WO2013072609A1 - Groupe motopropulseur pour vehicule electrique de competition et procede de commande - Google Patents

Groupe motopropulseur pour vehicule electrique de competition et procede de commande Download PDF

Info

Publication number
WO2013072609A1
WO2013072609A1 PCT/FR2012/052603 FR2012052603W WO2013072609A1 WO 2013072609 A1 WO2013072609 A1 WO 2013072609A1 FR 2012052603 W FR2012052603 W FR 2012052603W WO 2013072609 A1 WO2013072609 A1 WO 2013072609A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
speed
control
torque
gearbox
Prior art date
Application number
PCT/FR2012/052603
Other languages
English (en)
Inventor
Antoine GESLAIN
Matthieu SAUVAGE
Original Assignee
Segula Matra Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Segula Matra Technologies filed Critical Segula Matra Technologies
Publication of WO2013072609A1 publication Critical patent/WO2013072609A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0437Smoothing ratio shift by using electrical signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/06Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing
    • B60K17/08Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing of mechanical type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • B60K17/165Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing provided between independent half axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/24Driver interactions by lever actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • B60W2510/084Torque change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/18Braking system
    • B60W2510/182Brake pressure, e.g. of fluid or between pad and disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/16Ratio selector position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1011Input shaft speed, e.g. turbine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/11Passenger cars; Automobiles
    • B60Y2200/114Racing vehicles, e.g. Formula one, Karts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/70Control of gearings
    • B60Y2300/73Synchronisation of shaft speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/40Actuators for moving a controlled member
    • B60Y2400/408Pneumatic actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/421Dog type clutches or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/0021Transmissions for multiple ratios specially adapted for electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention a competition electric vehicle or a power unit with mono-energy propulsion, comprising a transmission by a mechanical kinematic chain without slip and permanent upstream and downstream of a gearbox unsynchronized reports without clutch or coupler.
  • Electronic control means selectively control said engine: in torque during propulsion without change of ratio, and in regime during a shift phase between two reports.
  • the invention also proposes a method of managing this propulsion, which comprises a control of the up and down changes of ratios comprising:
  • the invention further relates to such a system and method wherein the reduction of speed is achieved by controlling electric power recovery means to their maximum capacity; and / or the control of the gearshifts is performed by pneumatic actuators acting respectively upwardly, downwardly, and in neutral blocking in one direction.
  • the electric-powered motor vehicles are as old as those in the engine or around the end of the XIX century.
  • the industry and the electric vehicle market are currently experiencing significant and growing development, particularly about twenty years, especially for reasons of nature of energy and pollution.
  • electric motors Unlike heat engines, electric motors have a continuous and homogenous range of use from shutdown to maximum speed, which is often much higher than thermal engines.
  • the kinematic chain consists of the engine and a differential which are permanently connected in rotation.
  • the variation of the speed of rotation transmitted to the wheels is then controlled by a control member acting directly on the speed of rotation of the electric motor.
  • the entire powertrain is thus lightened to the maximum.
  • An object of the invention is to improve the performance of electric competition vehicles, speed but also autonomy, for example on the energy / mass performance of the components and energy consumption.
  • the improvements are sought especially in the very specific field of speed competition over a distance or a fixed period of category "Formula” and for example of type “Formula 3"; and for example on points such as instantaneous performance in torque and power, but also the reliability of operation and its efficiency and homogeneity over the entire speed range and the entire duration of use.
  • the invention proposes a system comprising an electric competition vehicle with mono-energy propulsion, or a power unit for such a vehicle, and comprising at least one electric motor driving one or more propulsive wheels by a mechanical kinematic chain without sliding, that is to say in particular without hydraulic coupler or friction synchronization.
  • this kinematic chain comprises a gearbox with at least two unsynchronized ratios, driven upstream by said engine through a permanent kinematic chain, and driving downstream said wheels through a downstream permanent kinematic chain.
  • permanent mechanical chain is meant here a permanent drive, and in particular without clutch or uncoupling device in rotation during use in racing, or simply in autonomous operation.
  • this powertrain is managed by electronic control means arranged to selectively control said engine:
  • this gearbox makes it possible to better exploit electric motors, for example in their compromise between torque and speed, and to manage their operation more efficiently and effectively. more flexible.
  • this system has an architecture grouping together one or more of the following characteristics.
  • the system may in particular comprise several electric motors driving the same gearbox, for example engines whose shafts are interconnected together.
  • This or these motors drive for example a gearbox type parallel gear trains and fixed axes, for example a box two gear jaw unsynchronized.
  • the system may comprise two identical electric motors each driving one of the two ends of an input shaft driving the gearbox, which has an output shaft which is transverse to said input shaft and which drives the wheels via a differential.
  • the gearbox may in particular comprise shift means actuated by a pneumatic circuit controlled by one or more solenoid valves, themselves controlled by an electronic control unit.
  • the compactness of the engine and gearbox assembly allows a better centering of the masses and a reduction of the masses, and frees space allowing a better aerodynamics and a greater freedom of conception of the vehicle.
  • This architecture makes it possible to adapt this powertrain to different vehicles, in particular by varying the length of the transmission shaft between gearbox and differential.
  • the invention also proposes a method for managing the propulsion of such an electric competition vehicle.
  • this method comprises a control, by electronic calculation means forming control means, of changes of up and down ratios (at least one in each direction), within a gearbox providing at least two ratios, operating by interconnection of gears unsynchronized manner. That is to say that the coupling is done solely by supporting abutting shapes on one another, such as dog teeth or jaw, and that the gearbox does not include in particular no device non-slip, non-friction (like synchronizers) and no liquid (such as a hydraulic coupler).
  • control of said gear changes comprises the following steps:
  • step of initializing a shift phase including
  • a data processing representing said output rotation speed so as to calculate a setpoint speed for the engine, which setpoint speed corresponds for the upstream kinematic chain to a so-called input rotational speed compatible with said output rotational speed for the interconnection of a second ratio
  • the invention thus allows an assisted semi-automatic gearshift offering a good compromise between the various constraints and objectives. This compromise is brought in particular between on the one hand the speed of passage, much better than for synchronized boxes; and on the other hand the ease, reliability and regularity of the passages so as to facilitate the task of the driver and spare the mechanics by limiting the wear and mechanical risks during commitments and disengagement of jaw.
  • the calculation of the set speed can be done on the fly in the control stage of the engine that uses it.
  • such a system further comprises means for braking the motor by energy recovery, such as an "inverter” with battery charging, which are controlled to slow the motor during a shift phase in the direction of a rise of relationships.
  • energy recovery such as an "inverter” with battery charging
  • Such motor braking means are particularly well suited to this type of gearbox control. In fact, they make it possible in particular to avoid excessive heating and not to waste the energy of the engine slowdown, while precisely controlling the braking of the engine. In addition, they can be confused with the braking energy recovery system of the vehicle when it exists, and therefore represent little or no additional weight or complexity.
  • the disengagement step of the first report optionally includes the following steps:
  • the step of verifying the current powertrain drive state may comprise the following substeps:
  • the method may further comprise different verifications and reliability operations, alone or in combination, which make it possible, for example, to make the global operation of shifting more reliable.
  • the initialization step can include:
  • control method can further include:
  • a count of a maximum authorized duration for a phase of limited duration including all or part of the change of report and including at least one of the stages of disengagement and commitment of report;
  • the initialization step may also include the following substeps:
  • the intensity of this braking is controlled and controlled by the computer so as to obtain a current intensity produced the as close as possible to a predetermined value corresponding to a maximum intensity acceptable, preferably staying below this maximum value to avoid damaging the inverter.
  • the braking of the engine is optimized according to the possibilities of the electrical circuit and in particular of the inverter, to achieve a slowing of the engine and therefore a gearshift as short as possible.
  • FIG. 1 is a perspective diagram illustrating, in one embodiment of the invention, the implantation of the powertrain in a "Formula 3" type vehicle;
  • FIGURE 2 is schematics of the powertrain without the wheels, respectively in perspective, in side view and in top view;
  • FIGURE 5 is a block diagram illustrating the operation of the powertrain
  • FIGS. 6 and 7 are diagrams of flowcharts illustrating the progress of a gearshift, during a rise in gear and respectively during a gearshift.
  • FIG. 1 to FIG. 5 illustrates the architecture of the powertrain 1 and its implementation in a "Formula 3" type vehicle 10, in one example of the presently preferred embodiment.
  • This group 1 comprises two electric motors 11a and 11b, together providing a power of 250 kW.
  • These motors are coupled to a two-speed gearbox 12 with pneumatic actuators 127, which are fed through solenoid valves 128 by compressed air stored in a high reservoir. pressure 129.
  • These motors are coupled along the same axis 110, for example by a single shaft or by several trees integral with each other.
  • the gearbox 12 drives a differential 13 connected to the two rear wheels 102a and 102b along an output axis 130.
  • the gearbox 12 comprises a secondary shaft 122 longitudinal to the vehicle and a primary shaft 121 which is parallel thereto.
  • the primary shaft 121 is driven for example by a coaxial transverse input shaft 110 to the motors 11a and 11b from which it receives the torque.
  • the primary shaft 121 carries two pinions 1211 and 1212 which cooperate with two pinions 1221 and 1222 carried by the secondary shaft 122 to form two different ratios.
  • the passage of these ratios is achieved by a sliding dog 123, carried for example by the secondary shaft 122, and which is moved longitudinally by a group of actuators 127.
