WO2013069966A1 - Method for uplink power control of terminal in coordinated multi-point communication system, uplink communication method of transceiving point, transceiving point thereof, and terminal thereof - Google Patents

Method for uplink power control of terminal in coordinated multi-point communication system, uplink communication method of transceiving point, transceiving point thereof, and terminal thereof Download PDF

Info

Publication number
WO2013069966A1
WO2013069966A1 PCT/KR2012/009347 KR2012009347W WO2013069966A1 WO 2013069966 A1 WO2013069966 A1 WO 2013069966A1 KR 2012009347 W KR2012009347 W KR 2012009347W WO 2013069966 A1 WO2013069966 A1 WO 2013069966A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
uplink
reception
terminal
transmit
Prior art date
Application number
PCT/KR2012/009347
Other languages
French (fr)
Korean (ko)
Inventor
박경민
리지안준
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Publication of WO2013069966A1 publication Critical patent/WO2013069966A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff

Definitions

  • the present invention relates to uplink power control in a cooperative multi-point communication system in which two or more transmission / reception points transmit signals in cooperation.
  • each terminal controls power of a physical channel and a signal such that different uplink physical channels and signals are received at a base station (cell) at an appropriate power.
  • This uplink power control is a closed loop that directly controls the transmit power of the terminal through an open loop scheme in which the transmit power of the terminal varies according to downlink path loss and an explicit power control command transmitted in downlink. There is a way.
  • An object of the present invention is to provide an uplink power control method suitable for a heterogeneous network and a method for transmitting information necessary for uplink power control to a terminal.
  • a wireless communication system in which a terminal is in cooperative communication with two or more transmission and reception points, receiving reference signals from the transmission and reception points; Measuring reception powers of the received reference signals; Receiving information of reference signal transmission power of the transmission and reception points from at least one of the transmission and reception points; The uplink transmission power in which the uplink transmission power considering the received reference signal transmission power information and the actual path loss obtained from the measured reception powers is required for reception by each of the transmission / reception points. Determining uplink transmit power to be equal to or greater than a maximum value of each of the RS transmit powers; And transmitting a signal with the uplink transmission power through an uplink physical channel.
  • a wireless communication system in which the terminal is a cooperative communication with two or more transmission and reception points, transmitting a reference signal to the terminal; Transmitting transmission power information of the reference signal transmission power information and reference signal of at least one other transmission / reception point to the terminal; And the uplink transmit power considering the received reference signal transmit power information and the actual path loss obtained from the measured receive powers of the reference signal received from the reference signal and at least one other transmission / reception point.
  • Another embodiment is a wireless communication system in which a terminal is in cooperative communication with two or more transmission and reception points, receiving reference signals from the transmission and reception points, the information of the transmission power of the reference signals of the transmission and reception points one of the transmission and reception points RF unit for receiving from; And the uplink transmit power in consideration of the reference signal transmit power information received by measuring the received powers of the received reference signals and the actual path loss obtained from the measured receive powers. And a processor for determining an uplink transmission power to be equal to or greater than a maximum value of each of uplink DM-RS transmission powers required for reception by each, wherein the RF unit transmits the uplink transmission through an uplink physical channel.
  • a terminal that transmits a signal with power.
  • a reference signal is transmitted to the terminal, and transmission power information of the reference signal and reference signals of at least one other transmission / reception point are transmitted. Transmitting power information to the terminal and receiving the received reference signal transmission power information and the received received powers of the reference signal received from the reference signal and at least one other transmission / reception point through a downlink physical channel
  • the uplink transmission power considering the path loss is an uplink transmission power determined to be equal to or greater than the maximum value of each of the uplink DM-RS transmission powers required for reception by each of the transmission and reception points.
  • An RF unit for receiving a signal transmitted through an uplink physical channel from the terminal; And a processor for controlling uplink transmission from the terminal.
  • FIG. 1 is a block diagram showing a wireless communication system to which the present invention is applied.
  • FIG. 2 is a conceptual diagram of a downlink CoMP system according to an embodiment of the present invention.
  • FIG. 3 is a conceptual diagram for transmitting a CRS and a physical uplink channel in a COMP system to which the present invention is applied.
  • FIG. 4 is a conceptual diagram illustrating CRS and CSI-RS transmission.
  • FIG. 5 is a flowchart illustrating a method of controlling uplink power according to an embodiment.
