WO2013072456A2 - Windenergieanlagen-rotorblatt und verfahren zum enteisen eines windenergieanlagen-rotorblattes - Google Patents
Windenergieanlagen-rotorblatt und verfahren zum enteisen eines windenergieanlagen-rotorblattes Download PDFInfo
- Publication number
- WO2013072456A2 WO2013072456A2 PCT/EP2012/072822 EP2012072822W WO2013072456A2 WO 2013072456 A2 WO2013072456 A2 WO 2013072456A2 EP 2012072822 W EP2012072822 W EP 2012072822W WO 2013072456 A2 WO2013072456 A2 WO 2013072456A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor blade
- wind turbine
- region
- trailing edge
- nose
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 238000007664 blowing Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/0608—Rotors characterised by their aerodynamic shape
- F03D1/0633—Rotors characterised by their aerodynamic shape of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/40—Ice detection; De-icing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
- F03D1/0675—Rotors characterised by their construction elements of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/20—Heat transfer, e.g. cooling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention relates to a wind turbine rotor blade and a method for deicing a wind turbine rotor blade.
- Wind turbines are increasingly being installed in areas where icing of the rotor blades of the wind turbine can occur. Icing the rotor blades of the wind turbine is not only dangerous, but also reduces the yield of the wind turbine. Therefore, many methods for early detection of icing of a rotor blade and for deicing a rotor blade are known. An icing of the rotor blade can be reduced or reduced, for example, by heating the rotor blade.
- Yield reduction occurs with icing of a rotor blade, especially in the nose area (i.e., the forward portion of the rotor blades). Therefore, many methods have been proposed for de-icing the nose portion of the rotor blades of wind turbines.
- German Patent and Trademark Office has in the priority application for the present application researched the following documents: DE 10 2010 051 296 A1; DE 10 2010 051 297 A1; DE 10 2010 051 293 A1; DE 10 2010 030 472 A1; DE 10 2005 034 131 A1; DE 195 28 862 A1 and DE 200 14 238 U1.
- a wind turbine rotor blade is provided with a rotor blade nose, a rotor blade trailing edge, a rotor blade root area for attachment of the rotor blade to a hub of a wind turbine and a rotor blade tip.
- the rotor blade extends from the rotor blade root region along a longitudinal axis to the rotor blade tip.
- the rotor blade further has an air distribution unit with an actuator for directing an air flow into the rotor blade nose region and / or a rotor blade trailing edge region.
- the air distribution unit is configured in a first operating mode such that an air flow is conducted into the rotor blade nose region. In a second operating mode, the air distribution unit is configured such that an air flow is conducted at least partially into the rotor blade trailing edge region.
- the air distribution unit can direct the air flow either to the rotor blade nose region or to the rotor blade trailing edge region, whereby a targeted deicing of the rotor blade or parts thereof is possible.
- at least a first cut along the longitudinal direction along the rotor blade from the rotor blade root area to the rotor blade tip is provided. By at least one web, the rotor blade interior is divided into different volumes, which are heated separately.
- the at least one web in the region of the rotor blade tip is configured such that an air flow in the rotor blade root nose region can be returned to the rotor blade root area along the at least one first web or between a first and second web.
- a closable opening of the first and / or second web can be provided in the area of the rotor blade tip, so that when the opening is open, the air flow can flow back through the trailing edge region back to the rotor blade root area and thus heat the trailing edge region.
- the air distribution unit has a first section for receiving heated air, a second section for directing the heated air flow into the region of the rotor blade trailing edge and a third section for directing the heated air flow into the rotor blade nose region.
- the rotor blade is provided for a wind turbine with at least one megawatt.
- the invention also relates to a method for deicing a wind turbine rotor blade.
- the wind turbine rotor blade has a rotor blade nose area, a rotor blade trailing edge, a rotor blade tip, and a rotor blade root area.
- a heated air flow is introduced into the rotor blade nose region, and in a second operating mode, a heated air flow is at least partially directed into the rotor blade trailing edge region of the wind turbine.
