WO2013071888A1 - 一种无线资源控制方法、系统及设备 - Google Patents

一种无线资源控制方法、系统及设备 Download PDF

Info

Publication number
WO2013071888A1
WO2013071888A1 PCT/CN2012/084804 CN2012084804W WO2013071888A1 WO 2013071888 A1 WO2013071888 A1 WO 2013071888A1 CN 2012084804 W CN2012084804 W CN 2012084804W WO 2013071888 A1 WO2013071888 A1 WO 2013071888A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
data block
downlink data
information
terminal device
Prior art date
Application number
PCT/CN2012/084804
Other languages
English (en)
French (fr)
Inventor
房明
赵旸
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2013071888A1 publication Critical patent/WO2013071888A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the invention relates to a Chinese patent application filed on November 18, 2011 by the Chinese Patent Office, the application number is 201110369368.1, and the invention name is "a wireless resource control method, system and device". Priority is hereby incorporated by reference in its entirety.
  • the present invention relates to the field of communications technologies, and in particular, to a radio resource control method, system, and device. Background technique
  • General Packet Radio dynamic control such as allocation of uplink data and downlink data transmission time slots, modulation coding scheme for uplink data and downlink data transmission (Modulation and coding scheme) , MCS) adjustments, etc.
  • the transmission data is packaged into a series of Radio Link Control (RLC) blocks, or media access control (Media). Access Control, MAC) block, and carried by the radio block in the air interface for transmission.
  • RLC Radio Link Control
  • Media media access control
  • the network side device can adjust the MCS when the uplink data and the downlink data are transmitted.
  • the network side device adjusts the MCS that sends the downlink data to the network side device according to the received downlink data reported by the terminal device, and The adjusted information is not sent to the terminal device; and according to the receiving condition of the uplink data sent by the terminal device, the MCS that sends the uplink data by the terminal device is adjusted, and the adjustment information is acknowledged by the assignment message or the data link (packet uplink Ack/nack, PUAN ) The message is sent to the terminal device.
  • the existing network side device needs to occupy another radio block resource to frequently send control information about the radio resource to the terminal device, thereby implementing flexible adjustment of the radio resource, which will consume the downlink bandwidth.
  • the assignment message or the PUAN message needs to be frequently sent to lose the downlink bandwidth.
  • Embodiments of the present invention provide a radio resource control method, system, and device, which reduce a resource control process Medium to downstream bandwidth loss.
  • An embodiment of the present invention provides a radio resource control method, including:
  • control information includes control information of the uplink resource and/or the downlink resource
  • An embodiment of the present invention provides a radio resource control method, including:
  • the terminal device receives the downlink data block
  • the downlink data block includes control information of an uplink resource and/or a downlink resource
  • the terminal device parses the downlink data block to obtain the control information, and uses the corresponding uplink resource and/or downlink resource to transmit data according to the control information.
  • the embodiment of the invention provides a network side device, including:
  • An information adding unit configured to add control information to a downlink data block, where the control information includes control information of an uplink resource and/or a downlink resource;
  • a data sending unit configured to send the downlink data block after the information adding unit adds the control information to the terminal device, so that the terminal device uses the corresponding uplink resource and/or the downlink resource to transmit data according to the control information.
  • An embodiment of the present invention provides a terminal device, including:
  • a data receiving unit configured to receive a downlink data block, where the downlink data block includes control information of an uplink resource and/or a downlink resource;
  • a control transmission unit configured to parse the downlink data block received by the data receiving unit to obtain the control information, and use the corresponding uplink resource and/or downlink resource to transmit data according to the control information.
  • the network side device acquires the control information of the uplink resource and/or the downlink resource, adds the control information to the downlink data block, and sends the added downlink data block to the terminal device, so that the terminal The device transmits data according to the control information using corresponding uplink resources and/or downlink resources.
  • the control information for controlling the radio resource is sent, the control information is added to the transmitted downlink data block, and the other radio block resources are not occupied to be frequently sent, and the radio resource can be quickly performed. Control, and reduce the loss of downlink bandwidth during resource control.
  • FIG. 1 is a flowchart of a method for controlling a radio resource according to an embodiment of the present invention
  • FIG. 2 is a flowchart of another method for controlling a radio resource according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a radio resource control method according to Embodiment 1 of the present invention.
  • 4a to 4d are structural diagrams of a PMCS inserted in a downlink data block in the first embodiment of the present invention.
  • FIG. 5 is a flowchart of a radio resource control method according to Embodiment 2 of the present invention.
  • FIG. 6a is a schematic structural diagram of a PMCS inserted in a downlink data block according to a second embodiment of the present invention
  • FIG. 6b is a schematic structural diagram of control information inserted in a downlink data block according to Embodiment 2 of the present invention
  • FIG. 7a is a flowchart of a radio resource control method according to Embodiment 3 of the present invention.
  • FIG. 7b is a schematic structural diagram of control information inserted in a downlink data block according to Embodiment 3 of the present invention.
  • FIG. 8 is a flowchart of a radio resource control method according to Embodiment 4 of the present invention
  • FIG. 10 is a schematic structural diagram of inserting resource allocation parameters in a downlink data block according to an embodiment of the present invention
  • FIG. 11 is a schematic structural diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another network side device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another terminal device according to an embodiment of the present invention. detailed description
  • the embodiment of the present invention provides a radio resource control method, which is mainly a method for controlling a packet domain radio resource, which is performed by a network side device, and includes control of an uplink resource and a downlink resource, where the network side device may be a base station or a base station controller. Wait for wireless access to network devices.
  • the method flowchart of this embodiment is as follows As shown in Figure 1, it includes:
  • Step 101 Add control information to the downlink data block, where the control information includes uplink resources and
  • the device can control the radio resource, including the control of the uplink resource and/or the downlink resource, and can send the control information of the radio resource to the user equipment, thereby completing the control process of the radio resource.
  • the control information herein may include: resource allocation parameters used by the terminal device to send uplink data or receive downlink data, including radio block allocation parameters or parameters allocated by the TBF, such as time slot parameters, distribution of allocated radio blocks (ie, radio block allocation) Parameter), the start and/or end time of the resource usage, the combination of one or more of the Uplink State Flag (USF) parameter, the Temporary Flow Identity (TFI), etc.; or the control information
  • the MCS including uplink data transmission; or the control information includes power parameters of the uplink data sent by the terminal device, and the like.
  • the network side device may determine control information for controlling the radio resource according to actual conditions, for example, the control information used by the RLC/MAC layer to control transmission.
  • the MCS that the terminal device sends the uplink data and the service type of the uplink data that can be sent by the terminal device can be determined according to the receiving situation of the uplink data sent by the terminal device (such as correctly or incorrectly receiving the uplink data block) and the channel interference situation.
  • the transmission power of the uplink data sent by the terminal device is determined, and the allocation parameters of the uplink and/or downlink transmission resources of the terminal may be adjusted according to information such as the amount of data sent or received by the terminal or the service type.
  • the downlink data When the network side device sends downlink data to the terminal device, the downlink data is packed into a series of RLC or MAC blocks, and is carried by the radio block in the air interface for transmission.
  • the control information for controlling the radio resource is added to the downlink data block (such as a radio block carrying the RLC block or the MAC block), and specifically, the hole can be punched. Add control information; or add control information to the idle bits of the downlink block; or redefine some bits in the downlink block, and add control information to the redefined bits.
  • the amount of data carried in a specific coding mode can be reduced, and the control information added to the idle block of the downlink block depends on whether there is a free bit in the data block, and the redefinition method is to perform the data payload. Compression, taking out a part of the bit space for filling control information, will reduce the amount of data carried in a specific encoding mode.
  • Step 102 Send the downlink data block after adding the control information to the terminal device, so that the terminal device uses the corresponding uplink resource and/or the downlink resource to transmit data according to the control information.
  • the terminal device After receiving the downlink data block sent by the network side device, the terminal device parses the control information. If the control information includes the MCS that the terminal device sends the uplink data, the terminal device will follow the MCS. The data block is encoded and sent; if the control information includes the transmit power of the uplink data sent by the terminal device, the terminal device sends the uplink data according to the transmit power; if the control information includes the terminal device transmitting the uplink data and/or the downlink data.
  • control information includes the allocated radio block resource parameter
  • the terminal device sends the uplink data or receives the downlink data on the corresponding radio block;
  • the control information includes the USF or TFI identifier, and the terminal device uses the USF identifier as an identifier for transmitting uplink data or uses the TFI identifier as an identifier for receiving downlink data.
  • the network side device acquires the control information of the uplink resource and/or the downlink resource, adds the control information to the downlink data block, and sends the added downlink data block to the terminal device.
  • the terminal device transmits data according to the control information by using corresponding uplink resources and/or downlink resources.
  • the control information for controlling the radio resource is sent, the control information is added to the transmitted downlink data block, and the other radio block resources are not occupied to be frequently sent, and the radio resource can be quickly performed. Control, and reduce the loss of downlink bandwidth during resource control.
  • the terminal device needs to parse the control information for each downlink data block.
  • the network side device may also be in the downlink data block. Adding the first indication information for indicating whether the control information exists, that is, whether the control information is carried in the downlink data block, and specifically adding the first indication information to the head of the downlink data block, for example, the first indication information Adding an idle bit in the header of a downlink data block (such as an RLC/MAC block), or adding the first indication information to a bit that redefines an existing parameter in the downlink data block header; or adding the first indication information to the downlink In the length index of the data block, an indication or the like is performed by a length indicator in the data block. After the terminal device receives the downlink data block, if the control information is indicated in the first indication information, the control information is continuously parsed.
  • the network side device may add the second indication information to the downlink data, where the second indication information is a bit field that explicitly indicates the type of the control information.
  • the terminal device After receiving the downlink data block, the terminal device knows which type of control information is carried according to the indication of the second indication information, and performs corresponding operations.
  • the network side device can add multiple types of control information, such as control information of the MCS and the power parameters, to the downlink data block, and it is necessary to distinguish which type is inserted in the downlink data block.
  • Control information specifically: (1) The network side device may add the second indication information to the idle bit in the header of the downlink data block (such as the RLC/MAC block), for example, using 2 idle bits in the block header as the control information type field, and 00 indicating that the control information is Controlling the MCS parameter used by the terminal device to send uplink data; 01 indicating that the control information is a power parameter used by the control terminal device to send uplink data; and 10 indicating that the control information is a resource allocation parameter used by the control terminal device to send uplink data or receive downlink data.
  • the network side device may add the second indication information to the idle bit in the header of the downlink data block (such as the RLC/MAC block), for example, using 2 idle bits in the block header as the control information type field, and 00 indicating that the control information is Control
  • the network side device may further add the second indication information to the bit that redefines the existing parameters in the downlink data block header. For example, 2 bits are found as the second indication information from the block sequence number BSN (Block Sequence Number) of the block header.
  • BSN Block Sequence Number
  • the network side device may further add the second indication information to the length index in the downlink data block, and indicate by using the length index in the data block.
  • the length index 124 indicates the aforementioned modulation and coding mode parameter
  • 125 indicates the aforementioned power control parameter.
  • the network side device may further include the second indication information in the control information to be added to the downlink data block. For example, 2 bits are taken out as control information in the second information.
  • the third indication information may be included in the control information and added to the downlink data block, where the third indication information may be a response for distinguishing the piggyback. / Negative response (Piggiybacked Ack/Nack, PAN) and the scrambling value of the control information. If the scrambling value is a value, it indicates that the current control information mode, and when it is another value, it indicates that the current PAN mode. In this case, since the plurality of types of control information are indicated by the same indication value, the control information added in the above step 101 may further include the type of the control information (i.e., the second indication information described above).
  • the terminal device After receiving the downlink data block, the terminal device knows whether the PAN or the control information is carried according to the indication of the third indication information in the control information, and if it is the control information, according to the type of the control information (ie, the foregoing The second indication information) knows which type of control information is, thereby performing corresponding operations.
  • the network side device may add the fourth indication information to the downlink data block in the control information when performing the foregoing step 101, where the fourth indication information is a plus 4 value corresponding to the control information type, and is used to indicate the control.
  • the type of information such that after receiving the downlink data block, the terminal device knows which type of control information is carried according to the indication of the fourth indication information in the control information, thereby performing corresponding operations.
  • the third indication information and the fourth indication information are both the scrambling values related to the control information, but the third indication information is only used to distinguish the PAN and the control information, and the specific type of the control information is no longer distinguished, and the fourth indication information can not only distinguish PAN can also distinguish the specific type of control information. It can be understood that in the data transmission process between the network side device and the terminal device, there is a fast acknowledgment or a negative acknowledgment report (FANR), that is, the network side device will punch through the downlink data block.
  • FNR fast acknowledgment or a negative acknowledgment report
  • the mode inserted into the PAN is used to indicate the reception status of the uplink data sent by the network side device to the terminal device, such as correct reception or incorrect reception.
  • the network side device may add different types of control information to the downlink data block to control the radio resources of the terminal device. Therefore, it is necessary to distinguish whether the PAN or the control information is inserted in the downlink data block, and distinguish which type of control information is inserted in the downlink data block.
  • the encoded Cyclic Redundancy Check may be scrambled. Specifically, in the method of this embodiment:
  • the network side device may first encode the control information to generate a Cyclic Redundancy Check (CRC), and use the foregoing third indication information ( Or the fourth indication information is: after the CRC is scrambled (for example, performing an exclusive OR operation), the scrambled control information is inserted into the downlink data block by puncturing and sent to the terminal device.
  • CRC Cyclic Redundancy Check
  • the terminal device may acquire the control information carried in the downlink data block according to the third indication information (or the fourth indication information). Specifically, the terminal device may perform the received downlink data block by using a descrambling value of the preset control information, including a descrambling value fixedly configured in the terminal device or a descrambling value dynamically indicated in the TBF assignment message in advance.
  • the control information is subjected to CRC descrambling, and then the control information is decoded by using the CRC obtained by descrambling. If the decoding is successful, the downlink data block carries a certain type corresponding to the descrambling value used by the terminal device to descramble. Control information.
  • the above-mentioned scrambling and descrambling are two processes of opposite phase, and the encoding and decoding are also two inverse processes.
  • the third indication information (or the fourth indication information) can be used to suppress the CRC.
  • the original CRC can be obtained by inversely calculating the control information in the downlink data block by using the descrambling value preset in the terminal device, and the scrambling and descrambling methods mentioned in the following embodiments All are consistent.
  • the descrambling value of the preset control information on the terminal device needs to be consistent with the third indication information (or the fourth indication information) used when the network side device performs scrambling, in the case of indicating the control information, for example, 11111 is used. To indicate control information, etc.
  • the third indication information or the fourth indication information used when the network side device performs scrambling
  • the control information for example, 11111 is used.
  • the descrambling value of the control information fixedly configured on the terminal device and the third indication information (or the fourth indication information) are consistent when the control information is indicated.
  • the network side device may send a Temporary Block Flow (TBF) assignment message to the terminal device before performing the foregoing step 102, and include the startup indication information of the control information in the TBF assignment message, and in the TBF assignment message.
  • TBF Temporary Block Flow
  • the first correspondence between the specific third indication information and the parameter indicated by the third indication information (or the second correspondence between the fourth indication information and the control information type) is not included, so that the terminal device starts the downlink from the received
  • the control information is obtained in the data block, that is, after receiving the TBF assignment message, the terminal device may obtain control information from the downlink data block when receiving each downlink data later, specifically, according to the preset
  • the descrambling value of the control information is used to perform CRC descrambling on the control information in the downlink data block, thereby acquiring control information in the down
  • the following start indication field for the control information may be added to the TBF assignment message, wherein if the bit value is 0, the control information is not started, and if the bit value is 1, the control information is started.
  • the network device dynamically configures the descrambling value of the control information on the terminal device.
  • the network side device may send a TBF assignment message to the terminal device before performing the foregoing step 102, and include, in the TBF assignment message, start indication information of the control information, and the third indication information and the parameter indicated by the third indication information.
  • the first correspondence (or the second correspondence between the fourth indication information and the type of control information).
  • the terminal device does not need to acquire the control information contained in the downlink data block when receiving each downlink data block.
  • the network side device dynamically configures the terminal device to perform descrambling through the TBF assignment message.
  • the descrambling value so that after receiving the TBF assignment message, the terminal device can obtain the control information from the downlink data block when receiving the downlink data block later, specifically according to the dynamically configured descrambling value. That is, the third indication information (or the fourth indication information in the second correspondence relationship) in the first correspondence relationship in the TBF assignment message performs CRC descrambling on the control information, thereby acquiring the control information in the downlink data block.
  • the following first correspondence is added to the TBF assignment message. If it is 0, the control information is not started. If it is 1, the control information is started, and the third indication information for distinguishing the PAN and the control information is delivered, for example, A Temporary Flow Identity (TFI) value of 5 bits, which cannot be used to indicate a PAN.
  • TBF Temporary Flow Identity
  • Control information (PControl info) bit(5) > For example, the following second correspondence is added to the TBF assignment message. If it is 0, the control information is not started. If it is 1, the control information is started, and the corresponding value of the type of the control information is sent, that is, the fourth indication information, respectively.
