WO2013073078A1 - 偏光子を用いてテラヘルツ電磁波を偏光させる方法、および偏光子 - Google Patents

偏光子を用いてテラヘルツ電磁波を偏光させる方法、および偏光子 Download PDF

Info

Publication number
WO2013073078A1
WO2013073078A1 PCT/JP2012/004913 JP2012004913W WO2013073078A1 WO 2013073078 A1 WO2013073078 A1 WO 2013073078A1 JP 2012004913 W JP2012004913 W JP 2012004913W WO 2013073078 A1 WO2013073078 A1 WO 2013073078A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal layer
coo
polarizer
micrometers
sapphire single
Prior art date
Application number
PCT/JP2012/004913
Other languages
English (en)
French (fr)
Inventor
宏平 高橋
勉 菅野
章裕 酒井
山田 由佳
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013523399A priority Critical patent/JP5418731B2/ja
Publication of WO2013073078A1 publication Critical patent/WO2013073078A1/ja
Priority to US13/943,613 priority patent/US8786949B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06712Polarising fibre; Polariser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S359/00Optical: systems and elements
    • Y10S359/90Methods

Definitions

  • the present invention relates to a method for polarizing terahertz electromagnetic waves using a polarizer.
  • the terahertz electromagnetic wave is an electromagnetic wave having a frequency of 0.1 THz or more.
  • Patent Document 1 Non-Patent Document 1
  • Non-Patent Document 2 disclose methods for polarizing terahertz electromagnetic waves.
  • An object of the present invention is to provide a novel method for polarizing terahertz electromagnetic waves with a polarizer.
  • the present invention according to the following items 1-10 solves the above problems.
  • a method of polarizing an electromagnetic wave having a frequency of 0.1 THz or more and 0.8 THz or less using a polarizer comprising: Preparing the polarizer (a), wherein the polarizer comprises: A sapphire single crystal layer (11), and a Ca x CoO 2 crystal layer (12), The Ca x CoO 2 crystal layer (12) is stacked on the sapphire single crystal layer (11), The surface of the Ca x CoO 2 crystal layer (12) has a (100) plane orientation, The Ca x CoO 2 crystal layer (12) has a thickness of 2 micrometers to 20 micrometers, (B) irradiating the polarizer with an electromagnetic wave having a frequency of 0.1 THz or more and 0.8 THz or less to emit an output wave having only a component parallel to the c-axis direction of the sapphire single crystal layer (11). .
  • a polarizer comprising: The sapphire single crystal layer (11), and the Ca x CoO 2 crystal layer (12), wherein the Ca x CoO 2 crystal layer (12) is laminated on the sapphire single crystal layer (11),
  • the surface of the Ca x CoO 2 crystal layer (12) has a (100) plane orientation
  • the Ca x CoO 2 crystal layer (12) has a thickness of 2 micrometers to 20 micrometers.
  • the present invention provides a novel method for polarizing terahertz electromagnetic waves with a polarizer.
  • FIG. 1 is a cross-sectional view of a terahertz polarizer according to an embodiment.
  • FIG. 2 is a diagram conceptually illustrating a method according to the embodiment.
  • FIG. 3 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 0.1 ⁇ m) formed on a sapphire single crystal layer having an a-plane orientation on the surface.
  • FIG. 4 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 1 micrometer) formed on a sapphire single crystal layer having an a-plane orientation on the surface.
  • FIG. 1 is a cross-sectional view of a terahertz polarizer according to an embodiment.
  • FIG. 2 is a diagram conceptually illustrating a method according to the embodiment.
  • FIG. 3 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 0.1 ⁇ m) formed on
  • FIG. 5 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 2 micrometers) formed on a sapphire single crystal layer having an a-plane orientation on the surface.
  • FIG. 6 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 4 micrometers) formed on a sapphire single crystal layer having an a-plane orientation on the surface.
  • FIG. 7 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 6 micrometers) formed on a sapphire single crystal layer having an a-plane orientation on the surface.
  • FIG. 6 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 6 micrometers) formed on a sapphire single crystal layer having an a-plane orientation on the surface.
  • FIG. 8 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 9 micrometers) formed on a sapphire single crystal layer having an a-plane orientation on the surface.
  • FIG. 9 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 12 micrometers) formed on a sapphire single crystal layer having an a-plane orientation on the surface.
  • FIG. 10 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 16 micrometers) formed on a sapphire single crystal layer having an a-plane orientation on the surface.
  • FIG. 11 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 20 micrometers) formed on a sapphire single crystal layer having an a-plane orientation on the surface.
  • FIG. 12 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 25 micrometers) formed on a sapphire single crystal layer having an a-plane orientation on the surface.
  • FIG. 13 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 30 micrometers) formed on a sapphire single crystal layer having an a-plane orientation on the surface.
  • FIG. 12 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 25 micrometers) formed on a sapphire single crystal layer having an a-plane orientation on the surface.
  • FIG. 13 is a diagram showing a transmittance spectrum of a Ca x CoO
  • FIG. 14 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 0.1 ⁇ m) formed on a sapphire single crystal layer having a c-plane orientation on the surface.
  • FIG. 15 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 1 micrometer) formed on a sapphire single crystal layer having a c-plane orientation on the surface.
  • FIG. 16 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 2 micrometers) formed on a sapphire single crystal layer having a c-plane orientation on the surface.
  • FIG. 15 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 1 micrometer) formed on a sapphire single crystal layer having a c-plane orientation on the surface.
  • FIG. 16 is a diagram showing a transmittance spectrum of a Ca
