにより、水中の微生物を破壊し、死滅させるとともに、前記水撃圧が前記第1の配管内へ伝播すると前記排水弁を開くことを繰り返し、前記排水弁が閉じたままになったときに、前記第1の配管の途中の前記ポンプと前記水撃装置との間に設けられた第1のバルブを閉とするとともに、前記第1の配管の静圧を抜く第2の配管の途中に設けられた第2のバルブを開とする水処理方法。 A water hammer pressure of 5 MPa or more is generated by a sudden closure of a drain valve provided in the middle of the first pipe through which water containing microorganisms is passed by a pump, and the pressure in the first pipe is increased by 200 MPa / second or more. By adding at a speed, the microorganisms in the water are destroyed and killed, and when the water hammer pressure propagates into the first pipe, the drain valve is repeatedly opened, and the drain valve remains closed. Sometimes, the first valve provided between the pump and the water hammer device in the middle of the first pipe is closed, and the second pipe for releasing the static pressure of the first pipe is used. The water treatment method which opens the 2nd valve | bulb provided in the middle.
PCT/JP2012/079007 2011-11-14 2012-11-08 Water treatment apparatus and method for treating water WO2013073449A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011248946A JP5058371B1 (en) 2011-11-14 2011-11-14 Water treatment apparatus and water treatment method
JP2011-248946 2011-11-14

Publications (1)

Publication Number Publication Date
WO2013073449A1 true WO2013073449A1 (en) 2013-05-23

Family

ID=47189548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079007 WO2013073449A1 (en) 2011-11-14 2012-11-08 Water treatment apparatus and method for treating water

Country Status (2)

Country Link
JP (1) JP5058371B1 (en)
WO (1) WO2013073449A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104843942B (en) * 2015-05-07 2017-05-17 山东日科橡塑科技有限公司 Treatment method and treatment system for rubber and plastic sewage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161292A (en) * 2003-11-11 2005-06-23 Jfe Engineering Kk Method and apparatus for treating ballast water and ship carrying the apparatus
JP2007144238A (en) * 2005-10-31 2007-06-14 Tokyo Institute Of Technology Fine bubble generation apparatus and fine bubble generation method
JP2007319772A (en) * 2006-05-31 2007-12-13 Univ Nihon Algae crushing device
JP4818474B1 (en) * 2011-03-03 2011-11-16 永治 藤田 Sludge treatment device, waste water treatment device, sludge treatment method and waste water treatment method
WO2012118000A1 (en) * 2011-02-28 2012-09-07 学校法人日本大学 Water hammer generation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161292A (en) * 2003-11-11 2005-06-23 Jfe Engineering Kk Method and apparatus for treating ballast water and ship carrying the apparatus
JP2007144238A (en) * 2005-10-31 2007-06-14 Tokyo Institute Of Technology Fine bubble generation apparatus and fine bubble generation method
JP2007319772A (en) * 2006-05-31 2007-12-13 Univ Nihon Algae crushing device
WO2012118000A1 (en) * 2011-02-28 2012-09-07 学校法人日本大学 Water hammer generation device
JP4818474B1 (en) * 2011-03-03 2011-11-16 永治 藤田 Sludge treatment device, waste water treatment device, sludge treatment method and waste water treatment method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TATSUHISA HAMADA ET AL.: "Biseibutsu Shori o Mokuteki to shita Suigeki Hassei Sochi no Atsuryoku Tokusei ni Tsuite", COLLEGE OF INDUSTRIAL TECHNOLOGY, NIHON UNIVERSITY DAI 43 KAI GAKUJUTSU KOENKAI, 4 December 2010 (2010-12-04), pages 71 - 74 *
TATSUHISA HAMADA ET AL.: "Biseibutsu Shori o Mokuteki to shita Suigeki Hassei Sochi no Sado Tokusei ni Tsuite", ANNUAL JOURNAL OF HYDRAULIC ENGINEERING, JSCE, vol. 55, February 2011 (2011-02-01), pages S1555 - S1560 *
TATSUHISA HAMADA ET AL.: "Ransorui no Atsuryoku Shori ni Taisuru Atsuryoku Sokudo no Koka ni Tsuite", JAPAN SOCIETY OF CIVIL ENGINEERS DAI 63 KAI NENJI GAKUJUTSU KOENKAI, September 2008 (2008-09-01), pages 301, 302 *

Also Published As

Publication number Publication date
JP5058371B1 (en) 2012-10-24
JP2013103177A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
KR101564635B1 (en) Sludge treatment system, wastewater treatment system, sludge treatment method and wastewater treatment method
JPH0819923B2 (en) Device for controlling the supply of liquid to a hydraulic assembly
EP3293439A1 (en) Water piping system with slam mitigation function of check valve, and control method therefor
JP5058371B1 (en) Water treatment apparatus and water treatment method
JP2009112964A (en) Fine bubble generator
US10081559B2 (en) Method and system for generating cavitation in a fluid
CN105508334B (en) Electricity drives polygon overflow pulsation attenuation control system and polygon overflow system
JP4903701B2 (en) A simple device for cleaning objects
JP5807227B2 (en) Energy recovery apparatus and energy recovery method
US20100104369A1 (en) Thermal Driven Soil Venting System
JP2008502020A6 (en) A simple device for cleaning objects
Shevchuk et al. Equipment for magnetic-cavity water disinfection
JP6372963B2 (en) Vehicle brake system capable of slip control
TWI452016B (en) Apparatus and method for treating sludge and wastewater exhaust
RU2376467C1 (en) Device for control of operational cycle of impact machine (versions)
JP2007327397A (en) Hydraulic circuit for wind power generation
WO1999057064A1 (en) Water quality improving apparatus and water quality improving system
DK1606522T3 (en) A device for controlling hydraulic power units
JP2002089504A (en) Hydraulic actiator pressure retaining method and device thereof
JP3538426B2 (en) Pressure medium drive device that performs linear motion
WO2009031543A1 (en) Electromagnetic pump and water treatment device
JP2005283347A (en) Piping pulsating pressure test system
CN114233899B (en) Stop check valve
RU2029611C1 (en) Cavitation reactor
WO2014022902A1 (en) Apparatus for purifying and processing liquids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849412

Country of ref document: EP

Kind code of ref document: A1