WO2013073346A1 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
WO2013073346A1
WO2013073346A1 PCT/JP2012/077319 JP2012077319W WO2013073346A1 WO 2013073346 A1 WO2013073346 A1 WO 2013073346A1 JP 2012077319 W JP2012077319 W JP 2012077319W WO 2013073346 A1 WO2013073346 A1 WO 2013073346A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
injection
amount
cylinder
port
Prior art date
Application number
PCT/JP2012/077319
Other languages
French (fr)
Japanese (ja)
Inventor
川辺 敬
文昭 平石
清隆 細野
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to CN201280056198.4A priority Critical patent/CN103946526B/en
Priority to EP12849090.1A priority patent/EP2781725B1/en
Priority to US14/343,459 priority patent/US9353697B2/en
Publication of WO2013073346A1 publication Critical patent/WO2013073346A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • F02D43/04Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment using only digital means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/046Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into both the combustion chamber and the intake conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for an internal combustion engine having an in-cylinder injection valve that injects fuel into a cylinder and a port injection valve that injects fuel into an intake port of the cylinder.
  • an engine in which two types of fuel injection methods of in-cylinder injection and port injection are compatible has been developed.
  • homogeneous combustion in which the concentration distribution of the fuel mixture in the cylinder is made homogeneous and combustion is performed, and stratified combustion in which the high-concentration mixture is burned in a layered manner near the spark plug are implemented.
  • port injection is mainly used during homogeneous combustion
  • in-cylinder injection is mainly used during stratified combustion.
  • the injection valve for port injection is provided in the intake port of each cylinder
  • the injection valve for in-cylinder injection is provided so that the injection hole portion protrudes into the combustion chamber of each cylinder.
  • deposits may adhere to the injection hole portion of the in-cylinder injection valve, which may hinder proper in-cylinder injection.
  • the deposit area may reduce the opening area of the injection hole and reduce the amount of in-cylinder injection, and the fuel injection direction and shape may change, which may reduce the combustibility of the air-fuel mixture. is there.
  • Patent Document 1 describes control for forcibly changing the fuel injection mode so that only in-cylinder injection is performed even in the operation region where port injection is performed.
  • in-cylinder injection is performed for each predetermined combustion cycle from the in-cylinder injection valve even when port injection is being performed.
  • One of the objects of the present invention has been devised in view of the above problems, and relates to a control device for an internal combustion engine having an in-cylinder injection valve and a port injection valve, and aims to recover the injection capability of the in-cylinder injection valve. While ensuring engine output.
  • the present invention is not limited to this purpose, and is a function and effect derived from each configuration shown in the embodiments for carrying out the invention described later, and other effects of the present invention are to obtain a function and effect that cannot be obtained by conventional techniques. Can be positioned.
  • a control device for an internal combustion engine disclosed herein is a control device for an internal combustion engine having an in-cylinder injection valve for injecting fuel into a cylinder and a port injection valve for injecting fuel into an intake port of the cylinder.
  • the load detecting means for detecting the load of the internal combustion engine and the injection amount calculating means for calculating the in-cylinder injection amount injected from the in-cylinder injection valve.
  • first control means for performing first control for increasing the frequency of fuel injection from the in-cylinder injection valve; and when the in-cylinder injection amount decreases, from the port injection valve
  • second control means for performing second control for increasing the fuel injection amount.
  • switching control means for switching between the first control by the first control means and the second control by the second control means according to the load is provided.
  • the load includes, for example, a required load requested by the driver or various control devices to the internal combustion engine.
  • parameters such as torque, air volume, and charging efficiency corresponding to the required load are included.
  • the operating state of the supercharger may be regarded as information corresponding to the required load.
  • the first control the first operation region is easily selected when the in-cylinder injection amount is reduced, so that deposits attached to the injection hole portion of the in-cylinder injection valve are easily removed, and the in-cylinder injection amount is recovered.
  • the port injection amount is increased to compensate for the decrease in the in-cylinder injection amount, so that the output of the internal combustion engine is ensured.
  • the switching control means causes the first control means to perform the first control when the load is less than a predetermined load, and when the load is greater than or equal to the predetermined load, the second control means It is preferable to cause the control means to perform the second control.
  • a supercharging detection means for detecting an operating state of a supercharger provided in the internal combustion engine is provided, and the switching control means is connected to the first control means when the supercharger is not operating.
  • the first control is performed, and the second control means is configured to perform the second control when the supercharger is activated.
  • a selection means for selecting a first operation region for supplying fuel from the in-cylinder injection valve and a second operation region for supplying fuel from the port injection valve according to the load is provided.
  • the first control performed by the first control unit is a control for increasing the frequency with which the first operation region is selected by the selection unit when the in-cylinder injection amount is reduced.
  • the load detecting means detects the amount of air taken into the internal combustion engine as the load and the rotational speed of the internal combustion engine, and the selecting means is based on the air quantity and the rotational speed.
  • port injection control means for controlling the amount of port injection injected from the port injection valve
  • overlap period control means for controlling the overlap period in which both the intake valve and the exhaust valve of the cylinder are open. It is preferable to provide.
  • the second control performed by the second control means increases the port injection amount corresponding to the decrease amount of the in-cylinder injection amount and reduces the overlap when the in-cylinder injection amount decreases. It is preferable that the control shortens the period.
  • control that restores the injection ability of the in-cylinder injection valve and control that prioritizes output by switching between the first control and the second control according to the load of the internal combustion engine can be made compatible without any bias. Thereby, the output of the internal combustion engine according to the load request can be ensured while maintaining the injection capability of the in-cylinder injection valve in a higher state than before.
  • FIG. 1 It is a figure which illustrates the block configuration of the control apparatus of the internal combustion engine which concerns on one Embodiment, and the structure of the engine to which this control apparatus was applied.
  • (A) (b) is a graph for demonstrating the implementation area
  • the control device for an internal combustion engine according to the present embodiment is applied to the on-vehicle gasoline engine 10 (hereinafter simply referred to as the engine 10) shown in FIG.
  • the engine 10 the on-vehicle gasoline engine 10
  • one of a plurality of cylinders provided in the multi-cylinder engine 10 is shown, and this is called a cylinder 20.
  • the piston 19 that reciprocates in the cylinder 20 is connected to the crankshaft 21 via a connecting rod.
  • a water jacket 23 serving as a cooling water flow path is provided around the cylinder 20, a water jacket 23 serving as a cooling water flow path is provided.
  • a cooling water passage (not shown) is connected to the water jacket 23, and the cooling water circulates inside the water jacket 23 and the cooling water passage.
  • An intake port 17 and an exhaust port 18 are connected to the ceiling surface of the cylinder 20.
  • An intake valve 27 is provided at the opening of the intake port 17 on the cylinder 20 side, and an exhaust valve 28 is provided at the exhaust port 18.
  • the intake valve 27 is opened and closed, the intake port 17 and the combustion chamber (inside the cylinder 20) are communicated or closed, and when the exhaust valve 28 is opened and closed, the exhaust port 18 and the combustion chamber are communicated or blocked.
  • a spark plug 22 is provided between the intake port 17 and the exhaust port 18 with its tip projecting toward the combustion chamber. The timing of ignition at the spark plug 22 is controlled by the engine control device 1 described later.
  • the upper end portions of the intake valve 27 and the exhaust valve 28 are respectively connected to rocker arms 35 and 37 in the variable valve mechanism 40, and are individually reciprocated in the vertical direction according to the swinging of the rocker arms 35 and 37.
  • the other ends of the rocker arms 35 and 37 are provided with cams 36 and 38 supported on the camshaft.
  • the rocking pattern of the rocker arms 35 and 37 is determined according to the shape (cam profile) of the cams 36 and 38.
  • the valve lift amounts and valve timings of the intake valve 27 and the exhaust valve 28 are controlled by the engine control device 1 via the variable valve mechanism 40.
  • a direct injection injector 11 in-cylinder injection valve
  • a port injection injector 12 port injection
  • the fuel injected from the direct injection injector 11 is guided in the vicinity of the spark plug 22 on a layered air flow formed in, for example, a cylinder, and is unevenly distributed in the intake air.
  • the fuel injected from the port injector 12 is atomized in the intake port 17 and introduced into the cylinder 20 in a state of being well mixed with the intake air.
  • injectors are also provided in other cylinders (not shown) provided in the engine 10.
  • the amount of fuel injected from the direct injection injector 11 and the port injection injector 12 and the injection timing thereof are controlled by the engine control device 1.
  • a control pulse signal is transmitted from the engine control device 1 to the injectors 11 and 12, and the injection holes of the injectors 11 and 12 are opened only during a period corresponding to the magnitude of the control pulse signal.
  • the fuel injection amount becomes an amount corresponding to the magnitude (drive pulse width) of the control pulse signal, and the injection timing corresponds to the time when the control pulse signal is transmitted.
  • the direct injection injector 11 is connected to a high pressure pump 14A via a high pressure fuel supply path 13A.
  • the port injector 12 is connected to the low-pressure pump 14B via the low-pressure fuel supply path 13B.
  • the direct injection injector 11 is supplied with higher pressure fuel than the port injection injector 12.
  • Both the high-pressure pump 14A and the low-pressure pump 14B are mechanical variable flow rate pumps for pumping fuel. These pumps 14A and 14B operate by receiving driving force from the engine 10 or an electric motor, and discharge the fuel in the fuel tank 15 to the supply passages 13A and 13B. The amount of fuel and the fuel pressure discharged from each pump 14A, 14B are variably controlled by the engine control device 1.
  • the engine 10 is provided with a variable valve mechanism 40 that controls the operation of the rocker arms 35 and 37 or the cams 36 and 38.
  • the variable valve mechanism 40 is a mechanism for changing the maximum valve lift amount and the valve timing individually or in conjunction with each of the intake valve 27 and the exhaust valve 28.
  • the variable valve mechanism 40 is provided with a valve lift amount adjusting mechanism 41 and a valve timing adjusting mechanism 42 as mechanisms for changing the swing amount and swing timing of the rocker arms 35 and 37.
  • the valve lift amount adjusting mechanism 41 is a mechanism for continuously changing the maximum valve lift amount of the intake valve 27 and the exhaust valve 28, and controls the magnitude of the swing transmitted from the cams 36, 38 to the rocker arms 35, 37. Has the ability to change. A specific structure for changing the swinging magnitude of the rocker arms 35 and 37 is arbitrary.
  • the control parameter corresponding to the valve lift is called the control angle ⁇ VVL .
  • the valve lift adjustment mechanism 41 has a characteristic of increasing the valve lift as the control angle ⁇ VVL is larger.
  • the control angle ⁇ VVL is calculated by a valve control unit 4 of the engine control device 1 described later and transmitted to the valve lift adjustment mechanism 41.
  • the valve timing adjusting mechanism 42 is a mechanism for changing the opening / closing timing (valve timing) of the intake valve 27 and the exhaust valve 28, and the rotational phases of the cams 36 and 38 or the camshaft that cause the rocker arms 35 and 37 to swing. With the ability to change. Note that by changing the rotational phase of the cams 36 and 38 or the camshaft, the rocking timing of the rocker arms 35 and 37 with respect to the rotational phase of the crankshaft 21 can be continuously shifted.
  • the control parameter corresponding to the valve timing is called the phase angle ⁇ VVT .
  • the phase angle ⁇ VVT is an amount indicating how much the phases of the cams 36 and 38 are advanced or retarded with respect to the phase of the reference camshaft, and each of the intake valves 27 and the exhaust valves 28 is opened. Corresponds to the timing and valve closing timing. Further, the phase angle ⁇ VVT is calculated by the valve control unit 4 of the engine control device 1 and transmitted to the valve timing adjusting mechanism 42.
  • the valve timing adjustment mechanism 42 arbitrarily controls the valve timing by adjusting the phase angle ⁇ VVT of each of the cams 36 and 38.
  • the intake and exhaust system of the engine 10 is provided with a turbocharger 30 (supercharger) that supercharges intake air into the cylinder 20 using exhaust pressure.
  • the turbocharger 30 is interposed across both the intake passage 24 connected to the upstream side of the intake port 17 and the exhaust passage 29 connected to the downstream side of the exhaust port 18.
  • the turbine 30A of the turbocharger 30 is rotated by the exhaust pressure in the exhaust passage 29 and transmits the rotational force to the compressor 30B on the intake passage 24 side.
  • the compressor 30B compresses the intake air on the intake passage 24 side to the downstream side, and supercharges the engine 10.
  • an intercooler 26 is provided on the intake passage 24 downstream of the compressor 30B in the intake air flow to cool the compressed air.
  • the supercharging operation by the turbocharger 30 is controlled by the engine control device 1.
  • crank angle sensor 31 for detecting the rotation angle of the crank plate 21a are provided.
  • the crank angle sensor 31 is fixed in the vicinity of the outer edge of the crank plate 21a, detects the shape of the unevenness 21b of the crank plate 21a, and outputs a crank pulse signal.
  • the crank pulse signal output here is transmitted to the engine control device 1.
  • the cycle of the crank pulse signal output from the crank angle sensor 31 becomes shorter as the crankshaft 21 rotates faster, and the time density of the crank pulse signal depends on the actual engine speed Ne (engine speed) and the angular speed of the crankshaft 21. It becomes a thing corresponding to. Therefore, the crank angle sensor 31 functions as a means for detecting the engine speed Ne, the crank angle, and the angular velocity.
  • An oxygen concentration sensor 32 that measures the concentration of oxygen contained in the exhaust is provided at an arbitrary position on the exhaust passage 29. Information on the oxygen concentration detected here is transmitted to the engine control device 1.
  • an air flow sensor 43 for detecting the air flow rate is provided in the intake passage 24, an air flow sensor 43 for detecting the air flow rate is provided.
  • the flow rate information detected here corresponds to the intake air amount introduced into the cylinder 20 and is transmitted to the engine control device 1.
  • a fuel pressure sensor 33 for detecting a fuel pressure (fuel pressure) introduced into the direct injection injector 11 is provided on the high pressure fuel supply path 13A. Information on the detected fuel pressure is also transmitted to the engine control device 1.
  • Accelerator pedal sensor 34 for detecting an operation amount corresponding to the amount of depression of the accelerator pedal is provided at an arbitrary position of the vehicle.
  • the amount by which the accelerator pedal is depressed is a parameter corresponding to the driver's acceleration request, that is, corresponds to an output request to the engine 10.
  • Information on the operation amount detected here is transmitted to the engine control device 1.
  • the engine control device 1 is an electronic control device configured as an LSI device or an embedded electronic device in which a microprocessor, ROM, RAM, and the like are integrated, for example, via a dedicated communication line or an in-vehicle network communication network.
  • a variable valve mechanism 40 is connected to various sensors such as an electronic control device, a variable valve mechanism 40, a crank angle sensor 31, an oxygen concentration sensor 32, a fuel pressure sensor 33, an accelerator pedal sensor 34, and an air flow sensor 43.
  • the engine control device 1 controls a wide range of systems related to the engine 10 such as an ignition system, a fuel system, an intake / exhaust system, and a valve system.
  • Specific control objects of the engine control device 1 include the fuel injection amount and its injection timing injected from the direct injection injector 11 and the port injection injector 12, the ignition timing at the spark plug 22, the intake valve 27 and the exhaust valve 28. Examples include the valve lift amount and valve timing, the operating state of the turbocharger 30, the opening of a throttle valve (not shown), and the like.
  • map change control (first control)
  • second control that covers the injection amount by fuel injection from the port injection valve
  • switching control that switches between the map change control and the compensation control according to the engine load
  • the injection region control is control that uses different fuel injection methods such as in-cylinder injection and port injection according to the operating state of the engine 10 and the magnitude of output required for the engine 10.
  • fuel injection methods such as in-cylinder injection and port injection according to the operating state of the engine 10 and the magnitude of output required for the engine 10.
  • the engine speed Ne based on the engine speed Ne, engine load, air amount, and charging efficiency Ec (target charging efficiency, actual charging efficiency, etc.)
  • port injection mode in which only port injection is performed and in-cylinder injection are preferentially performed.
  • One of the in-cylinder injection priority modes to be performed is selected.
  • the injection mode is selected based on the engine speed Ne and the charging efficiency Ec, it is conceivable to use a control map as shown in FIG. That is, the port injection mode is selected when the engine speed Ne is less than the predetermined speed Ne 0 and the charging efficiency Ec is less than the predetermined efficiency Ec 0 . Further, the in-cylinder injection priority mode is selected when the engine speed Ne is equal to or higher than the predetermined speed Ne 0 or when the charging efficiency Ec is equal to or higher than the predetermined efficiency Ec 0 .
  • the filling efficiency Ec means the volume of air filled in the cylinder 20 during one intake stroke (one stroke until the piston 19 moves from the top dead center to the bottom dead center) in a standard state. Normalized to gas volume and then divided by cylinder volume.
  • the actual charging efficiency corresponds to the amount of air introduced into the cylinder 20 in the stroke
  • the target charging efficiency is a target value of the charging efficiency Ec and corresponds to the target air amount. In selecting the injection mode, either the actual filling efficiency or the target filling efficiency may be used.
  • the port injection mode is an injection mode that is selected when the engine 10 is under low load and low rotation. In the port injection mode, fuel injection from the direct injection injector 11 is prohibited, and all the fuel to be injected to obtain the required output is injected from the port injection injector 12.
  • the amount of fuel injected from the port injector 12 is also referred to as a port injection amount.
  • the in-cylinder injection priority mode is an injection mode that is selected when the operating state of the engine 10 is not low load and low rotation (other than the port injection mode).
  • in-cylinder injection priority mode in-cylinder injection is performed with priority over port injection. That is, when all of the fuel to be injected in order to obtain the required output can be covered by the injection from the direct injection injector 11, the fuel is injected only by the direct injection injector 11.
  • the amount of fuel injected from the direct injection injector 11 is also referred to as an in-cylinder injection amount.
  • the maximum injection amount is set in the direct injection injector 11 due to the restriction of the injection period, and an amount of fuel exceeding this cannot be injected within one combustion cycle. Therefore, when the target value of the in-cylinder injection amount to be injected exceeds the maximum injection amount of the direct injection injector 11, the shortage is injected from the port injector 12 and control is performed to ensure the total fuel injection amount. . In this case, both the direct injection injector 11 and the port injection injector 12 operate in the same combustion cycle, and both in-cylinder injection and port injection are performed.
  • the supercharging control is control that determines the operating state (on / off state, operating amount, etc.) of the turbocharger 30 according to the operating state of the engine 10 and the magnitude of the output required for the engine 10.
  • whether or not to operate the turbocharger 30 is determined based on the engine speed Ne or a load acting on the engine 10, and the turbocharger 30 is driven according to the determination result.
  • the turbocharger 30 is driven when a load required for the engine 10 is larger than a predetermined load. The amount of intake air introduced into the cylinder 20 by supercharging increases, and the engine output increases.
  • the shortage of fuel accompanying the reduction in capacity is added to the target fuel injection quantity of the direct injection injector 11 so that the actual fuel injection quantity is not insufficient. Is done.
  • information on the amount of fuel added to compensate for the capacity reduction is stored and learned for each direct injection injector 11 provided in each cylinder 20.
  • the correction amount is added to the fuel injection amount from the port injection injector 12.
  • the map change control (first control) is one of the controls that are performed when the injection capacity of the direct injection injector 11 calculated by the injection capacity calculation control is reduced.
  • the in-cylinder injection priority mode is set by the injection area control. This is a control that facilitates selection. Here, the selection condition for the in-cylinder injection priority mode is relaxed so that the in-cylinder injection priority mode can be selected even in an operation state in which the port injection mode is selected in the normal state.
  • the selection condition can be easily changed by changing the control map itself. For example, as shown in FIG. 2B, by using a control map in which the control region corresponding to the in-cylinder injection priority mode is expanded (in other words, a control map in which the control region corresponding to the port injection mode is reduced). This makes it easier to select the in-cylinder injection priority mode.
  • the port An injection mode is selected. Further, the in-cylinder injection priority mode is selected when the engine speed Ne is equal to or higher than the predetermined speed Ne 1 or when the charging efficiency Ec is equal to or higher than the predetermined efficiency Ec 1 .
  • the compensation control (second control) is another control executed when the injection capacity of the direct injection injector 11 calculated by the injection capacity calculation control is reduced, and compensates for the decreased injection capacity of the direct injection injector 11. In this way, the fuel injection amount from the port injector 12 is increased.
  • the shortage of fuel calculated by the injection capacity calculation control is added to the target fuel injection amount of the port injector 12. Thereby, even if it is a case where the injection capability of the direct injection injector 11 falls, the total fuel injection amount is ensured.
  • the compensation control includes “blow-through suppression control” that prevents and suppresses the port-injected fuel from passing through the cylinder 20 and flowing out to the exhaust passage 29 side.
  • This blow-through suppression control is control for preventing and suppressing port-injected fuel from passing through the cylinder 20 and flowing out to the exhaust passage 29 during the supercharging operation. Specifically, the following three types of control are performed. (1) An increase rate of the port injection amount for compensating for the decrease in the in-cylinder injection amount is calculated. (2) The valve overlap period is shortened according to the increasing rate of the port injection amount. (3) Delay the port injection timing.
  • the valve overlap period from the exhaust stroke to the intake stroke is shortened, so that the blow-through amount of the air-fuel mixture from the intake port 17 to the exhaust port 18 is suppressed. Further, when the valve overlap period is shortened in accordance with the increasing rate of the port injection amount (the degree of decrease in the in-cylinder injection amount), the amount of air-fuel mixture blown down becomes smaller. Furthermore, by delaying the port injection timing, the time from the start time of fuel injection to the closing time of the exhaust valve 28 is shortened, and the amount of air-fuel mixture blown is reduced.