  • the embodiment of the present invention further provides a radio resource control method, which is mainly a method for processing packet domain radio resource control information performed by a terminal device, including processing of uplink resource and downlink resource control information, and the flowchart is as shown in FIG. 2 Show, including:
  • Step 201 Receive a downlink data block.
  • the device may control the radio resource, including the control of the uplink resource and/or the downlink resource, and the control information obtained herein may include: resource allocation parameters of the uplink data and/or downlink data transmission, such as a time slot, the allocated radio block. a distribution (ie, a radio block allocation parameter), a start time and/or an end time of resource usage, a combination of one or more of an uplink state identifier USF, an uplink temporary flow identifier TFI, or the like, or an MCS including uplink data transmission, Or include power parameters for uplink data transmission, and so on.
  • resource allocation parameters of the uplink data and/or downlink data transmission such as a time slot, the allocated radio block.
  • a distribution ie, a radio block allocation parameter
  • a start time and/or an end time of resource usage a combination of one or more of an uplink state identifier USF, an uplink temporary flow identifier TFI, or the like, or an
  • the network side device may determine, according to actual conditions, control information for controlling the radio resource, including control information of the uplink resource and/or the downlink resource, and add the control information to the downlink data block (such as a radio block carrying the RLC block or the MAC block). ) is sent to the terminal device.
  • control information for controlling the radio resource including control information of the uplink resource and/or the downlink resource
  • add the control information to the downlink data block (such as a radio block carrying the RLC block or the MAC block).
  • Step 202 When the downlink data block includes control information of the uplink resource and/or the downlink resource, parsing the downlink data block to obtain control information, and transmitting data according to the control information by using the corresponding uplink resource and/or the downlink resource.
  • the terminal device parses the control information, if the control information is the MCS that the terminal device sends the uplink data, the terminal device sends the uplink data according to the MCS, that is, the uplink data block is encoded according to the MCS, and then the control device includes the terminal device.
  • the terminal device sends the uplink data according to the power specified by the transmit power.
  • the terminal device sends the uplink data or receives the downlink data by using the resource corresponding to the resource allocation parameter, for example, if the control information includes the time slot in which the terminal device transmits the uplink data and/or the downlink data, the terminal The device sends uplink data or receives downlink data on the corresponding time slot; if the control information includes the allocated radio block resource parameter, the terminal device sends uplink data or receives downlink data on the corresponding radio block; if the control information includes USF Or the TFI identifier, the terminal device uses the USF identifier as an identifier for transmitting uplink data or uses a TFI identifier as an identifier for receiving downlink data.
  • the network side device adds the control information of the uplink resource and/or the downlink resource to the downlink data block, and sends the information to the terminal device, so that the terminal device uses the corresponding uplink resource according to the control information. And/or downlink resources transfer data.
  • the control information for controlling the radio resource is sent, the control information is added to the transmitted downlink data block, and the other radio block resources are not occupied to be frequently sent, and the radio resource can be quickly performed. Control, and reduce the loss of downlink bandwidth during resource control.
  • the network side device may add first indication information indicating whether the control information exists, in the downlink data block, The first indication information is used to indicate whether control information is carried in the downlink data block. After the terminal device receives the downlink data block, if the first indication information indicates that the control information exists in the downlink data block, the step of parsing the control information in 102 is continued.
  • the network side device may add second indication information to the current data, where the second indication information is indication control.
  • the bit field of the information type After receiving the downlink data block, the terminal device further parses the second indication information, and uses the corresponding uplink resource and/or downlink resource to transmit data according to the type of the control information indicated by the second indication information.
  • the network side device may further include third indication information and control information in the control information added in the downlink data block, to indicate whether the downlink data block carries the PAN or a certain type of control information.
  • the type of the third indication information is a scrambling value used to distinguish the PAN from the control information.
  • the third indication information indicates that the control information is carried in the downlink data block, and the type of the control information is that the terminal device sends the MCS of the uplink data, and the terminal device encodes the uplink data block according to the MCS, and then sends the information.
  • the network side device may further include fourth indication information in the control information added in the downlink data block, where the fourth indication information is a scrambling value corresponding to the control information type, so that after receiving the downlink data block, the terminal device may If it is known that the downlink data block carries a certain type of control information, the terminal uses the corresponding uplink resource and/or downlink resource to transmit data according to the indication of the fourth indication information.
  • the fourth indication information indicates that the downlink data block carries the MCS that the terminal device sends the uplink data, and the terminal device encodes the uplink data block according to the MCS, and then sends the uplink data block.
  • the network side device may scramble the control information by using the third indication information (or the fourth indication information), and the scrambled control information
  • the network side device may send a TBF assignment message to the terminal device before sending the downlink data block, in order to prevent the terminal device from parsing the acquisition control information after receiving each downlink data block.
  • the terminal device before performing the foregoing step 202, the terminal device may further receive a temporary block flow TBF assignment message sent by the network side device, where the TBF assignment message includes the start indication information of the control information, that is, the network side device sends the indication information.
  • the downlink data block carries control information.
  • the terminal device When the terminal device receives the TBF assignment message and starts to parse the control information from the received downlink data block, the control information is obtained from the downlink data block in the downlink data block received later. Specifically, the following method can be adopted. To parse the acquisition control information:
  • the terminal device may perform CRC descrambling on the control information in the received downlink data block by using the descrambling value of the preset control information, and decode the control information by using the descrambled CRC. If the decoding succeeds, determine the downlink data block.
  • the control information corresponding to the descrambling value used in performing descrambling is included; if the decoding is unsuccessful, the RRC descrambling is performed using another preset descrambling value, and then the descrambled CRC is used in the downlink data block.
  • the control information is decoded, and the process of descrambling and decoding is repeated until the control information is successfully decoded.
  • the descrambling value of the control information preset by the terminal device needs to be consistent with the indication of the control information when the third indication information (or the fourth indication information) used when the network side device performs scrambling, for example, the control information is indicated by 11111.
  • the descrambling value may be fixedly configured in the terminal device, or may be dynamically configured by the network side device by using a message such as a TBF assignment message.
  • the TBF assignment message sent by the network side device includes the third indication information and the parameter indicated by the third indication information, in addition to the startup indication information of the control information.
  • a first correspondence or a second correspondence between the fourth indication information and the type of control information
  • the terminal device may assign the third indication information carried in the message through the TBF when performing CRC descrambling (or
  • the fourth indication information is descrambled.
  • the descrambling value of the preset control information used when the terminal device performs descrambling is the corresponding information of the control information.
  • Three indication information (or fourth indication information).
  • FIG. 3 is mainly a network step 301.
  • the network side device sends the data according to the terminal device.
  • the received data of the uplink data acquires the adjusted MCS information.
  • the adjusted MCS information may be determined according to the received correct or received error information, the level of the received uplink data, and the channel environment.
  • Step 302 The network side device may insert a fast coding adjustment command in the downlink data block.
  • the network device can insert the PMCS into the downlink data block in various manners, for example, by puncturing, or inserting into the idle bits of the downlink data block.
  • the inserted PMCS may include an MCS field, and may further include at least one of the following fields: a pulse field, a level field, a Cx field, and a Tn field, where:
  • a field for indicating a modulation and coding mode (ie, an MCS field), the field may indicate a General Packet Radio Service (GPRS), Enhanced GPRS (Enhanced GPRS, EGPRS) by 4 bits.
  • GPRS General Packet Radio Service
  • EGPRS Enhanced GPRS
  • Modulation coding mode such as EGPRS2-A or EGPRS2-B;
  • a field for indicating a pulse format (ie, a pulse field), which is mainly for the modulation and coding mode of EGPRS2-B, indicating which type of pulse shaping is used;
  • G is used to indicate an enhanced general packet radio service technology GPRS level (ie level field), which is mainly a level indicating the modulation and coding mode of EGPRS, such as 2-A or 2-B;
  • GPRS level field mainly a level indicating the modulation and coding mode of EGPRS, such as 2-A or 2-B;
  • the carrier identification field (ie, the Cx field), the field is mainly for the terminal device configured for the uplink dual-load, that is, the terminal device can transmit data in turn on two different carrier frequencies, and can indicate which carrier frequency adjustment MCS is;
  • the slot identification field (i.e., the Tn field), which may indicate which slot of the TBF of the terminal device is adjusted for the MCS.
  • the TBF is a temporary connection between the terminal device and the network side device, and only exists in the process of data forwarding.
  • One TBF can be in one or more Packet Data Channels (PDCHs), that is, one or more time slots.
  • PDCHs Packet Data Channels
  • Use wireless resources on, and each TBF is indicated by the corresponding temporary block flow (Temporary Flow Identity, TFI) to indicate.
  • TFI Temporal Flow Identity
  • the foregoing PMCS may be inserted in the downlink data block sent to the terminal device; and further, other fields may be included in the PMCS.
  • Implementing other functions may include a field (ie, a TFI field) for indicating a temporary block flow TBF in which an uplink time slot indicated by the PMCS is located, and is used to indicate that the PMCS is an adjusted MCS for which TBF of the uplink time slot of the terminal device is located.
  • Step 303 The network side device sends the downlink data block inserted in the PMCS to the terminal device.
  • a structure of a PMCS inserted in a downlink data block includes a 4-bit MCS field and a 2-bit level field, wherein the level field is optional (optional).
  • the PMCS may indicate that the terminal device is transmitting. Whether to switch between EGPRS2-A and EGPRS2-B is allowed when the uplink data is used.
  • the structure of another PMCS inserted in the downlink data block includes a 4-bit MCS field, a 5-bit TFI field, and a 2-bit level field, wherein the level field and the TFI field are optional fields.
  • the PMCS may indicate whether the terminal device allows handover between EGPRS2-A and EGPRS2-B when transmitting uplink data, and indicates which MCS adjustment is made for which uplink TBF of the terminal device.
  • the structure of another PMCS inserted in the downlink data block includes a 4-bit MCS-C1 field (ie, a 5 bit TFI field for the carrier frequency C1, a 4 bit MCS-C2 field, and a 2 bit
  • the Level-Cl field ie, the level information for the carrier frequency C1
  • the 2-bit Level-C2 field where the MCS-C2 field and the Level-C2 field are optional fields.
  • the PMCS can perform indication adjustment for the two carrier frequencies respectively. MCS.
  • the structure of another PMCS inserted in the downlink data block includes a 4-bit MCS-C1 field (ie, a 5 bit TFI field for the carrier frequency C1, a 4 bit MCS-C2 field, and a 2 bit
  • the Level-Cl field (that is, the level information for the carrier frequency C1), the 2-bit Level-C2 field, the 5-bit reserved TFI field, and the 3-bit spare field, where the MCS-C2 field and the Level-C2 field are available.
  • the PMCS can separately perform an MCS indicating the adjustment for the two carrier frequencies, and can indicate whether the PMCS or the PAN is inserted in the downlink data block through the reserved TFI field.
  • control information for the radio resource control of the terminal device by the network side device.
  • several bit fields ie, the second indication
  • Information to indicate the type of control information.
  • the bit field distinguishes the control information type, 00 denotes the PMCS, 01 denotes the power parameter of the uplink data transmission, 10 denotes the radio resource allocation parameter of the data transmission, and 11 denotes other types of control parameters, the PMCS may also include the indication control The field of the type of information.
  • the downlink data block sent to the terminal device includes only the control information, that is, the adjusted MCS information.
  • the network side device may add first indication information for indicating whether the control information exists in the downlink data block. Specifically, the foregoing may be indicated in a header of the downlink data block. Whether the PMCS exists or not, only indicating that the PMCS exists, the terminal device continues to obtain the control information according to the structure of the PMCS described above.
  • the network side device needs to use the third indication information to scramble the control information before sending the downlink data block, and multiple types in this embodiment.
  • the control information is indicated by a scrambling value:
  • Step 501 The network side device sends a temporary block flow TBF assignment message to the terminal device, and includes a PAN or a start indication information of the control information in the TBF assignment message.
  • the terminal device starts to acquire the PAN from the downlink data block.
  • the process when the indication control information is started, the terminal initiates a process of obtaining control information from the downlink data block.
  • the terminal device in the cell may be configured, specifically:
  • the startup indication information of the PAN or the control information may be included in the TBF assignment message sent to the terminal device, indicating that the cell will use a specific indication value (such as indicated by TFI) to deliver the PAN or control information.
  • the specific indication value may not be described in the TBF assignment message, so that the indication value for distinguishing the PAN and the control information needs to be preset on the network side device and the terminal device in advance.
  • the preset indication value 11111 is used to indicate the control information, and the preset indication value is not 11111 to indicate the PAN.
  • multiple types of control information are indicated by the same indication value.
  • the TBF assignment message sent by the network side device to the terminal device may include third indication information that specifically distinguishes the scrambling value of the PAN and the control information, and the third indication information that includes the PAN and the control information.
  • the first correspondence of the parameters indicated by the three indication information indicates that the cell uses a specific indication value to deliver PAN or control information, and the specific indication value is described in the TBF assignment message. In this way, the terminal device can follow the first correspondence in the TBF assignment message from the next Get PAN or control information in the row data block.
  • Step 502 During the data transmission between the network side device and the terminal device, the network side device may control the radio resource of the terminal device, add the control information to the downlink data, and include, in the control information, the control information. The third indication information and the type of control information. And in the process of data transmission, the network side device may further add the PAN and the third indication information indicating the PAN to the downlink data block.
  • control information added to the downlink data block in this embodiment includes not only the control information of the uplink and/or downlink resources, but also the type of the control information. Since the multiple types of control information in the embodiment are indicated by using the same indication value, for example, the control information is indicated by 11111, the control information needs to be further indicated by several bit fields (ie, second indication information) in the control information.
  • the type for example, uses 2 bits to distinguish the control information type, 00 represents PMCS, 01 represents the power parameter of the uplink data transmission, 10 represents the radio resource allocation parameter of the data transmission, and 11 represents other types of control parameters.
  • the network side device obtains the adjusted MCS information according to the receiving condition of the uplink data sent by the terminal device, and adds the acquired MCS information to the PMCS inserted in the downlink data block, and the inserted PMCS includes an MCS field, which is used to distinguish the PAN.
  • the indication field with the PMCS is a reserved TFI field and a PMCS type field, and may further include at least one of the following: a pulse field, a level field Cx field, a Tn field, and an uplink for carrying the terminal device
  • the field of the received information of the data is a field carrying a response of the uplink data or a negative response.
  • the control information may be encoded to generate a CRC, and the third indication information is used to scramble the CRC, for example, the CRC is XORed by the third indication information, and the scrambled Control information is inserted into the downstream data block in a punctured manner.
  • Step 503 The network side device sends the added downlink data block to the terminal device.
  • Step 504 The terminal device receives the TBF assignment message, and after receiving the downlink data, may obtain the PAN or control information carried therein by using the following method.
  • CRC Cyclic Redundancy Check
  • Step 505 The terminal device determines, according to the type of the control information carried in the downlink data block, what operation is required. For example, if the type of the control information is PMCS, the uplink data is sent according to the MCS information indicated by the PMCS.
  • Step 506 The terminal device performs CRC descrambling on the information inserted in the downlink data block by using the descrambling value of the preset PAN, and successfully decoding the information inserted in the downlink data by using the descrambled CRC, indicating that the downlink data block is successfully decoded.
  • the terminal device inserted in the PAN can obtain the uplink data received by the network side device to the terminal device.
  • the structure of another PMCS inserted in a downlink data block includes a 4-bit MCS-C1 field, a 5-bit TFI field, a 5-bit reserved TFI field, and a 7-bit short sequence number (Short SSN). Field and 4bit Radio Bear (RB) field.
  • the PMCS can carry a response or a negative acknowledgement of the uplink data with a short sequence number field and a radio bearer field.
  • control information inserted in the downlink data block is shown, and the control information includes TFI, 2 bit control information type, TS, coding mode parameter and 5 bit third indication information, and free bits.
  • the downlink data block sent to the terminal device includes control information, and further, in order to prevent the terminal device from parsing the control information after receiving each downlink data block, the network side device
  • the first indication information for indicating whether the control information exists may be added to the downlink data block.
  • the control information or the PAN may be indicated in the PAN indication (PANI) field of the downlink data block header, and only the control information is indicated. Or the PAN exists, and the terminal device continues to parse the downlink data according to the above steps 504 to 506.
  • the network side device needs to scramble the control information by using the fourth indication information before sending the downlink data block, and multiple types in this embodiment.
  • the control information is indicated by different descrambling values:
  • Step 701 The network side device sends a temporary block flow TBF assignment message to the terminal device, and includes a start indication information of the control information in the TBF assignment message, so that the terminal device starts the process of obtaining the control information from the downlink data block.
  • the terminal device in the cell may be configured, specifically:
  • the start indication information of the control information may be included in the TBF assignment message sent to the terminal device, indicating that the cell may use a specific indication value (such as a TFI value) to deliver the control information, but the specific indication value may not be the TBF assignment message.
  • a specific indication value such as a TFI value
  • the preset indication value 11111 is used to indicate the PMCS
  • the preset indication value 00001 is used to indicate the power parameter of the uplink data transmission
  • the preset indication value 00010 is used to indicate the radio resource allocation parameter of the data transmission, etc., which is Various types of control information are indicated with different indication values.
  • the TBF assignment message sent by the network side device to the terminal device may include specific fourth indication information (ie, a corresponding value of the control information type) and the control information type in addition to the startup indication information including the control information.
  • the second correspondence indicates that the cell uses a specific indication value to deliver various types of control information, and the specific indication value is described in the TBF assignment message. In this way, the terminal device can obtain the control information from the received downlink data block according to the fourth indication information in the TBF assignment message.
  • Step 702 During the data transmission between the network side device and the terminal device, the network side device may control the radio resource of the terminal device, and add the control information to the downlink data block.
  • the network side device generates a CRC after encoding the control information, and scrambles the CRC with the fourth indication information, for example, performs exclusive processing on the CRC by using the fourth indication information, and inserts the scrambled control information into the downlink.