  • FIG. 17 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 4 micrometers) formed on a sapphire single crystal layer having a c-plane orientation on the surface.
  • FIG. 18 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 6 micrometers) formed on a sapphire single crystal layer having a c-plane orientation on the surface.
  • FIG. 19 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 9 micrometers) formed on a sapphire single crystal layer having a c-plane orientation on the surface.
  • FIG. 20 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 12 micrometers) formed on a sapphire single crystal layer having a c-plane orientation on the surface.
  • FIG. 21 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 16 micrometers) formed on a sapphire single crystal layer having a c-plane orientation on the surface.
  • FIG. 22 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 20 micrometers) formed on a sapphire single crystal layer having a c-plane orientation on the surface.
  • FIG. 21 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 16 micrometers) formed on a sapphire single crystal layer having a c-plane orientation on the surface.
  • FIG. 22 is a diagram showing a transmittance spectrum of a Ca
  • FIG. 23 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 25 micrometers) formed on a sapphire single crystal layer having a c-plane orientation on the surface.
  • FIG. 24 is a diagram showing a transmittance spectrum of a Ca x CoO 2 crystal layer (film thickness: 30 micrometers) formed on a sapphire single crystal layer having a c-plane orientation on the surface.
  • FIG. 1 is a cross-sectional view of a terahertz polarizer (hereinafter simply referred to as “polarizer”) according to an embodiment.
  • the polarizer has a plate shape.
  • the polarizing plate includes a sapphire single crystal layer 11 and a Ca x CoO 2 crystal layer 12.
  • the Ca x CoO 2 crystal layer 12 is stacked on the sapphire single crystal layer 11. It is preferable that no other layer is sandwiched between the Ca x CoO 2 crystal layer 12 and the sapphire single crystal layer 11.
  • FIG. 2 schematically shows a method of polarizing an electromagnetic wave using a polarizer in the embodiment.
  • Electromagnetic waves have a frequency of 0.1 THz to 0.8 THz.
  • the electromagnetic wave 14 is applied to the polarizer as an incident wave.
  • the electromagnetic wave 14 is applied to the surface on the front side of the Ca x CoO 2 crystal layer 12.
  • the electromagnetic wave that has passed through the polarizer is output as an output wave 15 from the polarizer.
  • the output wave 15 is output from the back surface of the sapphire single crystal layer 11.
  • the electromagnetic wave 14 can be applied to the surface on the front side of the sapphire single crystal layer 11, and the output wave 15 can be output from the surface on the back side of the Ca x CoO 2 crystal layer 12.
  • the output wave 15 has only a component parallel to the c-axis direction of the sapphire single crystal layer 11 (see arrow 16 in FIG. 1).
  • the output wave 15 has no other component.
  • Another example of the component is a component perpendicular to the c-axis direction of the sapphire single crystal layer 11.
  • the sapphire single crystal layer 11 preferably has a (11-20) plane orientation.
  • the surface of the Ca x CoO 2 crystal layer 12 has a (100) plane orientation. As demonstrated in Comparative Examples 5 to 15 described later, when the surface has a (001) plane orientation, incident light is not polarized.
  • x is not limited. According to Non-Patent Document 3 and Non-Patent Document 4, a preferable value of x is 0.15 or more and 0.55 or less.
  • the Ca x CoO 2 crystal layer 12 has a thickness of 2 micrometers or more and 20 micrometers or less. As demonstrated in Comparative Examples 1 and 2 to be described later, when the thickness is less than 2 micrometers, the incident light is not sufficiently polarized. That is, when the thickness is less than 2 micrometers, the component perpendicular to the c-axis direction of the sapphire single crystal layer 11 is not sufficiently removed. Conversely, when the thickness exceeds 20 micrometers, it becomes difficult for electromagnetic waves to pass through the polarizer, as demonstrated in Comparative Examples 3 and 4 described later. Therefore, the output wave 15 having sufficient strength cannot be obtained.
  • the Ca x CoO 2 crystal layer 12 preferably has a thickness of 2 micrometers to 9 micrometers. As demonstrated in Examples 1 and 2, the Ca x CoO 2 crystal layer 12 preferably has a thickness of 2 micrometers to 4 micrometers. This is because the component perpendicular to the c-axis direction of the sapphire single crystal layer 11 is sufficiently removed and the transmittance of the component parallel to the c-axis direction of the sapphire single crystal layer 11 is high.
  • the angle formed between the front surface of the polarizer and the incident wave is not limited.
  • the incident wave is preferably incident on the polarizer along the normal direction of the polarizer having a plate shape.
  • Example 1 (Creating a polarizer) A Ca x CoO 2 crystal layer was formed by high frequency magnetron sputtering on a sapphire crystal substrate having the (11-20) plane, that is, the plane orientation of the a plane. This sapphire crystal substrate was used as the sapphire single crystal layer 11.
  • the gas in the film forming chamber was evacuated so that the inside of the film forming chamber had a pressure of less than 1.0 ⁇ 10 ⁇ 3 .
  • the sapphire single crystal layer was heated by a heater while a mixed gas of argon (volume ratio: 96%) and oxygen (volume ratio: 4%) was introduced.
  • a Ca x CoO 2 crystal layer 12 having a thickness of 2 micrometers is formed on the sapphire single crystal layer 11 by high-frequency magnetron sputtering, and the Ca x CoO 2 crystal layer 12 having a (100) plane orientation on the surface is formed. Formed. In this way, a polarizer according to Example 1 was obtained.
  • the electromagnetic wave output device 21 is a dipole-type low-temperature grown GaAs photoconductive antenna (available from Hamamatsu Photonics Co., Ltd.). The photoconductive antenna was excited with a Ti: Sapphire laser.
  • the electromagnetic wave receiver 22 was a Bowtie-type low temperature growth GaAs photoconductive antenna (obtained from Hamamatsu Photonics).