  • the switching control is control that is performed by switching between the map change control and the compensation control according to the load of the engine 10.
  • one of map change control and compensation control is selected when the injection capability of the direct injection injector 11 decreases.
  • the map change control is selected when the turbocharger 30 is in the non-operating state, and the map change control is switched to the compensation control when the turbocharger 30 is in the supercharging state.
  • it is good also as a structure which refers to the parameter corresponding to the load of the engine 10, such as air quantity and charging efficiency Ec instead of the operating state of the turbocharger 30, or as an additional switching condition.
  • the engine control apparatus 1 includes an injection region control unit 2, a supercharging control unit 3, a valve control unit 4, an injection capacity calculation unit 5, a supplementary injection unit 6, and a switching.
  • a control unit 7 is provided.
  • a crank angle sensor 31, an oxygen concentration sensor 32, a fuel pressure sensor 33, an accelerator pedal sensor 34, and an air flow sensor 43 are connected to the input side of the engine control device 1, and calculation is performed based on the rotation angle (or rotation angle) of the crankshaft 21.
  • the engine speed Ne), the oxygen concentration in the exhaust, the fuel pressure, the accelerator pedal operation amount, and the intake air amount are input.
  • a direct injection injector 11, a port injection injector 12, and a variable valve mechanism 40 are connected to the output side of the engine control device 1.
  • the injection region control unit 2 performs injection region control and map change control.
  • the injection region control unit 2 includes a load detection unit 2a, a selection unit 2b, a port injection unit 2c, an in-cylinder injection unit 2d, and a map change unit 2e.
  • the load detection unit 2a detects a load acting on the engine 10, and here, two types of loads are detected.
  • the first load is a load for injection region control, and is a load for selecting a fuel injection method.
  • the charging efficiency Ec is used as a load index, and the value of the charging efficiency Ec is detected by the load detection unit 2a.
  • Information about the first load is transmitted to the selection unit 2b.
  • the second load is a load for map change control, and a load for relaxing the selection conditions for the in-cylinder injection priority mode.
  • the operating state of the turbocharger 30 is detected by the load detector 2a as the second load.
  • the information on the second load is transmitted to the switching control unit 7.
  • the selection part 2b selects a fuel injection system according to the 1st load etc. which were detected by the load detection part 2a.
  • the correspondence relationship between the operating state of the engine 10 and the injection mode as shown in FIG. 2A is preset, and the engine speed Ne and the charging efficiency Ec (target charging efficiency, actual charging efficiency, etc.) Based on the above, either the port injection mode in which only port injection is performed or the in-cylinder injection priority mode in which in-cylinder injection is preferentially performed is selected.
  • the port injection mode is selected when the operation state of the engine 10 is relatively low load and low rotation, and the in-cylinder injection priority mode is selected when the operation state is other than that (when other than the port injection mode).
  • the control map stored in the selection unit 2b is referred to as a first control map.
  • the first control map is a control map that is selected while the load on the engine 10 is relatively small. In the present embodiment, the first control map is selected when the turbocharger 30 is not operating.
  • the port injection unit 2c performs port injection in the port injection mode. In the port injection mode, a control pulse signal is output from the port injection unit 2c to the port injection injector 12, and port injection is performed according to the control pulse signal. On the other hand, fuel injection from the direct injection injector 11 is prohibited, and all the fuel to be injected to obtain the required output is injected from the port injection injector 12.
  • the port injection unit 2c functions as a port injection control unit that controls the amount of port injection injected from the port injection injector 12.
  • the in-cylinder injection unit 2d performs in-cylinder injection in the in-cylinder injection priority mode.
  • in-cylinder injection is performed with priority over port injection. That is, when all of the fuel to be injected to obtain the required output can be covered by the injection from the direct injection injector 11, a control pulse signal is output from the in-cylinder injection portion 2d to the direct injection injector 11.
  • the magnitude of the control pulse signal (drive pulse width) is set to a magnitude corresponding to the target in-cylinder injection amount calculated based on the engine speed Ne and the charging efficiency Ec.
  • the upper limit of the target in-cylinder injection amount is limited by the maximum injection amount of the direct injection injector 11.
  • the magnitude of the control pulse signal output to the port injector 12 is set to a magnitude corresponding to an amount obtained by subtracting the maximum injection amount of the direct injection injector 11 from the target in-cylinder injection amount.
  • the target in-cylinder injection amount of the direct injection injector 11 is equal to or less than the maximum injection amount, no control pulse signal is output to the port injection injector 12.
  • the direct injection injector 11 is preferentially driven.
  • the map change unit 2e (first control means) performs map change control.
  • the map changing unit 2e functions to increase the frequency of in-cylinder injection by making the selection unit 2b refer to this control map when the amount of decrease in the injection capacity of the direct injection injector 11 exceeds the reference value.
  • the switching control unit 7 described later that finally determines whether or not to execute the map change control.
  • the control map stored in the map changing unit 2e is referred to as a second control map.
  • the second control map is a control map that is selected while the load on the engine 10 is relatively large. In the present embodiment, the second control map is selected when the turbocharger 30 is activated.
  • the supercharging control unit 3 performs supercharging control.
  • the engine speed Ne and the magnitude of the load acting on the engine 10 are determined, and when it is determined that the operating state requires supercharging, a control signal for driving the turbocharger 30 is output.
  • the magnitude of the load determined here may be calculated based on the accelerator pedal depression amount and throttle opening, or the air amount (target intake air amount, target charging efficiency, actual intake air amount, actual charging efficiency, etc. ).
  • the supercharging execution condition may be set separately from the condition for selecting the injection mode, or may be defined as a predetermined region on the graph shown in FIGS. 2 (a) and 2 (b). Good.
  • the valve control unit 4 controls the operation of the variable valve mechanism 40.
  • the control angle ⁇ VVL and phase angle ⁇ VVT of each of the intake valve 27 and the exhaust valve 28 are set according to the operating state of the engine 10, the engine speed Ne, the engine load, and the like.
  • Information on the control angle ⁇ VVL and the phase angle ⁇ VVT is transmitted from the valve control unit 4 to the valve lift adjustment mechanism 41 and the valve timing adjustment mechanism 42 of the variable valve mechanism 40.
  • the injection capacity calculation unit 5 (injection amount calculation means) performs injection capacity determination control.
  • the injection capacity calculation unit 5 includes an actual in-cylinder injection amount calculation unit 5a, a learning unit 5b, and a correction unit 5c.
  • the actual in-cylinder injection amount calculation unit 5a calculates the actual in-cylinder injection amount based on the oxygen concentration in the exhaust gas detected by the oxygen concentration sensor 32.
  • the amount of oxygen consumed through the combustion reaction is calculated from the difference between the oxygen concentration in the exhaust and the oxygen concentration in the outside air, and the fuel amount corresponding to this oxygen amount is calculated as the consumed fuel amount.
  • an amount of fuel obtained by subtracting the port injection fuel amount from the calculated fuel consumption amount is calculated as the actual in-cylinder injection amount injected from the direct injection injector 11. .
  • the calculated fuel consumption amount is directly calculated as the actual in-cylinder injection amount. The actual in-cylinder injection amount calculated here is transmitted to the learning unit 5b.
  • the learning unit 5b reduces the actual in-cylinder injection amount calculated by the actual in-cylinder injection amount calculation unit 5a with respect to the target in-cylinder injection amount corresponding to the control pulse signal output from the injection region control unit 2. It is to calculate what has been done.
  • a short in-cylinder injection amount and a reduction amount of the injection capacity are calculated for each direct injection injector 11 provided in each cylinder 20.
  • the amount of decrease in the injection capacity may be calculated, for example, as a ratio of the actual in-cylinder injection amount to the target in-cylinder injection amount, or may be calculated as a deposit adhesion amount calculated from a short amount of in-cylinder injection amount.
  • the deficient in-cylinder injection amount calculated here is transmitted to the correction unit 5c, and the reduction amount of the injection capacity is recorded in the storage device in the learning unit 5b.
  • the correction unit 5c causes the injection region control unit 2 to output a control pulse signal that compensates for the in-cylinder injection amount.
  • a control signal for adding the short amount of in-cylinder injection to the in-cylinder injection amount of the direct injection injector 11 calculated by the injection region control unit 2 is output.
  • the compensation injection unit 6 (second control means) performs compensation control and blow-off suppression control.
  • compensation control is performed when the amount of decrease in the injection capacity of the direct injection injector 11 calculated by the learning unit 5b exceeds the reference value (deposits are accumulated as the injection capacity falls below the reference value), and the fuel The shortage is added to the target fuel injection amount of the port injector 12.
  • the above three types of blow-through suppression control are performed so that the port injection fuel increased by the compensation control does not blow through to the exhaust passage 29 side.
  • the supplementary injection unit 6 is provided with a port injection increase ratio calculation unit 6a, a valve overlap change unit 6b, and a port injection timing change unit 6c.
  • the port injection increase rate calculation unit 6a calculates an increase rate of the port injection amount injected from the port injection injector 12.
  • the ratio of the increment to the port injection amount before correction is calculated as the increase rate.
  • the information on the increase rate calculated here is transmitted to the valve overlap changing unit 6b.
  • the valve overlap changing unit 6b performs control for shortening the valve overlap (VOL) period in accordance with the increasing rate of the port injection amount.
  • the reduction amount of the valve overlap period is set according to the increase rate calculated by the port injection increase rate calculation unit 6a and the engine speed Ne.
  • An example of setting the reduction amount is shown in Table 1 “VOL restriction map” below. In this setting example, the larger the rate of increase of the port injection amount or the lower the engine speed Ne, the greater the reduction amount of the valve overlap period (the valve overlap period becomes shorter).
  • the port injection timing changing unit 6 c performs control for retarding the timing of fuel injection from the port injector 12.
  • the retard amount of the port injection is set according to the engine speed Ne.
  • a setting example of the retard amount is shown in Table 2 “Port injection timing map” below.
  • the port injection start time is delayed as the engine speed Ne is lower.
  • the numbers in the table indicate how many times the crank angle at the start of port injection corresponds to the angle before the reference, with the top dead center after the compression stroke as the reference (0 [° CA]) It is.
  • the switching control unit 7 performs switching control and has a function of switching and executing map change control and compensation control in accordance with a load acting on the engine 10.
  • one of map change control and compensation control is selected based on the second load detected by the load detector 2a.
  • the switching control unit 7 determines that the load is small when the turbocharger 30 is not operating, selects the map change control, and outputs a signal for causing the map change unit 2e to execute the map change control.
  • the turbocharger 30 when the turbocharger 30 is operated, it is determined that the load is large and the compensation control is selected, and a signal for causing the compensation injection unit 6 to perform the compensation control and the blow-through suppression control is output. Therefore, in a state where the amount of decrease in the injection capacity of the direct injection injector 11 exceeds the reference value, the map change control, the compensation control, and the blow-through suppression control are switched according to the operating state of the turbocharger 30.
  • FIG. 3 illustrates a flowchart relating to injection region control, supercharging control, and injection capacity calculation control among various controls executed by the engine control device 1. This flow is repeatedly performed in the engine control device 1 at a predetermined cycle.
  • step A10 information of various sensor detection values such as the oxygen concentration in the exhaust, the engine speed Ne, and the depression amount of the accelerator pedal is input to the engine control device 1.
  • step A20 the load acting on the engine 10 is detected by the load detection unit 2a.
  • the target charging efficiency of the engine 10 is calculated based on the engine speed Ne, the accelerator pedal depression amount, and the like.
  • step A30 based on the load of the engine 10 detected in the previous step, the supercharging control unit 3 determines whether or not the operating state requires supercharging. If the supercharging execution condition is satisfied, the process proceeds to step A40, and after the control signal for driving the turbocharger 30 is output from the supercharging control unit 3, the process proceeds to step A50. On the other hand, if the supercharging execution condition is not satisfied, the process directly proceeds to step A50.
  • step A50 the selection unit 2b selects a fuel injection method based on the load of the engine 10 detected in step A20, and determines the type of injection mode. If the injection mode is the port injection mode, the process proceeds to step A70, where the port injection unit 2c outputs a control pulse signal to the port injection injector 12, and the port injection is performed. On the other hand, if the injection mode is the in-cylinder injection priority mode in step A50, the process proceeds to step A60. In Step A60, a control pulse signal is output from the in-cylinder injection unit 2d to the direct injection injector 11, and in-cylinder injection is performed. When the target fuel injection amount at this time exceeds the maximum injection amount of the direct injection injector 11, port injection is also performed.
  • the actual in-cylinder injection amount calculation unit 5a calculates the fuel consumption amount based on the oxygen concentration in the exhaust gas, and calculates the actual in-cylinder injection amount injected from the direct injection injector 11.
  • the learning unit 5b calculates how much the actual in-cylinder injection amount has decreased from the target in-cylinder injection amount, and calculates the deficient in-cylinder injection amount.
  • the amount of decrease in the injection capacity grasped here is stored and learned for each direct injection injector 11 provided in each cylinder 20 by the storage device in the learning unit 5b.
  • the learning result is used for in-cylinder injection in the next and subsequent calculation cycles.
  • the flowchart in FIG. 4 relates to map change control, compensation control, and switching control among various controls executed by the engine control apparatus 1. This flow is repeatedly performed at a predetermined cycle in parallel with the flow of FIG.
  • step B10 the information on the fuel pressure of the direct injection injector 11, the type of injection mode, the information on the decrease in the injection capacity of the direct injection injector 11 calculated by the learning unit 5b, and the operation of the turbocharger 30 are sent to the engine control device 1. Information about the state is input.
  • step B20 in each of the map changing unit 2e and the supplementary injection unit 6, it is determined whether or not the reduction amount of the injection capability of the direct injection injector 11 exceeds a reference value.
  • the variation in the injection amount of the direct injection injector 11 provided in each cylinder 20 may be determined in this step. For example, it is conceivable to determine whether or not the deviation of the reduction amount for each direct injection injector 11 is a predetermined value or more.
  • step B20 it is determined whether or not the deposit has accumulated so that the injection ability of the direct injection injector 11 falls below the reference value, and the process proceeds to step B30.
  • step B20 it is determined whether or not the fuel pressure of the direct injection injector 11 is equal to or greater than a predetermined value.
  • the decrease in the injection capacity of the direct injection injector 11 may be caused by, for example, the high pressure fuel supply path 13A or the high pressure pump 14A.
  • step B90 by checking whether or not the fuel pressure is an appropriate value, it is determined whether or not there is a decrease in the injection capacity due to the failure of these fuel systems.
  • step B100 when the fuel pressure is equal to or higher than the predetermined value, it is determined that the injection capacity of the direct injection injector 11 is not lowered, and the process proceeds to Step B100. On the other hand, if the fuel pressure is less than the predetermined value, the process proceeds to step B30.
  • step B30 it is determined whether or not the switching control unit 7 and the turbocharger 30 are operating (during supercharging operation).
  • the switching control unit 7 selects the compensation control and the blow-through suppression control, and the process proceeds to Step B40.
  • the map change control is selected by the switching control unit 7, and the process proceeds to Step B70.
  • the port injection increase rate calculation unit 6a of the supplementary injection unit 6 calculates the increase rate of the port injection amount injected from the port injection injector 12.
  • the increase in the port injection amount is calculated based on the decrease amount of the actual in-cylinder injection amount and the fuel pressure, and the ratio of the increment to the port injection amount before correction is calculated as the increase ratio.
  • step B50 the valve overlap changing unit 6b sets the reduction amount of the valve overlap period based on the increase rate of the port injection amount and the engine speed Ne.
  • the valve overlap period is shortened as the increase rate of the port injection amount is larger or the engine speed Ne is lower. Further, the shortening amount of the valve overlap period is transmitted to the valve control unit 4, and the phase angle ⁇ VVT of the intake valve 27 and the exhaust valve 28 is controlled according to the shortening amount.
  • the specific control method of each phase angle ⁇ VVT is arbitrary, and for example, the opening timing of the intake valve 27 may be delayed, or the closing timing of the exhaust valve 28 may be advanced.
  • Step B60 the port injection timing changing unit 6c sets the port injection start timing based on the engine speed Ne.
  • the port injection start timing is set to be slower as the engine speed Ne is lower.
  • the map change unit 2e changes the control map related to the setting of the injection mode, and increases the frequency of in-cylinder injection.
  • the control map referred to by the selection unit 2b in step A50 of the flow of FIG. 3 is switched from the first control map of FIG. 2A to the second control map of FIG.
  • the in-cylinder injection priority mode is easily selected.
  • the valve overlap amount at the time of non-supercharging is set, and the control ends. In this case, the normal valve overlap setting is used on the assumption that no fuel blow-through occurs during non-supercharging.
  • step B100 which proceeds when the fuel pressure is equal to or higher than the predetermined value in step B90, the map change unit 2e returns the control map related to the setting of the injection mode.
  • the control map referred to by the selection unit 2b in step A50 of the flow of FIG. 3 is switched from the second control map of FIG. 2B to the first control map of FIG. If the control map related to the injection mode setting is not switched to the second control map, the first control map is used as it is.
  • Step B110 as in Step B30, it is determined whether or not the switching control unit 7 and the turbocharger 30 are operating (in supercharging operation). Since step B30 is not performed unless the actual in-cylinder injection amount is in a reduced state, the supercharging state in a state in which the actual in-cylinder injection amount is not reduced is determined here.
  • the process proceeds to step B120, where the normal valve overlap amount at the time of supercharging is set, and the control ends.
  • step B80 the valve overlap amount at the time of non-supercharging is set, and the control is terminated.
  • the map change control is performed in a relatively low load state, and the compensation control is performed in a high load state.
  • the map change control and the compensation control are switched according to the operating state of the turbocharger 30. Thereby, the injection capability of the direct injection injector 11 can be recovered at the time of non-supercharging when high output is not required. Further, during supercharging where high output is required, the work for removing the deposit can be temporarily suspended to ensure the output of the engine 10.
  • the selection unit 2b selects the injection mode based on the engine speed Ne and the charging efficiency Ec. As a result, the operating state of the engine 10 at that time and the magnitude of the load required for the engine 10 can be accurately grasped, and an appropriate engine output can be ensured.
  • the port injection amount corresponding to the amount of decrease in the in-cylinder injection amount is increased, so that the total fuel injection amount can be made constant.
  • the engine output can be maintained.
  • the valve overlap period is shortened, so that no blow-by due to an increase in the port injection amount occurs. Therefore, the engine 10 can be operated efficiently while maintaining both engine output and exhaust performance.
  • the valve overlap period is shortened, so that the increase amount of port injection amount is large. That is, the reduction amount of the valve overlap period is set according to the increase rate of the port injection amount, and the effect of suppressing fuel blow-through can be enhanced.
  • the lower the engine speed Ne the shorter the valve overlap period. That is, the longer the valve overlap actual time is, the shorter the valve overlap is set, and the fuel blow-out suppressing effect can be further enhanced.
  • control for retarding the port injection timing is performed. As shown in Table 2, as the engine speed Ne is lower, the retard amount of the port injection valve opening timing is increased. Controlled to increase. That is, the valve opening timing is delayed as the low-rotation operation has a longer real time from when fuel is injected into the intake port 17 until the exhaust valve 28 is closed. Thereby, the fuel blow-through suppressing effect can be further enhanced.
  • the engine control apparatus 1 calculates how much the actual in-cylinder injection amount has decreased with respect to the target in-cylinder injection amount. In this way, by referring to the amount of decrease in the actual injection amount with respect to the control command value, it is possible to eliminate the influence of the calculation error in the engine control device 1 and to accurately grasp the decrease in the injection capacity. . (11) Further, in the engine control apparatus 1 described above, the actual in-cylinder injection amount is calculated based on the oxygen concentration in the exhaust gas. As a result, the amount of oxygen consumed through the combustion reaction can be accurately calculated, and as a result, the calculation accuracy of the actual in-cylinder injection amount injected from the direct injection injector 11 can be improved.
  • the blow-through suppression control is performed even if the deposit amount is small.
  • the cause of the decrease in the in-cylinder injection amount can be specified by referring to the fuel pressure. For example, it is possible to distinguish whether there is a lot of deposits attached to the direct injection injector 11 or whether there is a cause in the fuel piping system. Thereby, it is possible to accurately detect a decrease in the in-cylinder injection amount.
  • the second load (the operating state of the turbocharger 30) detected by the load detection unit 2a is referred to as the switching condition between the map change control and the compensation control determined by the switching control unit 7.
  • the specific switching condition is not limited to this.
  • the map change control may be selected when the air amount or the charging efficiency Ec is less than a predetermined value, and switched to the compensation control when the air amount or the charging efficiency Ec exceeds the predetermined value.
  • the start condition of the blow-through suppression control is a state in which the turbocharger 30 is operating by the supercharging control, and the injection capacity of the direct injection injector 11 determined by the injection capacity determination control.
  • the specific control start condition is not limited to this. At least, when it is determined that the port-injected fuel is in a state of being easily blown through, the blow-through suppression control may be performed.
  • the multi-cylinder gasoline engine 10 is applied to the present invention, but the number of cylinders and the combustion method of the engine 10 are arbitrary.