  • the fourth indication information for example, performs exclusive processing on the CRC by using the fourth indication information, and inserts the scrambled control information into the downlink.
  • Step 703 The network side device sends the added downlink data block to the terminal device.
  • Step 704 After receiving the TBF assignment message, the terminal device obtains the control information by receiving the downlink data block later.
  • step 705 performing CRC descrambling on the control information inserted in the received downlink data block by using a descrambling value of a certain type of control information preset in the terminal device; and then inserting the descrambled CRC into the downlink data
  • the control information is decoded, if successful, it is confirmed that the corresponding type of control information is inserted in the downlink data block, and step 705 is performed;
  • step 704 If the data of the descrambled CRC decoding control information fails, indicating that the corresponding type of control information is not inserted in the downlink data block, the descrambling value of the other type of control information is selected, and the descrambling in step 704 is performed. The post decoding step until the successful decoding of one type of control information, and step 705 is performed.
  • Step 705 The terminal device performs corresponding operations according to some type of control information included in the downlink data block. For example, if the PMCS is included in the downlink data block, the MCS information is sent according to the MCCS information indicated by the PMCS. Line data, etc.
  • the control information inserted in the downlink data block includes TFI, TS, coding mode parameters, and 5 bit fourth indication information, and idle bits.
  • the radio resource control method in the fourth embodiment is shown.
  • the control information is carried by idle bits in the downlink data block:
  • Step 801 The network side device inserts control information in the idle bit of the downlink data block, where the control information includes the obtained uplink resource and/or control information of the downlink resource.
  • the content of the control information is as the MCS previously transmitted, the power of the uplink data transmission, and the like.
  • Step 802 The network side device encodes the control information in the downlink data block along with the data part, and sends the coded downlink data to the terminal device, where the terminal device performs corresponding operations.
  • the network side device inserts the fast coding adjustment command PMCS in the idle bit of the downlink data block.
  • the structure of the specific PMCS may be as described in the foregoing specific embodiments 1 and 2, and details are not described herein.
  • the terminal device transmits the uplink data according to the MCS information indicated therein.
  • the downlink data block sent to the terminal device includes control information.
  • the terminal device does not have to parse the control information after receiving each downlink data block.
  • the network side device may add first indication information for indicating whether the control information exists in the downlink data block, and specifically, may be in a certain field of the downlink data block header (for example, a free bit in the block header or an existing block header)
  • the field in which the field is redefined or the length index field in the downlink data block, etc. indicates whether the control information exists, and only when the indication control information exists, the terminal device continues to press the acquisition control information.
  • the structure of the downlink data block includes: K bytes (Octet), wherein a length indicator field indicates that PMCS exists in the downlink data block, and the word is in the idle bit. Insert PMCS into section K. If the length index field is a special value, it indicates that there is a PMCS. For example, if the length index is any one of 124 to 127, it indicates that there is a PMCS in the downlink data block, and if it is a value other than 124 to 127, Indicates that there is no PMCS in the downlink data block.
  • the network side device can pass the control.
  • Information a combination of one or more of resource allocation parameters of the terminal device (such as time slot, distribution of allocated radio blocks, start and/or end time of resource usage, uplink state identifier USF, temporary flow identifier TFI, etc.) ) adjust, where the resource points inserted in the downstream data block
  • the configuration parameter structure can be as shown in FIG. 10, including a time slot (TS) field, a radio block allocation number (block_num) field, a resource start time (start_time_offset) field, a TFI, and a reserved TFI. At least one or more of the fields, where:
  • Radio block allocation 3bit, which can indicate that 1 ⁇ 8 radio blocks after the reaction time are allocated to the terminal device,
  • the reaction time can be a fixed time, such as the time between two radio blocks;
  • Start time field for resource usage The offset time relative to the received control information can be used, 3 bits; the end time is similar to the start time, and the offset time can also be used, 5 bits.
  • TFI field 5bit; reserved TFI field: 5bit; idle bit.
  • the indication of the TFI field and the reserved TFI field is similar to the indication of the TFI field and the reserved TFI field in the PMCS.
  • the resource allocation parameter may also include a 3-bit USF field, etc., and the resource allocation is performed.
  • a network side device which may be an access network device such as a base station or a base station controller, and a schematic structural diagram thereof is shown in FIG. 11 , and includes:
  • the information adding unit 11 is configured to add control information system information to the downlink data block, where the control information includes uplink resource and/or control information of the downlink resource.
  • the information adding unit 11 may obtain the control information of the uplink resource and/or the downlink resource, and add the control information to the downlink data block.
  • the control information obtained here may include: a transmission resource of the uplink data and/or the downlink data, or an uplink data.
  • Information such as the transmitted MCS, or the power of the upstream data transmission.
  • the information adding unit 11 may acquire the modulation and coding mode MCS of the uplink data sent by the terminal device according to the receiving condition of the uplink data sent by the terminal device, insert the PMCS by puncturing, or insert the PMCS into the idle bits of the downlink data, and
  • the acquired MCS information that is, the control information, is added to the PMCS.
  • the PMCS may include a field for indicating a modulation and coding mode, and may further include at least one of the following fields: a field for indicating a pulse shaping type, a field for indicating an enhanced general packet radio service technology GPRS layer, a carrier identification field a time slot identifier field, a field for carrying the received information of the uplink data sent by the terminal device, a field for indicating the temporary block flow TBF where the uplink time slot indicated by the PMCS is located, and a response for distinguishing the piggyback Or negatively indicate the indication fields of the PAN and PMCS, and the fields of the control information type.
  • the resource parameter used by the terminal device to send the uplink data is added to the downlink data block, where the resource parameter includes at least one of the following information: the uplink temporary flow identifier TFI of the terminal device, the time slot parameter, and the uplink status identifier. USF parameters, start time and/or end time of resource usage, and radio block allocation parameters.
  • the information adding unit 11 may add control information to the downlink data block by means of puncturing when adding the control information; or may add control information to the idle bits of the downlink data block; The parameters are redefined and control information is added to the redefined bits.
  • the data sending unit 12 is configured to send the downlink data block added by the information adding unit 11 to the terminal device, so that the terminal device uses the corresponding uplink resource and/or downlink resource to transmit data according to the control information.
  • the information adding unit 11 adds the uplink resource and/or the downlink resource control information to the downlink data block, and the data sending unit 12 sends the added downlink data block to the terminal.
  • the device such that the terminal device transmits data according to the control information using corresponding uplink resources and/or downlink resources.
  • the control information for controlling the radio resource is sent, the control information is added to the transmitted downlink data block, and the other radio block resources are not occupied to be frequently sent, and the radio resource can be quickly performed. Control, and reduce the loss of downlink bandwidth during resource control.
  • the information adding unit 11 is further configured to add the first indication information indicating whether the control information exists In the downlink data block, when the indication information indicates that the control information is carried in the downlink data block, the terminal device continues to parse the acquisition control information.
  • the information adding unit 11 may add the first indication information to an idle bit in a downlink data block header, or add the first indication information to a bit that redefines an existing parameter in a downlink data block header ( For example, the PAN indication field added to the downlink data block header, or the first indication information is added to the length index of the downlink data block.
  • the information adding unit 11 is further configured to add the second indication information to the downlink data block, where the second indication information is a bit field indicating a type of the control information.
  • the information adding unit 11 may add the second indication information to an idle bit in a downlink data block header, or add the second indication information to a bit that redefines an existing parameter in a downlink data block header ( For example, adding the temporary flow identifier TFI field in the downlink data block, or adding the second indication information to the length index in the downlink data block; or using the second control information Included in the control information is added to the downlink data block.
  • the information adding unit 11 may further include third indication information and type of control information in the control information added in the downlink data block, where the third indication information is used to distinguish
  • the value of the PAN and the control information is increased by 4, in which case, since the plurality of types of control information are indicated by the same indication information, the type of the control information needs to be included in the control information (ie, the second indication described above) information).
  • the terminal device After receiving the downlink data block, the terminal device can learn whether the PAN or the control information is carried in the downlink data block according to the indication of the third indication information, and if it is the control information, the type of the control information can be determined according to the control information. Know which type of control information is used to perform the corresponding operation.
  • the information adding unit 11 includes fourth indication information in the control information added in the downlink data block, where the fourth indication information is a scrambling value corresponding to the control information type.
  • the terminal device After receiving the downlink data block, the terminal device can learn which type of control information is carried in the downlink data block according to the indication of the fourth indication information, and perform corresponding operations.
  • the network side device may further include an assignment sending unit 13 in addition to the structure shown in FIG. 11, and wherein the information adding unit 11 may pass the control information when adding The verification generating unit 110, the scrambling unit 111, and the adding unit 112, wherein:
  • the sending unit 13 is configured to send a temporary block stream TBF assignment message to the terminal device, where the TBF assignment message includes the start indication information of the control information, so that the terminal device initiates receiving from the start indication information according to the The control information is obtained in the downlink data block.
  • the verification generating unit 110 is configured to generate the cyclic redundancy check code CRC after encoding the control information.
  • the scrambling unit 111 is configured to scramble the CRC generated by the check generating unit 110 by using the third indication information or the fourth indication information, such as performing XOR on the CRC by using the third indication information or the fourth indication information. .
  • the adding unit 112 is configured to add the control information scrambled by the scrambling unit 111 to the downlink data block.
  • the scrambled control information may be added to the downlink data block by the check generating unit 110, the scrambling unit 111, and the adding unit 112, and the data transmitting unit 12
  • the downlink data block added by the adding unit 112 is sent to the terminal device, which requires the terminal device to acquire the control information in the downlink data block by using a descrambling manner.
  • the TBF assignment message may be sent to the terminal device by the assignment sending unit 13, so that the terminal device receives the TBF assignment message, and each received later.
  • the downlink data block will obtain the control letter from the downlink data block.
  • the process of specifically obtaining the control information may be as described in the foregoing method embodiment, and is not described herein. If the information adding unit 11 includes the third indication information in the control information of the downlink data block, the assignment sending unit 13 may further include the third indication information and the third indication information indicated by the third indication information in the sent TBF assignment message.
  • the first correspondence of the parameters so that the terminal device parses the control information from the downlink data block according to the first correspondence relationship; if the information adding unit 11 includes the fourth indication information in the control information of the downlink data block, the sending unit is assigned
  • the second mapping relationship between the fourth indication information and the control information type may be included in the sent TBF assignment message, so that the terminal device parses the control information from the downlink data block according to the second correspondence.
  • the embodiment of the present invention further provides a terminal device, and a schematic structural diagram thereof is shown in FIG. 13 , including: a data receiving unit 20, configured to receive a downlink data block, where the downlink data block includes uplink resource and/or downlink resource control.
  • the information, the control information obtained here may include: a transmission resource of the uplink data and/or the downlink data, or an MCS of the uplink data transmission, or information such as the power of the uplink data transmission.
  • the control transmission unit 21 is configured to parse the downlink data block received by the data receiving unit 20 to obtain the control information, and use the corresponding uplink resource and/or downlink resource to transmit data according to the control information.
  • the downlink data block received by the data receiving unit 20 may further include first indication information for indicating whether the control information exists. If the first indication information indicates that control information exists, the control transmission unit 21 The control information is obtained by the data receiving unit 20, and the second indication information is further included in the downlink data block, where the second indication information is a bit field indicating the type of the control information, and the control transmission unit 21 obtains the second indication information according to the second indication information. Controlling the type of information, and transmitting data using the corresponding uplink resource and/or downlink resource according to the type of the control information indicated by the second indication information.
  • the control information of the downlink data block received by the data receiving unit 20 may further include a third indication information and a type of control information, where the third indication information is a scrambling value for distinguishing the PAN and the control information, and then the control transmission unit 21 is controlled.
  • the data may be transmitted by using the corresponding uplink resource and/or the downlink resource according to the type of the third indication information and the control information.
  • the control information of the downlink data block received by the data receiving unit 20 may further include fourth indication information, where the fourth indication information is further included.
  • the indication information is a scrambling value corresponding to the control information type, and the control transmission unit 21 uses the corresponding uplink resource and/or downlink resource to transmit data according to the fourth indication information, for example, the fourth indication information indicates that the information is carried in the downlink data block.
  • the control transmission unit 21 acquires the situation that the network side device receives the uplink data sent by the terminal device, if the fourth indication information indicates When the PMCS is carried in the downlink data block, the control transmission unit 21 can transmit the uplink data according to the indication of the PMCS.
  • control transmission unit 21 transmits data
  • the control information in the downlink data block received by the data receiving unit 20 is a modulation and coding scheme (MCS)
  • MCS modulation and coding scheme
  • the control transmission unit 21 transmits uplink data according to the MCS
  • the data receiving unit 20 receives
  • the control transmission unit 21 transmits the uplink data using the power specified by the power parameter
  • the control information in the downlink data block received by the data receiving unit 20 is a resource allocation parameter
  • the control transmission unit 21 The uplink data is sent or the downlink data is received by using the resource corresponding to the resource allocation parameter.
  • the network side device adds the control information of the uplink resource and/or the downlink resource to the downlink data block, and sends the control information to the terminal device, so that the terminal device uses the corresponding uplink according to the control information.
  • Resources and/or downstream resources transfer data.
  • the control information for controlling the radio resource is sent, the control information is added to the transmitted downlink data block, and the other radio block resources are not occupied to be frequently sent, and the radio resource can be quickly performed. Control, and reduce the loss of downlink bandwidth during resource control.
  • the terminal device may further include an assignment receiving unit 22 in addition to the structure shown in FIG. 13, and the control transmission unit 21 may pass through the descramble unit 210 and the decoding unit. 211 and control unit 212 are implemented, wherein:
  • the receiving unit 22 is configured to receive a temporary block stream TBF assignment message, where the TBF assignment message includes the start indication information of the control information, and then initiate parsing of the control information from the received downlink data block.
  • the parameter indicated by the third indication information and the third indication information may be further included in the TBF assignment message received by the assignment receiving unit 22.
  • the descrambling unit 210 is configured to perform cyclic redundancy check code CRC descrambling on the control information in the received downlink data block by using a descrambling value of the preset control information.
  • the descrambling value of the preset control information may be fixedly configured in the terminal device, or may be dynamically configured by the network side device through the TBF assignment message. If the third indication information is included in the TBF assignment message, the preset is preset here.
  • the descrambling value of the control information is the third indication information corresponding to the control information, and if the fourth indication information is included in the TBF assignment message, the solution 4 of the preset control information herein is the fourth indication information.
  • the decoding unit 211 is configured to decode the control information in the received downlink data block by using the CRC descrambled by the descrambling unit 210.
  • the control unit 212 is configured to determine, if the decoding unit 211 is successfully decoded, the control information indicated by the descrambling value used in the downlink data block, and according to the control information indicated by the descrambling value, Data is transmitted using corresponding uplink resources and/or downlink resources. It can be understood that if the decoding unit 211 decodes the error, the descrambling unit 210 performs CRC descrambling with the preset another control information or the descrambling value of the PAN, and is decoded by the decoding unit 211 with the descrambled CRC, if If the decoding is successful, the corresponding operation is performed according to the indication of the descrambling value used in the descrambling.
  • the assignment receiving unit 22 when the assignment receiving unit 22 receives the TBF assignment message, the downlink data block received by the data receiving unit 20 needs to obtain control information from the downlink data block. Specifically, the control transmission unit 21 can pass.
  • the descrambling unit 210, the decoding unit 211, and the control unit 212 acquire control information in the downlink data block.
  • radio resource control method performed between the units of the network side device in FIG. 13 and FIG. 14 is as described in the corresponding embodiment of FIG. 2, and is not described herein.
  • the embodiment of the invention further provides a radio resource control system, including a network side device and a terminal device, where:
  • a network side device configured to add control information to a downlink data block, where the control information includes control information of an uplink resource and/or a downlink resource; sending the added downlink data block to a terminal device; Receiving a downlink data block, where the downlink data block includes control information of an uplink resource and/or a downlink resource; parsing the downlink data block to obtain the control information, and using corresponding uplink resources and/or according to the control information; Downstream resources transfer data.
  • the structure of the network side device in this embodiment may be as shown in FIG. 11 or FIG. 12
  • the structure of the terminal device may be as shown in FIG. 13 or FIG. 14 , and is not described herein;
  • the network side device acquires control information of the uplink resource and/or the downlink resource, adds the control information to the downlink data block, and adds The downlink data block is sent to the terminal device, so that the terminal device uses the corresponding uplink resource and/or downlink resource to transmit data according to the control information.
  • the control information for controlling the radio resource is sent, the control information is added to the transmitted downlink data block, and the other radio block resources are not occupied to be frequently sent, and the radio resource can be quickly performed. Control, and reduce Loss of downstream bandwidth during resource control.
  • the network side device needs to send the assignment message or the PUAN message to adjust the MCS after transmitting the N radio blocks, and the uplink data may be timely in this embodiment.
  • the MCS performs control adjustments, making the adjustment efficiency of the MCS relatively high.
  • the program can be stored in a computer readable storage medium.
  • the storage medium can include: Read only memory (ROM), random access memory (RAM), magnetic or optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了无线资源的控制方法、系统及设备,应用于通信技术领域。本发明实施例的方法中,网络侧设备会将控制信息添加到下行数据块中,控制信息包括上行资源和/或下行资源的控制信息,并将添加后的下行数据块发送给终端设备,这样终端设备就会根据控制信息使用相应的上行资源和/或下行资源传输数据。本发明实施例中在发送对无线资源进行控制的控制信息时,是将控制信息添加到传输的下行数据块中,而不会占用另外的无线块资源来频繁发送,能快速地对无线资源进行控制,且减少了资源控制过程中对下行带宽的损耗。