  • the electromagnetic wave was emitted from the electromagnetic wave output device 21 while the frequency was changed from 0.1 THz to 0.8 THz.
  • the emitted electromagnetic wave was a linearly polarized pulsed electromagnetic wave.
  • the electromagnetic wave was incident on the surface on the front side of the Ca x CoO 2 crystal layer 12 from the normal direction of the polarizer.
  • Electromagnetic waves were emitted as an output wave 15 from the back side surface of the sapphire single crystal layer 11.
  • the light component parallel to the c-axis direction of the sapphire single crystal layer 11 was received by the electromagnetic wave receiver 22. This light was included in the output wave 15.
  • the light component perpendicular to the c-axis direction of the sapphire single crystal layer 11 was also received by the electromagnetic wave receiver 22.
  • FIG. 5 shows a transmittance spectrum measured by the electromagnetic wave receiver 22 according to the first embodiment.
  • the black square indicates the transmittance of the light component parallel to the c-axis direction of the sapphire single crystal layer 11 having the (11-20) plane, that is, the a-plane surface orientation on the surface.
  • white circles indicate the transmittance of the light component perpendicular to the c-axis direction of the sapphire single crystal layer 11 having the (11-20) plane, that is, the a-plane surface orientation on the surface.
  • FIG. 6 shows the transmittance spectrum measured in Example 2.
  • Example 3 An experiment similar to that of Example 1 was performed, except that the thickness of the Ca x CoO 2 crystal layer 12 was 6 micrometers.
  • FIG. 7 shows the transmittance spectrum measured in Example 3.
  • Example 4 An experiment similar to that of Example 1 was performed, except that the thickness of the Ca x CoO 2 crystal layer 12 was 9 micrometers.
  • FIG. 8 shows the transmittance spectrum measured in Example 4.
  • Example 5 An experiment similar to that of Example 1 was performed, except that the thickness of the Ca x CoO 2 crystal layer 12 was 12 micrometers.
  • FIG. 9 shows the transmittance spectrum measured in Example 5.
  • Example 6 An experiment similar to that of Example 1 was performed, except that the thickness of the Ca x CoO 2 crystal layer 12 was 16 micrometers.
  • FIG. 10 shows the transmittance spectrum measured in Example 6.
  • Example 7 An experiment similar to that of Example 1 was performed, except that the thickness of the Ca x CoO 2 crystal layer 12 was 20 micrometers.
  • FIG. 11 shows the transmittance spectrum measured in Example 7.
  • Comparative Example 1 An experiment similar to that of Example 1 was performed, except that the thickness of the Ca x CoO 2 crystal layer 12 was 0.1 micrometers.
  • FIG. 3 shows the transmittance spectrum measured in Comparative Example 1.
  • Comparative Example 2 An experiment similar to that of Example 1 was performed, except that the thickness of the Ca x CoO 2 crystal layer 12 was 1 micrometer.
  • FIG. 4 shows the transmittance spectrum measured in Comparative Example 2.
  • Example 3 An experiment similar to that of Example 1 was performed, except that the thickness of the Ca x CoO 2 crystal layer 12 was 25 micrometers.
  • FIG. 12 shows the transmittance spectrum measured in Comparative Example 3.
  • Example 4 An experiment similar to that of Example 1 was performed, except that the thickness of the Ca x CoO 2 crystal layer 12 was 30 micrometers.
  • FIG. 13 shows the transmittance spectrum measured in Comparative Example 4.
  • Table 1 below summarizes the average transmittance in Examples 1 to 7 and Comparative Examples 1 to 4.
  • c-axis parallel average transmittance means the average value of the transmittance of the light component parallel to the c-axis direction of the sapphire single crystal layer 11.
  • c-axis vertical average transmittance means an average value of the transmittance of light components perpendicular to the c-axis direction of the sapphire single crystal layer 11.
  • the output wave 15 substantially includes only a component parallel to the c-axis direction of the sapphire single crystal layer 11. In other words, the component perpendicular to the c-axis direction of the sapphire single crystal layer 11 is sufficiently removed.
  • the Ca x CoO 2 crystal layer 12 has a thickness of 2 micrometers to 9 micrometers. More preferably, the Ca x CoO 2 crystal layer 12 has a thickness of 2 micrometers or more and 4 micrometers or less.
  • the component perpendicular to the c-axis direction of the sapphire single crystal layer 11 is not sufficiently removed.
  • Comparative Examples 5 to 15 In Comparative Examples 5 to 15, a sapphire having a (0001) plane (that is, a c-plane orientation) on the surface instead of a sapphire crystal substrate having a (11-20) plane (that is, a-plane orientation) on the surface A crystal substrate was used. In Comparative Examples 5 to 15, Examples 1 to 7 and Comparative Examples 1 to 4 except that the Ca x CoO 2 crystal layer 12 having the (001) plane (that is, the plane orientation of the c plane) on the surface was formed. A similar experiment was conducted.
  • black squares indicate the transmittance of the light component parallel to the x-axis direction of the sapphire single crystal layer 11 having the (0001) plane (that is, the plane orientation of the c plane) on the surface.
  • white circles indicate the transmittance of the light component perpendicular to the y-axis direction of the sapphire single crystal layer 11 having the (0001) plane (that is, the plane orientation of the c plane) on the surface. Note that the x-axis direction is orthogonal to the y-axis direction. Table 2 shows the results of Comparative Examples 5 to 15.
  • the output wave 15 includes both a component parallel to the c-axis direction of the sapphire single crystal layer 11 and a component perpendicular to the c-axis direction of the sapphire single crystal layer 11 (Comparative Examples 5 and 6). , 12, and 13). This means that the incident wave is not polarized at all.
  • the present invention can be used in an optical device, a medical device, or a security device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)