  • FIG. 6 is a flowchart illustrating an uplink control method according to another embodiment.
  • FIG. 7 is a flowchart of an uplink control method according to another embodiment.
  • FIG. 8 is a block diagram illustrating a terminal and a transmission / reception point according to another embodiment.
  • the present specification describes a communication network, and the work performed in the communication network is performed in the process of controlling the network and transmitting data in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to
  • control channel'transmitting a control channel' may be interpreted as meaning that control information is transmitted through a specific channel.
  • the control channel may be, for example, a physical downlink control channel (PDCCH) or a physical uplink control channel (PUCCH).
  • PDCH physical downlink control channel
  • PUCCH physical uplink control channel
  • FIG. 1 is a block diagram showing a wireless communication system to which the present invention is applied.
  • the wireless communication system 100 is widely deployed to provide various communication services such as voice and packet data.
  • the wireless communication system 100 includes at least one transmission / reception point 110.
  • Each transmit / receive point 110 provides a communication service for a specific geographic area or frequency area and may be called a site.
  • a site may be divided into a number of regions 150a, 150b, 150c, which may be called sectors, and these sectors may have different cell IDs.
  • the user equipment (UE) 120 may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms.
  • MS mobile station
  • MT mobile terminal
  • UT user terminal
  • SS subscriber station
  • PDA personal digital assistant
  • wireless modem wireless modem
  • handheld device handheld device
  • the transmission / reception point 110 generally refers to a station communicating with the terminal 120, and may include a component carrier or cell, an evolved-NodeB (eNodeB), a base transceiver system (BTS), an access point, and a femto base station.
  • eNodeB evolved-NodeB
  • BTS base transceiver system
  • a femto base station eNodeB
  • Home eNodeB: HeNodeB HeNodeB
  • relay relay
  • pico base station Pico eNodeB
  • RRH remote radio head
  • any of the hot spot can be defined.
  • the transmission / reception point 110 may be defined as a set of antenna ports.
  • the transmission / reception point 110 may transmit information on the set of antenna ports of the transmission / reception point 110 to the terminal through radio resource control (RRC) signaling. Therefore, a plurality of transmission / reception points in one cell may be defined as a set of antenna ports.
  • RRC radio resource control
  • the transmission / reception point 110 may refer to a transmission point for transmitting a signal to provide a communication service, and may receive a signal from the terminal 120 to provide a communication service.
  • the transmission and reception point 110 and the terminal 120 are two transmission / reception subjects used to implement the technology or technical idea described in this specification, and are used in a comprehensive sense and are not limited by the terms or words specifically referred to. Do not.
  • downlink means a communication or communication path from the transmission and reception point 110 to the terminal 120
  • uplink indicates a communication or communication path from the terminal 120 to the transmission and reception point 110. it means.
  • the transmitter may be part of the transmission / reception point 110 and the receiver may be part of the terminal 120.
  • the transmitter may be part of the terminal 120 and the receiver may be part of the transmission / reception point 110.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-FDMA
  • OFDM-FDMA OFDM-TDMA
  • various multiple access schemes such as OFDM-CDMA may be used.
  • These modulation techniques demodulate signals received from multiple users of a communication system to increase the capacity of the communication system.
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme transmitted using different times or a frequency division duplex (FDD) scheme transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • One embodiment of the present invention is asynchronous wireless communication evolving into Long Term Evolution (LTE) and LTE-advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving into CDMA, CDMA-2000 and Ultra Mobile Broadband (UMB) Applicable to resource allocation in sectors, etc.
  • LTE Long Term Evolution
  • WCDMA Long Term Evolution
  • HSPA High Speed Packet Access
  • UMB Ultra Mobile Broadband
  • the present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
  • the wireless communication system 100 to which the embodiments are applied includes a coordinated multi-point transmission / reception system (CoMP system) or a cooperative multi-antenna transmission scheme in which two or more transmission / reception points cooperate to transmit a signal.
  • coordinated multi-antenna transmission system a cooperative multi-point communication system.
  • the CoMP system refers to a communication system supporting CoMP or a communication system to which CoMP is applied.
  • CoMP is a technique for adjusting or combining signals transmitted or received by multi transmission / reception (Tx / Rx) points.
  • CoMP can increase data throughput and provide high quality.
