WO2013073239A1 - Thermistor and method for producing same - Google Patents

Thermistor and method for producing same Download PDF

Info

Publication number
WO2013073239A1
WO2013073239A1 PCT/JP2012/069988 JP2012069988W WO2013073239A1 WO 2013073239 A1 WO2013073239 A1 WO 2013073239A1 JP 2012069988 W JP2012069988 W JP 2012069988W WO 2013073239 A1 WO2013073239 A1 WO 2013073239A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermistor
electrode layer
green sheet
ceramic green
thermistor body
Prior art date
Application number
PCT/JP2012/069988
Other languages
French (fr)
Japanese (ja)
Inventor
三浦 忠将
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2013073239A1 publication Critical patent/WO2013073239A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/223Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor characterised by the shape of the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/148Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals embracing or surrounding the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/008Thermistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/1406Terminals or electrodes formed on resistive elements having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/1413Terminals or electrodes formed on resistive elements having negative temperature coefficient

Definitions

  • the present invention relates to a thermistor and a manufacturing method thereof, and more specifically to a thermistor used for temperature measurement and the like and a manufacturing method thereof.
  • FIG. 8 is a cross-sectional structure diagram of the cylindrical thermistor 500 described in Patent Document 1. As shown in FIG.
  • the cylindrical thermistor 500 includes a thermistor body 502, a first electrode 504, and a second electrode 506.
  • the thermistor body 502 has a cylindrical shape and extends in the left-right direction in FIG.
  • the thermistor body 502 is manufactured by mixing a thermistor raw material powder with a binder, forming the mixture with an extrusion molding machine, and then firing it.
  • the first electrode 504 is formed by applying an electrode material paste to the outer peripheral surface at the left end of the thermistor body 502.
  • the second electrode 506 is formed by applying an electrode material paste to the outer peripheral surface at the right end of the thermistor element body 502, the right end surface of the thermistor element body 502, and the inner peripheral surface of the thermistor element body 502.
  • the cylindrical thermistor 500 described in Patent Document 1 has a problem that it is difficult to obtain a target resistance value, as will be described below. More specifically, the thermistor body 502 is formed by an extruder. The processing accuracy of an extrusion molding machine is generally considered to be low. Therefore, the processing accuracy of the thermistor body 502 is relatively low. As a result, the resistance value of the thermistor body 502 also varies. Therefore, in the cylindrical thermistor 500 described in Patent Document 1, it is difficult to obtain a target resistance value.
  • an object of the present invention is to provide a thermistor capable of obtaining a target resistance value and a manufacturing method thereof.
  • a thermistor according to an embodiment of the present invention is a thermistor element in which a cavity is formed inside by bending a ceramic green sheet and an opening is formed so that the cavity communicates with the outside.
  • a thermistor body produced by firing the ceramic green sheet, a first electrode layer provided on an outer peripheral surface of the thermistor body, and an inner peripheral surface of the thermistor body And a second electrode layer provided on the substrate.
  • the method of manufacturing the thermistor is a method of bending the ceramic green sheet to produce a thermistor body in which a cavity is formed and an opening is formed so that the cavity communicates with the outside. 1 and a second step of firing the thermistor element body.
  • a target resistance value can be obtained.
  • FIG. 7 is an external perspective view of a thermistor according to a first modification. It is an expanded view of the thermistor body of the thermistor. It is an external appearance perspective view of the thermistor which concerns on a 2nd modification. It is an expanded view of the thermistor body of the thermistor.
  • 2 is a cross-sectional structure diagram of a cylindrical thermistor described in Patent Literature 1.
  • FIG. 1 is an external perspective view of a thermistor 10 according to an embodiment.
  • FIG. 2 is a development view of the thermistor body 12 of the thermistor 10.
  • 2A is a plan view of the outer peripheral surface of the thermistor body 12
  • FIG. 2B is a plan view of the inner peripheral surface of the thermistor body 12.
  • the thermistor 10 includes a thermistor body 12, electrode layers 14 and 16, and lead wires 18 and 20.
  • the thermistor body 12 has a shape in which a cavity is formed inside by bending a ceramic green sheet, which will be described later, and an opening is formed so that the cavity communicates with the outside.
  • the ceramic green sheet is produced by firing.
  • the thermistor body 12 has a conical shape protruding upward without having a bottom surface, as shown in FIG.
  • a conical space formed surrounded by the thermistor body 12 corresponds to the cavity, and a bottom surface of the conical space formed surrounded by the thermistor body 12 corresponds to the opening. Therefore, when the thermistor body 12 is unfolded, it has a fan shape as shown in FIG.
  • the thermistor body 12 is a semiconductor ceramic layer, an NTC characteristic material containing Mn, Ni, Fe, Ti, Co, Al, Zn, etc. in any combination, or Ba, Ti, Sr, Ca, Pb, It is made of a PTC characteristic material containing Mn, La, Nd, Sm, Eu, Gd, Dy, Y, etc. in any combination.
  • oxides of the listed metal elements are used as raw materials, but carbonates, hydroxides, and the like of the listed metal elements may be used as raw materials.
  • the NTC characteristic means a characteristic that the resistance value decreases as the temperature rises
  • the PTC characteristic means a characteristic that the resistance value increases as the temperature rises.
  • the thermistor body 12 has a thickness of 5 ⁇ m, for example.
  • the electrode layer 14 is provided on the outer peripheral surface of the thermistor body 12, as shown in FIG. In the thermistor 10 according to this embodiment, the electrode layer 14 covers the entire outer peripheral surface of the thermistor body 12 as shown in FIGS. 1 and 2A.
  • the electrode layer 14 is a conductor that is in ohmic contact with the thermistor body 12, and includes, for example, noble metals such as Ag, Pd, Pt, and Au for NTC characteristic materials, and Cu, Ni, Al, W, Ti, etc. for PTC characteristic materials.
  • the base metal is made of a simple substance or an alloy thereof.
  • the thickness of the electrode layer 14 is larger than the thickness of the thermistor body 12 and is, for example, 50 ⁇ m.
  • the electrode layer 16 is provided on the inner peripheral surface of the thermistor body 12, as shown in FIG.
  • the electrode layer 16 does not cover the entire inner peripheral surface of the thermistor body 12 as shown in FIGS. 1 and 2B. More specifically, as shown in FIG. 2B, the electrode layer 16 is not provided in the vicinity of the outer edge of the thermistor body 12 in the expanded state. Thereby, when the thermistor body 12 is assembled, the electrode layer 16 is not provided near the bottom of the conical thermistor body 12. Thereby, the electrode layer 14 and the electrode layer 16 are prevented from being short-circuited.
  • the electrode layer 16 has a thickness of 2 ⁇ m, for example.
  • the lead wire 18 is connected to the electrode layer 14.
  • the electrode layer 14 and the lead wire 18 are fixed with solder.
  • the lead wire 18 extends downward from the thermistor body 12. However, the lead wire 18 may extend upward from the thermistor body 12.
  • the lead wire 20 is connected to the electrode layer 16.
  • the electrode layer 16 and the lead wire 20 are fixed with solder.
  • the lead wire 20 extends downward from the thermistor body 12.
  • FIG. 3 is a manufacturing process diagram of the thermistor 10.
  • a large film 100 is prepared.
  • oxides such as Mn 3 O 4 , NiO, Fe 2 O 3 , and TiO 2 are weighed into a composition having a resistivity of 10 4 ⁇ cm, and a grinding medium such as zirconia is used. And wet pulverize with a ball mill. Furthermore, the obtained powder is calcined at a predetermined temperature to obtain a ceramic powder. Then, an organic binder is added to the ceramic powder, and a wet mixing process is performed to obtain a ceramic slurry.
  • the mother ceramic green sheet 110 is formed.
  • the mother ceramic green sheet 110 is a large ceramic green sheet.
  • a conductive paste mainly composed of Ag—Pd is applied to the mother ceramic green sheet 110 attached on the film 100 by a screen printing method or the like. By doing so, the conductor layer 120 to be the electrode layer 14 is formed. At this time, the conductive paste is applied so that the thickness of the electrode layer 14 after firing is larger than the thickness of the thermistor body 12 after firing.