Abstract

 本発明は、テラヘルツ電磁波を偏光子により偏光させる新規な方法を提供する。偏光子は、サファイヤ単結晶層、およびCaCoO結晶層を具備し、CaCoO結晶層は、サファイヤ単結晶層上に積層されており、CaCoO結晶層の表面は(100)の面方位を有し、CaCoO結晶層は、2マイクロメートル以上20マイクロメートル以下の厚みを有する。本発明の方法は、0.1THz以上0.8THz以下の周波数を有する電磁波を偏光子に照射し、サファイヤ単結晶層のc軸方向に平行な成分のみを有する出力波を出射する。

Description

偏光子を用いてテラヘルツ電磁波を偏光させる方法、および偏光子
 本発明は、偏光子を用いてテラヘルツ電磁波を偏光させる方法に関する。
 テラヘルツ電磁波とは、0.1THz以上の周波数を有する電磁波である。特許文献1、非特許文献1、および非特許文献2は、テラヘルツ電磁波を偏光させる方法を開示している。
特開2009-52920号公報
Itsunari Yamada et. al., "Terahertz wire-grid polarizers with micrometer-pitch Al gratings", Optics Letters, (2009), Vol. 34, No.3, p.p. 274-276 Lei Ren et. al., "Carbon Nanotube Terahetz Polarizer", Nano Letters, (2009), Vol. 9, No. 7, p.p. 2610-2613 Brian. L. Cushing et. al.,"Topotactic Routes to Layered Calcium Cobalt Oxides", Journal of solid state chemistry, Vol. 141, pages 385-391 (1998) H.X. Yang et. a;., "Structural properties and cation ordering in layered hexagonal CaxCoO2", Physical Review, B, Vol. 73, 014109-1 - 014109-6 (2006)
 本発明の目的は、テラヘルツ電磁波を偏光子により偏光させる新規な方法を提供することである。
 以下の項目1-10に係る本発明は、上記課題を解決する。
 1. 0.1THz以上0.8THz以下の周波数を有する電磁波を、偏光子を用いて偏光させる方法であって、以下を具備する:
 前記偏光子を用意する工程(a)、ここで
  前記偏光子は以下を具備する:
  サファイヤ単結晶層(11)、および
  CaCoO結晶層(12)、
  前記CaCoO結晶層(12)は、前記サファイヤ単結晶層(11)上に積層されており、
  前記CaCoO結晶層(12)の表面は(100)の面方位を有し、
  前記CaCoO結晶層(12)は、2マイクロメートル以上20マイクロメートル以下の厚みを有し、
 前記0.1THz以上0.8THz以下の周波数を有する電磁波を前記偏光子に照射し、前記サファイヤ単結晶層(11)のc軸方向に平行な成分のみを有する出力波を出射する工程(b)。
 2. 前記項目1に記載の方法であって、前記CaCoO結晶層(12)は、2マイクロメートル以上9マイクロメートル以下の厚みを有する。
 3. 前記項目1に記載の方法であって、前記CaCoO結晶層(12)は、2マイクロメートル以上4マイクロメートル以下の厚みを有する。
 4. 前記項目1に記載の方法であって、前記工程(b)において、前記電磁波は前記サファイヤ単結晶層(11)に照射され、前記出力波は前記CaCoO結晶層(12)から出射される。
 5. 前記項目1に記載の方法であって、前記工程(b)において、前記電磁波は前記CaCoO結晶層(12)に照射され、前記出力波は前記サファイヤ単結晶層(11)から出射される。
 6. 前記項目1に記載の方法であって、前記工程(b)において、前記電磁波は前記偏光子の法線方向に沿って前記偏光子に照射される。
 7. 前記項目6に記載の方法であって、前記工程(b)において、前記出力波は前記偏光子の法線方向に沿って前記偏光子から出射される。
 8. 偏光子であって、以下を具備する:
  サファイヤ単結晶層(11)、および
  CaCoO結晶層(12)、ここで
  前記CaCoO結晶層(12)は、前記サファイヤ単結晶層(11)上に積層されており、
  前記CaCoO結晶層(12)の表面は(100)の面方位を有し、
  前記CaCoO結晶層(12)は、2マイクロメートル以上20マイクロメートル以下の厚みを有する。
 9. 前記項目8に記載の偏光子であって、前記CaCoO結晶層(12)は、2マイクロメートル以上9マイクロメートル以下の厚みを有する。
 10. 前記項目8に記載の偏光子であって、前記CaCoO結晶層(12)は、2マイクロメートル以上4マイクロメートル以下の厚みを有する。
 本発明は、テラヘルツ電磁波を偏光子により偏光させる新規な方法を提供する。
図1は、実施形態によるテラヘルツ偏光子の断面図である。 図2は、実施形態による方法を概念的に示す図である。 図3は、表面にa面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:0.1マイクロメートル)の透過率スペクトルを示す図である。 図4は、表面にa面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:1マイクロメートル)の透過率スペクトルを示す図である。 図5は、表面にa面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:2マイクロメートル)の透過率スペクトルを示す図である。 図6は、表面にa面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:4マイクロメートル)の透過率スペクトルを示す図である。 図7は、表面にa面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:6マイクロメートル)の透過率スペクトルを示す図である。 図8は、表面にa面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:9マイクロメートル)の透過率スペクトルを示す図である。 図9は、表面にa面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:12マイクロメートル)の透過率スペクトルを示す図である。 図10は、表面にa面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:16マイクロメートル)の透過率スペクトルを示す図である。 図11は、表面にa面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:20マイクロメートル)の透過率スペクトルを示す図である。 