  • this actuator group comprises two pressure chambers 127a and 127b disposed on both sides of a piston 1237 integral with the player 123.
  • these two chambers 127a and 127b actuate this piston in one direction or the other.
  • One 127a of these chambers acts to move the player in the direction of pinion 1222 of second report and until its engagement, and is an actuator here called “valve rise”.
  • the other 127b acts to move the player in the direction of pinion 1221 first report and until its commitment, and is an actuator here called “down" valve.
  • This actuator group further comprises an actuator called “blocking valve”, which is arranged to block the player 123 in a neutral position position or “neutral”, and prevent it from engaging a report, at least in one of the two directions of movement, even when the corresponding actuator is under pressure.
  • blocking valve an actuator which is arranged to block the player 123 in a neutral position position or “neutral”, and prevent it from engaging a report, at least in one of the two directions of movement, even when the corresponding actuator is under pressure.
  • This blocking valve here comprises a third pressure chamber 127c which acts on a locking piston 1270 which is movable between two positions. In a so-called output position, it constitutes a stop for the sliding piston 1237 via an abutment rod 1230, arranged to prevent the player 123 from exceeding the position of the neutral point when it is actuated towards the pinion 1222 of second report by the rise valve 127a. To obtain this blocking, the blocking chamber 127c has a sufficiently larger thrust surface than that of the rise valve 127a. In a so-called retracted position, this locking piston 1270 allows the player 123 and its piston 1237 to move until the engagement of the second gear. This arrangement allows a simple, lightweight and robust construction for this group of actuators 127, with direct and robust abutment interactions that ensure free stops and limit moving parts.
  • the entire powertrain 1 is controlled by an electronic control unit 14 or "computer”, also called VMC (for "Vehicle Management Control”).
  • VMC Vehicle Management Control
  • a control software has been developed specifically for this transmission and is implemented in the VMC.
  • the VMC receives pilot shift request signals from an instrument cluster 19, for example, two sequential control pallets 191 and 192 located behind the steering wheel 199.
  • the VMC controls the rotational speeds of the engines l ia and 11b so that the gearbox 12 ratios can be engaged at the correct speed, accurately and quickly, and without the aid of a gearbox. clutch.
  • the VMC controls the electric motors by requests in torque or speed, and controls the block of solenoid valves 128 for controlling the actuators 127 according to various parameters (wheel speed, brake pressure, gear engaged, engine speed, position of the accelerator, etc.) which are read as and when processed according to the control software and predetermined parameters stored in its memory.
  • Compressed air supplying energy to the actuators 127 may be generated by a compressor, or stored in a high pressure cylinder 129 as illustrated herein, or a combination of both.
  • the gearshift is controlled in a "semi-automatic" manner, in which the VMC ensures the proper synchronization of the speed of the engines and the gear to be engaged, and makes it possible to optimize the precision and the speed of the maneuvers.
  • Expected performances for this vehicle are of the order of 260 km / h for speed and less than 3 seconds for a recovery from 0 to 100 km / h.
  • FIG. 6 and FIG. 7 illustrate more precisely an example of the progress of a shift of report, during a rise of report and respectively during a descent of report, as commanded by the VMC.
  • a ratio here is described as “lower” than another ratio, as opposed to “higher”, when it produces a secondary shaft rotation speed 122 which is lower, for the same speed of the primary shaft. 121.
  • the lowest gear is called the RI gear and the highest is called R2.
  • FIGURE 6 is illustrated an "up" ratio shift, that is, to change the ratio to a "higher” ratio.
  • this rise is made during a transition of a ratio between a first report (or initial report) constituted by the low ratio RI and a second report (or final report) constituted by the high ratio R2.
  • the VMC 14 receives from the handset 19 a signal requesting a rise in gear, when the pilot has actuated the corresponding pallet 191.
  • the VMC verifies that the pressure PSYS of compressed air in the reservoir 129 is sufficient to perform all the operations necessary for the passage of complete report. If not, the passage operation is canceled. In 603, the VMC checks whether the box is not already on the final report (R2), in which case the operation is canceled.
  • the VMC can check whether the current RPM speed of the engine is well above a determined minimum MINRPM value, which represents a speed above which this ratio rise will not bring the engine lower than a speed range chosen as the optimal range of use. Otherwise, the operation is canceled.
  • the VMC activates the blocking valve 127c, which controls the blocking actuator which will subsequently prevent the player from exceeding its so-called neutral position, i.e. corresponding to a state of "neutral” or “neutral point” or none of the two pinions 1221 and 1222 is engaged.
  • the method may comprise a torque verification phase transmitted between the motor and the input shaft, to facilitate the passage and in particular the disengagement of the initial ratio, here RI.
  • the VMC checks whether the torque currently applied by the motor 11 to the box 12 is positive or negative, that is to say whether it is the motor driving the box or the opposite. .
  • this check may also take into account other factors in progress, which will affect the value of the torque in the following moments, for example the following 500 ms: the variation of the torque with respect to time, speed of the wheels or variation of this speed, the pressure in the braking circuit.
  • a time counter is started for calculating a delay for the shift.
  • the VMC sends the motor a request to reduce or cancel the torque transmitted by the engine to the gearbox, for example by a request for speed to synchronize with the speed of the engine. 110 input shaft of the box.
  • VMC for a negative torque (driven motor), the VMC:
  • - 610a sends the motor a request, for example in speed, to increase the torque generated by the motor until the torque transmitted by the engine to the gearbox is positive; then - 610b: sends the motor a request, for example in speed, to reduce or cancel the torque generated by the motor, and thus reduce or cancel the torque transmitted by the engine to the gearbox.
  • this optional phase of torque verification can be omitted.
  • the VMC 607 starts a delay for the passage and then sends directly to the engine a request in torque to reduce or cancel the generated torque.
  • the VMC activates the rise valve 128a, which controls the actuator 127a causing the displacement of the player from the initial report to the final report.
  • the initial ratio (in this case RI) is then disengaged, and the player 123 stops at the neutral point under the effect of the blocking piston 1270 of the locking actuator 127c.
  • the VMC checks the VGEAR signal of an engagement sensor to verify that its voltage indicates that the reports are disengaged.
  • the VMC sends the engine a speed request with a set speed to brake the engine and slow down to the speed corresponding to the final report, or at a compatible speed.
  • the VMC controls the engagement by deactivating the blocking valve 128c, whose actuator 127c held the player 123 in neutral position.
  • the final report (in this case R2) is then engaged under the effect of the rise actuator 127a.
  • the commitment is slightly anticipated, by issuing the commitment command at a time when the effective speed of the motor is still slightly different from the target speed. This time difference makes it possible to shorten the passage time, taking advantage of the time lag in the drive chain of the player to complete the arrival of the motor at its synchronization speed.
  • the setpoint and / or offset of the engagement command are calculated so that the actual commitment is made before the input shaft 121 is at the exact synchronization speed with the output shaft. output 122.
  • the jaws of the player still have a slight difference in speed with the pinion 1222. This difference in speed at the engagement facilitates the interconnection, and also allows to shorten by a few moments the total passage time.
  • the VMC checks the VGEAR signal of an engagement sensor to verify that its voltage indicates that the final report R2 is actually engaged.
  • the VMC restores the normal operating mode of the engine (ie in torque), possibly according to a law of gradual increase.
  • the VMC disables the rise valve 128a.
  • the VMC controls the deactivation of the blocking valve 128c, which limits the pressure consumption in cases where the disengagement 611 could not be obtained (612) before the end of timer in 613.
  • FIGURE 7 is illustrated a passage of report in "downhill", that is to say to change gear to a "lower" ratio.
  • this rise is made during a change of report between a first report (or initial report) constituted by the high ratio R2 and a second report (or final report) constituted by the low ratio RI.
  • the VMC 14 receives from the handset 19 a signal requesting a lowering ratio, when the pilot has actuated the corresponding pallet 192.
  • the VMC verifies that the pressure PSYS of compressed air in the reservoir 129 is sufficient. If not, the passage operation is canceled.
  • the VMC checks if the box is not already on the final report
  • the VMC checks whether the current RPM speed of the engine is well below a given maximum value MAXRPM, which represents a speed below which this lowering of the ratio will not bring the engine higher than a chosen range of speed. as the optimum operating range or even the safety of the motor. Otherwise, the operation is canceled.
  • MAXRPM maximum value
  • the VMC activates the rise valve 128a, whose actuator
  • the VMC checks (optionally) the torque currently applied by the engine to the gearbox, starts the time counter, and controls the torque adjustment for disengagement under good conditions.
  • the VMC activates the blocking valve 128c, which controls the movement of the blocking actuator 127c to its extended position.
  • the thrust surface on the locking piston 1270 is greater than that of the sliding piston 1237, this control is sufficient to move the player, and thus disengage the initial report.
  • the initial ratio (in this case R2) is then disengaged.
  • This "forced" blocking at the neutral point by the raising actuator 127a prevents the inertia of the player 123 from dragging it beyond the neutral point when of the disengagement control by the blocking actuator. It allows a better precision, even during a very fast passage.
  • the VMC checks the VGEAR signal of an engagement sensor to verify that its voltage indicates that the reports are disengaged. In case of failure, it re-orders the disengagement until a disengagement time has elapsed, or cancels the operation after the delay.
  • the VMC disables the climb valve, which has completed its stopping role at the neutral point.
  • the VMC deactivates the blocking valve, which has completed its role of disengagement.
  • the VMC sends the engine a speed request with a set speed to accelerate the engine at the speed corresponding to the final report (here the ratio RI), or at a compatible speed.
  • the VMC activates the lowering valve 128b, which controls the down actuator 127b which then moves the player 123 from the neutral point to the final report .
  • the final report (in this case RI) is then engaged.
  • the VMC checks the VGEAR signal of an engagement sensor to verify that its voltage indicates that the final gear is engaged.
  • the VMC restores normal torque control and disables the descent valve (at 721).
  • the VMC then sends a disabling command of the blocking valve (in 722) and then of the rising valve which limits the pressure consumption in the cases where the disengagement 711 could not be obtained (712) before the end. of the delay in 713.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