  • the mother ceramic green sheet 110 on which the conductor layer 120 is formed is processed into a predetermined shape. More specifically, after the mother ceramic green sheet 110 is peeled from the film 100, the mother ceramic green sheet 110 is punched into a fan shape shown in FIG. Thereby, a fan-shaped ceramic green sheet 112 on which the electrode layer 14 is formed is obtained. A plurality of ceramic green sheets 112 can be obtained from one mother ceramic green sheet 110.
  • a conductive paste mainly composed of Ag—Pd is applied to the surface of the ceramic green sheet 112 where the electrode layer 14 is not formed by a screen printing method or the like. By applying, the electrode layer 16 is formed. At this time, the conductive paste is applied so that the thickness of the electrode layer 16 after firing is larger than the thickness of the thermistor body 12 after firing.
  • the ceramic green sheet 112 is bent so that a cavity is formed inside and an opening is formed so that the cavity communicates with the outside.
  • a sintered thermistor body 12 is produced.
  • the ceramic green sheet 112 is processed into a conical shape. Specifically, the ceramic green sheet 112 is rolled so that the vicinity of the two fan-shaped radii overlap. Then, thermocompression bonding is performed by applying heat treatment to the two adjacent fan-shaped radii.
  • the unfired thermistor body 12 is subjected to a binder removal treatment and then fired at a temperature of 900 ° C. to 1300 ° C.
  • the thermistor 10 is completed through the above steps.
  • a target resistance value can be obtained.
  • the cylindrical thermistor 500 described in Patent Document 1 is molded by an extrusion molding machine with relatively low processing accuracy.
  • the processing accuracy of an extrusion molding machine is generally considered to be low. Therefore, the processing accuracy of the thermistor body 502 is relatively low.
  • the resistance value of the thermistor body 502 also varies. Therefore, in the cylindrical thermistor 500 described in Patent Document 1, it is difficult to obtain a target resistance value.
  • the thermistor body 12 is produced by bending a ceramic green sheet 112 and firing the ceramic green sheet 112.
  • the ceramic green sheet 112 is produced by applying a ceramic slurry on the film 100 to form the mother ceramic green sheet 110, printing the electrode layer 16, and punching out the mother ceramic green sheet 110. Therefore, the accuracy of the thickness of the ceramic green sheet 112 that affects the resistance value of the thermistor 10 depends on the accuracy of the coating thickness of the ceramic slurry, and the overlapping area of the electrodes depends on the printing accuracy of the electrode layer 16. And these precision is generally favorable compared with the processing precision of an extrusion molding machine. Therefore, in the thermistor 10 and its manufacturing method, the thermistor body 12 can be formed with high accuracy, and a target resistance value can be obtained.
  • the mother ceramic green sheet 112 is produced by applying ceramic slurry directly on the film 100. Therefore, the mother ceramic green sheet 112 according to the present embodiment has a uniform thickness compared to the mother ceramic green sheet formed on the film on which the conductor layer and the like are formed. As a result, in the method for manufacturing the thermistor 10, the thermistor body 12 can be formed, and a target resistance value can be obtained.
  • the thickness of the electrode layer 14 is larger than the thickness of the thermistor body 12.
  • the electrode layer 14 made of metal has a higher ability to maintain the shape than the thermistor body 12 made of ceramic. Therefore, by making the thickness of the electrode layer 14 larger than the thickness of the thermistor body 12, the thermistor body 12 is prevented from being damaged.
  • FIG. 4 is an external perspective view of the thermistor 10a according to the first modification.
  • FIG. 5 is a development view of the thermistor body 12a of the thermistor 10a.
  • FIG. 5A is a plan view of the outer peripheral surface of the thermistor body 12a, and
  • FIG. 5B is a plan view of the inner peripheral surface of the thermistor body 12a.
  • the difference between the thermistor 10 and the thermistor 10a is that the thermistor body 12a has a cylindrical shape, whereas the thermistor body 12 has a conical shape.
  • the thermistor body 12a will be described focusing on the difference.
  • the thermistor body 12 a has a cylindrical shape that does not have a top surface and a bottom surface.
  • a cylindrical space formed surrounded by the thermistor body 12a corresponds to the cavity, and a bottom surface of the cylindrical space formed surrounded by the thermistor body 12a corresponds to the opening. Therefore, when the thermistor body 12a is unfolded, it has a rectangular shape as shown in FIG.
  • the electrode layer 14a is provided on the outer peripheral surface of the thermistor body 12a as shown in FIG. In the thermistor 10a according to this embodiment, the electrode layer 14a covers the entire outer peripheral surface of the thermistor body 12a, as shown in FIGS. 4 and 5A.
  • the electrode layer 16a is provided on the inner peripheral surface of the thermistor body 12a as shown in FIG.
  • the electrode layer 16a does not cover the entire inner peripheral surface of the thermistor body 12a, as shown in FIGS. 4 and 5B. More specifically, as shown in FIG. 5B, the electrode layer 16a is not provided in the vicinity of the outer edge of the expanded thermistor body 12a. Thereby, when the thermistor body 12a is assembled, the electrode layer 16a is not provided in the vicinity of the upper surface and the bottom surface of the cylindrical thermistor body 12a. This prevents the electrode layer 14a and the electrode layer 16a from being short-circuited.
  • the thermistor 10a configured as described above can also obtain a target resistance value.
  • FIG. 6 is an external perspective view of the thermistor 10b according to the second modification.
  • FIG. 7 is a development view of the thermistor body 12b of the thermistor 10b.
  • FIG. 7A is a plan view of the outer peripheral surface of the thermistor body 12b
  • FIG. 7B is a plan view of the inner peripheral surface of the thermistor body 12b.
  • the difference between the thermistor 10 and the thermistor 10b is that the thermistor body 12b has a conical shape, whereas the thermistor body 12b has a quadrangular pyramid shape.
  • the thermistor body 12b will be described focusing on the difference.
  • the thermistor body 12b has a quadrangular pyramid shape having no bottom surface.
  • a quadrangular pyramid-shaped space formed surrounded by the thermistor element body 12b corresponds to the cavity, and a bottom surface of the quadrangular pyramid-shaped space formed surrounded by the thermistor element body 12b corresponds to the opening. Therefore, when the thermistor body 12b is unfolded, it has a shape in which four triangles are connected as shown in FIG.
  • the electrode layer 14b is provided on the outer peripheral surface of the thermistor body 12b as shown in FIG. In the thermistor 10b according to this embodiment, the electrode layer 14b covers the entire outer peripheral surface of the thermistor body 12b, as shown in FIGS. 6 and 7A.
  • the electrode layer 16b is provided on the inner peripheral surface of the thermistor body 12b as shown in FIG.
  • the electrode layer 16b does not cover the entire inner peripheral surface of the thermistor body 12b, as shown in FIGS. 6 and 7B. More specifically, as shown in FIG. 7B, the electrode layer 16b is not provided in the vicinity of the outer edge of the expanded thermistor body 12b. Thereby, when the thermistor body 12b is assembled, the electrode layer 16b is not provided near the bottom surface of the thermistor body 12b having a quadrangular pyramid shape. This prevents the electrode layer 14b and the electrode layer 16b from being short-circuited.
  • the thermistor 10b configured as described above can also obtain a target resistance value.
  • the thermistor according to the present invention is not limited to the thermistors 10, 10a, and 10b according to the above-described embodiment, and can be changed within the scope of the gist thereof.
  • the thermistor bodies 12, 12a, 12b are conical, cylindrical, or quadrangular pyramids, but may have other shapes.
  • the thermistor bodies 12, 12a, 12b may have a truncated cone shape having no bottom surface, a rectangular parallelepiped having one surface opened, or the like.
  • the application of the ceramic slurry to the film 100 is performed by the doctor blade method, but may be performed by screen printing, gravure printing, ink jet printing, or the like.
  • the conductor layer is applied by a screen printing method, but may be formed by sputtering, vapor deposition, or the like.
  • the mother ceramic green sheet 110 is punched to obtain the ceramic green sheet 112, and then the electrode layer 16 is formed on the ceramic green sheet 112.
  • punching may be performed after printing the plurality of electrode layers 16 on the mother ceramic green sheet 110.
  • the electrode layers 14 and 16 may be formed by dip or pins.
  • the present invention is useful for a thermistor and a method for manufacturing the thermistor, and is particularly excellent in that a target resistance value can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)

