WO2013073026A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2013073026A1
WO2013073026A1 PCT/JP2011/076432 JP2011076432W WO2013073026A1 WO 2013073026 A1 WO2013073026 A1 WO 2013073026A1 JP 2011076432 W JP2011076432 W JP 2011076432W WO 2013073026 A1 WO2013073026 A1 WO 2013073026A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
command
voltage
power converter
control means
Prior art date
Application number
PCT/JP2011/076432
Other languages
French (fr)
Japanese (ja)
Inventor
誠司 石田
金子 悟
戸張 和明
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2011/076432 priority Critical patent/WO2013073026A1/en
Publication of WO2013073026A1 publication Critical patent/WO2013073026A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0017Model reference adaptation, e.g. MRAS or MRAC, useful for control or parameter estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P31/00Arrangements for regulating or controlling electric motors not provided for in groups H02P1/00 - H02P5/00, H02P7/00 or H02P21/00 - H02P29/00

Definitions

  • the present invention relates to a power converter, and more particularly to a power converter suitable for controlling an electric motor.
  • Patent Document 1 is a background art of a power converter suitable for controlling an electric motor.
  • a control system that performs high-speed current control processing can be configured with a relatively small amount of computation, and for the purpose of obtaining a control device for a power converter having good current control performance,
  • a low-speed calculation unit that performs calculation once per cycle and calculates a voltage command integral term by integral control calculation processing based on a current error between the current command value and the current output value, and 1/5 of the cycle of the low-speed calculation unit
  • the voltage command proportional term is calculated by the proportional control calculation process based on the current error, and the voltage command value is created by the addition process of the voltage command integral term and the voltage command proportional term. It has a high-speed calculation unit.
  • Patent Document 2 discloses that “a means for suppressing low-frequency pulsation generated in a motor current is realized by feedback control that can be applied even at a modulation rate of 100%, so that a DC power source, a smoothing capacitor,
  • the AC current detection detected by the AC current detecting means Means for detecting a low frequency component of the value
  • second current control means for operating the AC voltage output from the first power converter so that the low frequency component of the AC current detection value becomes zero.
  • JP 2006-296055 A JP-A-11-243700
  • a current controller on the rotating coordinate axis that controls the motor current by converting the rotating current coordinate and a current controller on the fixed coordinate axis by converting the motor current command by rotating the coordinate system are used together.
  • a highly responsive control can be realized by the current controller on the fixed coordinate axis, and the low frequency component of the motor current caused by the DC component of the voltage due to the conversion error of the power converter is It is expected that the current controller on the fixed coordinate axis will be suppressed.
  • the two sets of current controllers interfere with each other, so that a sufficient response cannot be obtained.
  • the motor current also includes a low frequency component, which causes torque ripple.
  • the object of the present invention is to suppress the mutual interference of the current controllers, and to sufficiently reduce the motor torque by suppressing the low frequency component of the motor current due to the response to the motor current command and the voltage error of the power converter.
  • the purpose is to control the low frequency component of the motor current while controlling with a simple response.
  • a power converter that outputs an AC voltage based on a voltage command and drives the motor, and a control unit that outputs a voltage command so that the torque of the motor matches the torque command are provided.
  • the control means when the torque command is changed, the control means provides torque when the angular frequency corresponding to the rotational speed is higher than the angular frequency corresponding to the torque response and when the angular frequency corresponding to the rotational speed is low.
  • the DC components superimposed on the output current under the condition that the rise times are equal and the DC voltage is applied to the output voltage of the power converter are made equal.
  • a power converter that outputs an AC voltage based on a voltage command and drives the motor, and a current command calculation means that calculates a current command so that the torque of the motor matches the torque command.
  • a first current control means for controlling the output current of the power converter on the rotation coordinate axis based on the current command, a second current control means for controlling the output current on the fixed coordinate axis, and a first current control means
  • the torque command changes, the angular frequency corresponding to the rotational speed is greater than the angular frequency corresponding to the torque response when the torque command changes.
  • the rise time of torque is equal when the frequency is high and when the angular frequency corresponding to the rotational speed is low.
  • a power converter that outputs an AC voltage based on a voltage command, a first current control unit that controls a current of the power converter on a rotating coordinate axis, and a fixed coordinate axis
  • a power conversion device comprising: a second current control unit that controls a current of a power converter; and a voltage calculation unit that calculates a voltage command based on outputs of the first current control unit and the second current control unit.
  • First correction means for correcting the current command for the second current control means based on the current command for the first current control means is provided.
  • a current command computing unit that obtains a torque command and determines a current command on the rotation coordinate axis is provided, and the current command of the current command computing unit is given to the first current control means and the first correction means.
  • the voltage calculation means includes a first voltage signal obtained by converting the output signal on the rotational coordinate axis provided by the first current control means onto the fixed coordinate axis, and a fixed coordinate axis provided by the second current control means.
  • a voltage command for the AC voltage is obtained using the sum signal of the second voltage signal.
  • a conversion circuit for converting the AC current of the power converter into a current on the fixed coordinate axis and further converting it into a current on the rotary coordinate axis is provided, and the current on the fixed coordinate axis is used as a feedback signal for the second current control means, The current on the coordinate axis is used as a feedback signal for the first current control means.
  • second correction means for correcting the input given to the first current control means based on the output of the second current control means.
  • a power converter that outputs an AC voltage based on a voltage command, a first current control unit that controls a current of the power converter on a rotating coordinate axis, and a fixed coordinate axis
  • a power conversion device comprising: a second current control unit that controls a current of a power converter; and a voltage calculation unit that calculates a voltage command based on outputs of the first current control unit and the second current control unit.
  • the input of the second current control means is corrected based on the current command that is the input of the first current control means, and the input of the first current control means is corrected by the output of the second current control means.
  • the first correction means corrects the current command based on the control response of the first current control means.
  • the second correction means obtains the estimated current of the power conversion device with respect to the output of the second current control means, and corrects the current command of the first current control means based on the estimated current.
  • the power converter of the present invention it is possible to suppress the mutual interference of the current controllers, control the torque of the motor with a sufficient response, and suppress the low frequency component of the motor current.
  • the time chart which shows the command response when a rotational speed is slow.
  • the time chart which shows the disturbance response when a rotational speed is quick.
  • the time chart which shows the command response when a rotational speed is slow.
  • the time chart which shows the disturbance response when a rotational speed is quick.
  • FIG. 1 is a diagram illustrating a configuration example of a power conversion apparatus according to the present embodiment.
  • 1 is an AC power source
  • 2 is a rectifier
  • 3 is a smoothing capacitor
  • 4 is a power converter
  • 5 is a current detector
  • 6 is a synchronous motor
  • 7 is a position detector
  • 100 is a control device. is there.
  • the AC voltage of the AC power source 1 is converted into a DC voltage by the rectifier 2 and the smoothing capacitor 3, and the output of the control device 100 (three-phase AC voltage commands V u * , V v * , and V w * )
  • the synchronous motor 6 is driven by converting the DC voltage into an AC voltage having a variable frequency and a variable voltage based on * ).
  • the three-phase alternating currents i u , i v , and i w flowing through the synchronous motor 6 are detected by the current detector 5, the magnetic pole position ⁇ of the synchronous motor 6 is detected by the position detector 7, and input.
  • the control device 100 controls the three-phase AC voltage command so that the torque of the synchronous motor 6 matches the torque command T *.
  • V u * , V v * , and V w * are calculated and supplied to the power converter 4.
  • 101, 102, 110, 111, 115, and 116 are subtractors
  • 103 is a current controller on the rotational coordinate axis
  • 104, 109, and 114 are rotational coordinate converters
  • 105 and 106 are adders
  • 107 is two-phase three-phase.
  • the phase converter, 113 is a first compensator
  • 112 is a current controller on a fixed coordinate axis
  • 108 is a second compensator
  • 117 is a three-phase two-phase converter
  • 118 is a current command calculator.
  • the current i and voltage V are treated as a three-phase AC amount, a fixed coordinate axis amount, and a rotating coordinate axis amount.
  • the three-phase alternating current amount is represented by adding signs of U, V, and W meaning each phase
  • the quantities on the fixed coordinate axes are signs of a and b meaning the ⁇ phase and the ⁇ phase.
  • the amount on the rotation coordinate axis is represented by the d and q signs indicating the d axis and the q axis.
  • a second-digit code is added following these codes applied to the current i and the voltage V.
  • This second-digit code specifies the part that generates the current i and the voltage V.
  • the sign “a” in the second digit is given to the output of the current controller 112 and the output of the first compensator 113 on the fixed coordinate axis.
  • “c” is a three-phase to two-phase converter.
  • “d” is given to the output of the current controller 103 on the rotational coordinate axis, the output of the first compensator 108, and the output of the rotational coordinate converter 104
  • e is the rotational coordinate converter 114. Is given to the output.
  • “ * ” given to the current i and the voltage V means that this is a command value.
  • the current command calculator 118 calculates a rotation coordinate current command ( id * , iq * ) based on the torque command T * .
  • i d * is a rotation coordinate d-axis current command
  • i q * is a rotation coordinate q-axis current command.
  • the rotation coordinate d-axis current command i d * is set to 0
  • the rotation coordinate q-axis current command i q * is output in proportion to the torque command T * .
  • two sets of current controllers are operated based on the rotational coordinate current commands ( id * , iq * ) calculated by the current command calculator 118.
  • One of them is the current controller 103 on the rotation coordinate axis.
  • Equation (1) R is the winding resistance of the synchronous motor 6
  • L d is the inductance in the magnetic pole position direction (d axis)
  • L q is the inductance in the direction orthogonal to the magnetic pole (q axis)
  • is the magnetic flux
  • ⁇ Is a rotational angular velocity that can be calculated from the magnetic pole position ⁇
  • ⁇ d is a response angular frequency of the current controller 103 on the rotational coordinate axis
  • s is a differential operator.
  • the rotational coordinate currents i de and i qe are obtained by performing rotational coordinate conversion on the fixed coordinate currents i ae and i be after compensation by the rotational coordinate converter 114.
  • the fixed coordinate currents i ae and i be after compensation are subtracted from the fixed coordinate currents i ac and i bc by the subtractors 115 and 116, respectively, from the fixed coordinate current compensation amounts i aa and i ba that are the outputs of the first compensator 113. It is what I asked for.
  • the fixed coordinate currents i ac and i bc are obtained by two-phase converting the three-phase alternating currents i u , i v , and i w by the three-phase to two-phase converter 117.
  • the fixed coordinate currents i ac and i bc are obtained from the three-phase alternating currents i u , i v and i w using the equation (2).
  • the fixed coordinate current compensation amount is calculated from the second rotational coordinate voltage commands V aa * and V ba * , which are the outputs of the current controller 112 on the fixed coordinate axis, by the equation (3). i aa and i ba are calculated.
  • the compensated fixed coordinate currents i ae and i be which are the outputs of the subtractors 115 and 116 are converted using the magnetic pole position ⁇ by the equation (6), and the rotating coordinate current i de , Find i qe .
  • the fixed coordinate current commands i a * and i b * are derived from the rotational coordinate current commands (i d * and i q * ) guided to the second compensator 108 and compensated for the rotational coordinate current commands (i dd * and i qd *). ), And the rotation coordinate converter 109 further performs rotation coordinate conversion.
  • the rotational coordinate converter 109 performs coordinate transformation of the compensated rotational coordinate current commands i dd * and i qd * using the magnetic pole position ⁇ according to the equation (9) to obtain fixed coordinate current commands i a * and i b *. Ask for.