L'invention un véhicule électrique de compétition ou un ensemble motopropulseur à propulsion mono-énergie, comprenant une transmission par une chaîne cinématique mécanique sans glissement et permanente en amont et en aval d'une boîte de vitesses à rapports non synchronisés sans embrayage ni coupleur. Des moyens électroniques de commande commandent sélectivement ledit moteur : en couple pendant la propulsion sans changement de rapport, et en régime lors d'une phase de changement de rapport entre deux rapports. Selon un autre aspect, l'invention propose aussi un procédé de gestion de cette propulsion, qui comprend une commande des changements de rapports en montée et en descente comprenant : désengagement d'un premier rapport, incluant un contrôle du moteur pour annuler le couple transmis, calcul d'un régime de consigne compatible avec un deuxième rapport, contrôle du moteur en régime pour l'amener audit régime de consigne, engagement dudit deuxième rapport, et retour à une commande en couple. L'invention concerne en outre un tel système et procédé dans lequel la réduction de régime est réalisée par commande de moyens de récupération d'énergie électrique à leur capacité maximale; et/ou la commande des passages de rapport est réalisée par des actionneurs pneumatiques agissant respectivement en montée, en descente, et en blocage au point neutre dans un sens.

Description

« Groupe motopropulseur pour véhicule électrique de compétition et procédé de commande »
Introduction
L'invention un véhicule électrique de compétition ou un ensemble motopropulseur à propulsion mono-énergie, comprenant une transmission par une chaîne cinématique mécanique sans glissement et permanente en amont et en aval d'une boîte de vitesses à rapports non synchronisés sans embrayage ni coupleur. Des moyens électroniques de commande commandent sélectivement ledit moteur : en couple pendant la propulsion sans changement de rapport, et en régime lors d'une phase de changement de rapport entre deux rapports.
Selon un autre aspect, l'invention propose aussi un procédé de gestion de cette propulsion, qui comprend une commande des changements de rapports en montée et en descente comprenant :
- désengagement d'un premier rapport, incluant un contrôle du moteur pour annuler le couple transmis,
- calcul d'un régime de consigne compatible avec un deuxième rapport,
- contrôle du moteur en régime pour l'amener audit régime de consigne, - engagement dudit deuxième rapport, et
- retour à une commande en couple.
L'invention concerne en outre un tel système et procédé dans lequel la réduction de régime est réalisée par commande de moyens de récupération d'énergie électrique à leur capacité maximale ; et/ou la commande des passages de rapport est réalisée par des actionneurs pneumatiques agissant respectivement en montée, en descente, et en blocage au point neutre dans un sens.
Etat de la technique
Les véhicules automobiles à propulsion électrique sont aussi anciens que ceux à moteur thermique, soit autour de la fin du XIXeme siècle. L'industrie et le marché des véhicules électriques connaissent actuellement un développement important et croissant, plus particulièrement depuis une vingtaine d'années environ, en particulier pour des raisons de nature d'énergie et de pollution.
Des véhicules électriques de compétition existent depuis aussi longtemps, et ont fourni par exemple le premier véhicule à atteindre la vitesse de 100 km/h en 1899.
Contrairement aux moteurs thermiques, les moteurs électriques présentent une plage d'utilisation qui est continue et homogène depuis l'arrêt jusqu'à leur vitesse maximale, laquelle est souvent bien supérieure à celle des moteurs thermiques.
En utilisant un rapport de transmission adapté aux vitesses les plus élevées prévues pour un véhicule donné, il est ainsi possible de couvrir toute l'étendue d'utilisation avec un seul rapport de réduction. Pour diminuer la masse du véhicule, les véhicules électriques de compétition n'ont ni embrayage ni boites de vitesses, et utilisent une chaîne cinématique permanente entre la sortie du moteur et l'entrée du différentiel du train des roues propulsives.
Ceci est le cas y compris dans les véhicules les plus récents et les plus rapides dont les performances sont similaires à celles des véhicules thermiques, par exemple les véhicules de route de la marque Tesia ou les véhicules de course sur glace du trophée Andros, ou les véhicules de circuit classique comme le type « eFormula ».
Ainsi, la chaîne cinématique est constituée du moteur et d'un différentiel lesquels sont liés en rotation en permanence. La variation de la vitesse de rotation transmise aux roues est alors pilotée par un organe de commande agissant directement sur la vitesse de rotation du moteur électrique. L'ensemble du groupe motopropulseur est ainsi allégé au maximum.
Un but de l'invention est d'améliorer les performances des véhicules électriques de compétition, de vitesse mais aussi d'autonomie, par exemple sur le rendement énergie/masse des composants et la consommation d'énergie.
De plus, les améliorations sont recherchées en particulier dans le domaine très spécifique de la compétition de vitesse sur une distance ou une durée déterminée de catégorie « Formule » et par exemple de type « Formule 3 » ; et par exemple sur des points comme les performances instantanées en couple et puissance, mais aussi la fiabilité de fonctionnement et son efficience et son homogénéité sur toute la plage de vitesses et toute la durée d'utilisation.
Exposé de l'invention
Architecture du véhicule
Dans ce but, l'invention propose un système comprenant un véhicule électrique de compétition à propulsion mono-énergie, ou un ensemble motopropulseur pour un tel véhicule, et comprenant au moins un moteur électrique entraînant une ou plusieurs roues propulsives par une chaîne cinématique mécanique sans glissement, c'est-à-dire en particulier sans coupleur hydraulique ni synchronisation à friction.
Selon l'invention, cette chaîne cinématique comprend une boîte de vitesses à au moins deux rapports non synchronisés, entraînée en amont par ledit moteur à travers une chaîne cinématique permanente, et entraînant en aval lesdites roues à travers une chaîne cinématique permanente aval. Par chaîne mécanique permanente on entend ici un entraînement permanent, et en particulier sans embrayage ni dispositif de désaccouplement en rotation au cours de l'utilisation en course, voire simplement en fonctionnement autonome.
En outre, selon l'invention, ce groupe motopropulseur est géré par des moyens électroniques de commande agencés pour commander sélectivement ledit moteur :
- d'une part, au cours d'une période de propulsion sans changement de rapport, selon un asservissement en couple, c'est-à-dire en lui envoyant une commande « libellée » en couple, typiquement en pourcentage du couple maximal, par exemple par une tension réglée par un potentiomètre manœuvrée par la pédale d'accélérateur ; et
- d'autre part, lors d'une phase de changement de rapport entre deux rapports aussi bien dans un sens que dans l'autre, selon un asservissement en régime, c'est-à-dire en lui envoyant une commande « libellée » en vitesse de rotation, typiquement par une valeur numérique constituant une valeur de consigne à obtenir.
En effet, bien que de tels moteurs électriques puissent effectivement fonctionner sur toute la plage, il s'avère que certaines plages de régimes présentent tout de même de meilleures conditions d'utilisation, par exemple pour des questions de performances mais aussi pour des problèmes de gestion globale du véhicule tels que pour limiter la consommation, ou stabiliser les conditions de fonctionnement, et possiblement faciliter ou régulariser des fonctions périphériques telles que le refroidissement.
Bien que pouvant représenter un poids supplémentaire par rapport à une chaîne cinématique permanente, la présence de cette boîte de vitesse permet de mieux exploiter les moteurs électriques, par exemple dans leur compromis entre couple et vitesse, et de gérer leur fonctionnement de façon plus efficace et plus souple.
Selon des modes de réalisation préférés, ce système présente une architecture regroupant une ou plusieurs des caractéristiques suivantes.
Le système peut en particulier comprendre plusieurs moteurs électriques entraînant la même boite de vitesses, par exemple des moteurs dont les arbres sont reliés entre eux de façon solidaire.
Ce ou ces moteurs entraînent par exemple une boîte de vitesses du type à trains de pignons parallèles et à axes fixes, par exemple une boîte deux rapports à crabots non synchronisés.
Plus particulièrement, le système peut comprendre deux moteurs électriques identiques entraînant chacun l'une des deux extrémités d'un arbre d'entrée entraînant la boîte de vitesse, laquelle présente un arbre de sortie qui est transversal audit arbre d'entrée et qui entraîne les roues par l'intermédiaire d'un différentiel.
La boîte de vitesses peut en particulier comprendre des moyens de changement de rapports actionnés par un circuit pneumatique commandé par une ou plusieurs électrovannes, elles-mêmes commandées par un boîtier de commande électronique. Ces caractéristiques permettent d'obtenir une meilleure exploitation des performances des moteurs électriques disponibles, mais aussi des qualités intéressantes en matière de rapport poids-puissance et de fiabilité, ainsi que de compacité et de souplesse d'adaptation à différents types et gabarits de châssis.