Abstract

Provided are a load detection means (2a) which detects the load on the internal combustion engine (10), and an injection amount calculation means (5) which calculates the in-cylinder injection amount injected from an in-cylinder injection valve (11). Also provided are a first control means (2e) which performs first control for raising the frequency of fuel injection from the in-cylinder injection valve (11) when the in-cylinder injection amount has decreased, and a second control means (6) which performs second control for increasing the fuel injection amount from a port injection valve (12) when the in-cylinder injection amount has decreased. Furthermore, a switching control means (7) is provided which, depending on the load, switches between first control by the first control means (2e) and the second control by the second control means (6).

Description

内燃機関の制御装置Control device for internal combustion engine
 本発明は、気筒内に燃料を噴射する筒内噴射弁と、前記気筒の吸気ポートに燃料を噴射するポート噴射弁とを有する内燃機関の制御装置に関する。 The present invention relates to a control device for an internal combustion engine having an in-cylinder injection valve that injects fuel into a cylinder and a port injection valve that injects fuel into an intake port of the cylinder.
 従来、筒内噴射とポート噴射との二種類の燃料噴射方式を両立させたエンジン(内燃機関)が開発されている。このような内燃機関では、筒内での燃料混合気の濃度分布を均質にした状態で燃焼させる均質燃焼と、高濃度の混合気が点火プラグの近傍に層状に偏った状態で燃焼させる成層燃焼とが実施される。
 典型的な燃料噴射制御では、均質燃焼時に主にポート噴射が利用され、成層燃焼時には主に筒内噴射が利用される。エンジンの運転状態や負荷に応じて燃料噴射方式を使い分けることで、エンジン出力や安定性を確保しながら燃費を向上させることが可能となる。
Conventionally, an engine (internal combustion engine) in which two types of fuel injection methods of in-cylinder injection and port injection are compatible has been developed. In such an internal combustion engine, homogeneous combustion in which the concentration distribution of the fuel mixture in the cylinder is made homogeneous and combustion is performed, and stratified combustion in which the high-concentration mixture is burned in a layered manner near the spark plug Are implemented.
In typical fuel injection control, port injection is mainly used during homogeneous combustion, and in-cylinder injection is mainly used during stratified combustion. By properly using the fuel injection method according to the operating state and load of the engine, it becomes possible to improve fuel efficiency while ensuring engine output and stability.
 ところで、ポート噴射用の噴射弁が各気筒の吸気ポート内に設けられるのに対し、筒内噴射用の噴射弁は各気筒の燃焼室に噴孔部を突出させるように設けられる。そのため、筒内噴射弁の噴孔部にデポジットが付着する場合があり、適正な筒内噴射が妨げられるおそれがある。例えば、デポジットの付着によって噴孔の開口面積が減少し、筒内噴射量が低下する可能性があるほか、燃料噴霧の噴射方向や噴霧形状が変化し、混合気の燃焼性が低下する場合もある。 By the way, while the injection valve for port injection is provided in the intake port of each cylinder, the injection valve for in-cylinder injection is provided so that the injection hole portion protrudes into the combustion chamber of each cylinder. For this reason, deposits may adhere to the injection hole portion of the in-cylinder injection valve, which may hinder proper in-cylinder injection. For example, the deposit area may reduce the opening area of the injection hole and reduce the amount of in-cylinder injection, and the fuel injection direction and shape may change, which may reduce the combustibility of the air-fuel mixture. is there.
 そこで、強制的に筒内噴射を実施することで筒内噴射弁に付着したデポジットを除去する技術が提案されている。例えば、特許文献1には、ポート噴射が行われる運転領域であっても筒内噴射のみが行われるように燃料噴射形態を強制的に変更する制御が記載されている。この技術では、筒内噴射弁の燃料噴射量が低下したと判断された場合に、ポート噴射の実施中であっても筒内噴射弁から所定の燃焼サイクルずつ筒内噴射が実施される。このような制御により、筒内噴射弁の噴孔部に堆積したデポジットや付着物を吹き飛ばして除去することができるとされている。 Therefore, a technique for removing deposits adhering to the in-cylinder injection valve by forcibly in-cylinder injection has been proposed. For example, Patent Document 1 describes control for forcibly changing the fuel injection mode so that only in-cylinder injection is performed even in the operation region where port injection is performed. In this technique, when it is determined that the fuel injection amount of the in-cylinder injection valve has decreased, in-cylinder injection is performed for each predetermined combustion cycle from the in-cylinder injection valve even when port injection is being performed. By such control, it is said that deposits and deposits accumulated in the injection hole portion of the in-cylinder injection valve can be blown away and removed.
特開2005-201083号公報JP 2005-201083 A
 しかしながら、特許文献1に記載されたような従来の技術では、筒内噴射弁の燃料噴射量が低下したと判断されたことを以て、デポジットを吹き飛ばすための筒内噴射の開始条件が成立する。例えばこのエンジンを搭載した車両の走行中であって、エンジンに作用する負荷の大きさが比較的大きい運転状態においても、筒内噴射が実施される。このとき、筒内噴射弁の噴孔部にデポジットが残留している場合には、負荷の大きさに対応するエンジン出力を確保することができず、エンジンの運転状態が不安定になる可能性がある。一方、このような筒内噴射を実施しなければ、噴孔部に堆積したデポジットを除去することが難しい。 However, in the conventional technique as described in Patent Document 1, it is determined that the fuel injection amount of the in-cylinder injection valve has decreased, and thus the in-cylinder injection start condition for blowing the deposit is established. For example, in-cylinder injection is performed even when a vehicle equipped with this engine is running and in a driving state where the load acting on the engine is relatively large. At this time, if deposits remain in the injection hole of the in-cylinder injection valve, the engine output corresponding to the magnitude of the load cannot be secured, and the engine operating state may become unstable. There is. On the other hand, if such in-cylinder injection is not performed, it is difficult to remove deposits accumulated in the nozzle holes.
 このように、従来の技術ではデポジットによって低下した筒内噴射弁の噴射能力を回復させる制御とエンジン出力を確保すること優先する制御とを両立させることが難しく、これらをバランスよく実施するための制御条件の設定が容易ではないという課題がある。
 本件の目的の一つは、上記のような課題に鑑み創案されたもので、筒内噴射弁とポート噴射弁とを有する内燃機関の制御装置に関し、筒内噴射弁の噴射能力の回復を図りつつエンジン出力を確保することである。
 なお、この目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的として位置づけることができる。
As described above, in the conventional technology, it is difficult to achieve both the control for recovering the injection capacity of the in-cylinder injection valve that has been reduced by the deposit and the control for giving priority to securing the engine output, and the control for implementing these in a balanced manner. There is a problem that setting conditions is not easy.
One of the objects of the present invention has been devised in view of the above problems, and relates to a control device for an internal combustion engine having an in-cylinder injection valve and a port injection valve, and aims to recover the injection capability of the in-cylinder injection valve. While ensuring engine output.
The present invention is not limited to this purpose, and is a function and effect derived from each configuration shown in the embodiments for carrying out the invention described later, and other effects of the present invention are to obtain a function and effect that cannot be obtained by conventional techniques. Can be positioned.
 (1)ここで開示する内燃機関の制御装置は、気筒内に燃料を噴射する筒内噴射弁と、前記気筒の吸気ポートに燃料を噴射するポート噴射弁と、を有する内燃機関の制御装置であって、前記内燃機関の負荷を検出する負荷検出手段と、前記筒内噴射弁から噴射される筒内噴射量を算出する噴射量算出手段とを備える。また、前記筒内噴射量の低下時に、前記筒内噴射弁からの燃料噴射の頻度を高める第一制御を実施する第一制御手段と、前記筒内噴射量の低下時に、前記ポート噴射弁からの燃料噴射量を増加させる第二制御を実施する第二制御手段とを備える。さらに、前記負荷に応じて、前記第一制御手段による前記第一制御と前記第二制御手段による前記第二制御とを切り換える切り換え制御手段を備える。 (1) A control device for an internal combustion engine disclosed herein is a control device for an internal combustion engine having an in-cylinder injection valve for injecting fuel into a cylinder and a port injection valve for injecting fuel into an intake port of the cylinder. The load detecting means for detecting the load of the internal combustion engine and the injection amount calculating means for calculating the in-cylinder injection amount injected from the in-cylinder injection valve. In addition, when the in-cylinder injection amount decreases, first control means for performing first control for increasing the frequency of fuel injection from the in-cylinder injection valve; and when the in-cylinder injection amount decreases, from the port injection valve And second control means for performing second control for increasing the fuel injection amount. Furthermore, switching control means for switching between the first control by the first control means and the second control by the second control means according to the load is provided.
 前記負荷には、例えば運転者や各種制御装置が前記内燃機関に要求する要求負荷が含まれる。また、この要求負荷に対応するトルク,空気量,充填効率といったパラメーターも含まれる。さらに、過給機の作動状態を前記要求負荷に相当する情報とみなしてもよい。
 第一制御では、筒内噴射量の低下時に第一運転領域が選択されやすくなるため、筒内噴射弁の噴孔部に付着したデポジットが取り除かれやすくなり、筒内噴射量が回復する。また、第二制御では、ポート噴射量が増加して筒内噴射量の低下が補われるため、内燃機関の出力が確保される。
The load includes, for example, a required load requested by the driver or various control devices to the internal combustion engine. In addition, parameters such as torque, air volume, and charging efficiency corresponding to the required load are included. Further, the operating state of the supercharger may be regarded as information corresponding to the required load.
In the first control, the first operation region is easily selected when the in-cylinder injection amount is reduced, so that deposits attached to the injection hole portion of the in-cylinder injection valve are easily removed, and the in-cylinder injection amount is recovered. In the second control, the port injection amount is increased to compensate for the decrease in the in-cylinder injection amount, so that the output of the internal combustion engine is ensured.
 (2)また、前記切り換え制御手段が、前記負荷が所定負荷未満であるときに、前記第一制御手段に前記第一制御を実施させ、前記負荷が所定負荷以上であるときに、前記第二制御手段に前記第二制御を実施させることが好ましい。
 (3)この場合、前記内燃機関に設けられた過給機の作動状態を検出する過給検出手段を備え、前記切り換え制御手段が、前記過給機の非作動時に、前記第一制御手段に前記第一制御を実施させ、前記過給機の作動時に、前記第二制御手段に前記第二制御を実施させることが好ましい。
(2) The switching control means causes the first control means to perform the first control when the load is less than a predetermined load, and when the load is greater than or equal to the predetermined load, the second control means It is preferable to cause the control means to perform the second control.
(3) In this case, a supercharging detection means for detecting an operating state of a supercharger provided in the internal combustion engine is provided, and the switching control means is connected to the first control means when the supercharger is not operating. Preferably, the first control is performed, and the second control means is configured to perform the second control when the supercharger is activated.
 (4)また、前記筒内噴射弁から燃料を供給する第一運転領域と前記ポート噴射弁から燃料を供給する第二運転領域とを前記負荷に応じて選択する選択手段を備えることが好ましい。この場合、前記第一制御手段で実施される前記第一制御は、前記筒内噴射量の低下時に、前記第一運転領域が前記選択手段で選択される頻度を高める制御であることが好ましい。 (4) It is preferable that a selection means for selecting a first operation region for supplying fuel from the in-cylinder injection valve and a second operation region for supplying fuel from the port injection valve according to the load is provided. In this case, it is preferable that the first control performed by the first control unit is a control for increasing the frequency with which the first operation region is selected by the selection unit when the in-cylinder injection amount is reduced.
 (5)また、前記負荷検出手段が、前記負荷として前記内燃機関に吸入される空気量と前記内燃機関の回転数とを検出し、前記選択手段が、前記空気量と前記回転数とに基づいて、前記第一運転領域及び前記第二運転領域の何れか一方を選択するとともに、前記第一制御手段が、前記筒内噴射量の低下時に、前記第一運転領域を選択するための前記空気量及び前記回転数の閾値をともに減少させることが好ましい。 (5) The load detecting means detects the amount of air taken into the internal combustion engine as the load and the rotational speed of the internal combustion engine, and the selecting means is based on the air quantity and the rotational speed. The air for selecting one of the first operation region and the second operation region and the first control means for selecting the first operation region when the in-cylinder injection amount decreases. It is preferable to reduce both the amount and the threshold value of the rotational speed.
 (6)また、前記ポート噴射弁から噴射されるポート噴射量を制御するポート噴射制御手段と、前記気筒の吸気弁及び排気弁がともに開状態となる重複期間を制御する重複期間制御手段とを備えることが好ましい。この場合、前記第二制御手段で実施される前記第二制御は、前記筒内噴射量の低下時に、前記筒内噴射量の低下量に相当する量の前記ポート噴射量を増加させるとともに前記重複期間を短縮させる制御であることが好ましい。 (6) Also, port injection control means for controlling the amount of port injection injected from the port injection valve, and overlap period control means for controlling the overlap period in which both the intake valve and the exhaust valve of the cylinder are open. It is preferable to provide. In this case, the second control performed by the second control means increases the port injection amount corresponding to the decrease amount of the in-cylinder injection amount and reduces the overlap when the in-cylinder injection amount decreases. It is preferable that the control shortens the period.
 開示の内燃機関の制御装置によれば、内燃機関の負荷に応じて第一制御と第二制御とを切り換えることで、筒内噴射弁の噴射能力を回復させる制御と出力の確保を優先する制御とを何れかに偏ることなく両立させることができる。これにより、筒内噴射弁の噴射能力を従来よりも高い状態に維持しつつ、負荷要求に応じた内燃機関の出力を確保することができる。 According to the disclosed control device for an internal combustion engine, control that restores the injection ability of the in-cylinder injection valve and control that prioritizes output by switching between the first control and the second control according to the load of the internal combustion engine. Can be made compatible without any bias. Thereby, the output of the internal combustion engine according to the load request can be ensured while maintaining the injection capability of the in-cylinder injection valve in a higher state than before.
一実施形態に係る内燃機関の制御装置のブロック構成及びこの制御装置が適用されたエンジンの構成を例示する図である。It is a figure which illustrates the block configuration of the control apparatus of the internal combustion engine which concerns on one Embodiment, and the structure of the engine to which this control apparatus was applied. (a),(b)はともに、本制御装置による筒内噴射及びポート噴射の実施領域を説明するためのグラフである。(A), (b) is a graph for demonstrating the implementation area | region of in-cylinder injection and port injection by this control apparatus. 本制御装置で実施される筒内噴射弁の噴射能力の算出に係る制御を例示するフローチャートである。It is a flowchart which illustrates the control which concerns on calculation of the injection capability of the cylinder injection valve implemented with this control apparatus. 本制御装置で実施される制御の切り換え手順を例示するフローチャートである。It is a flowchart which illustrates the control switching procedure implemented with this control apparatus.
 図面を参照して制御装置について説明する。なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができるとともに、必要に応じて取捨選択することができ、あるいは適宜組み合わせることが可能である。 The control device will be described with reference to the drawings. Note that the embodiment described below is merely an example, and there is no intention to exclude various modifications and technical applications that are not explicitly described in the following embodiment. Each configuration of the present embodiment can be implemented with various modifications without departing from the spirit thereof, and can be selected or combined as appropriate.
 [1.装置構成]
  [1-1.エンジン]
 本実施形態の内燃機関の制御装置は、図1に示す車載ガソリンエンジン10(以下、単にエンジン10と呼ぶ)に適用される。ここでは、多気筒のエンジン10に設けられた複数の気筒のうちの一つを示し、これをシリンダー20と呼ぶ。シリンダー20内を往復摺動するピストン19は、コネクティングロッドを介してクランクシャフト21に接続される。
 シリンダー20の周囲には、冷却水の流路となるウォータージャケット23が設けられる。このウォータージャケット23には図示しない冷却水通路が接続され、これらのウォータージャケット23及び冷却水通路の内部を冷却水が循環する。
[1. Device configuration]
[1-1. engine]
The control device for an internal combustion engine according to the present embodiment is applied to the on-vehicle gasoline engine 10 (hereinafter simply referred to as the engine 10) shown in FIG. Here, one of a plurality of cylinders provided in the multi-cylinder engine 10 is shown, and this is called a cylinder 20. The piston 19 that reciprocates in the cylinder 20 is connected to the crankshaft 21 via a connecting rod.
Around the cylinder 20, a water jacket 23 serving as a cooling water flow path is provided. A cooling water passage (not shown) is connected to the water jacket 23, and the cooling water circulates inside the water jacket 23 and the cooling water passage.
 シリンダー20の天井面には、吸気ポート17及び排気ポート18が接続される。吸気ポート17のシリンダー20側の開口部には吸気弁27が設けられ、排気ポート18には排気弁28が設けられる。吸気弁27が開閉することで吸気ポート17と燃焼室(シリンダー20の内部側)とが連通又は閉鎖され、排気弁28が開閉することで排気ポート18と燃焼室とが連通又は遮断される。
 吸気ポート17と排気ポート18との間には、点火プラグ22がその先端を燃焼室側に突出させた状態で設けられる。点火プラグ22での着火のタイミングは、後述するエンジン制御装置1で制御される。
An intake port 17 and an exhaust port 18 are connected to the ceiling surface of the cylinder 20. An intake valve 27 is provided at the opening of the intake port 17 on the cylinder 20 side, and an exhaust valve 28 is provided at the exhaust port 18. When the intake valve 27 is opened and closed, the intake port 17 and the combustion chamber (inside the cylinder 20) are communicated or closed, and when the exhaust valve 28 is opened and closed, the exhaust port 18 and the combustion chamber are communicated or blocked.
A spark plug 22 is provided between the intake port 17 and the exhaust port 18 with its tip projecting toward the combustion chamber. The timing of ignition at the spark plug 22 is controlled by the engine control device 1 described later.
 吸気弁27及び排気弁28の上端部はそれぞれ、可変動弁機構40内のロッカーアーム35,37に接続され、ロッカーアーム35,37の揺動に応じて個別に上下方向に往復駆動される。また、各ロッカーアーム35,37の他端には、カムシャフトに軸支されたカム36,38が設けられる。カム36,38の形状(カムプロファイル)に応じて、ロッカーアーム35,37の揺動パターンが定められる。吸気弁27及び排気弁28のバルブリフト量,バルブタイミングは、可変動弁機構40を介してエンジン制御装置1で制御される。 The upper end portions of the intake valve 27 and the exhaust valve 28 are respectively connected to rocker arms 35 and 37 in the variable valve mechanism 40, and are individually reciprocated in the vertical direction according to the swinging of the rocker arms 35 and 37. The other ends of the rocker arms 35 and 37 are provided with cams 36 and 38 supported on the camshaft. The rocking pattern of the rocker arms 35 and 37 is determined according to the shape (cam profile) of the cams 36 and 38. The valve lift amounts and valve timings of the intake valve 27 and the exhaust valve 28 are controlled by the engine control device 1 via the variable valve mechanism 40.
  [1-2.燃料噴射系]
 シリンダー20への燃料供給用のインジェクターとして、シリンダー20内に直接的に燃料を噴射する直噴インジェクター11(筒内噴射弁)と、吸気ポート17内に燃料を噴射するポート噴射インジェクター12(ポート噴射弁)とが設けられる。直噴インジェクター11から噴射された燃料は、例えば筒内に形成される層状の空気流に乗って点火プラグ22の近傍に誘導され、吸入空気中に不均一に分布する。一方、ポート噴射インジェクター12から噴射された燃料は、吸気ポート17内で霧化し、吸入空気とよく混ざった状態でシリンダー20内に導入される。
[1-2. Fuel injection system]