- the invention also relates to a wind energy plant with a rotor blade described above.
- the invention relates to the idea of reducing or avoiding not only icing in the nose region of the rotor blade, but also icing of the trailing edge region for improving the operation of the wind energy plant.
- a full-surface icing of the rotor blades ie also the rotor blade rear box, can lead to impairment of the operation of the wind turbine. Even if, for example, the hub area is heated up to such an extent by rotor blade heating that icing no longer exists there, it may still be that icing is still present in the region of the rotor blade rear box or the trailing edge area.
- the invention relates to the idea of heating not only the nose region of the rotor blade, but also the trailing edge region of the rotor blade, in order to produce a seal. avoidance. This is particularly important for wind turbines in the multi-megawatt range (ie> 1 megawatt).
- the invention relates to a wind turbine rotor blade, is injected in the warm or heated air, for example by a fan in the rotor blade and in particular along the nose region.
- webs may extend along the longitudinal direction of the rotor blade.
- an air guiding or air distribution unit is provided with an actuator, which can guide the air flow in the nose region or only to the rotor blade trailing edge region. This is advantageous because it is possible to dispense with a separate fan and an additional heating coil for blowing heated air through the trailing edge region.
- a heating of the trailing edge region can be performed by the adjustment of the actuator only in case of need and only as long as needed.
- FIG. 1 shows a schematic representation of a wind turbine rotor blade according to a first embodiment
- Fig. 2 shows a schematic representation of a wind turbine rotor blade according to a second embodiment
- Fig. 3 shows a schematic representation of a wind turbine according to the invention.
- Fig. 1 shows a schematic representation of a wind turbine rotor blade according to the invention.
- the rotor blade 10 has a rotor blade nose region 11 and a rotor blade trailing edge region 12.
- the rotor blade 10 also has a rotor blade zel Suite 14 and a rotor blade tip 13 on.
- the rotor blade 10 extends along its longitudinal direction from the rotor blade root 14 to the rotor blade tip 13.
- the first and second webs 210, 200 may be disposed substantially parallel to each other and between the pressure side and the suction side of the rotor blade.
- the internal volume of the rotor blade can be divided into three volumes, namely a volume between the two webs, a volume between a web and the rotor blade nose area, and a third volume between a web and the rotor blade trailing edge.
- the wind turbine rotor blade has an air flow distribution unit or guide unit 500.
- the rotor blade may include a diffuser 300 and a heater 400.
- a fan 600 may be connected, which can generate an air flow, which can flow through the diffuser 300 and the heater 400.
- the air distribution unit 500 serves to direct the heated air flow either along the rotor blade nose area 11 and / or along the rotor blade trailing edge 12 in order to deice the rotor blade.
- Fig. 2 shows a schematic representation of a wind turbine rotor blade according to a second embodiment.
- the rotor blade 10 has a rotor blade nose region 11, a rotor blade trailing edge 12, a rotor blade tip 13 and a rotor blade root region 14.
- the rotor blade can be connected by means of its rotor blade root region 14 to a hub 90 of a wind energy plant.
- the rotor blade 10 extends along its longitudinal direction from the rotor blade root region 14 to the rotor blade tip 13.
- the rotor blade blade has a rotor blade nose region 11 and a rotor blade trailing edge region or a rotor blade trailing edge region 12.
- a first and second web 200, 210 may be provided at least partially along the longitudinal direction of the rotor blade 10, so that the internal volume of the rotor blade can be divided into three volumes.
- the rotor blade root area 14 can be closed by a closing unit 700.
- the rotor blade may have a diffuser 300, a heating register 400, an airflow distribution unit 500.
- the airflow distribution unit 500 may include a first portion 510 that may be coupled to the heating register 400.
- the airflow distribution unit 500 further includes a second portion 520 and a third section 530. The second section 520 serves to direct the heated air flow into the region of the rotor blade trailing edge 12.