Les performances atteintes, en vitesse et en accélération, devraient être comparables avec celles d'une monoplace formule 3 à moteur thermique.
La compacité de l'ensemble moteur et boite de vitesses permet un meilleur centrage des masses et une réduction des masses, et libère de l'espace permettant une meilleure aérodynamique et une plus grande liberté de conception du véhicule.
Cette architecture permet d'adapter ce groupe motopropulseur à différents véhicules notamment en faisant varier la longueur de l'arbre de transmission entre boite de vitesses et différentiel .
Procédé de commande
Selon un autre aspect, l'invention propose aussi un procédé de gestion de la propulsion d'un tel véhicule électrique de compétition. Selon l'invention, ce procédé comprend une commande, par des moyens électroniques de calcul formant des moyens de commande, des changements de rapports en montée et en descente (au moins un dans chaque sens), au sein d'une boîte de vitesses fournissant au moins deux rapports, fonctionnant par crabotage de pignons de façon non synchronisée. C'est-à-dire que le couplage se fait uniquement par appui de formes en butée l'une sur l'autre, tel que des dents de chien ou des crabots, et que la boite de vitesses ne comprend en particulier pas de dispositif de rattrapage de régime à friction ni solide (comme des synchronisateurs) ni liquide (comme un coupleur hydraulique).
Selon l'invention, la commande desdits changements de rapport comprend les étapes suivantes :
- au cours d'une première phase de propulsion sur un premier rapport générant dans la chaîne cinématique aval une vitesse de rotation dite de sortie, contrôle dudit moteur selon une logique d'asservissement en couple par lesdits moyens de commande ;
à réception d'un signal de demande de changement de rapport, étape d'initialisation d'une phase de changement de rapport, incluant
o d'une part un traitement de données représentant ladite vitesse de rotation de sortie de façon à calculer un régime de consigne pour le moteur, lequel régime de consigne correspond pour la chaîne cinématique amont à une vitesse de rotation dite d'entrée compatible avec ladite vitesse de rotation de sortie pour le crabotage d'un deuxième rapport, et
o d'autre part un envoi d'une commande de désengagement dudit premier rapport ;
contrôle du moteur selon une logique d'asservissement en régime pour l'amener audit régime de consigne ;
commande d'engagement dudit deuxième rapport ;
initialisation d'une deuxième phase de propulsion sur ledit deuxième rapport, incluant un contrôle du moteur selon une logique d'asservissement en couple. L'invention permet ainsi un passage des vitesses semi-automatique assisté offrant un bon compromis entre les différentes contraintes et objectifs. Ce compromis est apporté en particulier entre d'une part la rapidité de passage, bien meilleure que pour des boîtes synchronisées ; et d'autre part la facilité, la fiabilité et la régularité des passages de façon à faciliter la tâche du pilote et ménager la mécanique en limitant l'usure et les risques mécaniques lors des engagements et désengagements des crabots.
Il est à noter que le calcul du régime de consigne peut se faire à la volée dans l'étape de contrôle du moteur qui l'utilise.
Avantageusement, un tel système comprend en outre des moyens de freinage du moteur par récupération d'énergie, comme un « inverter » avec recharge des batteries, qui sont commandés pour ralentir le moteur lors d'une phase de changement de rapport dans le sens d'une montée de rapports. De tels moyens de freinage du moteur sont particulièrement bien adaptés à ce type de commande de boîte de vitesses. En effet, ils permettent en particulier d'éviter un échauffement excessif et de ne pas gaspiller l'énergie du ralentissement du moteur, tout en pilotant précisément le freinage du moteur. En outre, ils peuvent être confondus avec le système de récupération d'énergie au freinage du véhicule lorsque celui-ci existe, et représentent donc peu ou pas de poids ni de complexité supplémentaires. L'étape de désengagement du premier rapport inclut optionnellement les étapes suivantes :
- lecture ou acquisition d'au moins une donnée représentant l'état actuel d'entraînement du groupe motopropulseur, et comprenant la valeur actuelle du couple appliqué par le moteur à la boîte de vitesse (typiquement par le sens du courant parcourant le moteur) pour vérifier si le moteur est actuellement entraînant (c.-à-d . avec un couple positif) ou entraîné (c.-à-d . avec un couple négatif) ;
- dans le cas où le moteur est entraîné (c.-à-d . avec un couple négatif), contrôle du moteur pour amener ledit couple transmis à une valeur positive et supérieure à une valeur prédéterminée (ce contrôle du moteur peut être fait selon une logique d'asservissement en couple ou en régime, ou une combinaison des deux) ;
- contrôle du moteur (selon une logique d'asservissement en régime et/ou en couple) pour ramener ledit couple transmis à une valeur nulle ou inférieure à une valeur prédéterminée ; et
- désengagement du premier rapport.
La diminution voire l'annulation du couple permet de faciliter le désengagement du rapport initial et de limiter l'usure mécanique des pièces concernées.
Dans le cas d'un couple initial négatif, c.-à-d . lorsque le véhicule est en phase de frein moteur ou avance simplement sur sa lancée, ce couple négatif dépend de beaucoup de facteurs extérieurs (par exemple un freinage ou des cahots) et peut prendre des valeurs très variées et peu prévisibles. Le passage préalable en couple positif permet de faciliter cette annulation du couple en rétablissant momentanément le couple dans une plage plus prévisible puisqu'obtenue de façon volontaire et connue à l'aide du moteur.
Plus particulièrement, l'étape de vérification de l'état actuel d'entraînement du groupe motopropulseur peut comprendre les sous étapes suivantes :
- lecture ou acquisition ou calcul d'au moins une donnée représentant une évolution du couple moteur dans les instants à venir, notamment une variation actuelle de la valeur dudit couple, et/ou une variation actuelle de la vitesse des roues, et/ou une pression dans tout ou partie d'un circuit de freinage ;
- calcul pour ledit couple d'une valeur prévisionnelle un instant situé dans un intervalle de temps prédéterminé ; et
- prise en compte de ladite valeur prévisionnelle en lieu et place de la valeur actuelle du couple, et/ou d'une combinaison de ces deux valeurs.
Il est ainsi possible de mieux adapter la loi de commande au comportement du véhicule, en particulier dans des situations transitoires et brutales, et d'obtenir un passage plus doux et/ou plus rapide. Optionnellement, le procédé peut en outre comprendre différentes vérifications et opérations de fiabilisation, seules ou combinées entre elles, qui permettent par exemple de fiabiliser l'opération globale de changement de rapport.
Ainsi, pour éviter que la boîte de vitesse ne reste dans un état de « point mort » entre deux rapports et sans motricité, l'étape d'initialisation peut comprendre :
- une lecture ou acquisition d'une donnée représentant une quantité d'énergie disponible dans un réservoir d'énergie utilisé pour l'actionnement des changements de rapports au sein de la boîte de vitesses ;
- une comparaison de ladite quantité d'énergie disponible avec une valeur prédéterminée correspondant à une quantité suffisante pour effectuer au moins un désengagement de rapport et un engagement de rapport ; - dans le cas d'une quantité d'énergie disponible insuffisante, interruption de la phase de changement de rapport.
Pour éviter de perdre du temps en cas de disfonctionnement au cours du passage de rapport, tout en gardant la motricité du véhicule, le procédé de commande peut comprendre en outre :
- d'une part un décompte d'une durée maximale autorisée pour une phase à durée limitée comprenant tout ou partie du changement de rapport et incluant au moins l'une des étapes de désengagement et d'engagement de rapport ; et
- d'autre part des étapes de :
o lecture ou acquisition de données représentant l'accomplissement effectif de ladite phase à durée limitée (par exemple un « timer » sur désengagement, et/ou un « timer » sur engagement, et/ou un « timer » sur la totalité du passage de rapport passage total), o en cas de dépassement de ladite durée maximale autorisée, interruption du changement de rapport, et optionnellement réengagement du premier rapport dans le cas où l'étape de désengagement avait déjà été effectuée.
Afin d'optimiser la plage d'utilisation du moteur, mais aussi d'éviter la détérioration du moteur par surrégime, l'étape d'initialisation peut aussi comprendre les sous-étapes suivantes :
- un calcul d'une vitesse de rotation prévue qui sera commandée lors de l'étape de commande en régime du moteur pour l'amener audit régime de consigne ;
- une comparaison du régime de consigne avec une valeur prédéterminée correspondant à au moins une limite de régime acceptable ou une plage de régime idéal, et notamment un régime maximal ; et
- dans le cas d'un régime de consigne dépassant le régime maximal acceptable, interruption de la phase de changement de rapport.