  • transmission / reception points may provide a service by allocating the same frequency resource at the same time when attempting cooperative transmission / reception to one user terminal 120. That is, the transmission / reception points selected as the cooperative transmission / reception points at the same time may transmit and receive data with one user terminal 120 using the same frequency resource.
  • Each transmit / receive point or cells may constitute multiple transmit / receive points.
  • the multiple transmit / receive points may be macro cells that form a homogeneous network.
  • the multiple transmission / reception points may be RRHs having a macro cell and high transmission power.
  • the multiple transmission / reception points may be RRHs having low transmission power in the macro cell and the macro cell region.
  • the CoMP system may selectively apply CoMP. That is, the CoMP system may or may not apply CoMP to a communication operation.
  • a mode in which a transmission / reception point and a terminal perform communication using CoMP is referred to as a CoMP mode, and a mode not otherwise referred to as a normal mode or a non-CoMP mode.
  • the terminal 120 may be a CoMP terminal.
  • the CoMP terminal is a component of the CoMP system and performs communication with a CoMP cooperating set or a CoMP set. Like the CoMP system, the CoMP terminal may operate in the CoMP mode or in the normal mode.
  • the CoMP set may be a set of transmission / reception points that directly or indirectly participate in data transmission in a certain time-frequency resource for the CoMP terminal.
  • the CoMP terminal may apply a multi-user multi-antenna (MU-MIMO) scheme as well as a single-user multi-antenna (SU-MIMO) scheme.
  • MU-MIMO multi-user multi-antenna
  • SU-MIMO single-user multi-antenna
  • Participating directly in data transmission or reception means that transmission / reception points actually transmit data to or receive data from a CoMP terminal in a corresponding time-frequency resource.
  • Indirect participation in data transmission or reception may mean that the transmit / receive points do not actually transmit or receive data to or from the CoMP terminal at that time-frequency resource, but contribute to making a decision about user scheduling / beamforming. Can be.
  • the CoMP terminal may simultaneously receive signals from the CoMP set or transmit signals to the CoMP set at the same time. At this time, the CoMP system may minimize the interference effect between the CoMP sets in consideration of the channel environment of each cell constituting the CoMP set.
  • the first CoMP scenario is CoMP, which is composed of a homogeneous network among a plurality of cells in one transmission / reception point, and may be referred to as intra-site CoMP.
  • the second CoMP scenario is CoMP, which consists of a homogeneous network for one macro cell and one or more high-power RRHs.
  • the third CoMP scenario and the fourth CoMP scenario are CoMPs that consist of a heterogeneous network for one macro cell and one or more low-power RRHs in the macro cell region. In this case, when the physical cell IDs of the RRHs are not the same as the physical cell IDs of the macro cells, they correspond to the third CoMP scenario and the same cases correspond to the fourth CoMP scenario.
  • CoMP's category includes Joint Processing (JP) and Coordinated Scheduling / Beamforming (CS / CB). It is also possible to mix CS and CB.
  • JP Joint Processing
  • CS / CB Coordinated Scheduling / Beamforming
  • JP stands for Joint Transmission (JT), Dynamic Point Selection (DPS), or Dynamic Point Scheduling / Dynamic. point blanking, DPS / DPB).
  • JT refers to simultaneous data transmission from multiple transmission / reception points belonging to a CoMP set to one terminal or a plurality of terminals in time-frequency resources.
  • multiple cells (multiple transmission / reception points) for transmitting data to one terminal may perform transmission using the same time / frequency resource.
  • DPS Dynamic Cell Selection
  • uplink or downlink scheduling for a terminal may be determined by coordination between transmit / receive points of the CoMP set. have.
  • uplink or downlink scheduling for the UE is determined by cooperation between the transmission and reception points of the CoMP set.
  • CB Coordinatd Beamforming
  • the CS / CB may include a semi-static point selection (SSPS) that may select (change) a transmission / reception point semi-statically.
  • SSPS semi-static point selection
  • CoMP may be operated in a manner in which JP and CS / CB are mixed. For example, some transmit / receive points in the CoMP set may transmit data to the target terminal according to JP, and other transmit / receive points in the CoMP set may perform CS / CB.
  • the transmission and reception points to which the present invention is applied may include a base station (macro base station or micro base station (local base station)), a cell, or an RRH. That is, the base station or the RRH may be a transmission / reception point. Meanwhile, the plurality of base stations may be multiple transmission / reception points, and the plurality of RRHs may be multiple transmission / reception points. Of course, the operation of all base stations or RRH described in the present invention can be equally applied to other types of transmission and reception points.
  • Layers of a radio interface protocol between a terminal and a transmission / reception point are based on the lower three layers of the Open System Interconnection (OSI) model, which is well known in a communication system. It may be divided into a second layer L2 and a third layer L3. Among them, the physical layer belonging to the first layer provides an information transfer service using a physical channel.
  • OSI Open System Interconnection
  • the physical downlink control channel is a resource allocation and transmission format of a downlink shared channel (DL-SCH), a resource of an uplink shared channel (UL-SCH).
  • Resource allocation of upper layer control messages such as allocation information, random access responses transmitted on a physical downlink shared channel (PDSCH), and transmission power control for individual terminals in any terminal group : TPC) can carry a set of commands.
  • a plurality of PDCCHs may be mapped and transmitted in a control region of a subframe, and the terminal may monitor the plurality of PDCCHs.
  • DCI downlink control information
  • the DCI may include an uplink or downlink resource allocation field, an uplink transmission power control command field, a control field for paging, a control field for indicating a random access response (RA response), and the like.
  • the transmission / reception point 110 transmits at least one of a control signal and data through a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH).
  • Channels corresponding to the PDCCH and PDSCH may include a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH).
  • the terminal 120 transmits at least one of a control signal and data through the PUCCH and the PUSCH.
  • a situation in which a signal is transmitted and received through a channel such as a PUCCH, a PUSCH, a PDCCH, and a PDSCH may be described in the form of 'sending and receiving a PUCCH, a PUSCH, a PDCCH, and a PDSCH.
  • a radio frame includes 10 subframes.
  • One subframe includes two slots.
  • the time (length) of transmitting one subframe is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • One slot may include a plurality of symbols in the time domain.
  • the symbol in a wireless system using orthogonal frequency division multiple access (OFDMA) in downlink (DL), the symbol may be an orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • the representation of the symbol period in the time domain is not limited by the multiple access scheme or the name.
  • the plurality of symbols in the time domain may be a Single Carrier-Frequency Division Multiple Access (SCFDMA) symbol, a symbol interval, etc. in addition to the OFDM symbol.
  • SCFDMA Single Carrier-Frequency Division Multiple Access
  • the number of OFDM symbols included in one slot may vary depending on the length of a cyclic prefix (CP). For example, in case of a normal CP, one slot may include 7 OFDM symbols, and in case of an extended CP, one slot may include 6 OFDM symbols.
  • CP cyclic prefix
  • a resource block is a resource allocation unit and includes a time-frequency resource corresponding to one slot on the time axis and 180 kHz on the frequency axis. For example, if one slot includes seven symbols on the time axis and 180 kHz on the frequency axis includes 12 subcarriers, one resource block may include 7 * 12 resource elements (REs). Can be.
  • REs resource elements
  • the resource element represents the smallest time-frequency unit to which a modulation symbol of a data channel or a modulation channel of a control channel is mapped.
  • a wireless communication system it is necessary to estimate an uplink channel or a downlink channel for data transmission / reception, system synchronization acquisition, channel information feedback, and the like.
  • the process of restoring a transmission signal by compensating for distortion of a signal caused by a sudden change in channel environment is called channel estimation.
  • channel estimation it is also necessary to measure the channel state (channel state) for the cell to which the terminal belongs or other cells.
  • a reference signal (RS) that is known between a terminal and a transmission / reception point is used for channel estimation or channel state measurement.
  • the downlink reference signal includes a cell-specific RS (CRS), a Multimedia Broadcast and Multicast Single Frequency Network (MBSFN) reference signal, a UE-specific RS (UE) -specific RS, and a positioning reference signal (PRS) RS and Channel State Information RS (CSI-RS).
  • CRS cell-specific RS
  • MMSFN Multimedia Broadcast and Multicast Single Frequency Network
  • UE UE-specific RS
  • PRS positioning reference signal
  • CSI-RS Channel State Information RS
  • the CRS is a reference signal transmitted to all terminals in a cell and used for channel estimation.
  • the CRS may be transmitted in all downlink subframes in a cell supporting PDSCH transmission.
  • the UE-specific reference signal is a reference signal received by a specific terminal or a specific terminal group in a cell, and may be called a demodulation RS (DM-RS) because it is mainly used for data demodulation of a specific terminal or a specific terminal group.
  • DM-RS demodulation RS
  • the MBSFN reference signal is a reference signal for providing a multimedia broadcast multicast service (MBMS), and the PRS may be used as a reference signal for position measurement of the terminal.
  • MBMS multimedia broadcast multicast service
  • CSI-RS may be used for estimation of channel information.
  • the CSI-RS is placed in the frequency domain or time domain.
  • Channel quality indicator (CQI), precoding matrix indicator (PMI), rank indicator (RI), etc. may be used as channel information when necessary through channel state estimation using CSI-RS. It may be reported from the terminal.
  • the CSI-RS may be transmitted on one or more antenna ports.
  • the uplink data channel (hereinafter referred to as "PUSCH") is transmitted in a region excluding the PUCCH and SRS regions of the system band.
  • PUCCH includes ACK (Acknowledge) / NACK (Negative ACK) for HARQ (Hybrid Automatic Repeat reQuest) operation, RI (Rank Indicator), channel status information for downlink data scheduling, Precoding Matrix Indicator (PMI), and Channel Quality (CQI). Indication) information, and the like
  • the SRS is a signal for acquiring uplink channel information for each user and adjusting uplink transmission timing for the entire system.
  • the feedback method of the channel state information includes a method of periodically transmitting using a PUCCH and a method of periodically transmitting using a PUSCH allocated for feedback according to a request of a transmission / reception point.
  • FIG. 2 is a conceptual diagram of a downlink CoMP system according to an embodiment of the present invention.
  • transmission / reception points 210, 212, 214, and 216 and a terminal 220 may perform cooperative communication.
  • the serving cell (or transmit / receive point) for the terminal 220 may be a first transmit / receive point 210 which is a macro cell, a second transmit / receive point 212 that is RRH1, a third transmit / receive point 214 that is RRH2, and an RRH3, respectively. It may be a fourth transmission / reception point 216.
  • transmission / reception points 210, 212, 214, and 216 are exemplarily described as transmission / reception points participating in the cooperative communication, but two, three, five, or more transmission / reception points are cooperative with the terminal 220. You can also participate in the communication.
  • the transmission / reception point 210 may include an antenna array including two or more antennas. Although the transmission / reception point 210 is described as an example, other macro or micro base stations described with reference to FIGS. 1 and 2 may be the same. Likewise, the terminal 220 illustrated in FIGS. 1 and 2 may also include an antenna array including two or more antennas.
  • the antenna arrays of the transmission and reception point 210 and the terminal 220 are dual polarized antenna arrays in which two antennas having different polarizations are alternately installed in order to arrange more antennas in a limited space in a communication system. ) Can be used.
  • a dual polarization antenna array has been described as an example, but the present invention is not limited thereto.
  • it may be a multi-polarized antenna array, such as a triple polarized wave or quadrupole antenna array.
  • the transmitting and receiving point and the terminal is not limited to including a multi-polarized antenna array, such as a single polarized antenna, and may include two or more multi-polarized antenna arrays and a linear array antenna, a combination thereof.
  • the transmission / reception point 210 and the terminal 220 may both use two or more multiple polarized antenna arrays for communication or may selectively use some of them.
  • the transmit / receive points 210, 212, 214, and 216 precode data symbols using their precoding matrix, and transmit 2n precoded data symbols (n is 1 or a natural number greater than 1) through the antenna array. Can propagate into the air.
  • W 1 is a block diagonal matrix of [X n 0; 0X n ].
  • W 2 is a matrix that performs beam selection and performs co-phasing to correct for phase mismatch between antenna groups.
  • the transmission / reception points 210, 212, 214, and 216 precode data symbols using their precoding matrix using channel information received from the UE, for example, CQI / PMI / RI. 2n precoded data symbols (n is 1 or a natural number greater than 1) may propagate into the air through the antenna array.
  • a plurality of transmit and receive points form independent cells, and perform uplink / downlink transmission using the same band between each cell.
  • uplink power control may be performed to control inter-cell interference occurring during uplink transmission or intra-cell interference occurring between terminals in cells using the same band.
  • FIG. 3 is a conceptual diagram for transmitting a CRS and a physical uplink channel in a COMP system to which the present invention is applied.