- the third section 530 of the air flow distribution unit 500 serves to direct the heated air flow at least partially along the rotor blade nose 1 1.
- the air distribution unit 500 further comprises an actuator 540, which can either open or close the second or third section 520, 530, so that an air flow 610, 620 through the second and / or third section 520, 530 is made possible. Alternatively, the actuator may also be partially opened so that the airflow may flow into both the nose region and the trailing edge region.
- a fan 800 can be provided, which can inject an air flow into the diffuser 300. The fan 800 may also be provided in the hub 90 of the wind turbine.
- the invention is based on the idea of using already existing components for de-icing a rotor blade of a wind power plant not only for de-icing the rotor blade nose area, but also for de-icing the rotor blade trailing edge 12. This is done by the heated air flow can be passed through an air distribution unit 500 not only in the rotor blade nose area 1 1, but also or only in the region of the rotor blade trailing edge.
- the control of the wind turbine can be used to de-ice the rotor blade trailing edge or the region of the rotor blade trailing edge by means of a heated air flow.
- a heated air flow for this purpose, only an air flow deflection unit or an air distribution unit 500 with an actuator 540 is used.
- the control of the wind turbine can in a first mode of a heated air flow in the rotor blade nose area 1 1 conduct.
- the heated air flow can be conducted through the air distribution unit into a region of the rotor blade trailing edge 12 instead of into the rotor blade nose region.
- the rear box can be heated and thus de-iced.
- the rotor blade trailing edge can thus be de-iced if necessary. If de-icing of the rotor blade inner edge is not required, the control of the wind turbine remains in the first mode and blows heated air into the rotor blade nose region.
- the actuator 540 may occupy a first position in the air distribution unit 500, ie, the airflow through the second portion 520 is avoided and the entire airflow may flow through the third portion 530 along the blade nose area to the rotor blade tip 13. Subsequently, the air flow between the first and second web 100, 200 again flow into the rotor blade root area 14, so that a cycle can arise.
- the rotor blade backbox portion may be separated from the heated airflow by the first web 210 and the actuator 540 so that only the rotor blade nose portion is heated.
- the energy loss of the back-flowing air is minimized and the maximum energy can be supplied at maximum surface in the rotor blade nose area.
- the actuator 540 in the second mode, may be adjusted such that airflow through the third portion 530 into the rotor blade nose area is avoided.
- the air flow heated by the fan 800 and by the heater 400 can flow through the second portion 520 in the rear portion toward the rotor blade tip 13.
- a perforation or openings in the webs can be provided in the region of the rotor blade tip so that the air flow can then flow back to the rotor blade root region 14 between the first and second webs 200, 210.
- the present invention is advantageous because de-icing of a rotor blade can be substantially improved merely by adding an air distribution unit.
- the actuator of the air distribution unit of the control of the wind turbine can be added a new degree of freedom.
- the rotor blades according to the invention are particularly suitable to be used in highly icing-prone areas. According to the invention, the entire rotor blade can be heated as needed and successively by an air flow.
- a rear box can be provided at the rotor blade trailing edge.
- a rear box can be mounted as a separate component on the rotor blade root-near region of the trailing edge. If the rear box is hollow, then the rear box may be heated in the second operating condition when the actuator of the air distribution unit is adjusted so that the heated air flows through the second portion 520 into the trailing edge region.
- the rotor blade according to the invention can optionally have a closable opening 900 in or on the first and / or second web in the region of the rotor blade tip.
- an air flow 620 which extends along the area of the rotor blade nose, can be conducted into the volume between the first and second web or into the volume between the first web 210 and the rotor blade trailing edge.
- the airflow 620 will also flow back through the volume between the first land 220 and the rotor blade trailing edge 12 back into the rotor blade root area.
- the air flow which flows along the rotor blade trailing edge will already have cooled (since it has already flowed along the rotor blade nose area), the air flow will nevertheless be able to contribute to heating the rotor blade trailing edge.