Abstract

Provided are a thermistor capable of achieving a target resistance value, and a method for producing the same. A thermistor element assembly (12) is produced by sintering a ceramic green sheet which has been formed into a conical shape. An electrode layer (14) is provided on the outer-circumferential surface of the thermistor element assembly (12), and an electrode layer (16) is provided on the inner-circumferential surface of the thermistor element assembly (12).

Description

サーミスタ及びその製造方法Thermistor and manufacturing method thereof
 本発明は、サーミスタ及びその製造方法に関し、より特定的には、温度測定等に用いられるサーミスタ及びその製造方法に関する。 The present invention relates to a thermistor and a manufacturing method thereof, and more specifically to a thermistor used for temperature measurement and the like and a manufacturing method thereof.
 従来のサーミスタとしては、例えば、特許文献1に記載の筒形サーミスタが知られている。図8は、特許文献1に記載の筒形サーミスタ500の断面構造図である。 As a conventional thermistor, for example, a cylindrical thermistor described in Patent Document 1 is known. FIG. 8 is a cross-sectional structure diagram of the cylindrical thermistor 500 described in Patent Document 1. As shown in FIG.
 筒形サーミスタ500は、サーミスタ素体502、第1電極504及び第2電極506を備えている。サーミスタ素体502は、円筒状をなしており、図8の左右方向に延在している。サーミスタ素体502は、サーミスタ原料粉にバインダを混合し、押出成形機等により成形加工された後、焼成されることによって作製される。第1電極504は、サーミスタ素体502の左端の外周面に電極材料ペーストが塗布されることによって形成されている。第2電極506は、サーミスタ素体502の右端の外周面、サーミスタ素体502の右端面及びサーミスタ素体502の内周面に電極材料ペーストが塗布されることによって形成されている。 The cylindrical thermistor 500 includes a thermistor body 502, a first electrode 504, and a second electrode 506. The thermistor body 502 has a cylindrical shape and extends in the left-right direction in FIG. The thermistor body 502 is manufactured by mixing a thermistor raw material powder with a binder, forming the mixture with an extrusion molding machine, and then firing it. The first electrode 504 is formed by applying an electrode material paste to the outer peripheral surface at the left end of the thermistor body 502. The second electrode 506 is formed by applying an electrode material paste to the outer peripheral surface at the right end of the thermistor element body 502, the right end surface of the thermistor element body 502, and the inner peripheral surface of the thermistor element body 502.
 ところで、特許文献1に記載の筒形サーミスタ500は、以下に説明するように、目標の抵抗値を得ることが困難であるという問題を有している。より詳細には、サーミスタ素体502は、押出成形機により成形加工されている。押出成形機の加工精度は、一般的に低いとされている。そのため、サーミスタ素体502の加工精度は比較的に低い。その結果、サーミスタ素体502が有している抵抗値にもばらつきが発生する。よって、特許文献1に記載の筒形サーミスタ500では、目標の抵抗値を得ることが困難である。 Incidentally, the cylindrical thermistor 500 described in Patent Document 1 has a problem that it is difficult to obtain a target resistance value, as will be described below. More specifically, the thermistor body 502 is formed by an extruder. The processing accuracy of an extrusion molding machine is generally considered to be low. Therefore, the processing accuracy of the thermistor body 502 is relatively low. As a result, the resistance value of the thermistor body 502 also varies. Therefore, in the cylindrical thermistor 500 described in Patent Document 1, it is difficult to obtain a target resistance value.
特開平5-234713号公報JP-A-5-234713
 そこで、本発明の目的は、目標の抵抗値を得ることができるサーミスタ及びその製造方法を提供することである。 Therefore, an object of the present invention is to provide a thermistor capable of obtaining a target resistance value and a manufacturing method thereof.
 本発明の一形態に係るサーミスタは、セラミックグリーンシートに曲げ加工が施されることによって、内部に空洞が形成されていると共に、該空洞が外部と連通するように開口が形成されているサーミスタ素体であって、該セラミックグリーンシートが焼成されることによって作製されたサーミスタ素体と、前記サーミスタ素体の外周面に設けられている第1の電極層と、前記サーミスタ素体の内周面に設けられている第2の電極層と、を備えていること、を特徴とする。 A thermistor according to an embodiment of the present invention is a thermistor element in which a cavity is formed inside by bending a ceramic green sheet and an opening is formed so that the cavity communicates with the outside. A thermistor body produced by firing the ceramic green sheet, a first electrode layer provided on an outer peripheral surface of the thermistor body, and an inner peripheral surface of the thermistor body And a second electrode layer provided on the substrate.
 前記サーミスタの製造方法は、前記セラミックグリーンシートに曲げ加工を施して、内部に空洞が形成されていると共に、該空洞が外部と連通するように開口が形成されているサーミスタ素体を作成する第1の工程と、前記サーミスタ素体を焼成する第2の工程と、を備えていること、を特徴とする。 The method of manufacturing the thermistor is a method of bending the ceramic green sheet to produce a thermistor body in which a cavity is formed and an opening is formed so that the cavity communicates with the outside. 1 and a second step of firing the thermistor element body.
 本発明によれば、目標の抵抗値を得ることができる。 According to the present invention, a target resistance value can be obtained.
一実施形態に係るサーミスタの外観斜視図である。It is an external appearance perspective view of the thermistor which concerns on one Embodiment. サーミスタのサーミスタ素体の展開図である。It is an expanded view of the thermistor body of the thermistor. サーミスタの製造工程図である。It is a manufacturing process figure of a thermistor. 第1の変形例に係るサーミスタの外観斜視図である。FIG. 7 is an external perspective view of a thermistor according to a first modification. サーミスタのサーミスタ素体の展開図である。It is an expanded view of the thermistor body of the thermistor. 第2の変形例に係るサーミスタの外観斜視図である。It is an external appearance perspective view of the thermistor which concerns on a 2nd modification. サーミスタのサーミスタ素体の展開図である。It is an expanded view of the thermistor body of the thermistor. 特許文献1に記載の筒形サーミスタの断面構造図である。2 is a cross-sectional structure diagram of a cylindrical thermistor described in Patent Literature 1. FIG.
 以下に、本発明の実施形態に係るサーミスタ及びその製造方法について説明する。 Hereinafter, the thermistor and the manufacturing method thereof according to the embodiment of the present invention will be described.
 (サーミスタの構造)
 まず、一実施形態に係るサーミスタの構造について図面を参照しながら説明する。図1は、一実施形態に係るサーミスタ10の外観斜視図である。図2は、サーミスタ10のサーミスタ素体12の展開図である。図2(a)は、サーミスタ素体12の外周面を平面視した図であり、図2(b)は、サーミスタ素体12の内周面を平面視した図である。
(Thermistor structure)
First, the structure of a thermistor according to an embodiment will be described with reference to the drawings. FIG. 1 is an external perspective view of a thermistor 10 according to an embodiment. FIG. 2 is a development view of the thermistor body 12 of the thermistor 10. 2A is a plan view of the outer peripheral surface of the thermistor body 12, and FIG. 2B is a plan view of the inner peripheral surface of the thermistor body 12. FIG.
 サーミスタ10は、図1に示すように、サーミスタ素体12、電極層14,16及びリード線18,20を備えている。 As shown in FIG. 1, the thermistor 10 includes a thermistor body 12, electrode layers 14 and 16, and lead wires 18 and 20.
 サーミスタ素体12は、後述するセラミックグリーンシートに曲げ加工が施されることによって、内部に空洞が形成され、かつ、空洞が外部と連通するように開口が形成された形状をなしており、該セラミックグリーンシートが焼成されることにより作製されている。本実施形態に係るサーミスタ10では、サーミスタ素体12は、図1に示すように、底面を有していない上側に突出した円錐状をなしている。サーミスタ素体12に囲まれて形成されている円錐状の空間が前記空洞に相当し、サーミスタ素体12に囲まれて形成されている円錐状の空間の底面が前記開口に相当する。したがって、サーミスタ素体12は、展開されると、図2に示すように、扇形をなしている。 The thermistor body 12 has a shape in which a cavity is formed inside by bending a ceramic green sheet, which will be described later, and an opening is formed so that the cavity communicates with the outside. The ceramic green sheet is produced by firing. In the thermistor 10 according to the present embodiment, the thermistor body 12 has a conical shape protruding upward without having a bottom surface, as shown in FIG. A conical space formed surrounded by the thermistor body 12 corresponds to the cavity, and a bottom surface of the conical space formed surrounded by the thermistor body 12 corresponds to the opening. Therefore, when the thermistor body 12 is unfolded, it has a fan shape as shown in FIG.