図12は、表面にa面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:25マイクロメートル)の透過率スペクトルを示す図である。 図13は、表面にa面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:30マイクロメートル)の透過率スペクトルを示す図である。 図14は、表面にc面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:0.1マイクロメートル)の透過率スペクトルを示す図である。 図15は、表面にc面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:1マイクロメートル)の透過率スペクトルを示す図である。 図16は、表面にc面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:2マイクロメートル)の透過率スペクトルを示す図である。 図17は、表面にc面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:4マイクロメートル)の透過率スペクトルを示す図である。 図18は、表面にc面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:6マイクロメートル)の透過率スペクトルを示す図である。 図19は、表面にc面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:9マイクロメートル)の透過率スペクトルを示す図である。 図20は、表面にc面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:12マイクロメートル)の透過率スペクトルを示す図である。 図21は、表面にc面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:16マイクロメートル)の透過率スペクトルを示す図である。 図22は、表面にc面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:20マイクロメートル)の透過率スペクトルを示す図である。 図23は、表面にc面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:25マイクロメートル)の透過率スペクトルを示す図である。 図24は、表面にc面方位を有するサファイア単結晶層に形成されたCaCoO結晶層(膜厚:30マイクロメートル)の透過率スペクトルを示す図である。
 以下、本発明の実施形態が、図面を参照しながら説明される。
 (実施形態)
 図1は、実施形態によるテラヘルツ偏光子(以下、単に「偏光子」という)の断面図を示す。偏光子は、板の形状を有する。偏光板は、サファイヤ単結晶層11およびCaCoO結晶層12を具備する。CaCoO結晶層12は、サファイヤ単結晶層11の上に積層されている。CaCoO結晶層12およびサファイヤ単結晶層11の間には、他の層が挟まれていないことが好ましい。
 図2は、実施形態において、偏光子を用いて電磁波を偏光させる方法を概略的に示す。
 電磁波は、0.1THz以上0.8THz以下の周波数を有する。
 電磁波14は、入射波として偏光子に照射される。図2では、電磁波14は、CaCoO結晶層12の表側の面に照射される。
 偏光子を通過した電磁波は、出力波15として偏光子から出力される。図2では、出力波15はサファイヤ単結晶層11の裏側の面から出力される。これに代えて、電磁波14はサファイヤ単結晶層11の表側の面に照射され、かつ出力波15はCaCoO結晶層12の裏側の面から出力され得る。出力波15は、サファイヤ単結晶層11のc軸方向(図1中の矢印16を参照)に平行な成分のみを有する。出力波15は、他の成分を有しない。他の成分の例は、サファイヤ単結晶層11のc軸方向に垂直な成分である。
 サファイヤ単結晶層11は、(11-20)の面方位を有することが好ましい。
 CaCoO結晶層12の表面は、(100)の面方位を有する。後述される比較例5~15に実証されるように、表面が(001)の面方位を有する場合には、入射光は偏光されない。
 CaCoO結晶層12の結晶性が保持される限り、xの値は限定されない。非特許文献3および非特許文献4によれば、xの好ましい値は、0.15以上0.55以下である。
 CaCoO結晶層12は、2マイクロメートル以上20マイクロメートル以下の厚みを有する。後述される比較例1および2において実証されるように、厚みが2マイクロメートル未満である場合には、入射光は充分に偏光されない。すなわち、厚みが2マイクロメートル未満である場合には、サファイヤ単結晶層11のc軸方向に垂直な成分が充分に除去されない。逆に、厚みが20マイクロメートルを超える場合には、後述される比較例3および4において実証されるように、電磁波は偏光子を透過することが困難になる。従って、充分な強度を有する出力波15が得られない。
 実施例1~4において実証されるように、CaCoO結晶層12は、2マイクロメートル以上9マイクロメートル以下の厚みを有することが好ましい。実施例1~2において実証されるように、CaCoO結晶層12は、2マイクロメートル以上4マイクロメートル以下の厚みを有することが好ましい。これは、サファイヤ単結晶層11のc軸方向に垂直な成分が充分に除去され、かつサファイヤ単結晶層11のc軸方向に平行な成分の透過率が高いからである。
 偏光子の表側の面および入射波の間に形成される角度は限定されない。入射波は、板の形状を有する偏光子の法線方向に沿って偏光子に入射されることが好ましい。
 (実施例)
 以下の実施例は本発明をより詳細に説明する。
 (実施例1)
 (偏光子の作成)
 (11-20)面、すなわち、a面の面方位を表面に有するサファイヤ結晶基板に、CaCoO結晶層が、高周波マグネトロンスパッタにより形成された。このサファイヤ結晶基板は、サファイヤ単結晶層11として用いられた。
 より具体的には、この高周波マグネトロンスパッタでは、1:1のCa:Coモル比を有する混合物ターゲットが用いられた。
 最初に、成膜チャンバー内の気体が排気され、成膜チャンバーの内部が1.0×10-3未満の圧力を有するようにした。
 次に、アルゴン(体積比:96%)および酸素(体積比:4%)の混合ガスが導入されながら、ヒーターによりサファイヤ単結晶層が加熱された。次いで、2マイクロメートルの厚みを有するCaCoO結晶層12が、高周波マグネトロンスパッタによりサファイヤ単結晶層11上に形成され、(100)の面方位を表面に有するCaCoO結晶層12を形成した。このようにして、実施例1による偏光子が得られた。
 高周波マグネトロンスパッタの条件が以下、記述される。
  成膜チャンバー内の圧力:5Pa
  サファイヤ結晶基板の温度:450℃
  RFパワー:100W
 CaCoO結晶層12が形成された後、偏光子は、60分かけて5Paの圧力下で室温まで冷却された。