- one or two closable openings 710, 720 may be provided in or on a closing unit 700 for closing the rotor blade root area of the rotor blade.
- a closing unit 700 for closing the rotor blade root area of the rotor blade.
- Fig. 3 shows a schematic representation of a wind turbine according to the invention.
- the wind energy plant 100 has a tower 102 and a pod 104.
- an aerodynamic rotor 106 with three rotor blades 108 and a spinner 1 10 is arranged on the nacelle 104.
- the rotor 106 is set in rotation by the wind in rotation and thereby drives a generator in the nacelle 104 at.
- the rotor blades 108 may correspond to the rotor blades 10 according to FIGS. 1 and 2.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12790856.4A EP2780586A2 (de) | 2011-11-17 | 2012-11-16 | Windenergieanlagen-rotorblatt und verfahren zum enteisen eines windenergieanlagen-rotorblattes |
JP2014541679A JP2014533792A (ja) | 2011-11-17 | 2012-11-16 | 風力発電装置のロータブレード及び風力発電装置のロータブレードの除氷方法 |
RU2014124337/06A RU2014124337A (ru) | 2011-11-17 | 2012-11-16 | Лопасть винта ветроэнергетической установки и способ устранения обледенения лопасти винта ветроэнергетической установки |
MX2014005921A MX2014005921A (es) | 2011-11-17 | 2012-11-16 | Paleta de rotor para instalaciones de energia eolica y procedimiento para descongelar una paleta de rotor de una instalacion de energia eolica. |
US14/358,997 US20140322027A1 (en) | 2011-11-17 | 2012-11-16 | Wind turbine rotor blade and a method for deicing a wind turbine rotor blade |
CA2854238A CA2854238A1 (en) | 2011-11-17 | 2012-11-16 | Wind turbine rotor blade and a method for deicing a wind turbine rotor blade |
BR112014011767A BR112014011767A2 (pt) | 2011-11-17 | 2012-11-16 | pá de rotor de instalação de energia eólica, método para descongelamento de uma pá de rotor de instalação de energia eólica, e, instalação de energia eólica |
AU2012338754A AU2012338754A1 (en) | 2011-11-17 | 2012-11-16 | Wind turbine rotor blade and method for deicing a wind turbine rotor blade |
CN201280056782.XA CN103958890A (zh) | 2011-11-17 | 2012-11-16 | 风能设备转子叶片和用于给风能设备转子叶片除冰的方法 |
KR1020147016464A KR20140089610A (ko) | 2011-11-17 | 2012-11-16 | 풍력 발전 설비용 로터 블레이드, 및 풍력 발전 설비용 로터 블레이드의 제빙 방법 |
ZA2014/03867A ZA201403867B (en) | 2011-11-17 | 2014-05-27 | Wind turbine rotor blade and method for deicing a wind turbine rotor blade |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011086603A DE102011086603A1 (de) | 2011-11-17 | 2011-11-17 | Windenergieanlagen-Rotorblatt und Verfahren zum Enteisen eines Windenergieanlagen-Rotorblattes |
DE102011086603.5 | 2011-11-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2013072456A2 true WO2013072456A2 (de) | 2013-05-23 |
WO2013072456A3 WO2013072456A3 (de) | 2013-07-18 |
Family
ID=47222067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/072822 WO2013072456A2 (de) | 2011-11-17 | 2012-11-16 | Windenergieanlagen-rotorblatt und verfahren zum enteisen eines windenergieanlagen-rotorblattes |
Country Status (16)
Country | Link |
---|---|
US (1) | US20140322027A1 (de) |
EP (1) | EP2780586A2 (de) |
JP (1) | JP2014533792A (de) |
KR (1) | KR20140089610A (de) |
CN (1) | CN103958890A (de) |
AR (1) | AR088892A1 (de) |
AU (1) | AU2012338754A1 (de) |