  • the fixed coordinate current compensation amounts i aa and i ba were calculated by the first compensator 113 based on the equation (3) using the inverse matrix, but the equation (7) was substituted into the equation (3). It is also possible to calculate from the deviation of the fixed coordinate current commands i a * , i b * and the fixed coordinate currents i ac , i bc using the equation (10).
  • the three-phase AC voltage commands V u * and V v * are finally obtained as the sum of the outputs of the two sets of current controllers operated based on the rotational coordinate current commands ( id * , iq * ) . , And V w * .
  • the three-phase AC voltage commands V u * , V v * , and V w * are obtained by converting the third fixed coordinate voltage commands V a * , V b * into three phases by the three-phase two-phase converter 107. It is done.
  • the third fixed coordinate voltage commands V a * and V b * are obtained by adding the second fixed coordinate voltage commands V aa * and V ba * to the first fixed coordinate voltage commands V ad * and V bd * , respectively. It is obtained by adding in the units 105 and 106.
  • the second rotation coordinate voltage commands V aa * and V ba * are obtained by executing the expression (7) in the current controller 112 on the fixed coordinate axis.
  • the first fixed coordinate voltage commands V ad * and V bd * are output from the rotation coordinate voltage commands V dd * and V qd * , which are outputs of the current controller 103 on the rotation coordinate axis, by the rotary coordinate converter 104. Coordinate transformation.
  • the rotary coordinate converter 104 determines from the rotary coordinate voltage commands V dd * and V qd * ( The first fixed coordinate voltage commands V ad * and V bd * are calculated by performing rotational coordinate conversion using the magnetic pole position ⁇ according to equation (11).
  • three-phase to two-phase converter 107 three-phase to two-phase conversion is performed from the third rotation coordinate voltage commands V a * and V b * by the equation (12), and the three-phase AC voltage commands V u * , V v * , And V w * are calculated.
  • the torque of the synchronous motor 6 is determined by the current. For this reason, the response of the actual torque to the torque command T * is determined by the rotation coordinate current commands i d * and i q * and the response of the current of the synchronous motor 6 to the disturbance. Therefore, the current control will be described below.
  • the current controller 103 on the rotating coordinate axis performs control for causing the current of the synchronous motor 6 to follow the rotating coordinate current commands i d * and i q * , and the direct current due to the conversion error of the power converter 1 or the like.
  • the current controller 112 on the fixed coordinate axis compensates for low-frequency voltage disturbances including.
  • the response when the command is changed will be described as control by the two sets of current controllers.
  • a low-frequency voltage disturbance has not occurred.
  • the second fixed coordinate voltage commands V aa * and V ba * which are outputs of the current controller 112 on the fixed coordinate axis are zero.
  • the fixed coordinate current compensation amounts i aa and i ba are also 0 as is apparent from the equation (3).
  • the post-compensation fixed coordinate currents i ae and i be coincide with the current on the rotational coordinates of the synchronous motor 6, and the equation (13) is established from the voltage equation of the synchronous motor.
  • rotational coordinate currents i de and i qe respond to the rotational coordinate current commands i d * and i q * by the equation (15).
  • the above description shows the characteristics of the current controller 103 on the rotating coordinate axis when it is assumed that no low-frequency voltage disturbance has occurred and the output of the current controller 112 on the fixed coordinate axis is zero.
  • the current controller 112 on the fixed coordinate axis when operated, it becomes a disturbance to the current control on the rotating coordinate axis, and thus the response to the rotating coordinate current command is disturbed. That is, the current control (current controller 112) on the fixed coordinate axis interferes with the current control (current controller 103) on the rotating coordinate axis.
  • the second compensator 108 compensates the current command for the current controller 112 on the fixed coordinate axis.
  • the rotating coordinate current command i d *, with respect to i q * the compensated rotational coordinate current command i dd *, i qd * are rotating coordinate current i de, i Since the characteristics of qe are matched, the deviation is zero. Since this holds even when converted to a fixed coordinate axis, the outputs of the subtractors 110 and 111 become 0 with respect to the rotational coordinate current commands i d * and i q * .
  • the operation of the current controller 112 on the fixed coordinate axis is suppressed with respect to the rotational coordinate current commands i d * and i q * , and the current control on the fixed coordinate axis (current controller 112)
  • the disturbance to the operation amount of the control is suppressed, and unnecessary compensation of the fixed coordinate current compensation amounts i aa and i ba is also suppressed.
  • the second rotation coordinate voltage commands V aa * and V ba * are voltage disturbances for the current control (current controller 103) on the rotation coordinate axis.
  • the current control on the rotating coordinate axis interferes with the current control on the fixed coordinate axis (current controller 112), and the desired response performance (disturbance response) by the current controller 112 cannot be obtained. Therefore, in the present invention, the first compensator 113 suppresses the operation of the current control (current controller 103) on the rotation coordinate axis with respect to the second rotation coordinate voltage commands V aa * and V ba * .
  • the current of the synchronous motor 6 with respect to the second rotational coordinate voltage commands V aa * and V ba * is estimated by the second compensator 113 and fed back to the current controller 103 on the rotational coordinate axis.
  • the current controller 103 on the rotation coordinate axis can be suppressed.
  • the rotational coordinate motor currents i d and i q are values obtained by converting the three-phase alternating currents i u , i v , and i w into the three-phase two-phase conversion and the rotational coordinate conversion based on the magnetic pole position ⁇ according to the equation (17). .
  • FIG. 2 shows a block diagram equivalent to the equation (16), that is, a block diagram showing the control characteristics of this embodiment.
  • the same functions as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • 201 is a three-phase to two-phase converter
  • 202, 203, 207, and 208 are adders
  • 204 is a motor model on a fixed coordinate axis
  • 205 is a rotary coordinate converter
  • 206 is a motor model on a rotary coordinate axis. is there.
  • the three-phase to two-phase converter 201 calculates equation (18).
  • the motor model 204 on the fixed coordinate axis calculates (19).
  • Rotational coordinate converter 205 calculates equation (20).
  • the motor model 206 on the rotation coordinate axis calculates the equation (21).
  • Equation (16) is the characteristic of the block diagram of FIG. First, when the current control response on the fixed coordinate axis is calculated using the equations (7) and (19), the equation (22) is obtained.
  • (16) is obtained by substituting (20) and (22) into (23), it can be seen that the characteristics of (16) and the block diagram of FIG. 2 match. This means that the configuration of FIG. 2 represents the response characteristics of the configuration of FIG.
  • FIG. 2 can be grasped by dividing it into a lower half rotational coordinate system and an upper half fixed coordinate system.
  • the lower half rotation coordinate system shows the response to the rotation coordinate current commands i d * and i q * .
  • the current controller 103 on the rotation coordinate axis is used as a compensator
  • the motor model 206 on the rotation coordinate axis is used as a plant
  • the rotation coordinate axis currents i d and i q are obtained.
  • Is a feedback control system using as a feedback signal.
  • the fixed coordinate system of the upper half the three-phase disturbance voltages ⁇ Vu, ⁇ Vv, shows a response to [Delta] V w.
  • This arrangement three-phase disturbance voltages ⁇ Vu, ⁇ Vv, when grasped from [Delta] V w, the current controller 112 on the fixed axis and the compensator, a motor model 204 on the fixed axis and the plant, the second rotating coordinate voltage command V aa
  • This is a disturbance to the manipulated variable of the feedback control system with * and V ba * as command values. Therefore, the three-phase disturbance voltages ⁇ Vu, ⁇ Vv, current i ac for [Delta] V w, i bc is suppressed by the disturbance suppression characteristics of the fixed coordinate current control.
  • the currents i da and i qa that have undergone rotational coordinate conversion are disturbances to the output of current control on the rotational coordinate axis.
  • the three-phase disturbance voltages ⁇ Vu, ⁇ Vv, for the [Delta] V w act without rotating coordinate current control with a fixed coordinate current control from interfering with each other
  • the rotating coordinate motor current i d, i q is fixed coordinate current It can be seen that the disturbance suppression characteristics of the control and the rotational coordinate current control are characteristics connected in series.
  • FIG. 3, FIG. 4, FIG. 5 and FIG. 6 show the simulation results of this example.
  • time is shown on the horizontal axis.
  • the rotation coordinate d-axis current command i d * the rotation coordinate d-axis current i d
  • the rotation coordinate q-axis current command i q * the rotation coordinate q-axis current iq
  • the three-phase The disturbance voltage ⁇ V u and the three-phase current i u are taken to show the relationship between them.
  • (a) is a simulation result showing the response of the device of the present invention.
  • (B) and (c) are described for reference in order to clarify the difference in comparison with the response (a) of the device of the present invention.
  • (B) shows only current control on the rotating coordinate axis, and (c) uses both current control on the rotating coordinate axis and current control on the fixed coordinate axis, and compensates by the second compensator 113 and the first compensator 108. It is a simulation result when not performing.
  • FIGS. 3 and 4 show the characteristics when the torque command T * is raised stepwise and the rotational coordinate current command i q * is raised stepwise accordingly.
  • 3 shows a case where the rotation speed is low
  • FIG. 4 shows a case where the rotation speed is high
  • 5 and 6 show characteristics when a step-like three-phase disturbance voltage ⁇ V u is applied.
  • FIG. 5 shows a case where the rotational speed is low
  • FIG. 6 shows a case where the rotational speed is high.
  • Current controller on the rotating coordinate axis 103 controls the current of the following angular frequency response angular frequency omega d.
  • the direct current on the stationary coordinate axes since the rotation axis is converted to a current of a frequency corresponding to the rotational speed, the angular frequency corresponding to the rotational speed in response angular frequency omega d greater condition, on fixed coordinate axes
  • the direct current component cannot be controlled.
  • the slow rotational speeds in FIGS. 3 and 5 are cases where the corresponding angular frequency is smaller than the response angular frequency ⁇ d
  • the fast rotational speeds in FIGS. 4 and 5 are equivalent to the response angular frequency ⁇ . This is the case when it is larger than d .
  • the response of the torque and the rotational coordinate current i q of the synchronous motor 6 when the torque command T * and the rotational coordinate current command i q * are raised in a step shape are the response angular frequency ⁇ . determined by d . 3 to 6, the torque command T * and the torque of the synchronous motor 6 are proportional to the rotational coordinate current command i q * and the rotational coordinate current i q , respectively, under the simulated conditions .
  • the torque characteristics of the synchronous motor 6 are not shown.
  • the horizontal axis is time
  • the waveform is the rotational coordinate current i determined from the rotational coordinate current command i d * and the three-phase alternating currents i u , i v , and i w using the equation (17) from the top.
  • d rotational coordinate current command i q * , rotational coordinate current iq, three-phase disturbance voltage ⁇ V u , and three-phase alternating current iu .
  • This figure shows the characteristics when the torque command T * is raised stepwise at time T1, and the rotational coordinate current command iq * is raised stepwise accordingly.
  • the rotation coordinate current i q rises as designed.
  • the rotating coordinate current i q by the interference of the current control on the fixed coordinate axes, and too rise quickly, even for the rotating coordinate current i d, the interference is seen.
  • FIG. 4 shows a case where the rotational speed of the synchronous motor 6 is high, and the conditions and waveforms are the same as those in FIG. In particular, the time scale on the horizontal axis is matched with FIG. In this case as well, in this embodiment (a), the rotation coordinate current i q rises as designed, as in the case of only current control on the rotation coordinate axis (b). On the other hand, when the compensation is not performed (c), the response of the rotational coordinate current iq is disturbed due to the interference of the current control on the fixed coordinate axis.
  • the rotational speed is faster or slower than the rotational speed corresponding to the response angular frequency ⁇ d of the current controller on the rotational coordinate axis.
  • FIG. 5 shows a case where a stepwise three-phase disturbance voltage ⁇ V u is applied at time T2 instead of the rotation coordinate current command i q * , and the conditions and waveforms are the same as those in FIG.
  • the horizontal axis represents a longer time than that in FIGS.
  • the rotational coordinate currents i d and i q are hardly affected by the three-phase disturbance voltage ⁇ V u , and the disturbance is sufficiently suppressed.
  • large vibrations are generated in the rotation coordinate currents id and iq .
  • the vibration remains in the rotational coordinate currents id and iq , although it is smaller than in the case of only the current control on the current rotational coordinate axis (b).
  • FIG. 6 shows a case where the rotational speed of the synchronous motor 6 is faster than that in FIG. 4, and the conditions and waveforms are the same as those in FIG.
  • the three-phase disturbance voltage [Delta] V u According affect little the rotating coordinate current i d and i q, that disturbance suppression with adequate Recognize.
  • the DC component is superimposed to the three-phase alternating currents i u.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