Dans le cas d'une montée de rapport, lorsqu'un ralentissement du moteur est obtenu par freinage électrique et production d'énergie, l'intensité de ce freinage est commandée et contrôlée par le calculateur de façon à obtenir une intensité de courant produite la plus proche possible d'une valeur prédéterminée correspondant à une intensité maximale acceptable, de préférence en restant inférieure à cette valeur maximale afin d'éviter d'endommager l'inverter. Le freinage du moteur est donc optimisé en fonction des possibilités du circuit électrique et en particulier de l'inverter, pour réaliser un ralentissement du moteur et donc un passage de rapports le plus court possible.
Des modes de réalisation variés de l'invention sont prévus, intégrant selon l'ensemble de leurs combinaisons possibles les différentes caractéristiques optionnelles exposées ici.
D'autres particularités et avantages de l'invention ressortiront de la description détaillée d'un mode de mise en œuvre nullement limitatif, et des dessins annexés sur lesquels :
- la FIGURE 1 est un schéma en perspective illustrant, dans un mode de réalisation de l'invention, l'implantation du groupe motopropulseur dans un véhicule de type « Formule 3 » ;
- les FIGURE 2, FIGURE 3 et FIGURE 4 sont des schémas du groupe motopropulseur sans les roues, respectivement en perspective, en vue de côté et en vue de dessus ;
- la FIGURE 5 est un schéma fonctionnel illustrant le fonctionnement du groupe motopropulseur ;
- les FIGURE 6 et FIGURE 7 sont des schémas de logigrammes illustrant le déroulement d'un passage de rapport, lors d'une montée de rapport et respectivement lors d'une descente de rapport.
Les FIGURE 1 à FIGURE 5 illustrent l'architecture du groupe motopropulseur 1 et son implantation dans un véhicule 10 de type « Formule 3 », dans un exemple du mode de réalisation actuellement préféré.
Ce groupe 1 comprend deux moteurs électriques l ia et 11b, fournissant ensemble une puissance de 250 kW.
Ces moteurs sont accouplés à une boîte 12 à deux vitesses à actionneurs pneumatiques 127, qui sont alimentés à travers des électrovannes 128 par de l'air comprimé stocké dans un réservoir haute pression 129. Ces moteurs sont accouplés selon un même axe 110, par exemple par un arbre unique ou par plusieurs arbres solidaires entre eux.
La boîte de vitesse 12 attaque un différentiel 13 relié aux deux roues arrières 102a et 102b selon un axe de sortie 130.
Plus précisément, la boîte de vitesse 12 comprend un arbre secondaire 122 longitudinal au véhicule et un arbre primaire 121 qui lui est parallèle. L'arbre primaire 121 est entraîné par exemple par un arbre d'entrée 120 transversal coaxial 110 aux moteurs l ia et 11b dont il reçoit le couple. L'arbre primaire 121 porte deux pignons 1211 et 1212 qui coopèrent avec deux pignons 1221 et 1222 portés par l'arbre secondaire 122 pour former deux rapports différents. Le passage de ces rapports est réalisé par un baladeur 123 à crabots, porté par exemple par l'arbre secondaire 122, et qui est déplacé longitudinalement par un groupe d'actionneurs 127.
Dans un mode de réalisation actuellement préféré, ce groupe d'actionneur comprend deux chambres de pression 127a et 127b disposées des deux côtés d'un piston 1237 solidaire du baladeur 123. Lorsqu'elles sont mises en pressions, ces deux chambres 127a et 127b actionnent ce piston dans un sens ou dans l'autre. L'une 127a de ces chambres agit pour déplacer le baladeur en direction du pignon 1222 de deuxième rapport et jusqu'à son engagement, et constitue un actionneur ici appelé « valve de montée ». L'autre 127b agit pour déplacer le baladeur en direction du pignon 1221 premier rapport et jusqu'à son engagement, et constitue un actionneur ici appelé valve « de descente ».
Ce groupe d'actionneur comprend en outre un actionneur dit « valve de blocage », qui est agencé pour bloquer le baladeur 123 dans une position de point neutre ou « point mort », et l'empêcher d'engager un rapport, au moins dans un des deux sens de déplacement, même lorsque l'actionneur correspondant est sous pression.
Grâce à ces trois valves, il est ainsi possible d'obliger le baladeur à s'arrêter au point neutre pendant la resynchronisation pilotée du moteur, de façon immédiate, simple et fiable.
Cette valve de blocage comprend ici une troisième chambre de pression 127c qui agit sur un piston de blocage 1270 qui est mobile entre deux positions. Dans une position dite sortie, il constitue une butée pour le piston de baladeur 1237 par l'intermédiaire d'une tige de butée 1230, agencée pour empêcher le baladeur 123 de dépasser la position du point neutre lorsqu'il est actionné vers le pignon 1222 de deuxième rapport par la valve de montée 127a. Pour obtenir ce blocage, la chambre de blocage 127c présente une surface de poussée suffisamment plus grande que celle de la valve de montée 127a. Dans une position dite rétractée, ce piston de blocage 1270 permet au baladeur 123 et à son piston 1237 de se déplacer jusqu'à l'engagement du deuxième rapport. Cet agencement permet une réalisation simple, légère et robuste pour ce groupe d'actionneurs 127, avec des interactions par butées directes et robustes qui assurent des arrêts francs et limitent les pièces mobiles.
L'ensemble du groupe motopropulseur 1 est piloté par un organe électronique de contrôle-commande 14 ou « calculateur », appelé aussi VMC (pour « Vehicle Management Contrôler »). Un logiciel de commande a été développé spécifiquement pour cette transmission et est implanté dans le VMC.
Le VMC reçoit des signaux de demande de changement de rapport du pilote depuis un combiné d'instruments 19, par exemple deux palettes 191 et 192 de commande séquentielle situées derrière le volant de direction 199.
En fonction de ces signaux, le VMC pilote les vitesses de rotation des moteurs l ia et 11b afin que les rapports de la boîte de vitesses 12 puissent être engagés au bon régime, de façon précise et rapide, et sans l'aide d'un embrayage.
Le VMC commande les moteurs électriques par des requêtes en couple ou vitesse, et commande le bloc d'électrovannes 128 de commande des actionneurs 127 en fonction de différents paramètres (vitesse des roues, pression des freins, rapport engagé, vitesse des moteurs, position de l'accélérateur, etc.) qui sont lus au fur et à mesure et traités en fonction du logiciel de commande et de paramètres prédéterminés stockés dans sa mémoire. L'air comprimé donnant l'énergie aux actionneurs 127 peut être généré par un compresseur, ou stocké dans une bonbonne haute pression 129 comme illustré ici, ou une combinaison des deux. On commande le passage de vitesses de façon « semi-automatique », dans lequel le VMC assure la bonne synchronisation de la vitesse des moteurs et du rapport à engager, et permet d'optimiser la précision et la rapidité des manœuvres.
Des performances envisagées pour ce véhicule sont de l'ordre de 260 km/h pour la vitesse et de moins de 3 secondes pour une reprise de 0 à 100 km/h.
Les FIGURE 6 et FIGURE 7 illustrent plus précisément un exemple de déroulement d'un passage de rapport, lors d'une montée de rapport et respectivement lors d'une descente de rapport, tel que commandé par le VMC.
Un rapport est ici qualifié de plus « bas » qu'un autre rapport, par opposition à « plus haut », lorsqu'il produit une vitesse de rotation d'arbre secondaire 122 qui est inférieure, pour une même vitesse de l'arbre primaire 121.
Dans le présent exemple avec une boîte à deux rapports, le rapport le plus bas est appelé rapport RI et le plus haut est appelé R2.
En FIGURE 6 est illustré un passage de rapport en « montée », c'est- à-dire pour changer de rapport vers un rapport « plus haut ». Dans le présent exemple, cette montée se fait lors d'un passage de rapport entre un premier rapport (ou rapport initial) constitué par le rapport bas RI et un deuxième rapport (ou rapport final) constitué par le rapport haut R2.
En 601, le VMC 14 reçoit du combiné 19 un signal demandant une montée de rapport, lorsque le pilote a actionné la palette 191 correspondante.
En 602, le VMC vérifie que la pression PSYS d'air comprimé dans le réservoir 129 est suffisante pour réaliser tous les actionnements nécessaires au passage de rapport complet. Si non, l'opération de passage est annulée. En 603, le VMC vérifie si la boîte n'est pas déjà sur le rapport final (R2), auquel cas l'opération est annulée.
En 604, de façon optionnelle, le VMC peut vérifier si la vitesse RPM actuelle du moteur est bien supérieure à une valeur minimale MINRPM déterminée, qui représente une vitesse au dessus de laquelle cette montée de rapport n'amènera pas le moteur plus bas qu'une plage de régime choisie comme plage d'utilisation optimale. Sinon, l'opération est annulée.
En 605, le VMC active la valve de blocage 127c, qui commande l'actionneur de blocage qui empêchera ultérieurement le baladeur de dépasser sa position dite neutre, c.-à-d . correspondant à un état de « point mort » ou « point neutre » ou aucun des deux pignons 1221 et 1222 n'est engagé.
De façon optionnelle, le procédé peut comprendre une phase de vérification du couple transmis entre le moteur et l'arbre d'entrée, pour faciliter le passage et en particulier le désengagement du rapport initial, ici RI .
Dans cette phase optionnelle, en 606, le VMC vérifie si le couple actuellement appliqué par le moteur 11 à la boîte 12 est positif ou négatif, c'est-à-dire si c'est le moteur qui entraîne la boîte ou l'inverse.
Optionnellement, cette vérification peut en outre prendre en compte d'autres facteurs en cours, qui vont affecter la valeur du couple dans les instants qui suivent, par exemple les 500 ms suivantes : la variation du couple par rapport au temps, vitesse des roues ou variation de cette vitesse, la pression dans le circuit de freinage.
En 607, un compteur temporel est démarré pour le calcul d'une temporisation pour le passage de rapport.
En 608, pour un couple positif (moteur entraînant), le VMC envoie au moteur une requête pour diminuer voire annuler le couple transmis par le moteur à la boite de vitesses, par exemple par une requête en vitesse pour le synchroniser avec la vitesse de l'arbre d'entrée 110 de la boîte.
En 610, pour un couple négatif (moteur entraîné), le VMC :
- 610a : envoie au moteur une requête, par exemple en vitesse, pour augmenter le couple généré par le moteur jusqu'à ce le couple transmis par le moteur à la boite de vitesses soit positif ; puis - 610b : envoie au moteur une requête, par exemple en vitesse, pour diminuer voire annuler le couple généré par le moteur, et ainsi diminuer voire annuler le couple transmis par le moteur à la boite de vitesses.
En particulier si le moteur n'a que peu d'inertie, cette phase optionnelle de vérification de couple peut être omise.
Dans ce cas, quelle que soit la situation de couple, le VMC démarre 607 une temporisation pour le passage et envoie alors directement au moteur une requête en couple pour diminuer voire annuler le couple généré.
Après cette phase de gestion du couple moteur, en 611, le VMC active la valve de montée 128a, qui commande l'actionneur 127a provoquant le déplacement du baladeur du rapport initial vers le rapport final. Le rapport initial (dans ce cas RI) est alors désengagé, et le baladeur 123 s'arrête au point neutre sous l'effet du piston de blocage 1270 de l'actionneur de blocage 127c.
En 612, le VMC vérifie le signal VGEAR d'un capteur d'engagement pour vérifier que sa tension indique bien que les rapports sont désengagés.
En 613, si ce n'est pas le cas et tant qu'une durée de temporisation de désengagement n'est pas écoulée, le désengagement est à nouveau commandé. En cas d'échec à l'issue de la temporisation, l'opération de passage de rapport est annulée en rétablissant 618 une commande normale de couple et en désactivant la valve de montée 619 puis la valve de blocage 620.
En 614, si le rapport initial a bien été désengagé, le VMC envoie au moteur une requête en vitesse avec un régime de consigne pour freiner le moteur et le ralentir à la vitesse correspondant au rapport final, ou à une vitesse compatible.
En 615, dès qu'il reçoit l'information que le moteur est arrivé au régime de consigne, le VMC commande l'engagement en désactivant la valve de blocage 128c, dont l'actionneur 127c retenait le baladeur 123 en positon neutre. Le rapport final (dans ce cas R2) est alors engagé sous l'effet de l'actionneur de montée 127a. De préférence, l'engagement est légèrement anticipé, en émettant la commande d'engagement à un instant où la vitesse effective du moteur est encore légèrement différente de la vitesse de consigne. Cet écart de temps permet de raccourcir le temps de passage, en profitant du décalage temporel dans la chaîne d'actionnement du baladeur pour terminer l'arrivée du moteur à sa vitesse de synchronisation . En outre, le régime de consigne et/ou le décalage de la commande d'engagement sont calculés pour que l'engagement effectif soit réalisé avant que l'arbre d'entrée 121 ne soit à la vitesse de synchronisation exacte avec l'arbre de sortie 122. Ainsi, les crabots du baladeur présentent encore une légère différence de vitesse avec le pignon 1222. Cette différence de vitesse à l'engagement facilite le crabotage, et permet en outre de raccourcir de quelques instants le temps de passage total.
En 616, le VMC vérifie le signal VGEAR d'un capteur d'engagement pour vérifier que sa tension indique bien que le rapport final R2 est effectivement engagé.
En 617, si ce n'est pas le cas et tant qu'une durée de temporisation d'engagement n'est pas écoulée, l'engagement est à nouveau commandé. En cas d'échec à l'issue de la temporisation, l'opération de passage de rapport est annulée en rétablissant 618 une commande normale de couple et en désactivant la valve de montée 619 puis la valve de blocage 620.
En 618, le VMC rétablit le mode de fonctionnement normal du moteur (c.-à-d . en couple), possiblement selon une loi d'augmentation progressive.
En 619, le VMC désactive la valve de montée 128a.
En 620, à l'issue d'une temporisation, le VMC commande la désactivation de la valve de blocage 128c, ce qui limite la consommation de pression dans les cas où le désengagement 611 n'a pas pu être obtenu (612) avant la fin de la temporisation en 613.
En 621, le passage de rapport en montée est accompli.
En FIGURE 7 est illustré un passage de rapport en « descente », c'est-à-dire pour changer de rapport vers un rapport « plus bas ». Dans le présent exemple, cette montée se fait lors d'un passage de rapport entre un premier rapport (ou rapport initial) constitué par le rapport haut R2 et un deuxième rapport (ou rapport final) constitué par le rapport bas RI .
Le fonctionnement dans ce sens ne sera décrit que dans ses différences.
En 701, le VMC 14 reçoit du combiné 19 un signal demandant une descente de rapport, lorsque le pilote a actionné la palette 192 correspondante.
En 702, le VMC vérifie que la pression PSYS d'air comprimé dans le réservoir 129 est suffisante. Si non, l'opération de passage est annulée.
En 703, le VMC vérifie si la boîte n'est pas déjà sur le rapport final
(RI), auquel cas l'opération est annulée.
En 704, le VMC vérifie si la vitesse RPM actuelle du moteur est bien inférieure à une valeur maximale MAXRPM déterminée, qui représente une vitesse en dessous de laquelle cette descente de rapport n'amènera pas le moteur plus haut qu'une plage de régime choisie comme plage d'utilisation optimale, voire de sécurité pour le moteur. Sinon, l'opération est annulée.
En 705, le VMC active la valve de montée 128a, dont l'actionneur
127a vient alors maintenir le piston 1237 et sa tige de butée 1230 en butée sous pression contre le piston de blocage 1270.
En 706 à 710, le VMC vérifie (optionnellement) le couple actuellement appliqué par le moteur à la boîte, lance le compteur temporel et commande l'ajustement de couple permettant le désengagement dans de bonnes conditions.
En 711, après l'écoulement d'une temporisation, le VMC active la valve de blocage 128c, qui commande le déplacement de l'actionneur de blocage 127c vers sa position sortie. La surface de poussée sur le piston de blocage 1270 étant supérieure à celle du piston de baladeur 1237, cette commande suffit à déplacer le baladeur, et ainsi à désengager le rapport initial. Le rapport initial (dans ce cas R2) est alors désengagé. Le mouvement de l'actionneur de blocage s'arrêtant au niveau du point neutre, le baladeur 123 s'arrête au point neutre sous l'effet de l'actionneur de montée 127a qui est déjà en pression sur son piston 1237.
Ce blocage « forcé » au point neutre par l'actionneur de montée 127a évite que l'inertie du baladeur 123 ne l'entraîne au delà du point neutre lors de la commande de désengagement par l'actionneur de blocage. Il permet ainsi une meilleure précision, même lors d'un passage très rapide.
En 712-713, le VMC vérifie le signal VGEAR d'un capteur d'engagement pour vérifier que sa tension indique bien que les rapports sont désengagés. En cas d'échec, il commande à nouveau le désengagement jusqu'à écoulement d'une temporisation de désengagement, ou annule l'opération à l'issue de la temporisation.
En 714, si le rapport initial a bien été désengagé, le VMC désactive la valve de montée, qui a terminé son rôle d'arrêt au point neutre.
En 715, à l'issue d'une temporisation garantissant que l'actionneur de montée 127a n'est plus en pression, le VMC désactive la valve de blocage, qui a terminé son rôle de désengagement.
En 716, le VMC envoie au moteur une requête en vitesse avec un régime de consigne pour accélérer le moteur à la vitesse correspondant au rapport final (ici le rapport RI), ou à une vitesse compatible.
En 717, après arrivée du moteur à son régime de consigne (ou légèrement avant comme décrit précédemment), le VMC active la valve de descente 128b, qui commande l'actionneur de descente 127b lequel déplace alors le baladeur 123 depuis le point neutre vers le rapport final . Le rapport final (dans ce cas RI) est alors engagé.
En 718, le VMC vérifie le signal VGEAR d'un capteur d'engagement pour vérifier que sa tension indique bien que le rapport final est engagé.
En 719, si ce n'est pas le cas et tant qu'une durée de temporisation d'engagement n'est pas écoulée, l'engagement est à nouveau commandé. En cas d'échec à l'issue de la temporisation, l'opération de passage de rapport est annulée.
En 720, le VMC rétablit une commande normale de couple et désactive la valve de descente (en 721).
Le VMC envoie alors une commande de désactivation de la valve de blocage (en 722) puis de la valve de montée ce qui limite la consommation de pression dans les cas où le désengagement 711 n'a pas pu être obtenu (712) avant la fin de la temporisation en 713.
En 723, le passage de rapport en descente est accompli. On voit que ce mode de déroulement permet de réaliser les passages de rapport de façon rapide, suffisamment précise pour ne pas endommager la mécanique quelles que soient les conditions extérieures au moment du passage de rapport. Il permet aussi de minimiser la durée pendant laquelle le véhicule est sans propulsion même en cas d'échec de tout ou partie de la manœuvre, et donc d'optimiser la fiabilité et les performances globales du véhicule au cours d'une utilisation en course.
Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention.

Claims

REVENDICATIONS
1. Procédé de gestion de la propulsion d'un véhicule électrique de compétition à propulsion mono-énergie comprenant au moins un moteur (11) électrique entraînant une ou plusieurs roues (102a, 102b) propulsives par une chaîne cinématique globale de type mécanique sans glissement, caractérisé
d'une part en ce qu'il comprend une commande, par des moyens électroniques de calcul formant des moyens de commande (14), d'une pluralité de changements de rapports en montée et en descente au sein d'une boîte de vitesses (12) fournissant au moins deux rapports (RI, R2) par crabotage non synchronisé, entraînée de manière permanente par le moteur à travers une chaîne cinématique amont permanente et entraînant les roues à travers une chaîne cinématique aval permanente ; et
d'autre part en ce que la commande de chacun desdits changements de rapport comprend les étapes suivantes :
- au cours d'une première phase de propulsion sur un premier rapport générant dans la chaîne cinématique aval une vitesse de rotation dite de sortie, contrôle dudit moteur selon une logique d'asservissement en couple par lesdits moyens de commande ;
- à réception d'un signal de demande de changement de rapport, étape d'initialisation (602-612, 702-715) d'une phase de changement de rapport, incluant
o d'une part un traitement de données représentant ladite vitesse de rotation de sortie de façon à calculer un régime de consigne pour le moteur, lequel régime de consigne correspond pour la chaîne cinématique amont à une vitesse de rotation dite d'entrée compatible avec ladite vitesse de rotation de sortie pour le crabotage d'un deuxième rapport, et
o d'autre part un envoi d'une commande (611, 711) de désengagement dudit premier rapport, laquelle déclenche les sous-étapes suivantes (606-610, 706-710) :
- lecture ou acquisition d'au moins une donnée représentant l'état actuel d'entraînement du groupe motopropulseur, et comprenant la valeur actuelle du couple appliqué par le moteur à la boîte de vitesse pour vérifier (606, 706) si le moteur est actuellement entraînant ou entraîné,
- dans le cas où le moteur est entraîné, contrôle du moteur (610a, 710a) pour amener ledit couple transmis à une valeur positive et supérieure à une valeur prédéterminée,
- contrôle du moteur (608, 610b, 708, 710b) pour ramener ledit couple transmis à une valeur nulle ou inférieure à une valeur prédéterminée, et
- envoi (611, 711) d'une commande de désengagement du premier rapport ;
- contrôle (614, 716) du moteur selon une logique d'asservissement en régime pour l'amener audit régime de consigne ;
- envoi (615,717) d'une commande d'engagement dudit deuxième rapport ;
- initialisation (618, 720) d'une deuxième phase de propulsion sur ledit deuxième rapport, incluant un contrôle du moteur selon une logique d'asservissement en couple.
2. Procédé selon la revendication précédente, caractérisé en ce que l'étape de vérification de l'état actuel d'entraînement du groupe motopropulseur comprenant :
- lecture ou acquisition ou calcul d'au moins une donnée représentant une évolution du couple moteur dans les instants à venir, notamment une variation actuelle de la valeur dudit couple, et/ou une variation actuelle de la vitesse des roues, et/ou une pression dans tout ou partie d'un circuit de freinage ;
- calcul pour ledit couple d'une valeur prévisionnelle un instant situé dans un intervalle de temps prédéterminé ; et
- prise en compte (606, 706) de ladite valeur prévisionnelle en lieu et place de la valeur actuelle du couple, et/ou d'une combinaison de ces deux valeurs.
3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape d'initialisation comprend :
- une lecture ou acquisition d'une donnée représentant une quantité d'énergie disponible dans un réservoir d'énergie utilisé pour l'actionnement des changements de rapports au sein de la boîte de vitesses ;
- une comparaison (602, 702) de ladite quantité d'énergie disponible avec une valeur prédéterminée correspondant à une quantité suffisante pour effectuer au moins un désengagement de rapport et un engagement de rapport ;
- dans le cas d'une quantité d'énergie disponible insuffisante, interruption de la phase de changement de rapport.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre
d'une part un décompte (607, 707) d'une durée maximale autorisée pour une phase à durée limitée comprenant tout ou partie du changement de rapport et incluant au moins l'une des étapes de désengagement (611, 711) et d'engagement (615, 717) de rapport ; et
d'autre part des étapes de :
- lecture ou acquisition (612, 616, 712, 718) de données représentant l'accomplissement effectif de ladite phase à durée limitée, et
- en cas de dépassement (613, 617, 713, 719) de ladite durée maximale autorisée, interruption (618-621, 720-723) du changement de rapport.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape d'initialisation comprend :
- un calcul d'une vitesse de rotation prévue qui sera commandée lors de l'étape de commande en régime du moteur pour l'amener audit régime de consigne ;
- une comparaison (704) du régime de consigne avec une valeur prédéterminée correspondant à au moins une limite de régime acceptable ; et - dans le cas d'un régime de consigne dépassant le régime maximal acceptable, interruption de la phase de changement de rapport.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape (614) de commande en régime du moteur pour l'amener audit régime de consigne, dans le cas d'une montée de rapports, comprend un freinage du moteur par contrôle d'un dispositif de freinage électromagnétique du véhicule par récupération d'énergie électrique.
7. Procédé selon la revendication précédente, caractérisé en ce que le freinage du moteur (614) est contrôlé de façon à obtenir une intensité de courant produite égale à ou la plus proche possible d'une valeur prédéterminée correspondant à une intensité maximale acceptable, fournissant ainsi un freinage du moteur le plus rapide possible sans dépasser ladite intensité maximale.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le signal de demande de changement (601, 701) est issu d'un dispositif de commande manuelle à action séquentielle (191, 192) représentant une demande de changement de rapport dans un sens ou dans l'autre, et en ce que la phase d'initialisation comprend :
- une vérification (603, 703) de l'identité du premier rapport et une vérification de la disponibilité d'un deuxième rapport dans le sens demandé par ledit signal de demande de changement de rapport ;
- dans le cas de non disponibilité dudit deuxième rapport, interruption de la phase de changement de rapport.
9. Véhicule électrique de compétition (10) à propulsion mono-énergie, ou ensemble motopropulseur (1) pour un tel véhicule,
comprenant au moins un moteur électrique (11) entraînant une ou plusieurs roues propulsives (102a, 102b) par une chaîne cinématique mécanique sans glissement, qui comprend une boîte de vitesses (12) à au moins deux rapports (RI, R2) non synchronisés, entraînée en amont par ledit moteur à travers une chaîne cinématique permanente et entraînant en aval lesdites roues à travers une chaîne cinématique permanente aval ; et comprenant des moyens électroniques de commande (14) agencés pour commander sélectivement ledit moteur :
- (618, 720) selon un asservissement en couple au cours d'une période de propulsion sans changement de rapport, et
- (614, 716) selon un asservissement en régime lors d'une phase de changement de rapport entre deux rapports (RI, R2), aussi bien dans un sens que dans l'autre ;
caractérisé en ce que lesdits moyens de commande sont agencés pour mettre en œuvre un procédé selon l'une quelconque des revendications 1 à 8.
10. Système selon la revendication précédente, caractérisé en ce qu'il comprend des moyens de freinage du véhicule par récupération d'énergie, lesquels moyens sont commandés pour ralentir le moteur lors d'une phase de changement de rapport dans le sens d'une montée de rapports.
11. Système selon l'une quelconque des revendications 9 à 10, caractérisé en ce qu'il comprend plusieurs moteurs électriques (l ia, 11b) dont les arbres sont reliés entre eux de façon solidaire et/ou entraînent une boîte de vitesses (12) du type à trains de pignons (1211, 1222, 1221, 1222) parallèles et à axes (121, 122) fixes.
12. Système selon l'une quelconque des revendications 9 à 11, caractérisé en ce qu'il comprend deux moteurs électriques (l ia, 11b) identiques entraînant chacun l'une des deux extrémités d'un arbre d'entrée (120) entraînant la boîte de vitesse, laquelle présente un arbre de sortie (122) qui est transversal audit arbre d'entrée et qui entraîne les roues par l'intermédiaire d'un différentiel (13).
13. Système selon l'une quelconque des revendications 9 à 12, caractérisé en ce que la boîte de vitesses (12) comprend des moyens de changement (127) de rapports actionnés par un circuit pneumatique (129) commandé par une ou plusieurs électrovannes (128).
PCT/FR2012/052603 2011-11-17 2012-11-13 Groupe motopropulseur pour vehicule electrique de competition et procede de commande WO2013072609A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1160477A FR2982823A1 (fr) 2011-11-17 2011-11-17 Groupe motopropulseur pour vehicule electrique de competition et procede de commande.
FR1160477 2011-11-17