As an injector for supplying fuel to the cylinder 20, a direct injection injector 11 (in-cylinder injection valve) that injects fuel directly into the cylinder 20 and a port injection injector 12 (port injection) that injects fuel into the intake port 17. Valve). The fuel injected from the direct injection injector 11 is guided in the vicinity of the spark plug 22 on a layered air flow formed in, for example, a cylinder, and is unevenly distributed in the intake air. On the other hand, the fuel injected from the port injector 12 is atomized in the intake port 17 and introduced into the cylinder 20 in a state of being well mixed with the intake air.
 これらの二種類のインジェクターは、エンジン10に設けられる図示しない他の気筒にも設けられる。直噴インジェクター11及びポート噴射インジェクター12から噴射される燃料量及びその噴射タイミングは、エンジン制御装置1で制御される。例えば、エンジン制御装置1から各インジェクター11,12に制御パルス信号が伝達され、その制御パルス信号の大きさに対応する期間だけ、各インジェクター11,12の噴孔が開放される。これにより、燃料噴射量は制御パルス信号の大きさ(駆動パルス幅)に応じた量となり、噴射タイミングは制御パルス信号が伝達された時刻に対応したものとなる。 These two types of injectors are also provided in other cylinders (not shown) provided in the engine 10. The amount of fuel injected from the direct injection injector 11 and the port injection injector 12 and the injection timing thereof are controlled by the engine control device 1. For example, a control pulse signal is transmitted from the engine control device 1 to the injectors 11 and 12, and the injection holes of the injectors 11 and 12 are opened only during a period corresponding to the magnitude of the control pulse signal. Accordingly, the fuel injection amount becomes an amount corresponding to the magnitude (drive pulse width) of the control pulse signal, and the injection timing corresponds to the time when the control pulse signal is transmitted.
 直噴インジェクター11は、高圧燃料供給路13Aを介して高圧ポンプ14Aに接続される。一方、ポート噴射インジェクター12は、低圧燃料供給路13Bを介して低圧ポンプ14Bに接続される。直噴インジェクター11には、ポート噴射インジェクター12よりも高圧の燃料が供給される。
 高圧ポンプ14A及び低圧ポンプ14Bはともに、燃料を圧送するための機械式の流量可変型ポンプである。これらのポンプ14A,14Bは、エンジン10や電動機などから駆動力の供給を受けて作動し、燃料タンク15内の燃料を各供給路13A,13Bに吐出する。なお、各ポンプ14A,14Bから吐出される燃料量及び燃圧は、エンジン制御装置1で可変制御される。
The direct injection injector 11 is connected to a high pressure pump 14A via a high pressure fuel supply path 13A. On the other hand, the port injector 12 is connected to the low-pressure pump 14B via the low-pressure fuel supply path 13B. The direct injection injector 11 is supplied with higher pressure fuel than the port injection injector 12.
Both the high-pressure pump 14A and the low-pressure pump 14B are mechanical variable flow rate pumps for pumping fuel. These pumps 14A and 14B operate by receiving driving force from the engine 10 or an electric motor, and discharge the fuel in the fuel tank 15 to the supply passages 13A and 13B. The amount of fuel and the fuel pressure discharged from each pump 14A, 14B are variably controlled by the engine control device 1.
  [1-3.動弁系]
 本エンジン10には、ロッカーアーム35,37又はカム36,38の動作を制御する可変動弁機構40が設けられる。可変動弁機構40は、吸気弁27及び排気弁28のそれぞれについて、最大バルブリフト量及びバルブタイミングを個別に、又は、連動させつつ変更するための機構である。この可変動弁機構40には、ロッカーアーム35,37の揺動量及び揺動のタイミングを変化させるための機構として、バルブリフト量調整機構41とバルブタイミング調整機構42とが設けられる。
[1-3. Valve system]
The engine 10 is provided with a variable valve mechanism 40 that controls the operation of the rocker arms 35 and 37 or the cams 36 and 38. The variable valve mechanism 40 is a mechanism for changing the maximum valve lift amount and the valve timing individually or in conjunction with each of the intake valve 27 and the exhaust valve 28. The variable valve mechanism 40 is provided with a valve lift amount adjusting mechanism 41 and a valve timing adjusting mechanism 42 as mechanisms for changing the swing amount and swing timing of the rocker arms 35 and 37.
 バルブリフト量調整機構41は、吸気弁27や排気弁28の最大バルブリフト量を連続的に変更する機構であり、カム36,38からロッカーアーム35,37に伝達される揺動の大きさを変更する機能を持つ。ロッカーアーム35,37の揺動の大きさを変更するための具体的な構造は任意とする。
 バルブリフト量に対応する制御用パラメーターは、制御角θVVLと呼ばれる。バルブリフト量調整機構41は、制御角θVVLが大きいほど、バルブリフト量を増大させる特性を持つ。この制御角θVVLは、後述するエンジン制御装置1のバルブ制御部4で演算され、バルブリフト量調整機構41に伝達される。
The valve lift amount adjusting mechanism 41 is a mechanism for continuously changing the maximum valve lift amount of the intake valve 27 and the exhaust valve 28, and controls the magnitude of the swing transmitted from the cams 36, 38 to the rocker arms 35, 37. Has the ability to change. A specific structure for changing the swinging magnitude of the rocker arms 35 and 37 is arbitrary.
The control parameter corresponding to the valve lift is called the control angle θ VVL . The valve lift adjustment mechanism 41 has a characteristic of increasing the valve lift as the control angle θ VVL is larger. The control angle θ VVL is calculated by a valve control unit 4 of the engine control device 1 described later and transmitted to the valve lift adjustment mechanism 41.
 バルブタイミング調整機構42は、吸気弁27や排気弁28の開閉のタイミング(バルブタイミング)を変更する機構であり、ロッカーアーム35,37に揺動を生じさせるカム36,38又はカムシャフトの回転位相を変更する機能を持つ。なお、カム36,38又はカムシャフトの回転位相を変更することで、クランクシャフト21の回転位相に対するロッカーアーム35,37の揺動のタイミングを連続的にずらすことが可能となる。 The valve timing adjusting mechanism 42 is a mechanism for changing the opening / closing timing (valve timing) of the intake valve 27 and the exhaust valve 28, and the rotational phases of the cams 36 and 38 or the camshaft that cause the rocker arms 35 and 37 to swing. With the ability to change. Note that by changing the rotational phase of the cams 36 and 38 or the camshaft, the rocking timing of the rocker arms 35 and 37 with respect to the rotational phase of the crankshaft 21 can be continuously shifted.
 バルブタイミングに対応する制御用のパラメーターは、位相角θVVTと呼ばれる。この位相角θVVTは、基準となるカムシャフトの位相に対するカム36,38の位相がどの程度進角又は遅角しているかを示す量であり、吸気弁27,排気弁28のそれぞれの開弁時期,閉弁時期に対応する。また、位相角θVVTは、エンジン制御装置1のバルブ制御部4で演算され、バルブタイミング調整機構42に伝達される。バルブタイミング調整機構42は、カム36,38のそれぞれの位相角θVVTを調整することでバルブタイミングを任意に制御する。 The control parameter corresponding to the valve timing is called the phase angle θ VVT . The phase angle θ VVT is an amount indicating how much the phases of the cams 36 and 38 are advanced or retarded with respect to the phase of the reference camshaft, and each of the intake valves 27 and the exhaust valves 28 is opened. Corresponds to the timing and valve closing timing. Further, the phase angle θ VVT is calculated by the valve control unit 4 of the engine control device 1 and transmitted to the valve timing adjusting mechanism 42. The valve timing adjustment mechanism 42 arbitrarily controls the valve timing by adjusting the phase angle θ VVT of each of the cams 36 and 38.
  [1-4.吸排気系]
 また、このエンジン10の吸排気系には、排気圧を利用してシリンダー20内に吸気を過給するターボチャージャー30(過給機)が設けられる。ターボチャージャー30は、吸気ポート17の上流側に接続された吸気通路24と、排気ポート18の下流側に接続された排気通路29との両方にまたがって介装される。
[1-4. Intake and exhaust system]
The intake and exhaust system of the engine 10 is provided with a turbocharger 30 (supercharger) that supercharges intake air into the cylinder 20 using exhaust pressure. The turbocharger 30 is interposed across both the intake passage 24 connected to the upstream side of the intake port 17 and the exhaust passage 29 connected to the downstream side of the exhaust port 18.
 ターボチャージャー30のタービン30Aは、排気通路29内の排気圧で回転し、その回転力を吸気通路24側のコンプレッサー30Bに伝達する。コンプレッサー30Bは、吸気通路24側の吸気を下流側へと圧縮し、エンジン10への過給を行う。なお、吸気通路24上におけるコンプレッサー30Bよりも吸気流の下流側にはインタークーラー26が設けられ、圧縮された空気が冷却される。ターボチャージャー30による過給操作は、エンジン制御装置1で制御される。 The turbine 30A of the turbocharger 30 is rotated by the exhaust pressure in the exhaust passage 29 and transmits the rotational force to the compressor 30B on the intake passage 24 side. The compressor 30B compresses the intake air on the intake passage 24 side to the downstream side, and supercharges the engine 10. Note that an intercooler 26 is provided on the intake passage 24 downstream of the compressor 30B in the intake air flow to cool the compressed air. The supercharging operation by the turbocharger 30 is controlled by the engine control device 1.
  [1-5.検出系]
 クランクシャフト21の一端には、その中心軸がクランクシャフト21の回転軸と一致するように設けられた円盤状のクランク板21aと、クランク板21aの回転角を検出するクランク角センサー31が設けられる。クランク板21aの外縁部には、例えば凹凸21bが形成される。一方、クランク角センサー31は、クランク板21aの外縁部の近傍に固定され、クランク板21aの凹凸21bの形状を検出してクランクパルス信号を出力する。ここで出力されたクランクパルス信号は、エンジン制御装置1に伝達される。
[1-5. Detection system]
At one end of the crankshaft 21, a disc-shaped crank plate 21a provided so that its central axis coincides with the rotation axis of the crankshaft 21, and a crank angle sensor 31 for detecting the rotation angle of the crank plate 21a are provided. . On the outer edge portion of the crank plate 21a, for example, irregularities 21b are formed. On the other hand, the crank angle sensor 31 is fixed in the vicinity of the outer edge of the crank plate 21a, detects the shape of the unevenness 21b of the crank plate 21a, and outputs a crank pulse signal. The crank pulse signal output here is transmitted to the engine control device 1.
 クランク角センサー31から出力されるクランクパルス信号の周期は、クランクシャフト21が速く回転するほど短くなり、クランクパルス信号の時間密度はエンジンの実回転数Ne(エンジン回転数)やクランクシャフト21の角速度に対応したものとなる。したがって、クランク角センサー31は、エンジン回転数Neやクランク角度,角速度を検出する手段として機能する。
 排気通路29上の任意の位置には、排気中に含まれる酸素濃度を計測する酸素濃度センサー32が設けられる。ここで検出された酸素濃度の情報は、エンジン制御装置1に伝達される。
The cycle of the crank pulse signal output from the crank angle sensor 31 becomes shorter as the crankshaft 21 rotates faster, and the time density of the crank pulse signal depends on the actual engine speed Ne (engine speed) and the angular speed of the crankshaft 21. It becomes a thing corresponding to. Therefore, the crank angle sensor 31 functions as a means for detecting the engine speed Ne, the crank angle, and the angular velocity.
An oxygen concentration sensor 32 that measures the concentration of oxygen contained in the exhaust is provided at an arbitrary position on the exhaust passage 29. Information on the oxygen concentration detected here is transmitted to the engine control device 1.
 吸気通路24には、空気の流量を検出するエアフローセンサー43が設けられる。ここで検出される流量の情報は、シリンダー20に導入される吸気量に対応するものであり、エンジン制御装置1に伝達される。また、高圧燃料供給路13A上には、直噴インジェクター11に導入される燃圧(燃料圧力)を検出する燃圧センサー33が設けられる。ここで検出された燃圧の情報も、エンジン制御装置1に伝達される。 In the intake passage 24, an air flow sensor 43 for detecting the air flow rate is provided. The flow rate information detected here corresponds to the intake air amount introduced into the cylinder 20 and is transmitted to the engine control device 1. Further, a fuel pressure sensor 33 for detecting a fuel pressure (fuel pressure) introduced into the direct injection injector 11 is provided on the high pressure fuel supply path 13A. Information on the detected fuel pressure is also transmitted to the engine control device 1.
 車両の任意の位置には、アクセルペダルの踏み込み量に対応する操作量を検出するアクセルペダルセンサー34が設けられる。アクセルペダルの踏み込み操作量は、運転者の加速要求に対応するパラメーターであり、すなわちエンジン10への出力要求に対応する。ここで検出された操作量の情報は、エンジン制御装置1に伝達される。 Accelerator pedal sensor 34 for detecting an operation amount corresponding to the amount of depression of the accelerator pedal is provided at an arbitrary position of the vehicle. The amount by which the accelerator pedal is depressed is a parameter corresponding to the driver's acceleration request, that is, corresponds to an output request to the engine 10. Information on the operation amount detected here is transmitted to the engine control device 1.
  [1-6.制御系]
 エンジン制御装置1(エンジンECU)は、例えばマイクロプロセッサやROM,RAM等を集積したLSIデバイスや組み込み電子デバイスとして構成された電子制御装置であり、専用通信線や車載ネットワークの通信網を介して他の電子制御装置,可変動弁機構40,クランク角センサー31,酸素濃度センサー32,燃圧センサー33,アクセルペダルセンサー34,エアフローセンサー43等の各種センサー類と接続される。
[1-6. Control system]
The engine control device 1 (engine ECU) is an electronic control device configured as an LSI device or an embedded electronic device in which a microprocessor, ROM, RAM, and the like are integrated, for example, via a dedicated communication line or an in-vehicle network communication network. Are connected to various sensors such as an electronic control device, a variable valve mechanism 40, a crank angle sensor 31, an oxygen concentration sensor 32, a fuel pressure sensor 33, an accelerator pedal sensor 34, and an air flow sensor 43.
 このエンジン制御装置1は、エンジン10に関する点火系,燃料系,吸排気系及び動弁系といった広汎なシステムを制御する。エンジン制御装置1の具体的な制御対象としては、直噴インジェクター11及びポート噴射インジェクター12から噴射される燃料噴射量とその噴射時期,点火プラグ22での点火時期,吸気弁27及び排気弁28のバルブリフト量及びバルブタイミング,ターボチャージャー30の作動状態,図示しないスロットルバルブの開度等が挙げられる。 The engine control device 1 controls a wide range of systems related to the engine 10 such as an ignition system, a fuel system, an intake / exhaust system, and a valve system. Specific control objects of the engine control device 1 include the fuel injection amount and its injection timing injected from the direct injection injector 11 and the port injection injector 12, the ignition timing at the spark plug 22, the intake valve 27 and the exhaust valve 28. Examples include the valve lift amount and valve timing, the operating state of the turbocharger 30, the opening of a throttle valve (not shown), and the like.
 本実施形態では、直噴インジェクター11の燃料噴射能力が低下したときに筒内噴射の頻度を高める「マップ変更制御(第一制御)」、同じく直噴インジェクター11の燃料噴射能力が低下したときにポート噴射弁からの燃料噴射で噴射量をカバーする「補填制御(第二制御)」、これらのマップ変更制御と補填制御とをエンジン負荷に応じて切り換える「切り換え制御」について詳述する。
 また、上記の三種類の制御に関連して、筒内噴射及びポート噴射を総合的に管理する「噴射領域制御」、ターボチャージャー30の作動状態を制御する「過給制御」、直噴インジェクター11の燃料噴射能力の低下を判断する「噴射能力算出制御」についても併せて説明する。
In the present embodiment, “map change control (first control)” that increases the frequency of in-cylinder injection when the fuel injection capability of the direct injection injector 11 decreases, and similarly when the fuel injection capability of the direct injection injector 11 decreases. The “compensation control (second control)” that covers the injection amount by fuel injection from the port injection valve, and the “switching control” that switches between the map change control and the compensation control according to the engine load will be described in detail.
Further, in relation to the above three types of control, “injection region control” for comprehensively managing in-cylinder injection and port injection, “supercharging control” for controlling the operating state of the turbocharger 30, and direct injection injector 11 The “injection capacity calculation control” for determining the decrease in the fuel injection capacity will also be described.
 [2.制御の概要]
  [2-1.噴射領域制御]
 噴射領域制御とは、エンジン10の運転状態やエンジン10に要求される出力の大きさに応じて、筒内噴射,ポート噴射といった燃料噴射方式を使い分ける制御である。ここでは、例えばエンジン回転数Neやエンジン負荷,空気量,充填効率Ec(目標充填効率,実充填効率など)に基づき、ポート噴射のみを実施するポート噴射モードと、筒内噴射を優先的に実施する筒内噴射優先モードとの何れか一方が選択される。
[2. Overview of control]
[2-1. Injection area control]
The injection region control is control that uses different fuel injection methods such as in-cylinder injection and port injection according to the operating state of the engine 10 and the magnitude of output required for the engine 10. Here, for example, based on the engine speed Ne, engine load, air amount, and charging efficiency Ec (target charging efficiency, actual charging efficiency, etc.), port injection mode in which only port injection is performed and in-cylinder injection are preferentially performed. One of the in-cylinder injection priority modes to be performed is selected.
 エンジン回転数Ne及び充填効率Ecに基づいて噴射モードを選択する場合、図2(a)に示すような制御マップを用いることが考えられる。すなわち、エンジン回転数Neが所定回転数Ne0未満であり、かつ充填効率Ecが所定効率Ec0未満であるときに、ポート噴射モードが選択されることとする。また、エンジン回転数Neが所定回転数Ne0以上であるか、又は充填効率Ecが所定効率Ec0以上であるときに、筒内噴射優先モードが選択されることとする。 When the injection mode is selected based on the engine speed Ne and the charging efficiency Ec, it is conceivable to use a control map as shown in FIG. That is, the port injection mode is selected when the engine speed Ne is less than the predetermined speed Ne 0 and the charging efficiency Ec is less than the predetermined efficiency Ec 0 . Further, the in-cylinder injection priority mode is selected when the engine speed Ne is equal to or higher than the predetermined speed Ne 0 or when the charging efficiency Ec is equal to or higher than the predetermined efficiency Ec 0 .
 なお、充填効率Ecとは、一回の吸気行程(ピストン19が上死点から下死点に移動するまでの一行程)の間にシリンダー20内に充填される空気の体積を標準状態での気体体積に正規化したのちシリンダー容積で除算したものである。実充填効率はその行程でシリンダー20内に導入された空気量に対応し、目標充填効率は充填効率Ecの目標値であって目標空気量に対応する。上記の噴射モードを選択に際して、実充填効率,目標充填効率のどちらを用いてもよい。 The filling efficiency Ec means the volume of air filled in the cylinder 20 during one intake stroke (one stroke until the piston 19 moves from the top dead center to the bottom dead center) in a standard state. Normalized to gas volume and then divided by cylinder volume. The actual charging efficiency corresponds to the amount of air introduced into the cylinder 20 in the stroke, and the target charging efficiency is a target value of the charging efficiency Ec and corresponds to the target air amount. In selecting the injection mode, either the actual filling efficiency or the target filling efficiency may be used.
 ポート噴射モードは、エンジン10が低負荷,低回転のときに選択される噴射モードである。ポート噴射モードでは、直噴インジェクター11からの燃料噴射が禁止され、要求される出力を得るために噴射すべきすべての燃料がポート噴射インジェクター12から噴射される。以下、ポート噴射インジェクター12から噴射される燃料量のことを、ポート噴射量とも呼ぶ。 The port injection mode is an injection mode that is selected when the engine 10 is under low load and low rotation. In the port injection mode, fuel injection from the direct injection injector 11 is prohibited, and all the fuel to be injected to obtain the required output is injected from the port injection injector 12. Hereinafter, the amount of fuel injected from the port injector 12 is also referred to as a port injection amount.
 筒内噴射優先モードは、エンジン10の運転状態が低負荷低回転でないとき(ポート噴射モード以外のとき)に選択される噴射モードである。筒内噴射優先モードでは、筒内噴射がポート噴射よりも優先して実施される。すなわち、要求される出力を得るために噴射すべき燃料のすべてを直噴インジェクター11からの噴射で賄うことができる場合には、直噴インジェクター11のみで燃料を噴射する。以下、直噴インジェクター11から噴射される燃料量のことを、筒内噴射量とも呼ぶ。 The in-cylinder injection priority mode is an injection mode that is selected when the operating state of the engine 10 is not low load and low rotation (other than the port injection mode). In the in-cylinder injection priority mode, in-cylinder injection is performed with priority over port injection. That is, when all of the fuel to be injected in order to obtain the required output can be covered by the injection from the direct injection injector 11, the fuel is injected only by the direct injection injector 11. Hereinafter, the amount of fuel injected from the direct injection injector 11 is also referred to as an in-cylinder injection amount.
 一方、直噴インジェクター11には、噴射期間の制約による最大噴射量が設定されており、これを超える量の燃料を一回の燃焼サイクル内で噴射することができない。そこで、噴射すべき筒内噴射量の目標値が直噴インジェクター11の最大噴射量を超える場合には、不足分をポート噴射インジェクター12から噴射し、トータルの燃料噴射量を確保する制御を実施する。この場合、同一の燃焼サイクル内で直噴インジェクター11とポート噴射インジェクター12とがともに作動し、筒内噴射及びポート噴射の両方が実施される。 On the other hand, the maximum injection amount is set in the direct injection injector 11 due to the restriction of the injection period, and an amount of fuel exceeding this cannot be injected within one combustion cycle. Therefore, when the target value of the in-cylinder injection amount to be injected exceeds the maximum injection amount of the direct injection injector 11, the shortage is injected from the port injector 12 and control is performed to ensure the total fuel injection amount. . In this case, both the direct injection injector 11 and the port injection injector 12 operate in the same combustion cycle, and both in-cylinder injection and port injection are performed.