 サーミスタ素体12は、半導体セラミック層であり、Mn,Ni,Fe,Ti,Co,Al,Zn等が任意の組み合わせで含まれたNTC特性材料、又は、Ba,Ti,Sr,Ca,Pb,Mn,La,Nd,Sm,Eu,Gd,Dy,Y等が任意の組み合わせで含まれたPTC特性材料により作製されている。実際には、列挙した金属元素の酸化物が原料として用いられるが、列挙した金属元素の炭酸塩、水酸化物等が原料として用いられてもよい。NTC特性とは、温度上昇に伴い抵抗値が減少する特性を意味し、PTC特性とは、温度上昇に伴い抵抗値が増加する特性を意味する。サーミスタ素体12の厚みは、例えば、5μmである。 The thermistor body 12 is a semiconductor ceramic layer, an NTC characteristic material containing Mn, Ni, Fe, Ti, Co, Al, Zn, etc. in any combination, or Ba, Ti, Sr, Ca, Pb, It is made of a PTC characteristic material containing Mn, La, Nd, Sm, Eu, Gd, Dy, Y, etc. in any combination. In practice, oxides of the listed metal elements are used as raw materials, but carbonates, hydroxides, and the like of the listed metal elements may be used as raw materials. The NTC characteristic means a characteristic that the resistance value decreases as the temperature rises, and the PTC characteristic means a characteristic that the resistance value increases as the temperature rises. The thermistor body 12 has a thickness of 5 μm, for example.
 電極層14は、図1に示すように、サーミスタ素体12の外周面に設けられている。本実施形態に係るサーミスタ10では、電極層14は、図1及び図2(a)に示すように、サーミスタ素体12の外周面の全体を覆っている。電極層14は、サーミスタ素体12に対してオーミック接触する導体であり、例えば、NTC特性材料ではAg,Pd,Pt,Au等の貴金属、PTC特性材料ではCu,Ni,Al,W,Ti等の卑金属の単体、又は、これらの合金等により作製されている。電極層14の厚みは、サーミスタ素体12の厚みよりも大きく、例えば、50μmである。 The electrode layer 14 is provided on the outer peripheral surface of the thermistor body 12, as shown in FIG. In the thermistor 10 according to this embodiment, the electrode layer 14 covers the entire outer peripheral surface of the thermistor body 12 as shown in FIGS. 1 and 2A. The electrode layer 14 is a conductor that is in ohmic contact with the thermistor body 12, and includes, for example, noble metals such as Ag, Pd, Pt, and Au for NTC characteristic materials, and Cu, Ni, Al, W, Ti, etc. for PTC characteristic materials. The base metal is made of a simple substance or an alloy thereof. The thickness of the electrode layer 14 is larger than the thickness of the thermistor body 12 and is, for example, 50 μm.
 電極層16は、図1に示すように、サーミスタ素体12の内周面に設けられている。本実施形態に係るサーミスタ10では、電極層16は、図1及び図2(b)に示すように、サーミスタ素体12の内周面の全体を覆っていない。より詳細には、図2(b)に示すように、展開された状態のサーミスタ素体12の外縁近傍には、電極層16は設けられていない。これにより、サーミスタ素体12が組み立てられたときには、円錐状のサーミスタ素体12の底辺近傍には、電極層16が設けられていない。これにより、電極層14と電極層16とが短絡することが防止されている。電極層16の厚みは、例えば、2μmである。 The electrode layer 16 is provided on the inner peripheral surface of the thermistor body 12, as shown in FIG. In the thermistor 10 according to the present embodiment, the electrode layer 16 does not cover the entire inner peripheral surface of the thermistor body 12 as shown in FIGS. 1 and 2B. More specifically, as shown in FIG. 2B, the electrode layer 16 is not provided in the vicinity of the outer edge of the thermistor body 12 in the expanded state. Thereby, when the thermistor body 12 is assembled, the electrode layer 16 is not provided near the bottom of the conical thermistor body 12. Thereby, the electrode layer 14 and the electrode layer 16 are prevented from being short-circuited. The electrode layer 16 has a thickness of 2 μm, for example.
 リード線18は、電極層14に接続されている。電極層14とリード線18とははんだにより固定されている。リード線18は、サーミスタ素体12から下方に向かって延在している。ただし、リード線18は、サーミスタ素体12から上方に向かって延在していてもよい。 The lead wire 18 is connected to the electrode layer 14. The electrode layer 14 and the lead wire 18 are fixed with solder. The lead wire 18 extends downward from the thermistor body 12. However, the lead wire 18 may extend upward from the thermistor body 12.
 リード線20は、電極層16に接続されている。電極層16とリード線20とははんだにより固定されている。リード線20は、サーミスタ素体12から下方に向かって延在している。 The lead wire 20 is connected to the electrode layer 16. The electrode layer 16 and the lead wire 20 are fixed with solder. The lead wire 20 extends downward from the thermistor body 12.
(サーミスタの製造方法)
 以下に、サーミスタ10の製造方法について図面を参照しながら説明する。図3は、サーミスタ10の製造工程図である。
(Thermistor manufacturing method)
Below, the manufacturing method of the thermistor 10 is demonstrated, referring drawings. FIG. 3 is a manufacturing process diagram of the thermistor 10.
 まず、図3(a)に示すように、大判のフィルム100を準備する。 First, as shown in FIG. 3A, a large film 100 is prepared.
 次に、サーミスタ素体12の原料として、Mn34、NiO、Fe23,TiO2等の酸化物を抵抗率が104Ωcmとなる配合に秤量し、ジルコニア等の粉砕媒体を用いてボールミルにより湿式粉砕する。更に、得られた粉末を所定の温度で仮焼してセラミック粉末を得る。そして、セラミック粉末に有機バインダを添加し、湿式で混合処理を行ってセラミックスラリーを得る。 Next, as a raw material for the thermistor body 12, oxides such as Mn 3 O 4 , NiO, Fe 2 O 3 , and TiO 2 are weighed into a composition having a resistivity of 10 4 Ωcm, and a grinding medium such as zirconia is used. And wet pulverize with a ball mill. Furthermore, the obtained powder is calcined at a predetermined temperature to obtain a ceramic powder. Then, an organic binder is added to the ceramic powder, and a wet mixing process is performed to obtain a ceramic slurry.
 次に、図3(b)に示すように、フィルム100上にセラミックスラリーをドクターブレード法により塗布し、乾燥させる。これにより、マザーセラミックグリーンシート110を形成する。マザーセラミックグリーンシート110は、大判のセラミックグリーンシートである。 Next, as shown in FIG. 3B, a ceramic slurry is applied onto the film 100 by a doctor blade method and dried. Thereby, the mother ceramic green sheet 110 is formed. The mother ceramic green sheet 110 is a large ceramic green sheet.
 次に、図3(c)に示すように、フィルム100上に貼り付けられた状態のマザーセラミックグリーンシート110に対して、Ag-Pdを主成分とする導電性ペーストをスクリーン印刷法等により塗布することによって、電極層14となる導体層120を形成する。この際、焼成後における電極層14の厚みが焼成後におけるサーミスタ素体12の厚みよりも大きくなるように、導電性ペーストを塗布する。 Next, as shown in FIG. 3C, a conductive paste mainly composed of Ag—Pd is applied to the mother ceramic green sheet 110 attached on the film 100 by a screen printing method or the like. By doing so, the conductor layer 120 to be the electrode layer 14 is formed. At this time, the conductive paste is applied so that the thickness of the electrode layer 14 after firing is larger than the thickness of the thermistor body 12 after firing.
 次に、導体層120を形成したマザーセラミックグリーンシート110を所定形状に加工する。より詳細には、マザーセラミックグリーンシート110をフィルム100から剥離した後、該マザーセラミックグリーンシート110を金型等によって図2に示す扇形に打ち抜く。これにより、電極層14が形成された扇形のセラミックグリーンシート112を得る。1枚のマザーセラミックグリーンシート110から複数枚のセラミックグリーンシート112を得ることができる。 Next, the mother ceramic green sheet 110 on which the conductor layer 120 is formed is processed into a predetermined shape. More specifically, after the mother ceramic green sheet 110 is peeled from the film 100, the mother ceramic green sheet 110 is punched into a fan shape shown in FIG. Thereby, a fan-shaped ceramic green sheet 112 on which the electrode layer 14 is formed is obtained. A plurality of ceramic green sheets 112 can be obtained from one mother ceramic green sheet 110.
 次に、図2(b)に示すように、セラミックグリーンシート112の電極層14が形成されていない方の面に対して、Ag-Pdを主成分とする導電性ペーストをスクリーン印刷法等により塗布することによって、電極層16を形成する。この際、焼成後における電極層16の厚みが焼成後におけるサーミスタ素体12の厚みよりも大きくなるように、導電性ペーストを塗布する。 Next, as shown in FIG. 2B, a conductive paste mainly composed of Ag—Pd is applied to the surface of the ceramic green sheet 112 where the electrode layer 14 is not formed by a screen printing method or the like. By applying, the electrode layer 16 is formed. At this time, the conductive paste is applied so that the thickness of the electrode layer 16 after firing is larger than the thickness of the thermistor body 12 after firing.