Publications (1)

Publication Number Publication Date
WO2013072609A1 true WO2013072609A1 (fr) 2013-05-23

Family

ID=47291119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/052603 WO2013072609A1 (fr) 2011-11-17 2012-11-13 Groupe motopropulseur pour vehicule electrique de competition et procede de commande

Country Status (2)

Country Link
FR (1) FR2982823A1 (fr)
WO (1) WO2013072609A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3514410A1 (fr) * 2018-01-17 2019-07-24 Dana Italia S.r.L. Transmission électrique et procédé de changement de vitesse
US10851879B2 (en) 2016-03-06 2020-12-01 Dana Belgium N.V. Driveline for a vehicle including an electric drive motor and a powershift transmission having at least two transmission stages
WO2021084107A1 (fr) 2019-10-30 2021-05-06 Sala Drive Gmbh Entraînement, élément d'accouplement et procédé pour faire fonctionner un entraînement
EP3676512B1 (fr) * 2017-10-16 2022-03-23 Neapco Intellectual Property Holdings, LLC Chaîne cinématique comprenant un ensemble de réducteur à extrémité variable
WO2024041817A1 (fr) * 2022-08-22 2024-02-29 Robert Bosch Gmbh Système d'alimentation de véhicule et son unité de commande d'engrenage et procédé

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3019673A1 (fr) * 2017-10-06 2019-04-06 Proterra Inc. Commande du groupe motopropulseur d'un vehicule

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2701679A1 (fr) * 1993-02-18 1994-08-26 Steyr Daimler Puch Ag Dispositif d'entraînement pour voiture électrique ou électromobile et procédé pour passer les rapports.
US5827148A (en) * 1996-01-23 1998-10-27 Seiko Epson Corporation Variable speed drive unit for electric vehicle and variable speed driving method
DE102009027419A1 (de) * 2009-07-02 2011-01-05 Robert Bosch Gmbh Elektrofahrzeug

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2701679A1 (fr) * 1993-02-18 1994-08-26 Steyr Daimler Puch Ag Dispositif d'entraînement pour voiture électrique ou électromobile et procédé pour passer les rapports.
US5827148A (en) * 1996-01-23 1998-10-27 Seiko Epson Corporation Variable speed drive unit for electric vehicle and variable speed driving method
DE102009027419A1 (de) * 2009-07-02 2011-01-05 Robert Bosch Gmbh Elektrofahrzeug

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10851879B2 (en) 2016-03-06 2020-12-01 Dana Belgium N.V. Driveline for a vehicle including an electric drive motor and a powershift transmission having at least two transmission stages
US11236809B2 (en) 2016-03-06 2022-02-01 Dana Belgium N.V. Driveline for a vehicle including an electric drive motor and a powershift transmission having at least two transmission stages
EP3676512B1 (fr) * 2017-10-16 2022-03-23 Neapco Intellectual Property Holdings, LLC Chaîne cinématique comprenant un ensemble de réducteur à extrémité variable
US11299043B2 (en) 2017-10-16 2022-04-12 Neapco Intellectual Property Holdings, Llc Driveline including a variable end reducer assembly
EP4012226A1 (fr) * 2017-10-16 2022-06-15 Neapco Intellectual Property Holdings, LLC Chaîne cinématique comprenant un ensemble réducteur à extrémité variable
EP3514410A1 (fr) * 2018-01-17 2019-07-24 Dana Italia S.r.L. Transmission électrique et procédé de changement de vitesse
WO2019141684A1 (fr) * 2018-01-17 2019-07-25 Dana Italia S.R.L. Chaîne cinématique électrique et procédé de changement de vitesses
US11242062B2 (en) 2018-01-17 2022-02-08 Dana Italia S.R.L. Electric driveline and method of shifting gears
WO2021084107A1 (fr) 2019-10-30 2021-05-06 Sala Drive Gmbh Entraînement, élément d'accouplement et procédé pour faire fonctionner un entraînement
WO2021083502A1 (fr) 2019-10-30 2021-05-06 Sala Drive Gmbh Ensemble d'entraînement, élément d'accouplement et procédé de fonctionnement d'ensemble d'entraînement
US11959546B2 (en) 2019-10-30 2024-04-16 Sala Drive Gmbh Drive, coupling element and method for operating a drive
WO2024041817A1 (fr) * 2022-08-22 2024-02-29 Robert Bosch Gmbh Système d'alimentation de véhicule et son unité de commande d'engrenage et procédé

Also Published As

Publication number Publication date
FR2982823A1 (fr) 2013-05-24

Similar Documents

Publication Publication Date Title
WO2013072609A1 (fr) Groupe motopropulseur pour vehicule electrique de competition et procede de commande
FR2976526A1 (fr) Groupe motopropulseur
EP3710732B1 (fr) Procédé et système de commande d'une transmission automatique sans embrayage pour véhicule automobile à propulsion hybride
FR2935660A1 (fr) Procede et dispositif de compensation de rupture du couple fourni par le groupe motopropulseur d'un vehicule hybride au cours d'un changement de vitesse
WO2015155429A1 (fr) Procede de commande d'un actionneur de passage de vitesses et actionneur de passage correspondant
EP2834541A1 (fr) Procede de synchronisation d'un pignon sur un arbre de boite de vitesses
WO2012107679A1 (fr) Dispositif et procédé pour la commande d'une boite de vitesses a double embrayage
EP2928715B1 (fr) Procede de controle de couples lors du changement de rapport d'une boite de vitesses d'un vehicule hybride
EP1983228A1 (fr) Procédé d'optimisation de pilotage des synchroniseurs d'une boîte de vitesses lors d'un changement de rapport de vitesse
FR2992040A1 (fr) Procede et dispositif de controle de la vitesse engagee d'une boite de vitesses automatisee de vehicule, en fonction d'une acceleration demandee par un systeme de controle de vitesse
EP2098755B1 (fr) Procédé de passage descendant avec couple moteur positif, pour boîte de vitesses à crabots
EP3580103A1 (fr) Procede d'elaboration de la consigne de couple aux actionneurs d'un groupe motopropulseur hybride
EP2996916B1 (fr) Procédé de commande d'un groupe moto propulseur a moteur thermique et a boite de vitesses automatisée
FR2976036A1 (fr) Procede d'apprentissage du point de lechage d'un embrayage d'une boite a double embrayage avec detection des jeux de boite de vitesses
EP2098753B1 (fr) Procédé de passage montant avec couple moteur négatif, pour boîte de vitesses à crabots
EP2098754B1 (fr) Procédé de passage descendant avec couple moteur négatif, pour boîte de vitesses à crabots
EP2098752B1 (fr) Procédé de passage montant avec couple moteur positif, pour boîte de vitesses à crabots
WO2011036394A1 (fr) Dispositif de synchronisation et de solidarisation des arbres primaires d'une boite de vitesses a double embrayage
FR3018227A1 (fr) Transmission hybride avec volant d'inertie
WO2021233704A1 (fr) Procédé de commande d'un groupe motopropulseur pour véhicule automobile à transmission électrique hybride
FR2956085A1 (fr) Procede de passage descendant pour boite de vitesses a crabots
WO2008074955A1 (fr) Procede de changement de rapport a crabotage optimise dans une boite de vitesses, et boite de vitesses notamment pour vehicule hybride
WO2013017776A1 (fr) Dispositif de commande hydraulique d'une boite de vitesses, procede et boîte de vitesses associes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12795524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12795524

Country of ref document: EP

Kind code of ref document: A1