  [2-2.過給制御]
 過給制御とは、エンジン10の運転状態やエンジン10に要求される出力の大きさに応じてターボチャージャー30の作動状態(オン/オフ状態やその作動量等)を定める制御である。ここでは、例えばエンジン回転数Neやエンジン10に作用する負荷に基づき、ターボチャージャー30を作動させるか否かが判定され、判定結果に応じてターボチャージャー30が駆動される。
 典型的な過給機の制御手法としては、エンジン10に要求される負荷が所定負荷よりも大きい場合にターボチャージャー30が駆動される。過給によりシリンダー20内に導入される吸気量が増大し、エンジン出力が増大する。
[2-2. Supercharging control]
The supercharging control is control that determines the operating state (on / off state, operating amount, etc.) of the turbocharger 30 according to the operating state of the engine 10 and the magnitude of the output required for the engine 10. Here, for example, whether or not to operate the turbocharger 30 is determined based on the engine speed Ne or a load acting on the engine 10, and the turbocharger 30 is driven according to the determination result.
As a typical supercharger control method, the turbocharger 30 is driven when a load required for the engine 10 is larger than a predetermined load. The amount of intake air introduced into the cylinder 20 by supercharging increases, and the engine output increases.
  [2-3.噴射能力算出制御]
 直噴インジェクター11の先端は、常にシリンダー20内の燃焼ガスに曝されるため、噴孔の近傍にデポジットが付着,堆積する場合がある。デポジットの付着量が増大すると、直噴インジェクター11から実際に噴射される燃料量が、制御パルス信号で指示された目標燃料噴射量よりも減少する。噴射能力算出制御では、このような直噴インジェクター11の燃料噴射能力の低下を算出(判定,推定)し、これを直噴インジェクター11の制御指令値にフィードバックすることで必要な燃料噴射量を確保する。直噴インジェクター11から実際に噴射された燃料量は、例えば、酸素濃度センサー32で検出された排気中の酸素濃度に基づいて算出される。
[2-3. Injection capacity calculation control]
Since the tip of the direct injection injector 11 is always exposed to the combustion gas in the cylinder 20, deposits may adhere and accumulate in the vicinity of the injection hole. When the deposit adhesion amount increases, the fuel amount actually injected from the direct injection injector 11 decreases from the target fuel injection amount indicated by the control pulse signal. In the injection capacity calculation control, a decrease in the fuel injection capacity of the direct injection injector 11 is calculated (determined and estimated), and this is fed back to the control command value of the direct injection injector 11 to secure a necessary fuel injection amount. To do. The amount of fuel actually injected from the direct injection injector 11 is calculated based on the oxygen concentration in the exhaust gas detected by the oxygen concentration sensor 32, for example.
 また、直噴インジェクター11の燃料噴射能力が低下したと判定されたときには、実際の燃料噴射量が不足しないように、能力低下に伴う燃料の不足分が直噴インジェクター11の目標燃料噴射量に加算される。このとき、能力低下を補うために加算される燃料量に関する情報は、各シリンダー20に設けられた直噴インジェクター11毎に記憶されて学習される。なお、燃料噴射能力の低下を補正した後の目標燃料噴射量が直噴インジェクター11の最大噴射量を超える場合には、ポート噴射インジェクター12からの燃料噴射量にその補正分が加算される。 Further, when it is determined that the fuel injection capacity of the direct injection injector 11 has been reduced, the shortage of fuel accompanying the reduction in capacity is added to the target fuel injection quantity of the direct injection injector 11 so that the actual fuel injection quantity is not insufficient. Is done. At this time, information on the amount of fuel added to compensate for the capacity reduction is stored and learned for each direct injection injector 11 provided in each cylinder 20. When the target fuel injection amount after correcting the decrease in the fuel injection capacity exceeds the maximum injection amount of the direct injection injector 11, the correction amount is added to the fuel injection amount from the port injection injector 12.
 これにより、直噴インジェクター11の噴射能力が低下した場合であっても、トータルの燃料噴射量が確保される。ただし、直噴インジェクター11の燃料噴射能力の低下量が所定の基準値を超えた場合(噴射能力が基準値を下回るほどデポジットが堆積した場合)には、以下に説明するマップ変更制御,補填制御の何れかが実施される。 Thereby, even when the injection capacity of the direct injection injector 11 is reduced, the total fuel injection amount is secured. However, when the amount of decrease in the fuel injection capacity of the direct injection injector 11 exceeds a predetermined reference value (when deposits accumulate as the injection capacity falls below the reference value), map change control and compensation control described below. One of the above is implemented.
  [2-4.マップ変更制御]
 マップ変更制御(第一制御)は、噴射能力算出制御で算出された直噴インジェクター11の噴射能力が低下したときに実施される制御の一つであり、噴射領域制御で筒内噴射優先モードを選択されやすくする制御である。ここでは、通常時にはポート噴射モードが選択されるような運転状態であっても、筒内噴射優先モードが選択されうるように、筒内噴射優先モードの選択条件が緩和される。
[2-4. Map change control]
The map change control (first control) is one of the controls that are performed when the injection capacity of the direct injection injector 11 calculated by the injection capacity calculation control is reduced. The in-cylinder injection priority mode is set by the injection area control. This is a control that facilitates selection. Here, the selection condition for the in-cylinder injection priority mode is relaxed so that the in-cylinder injection priority mode can be selected even in an operation state in which the port injection mode is selected in the normal state.
 図2(a)に示すような制御マップが噴射領域制御で用いられる場合には、この制御マップ自体を変更することで容易に選択条件を変更することが可能である。例えば、図2(b)に示すように、筒内噴射優先モードに対応する制御領域が拡大された制御マップを用いることで(言い換えると、ポート噴射モードに対応する制御領域を縮小した制御マップを用いることで)、筒内噴射優先モードが選択されやすくなる。 When a control map as shown in FIG. 2 (a) is used in the injection region control, the selection condition can be easily changed by changing the control map itself. For example, as shown in FIG. 2B, by using a control map in which the control region corresponding to the in-cylinder injection priority mode is expanded (in other words, a control map in which the control region corresponding to the port injection mode is reduced). This makes it easier to select the in-cylinder injection priority mode.
 この制御マップでは、エンジン回転数Neが所定回転数Ne0よりも小さい所定回転数Ne1未満であり、かつ充填効率Ecが所定効率Ec0よりも小さい所定効率Ec1未満であるときに、ポート噴射モードが選択される。また、エンジン回転数Neが所定回転数Ne1以上であるか、又は充填効率Ecが所定効率Ec1以上であるときに、筒内噴射優先モードが選択される。 In this control map, when the engine speed Ne is less than the predetermined speed Ne 1 smaller than the predetermined speed Ne 0 and the charging efficiency Ec is less than the predetermined efficiency Ec 1 smaller than the predetermined efficiency Ec 0 , the port An injection mode is selected. Further, the in-cylinder injection priority mode is selected when the engine speed Ne is equal to or higher than the predetermined speed Ne 1 or when the charging efficiency Ec is equal to or higher than the predetermined efficiency Ec 1 .
  [2-5.補填制御]
 補填制御(第二制御)は、噴射能力算出制御で算出された直噴インジェクター11の噴射能力が低下したときに実施されるもう一つの制御であり、低下した直噴インジェクター11の噴射能力を補うようにポート噴射インジェクター12からの燃料噴射量を増加させる制御である。この補填制御では、噴射能力算出制御で算出された燃料の不足分がポート噴射インジェクター12の目標燃料噴射量に加算される。これにより、直噴インジェクター11の噴射能力が低下した場合であっても、トータルの燃料噴射量が確保される。
[2-5. Compensation control]
The compensation control (second control) is another control executed when the injection capacity of the direct injection injector 11 calculated by the injection capacity calculation control is reduced, and compensates for the decreased injection capacity of the direct injection injector 11. In this way, the fuel injection amount from the port injector 12 is increased. In this compensation control, the shortage of fuel calculated by the injection capacity calculation control is added to the target fuel injection amount of the port injector 12. Thereby, even if it is a case where the injection capability of the direct injection injector 11 falls, the total fuel injection amount is ensured.
 また、この補填制御には、ポート噴射燃料がシリンダー20を通り抜けて排気通路29側へ流出することを防止,抑制する「吹き抜け抑制制御」が含まれる。この吹き抜け抑制制御は、過給運転時にポート噴射燃料がシリンダー20を通り抜けて排気通路29側へ流出することを防止,抑制する制御である。
 具体的には、以下の三種類の制御が実施される。
(1)筒内噴射量の減少を補うためのポート噴射量の増加割合を演算する。
(2)ポート噴射量の増加割合に応じてバルブオーバーラップ期間を短縮する。
(3)ポート噴射時期を遅らせる。
The compensation control includes “blow-through suppression control” that prevents and suppresses the port-injected fuel from passing through the cylinder 20 and flowing out to the exhaust passage 29 side. This blow-through suppression control is control for preventing and suppressing port-injected fuel from passing through the cylinder 20 and flowing out to the exhaust passage 29 during the supercharging operation.
Specifically, the following three types of control are performed.
(1) An increase rate of the port injection amount for compensating for the decrease in the in-cylinder injection amount is calculated.
(2) The valve overlap period is shortened according to the increasing rate of the port injection amount.
(3) Delay the port injection timing.
 吹き抜け抑制制御では、排気行程から吸気行程にかけてのバルブオーバーラップの期間が短縮されるため、吸気ポート17から排気ポート18への混合気の吹き抜け量が抑制される。また、ポート噴射量の増加割合(筒内噴射量の減少度合い)に応じてバルブオーバーラップ期間が短縮されると、混合気の吹き抜け量がより少なくなる。さらに、ポート噴射時期を遅らせることで、燃料噴射の開始時刻から排気弁28の閉弁時刻までの時間が短縮され、混合気の吹き抜け量が減少する。 In the blow-off suppression control, the valve overlap period from the exhaust stroke to the intake stroke is shortened, so that the blow-through amount of the air-fuel mixture from the intake port 17 to the exhaust port 18 is suppressed. Further, when the valve overlap period is shortened in accordance with the increasing rate of the port injection amount (the degree of decrease in the in-cylinder injection amount), the amount of air-fuel mixture blown down becomes smaller. Furthermore, by delaying the port injection timing, the time from the start time of fuel injection to the closing time of the exhaust valve 28 is shortened, and the amount of air-fuel mixture blown is reduced.
  [2-6.切り換え制御]
 切り換え制御は、エンジン10の負荷に応じて上記のマップ変更制御と補填制御とを切り換えて実施させる制御である。この切り換え制御では、直噴インジェクター11の噴射能力が低下したときに、マップ変更制御及び補填制御の何れか一方が選択される。
[2-6. Switching control]
The switching control is control that is performed by switching between the map change control and the compensation control according to the load of the engine 10. In this switching control, one of map change control and compensation control is selected when the injection capability of the direct injection injector 11 decreases.
 本実施形態では、ターボチャージャー30が非作動の運転状態ではマップ変更制御が選択され、過給状態になるとマップ変更制御が補填制御に切り換えられる。なお、ターボチャージャー30の作動状態の代わりに、あるいは追加の切り換え条件として、空気量や充填効率Ecといった、エンジン10の負荷に対応するパラメーターを参照する構成としてもよい。 In this embodiment, the map change control is selected when the turbocharger 30 is in the non-operating state, and the map change control is switched to the compensation control when the turbocharger 30 is in the supercharging state. In addition, it is good also as a structure which refers to the parameter corresponding to the load of the engine 10, such as air quantity and charging efficiency Ec instead of the operating state of the turbocharger 30, or as an additional switching condition.
 [3.制御構成]
 上記の制御を実施するためのソフトウェア又はハードウェアとして、エンジン制御装置1には、噴射領域制御部2,過給制御部3,バルブ制御部4,噴射能力算出部5,補填噴射部6及び切り換え制御部7が設けられる。
[3. Control configuration]
As software or hardware for performing the above control, the engine control apparatus 1 includes an injection region control unit 2, a supercharging control unit 3, a valve control unit 4, an injection capacity calculation unit 5, a supplementary injection unit 6, and a switching. A control unit 7 is provided.
 エンジン制御装置1の入力側には、クランク角センサー31,酸素濃度センサー32,燃圧センサー33,アクセルペダルセンサー34,エアフローセンサー43が接続され、クランクシャフト21の回転角(又は回転角に基づいて演算されたエンジン回転数Ne),排気中の酸素濃度,燃料圧力,アクセルペダルの操作量,吸入空気量がそれぞれ入力される。また、エンジン制御装置1の出力側には、直噴インジェクター11,ポート噴射インジェクター12,可変動弁機構40が接続される。
 噴射領域制御部2は、噴射領域制御及びマップ変更制御を実施するものである。この噴射領域制御部2には、負荷検出部2a,選択部2b,ポート噴射部2c,筒内噴射部2d及びマップ変更部2eが設けられる。
A crank angle sensor 31, an oxygen concentration sensor 32, a fuel pressure sensor 33, an accelerator pedal sensor 34, and an air flow sensor 43 are connected to the input side of the engine control device 1, and calculation is performed based on the rotation angle (or rotation angle) of the crankshaft 21. The engine speed Ne), the oxygen concentration in the exhaust, the fuel pressure, the accelerator pedal operation amount, and the intake air amount are input. A direct injection injector 11, a port injection injector 12, and a variable valve mechanism 40 are connected to the output side of the engine control device 1.
The injection region control unit 2 performs injection region control and map change control. The injection region control unit 2 includes a load detection unit 2a, a selection unit 2b, a port injection unit 2c, an in-cylinder injection unit 2d, and a map change unit 2e.
 負荷検出部2a(負荷検出手段)は、エンジン10に作用する負荷を検出するものであり、ここでは二種類の負荷が検出される。第一の負荷は、噴射領域制御のための負荷であり、燃料噴射方式を選択するための負荷である。例えば、図2(a),(b)に示す例では充填効率Ecが負荷の指標として使用されており、この充填効率Ecの値が負荷検出部2aで検出される。第一の負荷の情報は選択部2bに伝達される。
 第二の負荷は、マップ変更制御のための負荷であり、筒内噴射優先モードの選択条件を緩和するための負荷である。本実施形態では、第二の負荷としてターボチャージャー30の作動状態が負荷検出部2aで検出される。第二の負荷の情報は、切り換え制御部7に伝達される。
The load detection unit 2a (load detection means) detects a load acting on the engine 10, and here, two types of loads are detected. The first load is a load for injection region control, and is a load for selecting a fuel injection method. For example, in the example shown in FIGS. 2A and 2B, the charging efficiency Ec is used as a load index, and the value of the charging efficiency Ec is detected by the load detection unit 2a. Information about the first load is transmitted to the selection unit 2b.
The second load is a load for map change control, and a load for relaxing the selection conditions for the in-cylinder injection priority mode. In the present embodiment, the operating state of the turbocharger 30 is detected by the load detector 2a as the second load. The information on the second load is transmitted to the switching control unit 7.
 選択部2b(選択手段)は、負荷検出部2aで検出された第一の負荷等に応じて燃料噴射方式を選択するものである。ここでは、例えば図2(a)に示すようなエンジン10の運転状態と噴射モードとの対応関係が予め設定されており、エンジン回転数Neと充填効率Ec(目標充填効率,実充填効率など)とに基づき、ポート噴射のみを実施するポート噴射モードと、筒内噴射を優先的に実施する筒内噴射優先モードとの何れか一方が選択される。ポート噴射モードは、エンジン10の運転状態が比較的低負荷,低回転のときに選択され、筒内噴射優先モードは、それ以外の運転状態のとき(ポート噴射モード以外のとき)に選択される。
 以下、選択部2bが記憶している制御マップのことを、第一制御マップと呼ぶ。第一制御マップは、エンジン10の負荷が比較的小さい状態で選択される制御マップである。本実施形態では、ターボチャージャー30の非作動時に第一制御マップが選択される。
The selection part 2b (selection means) selects a fuel injection system according to the 1st load etc. which were detected by the load detection part 2a. Here, for example, the correspondence relationship between the operating state of the engine 10 and the injection mode as shown in FIG. 2A is preset, and the engine speed Ne and the charging efficiency Ec (target charging efficiency, actual charging efficiency, etc.) Based on the above, either the port injection mode in which only port injection is performed or the in-cylinder injection priority mode in which in-cylinder injection is preferentially performed is selected. The port injection mode is selected when the operation state of the engine 10 is relatively low load and low rotation, and the in-cylinder injection priority mode is selected when the operation state is other than that (when other than the port injection mode). .
Hereinafter, the control map stored in the selection unit 2b is referred to as a first control map. The first control map is a control map that is selected while the load on the engine 10 is relatively small. In the present embodiment, the first control map is selected when the turbocharger 30 is not operating.
 ポート噴射部2c(ポート噴射制御手段)は、ポート噴射モード時にポート噴射を実施するものである。ポート噴射モードでは、ポート噴射部2cからポート噴射インジェクター12に制御パルス信号が出力され、この制御パルス信号に応じてポート噴射が実施される。一方、直噴インジェクター11からの燃料噴射は禁止され、要求される出力を得るために噴射すべき全ての燃料がポート噴射インジェクター12から噴射される。ポート噴射部2cは、ポート噴射インジェクター12から噴射されるポート噴射量を制御するポート噴射制御手段としての機能を持つ。 The port injection unit 2c (port injection control means) performs port injection in the port injection mode. In the port injection mode, a control pulse signal is output from the port injection unit 2c to the port injection injector 12, and port injection is performed according to the control pulse signal. On the other hand, fuel injection from the direct injection injector 11 is prohibited, and all the fuel to be injected to obtain the required output is injected from the port injection injector 12. The port injection unit 2c functions as a port injection control unit that controls the amount of port injection injected from the port injection injector 12.
 筒内噴射部2dは、筒内噴射優先モード時に筒内噴射を実施するものである。筒内噴射優先モードでは、筒内噴射がポート噴射よりも優先して実施される。すなわち、要求される出力を得るために噴射すべき燃料のすべてを直噴インジェクター11からの噴射で賄うことができる場合には、筒内噴射部2dから直噴インジェクター11に制御パルス信号が出力される。制御パルス信号の大きさ(駆動パルス幅)は、エンジン回転数Neや充填効率Ecに基づいて演算される目標筒内噴射量に対応する大きさに設定される。 The in-cylinder injection unit 2d performs in-cylinder injection in the in-cylinder injection priority mode. In the in-cylinder injection priority mode, in-cylinder injection is performed with priority over port injection. That is, when all of the fuel to be injected to obtain the required output can be covered by the injection from the direct injection injector 11, a control pulse signal is output from the in-cylinder injection portion 2d to the direct injection injector 11. The The magnitude of the control pulse signal (drive pulse width) is set to a magnitude corresponding to the target in-cylinder injection amount calculated based on the engine speed Ne and the charging efficiency Ec.
 ただし、目標筒内噴射量は、直噴インジェクター11の最大噴射量によってその上限を制限される。また、ポート噴射インジェクター12に出力される制御パルス信号の大きさは、上記の目標筒内噴射量から直噴インジェクター11の最大噴射量を減じた量に対応する大きさに設定される。直噴インジェクター11の目標筒内噴射量が最大噴射量以下の場合には、ポート噴射インジェクター12に制御パルス信号が出力されない。このような制御パルス信号の設定により、直噴インジェクター11が優先的に駆動される。 However, the upper limit of the target in-cylinder injection amount is limited by the maximum injection amount of the direct injection injector 11. Further, the magnitude of the control pulse signal output to the port injector 12 is set to a magnitude corresponding to an amount obtained by subtracting the maximum injection amount of the direct injection injector 11 from the target in-cylinder injection amount. When the target in-cylinder injection amount of the direct injection injector 11 is equal to or less than the maximum injection amount, no control pulse signal is output to the port injection injector 12. By such setting of the control pulse signal, the direct injection injector 11 is preferentially driven.
 マップ変更部2e(第一制御手段)は、マップ変更制御を実施するものである。ここには、例えば図2(b)に示すようなエンジン10の運転状態と噴射モードとの対応関係が予め設定されている。マップ変更部2eは、直噴インジェクター11の噴射能力の低下量が基準値を超えたときに、この制御マップを選択部2bに参照させて、筒内噴射の実施頻度を高めるように機能する。ただし、マップ変更制御を実施するか否かを最終的に判断するのは、後述する切り換え制御部7である。
 以下、マップ変更部2eが記憶している制御マップのことを、第二制御マップと呼ぶ。第二制御マップは、エンジン10の負荷が比較的大きい状態で選択される制御マップである。本実施形態では、ターボチャージャー30の作動時に第二制御マップが選択される。