 次に、図1に示すように、セラミックグリーンシート112に曲げ加工を施すことによって、内部に空洞が形成され、かつ、空洞が外部と連通するように開口が形成された形状をなしている未焼成のサーミスタ素体12を作製する。本実施形態に係るサーミスタ10の製造方法では、セラミックグリーンシート112を円錐状に加工する。具体的には、扇形の2本の半径近傍が重なるように、セラミックグリーンシート112を丸める。そして、重なりあっている扇形の2本の半径近傍に対して加熱処理を施すことにより、熱圧着を施す。 Next, as shown in FIG. 1, the ceramic green sheet 112 is bent so that a cavity is formed inside and an opening is formed so that the cavity communicates with the outside. A sintered thermistor body 12 is produced. In the method for manufacturing the thermistor 10 according to the present embodiment, the ceramic green sheet 112 is processed into a conical shape. Specifically, the ceramic green sheet 112 is rolled so that the vicinity of the two fan-shaped radii overlap. Then, thermocompression bonding is performed by applying heat treatment to the two adjacent fan-shaped radii.
 次に、未焼成のサーミスタ素体12に対して、脱バインダ処理を施した後、900℃~1300℃の温度で焼成を施す。 Next, the unfired thermistor body 12 is subjected to a binder removal treatment and then fired at a temperature of 900 ° C. to 1300 ° C.
 最後に、リード線18,20を電極層14,16にはんだ付けする。以上の工程により、サーミスタ10が完成する。 Finally, the lead wires 18 and 20 are soldered to the electrode layers 14 and 16. The thermistor 10 is completed through the above steps.
(効果)
 本実施形態に係るサーミスタ10及びその製造方法によれば、目標の抵抗値を得ることができる。より詳細には、特許文献1に記載の筒形サーミスタ500は、比較的に加工精度の低い押出成形機により成形加工されている。押出成形機の加工精度は、一般的に低いとされている。そのため、サーミスタ素体502の加工精度は比較的に低い。その結果、サーミスタ素体502が有している抵抗値にもばらつきが発生する。よって、特許文献1に記載の筒形サーミスタ500では、目標の抵抗値を得ることが困難である。
(effect)
According to the thermistor 10 and the manufacturing method thereof according to the present embodiment, a target resistance value can be obtained. More specifically, the cylindrical thermistor 500 described in Patent Document 1 is molded by an extrusion molding machine with relatively low processing accuracy. The processing accuracy of an extrusion molding machine is generally considered to be low. Therefore, the processing accuracy of the thermistor body 502 is relatively low. As a result, the resistance value of the thermistor body 502 also varies. Therefore, in the cylindrical thermistor 500 described in Patent Document 1, it is difficult to obtain a target resistance value.
 一方、サーミスタ10及びその製造方法では、サーミスタ素体12は、セラミックグリーンシート112に曲げ加工が施され、該セラミックグリーンシート112が焼成されることにより作製されている。セラミックグリーンシート112は、フィルム100上にセラミックスラリーを塗布してマザーセラミックグリーンシート110を形成した後、電極層16を印刷し、該マザーセラミックグリーンシート110を打ち抜くことによって作製されている。そのため、サーミスタ10の抵抗値に影響するセラミックグリーンシート112の厚みの精度は、セラミックスラリーの塗布厚の精度に依存し、電極の重なり面積は電極層16の印刷精度に依存する。そして、これらの精度は、一般的に、押出成形機の加工精度に比べて良好である。よって、サーミスタ10及びその製造方法では、サーミスタ素体12を精度よく形成することが可能となり、目標の抵抗値を得ることができる。 On the other hand, in the thermistor 10 and its manufacturing method, the thermistor body 12 is produced by bending a ceramic green sheet 112 and firing the ceramic green sheet 112. The ceramic green sheet 112 is produced by applying a ceramic slurry on the film 100 to form the mother ceramic green sheet 110, printing the electrode layer 16, and punching out the mother ceramic green sheet 110. Therefore, the accuracy of the thickness of the ceramic green sheet 112 that affects the resistance value of the thermistor 10 depends on the accuracy of the coating thickness of the ceramic slurry, and the overlapping area of the electrodes depends on the printing accuracy of the electrode layer 16. And these precision is generally favorable compared with the processing precision of an extrusion molding machine. Therefore, in the thermistor 10 and its manufacturing method, the thermistor body 12 can be formed with high accuracy, and a target resistance value can be obtained.
 また、サーミスタ10の製造方法では、フィルム100上に直接にセラミックスラリーを塗布してマザーセラミックグリーンシート112を作製している。そのため、本実施形態に係るマザーセラミックグリーンシート112は、導体層などが形成されたフィルム上に形成されたマザーセラミックグリーンシートに比べて、均一な厚みを有する。その結果、サーミスタ10の製造方法では、サーミスタ素体12を形成することが可能となり、目標の抵抗値を得ることが可能となる。 Further, in the method for manufacturing the thermistor 10, the mother ceramic green sheet 112 is produced by applying ceramic slurry directly on the film 100. Therefore, the mother ceramic green sheet 112 according to the present embodiment has a uniform thickness compared to the mother ceramic green sheet formed on the film on which the conductor layer and the like are formed. As a result, in the method for manufacturing the thermistor 10, the thermistor body 12 can be formed, and a target resistance value can be obtained.
 また、サーミスタ10及びその製造方法では、電極層14厚みは、サーミスタ素体12の厚みよりも大きい。金属により作製されている電極層14は、セラミックにより作製されているサーミスタ素体12に比べて形状を保持する能力が高い。そこで、電極層14の厚みがサーミスタ素体12の厚みよりも大きくされることによって、サーミスタ素体12が破損することが抑制されるようになる。 Further, in the thermistor 10 and its manufacturing method, the thickness of the electrode layer 14 is larger than the thickness of the thermistor body 12. The electrode layer 14 made of metal has a higher ability to maintain the shape than the thermistor body 12 made of ceramic. Therefore, by making the thickness of the electrode layer 14 larger than the thickness of the thermistor body 12, the thermistor body 12 is prevented from being damaged.
(第1の変形例)
 以下に、第1の変形例に係るサーミスタ10aについて図面を参照しながら説明する。図4は、第1の変形例に係るサーミスタ10aの外観斜視図である。図5は、サーミスタ10aのサーミスタ素体12aの展開図である。図5(a)は、サーミスタ素体12aの外周面を平面視した図であり、図5(b)は、サーミスタ素体12aの内周面を平面視した図である。
(First modification)
Below, the thermistor 10a which concerns on a 1st modification is demonstrated, referring drawings. FIG. 4 is an external perspective view of the thermistor 10a according to the first modification. FIG. 5 is a development view of the thermistor body 12a of the thermistor 10a. FIG. 5A is a plan view of the outer peripheral surface of the thermistor body 12a, and FIG. 5B is a plan view of the inner peripheral surface of the thermistor body 12a.
 サーミスタ10とサーミスタ10aとの相違点は、サーミスタ素体12が円錐状をなしているのに対して、サーミスタ素体12aが円筒状をなしている点である。以下に、かかる相違点を中心にサーミスタ素体12aについて説明する。 The difference between the thermistor 10 and the thermistor 10a is that the thermistor body 12a has a cylindrical shape, whereas the thermistor body 12 has a conical shape. Hereinafter, the thermistor body 12a will be described focusing on the difference.
 サーミスタ素体12aは、図4に示すように、上面及び底面を有していない円筒状をなしている。サーミスタ素体12aに囲まれて形成されている円柱状の空間が前記空洞に相当し、サーミスタ素体12aに囲まれて形成されている円柱状の空間の底面が前記開口に相当する。したがって、サーミスタ素体12aは、展開されると、図5に示すように、長方形をなしている。 As shown in FIG. 4, the thermistor body 12 a has a cylindrical shape that does not have a top surface and a bottom surface. A cylindrical space formed surrounded by the thermistor body 12a corresponds to the cavity, and a bottom surface of the cylindrical space formed surrounded by the thermistor body 12a corresponds to the opening. Therefore, when the thermistor body 12a is unfolded, it has a rectangular shape as shown in FIG.
 電極層14aは、図4に示すように、サーミスタ素体12aの外周面に設けられている。本実施形態に係るサーミスタ10aでは、電極層14aは、図4及び図5(a)に示すように、サーミスタ素体12aの外周面の全体を覆っている。 The electrode layer 14a is provided on the outer peripheral surface of the thermistor body 12a as shown in FIG. In the thermistor 10a according to this embodiment, the electrode layer 14a covers the entire outer peripheral surface of the thermistor body 12a, as shown in FIGS. 4 and 5A.