 CaCoO結晶層12に含まれる陽イオンの組成比が、エネルギー分散型X線分析装置を用いて測定された。その結果、Ca:Coの組成比は、おおよそ1:2、すなわち、x=0.5であった。
 (入射波の照射)
 得られた偏光子は、図2に示されるように、電磁波出力器21および電磁波受信器22の間に配置された。
 電磁波出力器21は、dipole-typeの低温成長GaAsの光伝導アンテナ(浜松ホトニクス株式会社より入手)である。この光伝導アンテナは、Ti:Sapphireレーザーで励起された。
 電磁波受信器22は、Bowtie-typeの低温成長GaAsの光伝導アンテナ(浜松ホトニクス株式会社より入手)であった。
 周波数が0.1THzから0.8THzに変化されながら、電磁波出力器21から電磁波が出射された。
 出射された電磁波は、直線偏光したパルス状の電磁波であった。
 電磁波は、偏光子の法線方向からCaCoO結晶層12の表側の面に入射された。
 電磁波は、サファイヤ単結晶層11の裏側の面から出力波15として出射された。サファイヤ単結晶層11のc軸方向に平行な光の成分が、電磁波受信器22により受信された。この光は、出力波15に含まれていた。同様に、サファイヤ単結晶層11のc軸方向に垂直な光の成分も、電磁波受信器22により受信された。
 図5は、実施例1に従って電磁波受信器22によって測定された透過率スペクトルを示す。
 図3~図13において、黒い四角は、(11-20)面、すなわち、a面の面方位を表面に有するサファイヤ単結晶層11のc軸方向に平行な光の成分の透過率を指し示す。図3~図13において、白い丸は、(11-20)面、すなわち、a面の面方位を表面に有するサファイヤ単結晶層11のc軸方向に垂直な光の成分の透過率を指し示す。
 透過率は、以下の式に従って算出された:
 透過率=電磁波受信器22により受信された出力波の強度/電磁波出力器21から出力された電磁波の強度
 (実施例2)
 CaCoO結晶層12の厚みが4マイクロメートルであることを除き、実施例1と同様の実験が行われた。図6は実施例2において測定された透過率スペクトルを示す。
 (実施例3)
 CaCoO結晶層12の厚みが6マイクロメートルであることを除き、実施例1と同様の実験が行われた。図7は実施例3において測定された透過率スペクトルを示す。
 (実施例4)
 CaCoO結晶層12の厚みが9マイクロメートルであることを除き、実施例1と同様の実験が行われた。図8は実施例4において測定された透過率スペクトルを示す。
 (実施例5)
 CaCoO結晶層12の厚みが12マイクロメートルであることを除き、実施例1と同様の実験が行われた。図9は実施例5において測定された透過率スペクトルを示す。
 (実施例6)
 CaCoO結晶層12の厚みが16マイクロメートルであることを除き、実施例1と同様の実験が行われた。図10は実施例6において測定された透過率スペクトルを示す。
 (実施例7)
 CaCoO結晶層12の厚みが20マイクロメートルであることを除き、実施例1と同様の実験が行われた。図11は実施例7において測定された透過率スペクトルを示す。
 (比較例1)
 CaCoO結晶層12の厚みが0.1マイクロメートルであることを除き、実施例1と同様の実験が行われた。図3は比較例1において測定された透過率スペクトルを示す。
 (比較例2)
 CaCoO結晶層12の厚みが1マイクロメートルであることを除き、実施例1と同様の実験が行われた。図4は比較例2において測定された透過率スペクトルを示す。
 (比較例3)
 CaCoO結晶層12の厚みが25マイクロメートルであることを除き、実施例1と同様の実験が行われた。図12は比較例3において測定された透過率スペクトルを示す。
 (比較例4)
 CaCoO結晶層12の厚みが30マイクロメートルであることを除き、実施例1と同様の実験が行われた。図13は比較例4において測定された透過率スペクトルを示す。
 以下の表1は、実施例1~7および比較例1~4における平均透過率をまとめて示す。表1において、「c軸平行平均透過率」とは、サファイヤ単結晶層11のc軸方向に平行な光の成分の透過率の平均値を意味する。表1において、「c軸垂直平均透過率」とは、サファイヤ単結晶層11のc軸方向に垂直な光の成分の透過率の平均値を意味する。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、CaCoO結晶層12が2マイクロメートル以上20マイクロメートル以下の厚みを有する場合には、c軸平行平均透過率が0.27以上であり、かつc軸垂直平均透過率が0.08以下である。このことは、出力波15はサファイヤ単結晶層11のc軸方向に平行な成分のみを実質的に含むことを意味する。言い換えれば、サファイヤ単結晶層11のc軸方向に垂直な成分が充分に除去されている。
 c軸平行平均透過率を高めるためには、CaCoO結晶層12が2マイクロメートル以上9マイクロメートル以下の厚みを有することが好ましい。より好ましくは、CaCoO結晶層12が2マイクロメートル以上4マイクロメートル以下の厚みを有する。
 CaCoO結晶層12が1マイクロメートル以下の厚みを有する場合には、サファイヤ単結晶層11のc軸方向に垂直な成分が充分に除去されない。
 CaCoO結晶層12が20マイクロメートルを超える厚みを有する場合には、c軸垂直平均透過率だけでなくc軸平行平均透過率までもが低減する。
 (比較例5~15)
 比較例5~15では、(11-20)面(すなわち、a面の面方位)を表面に有するサファイヤ結晶基板に代えて、(0001)面(すなわちc面の面方位)を表面に有するサファイヤ結晶基板が用いられた。比較例5~15では、(001)面(すなわち、c面の面方位)を表面に有するCaCoO結晶層12が形成されたこと以外は、実施例1~7および比較例1~4と同様の実験が行われた。
 図14~図24において、黒い四角は、(0001)面(すなわちc面の面方位)を表面に有するサファイヤ単結晶層11のx軸方向に平行な光の成分の透過率を指し示す。図14~図24において、白い丸は、(0001)面(すなわちc面の面方位)を表面に有するサファイヤ単結晶層11のy軸方向に垂直な光の成分の透過率を指し示す。x軸方向はy軸方向に直交することに留意せよ。表2は、比較例5~15の結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、出力波15は、サファイヤ単結晶層11のc軸方向に平行な成分およびサファイヤ単結晶層11のc軸方向に垂直な成分の両者を含む(比較例5、6、12、および13)。これは、入射波が全く偏光されていないことを意味する。
 比較例7~15では、出力波15そのものが出力されなかった。これは、CaCoO層12が厚すぎるためであった。
 本発明は、光学機器、医療機器、またはセキュリティ装置において用いられ得る。
 11  サファイヤ単結晶層
 12  CaCoO結晶層
 14  電磁波
 15  出力波
 16  サファイヤ単結晶層11のc軸方向
 21  電磁波出力器
 22  電磁波受信器

Claims (10)

  1.  0.1THz以上0.8THz以下の周波数を有する電磁波を、偏光子を用いて偏光させる方法であって、以下を具備する:
     前記偏光子を用意する工程(a)、
      ここで前記偏光子は以下を具備する:
      サファイヤ単結晶層、および
      CaCoO結晶層、
      前記CaCoO結晶層は、前記サファイヤ単結晶層上に積層されており、
      前記CaCoO結晶層の表面は(100)の面方位を有し、
      前記CaCoO結晶層は、2マイクロメートル以上20マイクロメートル以下の厚みを有し、
     前記0.1THz以上0.8THz以下の周波数を有する電磁波を前記偏光子に照射し、前記サファイヤ単結晶層のc軸方向に平行な成分のみを有する出力波を出射する工程(b)。
  2.  前記CaCoO結晶層は、2マイクロメートル以上9マイクロメートル以下の厚みを有する、請求項1に記載の方法。
  3.  前記CaCoO結晶層は、2マイクロメートル以上4マイクロメートル以下の厚みを有する、請求項1に記載の方法。
  4.  前記工程(b)において、前記電磁波は前記サファイヤ単結晶層に照射され、前記出力波は前記CaCoO結晶層から出射される、請求項1に記載の方法。
  5.  前記工程(b)において、前記電磁波は前記CaCoO結晶層に照射され、前記出力波は前記サファイヤ単結晶層から出射される、請求項1に記載の方法。
  6.  前記工程(b)において、前記電磁波は前記偏光子の法線方向に沿って前記偏光子に照射される、請求項1に記載の方法。
  7.  前記工程(b)において、前記出力波は前記偏光子の法線方向に沿って前記偏光子から出射される、請求項6に記載の方法。
  8.  サファイヤ単結晶層、およびCaCoO結晶層を具備する偏光子であって、
      前記CaCoO結晶層は、前記サファイヤ単結晶層上に積層されており、
      前記CaCoO結晶層の表面は(100)の面方位を有し、
      前記CaCoO結晶層は、2マイクロメートル以上20マイクロメートル以下の厚みを有する、偏光子。
  9.  前記CaCoO結晶層は、2マイクロメートル以上9マイクロメートル以下の厚みを有する、請求項8に記載の偏光子。
  10.  前記CaCoO結晶層は、2マイクロメートル以上4マイクロメートル以下の厚みを有する、請求項8に記載の偏光子。
PCT/JP2012/004913 2011-11-16 2012-08-02 偏光子を用いてテラヘルツ電磁波を偏光させる方法、および偏光子 WO2013073078A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013523399A JP5418731B2 (ja) 2011-11-16 2012-08-02 光学素子を用いてテラヘルツ電磁波を特定の偏光方向へ前記光学素子より射出する方法、および光学素子
US13/943,613 US8786949B2 (en) 2011-11-16 2013-07-16 Method for polarizing terahertz electromagnetic wave using polarizer, and polarizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-250356 2011-11-16
JP2011250356 2011-11-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/943,613 Continuation US8786949B2 (en) 2011-11-16 2013-07-16 Method for polarizing terahertz electromagnetic wave using polarizer, and polarizer

Publications (1)

Publication Number Publication Date
WO2013073078A1 true WO2013073078A1 (ja) 2013-05-23

Family

ID=48429183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004913 WO2013073078A1 (ja) 2011-11-16 2012-08-02 偏光子を用いてテラヘルツ電磁波を偏光させる方法、および偏光子

Country Status (3)