The map change unit 2e (first control means) performs map change control. Here, for example, a correspondence relationship between the operating state of the engine 10 and the injection mode as shown in FIG. 2B is set in advance. The map changing unit 2e functions to increase the frequency of in-cylinder injection by making the selection unit 2b refer to this control map when the amount of decrease in the injection capacity of the direct injection injector 11 exceeds the reference value. However, it is the switching control unit 7 described later that finally determines whether or not to execute the map change control.
Hereinafter, the control map stored in the map changing unit 2e is referred to as a second control map. The second control map is a control map that is selected while the load on the engine 10 is relatively large. In the present embodiment, the second control map is selected when the turbocharger 30 is activated.
 過給制御部3(過給検出手段)は、過給制御を実施するものである。ここでは、エンジン回転数Neやエンジン10に作用する負荷の大きさが判定され、過給が必要な運転状態であると判定されたときにターボチャージャー30を駆動するための制御信号が出力される。
 ここで判定される負荷の大きさは、アクセルペダルの踏み込み操作量やスロットル開度に基づいて算出してもよいし、空気量(目標吸気量,目標充填効率,実吸気量,実充填効率など)に基づいて算出してもよい。なお、過給実施条件は、噴射モードを選択するための条件とは別個に設定されるものとしてもよいし、図2(a),(b)に示すグラフ上の所定領域として定義してもよい。
The supercharging control unit 3 (supercharging detecting means) performs supercharging control. Here, the engine speed Ne and the magnitude of the load acting on the engine 10 are determined, and when it is determined that the operating state requires supercharging, a control signal for driving the turbocharger 30 is output. .
The magnitude of the load determined here may be calculated based on the accelerator pedal depression amount and throttle opening, or the air amount (target intake air amount, target charging efficiency, actual intake air amount, actual charging efficiency, etc. ). The supercharging execution condition may be set separately from the condition for selecting the injection mode, or may be defined as a predetermined region on the graph shown in FIGS. 2 (a) and 2 (b). Good.
 バルブ制御部4(重複期間制御手段)は、可変動弁機構40の動作を制御するものである。ここでは、エンジン10の運転状態やエンジン回転数Ne,エンジン負荷等に応じて、吸気弁27,排気弁28のそれぞれの制御角θVVL,位相角θVVTが設定される。これらの制御角θVVL,位相角θVVTの情報は、バルブ制御部4から可変動弁機構40のバルブリフト量調整機構41,バルブタイミング調整機構42に伝達される。 The valve control unit 4 (overlap period control means) controls the operation of the variable valve mechanism 40. Here, the control angle θ VVL and phase angle θ VVT of each of the intake valve 27 and the exhaust valve 28 are set according to the operating state of the engine 10, the engine speed Ne, the engine load, and the like. Information on the control angle θ VVL and the phase angle θ VVT is transmitted from the valve control unit 4 to the valve lift adjustment mechanism 41 and the valve timing adjustment mechanism 42 of the variable valve mechanism 40.
 噴射能力算出部5(噴射量算出手段)は、噴射能力判定制御を実施するものである。この噴射能力算出部5には、実筒内噴射量算出部5a,学習部5b及び補正部5cが設けられる。
 実筒内噴射量算出部5aは、酸素濃度センサー32で検出された排気中の酸素濃度に基づき、実筒内噴射量を算出するものである。ここでは、排気中の酸素濃度と外気の酸素濃度との差から、燃焼反応を通じて消費された酸素量が算出され、この酸素量に対応する燃料量が消費燃料量として算出される。
The injection capacity calculation unit 5 (injection amount calculation means) performs injection capacity determination control. The injection capacity calculation unit 5 includes an actual in-cylinder injection amount calculation unit 5a, a learning unit 5b, and a correction unit 5c.
The actual in-cylinder injection amount calculation unit 5a calculates the actual in-cylinder injection amount based on the oxygen concentration in the exhaust gas detected by the oxygen concentration sensor 32. Here, the amount of oxygen consumed through the combustion reaction is calculated from the difference between the oxygen concentration in the exhaust and the oxygen concentration in the outside air, and the fuel amount corresponding to this oxygen amount is calculated as the consumed fuel amount.
 筒内噴射とポート噴射とが同時に実施されたときには、算出された消費燃料量からポート噴射燃料量を減じた量の燃料が、直噴インジェクター11から噴射された実筒内噴射量として算出される。また、筒内噴射のみが実施されたときには、算出された消費燃料量がそのまま実筒内噴射量として算出される。ここで算出された実筒内噴射量は、学習部5bに伝達される。 When the in-cylinder injection and the port injection are performed simultaneously, an amount of fuel obtained by subtracting the port injection fuel amount from the calculated fuel consumption amount is calculated as the actual in-cylinder injection amount injected from the direct injection injector 11. . When only in-cylinder injection is performed, the calculated fuel consumption amount is directly calculated as the actual in-cylinder injection amount. The actual in-cylinder injection amount calculated here is transmitted to the learning unit 5b.
 学習部5bは、噴射領域制御部2から出力された制御パルス信号に対応する目標筒内噴射量に対して、実筒内噴射量算出部5aで算出された実筒内噴射量がどの程度低下したかを演算するものである。ここでは、各シリンダー20に設けられた直噴インジェクター11毎に不足分の筒内噴射量と、噴射能力の低下量とが演算される。噴射能力の低下量は、例えば目標筒内噴射量に対する実筒内噴射量の割合として演算してもよいし、不足分の筒内噴射量から算出されるデポジット付着量として演算してもよい。ここで演算された不足分の筒内噴射量は補正部5cに伝達され、噴射能力の低下量は学習部5b内の記憶装置に記録される。 The learning unit 5b reduces the actual in-cylinder injection amount calculated by the actual in-cylinder injection amount calculation unit 5a with respect to the target in-cylinder injection amount corresponding to the control pulse signal output from the injection region control unit 2. It is to calculate what has been done. Here, for each direct injection injector 11 provided in each cylinder 20, a short in-cylinder injection amount and a reduction amount of the injection capacity are calculated. The amount of decrease in the injection capacity may be calculated, for example, as a ratio of the actual in-cylinder injection amount to the target in-cylinder injection amount, or may be calculated as a deposit adhesion amount calculated from a short amount of in-cylinder injection amount. The deficient in-cylinder injection amount calculated here is transmitted to the correction unit 5c, and the reduction amount of the injection capacity is recorded in the storage device in the learning unit 5b.
 補正部5cは、不足分の筒内噴射量を補填した制御パルス信号を噴射領域制御部2に出力させるものである。ここでは、噴射領域制御部2が演算した直噴インジェクター11の筒内噴射量に、不足分の筒内噴射量を加算させる制御信号が出力される。これにより、直噴インジェクター11の噴射能力の低下が学習部5bで検出された場合には、次回以降の筒内噴射量が増量するように補正される。また、この補正後の直噴インジェクター11の筒内噴射量が最大噴射量を超えたときには、ポート噴射量が増量補正される。 The correction unit 5c causes the injection region control unit 2 to output a control pulse signal that compensates for the in-cylinder injection amount. Here, a control signal for adding the short amount of in-cylinder injection to the in-cylinder injection amount of the direct injection injector 11 calculated by the injection region control unit 2 is output. Thereby, when the learning part 5b detects the fall of the injection capability of the direct injection injector 11, it correct | amends so that the cylinder injection amount after the next time may increase. Further, when the in-cylinder injection amount of the corrected direct injection injector 11 exceeds the maximum injection amount, the port injection amount is corrected to be increased.
 補填噴射部6(第二制御手段)は、補填制御及び吹き抜け抑制制御を実施するものである。ここでは、学習部5bで演算された直噴インジェクター11の噴射能力の低下量が基準値を超えた(噴射能力が基準値を下回るほどデポジットが堆積した)ときに補填制御が実施され、燃料の不足分がポート噴射インジェクター12の目標燃料噴射量に加算される。また、補填制御で増加したポート噴射燃料が排気通路29側へ吹き抜けないように、上記の三種類の吹き抜け抑制制御が実施される。 The compensation injection unit 6 (second control means) performs compensation control and blow-off suppression control. Here, compensation control is performed when the amount of decrease in the injection capacity of the direct injection injector 11 calculated by the learning unit 5b exceeds the reference value (deposits are accumulated as the injection capacity falls below the reference value), and the fuel The shortage is added to the target fuel injection amount of the port injector 12. In addition, the above three types of blow-through suppression control are performed so that the port injection fuel increased by the compensation control does not blow through to the exhaust passage 29 side.
 この三種類の制御に対応して、補填噴射部6にはポート噴射増加割合演算部6a,バルブオーバーラップ変更部6b及びポート噴射時期変更部6cが設けられる。
 ポート噴射増加割合演算部6aは、ポート噴射インジェクター12から噴射されるポート噴射量の増加割合を演算するものである。ここでは、補填制御によってポート噴射量が増量補正されたときに、補正前のポート噴射量に対する増分の割合が増加割合として演算される。ここで演算された増加割合の情報は、バルブオーバーラップ変更部6bに伝達される。
Corresponding to these three types of control, the supplementary injection unit 6 is provided with a port injection increase ratio calculation unit 6a, a valve overlap change unit 6b, and a port injection timing change unit 6c.
The port injection increase rate calculation unit 6a calculates an increase rate of the port injection amount injected from the port injection injector 12. Here, when the port injection amount is corrected to increase by the compensation control, the ratio of the increment to the port injection amount before correction is calculated as the increase rate. The information on the increase rate calculated here is transmitted to the valve overlap changing unit 6b.
 バルブオーバーラップ変更部6bは、ポート噴射量の増加割合に応じてバルブオーバーラップ(VOL)の期間を短縮する制御を実施するものである。ここでは、ポート噴射増加割合演算部6aで演算された増加割合と、エンジン回転数Neとに応じてバルブオーバーラップ期間の縮小量が設定される。縮小量の設定例を以下の表1「VOL制限マップ」に示す。この設定例では、ポート噴射量の増加割合が大きいほど、あるいはエンジン回転数Neが低速であるほど、バルブオーバーラップ期間の縮小量が増大する(バルブオーバーラップ期間がより短くなる)。
Figure JPOXMLDOC01-appb-T000001
The valve overlap changing unit 6b performs control for shortening the valve overlap (VOL) period in accordance with the increasing rate of the port injection amount. Here, the reduction amount of the valve overlap period is set according to the increase rate calculated by the port injection increase rate calculation unit 6a and the engine speed Ne. An example of setting the reduction amount is shown in Table 1 “VOL restriction map” below. In this setting example, the larger the rate of increase of the port injection amount or the lower the engine speed Ne, the greater the reduction amount of the valve overlap period (the valve overlap period becomes shorter).
Figure JPOXMLDOC01-appb-T000001
 ポート噴射時期変更部6cは、ポート噴射インジェクター12からの燃料噴射のタイミングを遅角させる制御を実施するものである。ここでは、エンジン回転数Neに応じてポート噴射の遅角量が設定される。遅角量の設定例を以下の表2「ポート噴射時期マップ」に示す。この設定例では、エンジン回転数Neが低速であるほど、ポート噴射の開始時刻が遅れる。なお、表中の数字は圧縮行程後の上死点を基準(0[°CA])として、ポート噴射を開始する時点のクランク角度が基準よりも何度前の角度に相当するかを示すものである。
Figure JPOXMLDOC01-appb-T000002
The port injection timing changing unit 6 c performs control for retarding the timing of fuel injection from the port injector 12. Here, the retard amount of the port injection is set according to the engine speed Ne. A setting example of the retard amount is shown in Table 2 “Port injection timing map” below. In this setting example, the port injection start time is delayed as the engine speed Ne is lower. The numbers in the table indicate how many times the crank angle at the start of port injection corresponds to the angle before the reference, with the top dead center after the compression stroke as the reference (0 [° CA]) It is.
Figure JPOXMLDOC01-appb-T000002
 切り換え制御部7(切り換え制御手段)は、切り換え制御を実施するものであり、エンジン10に作用する負荷に応じてマップ変更制御と補填制御とを切り換えて実施させる機能を持つ。ここでは、負荷検出部2aで検出された第二の負荷に基づき、マップ変更制御,補填制御の何れか一方が選択される。
 この切り換え制御部7は、ターボチャージャー30の非作動時には負荷が小さいものと判断してマップ変更制御を選択し、マップ変更部2eにマップ変更制御を実施させる信号を出力する。一方、ターボチャージャー30の作動時には負荷が大きいものと判断して補填制御を選択し、補填噴射部6に補填制御及び吹き抜け抑制制御を実施させる信号を出力する。したがって、直噴インジェクター11の噴射能力の低下量が基準値を超えた状態では、マップ変更制御と補填制御及び吹き抜け抑制制御とがターボチャージャー30の作動状態に応じて切り換えられる。
The switching control unit 7 (switching control means) performs switching control and has a function of switching and executing map change control and compensation control in accordance with a load acting on the engine 10. Here, one of map change control and compensation control is selected based on the second load detected by the load detector 2a.
The switching control unit 7 determines that the load is small when the turbocharger 30 is not operating, selects the map change control, and outputs a signal for causing the map change unit 2e to execute the map change control. On the other hand, when the turbocharger 30 is operated, it is determined that the load is large and the compensation control is selected, and a signal for causing the compensation injection unit 6 to perform the compensation control and the blow-through suppression control is output. Therefore, in a state where the amount of decrease in the injection capacity of the direct injection injector 11 exceeds the reference value, the map change control, the compensation control, and the blow-through suppression control are switched according to the operating state of the turbocharger 30.
 [4.フローチャート]
  [4-1.通常時]
 エンジン制御装置1で実施される各種制御のうち、噴射領域制御,過給制御及び噴射能力算出制御に関するフローチャートを図3に例示する。このフローは、エンジン制御装置1内で所定の周期で繰り返し実施される。
[4. flowchart]
[4-1. Normal time]
FIG. 3 illustrates a flowchart relating to injection region control, supercharging control, and injection capacity calculation control among various controls executed by the engine control device 1. This flow is repeatedly performed in the engine control device 1 at a predetermined cycle.
 ステップA10では、エンジン制御装置1に排気中の酸素濃度,エンジン回転数Ne,アクセルペダルの踏み込み操作量等の各種センサー検出値の情報が入力される。ステップA20では、負荷検出部2aにおいて、エンジン10に作用する負荷が検出される。例えば、エンジン回転数Ne,アクセルペダルの踏み込み操作量等に基づき、エンジン10の目標充填効率が演算される。
 ステップA30では、前ステップで検出されたエンジン10の負荷に基づき、過給が必要な運転状態であるか否かが過給制御部3で判定される。ここで過給実施条件が成立した場合にはステップA40に進み、過給制御部3からターボチャージャー30を駆動するための制御信号が出力された後、ステップA50に進む。一方、過給実施条件が不成立の場合には、そのままステップA50に進む。
In step A10, information of various sensor detection values such as the oxygen concentration in the exhaust, the engine speed Ne, and the depression amount of the accelerator pedal is input to the engine control device 1. In step A20, the load acting on the engine 10 is detected by the load detection unit 2a. For example, the target charging efficiency of the engine 10 is calculated based on the engine speed Ne, the accelerator pedal depression amount, and the like.
In step A30, based on the load of the engine 10 detected in the previous step, the supercharging control unit 3 determines whether or not the operating state requires supercharging. If the supercharging execution condition is satisfied, the process proceeds to step A40, and after the control signal for driving the turbocharger 30 is output from the supercharging control unit 3, the process proceeds to step A50. On the other hand, if the supercharging execution condition is not satisfied, the process directly proceeds to step A50.
 ステップA50では、選択部2bにおいて、ステップA20で検出されたエンジン10の負荷等に基づいて燃料噴射方式が選択され、噴射モードの種類が判定される。ここで、噴射モードがポート噴射モードである場合にはステップA70に進み、ポート噴射部2cからポート噴射インジェクター12に制御パルス信号が出力されて、ポート噴射が実施される。一方、ステップA50で噴射モードが筒内噴射優先モードである場合にはステップA60に進む。
 ステップA60では、筒内噴射部2dから直噴インジェクター11に制御パルス信号が出力され、筒内噴射が実施される。このときの目標燃料噴射量が直噴インジェクター11の最大噴射量を超える場合には、併せてポート噴射も実施される。
In step A50, the selection unit 2b selects a fuel injection method based on the load of the engine 10 detected in step A20, and determines the type of injection mode. If the injection mode is the port injection mode, the process proceeds to step A70, where the port injection unit 2c outputs a control pulse signal to the port injection injector 12, and the port injection is performed. On the other hand, if the injection mode is the in-cylinder injection priority mode in step A50, the process proceeds to step A60.
In Step A60, a control pulse signal is output from the in-cylinder injection unit 2d to the direct injection injector 11, and in-cylinder injection is performed. When the target fuel injection amount at this time exceeds the maximum injection amount of the direct injection injector 11, port injection is also performed.
 続くステップA80では、実筒内噴射量算出部5aにおいて、排気中の酸素濃度に基づいて消費燃料量が算出されるとともに、直噴インジェクター11から噴射された実筒内噴射量が算出される。その後、ステップA90では、学習部5bにおいて、目標筒内噴射量から実筒内噴射量がどの程度低下しているのかが演算され、不足分の筒内噴射量が演算される。ここで把握された噴射能力の低下量は、学習部5b内の記憶装置で各シリンダー20に設けられた直噴インジェクター11毎に記憶されて学習される。学習結果は、次回以降の演算周期での筒内噴射に利用される。
 このように、直噴インジェクター11の噴射能力が基準値を下回るほどデポジットが堆積していない状態のときには、噴射領域制御,過給制御及び噴射能力算出制御が繰り返し実施される。
In the next step A80, the actual in-cylinder injection amount calculation unit 5a calculates the fuel consumption amount based on the oxygen concentration in the exhaust gas, and calculates the actual in-cylinder injection amount injected from the direct injection injector 11. Thereafter, in step A90, the learning unit 5b calculates how much the actual in-cylinder injection amount has decreased from the target in-cylinder injection amount, and calculates the deficient in-cylinder injection amount. The amount of decrease in the injection capacity grasped here is stored and learned for each direct injection injector 11 provided in each cylinder 20 by the storage device in the learning unit 5b. The learning result is used for in-cylinder injection in the next and subsequent calculation cycles.
Thus, when the deposit is not accumulated so that the injection capacity of the direct injection injector 11 falls below the reference value, the injection region control, the supercharging control, and the injection capacity calculation control are repeatedly performed.
  [4-2.筒内噴射量の低下時]
 図4のフローチャートは、エンジン制御装置1で実施される各種制御のうち、マップ変更制御,補填制御及び切り換え制御に関するものである。このフローは、図3のフローと並行して所定の周期で繰り返し実施される。
 ステップB10では、エンジン制御装置1に直噴インジェクター11の燃料圧力の情報や、噴射モードの種類、学習部5bで演算された直噴インジェクター11の噴射能力の低下量の情報、ターボチャージャー30の作動状態に関する情報等が入力される。
[4-2. When the in-cylinder injection amount decreases]
The flowchart in FIG. 4 relates to map change control, compensation control, and switching control among various controls executed by the engine control apparatus 1. This flow is repeatedly performed at a predetermined cycle in parallel with the flow of FIG.
In step B10, the information on the fuel pressure of the direct injection injector 11, the type of injection mode, the information on the decrease in the injection capacity of the direct injection injector 11 calculated by the learning unit 5b, and the operation of the turbocharger 30 are sent to the engine control device 1. Information about the state is input.
 ステップB20では、マップ変更部2e及び補填噴射部6のそれぞれにおいて、直噴インジェクター11の噴射能力の低下量が基準値を超えたか否かが判定される。なお、エンジン10が多気筒エンジンである場合には、各シリンダー20に設けられた直噴インジェクター11の噴射量のばらつきをこのステップで判定してもよい。例えば、それぞれの直噴インジェクター11についての低下量の偏差が所定値以上であるかを判定することが考えられる。 In step B20, in each of the map changing unit 2e and the supplementary injection unit 6, it is determined whether or not the reduction amount of the injection capability of the direct injection injector 11 exceeds a reference value. When the engine 10 is a multi-cylinder engine, the variation in the injection amount of the direct injection injector 11 provided in each cylinder 20 may be determined in this step. For example, it is conceivable to determine whether or not the deviation of the reduction amount for each direct injection injector 11 is a predetermined value or more.