 電極層16aは、図4に示すように、サーミスタ素体12aの内周面に設けられている。本実施形態に係るサーミスタ10aでは、電極層16aは、図4及び図5(b)に示すように、サーミスタ素体12aの内周面の全体を覆っていない。より詳細には、図5(b)に示すように、展開された状態のサーミスタ素体12aの外縁近傍には、電極層16aは設けられていない。これにより、サーミスタ素体12aが組み立てられたときには、円柱状のサーミスタ素体12aの上面及び底面近傍には、電極層16aが設けられていない。これにより、電極層14aと電極層16aとが短絡することが防止されている。 The electrode layer 16a is provided on the inner peripheral surface of the thermistor body 12a as shown in FIG. In the thermistor 10a according to this embodiment, the electrode layer 16a does not cover the entire inner peripheral surface of the thermistor body 12a, as shown in FIGS. 4 and 5B. More specifically, as shown in FIG. 5B, the electrode layer 16a is not provided in the vicinity of the outer edge of the expanded thermistor body 12a. Thereby, when the thermistor body 12a is assembled, the electrode layer 16a is not provided in the vicinity of the upper surface and the bottom surface of the cylindrical thermistor body 12a. This prevents the electrode layer 14a and the electrode layer 16a from being short-circuited.
 以上のように構成されたサーミスタ10aも、サーミスタ10と同様に、目標の抵抗値を得ることが可能である。 Similarly to the thermistor 10, the thermistor 10a configured as described above can also obtain a target resistance value.
(第2の変形例)
 以下に、第2の変形例に係るサーミスタ10bについて図面を参照しながら説明する。図6は、第2の変形例に係るサーミスタ10bの外観斜視図である。図7は、サーミスタ10bのサーミスタ素体12bの展開図である。図7(a)は、サーミスタ素体12bの外周面を平面視した図であり、図7(b)は、サーミスタ素体12bの内周面を平面視した図である。
(Second modification)
Below, the thermistor 10b which concerns on a 2nd modification is demonstrated, referring drawings. FIG. 6 is an external perspective view of the thermistor 10b according to the second modification. FIG. 7 is a development view of the thermistor body 12b of the thermistor 10b. FIG. 7A is a plan view of the outer peripheral surface of the thermistor body 12b, and FIG. 7B is a plan view of the inner peripheral surface of the thermistor body 12b.
 サーミスタ10とサーミスタ10bとの相違点は、サーミスタ素体12が円錐状をなしているのに対して、サーミスタ素体12bが四角錐状をなしている点である。以下に、かかる相違点を中心にサーミスタ素体12bについて説明する。 The difference between the thermistor 10 and the thermistor 10b is that the thermistor body 12b has a conical shape, whereas the thermistor body 12b has a quadrangular pyramid shape. Hereinafter, the thermistor body 12b will be described focusing on the difference.
 サーミスタ素体12bは、図6に示すように、底面を有していない四角錐状をなしている。サーミスタ素体12bに囲まれて形成されている四角錐状の空間が前記空洞に相当し、サーミスタ素体12bに囲まれて形成されている四角錐状の空間の底面が前記開口に相当する。したがって、サーミスタ素体12bは、展開されると、図7に示すように、4つの三角形が連結された形状をなしている。 As shown in FIG. 6, the thermistor body 12b has a quadrangular pyramid shape having no bottom surface. A quadrangular pyramid-shaped space formed surrounded by the thermistor element body 12b corresponds to the cavity, and a bottom surface of the quadrangular pyramid-shaped space formed surrounded by the thermistor element body 12b corresponds to the opening. Therefore, when the thermistor body 12b is unfolded, it has a shape in which four triangles are connected as shown in FIG.
 電極層14bは、図6に示すように、サーミスタ素体12bの外周面に設けられている。本実施形態に係るサーミスタ10bでは、電極層14bは、図6及び図7(a)に示すように、サーミスタ素体12bの外周面の全体を覆っている。 The electrode layer 14b is provided on the outer peripheral surface of the thermistor body 12b as shown in FIG. In the thermistor 10b according to this embodiment, the electrode layer 14b covers the entire outer peripheral surface of the thermistor body 12b, as shown in FIGS. 6 and 7A.
 電極層16bは、図6に示すように、サーミスタ素体12bの内周面に設けられている。本実施形態に係るサーミスタ10bでは、電極層16bは、図6及び図7(b)に示すように、サーミスタ素体12bの内周面の全体を覆っていない。より詳細には、図7(b)に示すように、展開された状態のサーミスタ素体12bの外縁近傍には、電極層16bは設けられていない。これにより、サーミスタ素体12bが組み立てられたときには、四角錐状のサーミスタ素体12bの底面近傍には、電極層16bが設けられていない。これにより、電極層14bと電極層16bとが短絡することが防止されている。 The electrode layer 16b is provided on the inner peripheral surface of the thermistor body 12b as shown in FIG. In the thermistor 10b according to the present embodiment, the electrode layer 16b does not cover the entire inner peripheral surface of the thermistor body 12b, as shown in FIGS. 6 and 7B. More specifically, as shown in FIG. 7B, the electrode layer 16b is not provided in the vicinity of the outer edge of the expanded thermistor body 12b. Thereby, when the thermistor body 12b is assembled, the electrode layer 16b is not provided near the bottom surface of the thermistor body 12b having a quadrangular pyramid shape. This prevents the electrode layer 14b and the electrode layer 16b from being short-circuited.
 以上のように構成されたサーミスタ10bも、サーミスタ10と同様に、目標の抵抗値を得ることが可能である。 Similarly to the thermistor 10, the thermistor 10b configured as described above can also obtain a target resistance value.
(その他の実施形態)
 本発明に係るサーミスタは、前記実施形態に係るサーミスタ10,10a,10bに限らず、その要旨の範囲内において変更可能である。
(Other embodiments)
The thermistor according to the present invention is not limited to the thermistors 10, 10a, and 10b according to the above-described embodiment, and can be changed within the scope of the gist thereof.
 サーミスタ素体12,12a,12bは、円錐状、円筒状又は四角錐をなしているとしたが、これら以外の形状であってもよい。サーミスタ素体12,12a,12bは、底面を有さない円錐台状や、1つの面が開口した直方体等をなしていてもよい。 The thermistor bodies 12, 12a, 12b are conical, cylindrical, or quadrangular pyramids, but may have other shapes. The thermistor bodies 12, 12a, 12b may have a truncated cone shape having no bottom surface, a rectangular parallelepiped having one surface opened, or the like.
 また、フィルム100へのセラミックスラリーの塗布は、ドクターブレード法により行うものとしたが、スクリーン印刷、グラビア印刷、インクジェット印刷等で行ってもよい。 The application of the ceramic slurry to the film 100 is performed by the doctor blade method, but may be performed by screen printing, gravure printing, ink jet printing, or the like.
 また、導体層の塗布は、スクリーン印刷法により行うものとしたが、スパッタリング、蒸着法等で行ってもよい。 The conductor layer is applied by a screen printing method, but may be formed by sputtering, vapor deposition, or the like.
 また、サーミスタ10の製造方法では、マザーセラミックグリーンシート110に打ち抜き加工を行ってセラミックグリーンシート112を得た後に、セラミックグリーンシート112に対して電極層16を形成している。しかしながら、マザーセラミックグリーンシート110に複数の電極層16を印刷した後に、打ち抜き加工を行ってもよい。 In the method for manufacturing the thermistor 10, the mother ceramic green sheet 110 is punched to obtain the ceramic green sheet 112, and then the electrode layer 16 is formed on the ceramic green sheet 112. However, after printing the plurality of electrode layers 16 on the mother ceramic green sheet 110, punching may be performed.
 また、電極層14,16を形成する前のセラミックグリーンシート112を組み立てて未焼成のサーミスタ素体12を得た後に、ディップやピンによって、電極層14,16を形成してもよい。 Alternatively, after assembling the ceramic green sheet 112 before forming the electrode layers 14 and 16 to obtain the unfired thermistor body 12, the electrode layers 14 and 16 may be formed by dip or pins.
 以上のように、本発明は、サーミスタ及びその製造方法に有用であり、特に、目標の抵抗値を得ることができる点において優れている。 As described above, the present invention is useful for a thermistor and a method for manufacturing the thermistor, and is particularly excellent in that a target resistance value can be obtained.
10,10a,10b サーミスタ
12,12a,12b サーミスタ素体
14,14a,14b,16,16a,16b 電極層
18,20 リード線
100 フィルム
110 マザーセラミックグリーンシート
112 セラミックグリーンシート
120 導体層
10, 10a, 10b Thermistor 12, 12a, 12b Thermistor body 14, 14a, 14b, 16, 16a, 16b Electrode layer 18, 20 Lead wire 100 Film 110 Mother ceramic green sheet 112 Ceramic green sheet 120 Conductor layer