Description

一种无线资源控制方法、 系统及设备 本申请要求于 2011 年 11 月 18 日提交中国专利局、 申请号为 201110369368.1、 发明名称为"一种无线资源控制方法、 系统及设备"的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域, 特别涉及无线资源控制方法、 系统及设备。 背景技术
在现有移动数据业务系统比如通用分组无线服务技术( General Packet Radio 行动态控制, 比如对上行数据和下行数据传输时隙的分配, 对上行数据和下行 数据传输的调制编码方式( Modulation and coding scheme , MCS )调整等。
以 MCS的调整为例, 在网络侧设备和终端设备之间的分组数据传输过程 中,传输数据会被打包成一系列的无线链路控制( Radio Link Control, RLC )块, 或介质访问控制 (Media Access Control, MAC )块, 并由无线块承载在空口进 行传输。 其中网络侧设备可以对上行数据和下行数据传输时的 MCS进行调整, 具体地, 网络侧设备根据终端设备上报的对下行数据的接收情况, 对该网络侧 设备发送下行数据的 MCS进行调整, 且不需要将调整的信息发送给终端设备; 而根据对终端设备发送的上行数据的接收情况, 对终端设备发送上行数据的 MCS进行调整, 并将调整信息通过指派消息或数据链路应答( packet uplink ack/nack, PUAN ) 消息发送给终端设备。
上述现有的网络侧设备对分组域无线资源的控制过程中, 需要占用另外的 无线块资源来频繁发送对无线资源的控制信息给终端设备, 从而实现无线资源 的灵活调节, 这样会损耗下行带宽, 比如对上行数据传输的 MCS进行调整的过 程中, 需要频繁地发送指派消息或 PUAN消息而损耗下行带宽。 发明内容
本发明实施例提供无线资源控制方法、 系统及设备, 减少了资源控制过程 中对下行带宽的损耗。
本发明实施例提供一种无线资源控制方法, 包括:
将控制信息添加到下行数据块中, 所述控制信息包括上行资源和 /或下行资 源的控制信息;
将所述添加所述控制信息后的下行数据块发送给终端设备, 以使所述终端 设备根据所述控制信息使用相应的上行资源和 /或下行资源传输数据。
本发明实施例提供一种无线资源控制方法, 包括:
终端设备接收下行数据块;
当所述下行数据块中包括上行资源和 /或下行资源的控制信息时,
所述终端设备解析所述下行数据块得到所述控制信息 , 并根据所述控制信 息使用相应的上行资源和 /或下行资源传输数据。
本发明实施例提供一种网络侧设备, 包括:
信息添加单元, 用于将控制信息添加到下行数据块中, 所述控制信息包括 上行资源和 /或下行资源的控制信息;
数据发送单元, 用于将所述信息添加单元添加控制信息后的下行数据块发 送给终端设备, 以使所述终端设备根据所述控制信息使用相应的上行资源和 /或 下行资源传输数据。
本发明实施例提供一种终端设备, 包括:
数据接收单元, 用于接收下行数据块, 所述下行数据块中包括上行资源和 / 或下行资源的控制信息;
控制传输单元, 用于解析所述数据接收单元接收的下行数据块得到所述控 制信息, 并根据所述控制信息使用相应的上行资源和 /或下行资源传输数据。
本发明实施例的方法中, 网络侧设备会获取上行资源和 /或下行资源的控制 信息, 将该控制信息添加到下行数据块中, 并将添加后的下行数据块发送给终 端设备, 这样终端设备就会根据控制信息使用相应的上行资源和 /或下行资源传 输数据。 本发明实施例中在发送对无线资源进行控制的控制信息时, 是将控制 信息添加到传输的下行数据块中, 而不会占用另外的无线块资源来频繁发送, 能快速地对无线资源进行控制, 且减少了资源控制过程中对下行带宽的损耗。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例提供的一种无线资源控制方法的流程图;
图 2是本发明实施例提供的另一种无线资源控制方法的流程图;
图 3是本发明具体实施例一提供的无线资源控制方法的流程图;
图 4a到 4d是本发明具体实施例一中在下行数据块中插入的 PMCS的结构示 意图;
图 5是本发明具体实施例二提供的无线资源控制方法的流程图;
图 6a是本发明具体实施例二中在下行数据块中插入的 PMCS的结构示意图; 图 6b是本发明具体实施例二中在下行数据块中插入的控制信息的结构示意 图;
图 7a是本发明具体实施例三提供的无线资源控制方法的流程图;
图 7b是本发明具体实施例三中在下行数据块中插入的控制信息的结构示意 图;
图 8是本发明具体实施例四提供的无线资源控制方法的流程图; 图 10是本发明具体实施例中在下行数据块中插入资源分配参数的结构示意 图;
图 11是本发明实施例提供的一种网络侧设备的结构示意图;
图 12是本发明实施例提供的另一种网络侧设备的结构示意图;
图 13是本发明实施例提供的一种终端设备的结构示意图;
图 14是本发明实施例提供的另一种终端设备的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供一种无线资源控制方法, 主要是网络侧设备所执行的对 分组域无线资源的控制方法, 包括对上行资源和下行资源的控制, 其中网络侧 设备可以为基站或基站控制器等无线接入网络设备。 本实施例的方法流程图如 图 1所示, 包括:
步骤 101 , 将控制信息添加到下行数据块中, 这里控制信息包括上行资源和
/或下行资源的控制信息。 设备可以对无线资源进行控制, 包括对上行资源和 /或下行资源的控制, 且可以 将无线资源的控制信息发送给用户设备, 从而完成无线资源的控制过程。 而这 里的控制信息可以包括: 终端设备发送上行数据或者接收下行数据使用的资源 分配参数, 包括无线块分配参数或 TBF分配的参数, 比如时隙参数, 分配的无线 块的分布(即无线块分配参数), 资源使用的起始和 /或结束时刻, 上行状态标识 ( Uplink State Flag, USF )参数, 上行临时流标识( Temporary Flow Identity, TFI )等中的一个或多个的组合; 或控制信息包括上行数据传输的 MCS; 或控制 信息包括终端设备发送上行数据的功率参数等。
网络侧设备可以根据实际情况来确定对无线资源进行控制的控制信息, 例 如 RLC/MAC层用于控制传输的控制信息。 具体地, 可以根据对终端设备发送的 上行数据的接收情况(比如正确或错误接收上行数据块)和信道干扰情况来确 定终端设备发送上行数据的 MCS , 可以通过终端设备发送的上行数据的业务类 型来确定终端设备发送上行数据的发射功率, 可以根据终端发送 /接收的数据量 或业务类型等信息来调整终端上行和 /或下行传输资源的分配参数等。
当网络侧设备在发送下行数据给终端设备时, 会将下行数据打包成一系列 的 RLC或 MAC块, 并由无线块承载在空口进行传输。 在本实施例中, 网络侧设 备在发送下行数据时, 将对无线资源进行控制的控制信息添加到下行数据块(比 如承载 RLC块或 MAC块的无线块) 中, 具体地, 可以通过打孔的方式添加控制 信息; 或是在下行数据块的空闲比特添加控制信息; 或是在下行数据块中重定 义一些比特, 并在重定义的比特中添加控制信息等。 通过打孔的方式可以不减 少特定编码方式下承载的数据量, 而釆用在下行数据块空闲比特添加控制信息 取决于数据块中是否有空闲比特, 而重定义方法则是对数据净荷进行压缩, 取 出一部分比特空间用于填充控制信息, 会减少特定编码方式下承载的数据量。
步骤 102, 将添加控制信息后的下行数据块发送给终端设备, 以使终端设备 根据控制信息使用相应的上行资源和 /或下行资源传输数据。
当终端设备接收网络侧设备发送的下行数据块后, 解析得到控制信息, 如 果控制信息包括终端设备发送上行数据的 MCS , 则终端设备会按照该 MCS将上 行数据块进行编码后发送; 如果控制信息包括终端设备发送上行数据的发射功 率, 则终端设备会按照该发射功率发送上行数据; 如果控制信息包括终端设备 发送传输上行数据和 /或下行数据的时隙, 则终端设备会在相应的时隙上发送上 行数据或接收下行数据; 如果控制信息包括分配的无线块资源参数, 终端设备 就会在相应的无线块上发送上行数据或接收下行数据; 如果控制信息包括 USF 或 TFI标识, 终端设备使用该 USF标识作为发送上行数据的标识或使用该 TFI标识 作为接收下行数据的标识等。
可见, 本发明实施例的方法中, 网络侧设备会获取上行资源和 /或下行资源 的控制信息, 将该控制信息添加到下行数据块中, 并将添加后的下行数据块发 送给终端设备, 这样终端设备就会根据控制信息使用相应的上行资源和 /或下行 资源传输数据。 本发明实施例中在发送对无线资源进行控制的控制信息时, 是 将控制信息添加到传输的下行数据块中, 而不会占用另外的无线块资源来频繁 发送, 能快速地对无线资源进行控制, 且减少了资源控制过程中对下行带宽的 损耗。
需要说明的是, 按照上述步骤 101到 102进行无线资源的控制方法中, 需要 终端设备接收到每个下行数据块都要解析控制信息, 为了避免这种情况, 网络 侧设备还可以在下行数据块中添加用于指示控制信息是否存在的第一指示信 息, 即在下行数据块中是否携带有控制信息, 具体可以将该第一指示信息添加 到下行数据块的头部, 比如将第一指示信息添加到下行数据块(比如 RLC/MAC 块) 头中的空闲比特, 或者将第一指示信息添加到对下行数据块头中已有的参 数进行重定义的比特; 或者将第一指示信息添加到下行数据块的长度索引中, 通过数据块中的长度索引 (length indicator )来进行指示等。 这样当终端设备接 收到下行数据块后, 如果该第一指示信息中指示存在控制信息, 则会继续解析 得到控制信息。
在其它具体的实施例中, 网络侧设备在执行上述步骤 102之前, 可以将第二 指示信息添加到下行数据中, 该第二指示信息为显式地指示控制信息类型的比 特字段。 这样终端设备在接收到下行数据块后, 就会根据第二指示信息的指示 知道其中携带的是哪种类型的控制信息, 从而进行相应的操作。
由于本发明实施例中, 网络侧设备可以将多种类型的控制信息 (比如 MCS 和功率参数等的控制信息)添加到下行数据块中, 则需要区分下行数据块中插 入的是哪种类型的控制信息, 具体地: ( 1 ) 网络侧设备可以将第二指示信息添加到下行数据块(比如 RLC/MAC 块) 头中的空闲比特, 比如从块头中使用 2个空闲比特作为控制信息类型字段, 00指示控制信息为控制终端设备发送上行数据使用的 MCS参数; 01指示控制信 息为控制终端设备发送上行数据使用的功率参数; 10指示控制信息为控制终端 设备发送上行数据或者接收下行数据使用的资源分配参数。
( 2 )网络侧设备还可以将第二指示信息添加到对下行数据块头中已有的参 数进行重定义的比特。 如从块头的块序列号 BSN ( Block Sequence Number ) 中 找出 2个比特添加作为第二指示信息。
( 3 ) 网络侧设备还可以将第二指示信息添加到下行数据块中的长度索引 中, 通过数据块中的长度索引来进行指示。 比如长度索引 124指示前述调制编码 方式参数, 125指示为前述功率控制参数。
( 4 )网络侧设备还可以将第二指示信息包括在控制信息中添加到下行数据 块中。 比如在控制信息中取出 2个比特作为第二指示信息。
在另一个具体的实施例中, 网络侧设备在执行上述步骤 101时, 可以将第三 指示信息包括在控制信息中添加到下行数据块中, 该第三指示信息可以为用于 区分捎带的应答 /否定应答( Piggiybacked Ack/Nack, PAN )与控制信息的加扰值, 如该加扰值为一个值时, 表示当前为控制信息方式, 为其他值时, 表示当前为 PAN方式。 这种情况下, 由于多种类型的控制信息用同一个指示值进行指示, 则 在上述步骤 101中添加的控制信息中还可以包括控制信息的类型 (即上述的第二 指示信息)。 这样终端设备在接收到下行数据块后, 就会根据控制信息中第三指 示信息的指示知道其中携带的是 PAN还是控制信息, 且如果是控制信息, 则根据 控制信息的类型 (即上述的第二指示信息), 知道是哪种类型的控制信息, 从而 进行相应的操作。
或者, 网络侧设备可以在执行上述步骤 101时, 将第四指示信息包括在控制 信息中添加到下行数据块中, 该第四指示信息为控制信息类型对应的加 4尤值, 用来指示控制信息的类型, 这样终端设备在接收到下行数据块后, 就会根据控 制信息中第四指示信息的指示知道其中携带的具体是哪种类型的控制信息, 从 而进行相应的操作。
上述第三指示信息和第四指示信息都是控制信息相关的加扰值, 只是第三 指示信息仅用于区分 PAN和控制信息, 不再区分控制信息的具体类型, 第四指示 信息不仅可以区分 PAN , 还可以区分控制信息的具体类型。 可以理解, 在网络侧设备与终端设备之间的数据传输过程中, 具有快速应 答或否定应答报告(Fast ack/nack report, FANR )的特性, 即网络侧设备会在下 行数据块中通过打孔的方式插入 PAN用来指示网络侧设备对终端设备发送的上 行数据的接收情况, 比如正确接收或错误接收。 而本实施例中网络侧设备可以 将不同类型的控制信息添加到下行数据块中, 用来控制终端设备的无线资源。 因此, 需要区分下行数据块中是插入 PAN还是控制信息, 且区分下行数据块中插 入的控制信息是哪种类型。
在其它具体的实施例中, 为了增加控制信息传输的可靠性, 可以对传输的 控制信息进行编码后的循环冗余校验码( Cyclic Redundancy Check, CRC )进行 加扰。 具体地, 本实施例的方法中:
网络侧设备在执行上述步骤 101中的在下行数据块中添加控制信息时, 可以 先对控制信息编码后生成循环冗余校验码( Cyclic Redundancy Check, CRC ), 并用上述的第三指示信息 (或第四指示信息)对 CRC进行加扰(比如进行异或 运算)后, 将加扰后的控制信息通过打孔的方式插入到下行数据块发送给终端 设备。
本实施例中用第三指示信息 (或第四指示信息)对 CRC进行加扰发送后, 终端设备就可以根据第三指示信息 (或第四指示信息)获取下行数据块中携带 的控制信息。 具体地, 终端设备会通过预置的控制信息的解扰值(包括固定配 置在终端设备中的解扰值或者预先在 TBF指派消息中动态指示的解扰值)来对接 收的下行数据块中的控制信息进行 CRC解扰, 然后用解扰得到的 CRC对控制信 息进行解码, 如果解码成功, 则在下行数据块中携带的是终端设备用来解扰时 所用解扰值对应的某一类型的控制信息。
其中上述的加扰和解扰是相逆的两个过程, 且编码与解码也是相逆的两个 过程, 比如在加扰时, 可以通过第三指示信息 (或第四指示信息)与 CRC进行 抑或运算; 而在解扰时, 可以通过终端设备中预置的解扰值对下行数据块中的 控制信息进行抑或的反运算得到原始的 CRC, 且以下实施例中提到的加扰和解 扰方法都一致。 这种情况下, 终端设备上预置的控制信息的解扰值需要与网络 侧设备进行加扰时使用的第三指示信息 (或第四指示信息)在指示控制信息时 一致, 比如都用 11111来指示控制信息等。 在具体的实现过程中:
( 1 )在终端设备上固定配置的控制信息的解扰值与第三指示信息(或第四 指示信息)在指示控制信息时一致。 优选地 网络侧设备可以在执行上述步骤 102之前,发送临时块流(Temporary Block Flow, TBF )指派消息给终端设备, 在 TBF指派消息中包括控制信息的启 动指示信息, 而在 TBF指派消息中并不包括具体的第三指示信息与第三指示信息 所指示的参数的第一对应关系 (或第四指示信息与控制信息类型的第二对应关 系), 这样终端设备就会启动从接收到的下行数据块中获取控制信息, 即终端设 备在接收到上述的 TBF指派消息后, 就可以在以后接收到每个下行数据时, 都要 从下行数据块中获取控制信息, 具体地, 可以根据预置的控制信息的解扰值来 对下行数据块中的控制信息进行 CRC解扰, 从而获取下行数据块中的控制信息。
例如, 在 TBF指派消息中可以增加下述的对控制信息的启动指示字段, 其中 如果比特(bit )值为 0, 则不启动控制信息, 如果为比特值为 1则启动控制信息。
{ <捎带的控制信息启动 ( iggybacked control info enabled ) : bit(l) > } ( 2 ) 网络设备动态地配置终端设备上的控制信息的解扰值。
优选地, 网络侧设备可以在执行上述步骤 102之前, 发送 TBF指派消息给终 端设备, 在 TBF指派消息中包括控制信息的启动指示信息, 及第三指示信息与第 三指示信息所指示的参数的第一对应关系 (或第四指示信息与控制信息类型的 第二对应关系)。
这样终端设备就可以不用在接收到每个下行数据块时, 都需要获取下行数 据块中包含的控制信息, 这种情况下, 由网络侧设备动态地通过 TBF指派消息进 行配置终端设备进行解扰的解扰值,这样终端设备在接收到上述的 TBF指派消息 后, 就可以在以后接收到下行数据块时, 都要从下行数据块中获取控制信息, 具体地可以根据动态配置的解扰值即 TBF指派消息中的第一对应关系中的第三 指示信息 (或第二对应关系中的第四指示信息) 来对控制信息进行 CRC解扰, 从而获取下行数据块中的控制信息。
例如, 在 TBF指派消息中增加下述第一对应关系, 如果为 0, 则不启动控制 信息, 如果为 1则启动控制信息, 并且下发用于区分 PAN和控制信息的第三指示 信息, 如 5bit的某一临时块流指示 (Temporary Flow Identity, TFI )值, 该 TFI 不能用于指示 PAN。
{ 0 -不启动
I 1 -启动
<捎带控制信息 ( PControl info ) : bit(5) > 又例如, 在 TBF指派消息中增加下述第二对应关系, 如果为 0, 则不启动控 制信息, 如果为 1则启动控制信息, 并且下发控制信息类型的对应值即第四指示 信息, 分别用 5比特某一 TFI值指示捎带的功率位(PPower Para )、 PMCS和捎带 的资源分配参数(PAssignment ), 比如 TFI=1指示编码方式命令类型, TFI=2指示 功率控制命令类型, TFI=3指示资源信息参数, 这些 TFI不能用于指示 PAN。
{ 0 -不启动
I 1 -启动
< PMCS: bit(5) >
< PPower Para: bit(5)>
< PAssignment: bit(5)>
本发明实施例还提供一种无线资源控制方法, 主要是终端设备所执行的对 分组域无线资源控制信息的处理方法, 包括对上行资源和下行资源的控制信息 的处理, 流程图如图 2所示, 包括:
步骤 201 , 接收下行数据块。 设备可以对无线资源进行控制, 包括对上行资源和 /或下行资源的控制, 而这里 获取的控制信息可以包括: 上行数据和 /或下行数据传输的资源分配参数, 比如 时隙, 分配的无线块的分布(即无线块分配参数), 资源使用的起始时刻和 /或结 束时刻, 上行状态标识 USF, 上行临时流标识 TFI等中的一个或多个的组合, 或 包括上行数据传输的 MCS, 或包括上行数据传输的功率参数等。
网络侧设备可以根据实际情况来确定对无线资源进行控制的控制信息, 包 括上行资源和 /或下行资源的控制信息, 并将控制信息添加到下行数据块(比如 承载 RLC块或 MAC块的无线块) 中发送给终端设备。
步骤 202, 在下行数据块中包括上行资源和 /或下行资源的控制信息时, 解析 下行数据块得到控制信息, 并根据控制信息使用相应的上行资源和 /或下行资源 传输数据。
终端设备在解析到控制信息后, 如果控制信息是终端设备发送上行数据的 MCS, 则终端设备会根据 MCS发送上行数据, 即按照该 MCS将上行数据块进行 编码后发送; 如果控制信息包括终端设备发送上行数据的发射功率, 则终端设 备会按照该发射功率规定的功率发送上行数据。 如果控制信息为资源分配参数时, 终端设备使用所述资源分配参数对应的 资源发送上行数据或者接收下行数据, 比如如果控制信息包括终端设备发送传 输上行数据和 /或下行数据的时隙, 则终端设备会在相应的时隙上发送上行数据 或接收下行数据; 如果控制信息包括分配的无线块资源参数, 终端设备就会在 相应的无线块上发送上行数据或接收下行数据; 如果控制信息包括 USF或 TFI标 识, 终端设备使用该 USF标识作为发送上行数据的标识或使用 TFI标识作为接收 下行数据的标识。
可见, 本发明实施例的方法中, 网络侧设备会将上行资源和 /或下行资源的 控制信息添加到下行数据块中, 发送给终端设备, 这样终端设备就会根据控制 信息使用相应的上行资源和 /或下行资源传输数据。 本发明实施例中在发送对无 线资源进行控制的控制信息时, 是将控制信息添加到传输的下行数据块中, 而 不会占用另外的无线块资源来频繁发送, 能快速地对无线资源进行控制, 且减 少了资源控制过程中对下行带宽的损耗。
在一个具体的实施例中, 为了避免终端设备接收到每个下行数据块都要解 析控制信息的情况, 网络侧设备可以在下行数据块中添加用于指示控制信息是 否存在的第一指示信息, 该第一指示信息是用来指示在下行数据块中是否携带 有控制信息。 这样当终端设备接收到下行数据块后, 如果该第一指示信息中指 示在下行数据块中存在控制信息, 则会继续执行 102中解析控制信息的步骤。
在另一个具体的实施例中, 且为了指示下行数据块中携带的是哪一种类型 的控制信息, 则网络侧设备可以在现行数据中添加第二指示信息, 该第二指示 信息为指示控制信息类型的比特字段。 当终端设备接收到下行数据块后, 还要 解析到该第二指示信息, 并根据该第二指示信息所指示的控制信息的类型使用 相应的上行资源和 /或下行资源传输数据。
在其它具体的实施例中,为了指示下行数据块中携带的是 PAN还是某一种类 型的控制信息, 网络侧设备还可以在下行数据块中添加的控制信息中包括第三 指示信息和控制信息的类型,该第三指示信息是用于区分 PAN与控制信息的加扰 值。 这样终端设备接收到下行数据块后, 就可以知道下行数据块中携带的是 PAN 还是某一种类型的控制信息, 则终端设备会根据第三指示信息和控制信息的类 型, 使用相应的上行资源和 /或下行资源传输数据。 比如, 第三指示信息指示在 下行数据块中携带有控制信息, 而控制信息的类型为终端设备发送上行数据的 MCS, 则终端设备会按照该 MCS将上行数据块进行编码后发送等。 或, 网络侧设备还可以在下行数据块中添加的控制信息中包括第四指示信 息, 该第四指示信息是控制信息类型对应的加扰值, 这样终端设备接收到下行 数据块后, 就可以知道下行数据块中携带的是某一种类型的控制信息, 则终端 会根据第四指示信息的指示, 使用相应的上行资源和 /或下行资源传输数据。 比 如, 第四指示信息指示在下行数据块中携带有终端设备发送上行数据的 MCS, 则终端设备会按照该 MCS将上行数据块进行编码后发送等。
在另一个具体的实施例中, 为了控制信息的传输比较安全, 网络侧设备可 以通过上述的第三指示信息 (或第四指示信息)对控制信息进行加扰, 并将加 扰后的控制信息添加到下行数据块中, 且为了避免终端设备不需要在接收到每 个下行数据块都解析获取控制信息, 网络侧设备可以在发送下行数据块之前, 发送 TBF指派消息给终端设备。 对于终端设备来说, 在执行上述步骤 202之前, 终端设备还可以接收网络侧设备发送的临时块流 TBF指派消息, 在 TBF指派消息 中包括控制信息的启动指示信息, 即指示网络侧设备发送的下行数据块中会携 带有控制信息。 当终端设备接收到 TBF指派消息, 启动从接收的下行数据块中解 析得到控制信息, 则在以后接收的下行数据块中都需要从下行数据块中获取控 制信息, 具体地, 可以通过如下的方法来解析获取控制信息:
终端设备可以用预置的控制信息的解扰值, 对接收的下行数据块中的控制 信息进行 CRC解扰, 并用解扰后的 CRC对控制信息进行解码, 如果解码成功, 则确定下行数据块中包括进行解扰时使用的解扰值所对应指示的控制信息; 如 果解码不成功, 则使用预置的另一个解扰值进行 CRC解扰, 然后再用解扰后 CRC 对下行数据块中的控制信息进行解码, 这样重复解扰和解码的过程, 直到成功 解码到控制信息。 其中, 终端设备预置的控制信息的解扰值需要与网络侧设备 进行加扰时使用的第三指示信息 (或第四指示信息)对控制信息的指示一致, 比如都用 11111来指示控制信息等, 且该解扰值可以是固定配置在终端设备, 也 可以由网络侧设备通过 TBF指派消息等消息进行动态配置。
如果网络侧设备通过 TBF指派消息动态配置, 则在网络侧设备发送的 TBF指 派消息中除了包括控制信息的启动指示信息外, 还要包括上述的第三指示信息 与第三指示信息所指示的参数的第一对应关系 (或第四指示信息与控制信息类 型的第二对应关系), 这种情况下, 终端设备在进行 CRC解扰时, 可以通过 TBF 指派消息中携带的第三指示信息 (或第四指示信息)进行解扰, 具体地, 在上 述终端设备进行解扰时使用的预置的控制信息的解扰值即为控制信息对应的第 三指示信息 (或第四指示信息)。
参考图 3所示为具体实施例一的无线资源控制方法, 在本实施例中主要是网 步骤 301 , 网络侧设备与终端设备之间进行数据传输的过程中, 网络侧设备 根据对终端设备发送的上行数据的接收情况获取调整的 MCS信息, 具体地, 可 以根据接收正确或接收错误信息, 接收上行数据的电平和信道环境等信息来确 定调整的 MCS信息。
步骤 302 , 网络侧设备可以在下行数据块中插入快速编码调整命令
( Piggybacked MCS command, PMCS ) , 并将步骤 301中获取的 MCS信息添加到 PMCS中。
具体地, 网络设备可以通过多种方式将 PMCS插入到下行数据块中, 比如通 过打孔的方式, 或插入到下行数据块的空闲比特中的等方式。 且插入的 PMCS中 可以包括 MCS字段, 且还可以包括如下字段中的至少一个: pulse字段、 level字 段、 Cx字段和 Tn字段, 其中:
Α、 用于指示调制编码方式的字段(即 MCS字段), 该字段可以通过 4个比特 ( bit )指示通用分组无线服务技术( General Packet Radio Service, GPRS )、 增 强的 GPRS ( Enhanced GPRS , EGPRS )、 EGPRS2-A或 EGPRS2-B等调制编码方 式;
B、 用于指示脉冲成形类型 ( pulse format ) 的字段(即 pulse字段), 该字段 主要是针对 EGPRS2-B的调制编码方式下, 指示通过哪种类型的脉冲成形;
G用于指示增强的通用分组无线服务技术 GPRS层次(level )的字段(即 level 字段), 该字段主要是指示 EGPRS的调制编码方式的层次, 比如是 2-A或 2-B等;
D、 载波标识字段(即 Cx字段), 该字段主要针对上行双载配置的终端设备, 即该终端设备能在两个不同的载频上轮流发送数据, 可以指示为哪个载频调整 的 MCS;
E、 时隙标识字段(即 Tn字段), 该字段可以指示为终端设备的 TBF的哪个 时隙调整的 MCS。
其中 TBF是终端设备和网络侧设备之间的临时连接, 只在数据转发的过程中 才存在, 一个 TBF可以在一个或多个分组数据信道( Packet Data Channel, PDCH ) 即一个或多个时隙上使用无线资源, 且每个 TBF都通过相应的临时块流指示 ( Temporary Flow Identity, TFI )来指示。
可以理解, 如果网络侧设备需要调整某个终端设备发送上行数据的 MCS, 则可以在发送给该终端设备的下行数据块中插入上述的 PMCS; 且进一步地, 在 PMCS中还可以包括其它字段来实现其它功能, 比如可以包括用于指示 PMCS指 示的上行时隙所在临时块流 TBF的字段(即 TFI字段), 用来指示该 PMCS是针对 终端设备的上行时隙所在的哪个 TBF而调整的 MCS。
步骤 303 , 网络侧设备将插入上述 PMCS的下行数据块发送给终端设备。 步骤 304 , 终端设备会根据 PMCS中指示的 MCS来发送上行数据。
例如, 参考图 4a所示为在下行数据块中插入的一种 PMCS的结构, 包括 4bit 的 MCS字段和 2bit的 level字段, 其中 level字段作为可选( optional )字 该 PMCS 可以指示终端设备在发送上行数据时是否允许进行 EGPRS2-A与 EGPRS2-B之间 的切换。
参考图 4b所示为在下行数据块中插入的另一种 PMCS的结构, 包括 4bit的 MCS字段、 5bit的 TFI字段和 2bit的 level字段, 其中 level字段和 TFI字段是可选字 段。 该 PMCS可以指示终端设备在发送上行数据时是否允许进行 EGPRS2-A与 EGPRS2-B之间的切换, 且指示是针对该终端设备的哪个上行 TBF进行的 MCS调 整。
参考图 4c所示为在下行数据块中插入的又一种 PMCS的结构, 包括 4bit的 MCS-C1字段(即针对载频 C1的 MCS信息 5bit的 TFI字段、 4bit的 MCS-C2字段、 2bit的 Level-Cl字段(即针对载频 C1的 Level信息)及 2bit的 Level-C2字段, 其中 MCS-C2字段和 Level-C2字段是可选字段。 该 PMCS可以针对两个载频分别进行 指示调整的 MCS。
参考图 4d所示为在下行数据块中插入的另一种 PMCS的结构, 包括 4bit的 MCS-C1字段(即针对载频 C1的 MCS信息 5bit的 TFI字段、 4bit的 MCS-C2字段、 2bit的 Level-Cl字段(即针对载频 C1的 Level信息)、 2bit的 Level-C2字段、 5bit的 预留的 TFI字段和 3bit的空闲 (spare )字段, 其中 MCS-C2字段和 Level-C2字段是 可选字段。 该 PMCS可以针对两个载频分别进行指示调整的 MCS, 且可以通过预 留的 TFI字段指示在下行数据块中插入的是 PMCS还是 PAN。
需要说明的是, 网络侧设备对终端设备的无线资源控制的控制信息有多种 类型, 则其他具体实施例中, 可以利用添加到下行数据块的控制信息中的若干 比特字段(即第二指示信息)来指示控制信息类型。 例如, 在控制信息中使用 2 个 bit字段区分控制信息类型, 00表示 PMCS, 01表示上行数据传输的功率参数, 10表示数据传输的无线资源分配参数, 11表示其他类型的控制参数, 则上述 PMCS中还可以包括用于指示控制信息的类型的字段。
可见, 通过上述步骤 301到 304的无线资源控制方法, 发送给终端设备的下 行数据块中只包括控制信息即调整的 MCS信息, 在其他具体的实施例中, 为了 使得终端设备不必在接收到每个下行数据块都解析控制信息, 网络侧设备可以 在下行数据块中添加用于指示控制信息是否存在的第一指示信息, 具体地, 可 以在下行数据块的头部(header )中指示上述的 PMCS是否存在, 只有指示 PMCS 存在, 终端设备才继续按照上述 PMCS的结构解析得到控制信息。
参考图 5所示为具体实施例二的无线资源控制方法, 本实施例中网络侧设备 在发送下行数据块前需要使用第三指示信息对控制信息进行加扰, 且本实施例 中多种类型的控制信息用一个加扰值进行指示:
步骤 501 , 网络侧设备发送临时块流 TBF指派消息给终端设备, 且在 TBF指 派消息中包括 PAN或控制信息的启动指示信息, 当指示 PAN启动时, 终端设备会 启动从下行数据块中获取 PAN的过程, 当指示控制信息启动时, 终端会启动从下 行数据块中获取控制信息的过程。
本实施例中, 需要区分下行数据块中是插入 PAN还是插入控制信息比如 PMCS, 如果网络侧设备需要通过在下行数据块中插入控制信息来进行控制无线 资源, 或者在下行数据块中插入 PAN来说明对上行数据的接收情况, 则可以对小 区内终端设备进行配置, 具体地:
可以在发送给终端设备的 TBF指派消息中包括 PAN或控制信息(比如 PMCS ) 的启动指示信息, 指示该小区会使用一个特定的指示值(比如通过 TFI来进行指 示)来下发 PAN或控制信息, 但是这个特定指示值可以不在 TBF指派消息进行说 明, 这样需要事先在网络侧设备和终端设备上预置区分 PAN和控制信息的指示 值。 比如用预置的指示值 11111来指示控制信息, 用预置的指示值不为 11111来指 示 PAN, 本实施例中是将多种类型的控制信息用同一个指示值进行指示等。
且在其他实施例中, 网络侧设备发送给终端设备的 TBF指派消息中除了包括 PAN或控制信息的启动指示信息,还可以包括具体区分 PAN与控制信息的加扰值 的第三指示信息及第三指示信息所指示的参数的第一对应关系, 指示该小区会 使用一个特定的指示值来下发 PAN或控制信息, 且这个特定的指示值在 TBF指派 消息中进行说明。这样终端设备就可以根据 TBF指派消息中的第一对应关系从下 行数据块中获取 PAN或控制信息。
步骤 502, 网络侧设备与终端设备之间进行数据传输的过程中, 网络侧设备 可以对终端设备的无线资源进行控制, 将控制信息添加到下行数据中, 在控制 信息中包括用于指示控制信息的第三指示信息和控制信息的类型。 且在数据传 输的过程中, 网络侧设备还可以将 PAN及指示 PAN的第三指示信息添加到下行数 据块中。
可以理解, 本实施例中添加到下行数据块中的控制信息不仅包括上行和 /或 下行资源的控制信息, 还可以包括控制信息的类型。 由于本实施例中多种类型 的控制信息使用同一个指示值进行指示, 比如用 11111来指示控制信息, 则需要 进一步地通过控制信息中的若干比特字段(即第二指示信息) 来指示控制信息 的类型, 比如使用 2个 bit区分控制信息类型, 00表示 PMCS, 01表示上行数据传 输的功率参数, 10表示数据传输的无线资源分配参数, 11表示其它类型的控制 参数。
比如网络侧设备根据对终端设备发送的上行数据的接收情况获取调整的 MCS信息, 并将获取的 MCS信息添加到下行数据块中插入的 PMCS中, 插入的 PMCS中包括 MCS字段, 用于区分 PAN与 PMCS的指示字段即预留的(Reserved ) TFI字段和 PMCS类型字段, 且还可以包括如下字段中的至少一个: pulse字段、 level字段 Cx字段、 Tn字段和用于携带对终端设备发送的上行数据的接收信息的 字段即携带上行数据的应答或否定应答的字段。