Country Link
US (1) US8786949B2 (ja)
JP (1) JP5418731B2 (ja)
WO (1) WO2013073078A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111025449A (zh) * 2019-12-05 2020-04-17 中国石油大学(北京) 光学设备、太赫兹页岩偏振片及其制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114863A1 (ja) * 2012-02-01 2013-08-08 パナソニック株式会社 偏光子を用いてテラヘルツ電磁波を偏光させる方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3760218A (en) * 1972-04-10 1973-09-18 Spectramat Inc Thermionic cathode
US6017655A (en) * 1998-08-18 2000-01-25 Ovonic Battery Company Nickel hydroxide positive electrode material exhibiting improved conductivity and engineered activation energy
US20100209816A1 (en) * 2009-02-17 2010-08-19 Samsung Electronics Co., Ltd. Fuel electrode material, method of preparing the fuel electrode material, and solid oxide fuel cell including the fuel electrode material
JP2011192857A (ja) * 2010-03-16 2011-09-29 Fujitsu Ltd 熱電変換装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3471799A (en) * 1964-11-04 1969-10-07 Hughes Aircraft Co Longitudinal mode controlled laser
US4772104A (en) * 1987-08-10 1988-09-20 Gte Laboratories Incorporated Achromatic tuner for birefringent optical filter
US6268962B1 (en) * 2000-01-13 2001-07-31 Raytheon Company Reeder rotator
US7382535B2 (en) * 2005-10-04 2008-06-03 The Boeing Company Wave plate and associated method
JP4234181B1 (ja) 2007-08-23 2009-03-04 株式会社村田製作所 ワイヤーグリッドおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3760218A (en) * 1972-04-10 1973-09-18 Spectramat Inc Thermionic cathode
US6017655A (en) * 1998-08-18 2000-01-25 Ovonic Battery Company Nickel hydroxide positive electrode material exhibiting improved conductivity and engineered activation energy
US20100209816A1 (en) * 2009-02-17 2010-08-19 Samsung Electronics Co., Ltd. Fuel electrode material, method of preparing the fuel electrode material, and solid oxide fuel cell including the fuel electrode material
JP2011192857A (ja) * 2010-03-16 2011-09-29 Fujitsu Ltd 熱電変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111025449A (zh) * 2019-12-05 2020-04-17 中国石油大学(北京) 光学设备、太赫兹页岩偏振片及其制造方法

Also Published As

Publication number Publication date
JPWO2013073078A1 (ja) 2015-04-02
US20130301128A1 (en) 2013-11-14
US8786949B2 (en) 2014-07-22
JP5418731B2 (ja) 2014-02-19

Similar Documents

Publication Publication Date Title
Segura et al. Natural optical anisotropy of h-BN: Highest giant birefringence in a bulk crystal through the mid-infrared to ultraviolet range
Wang et al. Epitaxial growth of large‐scale orthorhombic CsPbBr3 perovskite thin films with anisotropic photoresponse property
Savchyn et al. Vibrational properties of LaPO4 nanoparticles in mid-and far-infrared domain
Funato et al. Homoepitaxy and photoluminescence properties of (0001) AlN
Liu et al. A comprehensive comparison study on the vibrational and optical properties of CVD-grown and mechanically exfoliated few-layered WS 2
JP6116004B2 (ja) グラフェン膜の製造方法
Kim et al. White light emission from nano-fibrous ZnO thin films/porous silicon nanocomposite
Quiñones-Galván et al. Physical properties of a non-transparent cadmium oxide thick film deposited at low fluence by pulsed laser deposition
Yang et al. Extended photoresponse and multi-band luminescence of ZnO/ZnSe core/shell nanorods
WO2013073078A1 (ja) 偏光子を用いてテラヘルツ電磁波を偏光させる方法、および偏光子
Du et al. Influence of annealing on ZnO thin film grown by plasma-assisted MOCVD
Soharab et al. Effect of Yb doping on the crystal structure, polarization dependent optical absorption and photoluminescence of Yb: YVO4 single crystal grown by optical floating zone technique
Guo et al. Recent advances in tellurite molybdate/tungstate crystals
Dai et al. Three-photon absorption induced whispering gallery mode lasing in ZnO twin-rods microstructure
Li et al. Identifying self-trapped excitons in 2D perovskites by Raman spectroscopy
JP5548828B2 (ja) テラヘルツ電磁波用光学素子、および当該素子を用いて特定の偏光方向のテラヘルツ電磁波を出射する方法
Kaneko et al. Optical properties of highly strained AlN coherently grown on 6H-SiC (0001)
JP2013160963A (ja) 偏光子を用いてテラヘルツ電磁波を偏光させる方法
Hwang et al. Growth, structure and optical properties of amorphous or nano-crystalline ZnO thin films prepared by prefiring-final annealing
Vettumperumal et al. Nanocrystalline Zn 1− x− y Be x Mg y O thin films synthesized by the sol–gel method: structural and near infrared photoluminescence properties
JP2013160748A (ja) 偏光子を用いてテラヘルツ電磁波を偏光させる方法
Sakamoto et al. Electric-dipole absorption resonating with longitudinal optical phonon-plasmon system and its effect on dispersion relations of interface phonon polariton modes in metal/semiconductor-stripe structures
Kumar et al. Tuning NBE emission and optical band gap of nanocrystalline ZnO thin films using Fe dopant
Avdienko et al. Structural and Optical Properties of GaSe/GaAs (001) Layers Grown by Molecular Beam Epitaxy.
WO2013102307A1 (zh) 用4h碳化硅晶体制造的非线性光学器件

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013523399

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849718

Country of ref document: EP

Kind code of ref document: A1