Claims (12)

  1.  セラミックグリーンシートに曲げ加工が施されることによって、内部に空洞が形成されていると共に、該空洞が外部と連通するように開口が形成されているサーミスタ素体であって、該セラミックグリーンシートが焼成されることによって作製されたサーミスタ素体と、
     前記サーミスタ素体の外周面に設けられている第1の電極層と、
     前記サーミスタ素体の内周面に設けられている第2の電極層と、
     を備えていること、
     を特徴とするサーミスタ。
    The ceramic green sheet is a thermistor body in which a cavity is formed by bending the ceramic green sheet, and an opening is formed so that the cavity communicates with the outside. A thermistor body produced by firing;
    A first electrode layer provided on an outer peripheral surface of the thermistor body;
    A second electrode layer provided on the inner peripheral surface of the thermistor body;
    Having
    Thermistor characterized by.
  2.  前記サーミスタ素体は、筒状、錐状又は錐台状をなしていること、
     を特徴とする請求項1に記載のサーミスタ。
    The thermistor body has a cylindrical shape, a cone shape or a frustum shape;
    The thermistor according to claim 1.
  3.  前記第1の電極層及び/又は前記第2の電極層は、前記セラミックグリーンシートに対して導電性ペーストが印刷されることによって形成されていること、
     を特徴とする請求項1又は請求項2に記載のサーミスタ。
    The first electrode layer and / or the second electrode layer is formed by printing a conductive paste on the ceramic green sheet;
    The thermistor of Claim 1 or Claim 2 characterized by these.
  4.  前記第1の電極層の厚みは、前記サーミスタ素体の厚みよりも大きいこと、
     を特徴とする請求項1ないし請求項3のいずれかに記載のサーミスタ。
    The thickness of the first electrode layer is larger than the thickness of the thermistor body;
    The thermistor in any one of Claims 1 thru | or 3 characterized by these.
  5.  前記サーミスタは、
     前記第1の電極層に接続されている第1のリード線と、
     前記第2の電極層に接続されている第2のリード線と、
     を更に備えていること、
     を特徴とする請求項1ないし請求項4のいずれかに記載のサーミスタ。
    The thermistor is
    A first lead connected to the first electrode layer;
    A second lead connected to the second electrode layer;
    Further comprising
    The thermistor in any one of Claims 1 thru | or 4 characterized by these.
  6.  請求項1に記載のサーミスタの製造方法であって、
     前記セラミックグリーンシートに曲げ加工を施して、内部に空洞が形成されていると共に、該空洞が外部と連通するように開口が形成されているサーミスタ素体を作成する第1の工程と、
     前記サーミスタ素体を焼成する第2の工程と、
     を備えていること、
     を特徴とするサーミスタの製造方法。
    A thermistor manufacturing method according to claim 1,
    A first step of bending the ceramic green sheet to form a thermistor body in which a cavity is formed and an opening is formed so that the cavity communicates with the outside;
    A second step of firing the thermistor body;
    Having
    A thermistor manufacturing method characterized by the above.
  7.  フィルム上にセラミックスラリーを塗布することによって、前記セラミックグリーンシートを作製する第3の工程を、
     更に備えていること、
     を特徴とする請求項6に記載のサーミスタの製造方法。
    A third step of producing the ceramic green sheet by applying a ceramic slurry on the film,
    More
    The method of manufacturing the thermistor according to claim 6.
  8.  前記フィルムに貼り付けられた状態の前記セラミックグリーンシートに対して、導電性ペーストを塗布することによって、前記第1の電極層を形成する第4の工程を、
     更に備えていること、
     を特徴とする請求項6又は請求項7のいずれかに記載のサーミスタの製造方法。
    A fourth step of forming the first electrode layer by applying a conductive paste to the ceramic green sheet attached to the film,
    More
    The method of manufacturing a thermistor according to claim 6 or 7, wherein:
  9.  前記第2の電極層を形成した前記セラミックグリーンシートを所定形状に加工する第5の工程を、
     更に備えていること、
     を特徴とする請求項8に記載のサーミスタの製造方法。
    A fifth step of processing the ceramic green sheet on which the second electrode layer is formed into a predetermined shape;
    More
    The method of manufacturing a thermistor according to claim 8.
  10.  第5の工程において所定形状に加工した前記セラミックグリーンシートに導電性ペーストを印刷することによって、前記第2の電極層を形成する第6の工程を、
     更に備えていること、
     を特徴とする請求項9に記載のサーミスタの製造方法。
    A sixth step of forming the second electrode layer by printing a conductive paste on the ceramic green sheet processed into a predetermined shape in the fifth step,
    More
    The method of manufacturing a thermistor according to claim 9.
  11.  焼成後における前記第1の電極層の厚みが、焼成後における前記サーミスタ素体の厚みよりも大きくなるように、前記第4の工程において前記導電性ペーストを塗布すること、
     を特徴とする請求項10に記載のサーミスタの製造方法。
    Applying the conductive paste in the fourth step so that the thickness of the first electrode layer after firing is greater than the thickness of the thermistor body after firing;
    The method of manufacturing the thermistor according to claim 10.
  12.  前記第1の工程において、円筒状、円錐状又は円錐台状に前記セラミックグリーンシートを加工すること、
     を特徴とする請求項6ないし請求項11のいずれかに記載のサーミスタの製造方法。
    In the first step, processing the ceramic green sheet into a cylindrical shape, a conical shape or a truncated cone shape,
    The method of manufacturing a thermistor according to any one of claims 6 to 11, wherein:
PCT/JP2012/069988 2011-11-17 2012-08-06 Thermistor and method for producing same WO2013073239A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011251622 2011-11-17
JP2011-251622 2011-11-17