而网络侧设备在添加控制信息时, 可以先对控制信息编码后生成 CRC, 并 用第三指示信息对 CRC进行加扰, 比如用第三指示信息对 CRC进行异或处理, 并将加扰后的控制信息以打孔的方式插入到下行数据块中。
步骤 503 , 网络侧设备将添加后的下行数据块发送给终端设备。
步骤 504, 终端设备接收到 TBF指派消息, 在接收到下行数据后, 可以通过 如下方法来获取其中携带的 PAN或控制信息。
具体地使用终端设备中预置在终端设备中的或者 TBF指派消息中指示的控 制信息的解扰值, 对接收的下行数据块中插入的信息进行循环冗余校验码
( Cyclic Redundancy Check, CRC )解扰; 然后再用解扰后的 CRC对下行数据中 插入的信息进行解码, 如果使用解扰后的 CRC成功解码, 则说明该下行数据块 中插入的是控制信息, 则执行步骤 505; 如果使用解扰后的 CRC解码失败, 则说 明下行数据块中没有插入控制信息, 则执行步骤 506。 可以理解, 这里在进行 CRC解扰时, 可以使用预置的控制信息的解扰值与 下行数据块中插入的信息进行异或的反处理得到解扰后 CRC, 即还原了网络侧 设备在下行数据块中插入信息使用的原始 CRC。
步骤 505, 终端设备按照下行数据块携带的控制信息的类型, 确定需要做什 么操作, 比如如果控制信息的类型为 PMCS, 则按照 PMCS指示的 MCS信息发送 上行数据。
步骤 506, 终端设备使用预置的 PAN的解扰值对下行数据块中插入的信息进 行 CRC解扰, 并用解扰后的 CRC对下行数据中插入的信息进行解码成功, 则说 明下行数据块中插入的是 PAN这样终端设备即可得到网络侧设备对终端设备发 送的上行数据的接收情况。
参考图 6a所示为在下行数据块中插入的另一种 PMCS的结构, 包括 4bit的 MCS-C1字段、 5bit的 TFI字段、 5bit的预留的 TFI字段、 7bit的短序列号( Short SSN ) 字段和 4bit的无线承载(Radio bear, RB )字段。 该 PMCS可以用短序列号字段和 无线承载字段来携带上行数据的应答或否定应答。
参考图 6b所示, 所示为在下行数据块中插入的控制信息, 在控制信息中包 括 TFI、 2bit的控制信息类型、 TS、 编码方式参数和 5bit的第三指示信息, 还有空 闲比特。
可见, 通过上述步骤 501到 504的无线资源控制方法, 发送给终端设备的下 行数据块中包括控制信息, 此外, 为了使得终端设备不必在接收到每个下行数 据块都解析控制信息, 网络侧设备可以在下行数据块中添加用于指示控制信息 是否存在的第一指示信息, 具体地, 可以在下行数据块头部的 PAN指示(PANI ) 字段中指示控制信息或 PAN是否存在, 只有指示控制信息或 PAN存在, 终端设备 才继续按照上述步骤 504到 506进行解析下行数据。
参考图 7a所示为具体实施例三的无线资源控制方法, 本实施例中网络侧设 备在发送下行数据块前需要通过第四指示信息对控制信息进行加扰, 且本实施 例中多种类型的控制信息分别用不同的解扰值进行指示:
步骤 701 , 网络侧设备发送临时块流 TBF指派消息给终端设备, 且在 TBF指 派消息中包括控制信息的启动指示信息, 以使终端设备启动从下行数据块中获 取控制信息的过程。
本实施例中, 如果网络侧设备需要通过在下行数据块中插入控制信息来进 行控制无线资源, 则可以对小区内终端设备进行配置, 具体地: 可以在发送给终端设备的 TBF指派消息中包括控制信息的启动指示信息,指 示该小区会使用一个特定的指示值(比如 TFI值)来下发控制信息, 但是这个特 定指示值可以不在 TBF指派消息进行说明,这样需要事先在网络侧设备和终端设 备上预置区分各种类型控制信息指示值。 比如用预置的指示值 11111来指示 PMCS, 使用预置的指示值 00001来指示上行数据传输的功率参数, 使用预置的 指示值 00010来指示数据传输的无线资源分配参数等, 这种情况是将多种类型的 控制信息用不同的指示值进行指示。
且在其他实施例中, 网络侧设备发送给终端设备的 TBF指派消息中除了包括 控制信息的启动指示信息, 还可以包括具体第四指示信息 (即控制信息类型的 对应值)和控制信息类型的第二对应关系, 指示该小区会使用一个特定的指示 值来下发各种类型的控制信息, 且这个特定的指示值在 TBF指派消息中进行说 明。这样终端设备就可以根据 TBF指派消息中的第四指示信息从接收到的下行数 据块中获取控制信息。
步骤 702, 网络侧设备与终端设备之间进行数据传输的过程中, 网络侧设备 可以对终端设备的无线资源进行控制, 将控制信息添加到下行数据块中。
具体地, 网络侧设备对控制信息编码后生成 CRC, 并用第四指示信息对 CRC 进行加扰, 比如用第四指示信息对 CRC进行异或处理, 并将加扰后的控制信息 插入的到下行数据块中。
步骤 703 , 网络侧设备将添加后下行数据块发送给终端设备。
步骤 704, 终端设备在接收到 TBF指派消息后, 在以后接收到下行数据块时, 即通过如下方法来获取控制信息。
具体地, 用预置在终端设备中的某一类型控制信息的解扰值, 对接收的下 行数据块中插入的控制信息进行 CRC解扰; 然后再用解扰后的 CRC对下行数据 中插入的控制信息进行解码, 如果成功, 则确认在下行数据块中插入的是相应 类型的控制信息, 并执行步骤 705;
如果使用解扰后的 CRC解码控制信息的数据失败, 则说明该下行数据块中 插入的不是相应类型控制信息, 则选择另一类型控制信息的解扰值, 并返回执 行步骤 704中的解扰后解码步骤, 直到成功解码到一种类型的控制信息, 并执行 步骤 705。
步骤 705, 终端设备按照下行数据块中包括的某种类型的控制信息, 进行相 应操作, 比如在下行数据块中包括 PMCS, 则按照 PMCS指示的 MCS信息发送上 行数据等。
参考图 7b所示为在下行数据块中插入的控制信息, 在控制信息中包括 TFI、 TS、 编码方式参数和 5bit的第四指示信息, 还有空闲比特。
参考图 8所示为具体实施例四的无线资源控制方法, 本实施例中通过下行数 据块中的空闲比特来携带控制信息:
步骤 801 , 网络侧设备在下行数据块的空闲比特中插入控制信息, 这里控制 信息包括获取到的上行资源和 /或下行资源的控制信息。 控制信息的内容如前面 输的 MCS, 上行数据传输的功率等。
步骤 802, 网络侧设备将下行数据块中的控制信息随数据部分一起进行编 码, 将编码后的下行数据发送给终端设备, 由终端设备进行相应的操作。
比如网络侧设备在下行数据块的空闲比特插入快速编码调整命令 PMCS, 具 体 PMCS的结构可以如上述具体实施例一和二所述, 在此不进行赘述。 而终端设 备根据其中指示的 MCS信息发送上行数据。
通过上述步骤 801到 802的无线资源控制方法, 发送给终端设备的下行数据 块中包括控制信息, 在其他具体的实施例中, 为了使得终端设备不必在接收到 每个下行数据块都解析控制信息, 网络侧设备可以在下行数据块中添加用于指 示控制信息是否存在的第一指示信息, 具体地, 可以在下行数据块头部的某个 字段(例如块头中的空闲比特或对块头已有字段进行重定义的字段或下行数据 块中的长度索引字段等)指示控制信息是否存在, 只有指示控制信息存在时, 终端设备才继续按获取控制信息。
参考图 9所示为下行数据块的结构, 下行数据块包括 K个字节(Octet ), 其中 长度索引 ( length indicator )字段指示在下行数据块中存在 PMCS, 而在空闲的 比特中即在字节 K中插入 PMCS。 其中如果长度索引字段为一个特殊值则指示存 在有 PMCS, 比如长度索引为 124~127中的任一个值时, 表示该下行数据块中有 PMCS, 如果是 124~127之外的一个值, 就说明该下行数据块中没有 PMCS。
需要说明的是, 上述实施例中只说明了在下行数据块中插入的 PMCS的结 构, 如果在下行数据块中插入其他类型的控制信息如资源分配参数等时, 网络 侧设备就可以通过该控制信息, 对终端设备的资源分配参数(如时隙, 分配的 无线块的分布, 资源使用的起始和 /或结束时刻, 上行状态标识 USF, 临时流标 识 TFI等中的一个或多个的组合)进行调整, 其中在下行数据块中插入的资源分 配参数结构可以如图 10所示, 包括 时隙(TS )字段、无线块分配数量(block— num ) 字段、 资源使用的起始时刻(start— time— offset )字段、 TFI和预留的 TFI字段中的 至少一个或多个, 其中:
时隙字段: 3~8bit, 用于指示数据传输的一个或多个时隙的时隙号; 无线块分配: 3bit, 可以指示反应时间后的 1~8个无线块分配给该终端设备 使用, 这里反应时间可以是固定的时间, 例如两个无线块之间的时间;
资源使用的起始时刻字段: 可以使用相对接收到控制信息的先后偏移时 间, 3比特; 结束时刻与起始时刻类似, 也可以使用偏移时间, 5bit。
TFI字段: 5bit; 预留的 TFI字段: 5bit; 空闲比特。
其中 TFI字段和预留的 TFI字段的指示, 与 PMCS中 TFI字段和预留的 TFI字段 的指示类似, 在此不进行赞 在资源分配参数中还可以包括 3bit的 USF字段等, 且该资源分配参数的控制信息插入到下行数据块的方式可以参考上述实施例一 到四的方式, 在此不进行赞述。 本发明实施例还提供一种网络侧设备, 可以为基站或基站控制器等接入网 设备, 其结构示意图如图 11所示, 包括:
信息添加单元 11 , 用于将控制信息制信息添加到下行数据块中, 所述控制 信息包括上行资源和 /或下行资源的控制信息。
信息添加单元 11可以获取上行资源和 /或下行资源的控制信息, 并将控制信 息添加到下行数据块中, 这里获取的控制信息可以包括: 上行数据和 /或下行数 据的传输资源, 或上行数据传输的 MCS, 或上行数据传输的功率等信息。
例如, 信息添加单元 11可以根据对终端设备发送的上行数据的接收情况获 取终端设备发送上行数据的调制编码方式 MCS, 并通过打孔方式插入 PMCS, 或 在下行数据的空闲比特中插入 PMCS, 并在 PMCS中添加获取的 MCS信息即控制 信息。
其中在 PMCS可以包括用于指示调制编码方式的字段, 还可以包括如下字段 的至少一个: 用于指示脉冲成形类型的字段, 用于指示增强的通用分组无线服 务技术 GPRS层次的字段, 载波标识字段, 时隙标识字段, 用于携带对所述终端 设备发送的上行数据的接收信息的字段, 用于指示所述 PMCS指示的上行时隙所 在临时块流 TBF的字段, 和用于区分捎带的应答或否定应答 PAN与 PMCS的指示 字段, 和控制信息类型的字段等。 下行数据块中; 或将终端设备发送上行数据使用的资源参数添加到下行数据块 中, 其中, 资源参数包括至少一个如下的信息: 终端设备的上行临时流标识 TFI、 时隙参数、 上行状态标识 USF参数、 资源使用的起始时刻和 /或结束时刻和无线 块分配参数等。
所述信息添加单元 11在添加控制信息时, 可以通过打孔的方式在下行数据 块中添加控制信息; 也可以在下行数据块的空闲比特中添加控制信息; 还可以 对下行数据块中已有的参数进行重定义, 在重定义的比特中添加控制信息。
数据发送单元 12, 用于将所述信息添加单元 11添加后的下行数据块发送给 终端设备, 以使所述终端设备根据所述控制信息使用相应的上行资源和 /或下行 资源传输数据。
可见, 本发明实施例的网络侧设备中, 信息添加单元 11将上行资源和 /或下 行资源的控制信息添加到下行数据块中, 并由数据发送单元 12将添加后的下行 数据块发送给终端设备, 这样终端设备就会根据控制信息使用相应的上行资源 和 /或下行资源传输数据。 本发明实施例中在发送对无线资源进行控制的控制信 息时, 是将控制信息添加到传输的下行数据块中, 而不会占用另外的无线块资 源来频繁发送, 能快速地对无线资源进行控制, 且减少了资源控制过程中对下 行带宽的损耗。
在一个具体的实施例中, 为了避免终端设备在接收到每个下行数据块都要 解析获取控制信息, 信息添加单元 11 , 还用于将指示所述控制信息是否存在的 第一指示信息添加到下行数据块中, 这样当指示信息指示在下行数据块中携带 有控制信息, 终端设备才继续解析获取控制信息。
具体地, 信息添加单元 11可以将所述第一指示信息添加到下行数据块头中 的空闲比特, 或者将所述第一指示信息添加到对下行数据块头中已有的参数进 行重定义的比特(比如添加到下行数据块头中的 PAN指示字段), 或者将所述第 一指示信息添加到下行数据块的长度索引中。
在另一个具体的实施例中, 信息添加单元 11 , 还用于将第二指示信息添加 到所述下行数据块中 , 所述第二指示信息为指示控制信息类型的比特字段。
具体地, 信息添加单元 11可以将所述第二指示信息添加到下行数据块头中 的空闲比特, 或者将所述第二指示信息添加到对下行数据块头中已有的参数进 行重定义的比特(比如添加到下行数据块中的临时流标识 TFI字段), 或者将所 述第二指示信息添加到下行数据块中的长度索引中; 或者将所述第二控制信息 包括在控制信息中添加到所述下行数据块中。
在其它具体的实施例中, 信息添加单元 11在下行数据块中添加的控制信息 中还可以包括第三指示信息和控制信息的类型; 所述第三指示信息为用于区分
PAN和控制信息的加 4尤值, 这种情况下, 由于多种类型的控制信息用同一个指示 信息进行指示, 则在所述控制信息中需要包括控制信息的类型 (即上述的第二 指示信息)。 这样终端设备在接收到下行数据块后, 就可以根据第三指示信息的 指示, 得知在下行数据块中携带的是 PAN还是控制信息, 如果是控制信息, 即可 根据其中的控制信息的类型得知是哪种类型的控制信息, 从而进行相应操作。
或, 信息添加单元 11在下行数据块中添加的控制信息中包括第四指示信 息, 所述第四指示信息为控制信息类型对应的加扰值。 这样终端设备在接收到 下行数据块后, 就可以根据第四指示信息的指示, 得知在下行数据块中携带的 是哪一种类型的控制信息, 从而进行相应操作。
参考图 12所示, 在其他具体实施例中, 网络侧设备中除了包括如图 11所示 的结构外, 还可以包括指派发送单元 13 , 且其中信息添加单元 11在添加控制信 息时, 可以通过校验生成单元 110、 加扰单元 111和添加单元 112, 其中:
指派发送单元 13 , 用于发送临时块流 TBF指派消息给所述终端设备, 所述 TBF指派消息中包括所述控制信息的启动指示信息, 以便所述终端设备根据所述 启动指示信息启动从接收到的下行数据块中获取控制信息。
校验生成单元 110, 用于对所述控制信息编码后生成循环冗余校验码 CRC。 加扰单元 111 , 用于用上述的第三指示信息或第四指示信息对所述校验生成 单元 110生成的 CRC加扰(比如用第三指示信息或第四指示信息对 CRC进行异 或)。
添加单元 112用于将所述加扰单元 111加扰后的控制信息添加到下行数据块 中。
本实施例中, 为了使得控制信息的传输比较安全, 可以通过校验生成单元 110、 加扰单元 111和添加单元 112将加扰后的控制信息添加到下行数据块中, 并 由数据发送单元 12将添加单元 112添加后的下行数据块发送给终端设备, 这就需 要终端设备通过解扰方式来获取下行数据块中的控制信息。
为了避免终端设备在接收到每个下行数据块解析获取控制信息, 则可以先 通过指派发送单元 13发送 TBF指派消息给终端设备, 这样终端设备在接收到 TBF 指派消息, 在以后接收到的每个下行数据块, 都会从下行数据块中获取控制信 息, 具体获取控制信息的过程可以如上述方法实施例所述, 在此不进行赞述。 其中, 如果信息添加单元 11在下行数据块的控制信息中包括了第三指示信息, 则指派发送单元 13还可以在发送的 TBF指派消息中包括上述的第三指示信息及 第三指示信息所指示的参数的第一对应关系, 这样终端设备根据第一对应关系 从下行数据块中解析出控制信息; 如果信息添加单元 11在下行数据块的控制信 息中包括了第四指示信息, 则指派发送单元 13还可以在发送的 TBF指派消息中包 括上述的第四指示信息及控制信息类型的第二对应关系, 这样终端设备根据第 二对应关系从下行数据块中解析出控制信息。
需要说明的是上述图 11和图 12中网络侧设备的各个单元之间所执行的无线 资源控制方法如图 1对应的实施例所述, 在此不进行赞述。 本发明实施例还提供一种终端设备, 其结构示意图如图 13所示, 包括: 数据接收单元 20, 用于接收下行数据块, 所述下行数据块中包括上行资源 和 /或下行资源的控制信息, 这里获取的控制信息可以包括: 上行数据和 /或下行 数据的传输资源, 或上行数据传输的 MCS, 或上行数据传输的功率等信息。
控制传输单元 21 , 用于解析所述数据接收单元 20接收的下行数据块得到所 述控制信息,并根据所述控制信息使用相应的上行资源和 /或下行资源传输数据。