 ステップB20の判定条件が成立したときには、直噴インジェクター11の噴射能力が基準値を下回るほどデポジットが堆積したものと判断され、ステップB30へ進む。一方、ステップB20の条件が成立しない場合には、ステップB90に進む。
 なお、ステップB90では、直噴インジェクター11の燃料圧力が所定値以上であるか否かが判定される。直噴インジェクター11の噴射能力の低下は、例えば高圧燃料供給路13Aや高圧ポンプ14Aに原因がある場合もある。このステップでは、燃料圧力が適正値であるか否かを確認することで、これらの燃料系の不具合に由来する噴射能力の低下の有無が判定される。
When the determination condition of step B20 is satisfied, it is determined that the deposit has accumulated so that the injection ability of the direct injection injector 11 falls below the reference value, and the process proceeds to step B30. On the other hand, if the condition of step B20 is not satisfied, the process proceeds to step B90.
In step B90, it is determined whether or not the fuel pressure of the direct injection injector 11 is equal to or greater than a predetermined value. The decrease in the injection capacity of the direct injection injector 11 may be caused by, for example, the high pressure fuel supply path 13A or the high pressure pump 14A. In this step, by checking whether or not the fuel pressure is an appropriate value, it is determined whether or not there is a decrease in the injection capacity due to the failure of these fuel systems.
 ここで、燃料圧力が所定値以上である場合には、直噴インジェクター11の噴射能力が低下していないものと判断され、ステップB100に進む。一方、燃料圧力が所定値未満である場合には、ステップB30に進む。
 ステップB30では、切り換え制御部7、ターボチャージャー30が作動中(過給運転中)であるか否かが判定される。ここで過給運転中である場合には、切り換え制御部7で補填制御及び吹き抜け抑制制御が選択され、ステップB40に進む。一方、過給運転中でない場合には、切り換え制御部7でマップ変更制御が選択され、ステップB70に進む。
Here, when the fuel pressure is equal to or higher than the predetermined value, it is determined that the injection capacity of the direct injection injector 11 is not lowered, and the process proceeds to Step B100. On the other hand, if the fuel pressure is less than the predetermined value, the process proceeds to step B30.
In step B30, it is determined whether or not the switching control unit 7 and the turbocharger 30 are operating (during supercharging operation). Here, when the supercharging operation is being performed, the switching control unit 7 selects the compensation control and the blow-through suppression control, and the process proceeds to Step B40. On the other hand, when the supercharging operation is not being performed, the map change control is selected by the switching control unit 7, and the process proceeds to Step B70.
 ステップB40では、補填噴射部6のポート噴射増加割合演算部6aにおいて、ポート噴射インジェクター12から噴射されるポート噴射量の増加割合が演算される。ここでは、例えば実筒内噴射量の低下量や燃料圧力に基づいてポート噴射量の増加分が演算され、補正前のポート噴射量に対する増分の割合が増加割合として演算される。 In step B40, the port injection increase rate calculation unit 6a of the supplementary injection unit 6 calculates the increase rate of the port injection amount injected from the port injection injector 12. Here, for example, the increase in the port injection amount is calculated based on the decrease amount of the actual in-cylinder injection amount and the fuel pressure, and the ratio of the increment to the port injection amount before correction is calculated as the increase ratio.
 ステップB50では、バルブオーバーラップ変更部6bにおいて、ポート噴射量の増加割合とエンジン回転数Neに基づき、バルブオーバーラップ期間の縮小量が設定される。バルブオーバーラップ期間は、ポート噴射量の増加割合が大きいほど、あるいはエンジン回転数Neが低速であるほど短縮される。また、バルブオーバーラップ期間の短縮量はバルブ制御部4に伝達され、短縮量に応じて吸気弁27及び排気弁28の位相角θVVTが制御される。なお、具体的な各位相角θVVTの制御手法は任意であり、例えば吸気弁27の開弁時期を遅らせてもよいし、排気弁28の閉弁時期を早めてもよい。 In step B50, the valve overlap changing unit 6b sets the reduction amount of the valve overlap period based on the increase rate of the port injection amount and the engine speed Ne. The valve overlap period is shortened as the increase rate of the port injection amount is larger or the engine speed Ne is lower. Further, the shortening amount of the valve overlap period is transmitted to the valve control unit 4, and the phase angle θ VVT of the intake valve 27 and the exhaust valve 28 is controlled according to the shortening amount. The specific control method of each phase angle θ VVT is arbitrary, and for example, the opening timing of the intake valve 27 may be delayed, or the closing timing of the exhaust valve 28 may be advanced.
 ステップB60では、ポート噴射時期変更部6cにおいて、エンジン回転数Neに基づきポート噴射の開始タイミングが設定される。ポート噴射の開始タイミングは、エンジン回転数Neが低速であるほど遅く設定される。
 ステップB30からステップB70に進んだ場合には、マップ変更部2eにおいて、噴射モードの設定に係る制御マップが変更され、筒内噴射の実施頻度が高められる。これにより、例えば図3のフローのステップA50で選択部2bに参照される制御マップが、図2(a)の第一制御マップから図2(b)の第二制御マップへと切り換えられるため、筒内噴射優先モードが選択されやすくなる。また、続くステップB80では、非過給時のバルブオーバーラップ量が設定されて制御が終了する。この場合、非過給時には燃料の吹き抜けが生じないものとして、通常のバルブオーバーラップ設定が使用されることになる。
In Step B60, the port injection timing changing unit 6c sets the port injection start timing based on the engine speed Ne. The port injection start timing is set to be slower as the engine speed Ne is lower.
When the process proceeds from step B30 to step B70, the map change unit 2e changes the control map related to the setting of the injection mode, and increases the frequency of in-cylinder injection. Thereby, for example, the control map referred to by the selection unit 2b in step A50 of the flow of FIG. 3 is switched from the first control map of FIG. 2A to the second control map of FIG. The in-cylinder injection priority mode is easily selected. In the subsequent step B80, the valve overlap amount at the time of non-supercharging is set, and the control ends. In this case, the normal valve overlap setting is used on the assumption that no fuel blow-through occurs during non-supercharging.
 ステップB90で燃料圧力が所定値以上のときに進むステップB100では、マップ変更部2eにおいて、噴射モードの設定に係る制御マップが元に戻される。例えば、図3のフローのステップA50で選択部2bに参照される制御マップが、図2(b)の第二制御マップから図2(a)の第一制御マップへと切り換えられる。なお、噴射モードの設定に係る制御マップが第二制御マップに切り換えられていない場合には、第一制御マップがそのまま用いられる。 In step B100, which proceeds when the fuel pressure is equal to or higher than the predetermined value in step B90, the map change unit 2e returns the control map related to the setting of the injection mode. For example, the control map referred to by the selection unit 2b in step A50 of the flow of FIG. 3 is switched from the second control map of FIG. 2B to the first control map of FIG. If the control map related to the injection mode setting is not switched to the second control map, the first control map is used as it is.
 ステップB110では、ステップB30と同様に、切り換え制御部7、ターボチャージャー30が作動中(過給運転中)であるか否かが判定される。ステップB30は、実筒内噴射量が低下した状態でなければ実施されないため、ここでは実筒内噴射量が低下していない状態での過給状態が判定される。ここで、過給運転中である場合にはステップB120に進み、過給時における通常のバルブオーバーラップ量が設定されて制御が終了する。一方、過給運転中でない場合にはステップB80に進み、非過給時のバルブオーバーラップ量が設定されて制御が終了する。 In Step B110, as in Step B30, it is determined whether or not the switching control unit 7 and the turbocharger 30 are operating (in supercharging operation). Since step B30 is not performed unless the actual in-cylinder injection amount is in a reduced state, the supercharging state in a state in which the actual in-cylinder injection amount is not reduced is determined here. Here, when the supercharging operation is being performed, the process proceeds to step B120, where the normal valve overlap amount at the time of supercharging is set, and the control ends. On the other hand, if not in supercharging operation, the process proceeds to step B80, the valve overlap amount at the time of non-supercharging is set, and the control is terminated.
 [5.作用,効果]
 上記の実施形態によれば、以下のような作用,効果を得ることができる。
 (1)上記のエンジン制御装置1による制御のうちのマップ変更制御では、直噴インジェクター11の噴孔部に付着したデポジットが取り除かれやすくなり、筒内噴射量が回復しやすくなる。また、補填制御では、直噴インジェクター11の代わりにポート噴射インジェクター12から噴射されるポート噴射量が増加するため、筒内噴射量の低下分が補われ、エンジン10の出力が確保される。
 このように、エンジン10の負荷に応じてマップ変更制御と補填制御とを切り換えることで、直噴インジェクター11の噴射能力を回復させる制御と、エンジン10の出力の確保を優先する制御とを何れかに偏ることなく両立させることができる。したがて、出力要求を満足しながら直噴インジェクター11の噴射能力を従来よりも高い状態に維持することができる。
[5. Action, effect]
According to the above embodiment, the following operations and effects can be obtained.
(1) In the map change control among the controls by the engine control device 1 described above, deposits attached to the injection hole portion of the direct injection injector 11 are easily removed, and the in-cylinder injection amount is easily recovered. Further, in the compensation control, the port injection amount injected from the port injection injector 12 instead of the direct injection injector 11 is increased, so that the decrease in the in-cylinder injection amount is compensated for and the output of the engine 10 is ensured.
In this way, either switching between map change control and compensation control in accordance with the load on the engine 10 allows either the recovery of the injection capacity of the direct injection injector 11 or the control giving priority to securing the output of the engine 10. It is possible to achieve both without being biased. Therefore, the injection capability of the direct injection injector 11 can be maintained in a higher state than before while satisfying the output requirement.
 (2)また、上記のエンジン制御装置1では、比較的低負荷の状態でマップ変更制御が実施され、高負荷の状態では補填制御が実施される。このように、筒内噴射量を回復させるための制御を低負荷時にのみ実施することで、エンジン10の出力を確保しながらデポジットを除去することができる。また、高負荷時には噴射能力の回復よりも出力の確保が優先されるため、高出力を得ることができる。
 (3)さらに、上記のエンジン制御装置1では、ターボチャージャー30の作動状態に応じてマップ変更制御と補填制御とが切り換えられる。これにより、高出力が要求されていない非過給時に直噴インジェクター11の噴射能力を回復させることができる。また、高出力が要求されている過給時には、デポジットを除去する作業を一時休止させて、エンジン10の出力を確保することができる。
(2) Further, in the engine control apparatus 1 described above, the map change control is performed in a relatively low load state, and the compensation control is performed in a high load state. As described above, by performing the control for recovering the in-cylinder injection amount only when the load is low, the deposit can be removed while securing the output of the engine 10. In addition, since securing output is prioritized over recovery of injection capability at high loads, high output can be obtained.
(3) Further, in the engine control device 1 described above, the map change control and the compensation control are switched according to the operating state of the turbocharger 30. Thereby, the injection capability of the direct injection injector 11 can be recovered at the time of non-supercharging when high output is not required. Further, during supercharging where high output is required, the work for removing the deposit can be temporarily suspended to ensure the output of the engine 10.
 (4)上記のエンジン制御装置1で実施されるマップ変更制御では、筒内噴射優先モードが選択されやすくなるため、直噴インジェクター11から燃料を供給する運転領域を拡大することができ、直噴インジェクター11の噴射能力を頻繁に回復させることができる。これにより、噴孔部にデポジットが堆積しにくくすることができる。
 (5)なお、マップ変更制御に関して、上記の選択部2bではエンジン回転数Neと充填効率Ecとに基づいて噴射モードが選択される。これにより、その時点のエンジン10の運転状態とエンジン10に要求される負荷の大きさとを精度よく把握することができ、適正なエンジン出力を確保することができる。
(4) In the map change control performed by the engine control apparatus 1 described above, since the in-cylinder injection priority mode is easily selected, the operating region in which fuel is supplied from the direct injection injector 11 can be expanded. The injection ability of the injector 11 can be recovered frequently. Thereby, it is possible to make it difficult for deposits to accumulate in the nozzle hole portion.
(5) Regarding the map change control, the selection unit 2b selects the injection mode based on the engine speed Ne and the charging efficiency Ec. As a result, the operating state of the engine 10 at that time and the magnitude of the load required for the engine 10 can be accurately grasped, and an appropriate engine output can be ensured.
 (6)上記のエンジン制御装置1で実施される補填制御では、筒内噴射量の低下量に相当する量のポート噴射量が増量されるため、トータルでの燃料噴射量を一定にすることができ、エンジン出力を維持することができる。また、これと同時にバルブオーバーラップ期間が短縮されるため、ポート噴射量の増加による吹き抜けが発生することもない。したがって、エンジン出力と排気性能とをともに維持しながら、効率よくエンジン10を稼働することができる。
 (7)また、上記のエンジン制御装置1では、表1に示すようにポート噴射量の増加量が大きいほどバルブオーバーラップ期間が短縮される。つまり、ポート噴射量の増加割合に応じてバルブオーバーラップ期間の縮小量が設定されることになり、燃料の吹き抜け抑制効果を高めることができる。
(6) In the compensation control performed by the engine control apparatus 1 described above, the port injection amount corresponding to the amount of decrease in the in-cylinder injection amount is increased, so that the total fuel injection amount can be made constant. The engine output can be maintained. At the same time, the valve overlap period is shortened, so that no blow-by due to an increase in the port injection amount occurs. Therefore, the engine 10 can be operated efficiently while maintaining both engine output and exhaust performance.
(7) Moreover, in said engine control apparatus 1, as shown in Table 1, the valve overlap period is shortened, so that the increase amount of port injection amount is large. That is, the reduction amount of the valve overlap period is set according to the increase rate of the port injection amount, and the effect of suppressing fuel blow-through can be enhanced.
 (8)さらに、表1に示すように、エンジン回転数Neが低いほどバルブオーバーラップ期間が短縮される。つまり、バルブオーバーラップの実時間が長いときほど、バルブオーバーラップが短く設定されることになり、燃料の吹き抜け抑制効果をさらに高めることができる。
 (9)上記のエンジン制御装置1では、ポート噴射のタイミングを遅角させる制御が実施され、表2に示すように、エンジン回転数Neが低いほどポート噴射弁の開弁時期の遅角量が大きくなるように制御される。つまり、吸気ポート17に燃料が噴射されてから排気弁28が閉鎖するまでの実時間が長い低回転運転のときほど、開弁時期を遅らせている。これにより、燃料の吹き抜け抑制効果をさらに高めることができる。
(8) Furthermore, as shown in Table 1, the lower the engine speed Ne, the shorter the valve overlap period. That is, the longer the valve overlap actual time is, the shorter the valve overlap is set, and the fuel blow-out suppressing effect can be further enhanced.
(9) In the engine control apparatus 1 described above, control for retarding the port injection timing is performed. As shown in Table 2, as the engine speed Ne is lower, the retard amount of the port injection valve opening timing is increased. Controlled to increase. That is, the valve opening timing is delayed as the low-rotation operation has a longer real time from when fuel is injected into the intake port 17 until the exhaust valve 28 is closed. Thereby, the fuel blow-through suppressing effect can be further enhanced.
 (10)直噴インジェクター11の噴射能力の算出演算に関して、上記のエンジン制御装置1では、実筒内噴射量が目標筒内噴射量に対してどの程度低下したかが演算される。このように、制御指令値に対する実噴射量の低下量を参照することで、エンジン制御装置1内での演算誤差の影響を排除することができ、噴射能力の低下を精度よく把握することができる。
 (11)また、上記のエンジン制御装置1では、排気中の酸素濃度に基づいて実筒内噴射量が算出される。これにより、燃焼反応を通じて消費された酸素量を正確に算出することが可能となり、延いては直噴インジェクター11から噴射された実筒内噴射量の演算精度を向上させることができる。
(10) Regarding the calculation calculation of the injection capacity of the direct injection injector 11, the engine control apparatus 1 calculates how much the actual in-cylinder injection amount has decreased with respect to the target in-cylinder injection amount. In this way, by referring to the amount of decrease in the actual injection amount with respect to the control command value, it is possible to eliminate the influence of the calculation error in the engine control device 1 and to accurately grasp the decrease in the injection capacity. .
(11) Further, in the engine control apparatus 1 described above, the actual in-cylinder injection amount is calculated based on the oxygen concentration in the exhaust gas. As a result, the amount of oxygen consumed through the combustion reaction can be accurately calculated, and as a result, the calculation accuracy of the actual in-cylinder injection amount injected from the direct injection injector 11 can be improved.
 (12)さらに、上記のエンジン制御装置1では、燃料圧力が所定値以上でない場合には、たとえデポジット量が少量であったとしても吹き抜け抑制制御が実施される。このように、燃圧を参照することで、筒内噴射量が低下した原因を特定することができる。例えば、直噴インジェクター11に付着したデポジットが多いのか、それとも燃料配管系に原因があるのかを区別することができる。これにより、筒内噴射量の低下を精度よく検出することができる。 (12) Further, in the engine control apparatus 1 described above, when the fuel pressure is not equal to or higher than the predetermined value, the blow-through suppression control is performed even if the deposit amount is small. In this way, the cause of the decrease in the in-cylinder injection amount can be specified by referring to the fuel pressure. For example, it is possible to distinguish whether there is a lot of deposits attached to the direct injection injector 11 or whether there is a cause in the fuel piping system. Thereby, it is possible to accurately detect a decrease in the in-cylinder injection amount.
 [6.変形例]
 上述した実施形態に関わらず、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。本実施形態の各構成は、必要に応じて取捨選択することができ、あるいは適宜組み合わせてもよい。
 上述の実施形態では、切り換え制御部7で判定されるマップ変更制御と補填制御との切り換え条件として、負荷検出部2aで検出された第二の負荷(ターボチャージャー30の作動状態)を参照するものを例示したが、具体的な切り換え条件はこれに限定されない。例えば、空気量や充填効率Ecが所定値未満であるときにマップ変更制御を選択し、所定値以上になったときに補填制御に切り換える構成とすることが考えられる。少なくとも、エンジン10の負荷に相当するパラメーターを用いてこれらの制御を切り換えることにより、上述の実施形態と同様の効果を奏するものとなる。
[6. Modified example]
Regardless of the embodiment described above, various modifications can be made without departing from the spirit of the invention. Each structure of this embodiment can be selected as needed, or may be combined appropriately.
In the above-described embodiment, the second load (the operating state of the turbocharger 30) detected by the load detection unit 2a is referred to as the switching condition between the map change control and the compensation control determined by the switching control unit 7. However, the specific switching condition is not limited to this. For example, the map change control may be selected when the air amount or the charging efficiency Ec is less than a predetermined value, and switched to the compensation control when the air amount or the charging efficiency Ec exceeds the predetermined value. By switching these controls using at least a parameter corresponding to the load of the engine 10, the same effect as in the above-described embodiment can be obtained.
 また、上述の実施形態では、吹き抜け抑制制御の開始条件が、過給制御によりターボチャージャー30が作動している状態であり、かつ、噴射能力判定制御で判定された直噴インジェクター11の噴射能力の低下が基準値を超えたこと、であるものを例示したが、具体的な制御開始条件はこれに限定されない。少なくとも、ポート噴射の燃料が吹き抜けやすい状態であると判断されたときには、吹き抜け抑制制御を実施してもよい。 Further, in the above-described embodiment, the start condition of the blow-through suppression control is a state in which the turbocharger 30 is operating by the supercharging control, and the injection capacity of the direct injection injector 11 determined by the injection capacity determination control. Although the example in which the decrease exceeds the reference value is exemplified, the specific control start condition is not limited to this. At least, when it is determined that the port-injected fuel is in a state of being easily blown through, the blow-through suppression control may be performed.
 なお、上述の実施形態では、多気筒のガソリンエンジン10に本発明を適用したものを例示したが、エンジン10の気筒数や燃焼方式は任意である。 In the above-described embodiment, the multi-cylinder gasoline engine 10 is applied to the present invention, but the number of cylinders and the combustion method of the engine 10 are arbitrary.
1 エンジン制御装置
2 噴射領域制御部
 2a 負荷検出部(負荷検出手段)
 2b 選択部(選択手段)
 2c ポート噴射部(ポート噴射制御手段)
 2d 筒内噴射部
 2e マップ変更部(第一制御手段)
3 過給制御部(過給検出手段)
4 バルブ制御部(重複期間制御手段)
5 噴射能力算出部(噴射量算出手段)
6 補填噴射部(第二制御手段)
7 切り換え制御部(切り換え制御手段)
11 直噴インジェクター(筒内噴射弁)
12 ポート噴射インジェクター(ポート噴射弁)
 
 
DESCRIPTION OF SYMBOLS 1 Engine control apparatus 2 Injection area control part 2a Load detection part (load detection means)
2b Selection unit (selection means)
2c Port injection part (port injection control means)
2d In-cylinder injection unit 2e Map change unit (first control means)
3 Supercharging control unit (supercharging detection means)
4 Valve control unit (overlap period control means)
5 Injection capacity calculation unit (injection amount calculation means)
6 Supplementary injection unit (second control means)
7. Switching control unit (switching control means)
11 Direct injection injector (in-cylinder injection valve)
12 Port injection injector (port injection valve)

Claims (6)

  1.  気筒内に燃料を噴射する筒内噴射弁と、前記気筒の吸気ポートに燃料を噴射するポート噴射弁と、を有する内燃機関の制御装置において、
     前記内燃機関の負荷を検出する負荷検出手段と、
     前記筒内噴射弁から噴射される筒内噴射量を算出する噴射量算出手段と、
     前記筒内噴射量の低下時に、前記筒内噴射弁からの燃料噴射の頻度を高める第一制御を実施する第一制御手段と、
     前記筒内噴射量の低下時に、前記ポート噴射弁からの燃料噴射量を増加させる第二制御を実施する第二制御手段と、
     前記負荷に応じて、前記第一制御手段による前記第一制御と前記第二制御手段による前記第二制御とを切り換える切り換え制御手段と
    を備えたことを特徴とする、内燃機関の制御装置。
    In a control apparatus for an internal combustion engine, comprising: an in-cylinder injection valve that injects fuel into a cylinder; and a port injection valve that injects fuel into an intake port of the cylinder.
    Load detecting means for detecting a load of the internal combustion engine;
    An injection amount calculating means for calculating an in-cylinder injection amount injected from the in-cylinder injection valve;
    First control means for performing first control for increasing the frequency of fuel injection from the in-cylinder injection valve when the in-cylinder injection amount is reduced;
    Second control means for performing second control for increasing the fuel injection amount from the port injection valve when the in-cylinder injection amount is reduced;
    A control device for an internal combustion engine, comprising: switching control means for switching between the first control by the first control means and the second control by the second control means in accordance with the load.
  2.  前記切り換え制御手段が、
     前記負荷が所定負荷未満であるときに、前記第一制御手段に前記第一制御を実施させ、
     前記負荷が所定負荷以上であるときに、前記第二制御手段に前記第二制御を実施させる
    ことを特徴とする、請求項1記載の内燃機関の制御装置。
    The switching control means is
    When the load is less than a predetermined load, the first control means performs the first control,
    2. The control device for an internal combustion engine according to claim 1, wherein when the load is equal to or greater than a predetermined load, the second control unit performs the second control.
  3.  前記内燃機関に設けられた過給機の作動状態を検出する過給検出手段を備え、
     前記切り換え制御手段が、
     前記過給機の非作動時に、前記第一制御手段に前記第一制御を実施させ、
     前記過給機の作動時に、前記第二制御手段に前記第二制御を実施させる
    ことを特徴とする、請求項2記載の内燃機関の制御装置。
    Supercharging detection means for detecting an operating state of a supercharger provided in the internal combustion engine,
    The switching control means is
    When the supercharger is not operated, the first control means performs the first control,
    The control apparatus for an internal combustion engine according to claim 2, wherein the second control means performs the second control when the supercharger is operated.
  4.  前記筒内噴射弁から燃料を供給する第一運転領域と前記ポート噴射弁から燃料を供給する第二運転領域とを前記負荷に応じて選択する選択手段を備え、
     前記第一制御手段で実施される前記第一制御は、前記筒内噴射量の低下時に、前記第一運転領域が前記選択手段で選択される頻度を高める制御である
    ことを特徴とする、請求項3記載の内燃機関の制御装置。
    Selecting means for selecting a first operation region for supplying fuel from the in-cylinder injection valve and a second operation region for supplying fuel from the port injection valve according to the load;
    The first control performed by the first control unit is a control for increasing the frequency with which the first operation region is selected by the selection unit when the in-cylinder injection amount is reduced. Item 5. A control device for an internal combustion engine according to Item 3.
  5.  前記負荷検出手段が、前記負荷として前記内燃機関に吸入される空気量と前記内燃機関の回転数とを検出し、
     前記選択手段が、前記空気量と前記回転数とに基づいて、前記第一運転領域及び前記第二運転領域の何れか一方を選択するとともに、
     前記第一制御手段が、前記筒内噴射量の低下時に、前記第一運転領域を選択するための前記空気量及び前記回転数の閾値をともに減少させる
    ことを特徴とする、請求項4記載の内燃機関の制御装置。
    The load detection means detects the amount of air taken into the internal combustion engine as the load and the rotational speed of the internal combustion engine;
    The selection means selects one of the first operation region and the second operation region based on the air amount and the rotation speed,
    The said 1st control means reduces both the said air quantity and the threshold value of the said rotation speed for selecting a said 1st driving | operation area | region at the time of the fall of the said cylinder injection quantity, Control device for internal combustion engine.
  6.  前記ポート噴射弁から噴射されるポート噴射量を制御するポート噴射制御手段と、
     前記気筒の吸気弁及び排気弁がともに開状態となる重複期間を制御する重複期間制御手段とを備え、
     前記第二制御手段で実施される前記第二制御は、前記筒内噴射量の低下時に、前記筒内噴射量の低下量に相当する量の前記ポート噴射量を増加させるとともに前記重複期間を短縮させる制御である
    ことを特徴とする、請求項1記載の内燃機関の制御装置。
     
    Port injection control means for controlling the amount of port injection injected from the port injection valve;
    An overlapping period control means for controlling an overlapping period in which both the intake valve and the exhaust valve of the cylinder are open,
    The second control performed by the second control means increases the port injection amount corresponding to the decrease amount of the in-cylinder injection amount and shortens the overlap period when the in-cylinder injection amount decreases. 2. The control apparatus for an internal combustion engine according to claim 1, wherein
PCT/JP2012/077319 2011-11-18 2012-10-23 Internal combustion engine control device WO2013073346A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280056198.4A CN103946526B (en) 2011-11-18 2012-10-23 Control unit for internal combustion engine
EP12849090.1A EP2781725B1 (en) 2011-11-18 2012-10-23 Internal combustion engine control device
US14/343,459 US9353697B2 (en) 2011-11-18 2012-10-23 Control unit for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011253048A JP6013722B2 (en) 2011-11-18 2011-11-18 Control device for internal combustion engine
JP2011-253048 2011-11-18

Publications (1)

Publication Number Publication Date
WO2013073346A1 true WO2013073346A1 (en) 2013-05-23

Family

ID=48429414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077319 WO2013073346A1 (en) 2011-11-18 2012-10-23 Internal combustion engine control device

Country Status (5)

Country Link
US (1) US9353697B2 (en)
EP (1) EP2781725B1 (en)
JP (1) JP6013722B2 (en)
CN (1) CN103946526B (en)
WO (1) WO2013073346A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105324569A (en) * 2013-06-28 2016-02-10 三菱自动车工业株式会社 Engine control device
CN105358812A (en) * 2013-06-28 2016-02-24 三菱自动车工业株式会社 Engine control device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2871350B1 (en) * 2012-07-05 2017-12-20 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP6111899B2 (en) * 2013-06-28 2017-04-12 三菱自動車工業株式会社 Engine control device
JP6311797B2 (en) * 2014-11-27 2018-04-18 日産自動車株式会社 Fuel injection control device and fuel injection control method for internal combustion engine
JP6520897B2 (en) 2016-11-16 2019-05-29 トヨタ自動車株式会社 Internal combustion engine
GB2562875B (en) 2017-03-31 2020-06-17 Johnson Matthey Plc An exhaust purification system having an air injection system to protect a catalyst from oxygen deprived exhaust
DK179946B1 (en) * 2018-07-06 2019-10-21 Hans Jensen Lubricators A/S A method for optimizing lubrication in a large slow-running two-stroke engine
JP2021161974A (en) * 2020-03-31 2021-10-11 本田技研工業株式会社 Fuel injection control device
JP2023133802A (en) * 2022-03-14 2023-09-27 トヨタ自動車株式会社 Internal combustion engine control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201083A (en) 2004-01-13 2005-07-28 Toyota Motor Corp Injection control device for internal combustion engine
JP2010024927A (en) * 2008-07-17 2010-02-04 Toyota Motor Corp Internal combustion engine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176574A (en) * 1996-12-19 1998-06-30 Toyota Motor Corp Fuel injection controller for internal combustion engine
JP2005083277A (en) * 2003-09-09 2005-03-31 Toyota Motor Corp Control device for spark ignition internal combustion engine
JP4144505B2 (en) * 2003-10-14 2008-09-03 トヨタ自動車株式会社 Fuel injection device for internal combustion engine
JP4100346B2 (en) * 2004-01-13 2008-06-11 トヨタ自動車株式会社 Engine fuel injection control device
JP2005201113A (en) * 2004-01-14 2005-07-28 Toyota Motor Corp Controlling device of internal combustion engine
JP2006017059A (en) * 2004-07-02 2006-01-19 Toyota Motor Corp Fuel supply device for engine
JP2006336620A (en) * 2005-06-06 2006-12-14 Toyota Motor Corp Fuel injection control device for internal combustion engine
JP4349344B2 (en) * 2005-08-23 2009-10-21 トヨタ自動車株式会社 Engine control device
JP5195352B2 (en) * 2008-11-27 2013-05-08 日産自動車株式会社 Deposit remover
JP2010133351A (en) * 2008-12-05 2010-06-17 Toyota Motor Corp Control device for internal combustion engine
JP2012219622A (en) * 2011-04-04 2012-11-12 Toyota Motor Corp Control device for internal combustion engine
JP5083584B1 (en) * 2011-04-25 2012-11-28 トヨタ自動車株式会社 Deposit amount estimation device for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201083A (en) 2004-01-13 2005-07-28 Toyota Motor Corp Injection control device for internal combustion engine
JP2010024927A (en) * 2008-07-17 2010-02-04 Toyota Motor Corp Internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105324569A (en) * 2013-06-28 2016-02-10 三菱自动车工业株式会社 Engine control device
CN105358812A (en) * 2013-06-28 2016-02-24 三菱自动车工业株式会社 Engine control device
EP3015692A4 (en) * 2013-06-28 2017-05-17 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Engine control device
US10107179B2 (en) 2013-06-28 2018-10-23 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Engine control device

Also Published As

Publication number Publication date
EP2781725A1 (en) 2014-09-24
JP2013108401A (en) 2013-06-06
CN103946526B (en) 2016-08-24
US20140216414A1 (en) 2014-08-07
JP6013722B2 (en) 2016-10-25
CN103946526A (en) 2014-07-23
EP2781725A4 (en) 2016-01-27
US9353697B2 (en) 2016-05-31
EP2781725B1 (en) 2018-05-02

Similar Documents

Publication Publication Date Title
JP6013722B2 (en) Control device for internal combustion engine
JP6020770B2 (en) Engine control device
JP5810862B2 (en) Control device for internal combustion engine
US7325535B2 (en) Engine controller
JP6011477B2 (en) Engine control device
WO2008072063A2 (en) Control apparatus and method for internal combustion engine
JP6015575B2 (en) Engine control device
US9897035B2 (en) Direct injection engine controlling device
EP3015691B1 (en) Engine control device
JP3885740B2 (en) Control of internal combustion engine when changing two operation modes with different compression ratio and air-fuel ratio
JP5151876B2 (en) ENGINE CONTROL METHOD AND CONTROL DEVICE
US9631574B2 (en) Fuel injection control device for internal combustion engine
JP2000073803A (en) Cylinder injection gasoline engine
JP6090641B2 (en) Control device for internal combustion engine
JP2004197630A (en) Controller of internal combustion engine
JP2009046995A (en) Control system of variable valve train of internal combustion engine
JP2016014354A (en) Internal combustion engine control unit
JP2011220298A (en) Device for controlling fuel injection of internal combustion engine
JP2009121428A (en) Control device for internal combustion engine
JP4089563B2 (en) In-cylinder injection engine control device
JP2005188347A (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849090

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14343459

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012849090

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE