WO2013071855A1 - 平行螺旋传输线结构的岩土体变形分布式传感测量电缆 - Google Patents
平行螺旋传输线结构的岩土体变形分布式传感测量电缆 Download PDFInfo
- Publication number
- WO2013071855A1 WO2013071855A1 PCT/CN2012/084551 CN2012084551W WO2013071855A1 WO 2013071855 A1 WO2013071855 A1 WO 2013071855A1 CN 2012084551 W CN2012084551 W CN 2012084551W WO 2013071855 A1 WO2013071855 A1 WO 2013071855A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cables
- cable
- rock
- transmission line
- deformation
- Prior art date
Links
- 239000002689 soil Substances 0.000 title claims abstract description 16
- 230000005540 biological transmission Effects 0.000 title claims abstract description 10
- 238000005259 measurement Methods 0.000 claims abstract description 12
- 229920002379 silicone rubber Polymers 0.000 claims abstract description 11
- 239000011435 rock Substances 0.000 claims description 15
- 239000004945 silicone rubber Substances 0.000 claims description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 238000002310 reflectometry Methods 0.000 abstract description 3
- 230000002265 prevention Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/04—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
- G01L5/10—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means
- G01L5/101—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means using sensors inserted into the flexible member
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/01—Measuring or predicting earthquakes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/08—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
- G01V3/082—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices operating with fields produced by spontaneous potentials, e.g. electrochemical or produced by telluric currents
Definitions
- the invention relates to a distributed sensing measuring cable for rock and soil deformation, in particular to a distributed sensing measuring cable for rock and soil deformation of a parallel spiral transmission line structure.
- the object of the present invention is to provide a distributed sensing cable for rock and soil deformation of a parallel spiral transmission line structure, which is a deformation sensor of rock and soil deformation with relatively large elongation. cable.
- the two cables form a spiral.
- the two cables form a spiral wrapped with a silicone rubber sleeve.
- One end of the two cables Connected to the matching impedance ZL, the other end of the two cables is connected to the time domain reflectometer.
- the two mutually insulated cable wires are single-stranded, multi-strand copper wires or single-strand aluminum wires.
- the cable After the measurement cable thus constructed is buried along the monitored rock and soil body, the cable is locally stretched and lengthened when the rock and soil body is deformed. Due to the elastic silicone rubber and spiral structure, the pitch of the parallel helix increases over a relatively large range without breaking during the stretching process. As the pitch increases, the characteristic impedance of the parallel portion of the parallel spiral changes. The local deformation of the time domain reflection waveform caused by the change of the local characteristic impedance is observed by a time domain reflectometer connected to one end of the parallel spiral to locate the deformation of the rock and soil and measure the deformation of the rock and soil.
- the invention realizes distributed positioning and measurement of rock and soil deformation, and solves the current landslide and ground collapse In the measurement of the deformation of the precursor rock mass in the geological hazard, there is a dilemma of “unchanged and unmeasured”, which provides an infinite measurement tool and means for greatly reducing the harm of geological disasters to human beings.
- Figure 1 is a schematic view of the structure of the present invention.
- Figure 2 is a structural diagram of two parallel straight wires.
- Figure 3 is a structural change diagram of the distributed sensing cable before and after partial stretching.
- Figure 4 is a diagram showing the measurement method of the present invention.
- Figure 5 is a graph of measured reflected signals.
- silicone rubber strip 1, cable; 3, silicone rubber casing; 4, time domain reflectometry; 5, incident signal; 6, reflected signal; 7, sensing and measuring cable.
- the present invention is a double-layered insulated cable 2 in the outer layer of the round-section silicone rubber strip 1, and two cable wires form a spiral, two The cable is formed into a spiral wrapped with a silicone rubber sleeve 3 to form a sensing measurement cable 7. One end of the two cables is connected to the matching impedance ZL, and the other end of the two cables is connected to the time domain reflectometer 4 .
- the insulating skins of the parallel straight wires are joined together to maintain the distance between the wires. Initially the wire is tightly wrapped around the surface of the round section of the silicone strip.
- the above structure is characterized in that the measuring cable has a relatively large elongation. When the cable is stretched, the pitch of the spiral is increased to change the local impedance of the cable.
- Figure 3 shows the changes in the structure of the sensing cable before and after stretching.
- Figure 3 (a) shows the sensing measurement cable before stretching;
- Figure 3 (b) shows the sensing cable after partial stretching. It can be seen from Fig. 3 that the number of turns of the sensing measuring cable is constant when the cable is partially stretched, and the length of the sensing cable is lengthened, so that the pitch of the stretched portion is increased and the local characteristic impedance of the cable is increased.
- the measurement method is shown in Figure 4, where: 5 is the incident signal and 6 is the reflected signal.
- One end of the geotechnical deformation sensing measurement cable of the parallel spiral transmission line structure is connected to the time domain reflection measuring instrument 4 .
- the time domain reflectometer inputs an electrical step signal or a pulse signal to one end of the cable, the input voltage ⁇ and the reflected voltage have the following relationship.
- Z RF is the characteristic impedance of the stretched section.
- Z d increases, and a time domain reflection waveform produces a magnitude greater than 0. Reflected voltage.
- the time domain reflectometry instrument records the waveform of the reflected voltage, as shown in Figure 5.
- the time difference between the incident voltage ⁇ and the reflected voltage ⁇ is obtained. 7 ⁇
- the transmission speed V of the signal in the measuring cable the distance from the end of the cable to the cable stretching point can be calculated.
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Geophysics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electrochemistry (AREA)
- Electromagnetism (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Acoustics & Sound (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
一种平行螺旋传输线结构的岩土体变形分布式传感测量电缆,在圆截面硅橡胶条(1)外密绕一层两根相互绝缘的电缆线(2),两根电缆线形成螺旋线,两根电缆形成的螺旋线外裹有硅橡胶套管(3),两根电缆线的一端接匹配阻抗ZL,两根电缆线的另一端接时域反射测量仪(4)。该电缆实现了岩土体变形的分布式定位和测量。
Description
平行螺旋传输线结构的岩土体变形分布式传感测量电缆 技术领域
本发明涉及一种岩土体变形分布式传感测量电缆, 尤其是涉及一种平行螺 旋传输线结构的岩土体变形分布式传感测量电缆。
背景技术
我国是地质灾害多发国家, 频繁的地质灾害给人们的生命和财产带来了巨 大的损失和威胁。 为了减少地质说灾害造成的损失, 各种灾害防治监测手段和技 术被广泛应用到各个领域并且取得了显著的避灾防灾效果。 滑坡、 地面沉降等 地质运动所引起的局部岩土体变形就是一种重要的、 需要被监测的灾害前兆现 象。 如果能够在灾害发生前期准确定位岩土书体变形发生的位置和变形的大小, 就能促进避灾、 防灾工作的有效开展, 减少灾害造成的损失。 目前国内外常用 时域反射测量电缆主要是同轴电缆和平行直线。 由于同轴电缆和平行直线伸长 量有限, 容易拉断, 不适合对岩土体大变形的分布式测量, 因此需要发明一种 伸长量比较大的岩土体变形传感测量电缆。
发明内容
为了克服背景技术中电缆易拉断, 本发明的目的在于提供种一种平行螺旋 传输线结构的岩土体变形分布式传感测量电缆, 它是伸长量比较大的岩土体变 形传感测量电缆。
本发明采用的技术方案是:
在圆截面硅橡胶条外密绕一层有两根相互绝缘的电缆线, 两根电缆线形成 螺旋线, 两根电缆线形成螺旋线外裹包有硅橡胶套管, 两根电缆线的一端接匹 配阻抗 ZL, 两根电缆线的另一端接时域反射测量仪。
所述的两根相互绝缘的电缆线为单股、 多股铜线或单股铝线。
将这样构成的测量电缆沿被监测岩土体埋设后, 当岩土体发生变形时测量 电缆局部拉伸变长。 由于采用弹性的硅橡胶和螺旋线结构, 因此在拉伸的过程 中, 在比较大范围内平行螺旋线螺距增大而不会断裂。 由于螺距增大, 平行螺 旋线拉伸部分的特性阻抗发生变化。 通过接于平行螺旋线其中一端的时域反射 测量仪观测局部特性阻抗变化所引起的时域反射波形的局部变化来定位岩土体 变形的位置和测量岩土体变形的大小。
本发明具有的有益效果是:
本发明实现了岩土体变形的分布式定位和测量, 解决了当前滑坡、 地面塌
陷等地质灾害前兆岩土体变形的测量时存在的 "测处未变、 变处未测" 的困境, 为极大限度地减少地质灾害对人类的危害提供了无遗漏的测量工具和手段。 附图说明
图 1是本发明的结构原理图。
图 2是两根平行直导线结构图。
图 3是分布式传感测量电缆局部拉伸前后结构变化图。
图 4是本发明的测量方法图。
图 5是测量反射信号图。
图中: 1、 硅橡胶条; 2、 电缆线; 3、 硅橡胶套管; 4、 时域反射测量仪; 5、 入射信号; 6、 反射信号; 7、 传感测量电缆。
具体实施方式
以下结合附图和实施例对本发明作进一步的说明。
如图 1、 图 2、 图 3、 图 4所示, 本发明是在圆截面硅橡胶条 1外密绕一层有两 根相互绝缘的电缆线 2, 两根电缆线形成螺旋线, 两根电缆线形成螺旋线外裹包 有硅橡胶套管 3, 构成传感测量电缆 7。 两根电缆线的一端接匹配阻抗 ZL, 两根 电缆线的另一端接时域反射测量仪 4。
平行直导线的绝缘外皮连接在一起使导线间距离保持不变。 初始时导线紧 密地绕于圆截面硅胶条表面。 上述结构的特点在于测量电缆有比较大的伸长量。 电缆拉伸时引起螺旋线螺距变大使电缆局部阻抗发生变化。
传感测量电缆工作原理:
如图 3所示为传感测量电缆拉伸前后结构的变化。 其中图 3 (a) 为拉伸前的 传感测量电缆; 图 3 ( b ) 为局部拉伸后的传感测量电缆。 由图 3可知传感测量电 缆局部拉伸时螺旋线匝数不变, 传感测量电缆长度变长, 因此被拉伸部分螺距 增大, 电缆的局部特性阻抗增大。
测量方法如图 4所示, 其中: 5为入射信号, 6为反射信号。 将平行螺旋传输 线结构的岩土体变形传感测量电缆一端接入时域反射测量仪 4。 根据传输线原 理, 当时域反射测量仪向电缆的一端输入电阶跃信号或脉冲信号时, 输入电压 ί和反射电压 有如下关系
7 - Ζ
U = ^ ~~丄 * ut
r zd + zc
其中 为电缆的初始特性阻抗, ZRF为被拉伸区间的特性阻抗。初始时 ZC=ZA 反射 电压 =0.当电缆局部被拉伸时, Zd增大, 时域反射波形中产生一个大于 0幅值为
反射电压。 时域反射仪器记录反射电压的波形, 如图 5所示。
根据波形得到入射电压 ί 与反射电压^的时间差7^ 再根据信号在测量电缆 中的传输速度 V就可以计算电缆末端到电缆拉伸点的距离
S = - ^ Τ ^ V
2 将电缆埋入岩土体, 岩土体的变形将引起测量电缆的局部拉伸, 根据时间 Γ 和反射电压^测得变形位置 ^和变形量 L。
Claims
1、 一种平行螺旋传输线结构的岩土体变形分布式传感测量电缆, 其特征在 于: 在圆截面硅橡胶条 (1)外密绕一层有两根相互绝缘的电缆线 (2), 两根电缆线 形成螺旋线, 两根电缆线形成螺旋线外裹包有硅橡胶套管 (3), 两根电缆线的一 端接匹配阻抗 ZL, 两根电缆线的另一端接时域反射测量仪 (4)。
2、 根据权利要求 1所述的一种平行螺旋传输线结构的岩土体变形分布式传 感测量电缆, 其特征在于: 所述的两根相互绝缘的电缆线 (2)为单股、 多股铜线 或单股铝线。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/358,441 US9618644B2 (en) | 2011-11-15 | 2012-11-13 | Sensing cable with parallel spiral transmission line structure for distributed sensing and measuring of rock-soil mass deformation |
EP12850569.0A EP2782104A4 (en) | 2011-11-15 | 2012-11-13 | POWER CABLE WITH PARALLEL SPIRAL TRANSMISSION LINE STRUCTURE FOR DISTRIBUTED DETECTION AND MEASUREMENT OF ROCKY GROUND MASS DEFORMATION |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110361043.9A CN102522148B (zh) | 2011-11-15 | 2011-11-15 | 平行螺旋传输线结构的岩土体变形分布式传感测量电缆 |
CN201110361043.9 | 2011-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013071855A1 true WO2013071855A1 (zh) | 2013-05-23 |
Family
ID=46293039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/084551 WO2013071855A1 (zh) | 2011-11-15 | 2012-11-13 | 平行螺旋传输线结构的岩土体变形分布式传感测量电缆 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9618644B2 (zh) |
EP (1) | EP2782104A4 (zh) |
CN (1) | CN102522148B (zh) |
WO (1) | WO2013071855A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117315892A (zh) * | 2023-11-28 | 2023-12-29 | 四川省华地建设工程有限责任公司 | 一种地质灾害自动监测装置及监测方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102522148B (zh) * | 2011-11-15 | 2014-12-03 | 中国计量学院 | 平行螺旋传输线结构的岩土体变形分布式传感测量电缆 |
CN104949608A (zh) * | 2014-03-27 | 2015-09-30 | 江西飞尚科技有限公司 | 一种tdr边坡监测仪 |
CN104819685A (zh) * | 2015-04-29 | 2015-08-05 | 长安大学 | 一种基于tdr技术的滑坡监测装置及滑坡监测方法 |
CN105136864B (zh) * | 2015-09-14 | 2017-11-03 | 东南大学 | 可现场测试地表下不同深度土含水率与干密度的探测器 |
CN105841596B (zh) * | 2016-03-19 | 2017-11-28 | 中国计量学院 | Tdr原理的尾矿库干滩长度测量传感器及其测量方法 |
CN106017299B (zh) * | 2016-05-20 | 2019-05-07 | 中国计量大学 | 分布式螺旋平行线传感器识别岩土体局部坍塌边缘的方法 |
CN106197252A (zh) * | 2016-07-13 | 2016-12-07 | 中国计量大学 | 基于平行螺旋传输线的岩土变形位置分布测量模型的建立方法 |
CN110009871B (zh) * | 2018-01-04 | 2024-03-19 | 贵州北斗云环境地质工程有限公司 | 一种监测报警仪及其监测报警系统 |
TW201935939A (zh) * | 2018-02-06 | 2019-09-01 | 智能紡織科技股份有限公司 | 線材裝置 |
CN110243278B (zh) * | 2019-07-10 | 2021-07-06 | 浙江水利水电学院 | 一种岩土位移量分布式测量方法 |
CN113744503B (zh) * | 2021-08-31 | 2022-06-21 | 南京大学 | 一种岩溶地面塌陷分布式柔性边缘智能预警预报系统及方法 |
WO2023058149A1 (ja) * | 2021-10-06 | 2023-04-13 | 株式会社オートネットワーク技術研究所 | 電線検査システム、電線検査方法、および電線 |
CN113866820B (zh) * | 2021-10-25 | 2024-03-26 | 辽宁工程技术大学 | 基于微震监测系统的落石冲击定位方法及装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101566508A (zh) * | 2009-06-01 | 2009-10-28 | 南京大学 | 高空间分辨率分布式光纤温度传感器 |
CN102109319A (zh) * | 2010-11-26 | 2011-06-29 | 中国计量学院 | 螺旋平行传输线式的变形线分布测量传感器及测量方法 |
CN102522148A (zh) * | 2011-11-15 | 2012-06-27 | 中国计量学院 | 平行螺旋传输线结构的岩土体变形分布式传感测量电缆 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3824503A (en) * | 1973-06-04 | 1974-07-16 | Us Army | Coupling device and method for simultaneous impedance balancing |
US4877923A (en) * | 1988-08-01 | 1989-10-31 | W. L. Gore & Associates, Inc. | Sensors for detecting and locating liquid leaks |
US5818241A (en) * | 1996-05-30 | 1998-10-06 | Kelly; John M. | Moisture sensor using helical transmission line |
JP3464581B2 (ja) * | 1996-06-27 | 2003-11-10 | 東レ・ダウコーニング・シリコーン株式会社 | 電線被覆用シリコーンゴム組成物 |
KR100506860B1 (ko) * | 2003-12-03 | 2005-08-08 | 엘에스전선 주식회사 | 광섬유 복합 전력 케이블 |
CN100397032C (zh) * | 2006-08-07 | 2008-06-25 | 中国计量学院 | 崩滑体向外凸移变化分布式测量电缆与测量方法 |
US20110102183A1 (en) * | 2008-03-20 | 2011-05-05 | Siemens Aktiengesellschaft | Spatially resolved temperature measurement inside a spatial detection region |
EP2293307B1 (en) * | 2008-06-25 | 2017-08-09 | Asahi Kasei Kabushiki Kaisha | Elastic signal transmission cable |
-
2011
- 2011-11-15 CN CN201110361043.9A patent/CN102522148B/zh active Active
-
2012
- 2012-11-13 US US14/358,441 patent/US9618644B2/en active Active
- 2012-11-13 WO PCT/CN2012/084551 patent/WO2013071855A1/zh active Application Filing
- 2012-11-13 EP EP12850569.0A patent/EP2782104A4/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101566508A (zh) * | 2009-06-01 | 2009-10-28 | 南京大学 | 高空间分辨率分布式光纤温度传感器 |
CN102109319A (zh) * | 2010-11-26 | 2011-06-29 | 中国计量学院 | 螺旋平行传输线式的变形线分布测量传感器及测量方法 |
CN102522148A (zh) * | 2011-11-15 | 2012-06-27 | 中国计量学院 | 平行螺旋传输线结构的岩土体变形分布式传感测量电缆 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2782104A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117315892A (zh) * | 2023-11-28 | 2023-12-29 | 四川省华地建设工程有限责任公司 | 一种地质灾害自动监测装置及监测方法 |
CN117315892B (zh) * | 2023-11-28 | 2024-02-13 | 四川省华地建设工程有限责任公司 | 一种地质灾害自动监测装置及监测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102522148A (zh) | 2012-06-27 |
US20140312907A1 (en) | 2014-10-23 |
US9618644B2 (en) | 2017-04-11 |
EP2782104A4 (en) | 2015-05-27 |
EP2782104A1 (en) | 2014-09-24 |
CN102522148B (zh) | 2014-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013071855A1 (zh) | 平行螺旋传输线结构的岩土体变形分布式传感测量电缆 | |
CN103529366B (zh) | 基于罗氏线圈原理的uhf宽频带电流传感器及联合监测系统 | |
WO2016019666A1 (zh) | 电缆局部放电的检测方法及装置 | |
MY178310A (en) | Pipeline apparatus and method | |
CN106443390B (zh) | 柔性pcb板差分感应线圈及安装方法 | |
CN203744922U (zh) | 线路板背钻深度测量装置 | |
CN109385956B (zh) | 一种内置引伸量传感器监测应力的智能吊杆或拉索构造 | |
CN103033124B (zh) | 一种填充有不连续介质的同轴应变传感器 | |
CN112505483A (zh) | 一种基于在线传递函数的电缆局部放电定位方法 | |
CN200979587Y (zh) | 短距离音频信号电缆故障测试装置 | |
CN204391672U (zh) | 地埋电线、电缆接头密封处理装置 | |
CN203798969U (zh) | 一种基于变频谐振耐压的电缆局放检测系统 | |
CN202676625U (zh) | 一种时域反射法测定土壤含水量的传感器探头 | |
JP2007271374A (ja) | 電線の断線検出装置及び方法 | |
TWI452267B (zh) | 時域反射式液面與刷深量測裝置及其方法 | |
RU2653583C1 (ru) | Способ определения места повреждения кабельной линии | |
CN216747902U (zh) | 电缆接续点定位仪 | |
El Sahmarany et al. | Novel reflectometry method based on time reversal for cable aging characterization | |
CN102820076A (zh) | 水下监测用传感器电缆 | |
CN203249986U (zh) | 一种高精度低噪音电线电缆断线定位仪 | |
Takahashi et al. | Effective partial discharge measurement method for XLPE cables based on propagation characteristics of high frequency signal | |
CN204903662U (zh) | 信号增强型压力波法模型电缆空间电荷测试系统 | |
CN204694784U (zh) | 压力波法模型电缆空间电荷测试系统 | |
CN204287402U (zh) | 一种架空电缆局部放电带电检测传感器 | |
CN104833866B (zh) | 压力波法模型电缆空间电荷测试系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12850569 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14358441 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012850569 Country of ref document: EP |