BR (1) | BR112014011767A2 (de) |
CA (1) | CA2854238A1 (de) |
CL (1) | CL2014001284A1 (de) |
DE (1) | DE102011086603A1 (de) |
MX (1) | MX2014005921A (de) |
RU (1) | RU2014124337A (de) |
TW (1) | TW201335479A (de) |
WO (1) | WO2013072456A2 (de) |
ZA (1) | ZA201403867B (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3015707B1 (de) | 2014-10-31 | 2018-07-04 | Senvion GmbH | Windenergieanlage und verfahren zum enteisen einer windenergieanlage |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013211520A1 (de) * | 2013-06-19 | 2014-12-24 | Senvion Se | Rotorblattenteisung |
DE102014204857A1 (de) | 2014-03-17 | 2015-09-17 | Wobben Properties Gmbh | Windenergieanlagen-Rotorblatt und Heizeinheit für ein Windenergieanlagen-Rotorblatt |
CN105626370B (zh) * | 2014-10-30 | 2018-02-16 | 株洲时代新材料科技股份有限公司 | 一种抗冰风电叶片结构 |
DE102015000636A1 (de) * | 2015-01-22 | 2016-07-28 | Senvion Gmbh | Verfahren zum Enteisen eines Rotorblatts einer Windenergieanlage |
DE102015112643A1 (de) | 2015-07-31 | 2017-02-02 | Wobben Properties Gmbh | Windenergieanlagen-Rotorblatt |
CN109281807B (zh) * | 2018-10-23 | 2020-10-27 | 株洲时代新材料科技股份有限公司 | 一种风电叶片除冰系统及其控制方法 |
EP3795824A1 (de) * | 2019-09-18 | 2021-03-24 | General Electric Company | System und verfahren zur minderung von wirbelablösungsvibrationen oder stillstandinduzierten vibrationen an einem rotorblatt einer windturbine im stillstand |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19528862A1 (de) | 1995-08-05 | 1997-02-06 | Aloys Wobben | Verfahren zum Enteisen eines Rotorblattes einer Windenergieanlage sowie zur Durchführung des Verfahrens geeignetes Rotorblatt |
DE20014238U1 (de) | 2000-08-17 | 2001-06-07 | Wonner, Matthias, Dipl.-Ing., 70190 Stuttgart | Heizsystem zur Enteisung von Rotorblättern von Windkraftanlagen |
DE102005034131A1 (de) | 2004-07-20 | 2006-02-16 | General Electric Co. | Verfahren und Vorrichtung zum Enteisen von Flügeln oder Rotorblättern |
DE102010030472A1 (de) | 2010-06-24 | 2011-12-29 | Repower Systems Ag | Rotorblattenteisung |
DE102010051293A1 (de) | 2010-11-12 | 2012-05-16 | Nordex Energy Gmbh | Rotorblatt einer Windenergieanlage |
DE102010051296A1 (de) | 2010-11-12 | 2012-05-16 | Nordex Energy Gmbh | Rotorblatt sowie Verfahren zum Enteisen des Rotorblatts einer Windenergieanlage |
DE102010051297A1 (de) | 2010-11-12 | 2012-05-16 | Nordex Energy Gmbh | Rotorblatt einer Windenergieanlage |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3441236A (en) * | 1967-01-16 | 1969-04-29 | Eric Arnholdt | Airfoil |
ITMI20021439A1 (it) * | 2002-06-28 | 2003-12-29 | High Technology Invest Bv | Impianto di generazione eolica ad alto rendimento energetico |
ITTO20020908A1 (it) * | 2002-10-17 | 2004-04-18 | Lorenzo Battisti | Sistema antighiaccio per impianti eolici. |
JP2005069082A (ja) * | 2003-08-22 | 2005-03-17 | Fuji Heavy Ind Ltd | 風車の温度制御装置 |
JP4473731B2 (ja) * | 2003-10-16 | 2010-06-02 | バッティスティ,ロレンツォ | 風力プラント用の氷結防止システム |
DE602007013566D1 (de) * | 2007-10-22 | 2011-05-12 | Actiflow B V | Windenergieanlage mit Grenzschichtsteuerung |
CN201367977Y (zh) * | 2009-01-12 | 2009-12-23 | 中航惠腾风电设备股份有限公司 | 防止结冰的风力发电机组风轮叶片 |
US7883313B2 (en) * | 2009-11-05 | 2011-02-08 | General Electric Company | Active flow control system for wind turbine |
DE102010015595A1 (de) * | 2010-04-19 | 2011-10-20 | Aloys Wobben | Verfahren zum Betreiben einer Windenergieanlage |
NZ602910A (en) * | 2010-04-19 | 2014-12-24 | Wobben Properties Gmbh | Method for the operation of a wind turbine |
US8038398B2 (en) * | 2010-10-06 | 2011-10-18 | General Electric Company | System and method of distributing air within a wind turbine |
-
2011
- 2011-11-17 DE DE102011086603A patent/DE102011086603A1/de not_active Withdrawn
-
2012
- 2012-11-16 AU AU2012338754A patent/AU2012338754A1/en not_active Abandoned
- 2012-11-16 KR KR1020147016464A patent/KR20140089610A/ko not_active Application Discontinuation
- 2012-11-16 BR BR112014011767A patent/BR112014011767A2/pt not_active IP Right Cessation
- 2012-11-16 EP EP12790856.4A patent/EP2780586A2/de not_active Withdrawn
- 2012-11-16 WO PCT/EP2012/072822 patent/WO2013072456A2/de active Application Filing
- 2012-11-16 AR ARP120104321A patent/AR088892A1/es unknown
- 2012-11-16 JP JP2014541679A patent/JP2014533792A/ja not_active Ceased
- 2012-11-16 US US14/358,997 patent/US20140322027A1/en not_active Abandoned
- 2012-11-16 RU RU2014124337/06A patent/RU2014124337A/ru not_active Application Discontinuation
- 2012-11-16 TW TW101142921A patent/TW201335479A/zh unknown
- 2012-11-16 CA CA2854238A patent/CA2854238A1/en not_active Abandoned
- 2012-11-16 MX MX2014005921A patent/MX2014005921A/es not_active Application Discontinuation
- 2012-11-16 CN CN201280056782.XA patent/CN103958890A/zh active Pending
-
2014
- 2014-05-15 CL CL2014001284A patent/CL2014001284A1/es unknown
- 2014-05-27 ZA ZA2014/03867A patent/ZA201403867B/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19528862A1 (de) | 1995-08-05 | 1997-02-06 | Aloys Wobben | Verfahren zum Enteisen eines Rotorblattes einer Windenergieanlage sowie zur Durchführung des Verfahrens geeignetes Rotorblatt |
DE20014238U1 (de) | 2000-08-17 | 2001-06-07 | Wonner, Matthias, Dipl.-Ing., 70190 Stuttgart | Heizsystem zur Enteisung von Rotorblättern von Windkraftanlagen |
DE102005034131A1 (de) | 2004-07-20 | 2006-02-16 | General Electric Co. | Verfahren und Vorrichtung zum Enteisen von Flügeln oder Rotorblättern |
DE102010030472A1 (de) | 2010-06-24 | 2011-12-29 | Repower Systems Ag | Rotorblattenteisung |
DE102010051293A1 (de) | 2010-11-12 | 2012-05-16 | Nordex Energy Gmbh | Rotorblatt einer Windenergieanlage |
DE102010051296A1 (de) | 2010-11-12 | 2012-05-16 | Nordex Energy Gmbh | Rotorblatt sowie Verfahren zum Enteisen des Rotorblatts einer Windenergieanlage |
DE102010051297A1 (de) | 2010-11-12 | 2012-05-16 | Nordex Energy Gmbh | Rotorblatt einer Windenergieanlage |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3015707B1 (de) | 2014-10-31 | 2018-07-04 | Senvion GmbH | Windenergieanlage und verfahren zum enteisen einer windenergieanlage |
Also Published As
Publication number | Publication date |
---|---|
RU2014124337A (ru) | 2015-12-27 |
AU2012338754A1 (en) | 2014-06-19 |
CA2854238A1 (en) | 2013-05-23 |
ZA201403867B (en) | 2015-08-26 |
AR088892A1 (es) | 2014-07-16 |
CN103958890A (zh) | 2014-07-30 |
JP2014533792A (ja) | 2014-12-15 |
MX2014005921A (es) | 2014-06-19 |
BR112014011767A2 (pt) | 2017-05-09 |
TW201335479A (zh) | 2013-09-01 |
KR20140089610A (ko) | 2014-07-15 |
DE102011086603A1 (de) | 2013-05-23 |
EP2780586A2 (de) | 2014-09-24 |
CL2014001284A1 (es) | 2014-10-03 |
WO2013072456A3 (de) | 2013-07-18 |
US20140322027A1 (en) | 2014-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013072456A2 (de) | Windenergieanlagen-rotorblatt und verfahren zum enteisen eines windenergieanlagen-rotorblattes | |
EP3625454B1 (de) | Windenergieanlagen-rotorblatt | |
EP2136052B1 (de) | Turboproptriebwerk mit einer Vorrichtung zum Erzeugen eines Kühlluftstroms | |
EP1986912B1 (de) | Aerodynamische klappe eines flugzeugs mit einer den klappenwirbel beeinflussenden vorrichtung | |
EP2984338B1 (de) | Rotorblatt einer windenergieanlage | |
DE102015008813A1 (de) | Vortexgenerator | |
EP3548732B1 (de) | Rotorblatt für eine windenergieanlage und windenergieanlage | |
EP2942521A1 (de) | Reparaturverfahren für vortexgenerator und ein bausatz dafür | |
WO2008148876A2 (de) | Windkraftturm mit passiver kühlvorrichtung | |
EP3377758B1 (de) | Windenergieanlagen-rotorblatt und windenergieanlage | |
DE102008013141A1 (de) | Wirbelströmungskraftwerk | |
DE102013101895A1 (de) | Ultraschall emittierende Vorrichtungen für Windkraftanlagen | |
WO2017021350A1 (de) | Windenergieanlagen-rotorblatt | |
EP3399183B1 (de) | Rotorblatt einer windenergieanlage | |
DE102008048617B4 (de) | Rotorblatt für eine Windenergieanlage mit wenigstens einer Entwässerungsöffnung | |
DE102016108338A1 (de) | Windkraftanlage | |
EP3635244B1 (de) | Rotorblatt für eine windenergieanlage und windenergieanlage | |
EP3514099A1 (de) | Vorrichtung zur befestigung eines kran- oder führungsseils an einem rotorblatt einer windenergieanlage | |
EP4151856A1 (de) | Windenergieanlagen-rotorblatt | |
WO2018224574A1 (de) | Gekühlte turbinenschaufel | |
DE102011052982A1 (de) | Windkraftanlage und Verfahren zum Betreiben einer Windkraftanlage | |
EP3945208B1 (de) | Rotorblatt für eine windenergieanlage und zugehörige windenergieanlage | |
WO2012143004A1 (de) | Windkraftanlage | |
EP4276300A1 (de) | Windenergieanlagen-rotorblatt und windenergieanlage | |
DE102015007772A1 (de) | Rotorblatt mit Anti-Icing-Struktur, Verfahren zur Herstellung eines Rotorblatts und Windenergieanlage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2854238 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014001284 Country of ref document: CL Ref document number: MX/A/2014/005921 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2014541679 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14358997 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2012790856 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012790856 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2014124337 Country of ref document: RU Kind code of ref document: A Ref document number: 20147016464 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2012338754 Country of ref document: AU Date of ref document: 20121116 Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12790856 Country of ref document: EP Kind code of ref document: A2 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014011767 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014011767 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140515 |