需要说明的是, 数据接收单元 20接收的下行数据块中还可以包括用于指示 所述控制信息是否存在的第一指示信息, 如果第一指示信息指示存在有控制信 息, 则控制传输单元 21才会获取控制信息; 且数据接收单元 20接收的下行数据 块中还可以包括第二指示信息, 该第二指示信息是指示控制信息类型的比特字 段, 则控制传输单元 21会根据第二指示信息获取控制信息的类型, 并根据第二 指示信息所指示的控制信息的类型, 使用相应的上行资源和 /或下行资源传输数 据。
且数据接收单元 20接收的下行数据块的控制信息中还可以包括第三指示信 息及控制信息的类型, 该第三指示信息是用于区分 PAN与控制信息的加扰值, 则 控制传输单元 21会根据第三指示信息和控制信息的类型, 使用相应的上行资源 和 /或下行资源传输数据; 或数据接收单元 20接收的下行数据块的控制信息中还 可以包括第四指示信息, 该第四指示信息为控制信息类型对应的加扰值, 则控 制传输单元 21会根据所述第四指示信息使用相应的上行资源和 /或下行资源传输 数据, 比如第四指示信息指示在下行数据块中携带 PAN, 则控制传输单元 21就会 获取网络侧设备接收终端设备发送的上行数据的情况, 如果第四指示信息指示 在下行数据块中携带 PMCS, 则控制传输单元 21就可以根据 PMCS的指示发送上 行数据。
控制传输单元 21在传输数据时, 如果数据接收单元 20接收的下行数据块中 控制信息为调制编码方式(MCS ) 时, 控制传输单元 21根据所述 MCS发送上行 数据; 如果数据接收单元 20接收的下行数据块中控制信息为功率参数时, 控制 传输单元 21使用所述功率参数规定的功率发送上行数据; 如果数据接收单元 20 接收的下行数据块中控制信息为资源分配参数时, 控制传输单元 21使用所述资 源分配参数对应的资源发送上行数据或者接收下行数据。
可见, 本发明实施例的终端设备中, 网络侧设备会将上行资源和 /或下行资 源的控制信息添加到下行数据块中, 发送给终端设备, 这样终端设备就会根据 控制信息使用相应的上行资源和 /或下行资源传输数据。 本发明实施例中在发送 对无线资源进行控制的控制信息时, 是将控制信息添加到传输的下行数据块 中, 而不会占用另外的无线块资源来频繁发送, 能快速地对无线资源进行控制, 且减少了资源控制过程中对下行带宽的损耗。
参考图 14所示, 在另一个具体的实施例中, 终端设备除了包括如图 13所示 的结构外, 还可以包括指派接收单元 22, 且控制传输单元 21可以通过解扰单元 210、 解码单元 211和控制单元 212来实现, 其中:
指派接收单元 22, 用于接收临时块流 TBF指派消息, 所述 TBF指派消息中包 括所述控制信息的启动指示信息, 则启动从接收到的下行数据块中解析得到控 制信息。
如果在数据接收单元 20接收的下行数据块的控制信息中包括第三指示信 息,在指派接收单元 22接收的 TBF指派消息中还可以包括所述第三指示信息与第 三指示信息所指示的参数的第一对应关系, 如果在数据接收单元 20接收的下行 数据块的控制信息中包括第四指示信息,在 TBF指派消息中还包括第四指示信息 与控制信息类型的第二对应关系。
解扰单元 210, 用于用预置的控制信息的解扰值, 对所述接收的下行数据块 中的控制信息进行循环冗余校验码 CRC解扰。 这里预置的控制信息的解扰值可 以是固定配置在终端设备中的,也可以是网络侧设备通过 TBF指派消息进行动态 配置, 如果在 TBF指派消息中包括第三指示信息, 则这里预置的控制信息的解扰 值为控制信息对应的第三指示信息, 而如果在 TBF指派消息中包括第四指示信 息, 则这里预置的控制信息的解 4尤值为第四指示信息。 解码单元 211 , 用于用所述解扰单元 210解扰后的 CRC对所述接收的下行数 据块中的控制信息进行解码。
控制单元 212, 用于如果所述解码单元 211解码成功, 则确定所述下行数据 块中包括解扰时所用解扰值所指示的控制信息, 并根据所述解扰值所指示的控 制信息, 使用相应的上行资源和 /或下行资源传输数据。 可以理解, 如果解码单 元 211解码失 则通知解扰单元 210用预置的另一个控制信息或 PAN的解扰值进 行 CRC解扰, 并由解码单元 211来用解扰后的 CRC进行解码, 如果解码成功, 则 根据在解扰时使用的解扰值所的指示进行相应操作。
本实施例中, 当指派接收单元 22接收到 TBF指派消息, 则在以后数据接收单 元 20接收的下行数据块时, 都需要从下行数据块中获取控制信息, 具体地, 控 制传输单元 21可以通过解扰单元 210、 解码单元 211和控制单元 212来获取下行数 据块中的控制信息。
需要说明的是上述图 13和图 14中网络侧设备的各个单元之间所执行的无线 资源控制方法如图 2对应的实施例所述, 在此不进行赞述。 本发明实施例还提供一种无线资源控制系统, 包括网络侧设备和终端设 备, 其中:
网络侧设备, 用于将控制信息添加到下行数据块中, 所述控制信息包括上 行资源和 /或下行资源的控制信息; 将所述添加后的下行数据块发送给终端设备; 终端设备, 用于接收下行数据块, 所述下行数据块中包括上行资源和 /或下 行资源的控制信息; 解析所述下行数据块得到所述控制信息, 并根据所述控制 信息使用相应的上行资源和 /或下行资源传输数据。
可以理解, 本实施例中的网络侧设备的结构可以如图 11或图 12所示, 而终 端设备的结构可以如图 13或图 14所示, 在此不进行赞述; 且本实施例的系统中
; 制。' Θ ^ 、 '
综上所述, 本发明实施例的无线资源控制方法、 系统和设备中, 网络侧设 备会获取上行资源和 /或下行资源的控制信息, 将该控制信息添加到下行数据块 中, 并将添加后的下行数据块发送给终端设备, 这样终端设备就会根据控制信 息使用相应的上行资源和 /或下行资源传输数据。 本发明实施例中在发送对无线 资源进行控制的控制信息时, 是将控制信息添加到传输的下行数据块中, 而不 会占用另外的无线块资源来频繁发送, 能快速地对无线资源进行控制, 且减少 了资源控制过程中对下行带宽的损耗。
且本发明实施例的方法与现有技术中小数据的传输时, 需要在传输 N个无线 块后, 网络侧设备才发送指派消息或 PUAN消息来调整 MCS相比, 本实施例可以 及时对上行数据的 MCS进行控制调整, 使得 MCS的调整效率比较高。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤 是可以通过程序来指令相关的硬件来完成, 该程序可以存储于一计算机可读存 储介质中, 存储介质可以包括: 只读存储器(ROM )、 随机存取存储器(RAM )、 磁盘或光盘等。
以上对本发明实施例所提供的无线资源控制方法、 系统及设备, 进行了详 实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时, 对于本领 域的一般技术人员, 依据本发明的思想, 在具体实施方式及应用范围上均会有 改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权利要求书
1、 一种无线资源控制方法, 其特征在于, 包括:
将控制信息添加到下行数据块中, 所述控制信息包括上行资源和 /或下行资 源的控制信息;
将所述添加所述控制信息后的下行数据块发送给终端设备, 以使所述终端 设备根据所述控制信息使用相应的上行资源和 /或下行资源传输数据。
2、 如权利要求 1所述的方法, 其特征在于, 所述控制信息以下至少一种: 终端设备发送上行数据使用的调制编码方式( MCS );
终端设备发送上行数据使用的功率参数;
终端设备发送上行数据或者接收下行数据使用的资源分配参数; 所述资源 分配参数包括至少一个如下的信息: 终端设备的上行临时流标识(TFI )、 时隙 参数、 上行状态标识(USF )参数、 资源使用的起始时刻和 /或结束时刻, 和无 线块分配参数。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述将控制信息添加到下行 数据块中具体为:
通过打孔的方式在下行数据块中添加控制信息; 或,
在下行数据块的空闲比特中添加控制信息; 或,
对下行数据块中已有的参数进行重定义, 在重定义的比特中添加控制信息。
4、 如权利要求 1至 3任一项所述的方法, 其特征在于, 所述方法还包括: 将用于指示所述控制信息是否存在的第一指示信息添加到下行数据块中; 所述第一指示信息添加到下行数据块中具体包括:
将所述第一指示信息添加到下行数据块头中的空闲比特, 或者将所述第一 指示信息添加到对下行数据块头中已有的参数进行重定义的比特, 或者将所述 第一指示信息添加到下行数据块的长度索引中。
5、 如权利要求 1至 4任一项所述的方法, 其特征在于, 所述方法还包括: 将 第二指示信息添加到所述下行数据块中 , 所述第二指示信息为指示控制信息类 型的比特字段;
所述第二指示信息添加到下行数据块中具体包括:
将所述第二指示信息添加到下行数据块头中的空闲比特中; 或者将所述第 二指示信息添加到对下行数据块头中已有的参数进行重定义的比特中, 或者将 所述第二指示信息添加到下行数据块中的长度索引中; 或者将所述第二指示信 息包括在控制信息中添加到所述下行数据块中。
6、 如权利要求 1至 5任一项所述的方法, 其特征在于, 所述控制信息中包括 第三指示信息和控制信息的类型; 所述第三指示信息为用于区分捎带的应答 /否 定应答(PAN )和控制信息的加扰值;
或, 所述控制信息中包括第四指示信息, 所述第四指示信息为控制信息类 型对应的加 4尤值。
7、 如权利要求 6所述的方法, 其特征在于, 所述将控制信息添加到下行数 据块中具体包括:
对所述控制信息编码后生成循环冗余校验码 ( CRC );
用所述第三指示信息或第四指示信息对所述 CRC加扰, 将所述加扰后的控 制信息添加到下行数据块中。
8、 如权利要求 7所述的方法, 其特征在于, 还包括:
发送临时块流 ( TBF )指派消息给所述终端设备, 所述 TBF指派消息中包括 控制信息的启动指示信息, 以便所述终端设备根据所述启动指示信息启动从接 收到的下行数据块中获取控制信息。
9、 如权利要求 8所述的方法, 其特征在于,
当控制信息中包括第三指示信息时, 所述 TBF指派消息中还包括: 所述第三 指示信息与所述第三指示信息所指示的参数的第一对应关系, 以便所述终端设 备根据所述第三指示信息和第一对应关系区分下行数据块中添加的控制信息和 PAN;
当控制信息中包括第四指示信息时, 所述 TBF指派消息中还包括: 所述第四 指示信息与控制信息类型的第二对应关系, 以便所述终端设备根据所述第二对 应关系从下行数据块中解析出控制信息。
10、 如权利要求 7至 9任一项所述的方法, 其特征在于, 所述第三指示信息 或第四指示信息通过网络侧设备分配给终端设备的临时块流指示(TFI )进行指 示。
11、 一种无线资源控制方法, 其特征在于, 包括:
终端设备接收下行数据块;
当所述下行数据块中包括上行资源和 /或下行资源的控制信息时, 所述终端设备解析所述下行数据块得到所述控制信息 , 并根据所述控制信 息使用相应的上行资源和 /或下行资源传输数据。
12、 如权利要求 11所述的方法, 其特征在于, 所述根据所述控制信息使用 当所述控制信息为调制编码方式(MCS ) 时, 所述终端设备根据所述 MCS 发送上行数据;
当所述控制信息为功率参数时, 所述终端设备使用所述功率参数规定的功 率发送上行数据;
当所述控制信息为资源分配参数时, 所述终端设备使用所述资源分配参数 对应的资源发送上行数据或者接收下行数据。
13、 如权利要求 11或 12所述的方法, 其特征在于, 所述接收的下行数据块 中还包括用于指示所述控制信息是否存在的第一指示信息, 则在所述第一指示 信息指示存在控制信息时, 所述终端设备执行所述解析控制信息的步骤。
14、 如权利要求 11或 12所述的方法, 其特征在于, 所述下行数据块中包括 还第二指示信息, 所述第二指示信息为指示控制信息类型的比特字段;
所述根据所述控制信息使用相应的上行资源和 /或下行资源传输数据具体包 括:
所述终端设备根据所述第二指示信息获取当前控制信息的类型。
15、 如权利要求 11或 12所述的方法, 其特征在于,
所述控制信息中包括第三指示信息, 所述终端设备根据所述第三指示信息 区分捎带的应答 /否定应答(PAN )与控制信息的加扰值;
或, 所述控制信息中包括第四指示信息, 所述第四指示信息为控制信息类 型对应的加扰值, 所述终端设备根据所述第四指示信息获知所述下行数据块中 的控制信息类型。
16、 如权利要求 15所述的方法, 其特征在于, 所述解析所述下行数据块得 到所述控制信息具体包括:
使用预置的解扰值, 对所述接收的下行数据块中的控制信息进行循环冗余 校验码 ( CRC )解扰, 并用解扰后的 CRC对所述接收的下行数据块中的控制信 息进行解码, 如果解码成功, 则确定所述下行数据块中包括解扰时所用解扰值 所对应的控制信息。
17、 如权利要求 16所述的方法, 其特征在于, 所述方法还包括:
接收临时块流 ( TBF )指派消息, 所述终端设备根据所述 TBF指派消息中包 括控制信息的启动指示信息, 启动从接收到的下行数据块中解析得到控制信息。
18、 一种网络侧设备, 其特征在于, 包括:
信息添加单元, 用于将控制信息添加到下行数据块中, 所述控制信息包括 上行资源和 /或下行资源的控制信息;
数据发送单元, 用于将所述信息添加单元添加控制信息后的下行数据块发 送给终端设备, 以使所述终端设备根据所述控制信息使用相应的上行资源和 /或 下行资源传输数据。
19、 如权利要求 18所述的网络侧设备, 其特征在于, 所述信息添加单元, 还用于将指示所述控制信息是否存在的第一指示信息添加到下行数据块中。
20、 如权利要求 18或 19所述的网络侧设备, 其特征在于, 所述信息添加单 元, 还用于将第二指示信息添加到所述下行数据块中, 所述第二指示信息为指 示控制信息类型的比特字段。
21、 如权利要求 18或 19所述的网络侧设备, 其特征在于, 所述信息添加单 元, 用于在下行数据块中添加的控制信息中包括第三指示信息和控制信息的类 型; 所述第三指示信息用于区分捎带的应答 /否定应答(PAN )和控制信息的加 扰值;
或, 所述信息添加单元, 用于在下行数据块中添加的控制信息中包括第四 指示信息, 所述第四指示信息为控制信息类型对应的加 4尤值。
22、 如权利要求 21所述的网络侧设备, 其特征在于, 所述信息添加单元具 体包括:
校验生成单元, 用于对所述控制信息编码后生成循环冗余校验码(CRC ); 加扰单元, 用于用第三指示信息或第四指示信息对所述校验生成单元生成 的 CRC加扰;
添加单元, 用于将所述加扰单元加扰后的控制信息添加到下行数据块中。
23、 如权利要求 18或 19所述的网络侧设备, 其特征在于, 还包括: 指派发送单元, 用于发送临时块流(TBF )指派消息给所述终端设备, 所述 TBF指派消息中包括控制信息的启动指示信息, 以便所述终端设备根据所述启动 指示信息启动从接收到的下行数据块中获取控制信息。
24、 一种终端设备, 其特征在于, 包括:
数据接收单元, 用于接收下行数据块, 所述下行数据块中包括上行资源和 / 或下行资源的控制信息;
控制传输单元, 用于解析所述数据接收单元接收的下行数据块得到所述控 制信息, 并根据所述控制信息使用相应的上行资源和 /或下行资源传输数据。
25、 如权利要求 24所述的终端设备, 其特征在于, 所述数据接收单元接收 的下行数据块中还包括第二指示信息, 所述第二指示信息为指示控制信息类型 的比特字段;
所述控制传输单元, 具体用于根据所述第二指示信息获取控制信息的类 型, 并根据所指示的控制信息的类型使用相应的上行资源和 /或下行资源传输数 据。
26、 如权利要求 24或 25所述的终端设备, 其特征在于, 所述控制传输单元 具体包括:
解扰单元, 用于用预置在所述终端设备中的解扰值, 对所述接收的下行数 据块中的控制信息进行循环冗余校验码(CRC )解扰;
解码单元, 用于用所述解扰单元解扰后的 CRC对所述接收的下行数据块中 的控制信息进行解码;
控制单元, 用于如果所述解码单元解码成功, 则确定所述下行数据块中包 括解扰时所用解扰值所对应的控制信息。
27、 如权利要求 24或 25所述的终端设备, 其特征在于, 还包括:
指派接收单元, 用于接收临时块流(TBF )指派消息, 所述 TBF指派消息 中包括所述控制信息的启动指示信息, 根据所述启动指示所述控制传输单元启 动从接收到的下行数据块中解析得到控制信息。
PCT/CN2012/084804 2011-11-18 2012-11-19 一种无线资源控制方法、系统及设备 WO2013071888A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011103693681A CN103124205A (zh) 2011-11-18 2011-11-18 一种无线资源控制方法、系统及设备
CN201110369368.1 2011-11-18

Publications (1)

Publication Number Publication Date
WO2013071888A1 true WO2013071888A1 (zh) 2013-05-23

Family

ID=48428989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084804 WO2013071888A1 (zh) 2011-11-18 2012-11-19 一种无线资源控制方法、系统及设备

Country Status (2)

Country Link
CN (1) CN103124205A (zh)
WO (1) WO2013071888A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162590A (zh) * 2015-04-10 2016-11-23 中兴通讯股份有限公司 一种信令或序列的发送方法、装置及系统
SG11201903884WA (en) * 2016-11-03 2019-05-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Signal transmission method, terminal device, and network device
CN108768598B (zh) * 2018-03-27 2020-07-10 北京邮电大学 一种超高可靠超低时通信中下行控制信息传输方法及装置
CN111314974B (zh) * 2020-02-11 2022-11-08 展讯通信(上海)有限公司 主辅小区更新的处理方法、装置、基站及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064547A (zh) * 2006-04-27 2007-10-31 上海贝尔阿尔卡特股份有限公司 无线接入系统的中继方法及其基站、中继设备和中继系统
CN101272165A (zh) * 2007-03-20 2008-09-24 北京三星通信技术研究有限公司 传输功率控制信息的设备和方法
CN102025447A (zh) * 2009-09-19 2011-04-20 华为技术有限公司 一种应用于移动终端ack信号被误判时的纠错方法及其装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064547A (zh) * 2006-04-27 2007-10-31 上海贝尔阿尔卡特股份有限公司 无线接入系统的中继方法及其基站、中继设备和中继系统
CN101272165A (zh) * 2007-03-20 2008-09-24 北京三星通信技术研究有限公司 传输功率控制信息的设备和方法
CN102025447A (zh) * 2009-09-19 2011-04-20 华为技术有限公司 一种应用于移动终端ack信号被误判时的纠错方法及其装置

Also Published As

Publication number Publication date
CN103124205A (zh) 2013-05-29

Similar Documents

Publication Publication Date Title
EP3664334B1 (en) Communication method and device
CN110622614B (zh) 用于用户设备标识和通信的系统和方法
US9936501B2 (en) Method and apparatus for reducing latency of LTE uplink transmissions
EP3308594B1 (en) Method and apparatus for reducing latency of lte uplink transmissions
WO2018056108A1 (ja) 無線端末及び基地局
EP2195942B1 (en) Method for transmitting channel information and mobile communication terminal
US8934417B2 (en) Resource allocation in wireless communication systems
EP3565364A1 (en) Method and apparatus for reducing latency of lte uplink transmissions
TWI735303B (zh) 下行鏈路回饋資訊發送以及接收之方法
CN110692211B (zh) 基站装置和终端装置
EP3304786B1 (en) Apparatus and method for handling the configuration of bundle sizes
JP6110398B2 (ja) Tfiを提供するための方法及びデバイス
WO2010085908A1 (zh) 用户设备接入方法及系统和网络接入设备
US10333653B2 (en) Communications device and methods
US20080159218A1 (en) Method of efficient state transition in enhanced cell fach
WO2013107364A1 (zh) 下行控制信息的发送、下行控制信道的检测方法及装置
WO2012087199A1 (en) Method and arrangement for acknowledgement of contention- based uplink transmissions in a telecommunication system
WO2014075272A1 (zh) 信道传输方法、装置、基站及终端
WO2014187358A1 (zh) 一种机器类通信业务信息的传输方法、基站、终端和系统
KR101660983B1 (ko) 무선 통신 시스템상에서 단말의 mac 계층에 의해 무선 자원을 구성하는 방법
WO2013071888A1 (zh) 一种无线资源控制方法、系统及设备
JP5981461B2 (ja) 一時ブロックフローを解決する方法及び装置
TW201822562A (zh) 無控制資料傳輸方法及解碼方法
WO2022161608A1 (en) Dynamic selection of transmission scheme
JP2013098952A (ja) 移動通信システム、基地局装置、移動局装置および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850434

Country of ref document: EP

Kind code of ref document: A1