The purpose of the present invention is to suppress the mutual interference between current controllers, and suppress a response to a motor current command and a low-frequency component of a motor current due to the voltage error of a power converter and the like to thereby control the torque of a motor by an adequate response and suppress the low-frequency component of the motor current. To this end, a power conversion device is provided with a power converter for outputting alternating-current voltage on the basis of a voltage command and driving a motor, and a control means for outputting the voltage command such that the torque of the motor matches a torque command, the control means being configured such that when the torque command changes, the rise times of the torque when an angular frequency corresponding to a rotation speed is higher than an angular frequency corresponding to a torque response and when the angular frequency corresponding to the rotation speed is lower become equal, and direct-current components superimposed on an output current on the condition that direct-current disturbance is applied to the output voltage of the power converter become equal.

Description

電力変換装置Power converter
 本発明は、電力変換装置に関連し、特に電動機の制御に好適な電力変換装置に関する。 The present invention relates to a power converter, and more particularly to a power converter suitable for controlling an electric motor.
 電動機の制御に好適な電力変換装置の背景技術として、特許文献1がある。ここには「高速な電流制御処理を行う制御系を、比較的少ない演算量で構成することができ、また良好な電流制御性能を持つ電力変換器の制御装置を得ることを目的として、所定の周期毎に1回の演算を行い、電流指令値と電流出力値との電流誤差に基づく積分制御演算処理により電圧指令積分項を算出する低速演算部、および上記低速演算部の周期の1/5の周期毎に1回の演算を行い、上記電流誤差に基づく比例制御演算処理により電圧指令比例項を算出し、上記電圧指令積分項と電圧指令比例項との加算処理により電圧指令値を作成する高速演算部を備えた。」と記載されている。 Patent Document 1 is a background art of a power converter suitable for controlling an electric motor. Here, “a control system that performs high-speed current control processing can be configured with a relatively small amount of computation, and for the purpose of obtaining a control device for a power converter having good current control performance, A low-speed calculation unit that performs calculation once per cycle and calculates a voltage command integral term by integral control calculation processing based on a current error between the current command value and the current output value, and 1/5 of the cycle of the low-speed calculation unit The voltage command proportional term is calculated by the proportional control calculation process based on the current error, and the voltage command value is created by the addition process of the voltage command integral term and the voltage command proportional term. It has a high-speed calculation unit. "
 また、特許文献2には、「モータ電流に発生する低周波脈動を抑制する手段を、変調率100%においても適用可能なフィードバック制御で実現するため、直流電源と、平滑化コンデンサと、第1の電力変換器と、交流電動機と、交流電流検出手段と、第1の座標変換手段と、第1の電流制御手段から構成される電力変換装置において、前記交流電流検出手段により検出した交流電流検出値の低周波成分を検出する手段と、前記交流電流検出値の低周波成分がゼロになるように前記第1の電力変換器の出力する交流電圧を操作する第2の電流制御手段を備える。」と記載されている。 Further, Patent Document 2 discloses that “a means for suppressing low-frequency pulsation generated in a motor current is realized by feedback control that can be applied even at a modulation rate of 100%, so that a DC power source, a smoothing capacitor, In the power converter comprised of the power converter, the AC motor, the AC current detecting means, the first coordinate converting means, and the first current control means, the AC current detection detected by the AC current detecting means Means for detecting a low frequency component of the value, and second current control means for operating the AC voltage output from the first power converter so that the low frequency component of the AC current detection value becomes zero. Is described.
特開2006-296055号公報JP 2006-296055 A 特開平11-243700号公報JP-A-11-243700
 上記特許文献の技術では、電動機電流を回転座標変換して制御する回転座標軸上の電流制御器と、電動機電流指令を回転座標変換して固定座標軸上の電流制御器を併用している。これにより、電動機電流指令に対しては、固定座標軸上の電流制御器により高応答な制御が実現でき、電力変換器の変換誤差等により電圧の直流成分を原因とした電動機電流の低周波成分は固定座標軸上の電流制御器が抑制することが期待される。 In the technology of the above-mentioned patent document, a current controller on the rotating coordinate axis that controls the motor current by converting the rotating current coordinate and a current controller on the fixed coordinate axis by converting the motor current command by rotating the coordinate system are used together. As a result, for the motor current command, a highly responsive control can be realized by the current controller on the fixed coordinate axis, and the low frequency component of the motor current caused by the DC component of the voltage due to the conversion error of the power converter is It is expected that the current controller on the fixed coordinate axis will be suppressed.
 しかし実際には、2組の電流制御器が相互に干渉するため、十分な応答を得ることが出来ない。このため、電力変換器の変換誤差等が原因で出力電圧に低周波成分が重畳すると、電動機電流にも低周波成分が含まれることになり、トルクリプルの原因となる。 However, in reality, the two sets of current controllers interfere with each other, so that a sufficient response cannot be obtained. For this reason, when a low frequency component is superimposed on the output voltage due to a conversion error of the power converter, the motor current also includes a low frequency component, which causes torque ripple.
 これに対し、本発明の目的は電流制御器の相互干渉を抑制し、電動機電流指令に対する応答と電力変換器の電圧誤差等による電動機電流の低周波成分を抑制することにより、電動機のトルクを十分な応答で制御すると共に、電動機電流の低周波成分を抑制することを目的とする。 On the other hand, the object of the present invention is to suppress the mutual interference of the current controllers, and to sufficiently reduce the motor torque by suppressing the low frequency component of the motor current due to the response to the motor current command and the voltage error of the power converter. The purpose is to control the low frequency component of the motor current while controlling with a simple response.
 上記課題を解決するために本発明においては、電圧指令に基づき交流電圧を出力し電動機を駆動する電力変換器と、トルク指令に前記電動機のトルクが一致するように電圧指令を出力する制御手段を具備する電力変換装置において、制御手段は、トルク指令が変化した場合、トルク応答に相当する角周波数より回転速度に対応する角周波数が高いときと、回転速度に対応する角周波数が低いときのトルクの立上り時間が等しく、かつ電力変換器の出力電圧に直流外乱が加えられた条件における出力電流に重畳する直流成分が等しくなるようにされている。 In order to solve the above problems, in the present invention, a power converter that outputs an AC voltage based on a voltage command and drives the motor, and a control unit that outputs a voltage command so that the torque of the motor matches the torque command are provided. In the power converter provided, when the torque command is changed, the control means provides torque when the angular frequency corresponding to the rotational speed is higher than the angular frequency corresponding to the torque response and when the angular frequency corresponding to the rotational speed is low. The DC components superimposed on the output current under the condition that the rise times are equal and the DC voltage is applied to the output voltage of the power converter are made equal.
 上記課題を解決するために本発明においては、電圧指令に基づき交流電圧を出力し電動機を駆動する電力変換器と、トルク指令に電動機のトルクが一致するように電流指令を演算する電流指令演算手段と、電流指令に基づき回転座標軸上で電力変換器の出力電流を制御する第1の電流制御手段と、固定座標軸上で出力電流を制御する第2の電流制御手段と、第1の電流制御手段と第2の電流制御手段の出力に基づき電圧指令を演算する電圧演算手段を具備する電力変換装置において、トルク指令が変化した場合、トルク応答に相当する角周波数より回転速度に対応する角周波数が高いときと、回転速度に対応する角周波数が低いときのトルクの立上り時間が等しい。 In order to solve the above problems, in the present invention, a power converter that outputs an AC voltage based on a voltage command and drives the motor, and a current command calculation means that calculates a current command so that the torque of the motor matches the torque command. A first current control means for controlling the output current of the power converter on the rotation coordinate axis based on the current command, a second current control means for controlling the output current on the fixed coordinate axis, and a first current control means When the torque command changes, the angular frequency corresponding to the rotational speed is greater than the angular frequency corresponding to the torque response when the torque command changes. The rise time of torque is equal when the frequency is high and when the angular frequency corresponding to the rotational speed is low.
 上記課題を解決するために本発明においては、電圧指令に基づき交流電圧を出力する電力変換器と、回転座標軸上で電力変換器の電流を制御する第1の電流制御手段と、固定座標軸上で電力変換器の電流を制御する第2の電流制御手段と、第1の電流制御手段と第2の電流制御手段の出力に基づき電圧指令を演算する電圧演算手段を具備する電力変換装置において、第1の電流制御手段に対する電流指令に基づき第2の電流制御手段に対する電流指令を補正する第1の補正手段を具備する。 In order to solve the above problems, in the present invention, a power converter that outputs an AC voltage based on a voltage command, a first current control unit that controls a current of the power converter on a rotating coordinate axis, and a fixed coordinate axis In a power conversion device comprising: a second current control unit that controls a current of a power converter; and a voltage calculation unit that calculates a voltage command based on outputs of the first current control unit and the second current control unit. First correction means for correcting the current command for the second current control means based on the current command for the first current control means is provided.
 また、トルク指令を得て、回転座標軸上の電流指令を定める電流指令演算器を備え、電流指令演算器の電流指令を第1の電流制御手段と第1の補正手段に与える。 Also, a current command computing unit that obtains a torque command and determines a current command on the rotation coordinate axis is provided, and the current command of the current command computing unit is given to the first current control means and the first correction means.
 また、電圧演算手段は、第1の電流制御手段が与える回転座標軸上の出力信号を固定座標軸上に変換して得た第1の電圧信号と、第2の電流制御手段が与える固定座標軸上の第2の電圧信号の和信号を用いて交流電圧の電圧指令を得る。 In addition, the voltage calculation means includes a first voltage signal obtained by converting the output signal on the rotational coordinate axis provided by the first current control means onto the fixed coordinate axis, and a fixed coordinate axis provided by the second current control means. A voltage command for the AC voltage is obtained using the sum signal of the second voltage signal.
 また、電力変換器の交流電流を固定座標軸上の電流に変換し、さらに回転座標軸上の電流に変換する変換回路を備え、固定座標軸上の電流を第2の電流制御手段の帰還信号とし、回転座標軸上の電流を第1の電流制御手段の帰還信号とする。 In addition, a conversion circuit for converting the AC current of the power converter into a current on the fixed coordinate axis and further converting it into a current on the rotary coordinate axis is provided, and the current on the fixed coordinate axis is used as a feedback signal for the second current control means, The current on the coordinate axis is used as a feedback signal for the first current control means.
 また、第2の電流制御手段の出力に基づき第1の電流制御手段に与えられる入力を補正する第2の補正手段を具備する。 Further, it comprises second correction means for correcting the input given to the first current control means based on the output of the second current control means.
 上記課題を解決するために本発明においては、電圧指令に基づき交流電圧を出力する電力変換器と、回転座標軸上で電力変換器の電流を制御する第1の電流制御手段と、固定座標軸上で電力変換器の電流を制御する第2の電流制御手段と、第1の電流制御手段と第2の電流制御手段の出力に基づき電圧指令を演算する電圧演算手段を具備する電力変換装置において、第1の電流制御手段の入力である電流指令に基づき第2の電流制御手段の入力を補正し、第2の電流制御手段の出力で第1の電流制御手段の入力を補正する。 In order to solve the above problems, in the present invention, a power converter that outputs an AC voltage based on a voltage command, a first current control unit that controls a current of the power converter on a rotating coordinate axis, and a fixed coordinate axis In a power conversion device comprising: a second current control unit that controls a current of a power converter; and a voltage calculation unit that calculates a voltage command based on outputs of the first current control unit and the second current control unit. The input of the second current control means is corrected based on the current command that is the input of the first current control means, and the input of the first current control means is corrected by the output of the second current control means.
 また、第1の補正手段は、第1の電流制御手段の制御応答に基づき電流指令を補正する。 Further, the first correction means corrects the current command based on the control response of the first current control means.
 また、第2の補正手段は、第2の電流制御手段の出力に対する電力変換装置の推定電流を求め、推定電流に基づき第1の電流制御手段の電流指令を補正する。 Further, the second correction means obtains the estimated current of the power conversion device with respect to the output of the second current control means, and corrects the current command of the first current control means based on the estimated current.
 本発明の電力変換装置によれば、電流制御器の相互干渉を抑制し、電動機のトルクを十分な応答で制御すると共に、電動機電流の低周波成分を抑制することができる。 According to the power converter of the present invention, it is possible to suppress the mutual interference of the current controllers, control the torque of the motor with a sufficient response, and suppress the low frequency component of the motor current.
本発明の電力変換装置の構成例を示す図。The figure which shows the structural example of the power converter device of this invention. (16)式と等価な、本実施例の制御特性を表すブロック図。The block diagram showing the control characteristic of a present Example equivalent to (16) Formula. 回転速度が遅い場合の指令応答を示すタイムチャート。The time chart which shows the command response when a rotational speed is slow. 回転速度が速い場合の外乱応答を示すタイムチャート。The time chart which shows the disturbance response when a rotational speed is quick. 回転速度が遅い場合の指令応答を示すタイムチャート。The time chart which shows the command response when a rotational speed is slow. 回転速度が速い場合の外乱応答を示すタイムチャート。The time chart which shows the disturbance response when a rotational speed is quick.
 以下、図面を用いて本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は本実施例の電力変換装置の構成例を示す図である。図1の電力変換装置において、1は交流電源、2は整流器、3は平滑コンデンサ、4は電力変換器、5は電流検出器、6は同期電動機、7は位置検出器、100は制御装置である。 FIG. 1 is a diagram illustrating a configuration example of a power conversion apparatus according to the present embodiment. 1, 1 is an AC power source, 2 is a rectifier, 3 is a smoothing capacitor, 4 is a power converter, 5 is a current detector, 6 is a synchronous motor, 7 is a position detector, and 100 is a control device. is there.
 この電力変換装置によれば、交流電源1の交流電圧を整流器2及び平滑コンデンサ3で直流電圧に変換し、制御装置100の出力(三相交流電圧指令V 、V 、及びV )に基づき該直流電圧を可変周波数可変電圧の交流電圧に変換して同期電動機6を駆動する。なお、同期電動機6に流れる三相交流電流i、i、及びiを電流検出器5で検出し、同期電動機6の磁極位置θを位置検出器7で検出して、制御装置100に入力する。 According to this power converter, the AC voltage of the AC power source 1 is converted into a DC voltage by the rectifier 2 and the smoothing capacitor 3, and the output of the control device 100 (three-phase AC voltage commands V u * , V v * , and V w * ) The synchronous motor 6 is driven by converting the DC voltage into an AC voltage having a variable frequency and a variable voltage based on * ). The three-phase alternating currents i u , i v , and i w flowing through the synchronous motor 6 are detected by the current detector 5, the magnetic pole position θ of the synchronous motor 6 is detected by the position detector 7, and input.
 制御装置100は、トルク指令T、三相交流電流i、i、i及び磁極位置θに基づき、同期電動機6のトルクがトルク指令Tと一致するように、三相交流電圧指令V 、V 、及びV を演算し、電力変換器4に与える。 Based on the torque command T * , the three-phase AC currents i u , i v , i w, and the magnetic pole position θ, the control device 100 controls the three-phase AC voltage command so that the torque of the synchronous motor 6 matches the torque command T *. V u * , V v * , and V w * are calculated and supplied to the power converter 4.
 以下、制御装置100の具体的な回路構成について説明する。101、102、110、111、115、及び116は減算器、103は回転座標軸上の電流制御器、104、109、及び114は回転座標変換器、105と106は加算器、107は二相三相変換器、113は第1の補償器、112は固定座標軸上の電流制御器、108は第2の補償器、117は三相二相変換器、118は電流指令演算器である。 Hereinafter, a specific circuit configuration of the control device 100 will be described. 101, 102, 110, 111, 115, and 116 are subtractors, 103 is a current controller on the rotational coordinate axis, 104, 109, and 114 are rotational coordinate converters, 105 and 106 are adders, and 107 is two-phase three-phase. The phase converter, 113 is a first compensator, 112 is a current controller on a fixed coordinate axis, 108 is a second compensator, 117 is a three-phase two-phase converter, and 118 is a current command calculator.
 尚、制御装置内100内の処理を説明するに当り、ここでは電流iや電圧Vについて三相交流量と、固定座標軸上の量と、回転座標軸上の量として取り扱う。このためこれらを区別するために、三相交流量について各相を意味するU、V、Wの符号を付与して表し、固定座標軸上の量についてα相とβ相を意味するa、bの符号を付与し、回転座標軸上の量についてd軸とq軸を意味するd、qの符号を付与して表わしている。 In describing the processing in the control device 100, the current i and voltage V are treated as a three-phase AC amount, a fixed coordinate axis amount, and a rotating coordinate axis amount. For this reason, in order to distinguish these, the three-phase alternating current amount is represented by adding signs of U, V, and W meaning each phase, and the quantities on the fixed coordinate axes are signs of a and b meaning the α phase and the β phase. The amount on the rotation coordinate axis is represented by the d and q signs indicating the d axis and the q axis.
 また電流iや電圧Vに付与したこれらの符号に続いて2桁目の符号を付与するものがある。この2桁目の符号は、電流iや電圧Vを発する部位を特定している。例えば2桁目の符号の「a」は、固定座標軸上の電流制御器112の出力と第1の補償器113の出力に付与されており、同様に、「c」は三相二相変換器117の出力であり、「d」は回転座標軸上の電流制御器103の出力と第1の補償器108の出力と回転座標変換器104の出力に付与されており、eは回転座標変換器114の出力に付与されている。さらに、電流iや電圧Vに付与した「」は、これが指令値であることを意味している。 In addition, there is one in which a second-digit code is added following these codes applied to the current i and the voltage V. This second-digit code specifies the part that generates the current i and the voltage V. For example, the sign “a” in the second digit is given to the output of the current controller 112 and the output of the first compensator 113 on the fixed coordinate axis. Similarly, “c” is a three-phase to two-phase converter. 117, “d” is given to the output of the current controller 103 on the rotational coordinate axis, the output of the first compensator 108, and the output of the rotational coordinate converter 104, and e is the rotational coordinate converter 114. Is given to the output. Furthermore, “ * ” given to the current i and the voltage V means that this is a command value.
 係る記号付与の約束に従い、以下各部の構成と動作について説明する。このうちまず電流指令演算器118は、トルク指令Tに基づき回転座標電流指令(i 、i )を演算する。ここでi は回転座標d軸電流指令であり、i は回転座標q軸電流指令である。図1の制御では例えば、回転座標d軸電流指令i は0として、回転座標q軸電流指令i をトルク指令Tに比例した値を出力する。 The configuration and operation of each part will be described below in accordance with the promise of symbol assignment. First of all, the current command calculator 118 calculates a rotation coordinate current command ( id * , iq * ) based on the torque command T * . Here, i d * is a rotation coordinate d-axis current command, and i q * is a rotation coordinate q-axis current command. In the control of FIG. 1, for example, the rotation coordinate d-axis current command i d * is set to 0, and the rotation coordinate q-axis current command i q * is output in proportion to the torque command T * .
 ただし、同期電動機6の回転子に突極性がある場合はリラクタンストルクが発生する。このため、損失が最小になるように回転座標d軸電流指令i を操作し、それに合わせてトルクがトルク指令Tに一致するように回転座標q軸電流指令i を制御することも可能である。 However, when the rotor of the synchronous motor 6 has saliency, reluctance torque is generated. Therefore, the rotational coordinate d-axis current command i d * is operated so that the loss is minimized, and the rotational coordinate q-axis current command i q * is controlled so that the torque coincides with the torque command T * accordingly. Is also possible.
 本発明では、電流指令演算器118で演算した回転座標電流指令(i 、i )に基づき、2組の電流制御器が作動する。このうちの1つは回転座標軸上の電流制御器103である。 In the present invention, two sets of current controllers are operated based on the rotational coordinate current commands ( id * , iq * ) calculated by the current command calculator 118. One of them is the current controller 103 on the rotation coordinate axis.
 回転座標軸上での電流制御は、回転座標電流指令(i 、i )に回転座標電流(ide、iqe)がそれぞれ一致するように、減算器101と102で回転座標電流指令と回転座標電流の偏差を演算し、回転座標軸上の電流制御器103で(1)式により、回転座標電圧指令Vdd 、Vqd を演算することにより実現される。 Current control on the rotational coordinate axis is performed by the subtractor 101 and 102 so that the rotational coordinate current (i de , i qe ) matches the rotational coordinate current command ( id * , iq * ). And the rotation coordinate current deviation is calculated, and the rotation coordinate voltage commands V dd * and V qd * are calculated by the current controller 103 on the rotation coordinate axis by the equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 但し(1)式において、Rは同期電動機6の巻線抵抗、Lは磁極位置方向(d軸)のインダクタンス、Lは磁極と直交する方向(q軸)のインダクタンス、φは磁束、ωは磁極位置θから演算できる回転角速度、ωは回転座標軸上の電流制御器103の応答角周波数、及びsは微分演算子である。 In Equation (1), R is the winding resistance of the synchronous motor 6, L d is the inductance in the magnetic pole position direction (d axis), L q is the inductance in the direction orthogonal to the magnetic pole (q axis), φ is the magnetic flux, ω Is a rotational angular velocity that can be calculated from the magnetic pole position θ, ω d is a response angular frequency of the current controller 103 on the rotational coordinate axis, and s is a differential operator.
 なお(1)式において回転座標電流ide、iqeは、補償後固定座標電流iae、ibeを、回転座標変換器114で回転座標変換して求めたものである。補償後固定座標電流iae、ibeは、固定座標電流iac、ibcから第1の補償器113の出力である固定座標電流補償量iaa、ibaを減算器115、116で減算して求めたものである。 In the equation (1), the rotational coordinate currents i de and i qe are obtained by performing rotational coordinate conversion on the fixed coordinate currents i ae and i be after compensation by the rotational coordinate converter 114. The fixed coordinate currents i ae and i be after compensation are subtracted from the fixed coordinate currents i ac and i bc by the subtractors 115 and 116, respectively, from the fixed coordinate current compensation amounts i aa and i ba that are the outputs of the first compensator 113. It is what I asked for.
 このうち固定座標電流iac、ibcは、三相交流電流i、i、及びiを、三相二相変換器117で二相変換して得たものである。三相二相変換器117では、三相交流電流i、i、及びiから、(2)式を用いて固定座標電流iac、ibcを求める。 Among these, the fixed coordinate currents i ac and i bc are obtained by two-phase converting the three-phase alternating currents i u , i v , and i w by the three-phase to two-phase converter 117. In the three-phase to two-phase converter 117, the fixed coordinate currents i ac and i bc are obtained from the three-phase alternating currents i u , i v and i w using the equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 これに対し、第1の補償器113では、固定座標軸上の電流制御器112の出力である第2の回転座標電圧指令Vaa 、Vba から(3)式により、固定座標電流補償量iaa、ibaを演算する。 On the other hand, in the first compensator 113, the fixed coordinate current compensation amount is calculated from the second rotational coordinate voltage commands V aa * and V ba * , which are the outputs of the current controller 112 on the fixed coordinate axis, by the equation (3). i aa and i ba are calculated.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
但し、インダクタンスL、Lはそれぞれ(4)、(5)式で求められる。 However, the inductances L 0 and L 1 are obtained by equations (4) and (5), respectively.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 回転座標変換器114では、減算器115と116の出力である補償後固定座標電流iae、ibeを、(6)式により磁極位置θを用いて座標変換して、回転座標電流ide、iqeを求める。 In the rotating coordinate converter 114, the compensated fixed coordinate currents i ae and i be which are the outputs of the subtractors 115 and 116 are converted using the magnetic pole position θ by the equation (6), and the rotating coordinate current i de , Find i qe .
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 つぎに、電流指令演算器118で演算した回転座標電流指令(i 、i )に基づき作動する2組の電流制御器のうち、もう1つの電流制御器である固定座標軸上の電流制御器112について説明する。 Next, of the two sets of current controllers that operate based on the rotational coordinate current command ( id * , iq * ) calculated by the current command calculator 118, the current on the fixed coordinate axis that is the other current controller. The controller 112 will be described.
 固定座標軸上での電流制御は、固定座標電流指令i 、i に固定座標電流iac、ibcがそれぞれ一致するように、減算器110、111で固定座標電流指令と固定座標電流の偏差を演算し、固定座標軸上の電流制御器112で(7)式により、第2の回転座標電圧指令Vaa 、Vba を演算することにより実現される。 The current control on fixed axes, the fixed coordinate current command i a *, i b * in a fixed coordinate current i ac, so i bc match each fixed coordinate current command and the fixed coordinate current subtracter 110, 111 This is realized by calculating the second rotation coordinate voltage commands V aa * and V ba * by the equation (7) by the current controller 112 on the fixed coordinate axis.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 なお固定座標電流指令i 、i は回転座標電流指令(i 、i )を第2の補償器108に導いて補償後回転座標電流指令(idd 、iqd )を得、さらに回転座標変換器109において回転座標変換したものである。 The fixed coordinate current commands i a * and i b * are derived from the rotational coordinate current commands (i d * and i q * ) guided to the second compensator 108 and compensated for the rotational coordinate current commands (i dd * and i qd *). ), And the rotation coordinate converter 109 further performs rotation coordinate conversion.
 このうち第2の補償器108では、回転座標電流指令i 、i から、(8)式により補償後回転座標電流指令idd 、iqd を求める。 Among these, the second compensator 108 obtains the post-compensation rotational coordinate current commands i dd * and i qd * from the rotational coordinate current commands i d * and i q * using the equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 また回転座標変換器109では、補償後回転座標電流指令idd 、iqd を、(9)式により磁極位置θを用いて座標変換して、固定座標電流指令i 、i を求める。 Further, the rotational coordinate converter 109 performs coordinate transformation of the compensated rotational coordinate current commands i dd * and i qd * using the magnetic pole position θ according to the equation (9) to obtain fixed coordinate current commands i a * and i b *. Ask for.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 尚、固定座標電流補償量iaa、ibaは、第1の補償器113により逆行列を用いた(3)式に基づき演算していたが、(3)式に(7)式を代入した(10)式を用いて、固定座標電流指令i 、i 及び固定座標電流iac、ibcの偏差から演算することも可能である。 Note that the fixed coordinate current compensation amounts i aa and i ba were calculated by the first compensator 113 based on the equation (3) using the inverse matrix, but the equation (7) was substituted into the equation (3). It is also possible to calculate from the deviation of the fixed coordinate current commands i a * , i b * and the fixed coordinate currents i ac , i bc using the equation (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 図1の実施例では、回転座標電流指令(i 、i )に基づき作動した2組の電流制御器の出力の和として最終的に三相交流電圧指令V 、V 、及びV を算出する。 In the embodiment of FIG. 1, the three-phase AC voltage commands V u * and V v * are finally obtained as the sum of the outputs of the two sets of current controllers operated based on the rotational coordinate current commands ( id * , iq * ) . , And V w * .
 三相交流電圧指令V 、V 、及びV は、第3の固定座標電圧指令V 、V を三相二相変換器107で三相に座標変換して求められる。第3の固定座標電圧指令V 、V は、第1の固定座標電圧指令Vad 、Vbd に、第2の固定座標電圧指令Vaa 、Vba を、それぞれ加算器105、106で加算して得られたものである。 The three-phase AC voltage commands V u * , V v * , and V w * are obtained by converting the third fixed coordinate voltage commands V a * , V b * into three phases by the three-phase two-phase converter 107. It is done. The third fixed coordinate voltage commands V a * and V b * are obtained by adding the second fixed coordinate voltage commands V aa * and V ba * to the first fixed coordinate voltage commands V ad * and V bd * , respectively. It is obtained by adding in the units 105 and 106.
 ここで、第2の回転座標電圧指令Vaa 、Vba は、固定座標軸上の電流制御器112において(7)式を実行することで求められたものである。 Here, the second rotation coordinate voltage commands V aa * and V ba * are obtained by executing the expression (7) in the current controller 112 on the fixed coordinate axis.
 これに対し、第1の固定座標電圧指令Vad 、Vbd は、回転座標軸上の電流制御器103の出力である回転座標電圧指令Vdd 、Vqd を回転座標変換器104で座標変換したものである。 On the other hand, the first fixed coordinate voltage commands V ad * and V bd * are output from the rotation coordinate voltage commands V dd * and V qd * , which are outputs of the current controller 103 on the rotation coordinate axis, by the rotary coordinate converter 104. Coordinate transformation.
 最終的に三相交流電圧指令V 、V 、及びV を算出する一連の処理のうち、回転座標変換器104では、回転座標電圧指令Vdd 、Vqd から、(11)式により磁極位置θを用いて回転座標変換して、第1の固定座標電圧指令Vad 、Vbd を演算する。 Of the series of processes that finally calculate the three-phase AC voltage commands V u * , V v * , and V w * , the rotary coordinate converter 104 determines from the rotary coordinate voltage commands V dd * and V qd * ( The first fixed coordinate voltage commands V ad * and V bd * are calculated by performing rotational coordinate conversion using the magnetic pole position θ according to equation (11).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 また三相二相変換器107では、第3の回転座標電圧指令V 、V から(12)式により三相二相変換して三相交流電圧指令V 、V 、及びV を演算する。 In the three-phase to two-phase converter 107, three-phase to two-phase conversion is performed from the third rotation coordinate voltage commands V a * and V b * by the equation (12), and the three-phase AC voltage commands V u * , V v * , And V w * are calculated.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 次に、図1のように構成された本実施例の動作及び特性について説明する。まず、制御装置100により制御を行う場合に、トルク指令Tが変更された場合の応答(指令応答)について説明する。 Next, the operation and characteristics of the present embodiment configured as shown in FIG. 1 will be described. First, a response (command response) when the torque command T * is changed when control is performed by the control device 100 will be described.
 同期電動機6のトルクは電流により決まる。このため、トルク指令Tに対する実トルクの応答は、回転座標電流指令i 、i や、外乱に対する同期電動機6の電流の応答により決まる。よって、以下では電流制御について説明を行う。 The torque of the synchronous motor 6 is determined by the current. For this reason, the response of the actual torque to the torque command T * is determined by the rotation coordinate current commands i d * and i q * and the response of the current of the synchronous motor 6 to the disturbance. Therefore, the current control will be described below.
 本実施例では、回転座標電流指令i 、i に対して同期電動機6の電流を追従させる制御は回転座標軸上の電流制御器103が行い、電力変換器1の変換誤差等による直流を含む低周波の電圧外乱に関しては、固定座標軸上の電流制御器112が補償を行う構成としている。 In this embodiment, the current controller 103 on the rotating coordinate axis performs control for causing the current of the synchronous motor 6 to follow the rotating coordinate current commands i d * and i q * , and the direct current due to the conversion error of the power converter 1 or the like. The current controller 112 on the fixed coordinate axis compensates for low-frequency voltage disturbances including.
 以下、この2組の電流制御器による制御として、指令変更された場合の応答を説明する。ここでは前提として、低周波の電圧外乱が生じていないものとする。また、固定座標軸上の電流制御器112の出力である第2の固定座標電圧指令Vaa 、Vba が0であると仮定する。このとき、電流制御器112の出力Vaa 、Vba を入力とする第1の補償器113では、(3)式から明らかなように固定座標電流補償量iaa、ibaも0となる。この結果、補償後固定座標電流iae、ibeと同期電動機6の回転座標上の電流が一致し、同期電動機の電圧方程式から(13)式が成立する。 Hereinafter, the response when the command is changed will be described as control by the two sets of current controllers. Here, it is assumed that a low-frequency voltage disturbance has not occurred. Further, it is assumed that the second fixed coordinate voltage commands V aa * and V ba * which are outputs of the current controller 112 on the fixed coordinate axis are zero. At this time, in the first compensator 113 to which the outputs V aa * and V ba * of the current controller 112 are input, the fixed coordinate current compensation amounts i aa and i ba are also 0 as is apparent from the equation (3). Become. As a result, the post-compensation fixed coordinate currents i ae and i be coincide with the current on the rotational coordinates of the synchronous motor 6, and the equation (13) is established from the voltage equation of the synchronous motor.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 一方、回転座標軸上の電流制御器103の特性は(1)式で表されるため、ループゲインG(s)は(14)式となる。 On the other hand, since the characteristic of the current controller 103 on the rotation coordinate axis is expressed by equation (1), the loop gain G (s) is expressed by equation (14).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 また、回転座標電流指令i 、i に対し、回転座標電流ide、iqeは(15)式で応答する。 Further, the rotational coordinate currents i de and i qe respond to the rotational coordinate current commands i d * and i q * by the equation (15).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 以上の説明は、低周波の電圧外乱が生じておらず、固定座標軸上の電流制御器112の出力が0であると仮定したときの回転座標軸上の電流制御器103の特性を示している。しかしながら、固定座標軸上の電流制御器112が動作すると、回転座標軸上の電流制御に対する外乱となるため、回転座標電流指令に対する応答が乱れることになる。すなわち、回転座標軸上の電流制御(電流制御器103)に対して、固定座標軸上の電流制御(電流制御器112)が干渉することになる。 The above description shows the characteristics of the current controller 103 on the rotating coordinate axis when it is assumed that no low-frequency voltage disturbance has occurred and the output of the current controller 112 on the fixed coordinate axis is zero. However, when the current controller 112 on the fixed coordinate axis is operated, it becomes a disturbance to the current control on the rotating coordinate axis, and thus the response to the rotating coordinate current command is disturbed. That is, the current control (current controller 112) on the fixed coordinate axis interferes with the current control (current controller 103) on the rotating coordinate axis.
 このため本発明においては、第2の補償器108により、固定座標軸上の電流制御器112に対する電流指令を補償する。(8)式と(15)式を比較すると、回転座標電流指令i 、i に対して、補償後回転座標電流指令idd 、iqd は、回転座標電流ide、iqeの特性は一致させているため、偏差は0になる。これは、固定座標軸上に変換した場合においても成り立つため、回転座標電流指令i 、i に対して、減算器110と111の出力は0になる。 Therefore, in the present invention, the second compensator 108 compensates the current command for the current controller 112 on the fixed coordinate axis. Compared (8) and (15), the rotating coordinate current command i d *, with respect to i q *, the compensated rotational coordinate current command i dd *, i qd * are rotating coordinate current i de, i Since the characteristics of qe are matched, the deviation is zero. Since this holds even when converted to a fixed coordinate axis, the outputs of the subtractors 110 and 111 become 0 with respect to the rotational coordinate current commands i d * and i q * .
 これにより、回転座標電流指令i 、i に対しては固定座標軸上の電流制御器112は動作が抑制され、固定座標軸上の電流制御(電流制御器112)が回転座標軸上の電流制御(電流制御器103)の操作量に対する外乱となることが抑制されると共に、固定座標電流補償量iaa、ibaが不要な補償を行うことも抑制される。 Thereby, the operation of the current controller 112 on the fixed coordinate axis is suppressed with respect to the rotational coordinate current commands i d * and i q * , and the current control on the fixed coordinate axis (current controller 112) The disturbance to the operation amount of the control (current controller 103) is suppressed, and unnecessary compensation of the fixed coordinate current compensation amounts i aa and i ba is also suppressed.
 次に電力変換器1の変換誤差等による直流を含む低周波の外乱に対する動作を説明する。図1の実施例では、外乱により三相交流電流i、i、iや固定座標電流iac、ibcに低周波成分が重畳すると、固定座標軸上の電流制御器112が動作し、第2の回転座標電圧指令Vaa 、Vba が操作される。 Next, the operation | movement with respect to the low frequency disturbance containing the direct current | flow by the conversion error etc. of the power converter 1 is demonstrated. In the embodiment of FIG. 1, when a low frequency component is superimposed on the three-phase alternating currents i u , i v , i w and fixed coordinate currents i ac , i bc due to disturbance, the current controller 112 on the fixed coordinate axis operates, The second rotation coordinate voltage commands V aa * and V ba * are operated.
 しかし、第2の回転座標電圧指令Vaa 、Vba は、回転座標軸上の電流制御(電流制御器103)に対しては電圧外乱となる。このため、回転座標軸上の電流制御が固定座標軸上の電流制御(電流制御器112)に干渉し、電流制御器112による所望の応答性能(外乱応答)が得られない。このため本発明では、第1の補償器113により、第2の回転座標電圧指令Vaa 、Vba に対する回転座標軸上の電流制御(電流制御器103)の動作を抑制している。 However, the second rotation coordinate voltage commands V aa * and V ba * are voltage disturbances for the current control (current controller 103) on the rotation coordinate axis. For this reason, the current control on the rotating coordinate axis interferes with the current control on the fixed coordinate axis (current controller 112), and the desired response performance (disturbance response) by the current controller 112 cannot be obtained. Therefore, in the present invention, the first compensator 113 suppresses the operation of the current control (current controller 103) on the rotation coordinate axis with respect to the second rotation coordinate voltage commands V aa * and V ba * .
 第2の回転座標電圧指令(電流制御器103)による電圧に対応して同期電動機6に流れる電流が変化すると、回転座標軸上の電流制御器103にフィードバックされる電流が変化し、これを抑制するように回転座標軸上の電流制御器103が動作する。このため、回転座標軸上の電流制御による固定座標軸上の電流制御(電流制御器112)に対する干渉が発生する。 When the current flowing through the synchronous motor 6 changes in response to the voltage according to the second rotation coordinate voltage command (current controller 103), the current fed back to the current controller 103 on the rotation coordinate axis changes and is suppressed. Thus, the current controller 103 on the rotation coordinate axis operates. For this reason, interference with the current control (current controller 112) on the fixed coordinate axis due to the current control on the rotating coordinate axis occurs.
 このため本発明では、第2の回転座標電圧指令Vaa 、Vba に対する同期電動機6の電流を第2の補償器113により推定し、回転座標軸上の電流制御器103にフィードバックされる電流から減算することにより、第2の回転座標電圧指令Vaa 、Vba に対する電流変化が相殺され、回転座標軸上の電流制御器103の動作を抑制することができる。 Therefore, in the present invention, the current of the synchronous motor 6 with respect to the second rotational coordinate voltage commands V aa * and V ba * is estimated by the second compensator 113 and fed back to the current controller 103 on the rotational coordinate axis. By subtracting from, current changes with respect to the second rotation coordinate voltage commands V aa * and V ba * are canceled out, and the operation of the current controller 103 on the rotation coordinate axis can be suppressed.
 次に本実施例における回転座標軸上の電流制御器103による具体的な電流制御特性を説明する。同期電動機6を(13)式でモデル化したときの、回転座標電流指令i 、i 及び三相外乱電圧ΔVu、ΔVv、ΔVに対する回転座標電動機電流i、iは(16)式となる。 Next, specific current control characteristics by the current controller 103 on the rotation coordinate axis in the present embodiment will be described. When the synchronous motor 6 is modeled by the equation (13), the rotational coordinate motor currents i d and i q with respect to the rotational coordinate current commands i d * and i q * and the three-phase disturbance voltages ΔVu, ΔVv, and ΔV w are (16 ).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 但し、回転座標電動機電流i、iは、(17)式により三相交流電流i、i、及びiを三相二相変換及び磁極位置θに基づく回転座標変換した値である。 However, the rotational coordinate motor currents i d and i q are values obtained by converting the three-phase alternating currents i u , i v , and i w into the three-phase two-phase conversion and the rotational coordinate conversion based on the magnetic pole position θ according to the equation (17). .
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 図2に(16)式と等価なブロック図、すなわち本実施例の制御特性を表すブロック図を示す。図2のブロック図において、図1における機能と同一の機能に関しては同一の符号を付し、説明を省略する。 FIG. 2 shows a block diagram equivalent to the equation (16), that is, a block diagram showing the control characteristics of this embodiment. In the block diagram of FIG. 2, the same functions as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
 図2において、201は三相二相変換器、202、203、207、及び208は加算器、204は固定座標軸上の電動機モデル、205は回転座標変換器、206は回転座標軸上の電動機モデルである。 In FIG. 2, 201 is a three-phase to two-phase converter, 202, 203, 207, and 208 are adders, 204 is a motor model on a fixed coordinate axis, 205 is a rotary coordinate converter, and 206 is a motor model on a rotary coordinate axis. is there.
 このうち、三相二相変換器201は、(18)式を演算する。 Of these, the three-phase to two-phase converter 201 calculates equation (18).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 固定座標軸上の電動機モデル204は(19)式を演算する。 The motor model 204 on the fixed coordinate axis calculates (19).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 回転座標変換器205は(20)式を演算する。 Rotational coordinate converter 205 calculates equation (20).
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 回転座標軸上の電動機モデル206は(21)式を演算する。 The motor model 206 on the rotation coordinate axis calculates the equation (21).
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 次に(16)式が図2のブロック図の特性になっていることを説明する。まず、固定座標軸上の電流制御の応答を(7)式と(19)式を用いて計算すると(22)式となる。 Next, it will be explained that the equation (16) is the characteristic of the block diagram of FIG. First, when the current control response on the fixed coordinate axis is calculated using the equations (7) and (19), the equation (22) is obtained.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 また、回転座標軸上の電流制御の応答を(1)式と(21)式を用いて計算すると(23)式となる。 Also, when the current control response on the rotating coordinate axis is calculated using the equations (1) and (21), the equation (23) is obtained.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 (23)式に(20)式と(22)式を代入すると(16)式が得られることから、(16)式と図2のブロック図の特性が一致することがわかる。このことは、図2の構成が、図1の構成による応答特性を表していることを意味している。 (16) is obtained by substituting (20) and (22) into (23), it can be seen that the characteristics of (16) and the block diagram of FIG. 2 match. This means that the configuration of FIG. 2 represents the response characteristics of the configuration of FIG.
 次に図2のブロック図を用いて、回転座標電流指令i 、i 及び三相外乱電圧ΔVu、ΔVv、ΔVに対する回転座標電動機電流i、iの応答を説明する。 Next, the response of the rotary coordinate motor currents i d and i q to the rotary coordinate current commands i d * and i q * and the three-phase disturbance voltages ΔVu, ΔVv, and ΔV w will be described with reference to the block diagram of FIG.
 図2の構成は下半分の回転座標系と、上半分の固定座標系に分けて把握することができる。このうち下半分の回転座標系は、回転座標電流指令i 、i に対する応答を示している。この構成を回転座標電流指令i 、i から把握すると、回転座標軸上の電流制御器103を補償器とし、回転座標軸上の電動機モデル206をプラントとし、回転座標軸電流i、iを帰還信号とするフィードバック制御系である。ここには固定座標軸上の電流制御応答による干渉がなく、所望の制御応答が得られることがわかる。 The configuration of FIG. 2 can be grasped by dividing it into a lower half rotational coordinate system and an upper half fixed coordinate system. Of these, the lower half rotation coordinate system shows the response to the rotation coordinate current commands i d * and i q * . If this configuration is grasped from the rotation coordinate current commands i d * and i q * , the current controller 103 on the rotation coordinate axis is used as a compensator, the motor model 206 on the rotation coordinate axis is used as a plant, and the rotation coordinate axis currents i d and i q are obtained. Is a feedback control system using as a feedback signal. Here, it can be seen that there is no interference due to the current control response on the fixed coordinate axis, and a desired control response can be obtained.
 一方、上半分の固定座標系は、三相外乱電圧ΔVu、ΔVv、ΔVに対する応答を示している。この構成を三相外乱電圧ΔVu、ΔVv、ΔVから把握すると、固定座標軸上の電流制御器112を補償器とし、固定座標軸上の電動機モデル204をプラントとし、第2の回転座標電圧指令Vaa 、Vba を指令値とするフィードバック制御系の操作量に対する外乱である。よって、三相外乱電圧ΔVu、ΔVv、ΔVに対する電流iac、ibcは固定座標電流制御の外乱抑制特性により抑制される。 On the other hand, the fixed coordinate system of the upper half, the three-phase disturbance voltages ΔVu, ΔVv, shows a response to [Delta] V w. This arrangement three-phase disturbance voltages ΔVu, ΔVv, when grasped from [Delta] V w, the current controller 112 on the fixed axis and the compensator, a motor model 204 on the fixed axis and the plant, the second rotating coordinate voltage command V aa This is a disturbance to the manipulated variable of the feedback control system with * and V ba * as command values. Therefore, the three-phase disturbance voltages ΔVu, ΔVv, current i ac for [Delta] V w, i bc is suppressed by the disturbance suppression characteristics of the fixed coordinate current control.
 さらに、回転座標変換された電流ida、iqaは回転座標軸上の電流制御の出力に対する外乱である。以上から、三相外乱電圧ΔVu、ΔVv、ΔVに対しては、固定座標電流制御と回転座標電流制御が互いに干渉することなく作用し、回転座標電動機電流i、iは、固定座標電流制御と回転座標電流制御の外乱抑制特性が直列に接続された特性となることがわかる。 Furthermore, the currents i da and i qa that have undergone rotational coordinate conversion are disturbances to the output of current control on the rotational coordinate axis. From the above, the three-phase disturbance voltages ΔVu, ΔVv, for the [Delta] V w, act without rotating coordinate current control with a fixed coordinate current control from interfering with each other, the rotating coordinate motor current i d, i q is fixed coordinate current It can be seen that the disturbance suppression characteristics of the control and the rotational coordinate current control are characteristics connected in series.
 次にシミュレーション結果を用いて、本実施例によるときの具体的な応答特性を説明する。図3、図4、図5、及び図6に本実施例のシミュレーション結果を示す。これらの図では横軸に時間をとっている。縦軸には、図1の各部諸量として、回転座標d軸電流指令i 、回転座標d軸電流i、回転座標q軸電流指令i 、回転座標q軸電流iq、三相外乱電圧ΔV、三相電流iをとって、相互の間の関係を示している。 Next, specific response characteristics according to the present embodiment will be described using simulation results. FIG. 3, FIG. 4, FIG. 5 and FIG. 6 show the simulation results of this example. In these figures, time is shown on the horizontal axis. On the vertical axis, as various quantities in FIG. 1, the rotation coordinate d-axis current command i d * , the rotation coordinate d-axis current i d , the rotation coordinate q-axis current command i q * , the rotation coordinate q-axis current iq, and the three-phase The disturbance voltage ΔV u and the three-phase current i u are taken to show the relationship between them.
 また図3、図4、図5、及び図6において、(a)は本発明装置の応答を示すシミュレーション結果である。(b)(c)は本発明装置の応答(a)と対比してその相違を明確にするために参考として記載したものである。(b)は回転座標軸上の電流制御のみの場合、(c)は回転座標軸上の電流制御と固定座標軸上の電流制御を併用し、第2の補償器113及び第1の補償器108による補償を行わなかった場合のシミュレーション結果である。 3, 4, 5, and 6, (a) is a simulation result showing the response of the device of the present invention. (B) and (c) are described for reference in order to clarify the difference in comparison with the response (a) of the device of the present invention. (B) shows only current control on the rotating coordinate axis, and (c) uses both current control on the rotating coordinate axis and current control on the fixed coordinate axis, and compensates by the second compensator 113 and the first compensator 108. It is a simulation result when not performing.
 これらシミュレーション結果を示す図のうち、図3と図4はトルク指令Tをステップ状に立ち上げ、これに伴い回転座標電流指令i をステップ状に立ち上げたときの特性である。また図3は回転速度が遅い場合、図4は回転速度が速い場合を示している。また、図5と図6はステップ状の三相外乱電圧ΔVを与えた場合の特性であり、図5は回転速度が遅い場合、図6は回転速度が速い場合を示している。 Of these diagrams showing the simulation results, FIGS. 3 and 4 show the characteristics when the torque command T * is raised stepwise and the rotational coordinate current command i q * is raised stepwise accordingly. 3 shows a case where the rotation speed is low, and FIG. 4 shows a case where the rotation speed is high. 5 and 6 show characteristics when a step-like three-phase disturbance voltage ΔV u is applied. FIG. 5 shows a case where the rotational speed is low, and FIG. 6 shows a case where the rotational speed is high.
 回転座標軸上の電流制御器103は、応答角周波数ω以下の角周波数の電流を制御する。一方、固定座標軸上の直流電流は、回転座標軸においては回転速度に相当する周波数の電流に変換されるため、回転速度に相当する角周波数が応答角周波数ωより大きい条件では、固定座標軸上の直流電流成分を制御することができない。 Current controller on the rotating coordinate axis 103 controls the current of the following angular frequency response angular frequency omega d. On the other hand, the direct current on the stationary coordinate axes, since the rotation axis is converted to a current of a frequency corresponding to the rotational speed, the angular frequency corresponding to the rotational speed in response angular frequency omega d greater condition, on fixed coordinate axes The direct current component cannot be controlled.
 このため、図3と図5の遅い回転速度は、相当する角周波数が応答角周波数ωより小さい場合であり、図4と図5の速い回転速度は、相当する角周波数が応答角周波数ωより大きい場合である。 Therefore, the slow rotational speeds in FIGS. 3 and 5 are cases where the corresponding angular frequency is smaller than the response angular frequency ω d , and the fast rotational speeds in FIGS. 4 and 5 are equivalent to the response angular frequency ω. This is the case when it is larger than d .
 尚、(15)式に示すように、トルク指令T及び回転座標電流指令i をステップ状に立ち上げたときの同期電動機6のトルク及び回転座標電流iの応答は応答角周波数ωにより決まる。尚、図3~6では、シミュレーションを行った条件においては、トルク指令T及び同期電動機6のトルクはそれぞれ回転座標電流指令i 及び回転座標電流iに比例するため、トルク指令T及び同期電動機6のトルクの特性は図示していない。 As shown in the equation (15), the response of the torque and the rotational coordinate current i q of the synchronous motor 6 when the torque command T * and the rotational coordinate current command i q * are raised in a step shape are the response angular frequency ω. determined by d . 3 to 6, the torque command T * and the torque of the synchronous motor 6 are proportional to the rotational coordinate current command i q * and the rotational coordinate current i q , respectively, under the simulated conditions . The torque characteristics of the synchronous motor 6 are not shown.
 図3において、横軸は時間であり、波形は上から、回転座標電流指令i 、三相交流電流i、i、iから(17)式を用いて求めた回転座標電流i、回転座標電流指令i 、回転座標電流iq、三相外乱電圧ΔV、三相交流電流iである。この図は時刻T1において、トルク指令Tをステップ状に立ち上げ、これに伴い回転座標電流指令iqをステップ状に立ち上げたときの特性である。 In FIG. 3, the horizontal axis is time, and the waveform is the rotational coordinate current i determined from the rotational coordinate current command i d * and the three-phase alternating currents i u , i v , and i w using the equation (17) from the top. d , rotational coordinate current command i q * , rotational coordinate current iq, three-phase disturbance voltage ΔV u , and three-phase alternating current iu . This figure shows the characteristics when the torque command T * is raised stepwise at time T1, and the rotational coordinate current command iq * is raised stepwise accordingly.
 本実施例(a)では、回転座標軸上の電流制御のみの場合(b)と同様に、回転座標電流iが設計通り立ち上がっている。一方、補償を行わなかった場合(c)では、固定座標軸上の電流制御の干渉により回転座標電流iが、はやく立ち上がり過ぎており、回転座標電流iに対しても、干渉が見られる。 In the present embodiment (a), as in the case of only current control on the rotation coordinate axis (b), the rotation coordinate current i q rises as designed. On the other hand, in the case where not performed compensation (c), the rotating coordinate current i q by the interference of the current control on the fixed coordinate axes, and too rise quickly, even for the rotating coordinate current i d, the interference is seen.
 図4は、同期電動機6の回転速度が速い場合であり、条件や波形は図3と同様である。特に横軸の時間スケールは図3と合わせてある。この場合も、本実施例(a)では、回転座標軸上の電流制御のみの場合(b)と同様に、回転座標電流iが設計通り立ち上がっている。一方、補償を行わなかった場合(c)では、固定座標軸上の電流制御の干渉により回転座標電流iの応答が乱れている。 FIG. 4 shows a case where the rotational speed of the synchronous motor 6 is high, and the conditions and waveforms are the same as those in FIG. In particular, the time scale on the horizontal axis is matched with FIG. In this case as well, in this embodiment (a), the rotation coordinate current i q rises as designed, as in the case of only current control on the rotation coordinate axis (b). On the other hand, when the compensation is not performed (c), the response of the rotational coordinate current iq is disturbed due to the interference of the current control on the fixed coordinate axis.
 また、図3と図4から、本実施例(a)によれば回転速度が、回転座標軸上の電流制御器の応答角周波数ωに相当する回転速度より速い場合においても、遅い場合においてもトルク指令T及び回転座標電流指令i に対するトルク指令T及び回転座標電流指令i をステップ状に立ち上げたときの同期電動機6のトルク及び回転座標電流iは同様の応答をする。このため、ステップ応答を評価する指標は同じ値であり、例えば同期電動機6のトルクが10%から90%まで変化するまでの立ち上がり時間を比較すれば、同じ値となる。 Further, from FIGS. 3 and 4, according to this embodiment (a), the rotational speed is faster or slower than the rotational speed corresponding to the response angular frequency ω d of the current controller on the rotational coordinate axis. When the torque command T * and the rotation coordinate current command i q * with respect to the torque command T * and the rotation coordinate current command i q * are stepped up, the torque and the rotation coordinate current i q of the synchronous motor 6 have similar responses. To do. For this reason, the index which evaluates a step response is the same value, for example, it will become the same value if the rise time until the torque of the synchronous motor 6 changes from 10% to 90% is compared.
 図5は、回転座標電流指令i に変えて、時刻T2において、ステップ状の三相外乱電圧ΔVを与えた場合あり、条件や波形は図3と同様である。但し、横軸は図3及び図4よりも長い時間を表示している。本実施例(a)では、回転座標電流i及びiに三相外乱電圧ΔVよる影響はほとんどなく、外乱抑制が十分に行われていることがわかる。一方、回転座標軸上の電流制御のみの場合(b)は、回転座標電流i及びiに大きな振動が発生している。補償を行わなかった場合(c)においても、電流回転座標軸上の電流制御のみの場合(b)より小さくはなっているが、回転座標電流i及びiに振動が残っている。 FIG. 5 shows a case where a stepwise three-phase disturbance voltage ΔV u is applied at time T2 instead of the rotation coordinate current command i q * , and the conditions and waveforms are the same as those in FIG. However, the horizontal axis represents a longer time than that in FIGS. In this embodiment (a), it can be seen that the rotational coordinate currents i d and i q are hardly affected by the three-phase disturbance voltage ΔV u , and the disturbance is sufficiently suppressed. On the other hand, in the case of only current control on the rotation coordinate axis (b), large vibrations are generated in the rotation coordinate currents id and iq . Even in the case where the compensation is not performed (c), the vibration remains in the rotational coordinate currents id and iq , although it is smaller than in the case of only the current control on the current rotational coordinate axis (b).
 図6は、同期電動機6の回転速度が図4よりも速い場合であり、条件や波形は図5と同様である。本実施例(a)及び補償を行わなかった場合(c)では、回転座標電流i及びiに三相外乱電圧ΔVよる影響はほとんどなく、外乱抑制が十分に行われていることがわかる。一方、電流回転座標軸上の電流制御のみの場合(b)は、回転座標電流i及びiに大きな振動が発生し、三相交流電流iにも直流分が重畳している。 FIG. 6 shows a case where the rotational speed of the synchronous motor 6 is faster than that in FIG. 4, and the conditions and waveforms are the same as those in FIG. In this example if you did not (a) and compensation (c), the three-phase disturbance voltage [Delta] V u According affect little the rotating coordinate current i d and i q, that disturbance suppression with adequate Recognize. On the other hand, when only the current control of the current rotational axis (b), a large vibration is generated in the rotating coordinate current i d and i q, the DC component is superimposed to the three-phase alternating currents i u.
 また、図5と図6の定常状態から、本実施例(a)によれば回転速度が、回転座標軸上の電流制御器の応答角周波数ωに相当する回転速度より速い場合においても、遅い場合においても、三相外乱電圧ΔVに対する三相交流電流iの直流成分が等しいことがわかる。 Further, from the steady state of FIGS. 5 and 6, according to this embodiment (a), even when the rotational speed is faster than the rotational speed corresponding to the response angular frequency ω d of the current controller on the rotational coordinate axis, it is slow. Even in this case, it can be seen that the DC component of the three-phase alternating current i u is equal to the three-phase disturbance voltage ΔV u .
 以上をまとめると、本実施例(a)は回転速度によらず、良好な指令応答及び外乱応答が実現できている。一方、回転座標軸上の電流制御のみの場合(b)には、外乱応答に対する抑制が不十分であり、特に回転速度が速い場合に顕著である。また、補償を行わなかった場合(c)には、指令応答に問題があり、また回転数が遅い場合の外乱応答も本実施例に対して劣っている。 In summary, in this embodiment (a), good command response and disturbance response can be realized regardless of the rotational speed. On the other hand, in the case of only current control on the rotation coordinate axis (b), the suppression of the disturbance response is insufficient, particularly when the rotation speed is high. Further, when the compensation is not performed (c), there is a problem in the command response, and the disturbance response when the rotational speed is slow is also inferior to the present embodiment.
4:電力変換器,103:回転座標軸上の電流制御器,112:固定座標軸上の電流制御器,104:回転座標変換器,105、106:加算器,107:二相三相変換器,113:第2の補償器,108:第1の補償器 4: power converter, 103: current controller on rotating coordinate axis, 112: current controller on fixed coordinate axis, 104: rotating coordinate converter, 105, 106: adder, 107: two-phase three-phase converter, 113 : Second compensator, 108: first compensator

Claims (10)

  1.  電圧指令に基づき交流電圧を出力し電動機を駆動する電力変換器と、トルク指令に前記電動機のトルクが一致するように前記電圧指令を出力する制御手段を具備する電力変換装置において、
    前記制御手段は、トルク指令が変化した場合、トルク応答に相当する角周波数より回転速度に対応する角周波数が高いときと、回転速度に対応する角周波数が低いときのトルクの立上り時間が等しく、かつ前記電力変換器の出力電圧に直流外乱が加えられた条件における出力電流に重畳する直流成分が等しくなるようにされていることを特徴とする電力変換装置。
    In a power converter including a power converter that outputs an AC voltage based on a voltage command and drives the motor, and a control unit that outputs the voltage command so that the torque of the motor matches the torque command.
    When the torque command changes, the control means has an equal torque rise time when the angular frequency corresponding to the rotational speed is higher than the angular frequency corresponding to the torque response and when the angular frequency corresponding to the rotational speed is low, The power converter is characterized in that the DC component superimposed on the output current under the condition that a DC disturbance is added to the output voltage of the power converter is equalized.
  2.  電圧指令に基づき交流電圧を出力し電動機を駆動する電力変換器と、トルク指令に前記電動機のトルクが一致するように電流指令を演算する電流指令演算手段と、前記電流指令に基づき回転座標軸上で該電力変換器の出力電流を制御する第1の電流制御手段と、固定座標軸上で前記出力電流を制御する第2の電流制御手段と、前記第1の電流制御手段と第2の電流制御手段の出力に基づき電圧指令を演算する電圧演算手段を具備する電力変換装置において、
    トルク指令が変化した場合、トルク応答に相当する角周波数より回転速度に対応する角周波数が高いときと、回転速度に対応する角周波数が低いときのトルクの立上り時間が等しいことを特徴とする電力変換装置。
    A power converter that outputs an AC voltage based on the voltage command and drives the motor, a current command calculation means that calculates a current command so that the torque of the motor matches the torque command, and a rotational coordinate axis based on the current command First current control means for controlling the output current of the power converter, second current control means for controlling the output current on a fixed coordinate axis, the first current control means and the second current control means In a power conversion device comprising voltage calculation means for calculating a voltage command based on the output of
    When the torque command changes, the power is characterized in that the rise time of the torque is equal when the angular frequency corresponding to the rotational speed is higher than the angular frequency corresponding to the torque response and when the angular frequency corresponding to the rotational speed is low Conversion device.
  3.  電圧指令に基づき交流電圧を出力する電力変換器と、回転座標軸上で前記電力変換器の電流を制御する第1の電流制御手段と、固定座標軸上で前記電力変換器の電流を制御する第2の電流制御手段と、前記第1の電流制御手段と第2の電流制御手段の出力に基づき前記電圧指令を演算する電圧演算手段を具備する電力変換装置において、
    第1の電流制御手段に対する電流指令に基づき前記第2の電流制御手段に対する電流指令を補正する第1の補正手段を具備することを特徴とする電力変換装置。
    A power converter that outputs an alternating voltage based on a voltage command; first current control means for controlling the current of the power converter on a rotating coordinate axis; and a second that controls the current of the power converter on a fixed coordinate axis. In the power conversion device comprising: the current control means; and the voltage calculation means for calculating the voltage command based on the outputs of the first current control means and the second current control means,
    A power conversion apparatus comprising: a first correction unit that corrects a current command to the second current control unit based on a current command to the first current control unit.
  4.  請求項3に記載の電力変換装置において、
    トルク指令を得て、前記回転座標軸上の電流指令を定める電流指令演算器を備え、該電流指令演算器の電流指令を前記第1の電流制御手段と前記第1の補正手段に与えることを特徴とする電力変換装置。
    The power conversion device according to claim 3,
    A current command computing unit that obtains a torque command and determines a current command on the rotational coordinate axis is provided, and the current command of the current command computing unit is given to the first current control means and the first correction means. A power converter.
  5.  請求項3または請求項4に記載の電力変換装置において、
    前記電圧演算手段は、前記第1の電流制御手段が与える回転座標軸上の出力信号を固定座標軸上に変換して得た第1の電圧信号と、前記第2の電流制御手段が与える固定座標軸上の第2の電圧信号の和信号を用いて前記交流電圧の電圧指令を得ることを特徴とする電力変換装置。
    In the power converter device according to claim 3 or claim 4,
    The voltage calculation means includes a first voltage signal obtained by converting an output signal on the rotational coordinate axis provided by the first current control means onto a fixed coordinate axis, and a fixed coordinate axis provided by the second current control means. A power converter that obtains a voltage command of the AC voltage using a sum signal of the second voltage signal.
  6.  請求項3から請求項5のいずれかに記載の電力変換装置において、
    前記電力変換器の交流電流を固定座標軸上の電流に変換し、さらに回転座標軸上の電流に変換する変換回路を備え、該固定座標軸上の電流を前記第2の電流制御手段の帰還信号とし、該回転座標軸上の電流を前記第1の電流制御手段の帰還信号とすることを特徴とする電力変換装置。
    In the power converter device in any one of Claims 3-5,
    A conversion circuit that converts the alternating current of the power converter into a current on a fixed coordinate axis, and further converts it into a current on a rotary coordinate axis, and uses the current on the fixed coordinate axis as a feedback signal of the second current control means; A power conversion apparatus characterized in that the current on the rotation coordinate axis is used as a feedback signal of the first current control means.
  7.  請求項3から請求項6のいずれかに記載の電力変換装置において、
    前記第2の電流制御手段の出力に基づき前記第1の電流制御手段に与えられる入力を補正する第2の補正手段を具備することを特徴とする電力変換装置。
    In the power converter device in any one of Claims 3-6,
    A power converter comprising: second correction means for correcting an input given to the first current control means based on an output of the second current control means.
  8.  電圧指令に基づき交流電圧を出力する電力変換器と、回転座標軸上で前記電力変換器の電流を制御する第1の電流制御手段と、固定座標軸上で前記電力変換器の電流を制御する第2の電流制御手段と、前記第1の電流制御手段と第2の電流制御手段の出力に基づき前記電圧指令を演算する電圧演算手段を具備する電力変換装置において、
    第1の電流制御手段の入力である電流指令に基づき前記第2の電流制御手段の入力を補正し、第2の電流制御手段の出力で前記第1の電流制御手段の入力を補正することを特徴とする電力変換装置。
    A power converter that outputs an alternating voltage based on a voltage command; first current control means for controlling the current of the power converter on a rotating coordinate axis; and a second that controls the current of the power converter on a fixed coordinate axis. In the power conversion device comprising: the current control means; and the voltage calculation means for calculating the voltage command based on the outputs of the first current control means and the second current control means,
    Correcting the input of the second current control means based on the current command which is the input of the first current control means, and correcting the input of the first current control means with the output of the second current control means. A power conversion device.
  9.  請求項3から請求項8のいずれかに記載の電力変換装置において、
    前記第1の補正手段は、前記第1の電流制御手段の制御応答に基づき電流指令を補正することを特徴とする電力変換装置。
    In the power converter device in any one of Claims 3-8,
    The power converter according to claim 1, wherein the first correction unit corrects a current command based on a control response of the first current control unit.
  10.  請求項3から請求項9のいずれかに記載の電力変換装置において、
    前記第2の補正手段は、前記第2の電流制御手段の出力に対する前記電力変換装置の推定電流を求め、該推定電流に基づき前記第1の電流制御手段の電流指令を補正することを特徴とする電力変換装置。
    In the power converter device in any one of Claims 3-9,
    The second correction unit obtains an estimated current of the power conversion device with respect to an output of the second current control unit, and corrects a current command of the first current control unit based on the estimated current. Power converter.
PCT/JP2011/076432 2011-11-16 2011-11-16 Power conversion device WO2013073026A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/076432 WO2013073026A1 (en) 2011-11-16 2011-11-16 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/076432 WO2013073026A1 (en) 2011-11-16 2011-11-16 Power conversion device

Publications (1)

Publication Number Publication Date
WO2013073026A1 true WO2013073026A1 (en) 2013-05-23

Family

ID=48429138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076432 WO2013073026A1 (en) 2011-11-16 2011-11-16 Power conversion device

Country Status (1)

Country Link
WO (1) WO2013073026A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221896A (en) * 2006-02-15 2007-08-30 Toyota Motor Corp Controller for vehicle
JP2009017676A (en) * 2007-07-04 2009-01-22 Aisin Seiki Co Ltd Controller and control method for magnet type synchronous motor
JP2011211815A (en) * 2010-03-30 2011-10-20 Kokusan Denki Co Ltd Controller of permanent magnet motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221896A (en) * 2006-02-15 2007-08-30 Toyota Motor Corp Controller for vehicle
JP2009017676A (en) * 2007-07-04 2009-01-22 Aisin Seiki Co Ltd Controller and control method for magnet type synchronous motor
JP2011211815A (en) * 2010-03-30 2011-10-20 Kokusan Denki Co Ltd Controller of permanent magnet motor

Similar Documents

Publication Publication Date Title
JP5633551B2 (en) AC motor control device
JP4297953B2 (en) Motor control device and compressor
JP4476314B2 (en) Motor control device and compressor
JP5413400B2 (en) AC motor control device
KR100655702B1 (en) Control method for permanent magnet synchronous motor and control system thereof
US9401656B2 (en) Method of controlling power conversion apparatus
JP2004312864A (en) Motor controller
JPWO2008004316A1 (en) Vector control device for induction motor, vector control method for induction motor, and drive control device for induction motor
JP2011004506A (en) Motor control device
JP2010288440A (en) Motor control apparatus and control method therefor
JP2012055041A (en) Vector controller and motor control system
KR101758004B1 (en) Rotary machine controller
JP3919003B2 (en) DC brushless motor rotor angle detector
JP6984399B2 (en) Power converter controller
JP2011050178A (en) Motor control device and generator control device
JP3586078B2 (en) Power converter
JP2014195352A (en) Motor control device
JP4596906B2 (en) Electric motor control device
JP2019170095A (en) Motor controller
JP2017192294A (en) Motor control device
JP2004120834A (en) Controller of dc brushless motor
JP6590196B2 (en) Power converter
WO2013073026A1 (en) Power conversion device
JPWO2013073026A1 (en) Power converter
JP2013188074A (en) Induction motor control device and method for controlling induction motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013544036

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875982

Country of ref document: EP

Kind code of ref document: A1