Publications (1)

Publication Number Publication Date
WO2013073239A1 true WO2013073239A1 (en) 2013-05-23

Family

ID=48429321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069988 WO2013073239A1 (en) 2011-11-17 2012-08-06 Thermistor and method for producing same

Country Status (1)

Country Link
WO (1) WO2013073239A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641202A (en) * 1987-06-24 1989-01-05 Murata Mfg Co Ltd Thermistor
JP2010015976A (en) * 2008-04-21 2010-01-21 Littelfuse Inc Circuit protection device including resistor and fuse element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641202A (en) * 1987-06-24 1989-01-05 Murata Mfg Co Ltd Thermistor
JP2010015976A (en) * 2008-04-21 2010-01-21 Littelfuse Inc Circuit protection device including resistor and fuse element

Similar Documents

Publication Publication Date Title
CN102810398B (en) Laminated ceramic electronic component and multilayer ceramic capacitor
CN104078235B (en) Ceramic electronic components and glass paste
US7982367B2 (en) Piezoelectric/electrostrictive element having a multilayer external electrode structure and method for manufacturing thereof
JP7241472B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP6470228B2 (en) Multilayer ceramic capacitor
JP5970717B2 (en) Multilayer PTC thermistor element
JP6430732B2 (en) Ceramic sintered body and electronic parts
JP7131955B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JPWO2006100807A1 (en) Piezoelectric element and method for manufacturing piezoelectric element
KR20200099084A (en) Multilayer ceramic capacitor and method for manufacturing the same
JP6406022B2 (en) Manufacturing method of NTC thermistor element
KR102449359B1 (en) Dielectric powder and multilayered ceramic electronic components using the same
US10896781B2 (en) Ceramic capacitor having metal or metal oxide in side margin portions, and method of manufacturing the same
CN103227278A (en) Laminated piezoelectric device
US20050120528A1 (en) Method of manufacturing piezoelectric ceramic device
CN106340385B (en) Multilayer ceramic electronic component
JP6338011B2 (en) NTC thermistor for substrate embedding and manufacturing method thereof
WO2013073239A1 (en) Thermistor and method for producing same
WO2013073240A1 (en) Thermistor
JP2007096205A (en) Chip-type negative temperature coefficient (ntc) element
JP2006041393A (en) Multilayer ceramic capacitor
JP2006036578A (en) Method of manufacturing piezoelectric material and piezoelectric material using the same
JP2005051052A (en) Varistor and manufacturing method thereof
JPH08236306A (en) Chip type thermistor and manufacture thereof
JP2024030969A (en) Multilayer ceramic electronic component and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP