WO2013072610A1 - Aube de turbine à gaz à décalage vers l'intrados des sections de tête et à canaux de refroidissement - Google Patents

Aube de turbine à gaz à décalage vers l'intrados des sections de tête et à canaux de refroidissement Download PDF

Info

Publication number
WO2013072610A1
WO2013072610A1 PCT/FR2012/052604 FR2012052604W WO2013072610A1 WO 2013072610 A1 WO2013072610 A1 WO 2013072610A1 FR 2012052604 W FR2012052604 W FR 2012052604W WO 2013072610 A1 WO2013072610 A1 WO 2013072610A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
face
intrados
cooling
flange
Prior art date
Application number
PCT/FR2012/052604
Other languages
English (en)
Inventor
Régis Grohens
Erwan Daniel Botrel
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to JP2014541733A priority Critical patent/JP6073351B2/ja
Priority to CN201280056817.XA priority patent/CN103958834B/zh
Priority to EP12795525.0A priority patent/EP2780551B1/fr
Priority to US14/358,851 priority patent/US9605545B2/en
Priority to RU2014124709A priority patent/RU2617633C2/ru
Priority to BR112014011838-8A priority patent/BR112014011838B1/pt
Priority to CA2854890A priority patent/CA2854890C/fr
Publication of WO2013072610A1 publication Critical patent/WO2013072610A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades

Definitions

  • Jet turbine blade with offset to the underside of the head sections and cooling channels
  • the field of the present invention relates to hollow blades, in particular blades for gas turbines, and more particularly turbomachine blades, and more particularly blades for a high-pressure turbine.
  • a blade comprises in particular a blade extending in a longitudinal direction, a foot and a head opposite to the foot.
  • the blade is fixed on the disc of a turbine rotor by means of its foot.
  • the head of the blade is located opposite the inner face of the fixed annular casing surrounding the turbine.
  • the longitudinal direction of the blade corresponds to the radial direction of the rotor or the turbomachine, and this with respect to the axis of rotation of the rotor.
  • the blade can be decomposed into blade sections which are stacked in a stacking direction which is radial with respect to the axis of rotation of the rotor disk.
  • the blade sections thus form an aerodynamic surface which is directly subjected to the gases passing through the turbine.
  • This aerodynamic surface extends, from upstream to downstream in the direction of flow of the fluid, between a leading edge and a trailing edge, these edges being interconnected by an intrados face called the intrados and a face extrados called the extrados.
  • the turbine provided with such blades is traversed by a gas flow.
  • the aerodynamic surface of its blades must be used to transform the maximum kinetic energy from the gas flow into mechanical energy transmitted to the rotor shaft of the turbine rotor.
  • the blade of the blade generates kinetic energy losses and should be minimized.
  • a significant part of these losses is attributable to the presence of a functional radial clearance between the head of each blade and the inner surface of the casing surrounding the turbine.
  • this radial clearance generates a gas leakage flow flowing from the lower surface (higher pressure zone) to the upper surface (lower pressure zone) of the blade.
  • This leakage flow represents a non-working gas flow and does not participate not to relax in the turbine.
  • he is at the origin of the development of a whirlwind at the head of the dawn (called tourbillon game) which generates significant kinetic energy losses.
  • blade with "advanced blade tip” or "shift cuts in mind.”
  • the turbine blades and in particular the high pressure turbine blades, are subjected to significant levels of external gas temperature from the combustion chamber. These levels exceed the allowable temperatures of the material of the blade, which leads to having to cool them. With recent engine design temperature levels continuing to rise to improve overall performance, it is becoming necessary to implement innovative high pressure turbine blade cooling systems to ensure an acceptable service life of the engine. these parts.
  • the present invention therefore aims to provide a blade structure that allows to maintain a high efficiency of the cooling system at the top of the blade in the case of an advanced blade tip of the type "shift cups head" .
  • the present invention relates to a hollow blade comprising a blade extending in a longitudinal direction, a foot and a head, an internal cooling passage in the blade, a cavity (or bath) located in the head, open in direction of the free end of the blade and defined by a bottom wall and a rim, said rim extending between the leading edge and the trailing edge and comprising an extrados rim along the upper surface and a flange of intrados along the lower surface, and cooling channels connecting said internal cooling passage and the intrados, said cooling channels being inclined with respect to the intrados, the stacking of the blade sections the dawn at the edge of the head of the blade having an offset in the direction of the intrados, this shift being more and more important approaching the free end of the head of the blade.
  • This hollow blade is characterized in that the intrados wall of the blade has a protruding portion of which more than half the length extends along a longitudinal portion of the internal cooling passage, and whose outer face is inclined relative to the remainder of the underside of the blade and has at its end facing the cavity an end face, the bottom wall being connected to the intrados wall at the location of said end of said protruding portion and said cooling channels being disposed in said protruding portion so that they open on the end face of said projecting portion, whereby the distance d between the axis of the cooling channels and the outer limit of the end free of the intrados flange is greater than or equal to a minimum value dl non-zero.
  • This value d1 thus corresponds to a predetermined threshold value according to the type of blade and the operating conditions of the drilling.
  • This solution also has the additional advantage of allowing, in addition, an improvement in the cooling of the portion of the intrados wall carrying the heat pump cooling channels and a better film cooling of the intrados flange of the cavity. (or bathtub).
  • the present invention also relates to a turbomachine rotor, a turbomachine turbine and a turbomachine comprising at least one blade as defined in the present text.
  • FIG. 1 shows a perspective view of a hollow rotor blade for a conventional gas turbine
  • FIG. 2 shows in perspective, in an enlarged manner, the free end of the blade of FIG. 1,
  • FIG. 3 is a view similar to that of FIG. 2, after the trailing edge of the blade has been removed by a longitudinal section,
  • FIG. 4 is a partial view in longitudinal section along the direction IV-IV of FIG. 3;
  • FIGS. 5 to 7 represent views similar to that of FIG. 4, for blades incorporating the technique of "offset of cuts at the head",
  • FIGS. 8 and 9 represent the solution according to the present invention.
  • Figures 10 and 11 are views similar to that of Figure 8 for a first embodiment and a second embodiment.
  • upstream and downstream are defined with respect to the normal flow direction of the gas (from upstream to downstream) through the turbomachine.
  • the axis of the turbomachine is called the axis XX 'of radial symmetry of the turbomachine.
  • the axial direction corresponds to the direction of the axis of the turbomachine, and a radial direction is a direction perpendicular to this axis and passing by him.
  • an axial plane is a plane containing the axis of the turbomachine and a radial plane is a plane perpendicular to this axis and passing through it.
  • the transverse (or circumferential) direction is a direction perpendicular to the axis of the turbomachine and not passing through it.
  • the axial, radial, and transverse (and axially, radially and transversely) adjectives are used with reference to the aforementioned axial, radial and transverse directions.
  • the internal and external adjectives are used with reference to a radial direction so that the part or the internal (ie radially internal) face of an element is closer to the axis of the turbomachine than the part or the outer (ie radially external) face of the same element.
  • FIG. 1 is visible, in perspective, an example of a conventional hollow rotor blade 10 for a gas turbine. Cooling air (not shown) flows inside the blade from the bottom of blade root 12 into blade 13, along the longitudinal direction RR 'of blade 13 (vertical direction) in the figure and radial direction relative to the axis XX 'of rotation of the rotor), towards the head 14 of the blade (at the top in FIG. 1), then this cooling air escapes through an exit to join the main gas flow.
  • Cooling air (not shown) flows inside the blade from the bottom of blade root 12 into blade 13, along the longitudinal direction RR 'of blade 13 (vertical direction) in the figure and radial direction relative to the axis XX 'of rotation of the rotor), towards the head 14 of the blade (at the top in FIG. 1), then this cooling air escapes through an exit to join the main gas flow.
  • this cooling air circulates in an internal cooling passage located inside the blade and which ends at the head 14 of the blade at the level of through holes 15.
  • the body of the blade is profiled so that it defines a lower surface wall 16 (on the left in all the figures) and an extrados wall 18 (on the right in all the figures).
  • the intrados wall 16 has a generally concave shape and is the first face of the flow of hot gases, that is to say the gas pressure side, by its outer face, turned upstream, called the lower face. or more simply intrados 16a.
  • the extrados wall 18 is convex and is subsequently present in the flow of hot gases, that is to say on the suction side of the gas, along its outer face, turned downstream, called the extrados face or more simply extrados 18a.
  • intrados and extrados walls 18 are joined at the location of the leading edge 20 and at the trailing edge location. 22 which extend radially between the head 14 of the blade and the top of the foot 12 of the blade.
  • the internal cooling passage 24 is delimited by the inner face 26a of a bottom wall 26 which extends over the entire head 14 of the blade, between the intrados wall 16 and the extrados wall 18, therefore from the leading edge 20 to the trailing edge 22.
  • the intrados and extrados walls 16, 18 form the rim 28 of an open cavity 30 in the opposite direction to the internal cooling passage 24, radially outwardly (upwards in all the figures). More specifically, the flange 28 is constituted by the intrados flange 281 on the side of the intrados wall 16 and the extrados flange 282 on the side of the extrados wall 18.
  • this open cavity 30 is therefore delimited laterally by the internal face of this flange 28 and in the lower part by the outer face 26b of the bottom wall 26.
  • the flange 28 thus forms a thin wall along the profile of the blade which protects the free end of the head 14 of the blade 10 from contact with the corresponding inner annular surface of the turbine casing 50 (see FIG. 4). .
  • inclined cooling channels 32 pass through the intrados wall 16 to connect the passage internal cooling 24 to the outer face of the intrados wall 16, namely the intrados 16a.
  • These cooling channels 32 are inclined so that they open towards the top 28a of the rim so as to cool it, by means of an air jet which is directed towards the top 28a of the rim 28 along the intrados wall 16.
  • the cooling efficiency resulting from these cooling channels 32 is mainly related to two geometrical parameters of these cooling channels 32 (see FIG. 4):
  • the industrial feasibility of producing the cooling channels 32 (generally made in EDM drilling for "Electron Discharge Machining” or EDM) requires having a sufficient angle ⁇ between the axis of the cooling channels 32 and the outer face 281a of the underside 281 to provide a clearance sufficient to allow the passage of the EDM nozzle.
  • the blade 10 ' which includes a "offset of the head cuts" bears the same reference signs as those of the blade of FIGS. 1 to 4, embellished with a premium ("'") for modified parts.
  • the differences relate solely to the shape of the flange 28 'which is no longer parallel to the longitudinal direction R-R' or radial direction of the blade 10 '.
  • Blade sections S are considered to correspond to the contour of the section of the blade in a plane of section orthogonal to the longitudinal direction RR 'or radial direction of the blade. For dawn 10, all blade sections S are stacked in one direction stacking parallel to the longitudinal direction RR 'or radial direction of the blade, being superimposed between them (see Figure 4).
  • the blade sections S of the blade portion comprising the internal cooling passage 24 and the bottom wall 26 are also stacked in the radial direction of the blade; however, the blade sections S1, S2, S3 and S4 of the flange 28 '(head sections) are stacked with an offset of their stack towards the lower surface 16a, which is progressive and increases as it progresses. that the section is near the top 28a '(in the order SI, S2, S3 and S4 in Figure 5).
  • end A of the intrados flange 281' is referred to.
  • the rim 28 'illustrated further comprises an enlargement 283' of the intrados flange 281 'at the location of the outer limit A of the free end of said intrados flange 28, namely at the location of the intrados border of the summit 28a '.
  • This enlargement 283 ' is present on a number of stacked sections (S3 and S4) in FIG. 5 and forms, in section, an end-point shape A and which is traversed by the axis of the cooling channel 32.
  • This The tip shape that can appear when machining blade 10 should be considered non-mandatory and optional.
  • a first solution visible in FIG. 6, with the cooling channels 32 'which can be pierced easily, consists in reducing the unclogging height R2 to the value R2' without modifying the total radial extent D (the height RI of the In this case, by decreasing the radius R2 and lowering the position of the outlet of the cooling ducts, satisfactory cooling of the head of the vane formed is no longer permitted. of the rim 28 ', a second solution visible in FIG.
  • the present invention provides the solution shown in Figures 8 to 11 and described below.
  • the blade 110 comprises a flange 28 'equipped with a "headset offset" as previously described in connection with FIG. 5.
  • the intrados wall 16 is modified in its intermediate portion, which is adjacent to the intrados flange 281 ', in that this intermediate portion forms a protrusion in the direction of the intrados 16a.
  • the intermediate portion is a protruding portion 161 in that in this projecting portion, the intrados 16a is not directed in the longitudinal direction RR 'or radial direction, but is inclined further apart of the extrados 18a as one approaches the flange 28 'in the longitudinal direction R-R'.
  • this protruding portion 161 extends along a longitudinal portion of the internal cooling passage 24 (in this case the most radially outer portion in the geometry of the turbomachine).
  • This protruding portion 161 extends over the entire height of the cooling channels 132, between the radii R2 and R1 (with R2> R1) and is materialized on the lower surface 16a by an outside face or intrados face 161a, a terminal face. 161b turned towards the flange 28 ', and an inner face 161c facing the internal cooling passage 24.
  • the intrados face 161a of the protruding portion 161 is inclined away from the longitudinal direction RR 'as one approaches the end face 161b.
  • the angle of inclination ⁇ formed between the intrados face 161a of the projecting portion 161 and the longitudinal direction RR 'or radial direction is between 10 ° and 60 °, preferably between 20 ° and 50 °, and advantageously between 25 ° and 35 °, namely close to 30 °.
  • the inclination angle ⁇ of the cooling channels 132 with respect to the longitudinal direction RR 'or radial direction is between 10 ° and 60 °, preferably between 20 ° and 50 °, and advantageously between 25 ° and 35 °. °, namely close to 30 °.
  • said minimum value d1 is greater than or equal to 1 mm or even 2 mm and depends on the equipment used to drill the cooling channels 132.
  • said cooling channels 132 are disposed in said projecting portion 161 so that they open on the end face 161b of said projecting portion 161.
  • This geometry generates a flow F2 in a recirculation zone (wedge zone) which allows an efficient mixing between the flow of cooling gas Fl and the hot external gases regardless of the position of the outlet opening of the cooling channels 132 on the end face 161b of said projecting portion 161.
  • a projecting portion 161 makes it possible to further improve the cooling efficiency generated by the air coming from the cooling channels 132.
  • the distance ⁇ (see FIG. 9) between the end B of the end face 161b of the protruding portion 161 and the remainder of the intrados wall 16 is at a minimum equal to the difference between the gap E, measured between the end A of the intrados flange 28 and the remainder of the intrados wall 16, and said distance d between the axis of the cooling ducts 132 and the end A of intrados flange 28: this distance ⁇ corresponds to the axial extent of the end face 161b of said protruding portion 161.
  • the thickness e of the intrados wall 16 of the blade of the blade 110 is substantially constant between the protruding portion 161 and the remainder of the intrados wall 16, and is also substantially equal to the wall thickness of the area 161d of the protruding portion 161 (see Fig. 9) connected to the bottom wall at and from the front of the base of the intrados flange 28.
  • wall thicknesses are considered taking the direction orthogonal to the outer face of the area to be considered.
  • This characteristic is illustrated in FIG. 9, where this thickness e is found below the projecting portion 161, at the location of the projecting portion 161 along the cooling channels 132 and in the zone 161d situated between the end face 161b and the internal cooling passage and connecting the protruding portion 161 to the bottom wall 26.
  • the rear face of the wall is hollowed out. extrados at the location of the projecting portion 161.
  • the area to be removed behind the projecting portion 161 relative to the conventional profile of the intrados wall 16, visible by the lines PI and P2 in Figure 8 corresponds to the area C of FIG. 9.
  • this design according to the invention with the protruding portion 161 which does not generate extra thickness can be obtained with a minimum of modification of pre-existing tools: in the foundry, the already existing core box is hollowed out with an equivalent volume of the extruded surface C (over the entire width of the intrados) in order to produce cores having the internal profile cavity adequate to obtain the projecting portion 161, and this volume is hollowed on the wax mold forming the outer envelope of the blade.
  • the outer face 161a and the inner face 161c of the projecting portion 161 are parallel to each other.
  • the end face 161b of the projecting portion 161 is flat.
  • the end face 161b of the projecting portion 161 is horizontal: it is directed orthogonal to the longitudinal direction RR 'of the blade at the location where the cooling channels 132 open into said face terminal 161b.
  • the entire end face 161b of the projecting portion 161 is directed orthogonal to the longitudinal direction R-R 'of the blade.
  • a chamfer is used at the end face 161b, so that the end face 161b of the projecting portion 161 is inclined at an angle ⁇ which is not zero with the longitudinal direction RR dawn at the location where the cooling channels 132 open into said end face 161b.
  • it is an acute angle ⁇ 2 which is formed between the end face 161b of the protruding portion 161 and the horizontal direction parallel to the axis XX 'of rotation of the rotor and orthogonal to the longitudinal direction RR' of the 'dawn.
  • This angle ⁇ 2 is preferably between 10 ° and 60 °, preferably between 20 ° and 50 °, and preferably between 25 ° and 35 °, namely close to 30 °.
  • the axis of the cooling channels 132 is orthogonal to the end face 161b of the protruding portion 161, at the location where the cooling channels 132 open into said end face 161b.
  • the advantage of this variant is that the shape of the outlet opening of the cooling channels 132 on the end face 161b is round against a more oval shape when the end face 161b is horizontal, which makes it possible to better control the outlet section of the cooling channels 132 and thus the flow of cooling air.
  • the bottom wall 26 is directed orthogonal to the longitudinal direction R-R 'of the blade, which corresponds to a conventional configuration.
  • the end face 161b of the protruding portion 161 is disposed at the height of the unclogging radius R2 which is smaller than the radius R3 corresponding to the outer face 26b of the bottom wall 26 (see FIG. Figures 8 and 9) which is turned towards the cavity 30.
  • R2 ⁇ R3 makes it possible to guarantee effective cooling of the bathtub bottom zone (if R2> R3 were used, the bottom of the bathtub would not be impacted by the cooling from the cooling channel 32.)
  • the end face 161b of the protruding portion 161 is disposed at the height of the unclogging radius R2 which is greater than the radius R4 corresponding to the inner face 26a of the bottom wall 26 (see FIGS. 8 and 9) which is turned towards the internal cooling passage 24.
  • R2> R4 makes it possible to ensure that the blade 110 will be cooled well above the zone not thermally covered by the cooling generated by the cavity 30.
  • R2 ⁇ R3 and R2> R4 represents the best thermal compromise that can be found.
  • an inclined bath floor is used in that said bottom wall 126 is inclined at an angle ⁇ different from the right angle and not zero with the longitudinal direction of the bath. 'R-R' dawn.
  • the upper face of said bottom wall 126 forms, at the location adjacent the intrados flange 281 ', an acute angle ⁇ , preferably between 45 ° and 89 °, preferably between 50 ° and 65 ° and advantageously between 55 ° and 65 °, namely close to 60 °, which corresponds to an acute angle 52 between the upper face of said bottom wall 126 and the horizontal direction parallel to the axis XX 'of rotation of the rotor and orthogonal to the longitudinal direction RR 'of the dawn.
  • preferably between 45 ° and 89 °, preferably between 50 ° and 65 ° and advantageously between 55 ° and 65 °, namely close to 60 °

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention concerne une aube (110) creuse comportant une pale s'étendant selon une direction longitudinale (R-R'), un pied et une tête, un passage de refroidissement interne (24) et une cavité ouverte délimitée par une paroi de fond (26) et un rebord (28'), et des canaux de refroidissement (132) reliant ledit passage de refroidissement interne (24) et l'intrados (16), lesdits canaux de refroidissement étant inclinés par rapport à l'intrados (16a), l'empilement des sections de pale de l'aube au niveau du rebord (28') de la tête de l'aube présentant un décalage en direction de l'intrados (16a). De façon caractéristique, la paroi d'intrados (16) de la pale présente une portion en saillie (161) et lesdits canaux de refroidissement (132) étant disposés dans ladite portion en saillie (161) de sorte qu'ils débouchent sur la face terminale (161b) de ladite portion en saillie (161).

Description

Aube de turbine à oaz à décalage vers l'intrados des sections de tête et à canaux de refroidissement
Le domaine de la présente invention concerne les aubes creuses, notamment des aubes de turbines à gaz, et plus particulièrement des aubes mobiles de turbomachine, et tout particulièrement des aubes mobiles pour une turbine haute pression.
De façon connue en soi, une aube comporte notamment une pale s'étendant selon une direction longitudinale, un pied et une tête opposée au pied. Dans le cas d'une aube mobile de turbine, l'aube est fixée sur le disque d'un rotor de turbine par l'intermédiaire de son pied. La tête de l'aube est située en regard de la face interne du carter annulaire fixe entourant la turbine. La direction longitudinale de la pale correspond à la direction radiale du rotor ou de la turbomachine, et ce par rapport à l'axe de rotation du rotor.
La pale peut être décomposée en section de pales qui sont empilées selon une direction d'empilement qui est radiale par rapport à l'axe de rotation du disque de rotor. Les sections d'aubes forment ainsi une surface aérodynamique qui est directement soumise aux gaz traversant la turbine. Cette surface aérodynamique s'étend, d'amont en aval selon le sens d'écoulement du fluide, entre un bord d'attaque et un bord de fuite, ces bords étant reliés entre eux par une face intrados appelée l'intrados et une face extrados appelée l'extrados.
La turbine munie de telles aubes mobiles est traversée par un écoulement gazeux. La surface aérodynamique de ses aubes doit être utilisée pour transformer le maximum d'énergie cinétique provenant l'écoulement gazeux en énergie mécanique transmise à l'arbre de rotation du rotor de la turbine.
Or, comme tout obstacle présent à l'écoulement des gaz, la pale de l'aube génère des pertes d'énergie cinétique et qu'il convient de minimiser. En particulier, il est connu qu'une part non négligeable de ces pertes (entre 20 % et 30 % des pertes globales) est imputable à la présence d'un jeu radial fonctionnel entre la tête de chaque aube et la surface interne du carter entourant la turbine. En effet, ce jeu radial génère un débit gazeux de fuite s'écoulant de l'intrados (zone à pression plus élevée) vers l'extrados (zone à pression plus faible) de l'aube. Ce débit de fuite représente un débit gazeux non travaillant et ne participe pas à la détente dans la turbine. En outre, il est à l'origine du développement d'un tourbillon en tête de l'aube (appelé tourbillon de jeu) qui génère des pertes d'énergie cinétique importante.
Pour résoudre ce problème, il est connu de modifier l'empilement des sections de l'aube au niveau de la tête de l'aube, afin de réaliser un décalage de leur empilement en direction de la face intrados, ce décalage étant de préférence progressif et allant en s'accentuant au fur et à mesure que la section est proche de l'extrémité libre de la tête.
Ce type d'aubes est appelé aubes avec « sommet d'aube avancé » ou encore « décalage des coupes en tête ».
Par ailleurs, les aubes de turbine, et en particulier les aubes mobiles de turbine haute pression, sont soumises à des niveaux importants de température de gaz externes issus de la chambre de combustion. Ces niveaux dépassent les températures admissibles du matériau de l'aube, ce qui conduit à devoir les refroidir. Les niveaux de température des moteurs récents en conception étant toujours en hausse afin d'améliorer la performance d'ensemble, il devient nécessaire de mettre en place des systèmes innovants de refroidissement des aubes de turbine haute pression afin de garantir une durée de vie acceptable de ces pièces.
L'endroit le plus chaud d'une aube mobile étant sa tête, les systèmes de refroidissement visent en premier lieu à refroidir le sommet de l'aube.
De nombreuses techniques différentes de refroidissement de la tête de l'aube ont déjà été proposées, on peut citer notamment celles décrites dans EP 1 505 258, FR 2 891 003 et EP 1 726 783.
En conséquence, on comprend que la géométrie particulière engendrée par la technique de « décalage de coupes en tête » vient perturber la mise en œuvre et l'efficacité des systèmes classiques de refroidissement dans la zone de la tête de l'aube.
Or, le sommet d'aube étant systématiquement l'endroit le plus chaud d'une aube mobile, la coexistence de la technique de « décalage de coupes en tête » et d'un système de refroidissement qui reste efficace devient primordiale pour permettre de conserver une durée de vie suffisante de la pièce dans cette zone en cas de conditions thermiques amont élevées. Il s'avère que ces solutions ne sont pas compatibles avec la technique de « décalage de coupes en tête ».
La présente invention a donc pour objectif de proposer une structure d'aube qui permette de conserver une efficacité élevée du système de refroidissement en sommet d'aube dans le cas d'un sommet d'aube avancé du type « décalage des coupes en tête ».
A cet effet, la présente invention concerne une aube creuse comportant une pale s'étendant selon une direction longitudinale, un pied et une tête, un passage de refroidissement interne dans la pale, une cavité (ou baignoire) située dans la tête, ouverte en direction de l'extrémité libre de l'aube et délimitée par une paroi de fond et un rebord, ledit rebord s'étendant entre le bord d'attaque et le bord de fuite et comprenant un rebord d'extrados le long de l'extrados et un rebord d'intrados le long de l'intrados, et des canaux de refroidissement reliant ledit passage de refroidissement interne et l'intrados, lesdits canaux de refroidissement étant inclinés par rapport à l'intrados, l'empilement des sections de pale de l'aube au niveau du rebord de la tête de l'aube présentant un décalage en direction de l'intrados, ce décalage étant de plus en plus important en se rapprochant de l'extrémité libre de la tête de l'aube.
Cette aube creuse est caractérisée en ce que la paroi d'intrados de la pale présente une portion en saillie dont plus de la moitié de la longueur s'étend le long d'une portion longitudinale du passage de refroidissement interne, et dont la face extérieure est inclinée par rapport au reste de l'intrados de la pale et présente à son extrémité tournée vers la cavité une face terminale, la paroi de fond étant reliée à la paroi d'intrados à l'emplacement de ladite extrémité de ladite portion en saillie et lesdits canaux de refroidissement étant disposés dans ladite portion en saillie de sorte qu'ils débouchent sur la face terminale de ladite portion en saillie, ce par quoi la distance d entre l'axe des canaux de refroidissement et la limite extérieure de l'extrémité libre du rebord d'intrados est supérieure ou égale à une valeur minimale dl non nulle. Cette valeur dl correspond ainsi à une valeur seuil prédéterminée selon le type d'aube et les conditions opératoires du perçage.
Globalement, grâce à la solution selon la présente invention, on crée un décalage vers l'intrados de la position de la portion de la paroi d'intrados portant les canaux de refroidissement et ce afin de permettre aux outils de perçage d'accéder à l'emplacement adéquat, tout en ne dégradant pas, voire en améliorant les performances de refroidissement.
Cette solution présente aussi l'avantage supplémentaire, de permettre, en outre, une amélioration du refroidissement de la portion de la paroi d'intrados portant les canaux de refroidissement par pompage thermique et un meilleur refroidissement par film du rebord d'intrados de la cavité (ou baignoire).
La présente invention porte également sur un rotor de turbomachine, une turbine de turbomachine et une turbomachine comprenant au moins une aube telle que définie dans le présent texte.
D'autres avantages et caractéristiques de l'invention ressortiront à la lecture de la description suivante faite à titre d'exemple et en référence aux dessins annexés dans lesquels :
- la figure 1 montre une vue en perspective d'une aube de rotor creuse pour turbine à gaz conventionnelle,
- la figure 2 montre en perspective, de manière agrandie, l'extrémité libre de l'aube de la figure 1,
- la figure 3 est une vue analogue à celle de la figure 2, après que le bord de fuite de l'aube ait été retiré par une coupe longitudinale,
- la figure 4 est une vue partielle en coupe longitudinale selon la direction IV-IV de la figure 3,
- les figures 5 à 7 représentent des vues similaires à celle de la figure 4, pour des aubes intégrant la technique de « décalage de coupes en tête »,
- les figures 8 et 9 représentent la solution selon la présente invention, et
- les figures 10 et 11 sont des vues similaires à celle de la figure 8 pour une première variante de réalisation et une deuxième variante de réalisation.
Dans la présente demande, sauf précision contraire, l'amont et l'aval sont définis par rapport au sens d'écoulement normal du gaz (de l'amont vers l'aval) à travers la turbomachine. Par ailleurs, on appelle axe de la turbomachine, l'axe X-X' de symétrie radiale de la turbomachine. La direction axiale correspond à la direction de l'axe de la turbomachine, et une direction radiale est une direction perpendiculaire à cet axe et passant par lui. De même, un plan axial est un plan contenant l'axe de la turbomachine et un plan radial est un plan perpendiculaire à cet axe et passant par lui. La direction transversale (ou circonférentielle) est une direction perpendiculaire à l'axe de la turbomachine et ne passant pas par lui. Sauf précision contraire, les adjectifs (et adverbes) axial, radial, et transversal (axialement, radialement et transversalement) sont utilisés en référence aux directions axiale, radiale et transversale précitées. Enfin, sauf précision contraire, les adjectifs interne et externe sont utilisés en référence à une direction radiale de sorte que la partie ou la face interne (i.e. radialement interne) d'un élément est plus proche de l'axe de la turbomachine que la partie ou la face externe (i.e. radialement externe) du même élément.
Sur la figure 1 est visible, en perspective, un exemple d'une aube 10 de rotor creuse conventionnelle pour une turbine à gaz. De l'air de refroidissement (non représenté) s'écoule à l'intérieur de l'aube depuis le bas du pied 12 de l'aube dans pale 13, le long de la direction longitudinale R-R' de la pale 13 (direction verticale sur la figure et direction radiale par rapport à l'axe X-X' de rotation du rotor), vers la tête 14 de l'aube (en haut sur la figure 1), puis cet air de refroidissement s'échappe par une sortie pour rejoindre le flux de gaz principal.
En particulier, cet air de refroidissement circule dans un passage de refroidissement interne situé à l'intérieur de l'aube et qui aboutit à la tête 14 de l'aube au niveau de perçages débouchants 15.
Le corps de l'aube est profilé de sorte qu'il définit une paroi d'intrados 16 (à gauche sur toutes les figures) et une paroi d'extrados 18 (à droite sur toutes les figures).
La paroi d'intrados 16 présente une forme générale concave et se présente la première face au flux de gaz chauds, c'est-à-dire du côté pression des gaz, par sa face extérieure, tournée en amont, appelée face d'intrados ou plus simplement intrados 16a.
La paroi d'extrados 18 est convexe et se présente par la suite au flux de gaz chauds, c'est-à-dire du côté aspiration des gaz, le long de sa face extérieure, tournée en aval, appelée face d'extrados ou plus simplement extrados 18a.
Les parois d'intrados 16 et d'extrados 18 se rejoignent à l'emplacement du bord d'attaque 20 et à l'emplacement du bord de fuite 22 qui s'étendent radialement entre la tête 14 de l'aube et le haut du pied 12 de l'aube.
Comme il ressort des vues agrandies des figures 2 à 4, au niveau de la tête 14 de l'aube, le passage de refroidissement interne 24 est délimité par la face intérieure 26a d'une paroi de fond 26 qui s'étend sur toute la tête 14 de l'aube, entre la paroi d'intrados 16 et la paroi d'extrados 18, donc depuis le bord d'attaque 20 jusqu'au bord de fuite 22.
Au niveau de la tête 14 de l'aube, les parois d'intrados et d'extrados 16, 18 forment le rebord 28 d'une cavité ouverte 30 dans la direction opposée au passage de refroidissement interne 24, soit radialement vers l'extérieur (vers le haut sur toutes les figures). Plus précisément, le rebord 28 est constitué du rebord d'intrados 281 du côté de la paroi d'intrados 16 et du rebord d'extrados 282 du côté de la paroi d'extrados 18.
Comme il apparaît sur les figures, cette cavité ouverte 30 est donc délimité latéralement par la face interne de ce rebord 28 et en partie basse par la face extérieure 26b de la paroi de fond 26.
Le rebord 28 forme donc une paroi mince le long du profil de l'aube qui protège l'extrémité libre de la tête 14 de l'aube 10 du contact avec la surface annulaire interne correspondante du carter de turbine 50 (voir la figure 4).
Comme on peut le voir plus précisément sur la vue en coupe de la figure 4, qui illustrée la technologie connue de refroidissement dite par « perçages sous-baignoire », des canaux de refroidissement 32 inclinés traversent la paroi d'intrados 16 pour relier le passage de refroidissement interne 24 à la face extérieure de la paroi d'intrados 16, à savoir l'intrados 16a.
Ces canaux de refroidissement 32 sont inclinés de façon à ce qu'ils débouchent en direction du sommet 28a du rebord afin de le refroidir, au moyen d'un jet d'air qui se dirige vers le sommet 28a du rebord 28 le long de la paroi d'intrados 16.
L'efficacité du refroidissement résultant de ces canaux de refroidissement 32 est principalement reliée à deux paramètres géométriques de ces canaux de refroidissement 32 (voir figure 4) :
- l'étendue radiale totale D des canaux de refroidissement
32, comprise entre les deux rayons RI et R2 (respectivement la hauteur de l'ouverture d'entrée 32b et de l'ouverture de sortie 32a des canaux de refroidissement 32 sur l'intrados 16) : plus cette étendue radiale D est importante, plus le phénomène de refroidissement par pompage thermique concernera une partie importante de l'aube le long de l'axe R- R', et
- la hauteur de l'ouverture de sortie 32a des canaux de refroidissement 32 sur l'intrados 16 sous la forme du rayon R2 dit « rayon de débouchage »: plus ce rayon R2 est élevé, plus le film d'air de refroidissement externe est efficace jusqu'au sommet de la baignoire, à savoir le sommet 28a du rebord d'intrados 281.
Enfin, la faisabilité industrielle de la réalisation des canaux de refroidissement 32 (généralement réalisés en perçage EDM pour « Electron Discharge Machining» ou électroérosion) impose d'avoir un angle a- suffisant entre l'axe des canaux de refroidissement 32 et la face extérieure 281a du rebord d'intrados 281 afin de pourvoir disposer d'un dégagement suffisant pour permettre le passage de la buse EDM.
On constate que si l'on utilise la même configuration géométrique que le canal de refroidissement 32 de la figure 4, pour une aube 10' comportant en outre un « décalage des coupes en tête » (figure 5), le dégagement de l'axe du canal de refroidissement 32 (angle a) n'est alors plus suffisant. Dans ce cas, l'axe du canal de refroidissement 32 vient interférer avec le rebord d'intrados 28 , soit en étant trop près de lui soit en le croisant comme illustré sur la figure 5. La réalisation par perçage de ce canal de refroidissement 32 n'est donc plus possible.
Sur la figure 5, l'aube 10' qui comporte un « décalage des coupes en tête » porte les mêmes signes de référence que ceux de l'aube des figures 1 à 4, agrémentés d'un prime (« ' ») pour les parties modifiées. En l'occurrence, les différences portent uniquement sur la forme du rebord 28' qui n'est plus parallèle à la direction longitudinale R-R' ou direction radiale de l'aube 10'.
On considère les sections S de pale comme correspondant au contour de la coupe de la pale selon un plan de coupe orthogonal à la direction longitudinale R-R' ou direction radiale de l'aube. Pour l'aube 10, toutes les sections de pale S sont empilées selon une direction d'empilement parallèle à la direction longitudinale R-R' ou direction radiale de l'aube, en étant superposées entre elles (voir figure 4).
Pour l'aube 10' de la figure 5, les sections de pale S de la portion de pale comprenant le passage de refroidissement interne 24 et la paroi de fond 26 sont également empilées selon la direction radiale de l'aube ; cependant, les sections de pale SI, S2, S3 et S4 du rebord 28' (sections de tête) sont empilées avec un décalage de leur empilement vers l'intrados 16a, qui est progressif et va en s'accentuant au fur et à mesure que la section est proche du sommet 28a' (dans l'ordre SI, S2, S3 et S4 sur la figure 5).
On appelle A la limite extérieure de l'extrémité libre du rebord d'intrados 281', ci-après désignée par extrémité A du rebord d'intrados 281'.
Par ailleurs, le rebord 28' illustré comporte en outre un élargissement 283' du rebord d'intrados 281' à l'emplacement de la limite extérieure A de l'extrémité libre dudit rebord d'intrados 28 , à savoir à l'emplacement de la bordure intrados du sommet 28a'.
Cet élargissement 283' est présent sur un certain nombre de sections empilées (S3 et S4) sur la figure 5 et forme, en coupe une forme de pointe d'extrémité A et qui est traversée par l'axe du canal de refroidissement 32. Cette forme de pointe qui peut apparaître lors de l'usinage de l'aube 10 doit être considérée comme non impérative et optionnelle.
Pour pallier à ce problème et rendre compatibles entre eux un décalage des coupes en tête et un perçage sous-baignoire, il est naturel de modifier la géométrie de ce dernier et donc de dégrader l'efficacité thermique de celui-ci) :
- une première solution visible sur la figure 6, avec les canaux de refroidissement 32' qui peuvent être percés aisément, consiste à diminuer la hauteur de débouchage R2 à la valeur R2' sans modifier l'étendue radiale totale D (la hauteur RI de l'entrée des canaux de refroidissement est abaissée à la valeur RI : dans ce cas, en diminuant le rayon R2 et en abaissant la position de la sortie des canaux de refroidissement, on ne permet plus un refroidissement satisfaisant de la tête de l'aube formée du rebord 28', - une deuxième solution visible sur la figure 7, avec les canaux de refroidissement 32" qui peuvent être percés aisément, consiste à réduire l'étendue radiale totale D à la valeur D" sans modifier la hauteur de débouchage R2 : dans ce cas, en augmentant le rayon RI à la valeur RI", on permet un refroidissement satisfaisant de la tête de l'aube formée du rebord 28' mais le phénomène de refroidissement thermique par pompage est insuffisant car il est effectif seulement sur une faible partie de l'aube le long de l'axe R-R'.
Pour pallier à ces inconvénients, la présente invention propose la solution présentée sur les figures 8 à 11 et décrite ci-après.
L'aube 110 comporte un rebord 28' équipé d'un un « décalage des coupes en tête » tel que décrit précédemment en relation avec la figure 5.
La paroi d'intrados 16 est modifiée dans sa portion intermédiaire, qui est adjacente au rebord d'intrados 281', par le fait que cette portion intermédiaire forme une protrusion en direction de l'intrados 16a.
Plus précisément, la portion intermédiaire est une portion en saillie 161 par le fait que dans cette portion en saillie, l'intrados 16a n'est pas dirigée selon la direction longitudinale R-R' ou direction radiale, mais est inclinée en s'écartant encore davantage de l'extrados 18a au fur et à mesure que l'on se rapproche du rebord 28' selon la direction longitudinale R-R'.
Plus de la moitié de la longueur de cette portion en saillie 161 s'étend le long d'une portion longitudinale du passage de refroidissement interne 24 (en l'espèce la portion la plus radialement externe dans la géométrie de la turbomachine).
Par ce décalage de la paroi d'intrados 16 à l'endroit du perçage, on peut conserver les rayons R2 et RI de la figure 4 et dégager suffisamment l'axe des canaux de refroidissement 132 de l'extrémité A du rebord d'intrados 281' pour autoriser la réalisation du perçage.
Cette portion en saillie 161 s'étend sur toute la hauteur des canaux de refroidissement 132, entre les rayons R2 et RI (avec R2>R1) et se matérialise sur l'intrados 16a par une face extérieure ou face intrados 161a, une face terminale 161b tournée en direction du rebord 28', et une face interne 161c tournée vers le passage de refroidissement interne 24. La face intrados 161a de la portion en saillie 161 est inclinée en s'écartant de la direction longitudinale R-R' au fur et à mesure que l'on se rapproche de la face terminale 161b. De préférence, l'angle d'inclinaison β formé entre la face intrados 161a de la portion en saillie 161 et la direction longitudinale R-R' ou direction radiale est entre 10° et 60°, de préférence entre 20° et 50°, et avantageusement entre 25° et 35°, à savoir proche de 30°.
Par ailleurs, l'angle a d'inclinaison des canaux de refroidissement 132 par rapport à la direction longitudinale R-R' ou direction radiale est entre 10° et 60°, de préférence entre 20° et 50°, et avantageusement entre 25° et 35°, à savoir proche de 30°.
Avec cette configuration, on dispose d'une distance minimale dl non nulle lorsque l'on mesure l'écart d entre la parallèle à la direction longitudinale R-R' passant par l'extrémité A du rebord d'intrados 281' et l'extrémité B ou bord extérieur de la portion en saillie 161 située entre la face intrados 161a et la face terminale 161b. En d'autres termes, l'extrémité B est en retrait par rapport à l'extrémité A.
De préférence, ladite valeur minimale dl est supérieure ou égale à 1 mm, voire à 2 mm et dépend du matériel utilisé pour réaliser le perçage des canaux de refroidissement 132.
De façon caractéristique, lesdits canaux de refroidissement 132 sont disposés dans ladite portion en saillie 161 de sorte qu'ils débouchent sur la face terminale 161b de ladite portion en saillie 161.
De cette façon, on obtient un flux d'air de refroidissement Fl (voir figure 8) qui est rabattu par l'écoulement des gaz externes chauds dirigés depuis l'intrados 16a vers l'extrados 18a via le jeu existant en somment d'aube par rapport à la surface annulaire interne correspondante du carter de turbine 50, du fait du gradient de pression positif entre l'intrados 16a et l'extrados 18a.
Cette géométrie engendre un flux F2 dans une zone de recirculation (zone de coin) qui permet un mélange efficace entre le flux de gaz de refroidissement Fl et les gaz externes chauds quelle que soit la position de l'ouverture de sortie des canaux de refroidissement 132 sur la face terminale 161b de ladite portion en saillie 161. Ainsi, l'utilisation d'une portion en saillie 161 selon l'invention permet d'améliorer encore davantage l'efficacité du refroidissement engendré par l'air issu des canaux de refroidissement 132.
Selon une disposition géométrique préférentielle visible sur les figures 8 à 11, la distance Δ (voir figure 9) entre l'extrémité B de la face terminale 161b de la portion en saillie 161 et le reste de la paroi d'intrados 16 est au minimum égale à la différence entre l'écart E, mesuré entre l'extrémité A du rebord d'intrados 28 et le reste de la paroi d'intrados 16, et ladite distance d entre l'axe des canaux de refroidissement 132 et l'extrémité A du rebord d'intrados 28 : cette distance Δ correspond à l'étendue axiale de la face terminale 161b de ladite portion en saillie 161. Ainsi, Δ > E - d.
Afin de ne pas alourdir la structure, l'épaisseur e de la paroi d'intrados 16 de la pale de l'aube 110 est sensiblement constante entre la portion en saillie 161 et le reste de la paroi d'intrados 16, et est également sensiblement égale à l'épaisseur de la paroi de la zone 161d de la portion en saillie 161 (voir la figure 9) reliée à la paroi de fond, au niveau de et par l'avant de la base du rebord d'intrados 28 .
On note que les épaisseurs de paroi sont, considérées en prenant la direction orthogonale à la face extérieure de la zone à considérer.
Cette caractéristique est illustrée sur la figure 9 où l'on retrouve cette épaisseur e en dessous de la portion en saillie 161, à l'emplacement de la portion en saillie 161 le long des canaux de refroidissement 132 et dans la zone 161d située entre la face terminale 161b et le passage de refroidissement interne et reliant la portion en saillie 161 à la paroi de fond 26.
Pour ne pas pénaliser la robustesse mécanique du pied 12 de l'aube, il faut éviter d'épaissir la paroi d'intrados 16 à l'emplacement de la portion en saillie 161. A cet effet, on creuse la face arrière de la paroi d'extrados à l'emplacement de la portion en saillie 161. Concrètement, la zone à retirer derrière la portion en saillie 161 par rapport au profil classique de la paroi d'intrados 16, visible par les lignes PI et P2 sur la figure 8, correspond à la zone C de la figure 9.
Avantageusement, cette conception selon l'invention avec la portion en saillie 161 qui n'engendre pas de surépaisseur peut être obtenue avec un minimum de modification des outillages préexistants : en fonderie, on creuse la boite à noyau déjà existante d'un volume équivalent de la surface extrudée C (sur toute la largeur de l'intrados) afin de produire des noyaux ayant le profil interne de cavité adéquat pour l'obtention de la portion en saillie 161, et on creuse ce volume sur le moule de cire formant l'enveloppe extérieure de l'aube.
Dans cette configuration, la face extérieure 161a et la face intérieure 161c de la portion en saillie 161 sont parallèles entre elles.
De préférence, la face terminale 161b de la portion en saillie 161 est plane.
Sur les figures 8 et 9, la face terminale 161b de la portion en saillie 161 est horizontale : elle est dirigée de façon orthogonale à la direction longitudinale R-R' de l'aube à l'emplacement où les canaux de refroidissement 132 débouchent dans ladite face terminale 161b.
Dans le cas illustré, toute la face terminale 161b de la portion en saillie 161 est dirigée de façon orthogonale à la direction longitudinale R-R' de l'aube.
Selon une première variante visible sur la figure 10, on utilise un chanfrein au niveau de la face terminale 161b, de sorte que la face terminale 161b de la portion en saillie 161 est inclinée en formant un angle γΐ obtus non nul avec la direction longitudinale R-R' de l'aube à l'emplacement où les canaux de refroidissement 132 débouchent dans ladite face terminale 161b. Dans cet agencement, c'est un angle γ2 aigu qui est formé entre la face terminale 161b de la portion en saillie 161 et la direction horizontale parallèle à l'axe X-X' de rotation du rotor et orthogonale à la direction longitudinale R-R' de l'aube. Cet angle γ2 est de préférence compris entre 10° et 60°, de préférence entre 20° et 50°, et avantageusement entre 25° et 35°, à savoir proche de 30°.
De cette façon, l'axe des canaux de refroidissement 132 est orthogonal à la face terminale 161b de la portion en saillie 161, à l'emplacement où les canaux de refroidissement 132 débouchent dans ladite face terminale 161b. L'avantage de cette variante est que la forme de l'ouverture de sortie des canaux de refroidissement 132 sur la face terminale 161b est ronde contre une forme plus ovale lorsque la face terminale 161b est horizontale, ce qui permet de mieux contrôler la section de sortie des canaux de refroidissement 132 et donc le débit d'air de refroidissement.
Sur les figures 8 à 10, la paroi de fond 26 est dirigée de façon orthogonale à la direction longitudinale R-R' de l'aube, ce qui correspond à une configuration classique.
Par ailleurs, sur ces figures 8 à 10, la face terminale 161b de la portion en saillie 161 est disposée à la hauteur du rayon de débouchage R2 qui est inférieur au rayon R3 correspondant à la face extérieure 26b de la paroi de fond 26 (voir figures 8 et 9) qui est tournée vers la cavité 30. Ainsi, R2<R3 permet de garantir un refroidissement efficace de la zone de fond de baignoire (si on avait R2>R3, le fond de baignoire ne serait pas impacté par le refroidissement issu du canal de refroidissement 32.)
Egalement, sur ces figures 8 à 10, la face terminale 161b de la portion en saillie 161 est disposée à la hauteur du rayon de débouchage R2 qui est supérieur au rayon R4 correspondant à la face intérieure 26a de la paroi de fond 26 (voir figures 8 et 9) qui est tournée vers le passage de refroidissement interne 24. Cette situation, avec R2>R4 permet de garantir que l'on viendra bien refroidir l'aube 110 au-dessus de la zone non couverte thermiquement par le refroidissement engendré par la cavité 30.
En conséquence, avoir R2<R3 et R2>R4 représente le meilleur compromis thermique que l'on peut trouver.
Sur la deuxième variante de la figure 11, on utilise un fond de baignoire incliné par le fait que ladite paroi de fond 126 est dirigée de façon inclinée en formant un angle δΐ différent de l'angle droit et non nul avec la direction longitudinale de l'aube R-R'.
Plus précisément, la face supérieure de ladite paroi de fond 126 forme, à l'emplacement adjacent au rebord d'intrados 281', un angle δΐ aigu, de préférence compris entre 45° et 89°, de préférence entre 50° et 65°, et avantageusement entre 55° et 65°, à savoir proche de 60°, ce qui correspond à un angle 52 aigu entre la face supérieure de ladite paroi de fond 126 et la direction horizontale parallèle à l'axe X-X' de rotation du rotor et orthogonale à la direction longitudinale R-R' de l'aube.

Claims

REVENDICATIONS
1. Aube (110) creuse comportant une pale (13) s'étendant selon une direction longitudinale (R-RO, un pied (12) et une tête (14), un passage de refroidissement interne (24) dans la pale, une cavité (30) située dans la tête, ouverte en direction de l'extrémité libre (14) de l'aube (110) et délimitée par une paroi de fond (26, 126) et un rebord (280, ledit rebord (280 s'étendant entre le bord d'attaque (20) et le bord de fuite (22) et comprenant un rebord d'extrados (2820 le long de l'extrados (18a) et un rebord d'intrados (2810 le long de l'intrados (16a), et des canaux de refroidissement (132) reliant ledit passage de refroidissement interne (24) et l'intrados (16), lesdits canaux de refroidissement (32) étant inclinés par rapport à l'intrados (16a),
l'empilement des sections de pale (S, S2, S3, S4) de l'aube au niveau du rebord (280 de la tête de l'aube présentant un décalage en direction de l'intrados (16a), ce décalage étant de plus en plus important en se rapprochant de l'extrémité libre de la tête (14) de l'aube (110),
caractérisée en ce que la paroi d'intrados (16) de la pale présente une portion en saillie (161) dont plus de la moitié de la longueur s'étend le long d'une portion longitudinale du passage de refroidissement interne (24), et dont la face extérieure (161a) est inclinée par rapport au reste de l'intrados (16a) de la pale et présente à son extrémité tournée vers la cavité (30) une face terminale (161b), la paroi de fond (26) étant reliée à la paroi d'intrados (16) à l'emplacement de ladite extrémité de ladite portion en saillie (161) et lesdits canaux de refroidissement (132) étant disposés dans ladite portion en saillie (161) de sorte qu'ils débouchent sur la face terminale (161b) de ladite portion en saillie (161)
ce par quoi la distance d entre l'axe des canaux de refroidissement (132) et la limite extérieure A de l'extrémité libre du rebord d'intrados (2810 est supérieure ou égale à une valeur minimale dl non nulle.
2, Aube selon l'une quelconque des revendications précédentes, caractérisée en ce que ladite valeur minimale dl est supérieure ou égale à 1 mm.
3. Aube (110) selon l'une quelconque des revendications précédentes, caractérisée en ce que la distance (Δ) entre l'extrémité (B) de la face terminale (161b) de la portion en saillie (161) et le reste de la paroi d'intrados (16) est au minimum égale à la différence entre l'écart (E), mesuré entre l'extrémité (A) du rebord d'intrados (2810 et le reste de la paroi d'intrados (16), et ladite distance (d) entre l'axe des canaux de refroidissement (132) et l'extrémité (A) du rebord d'intrados (2810-
4. Aube (110) selon l'une quelconque des revendications précédentes, caractérisée en ce que l'épaisseur (e) de la paroi d'intrados (16) de la pale est sensiblement constante entre la portion en saillie (161) et le reste de la paroi d'intrados (16).
5. Aube (110) selon l'une quelconque des revendications précédentes, caractérisée en ce que la face extérieure (161a) et la face intérieure (161c) de la portion en saillie (161) sont parallèles entre elles.
6. Aube (110) selon l'une quelconque des revendications précédentes, caractérisé en ce que la face terminale (161b) de la portion en saillie (161) est plane.
7. Aube (110) selon la revendication 6, caractérisée en ce que la face terminale (161b) de la portion en saillie (161) est inclinée en formant un angle gamma γΐ obtus non nul avec la direction longitudinale (R-R de l'aube à l'emplacement où les canaux de refroidissement (132) débouchent dans ladite face terminale (161b).
8. Aube (110) selon la revendication précédente, caractérisée en ce que l'axe des canaux de refroidissement (132) est orthogonal à la face terminale (161b) de la portion en saillie (161), à l'emplacement où les canaux de refroidissement (132) débouchent dans ladite face terminale (161b).
9. Aube (110) selon l'une quelconque des revendications précédentes, caractérisée en ce que ladite paroi de fond (26) est dirigée de façon orthogonale à la direction longitudinale de l'aube.
10. Aube (110) selon l'une quelconque des revendications 1 à 8, caractérisée en ce que ladite paroi de fond (126) est dirigée de façon inclinée en formant un angle (δΐ) différent de l'angle droit et non nul avec la direction longitudinale (R-R de l'aube (110).
11. Rotor de turbomachine comprenant au moins une aube (110) selon l'une quelconque des revendications 1 à 10.
12. Turbine de turbomachine comprenant au moins une aube (110) selon l'une quelconque des revendications 1 à 10.
13. Turbomachine comprenant au moins une aube (110) selon l'une quelconque des revendications 1 à 10.
PCT/FR2012/052604 2011-11-17 2012-11-13 Aube de turbine à gaz à décalage vers l'intrados des sections de tête et à canaux de refroidissement WO2013072610A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2014541733A JP6073351B2 (ja) 2011-11-17 2012-11-13 正圧側に向かってオフセットされた先端部および冷却チャネルを備えるガスタービンブレード
CN201280056817.XA CN103958834B (zh) 2011-11-17 2012-11-13 具有朝向压力侧偏移的尖端部且具有冷却通路的气体涡轮机叶片
EP12795525.0A EP2780551B1 (fr) 2011-11-17 2012-11-13 Aube de turbine à gaz à décalage vers l'intrados des sections de tête et à canaux de refroidissement
US14/358,851 US9605545B2 (en) 2011-11-17 2012-11-13 Gas turbine blade with tip sections offset towards the pressure side and with cooling channels
RU2014124709A RU2617633C2 (ru) 2011-11-17 2012-11-13 Лопатка газовой турбины с концевым сечением, смещенным в сторону стороны повышенного давления, и охлаждающими каналами
BR112014011838-8A BR112014011838B1 (pt) 2011-11-17 2012-11-13 Pá oca tendo uma lâmina estendendo-se ao longo de uma direção longitudinal, rotor de motor de turbina, turbina de motor de turbina e motor de turbina
CA2854890A CA2854890C (fr) 2011-11-17 2012-11-13 Aube de turbine a gaz a decalage vers l'intrados des sections de tete et a canaux de refroidissement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1160465 2011-11-17
FR1160465A FR2982903B1 (fr) 2011-11-17 2011-11-17 Aube de turbine a gaz a decalage vers l'intrados des sections de tete et a canaux de refroidissement

Publications (1)

Publication Number Publication Date
WO2013072610A1 true WO2013072610A1 (fr) 2013-05-23

Family

ID=47291120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/052604 WO2013072610A1 (fr) 2011-11-17 2012-11-13 Aube de turbine à gaz à décalage vers l'intrados des sections de tête et à canaux de refroidissement

Country Status (9)

Country Link
US (1) US9605545B2 (fr)
EP (1) EP2780551B1 (fr)
JP (1) JP6073351B2 (fr)
CN (1) CN103958834B (fr)
BR (1) BR112014011838B1 (fr)
CA (1) CA2854890C (fr)
FR (1) FR2982903B1 (fr)
RU (1) RU2617633C2 (fr)
WO (1) WO2013072610A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150361808A1 (en) * 2014-06-17 2015-12-17 Snecma Turbomachine vane including an antivortex fin
FR3043715A1 (fr) * 2015-11-16 2017-05-19 Snecma Aube de turbine comprenant une pale avec baignoire comportant un intrados incurve dans la region du sommet de pale
WO2018004766A1 (fr) * 2016-05-24 2018-01-04 General Electric Company Profil et pale pour moteur à turbine et procédé correspondant de circulation d'un liquide de refroidissement
US10436038B2 (en) 2015-12-07 2019-10-08 General Electric Company Turbine engine with an airfoil having a tip shelf outlet
US11136892B2 (en) 2016-03-08 2021-10-05 Siemens Energy Global GmbH & Co. KG Rotor blade for a gas turbine with a cooled sweep edge

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986982A1 (fr) * 2012-02-22 2013-08-23 Snecma Ensemble de noyau de fonderie pour la fabrication d'une aube de turbomachine, procede de fabrication d'une aube et aube associes
US10436039B2 (en) * 2013-11-11 2019-10-08 United Technologies Corporation Gas turbine engine turbine blade tip cooling
US9845684B2 (en) * 2014-11-25 2017-12-19 Pratt & Whitney Canada Corp. Airfoil with stepped spanwise thickness distribution
EP3225782B1 (fr) * 2016-03-29 2019-01-23 Ansaldo Energia Switzerland AG Profil d'aube et élément aubagé associé
US10711618B2 (en) * 2017-05-25 2020-07-14 Raytheon Technologies Corporation Turbine component with tip film cooling and method of cooling
EP3631172B1 (fr) 2017-05-30 2023-10-25 Siemens Energy Global GmbH & Co. KG Aube de turbine avec baignoire et couche renforcée par dispersion d'oxyde densifié
JP7012825B2 (ja) 2017-08-14 2022-01-28 シーメンス アクティエンゲゼルシャフト タービンブレードおよび対応する供与方法
JP6946225B2 (ja) * 2018-03-29 2021-10-06 三菱重工業株式会社 タービン動翼、及びガスタービン
JP6979382B2 (ja) * 2018-03-29 2021-12-15 三菱重工業株式会社 タービン動翼、及びガスタービン
US11566527B2 (en) 2018-12-18 2023-01-31 General Electric Company Turbine engine airfoil and method of cooling
US11352889B2 (en) 2018-12-18 2022-06-07 General Electric Company Airfoil tip rail and method of cooling
US11499433B2 (en) 2018-12-18 2022-11-15 General Electric Company Turbine engine component and method of cooling
US11174736B2 (en) 2018-12-18 2021-11-16 General Electric Company Method of forming an additively manufactured component
US10767492B2 (en) 2018-12-18 2020-09-08 General Electric Company Turbine engine airfoil
US10844728B2 (en) 2019-04-17 2020-11-24 General Electric Company Turbine engine airfoil with a trailing edge
US11913353B2 (en) 2021-08-06 2024-02-27 Rtx Corporation Airfoil tip arrangement for gas turbine engine
US11512599B1 (en) 2021-10-01 2022-11-29 General Electric Company Component with cooling passage for a turbine engine
US11898460B2 (en) 2022-06-09 2024-02-13 General Electric Company Turbine engine with a blade
US11927111B2 (en) 2022-06-09 2024-03-12 General Electric Company Turbine engine with a blade

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040013515A1 (en) * 2002-07-16 2004-01-22 Cherry David Glenn Turbine blade having angled squealer tip
US20040126236A1 (en) * 2002-12-30 2004-07-01 Ching-Pang Lee Compound tip notched blade
EP1505258A1 (fr) 2003-08-06 2005-02-09 Snecma Moteurs Aube creuse de rotor pour la turbine d'un moteur à turbine à gaz
EP1726783A1 (fr) 2005-05-13 2006-11-29 Snecma Aube creuse de rotor pour la turbine d'un moteur à turbine à gaz, équipée d'une baignoire
EP1762702A2 (fr) * 2005-09-09 2007-03-14 General Electric Company Aube de turbine
FR2891003A1 (fr) 2005-09-20 2007-03-23 Snecma Aube de turbomachine
US20100135813A1 (en) * 2008-11-28 2010-06-03 Remo Marini Turbine blade for a gas turbine engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1758247A1 (ru) * 1989-11-14 1992-08-30 Ленинградский Кораблестроительный Институт Осева турбомашина
FR2858352B1 (fr) * 2003-08-01 2006-01-20 Snecma Moteurs Circuit de refroidissement pour aube de turbine
US7467922B2 (en) * 2005-07-25 2008-12-23 Siemens Aktiengesellschaft Cooled turbine blade or vane for a gas turbine, and use of a turbine blade or vane of this type
FR2907157A1 (fr) * 2006-10-13 2008-04-18 Snecma Sa Aube mobile de turbomachine
US8079803B2 (en) * 2008-06-30 2011-12-20 Mitsubishi Heavy Industries, Ltd. Gas turbine and cooling air supply structure thereof
RU101497U1 (ru) * 2010-08-13 2011-01-20 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Рабочая лопатка турбины

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040013515A1 (en) * 2002-07-16 2004-01-22 Cherry David Glenn Turbine blade having angled squealer tip
US20040126236A1 (en) * 2002-12-30 2004-07-01 Ching-Pang Lee Compound tip notched blade
EP1505258A1 (fr) 2003-08-06 2005-02-09 Snecma Moteurs Aube creuse de rotor pour la turbine d'un moteur à turbine à gaz
EP1726783A1 (fr) 2005-05-13 2006-11-29 Snecma Aube creuse de rotor pour la turbine d'un moteur à turbine à gaz, équipée d'une baignoire
EP1762702A2 (fr) * 2005-09-09 2007-03-14 General Electric Company Aube de turbine
FR2891003A1 (fr) 2005-09-20 2007-03-23 Snecma Aube de turbomachine
US20100135813A1 (en) * 2008-11-28 2010-06-03 Remo Marini Turbine blade for a gas turbine engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150361808A1 (en) * 2014-06-17 2015-12-17 Snecma Turbomachine vane including an antivortex fin
FR3022295A1 (fr) * 2014-06-17 2015-12-18 Snecma Aube de turbomachine comportant une ailette anti-tourbillons
US10260361B2 (en) 2014-06-17 2019-04-16 Safran Aircraft Engines Turbomachine vane including an antivortex fin
FR3043715A1 (fr) * 2015-11-16 2017-05-19 Snecma Aube de turbine comprenant une pale avec baignoire comportant un intrados incurve dans la region du sommet de pale
WO2017085387A1 (fr) * 2015-11-16 2017-05-26 Safran Aircraft Engines Aube de turbine de turbomachine, turbine et turbomachine associées
GB2560124A (en) * 2015-11-16 2018-08-29 Safran Aircraft Engines Turbine engine turbine vane, and related turbine and turbine engine
US10753215B2 (en) 2015-11-16 2020-08-25 Safran Aircraft Engines Turbine vane comprising a blade with a tub including a curved pressure side in a blade apex region
GB2560124B (en) * 2015-11-16 2022-04-13 Safran Aircraft Engines Turbine vane comprising a blade with a tub including a curved pressure side in a blade apex region
US10436038B2 (en) 2015-12-07 2019-10-08 General Electric Company Turbine engine with an airfoil having a tip shelf outlet
US11136892B2 (en) 2016-03-08 2021-10-05 Siemens Energy Global GmbH & Co. KG Rotor blade for a gas turbine with a cooled sweep edge
WO2018004766A1 (fr) * 2016-05-24 2018-01-04 General Electric Company Profil et pale pour moteur à turbine et procédé correspondant de circulation d'un liquide de refroidissement

Also Published As

Publication number Publication date
RU2014124709A (ru) 2015-12-27
US20140322028A1 (en) 2014-10-30
CN103958834B (zh) 2016-08-24
JP2014533794A (ja) 2014-12-15
JP6073351B2 (ja) 2017-02-01
FR2982903B1 (fr) 2014-02-21
FR2982903A1 (fr) 2013-05-24
RU2617633C2 (ru) 2017-04-25
BR112014011838A2 (pt) 2017-05-09
CA2854890A1 (fr) 2013-05-23
EP2780551B1 (fr) 2016-06-01
EP2780551A1 (fr) 2014-09-24
US9605545B2 (en) 2017-03-28
CN103958834A (zh) 2014-07-30
BR112014011838B1 (pt) 2021-11-09
CA2854890C (fr) 2019-02-12

Similar Documents

Publication Publication Date Title
EP2780551B1 (fr) Aube de turbine à gaz à décalage vers l&#39;intrados des sections de tête et à canaux de refroidissement
EP1726783B1 (fr) Aube creuse de rotor pour la turbine d&#39;un moteur à turbine à gaz, équipée d&#39;une baignoire
CA2714439C (fr) Aube avec plateforme non axisymetrique : creux et bosse sur extrados
CA2652679C (fr) Aubes pour roue a aubes de turbomachine avec rainure pour le refroidissement
EP2260179B1 (fr) Aube avec plateforme non axisymetrique
EP1736636B1 (fr) Aube creuse de turbomachine
CA2747989C (fr) Carter de compresseur a cavites optimisees
EP1911934A1 (fr) Aube mobile de turbomachine
EP3475532B1 (fr) Pièce et procédé de fabrication d&#39;une pièce a traînée réduite par riblets évolutifs
FR2981979A1 (fr) Roue de turbine pour une turbomachine
EP1741875A1 (fr) Circuits de refroidissement pour aube mobile de turbomachine
EP2598721A1 (fr) Etanchéité inter-aubes pour une roue de turbine ou de compresseur de turbomachine
CA2885650A1 (fr) Carter et roue a aubes de turbomachine
FR3022295A1 (fr) Aube de turbomachine comportant une ailette anti-tourbillons
FR2891003A1 (fr) Aube de turbomachine
EP1630351A1 (fr) Aube de compresseur ou de turbine à gaz
EP3947919B1 (fr) Joint d&#39;étanchéité dynamique pour turbomachine comprenant une pièce abradable multicouche
FR2993599A1 (fr) Disque labyrinthe de turbomachine
EP3317495B1 (fr) Aube de turbine à bord de fuite présentant des méplats
EP3781791B1 (fr) Distributeur de turbine pour turbomachine, comprenant un système passif de réintroduction de gaz de fuite dans une veine d&#39;écoulement des gaz
FR3090033A1 (fr) Ensemble d’aube directrice de sortie et de bifurcation pour turbomachine
FR2918105A1 (fr) Aube refroidie de turbomachine comprenant des trous de refroidissement a distance d&#39;impact variable.
WO2018215718A1 (fr) Aube pour turbine de turbomachine comprenant des cavites internes de circulation d&#39;air de refroidissement
FR3116857A1 (fr) composant de turbomachine comprenant une paroi pourvue de moyens de refroidissement
FR3136504A1 (fr) Elément abradable pour une turbine de turbomachine, comprenant des alvéoles présentant différentes inclinaisons

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12795525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2854890

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014541733

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14358851

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012795525

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014124709

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014011838

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014011838

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140516