  • a first transmission / reception point eNB capable of performing transmission over an entire macro cell region and a plurality of second to fourth transmission / reception points 1 controlled by the eNB and performing low power transmission (1) ⁇ 3 low power RRHs have cell IDs or share the same cell IDs, and the eNB may perform CRS transmission.
  • each transmission / reception point 310, 312, 314, 316 may have an independent cell ID. Or, it may have a common cell ID. Different resources can be used to send CRS.
  • the terminal 320 performs PDCCH reception through the eNB, which is the first transmission / reception point 310, and receives a PDSCH from the second to fourth transmission / reception points 312, 314, and 316, which are RRH1 to RRH3, by a downlink CoMP operation. can do.
  • the terminal 320 to perform uplink transmission may estimate the path loss by measuring the reception power of the CRS transmitted by the eNB, which is the first transmission / reception point 310, and comparing the measured power and the CRS transmission power. .
  • the estimated path loss is a long term measurement. Assuming that the path loss is similar to the path loss generated in the uplink transmission, each terminal can determine the uplink transmission power. In this process, considering the difference between downlink path loss and uplink path loss, a value determined by a higher layer, Is used, the transmission power of the terminal may be determined in consideration of a transmission power control command (TPC command) that is notified through transmission of control information of the eNB or transmission of control information of the RRH.
  • TPC command transmission power control command
  • the transmit power (P PUCCH, C (i)) of the PUCCH in subframe (i) may be determined by Equation 1 below.
  • transmitting a signal in a cell may mean that a signal is received at a transmitting / receiving point covering the cell so that the transmitting / receiving point covering the cell may grasp information included in the corresponding signal.
  • reception here does not mean that the signal is received by interference but may mean that the signal is received according to the purpose of the signal transmitted by the terminal as a desired signal.
  • P CMAX, c (i) is the maximum transmit power of the terminal 320 in the subframe (i) (in) in the cell (c), and the PUCCH transmit power is the maximum of the terminal 320. Limited by transmit power.
  • P 0_PUCCH is a factor for the received power that should be guaranteed in transmitting the PUCCH.
  • P 0_PUCCH is a factor for reception power required to obtain a reception signal-to-interference and noise ratio (SINR) required at a transmission / reception point, and is determined by a PUCCH format.
  • SINR reception signal-to-interference and noise ratio
  • RSRP Reference Signal Received Power
  • h (n CQI , n HARQ, n SR ) is n CQI corresponding to the number of information bits for channel quality information ( CQI ), n HARQ and subframe (i), which is the number of HARQ bits transmitted in subframe (i)
  • ⁇ F_PUCCH (F) is an offset determined by the PUCCH format (F).
  • ⁇ TxD (F ′) is an offset considering the case where the terminal 10 is configured to transmit PUCCH in two antenna ports.
  • g (i) is a value for directly adjusting the PUCCH transmit power through an explicit transmit power control command.
  • g (i) is cumulative and increases or decreases by a certain amount.
  • g (i) may be included in the downlink scheduling assignment or may be provided on a special PDCCH which simultaneously provides a transmission power control command to multiple terminals. For example, it may correspond to DCI format 3 / 3A.
  • g (i) may be used to compensate for uplink multipath fading not reflected in downlink path loss, and to compensate for a change in uplink interference not reflected in P 0_PUCCH .
  • the transmit power of the PUSCH (P PUSCH, c (i)) in the subframe (i) is Can be determined by Equation 2.
  • the transmission power P PUSCH, c (i) of the PUSCH in the subframe i may be determined by Equation 3 below.
  • P CMAX, c (i) is the maximum transmit power of the terminal 320 in the subframe (i) in the cell (c), Is the linear value of P CMAX, c (i). Is a linear value of P PUCCH (i) defined in equation (1).
  • the PUSCH transmission power is limited by the maximum transmission power of the terminal 320.
  • the PUSCH transmission power is limited by a limit value of the transmission power of the PUCCH at the maximum transmission power of the terminal 320.
  • M PUSCH, c (i) is the bandwidth of the PUSCH resource allocation expressed as the number of valid resource blocks for cell (c) and subframe (i). Allocation of more resource blocks requires higher transmit power.
  • P 0_PUSCH, c (j) is a factor for the received power that should be guaranteed in transmitting the PUSCH.
  • P 0_PUSCH is a factor for reception power required to obtain a reception SINR required at a transmission and reception point, and is determined by a PUSCH format and the like.
  • P 0_PUSCH is a value determined based on the interference level at the transmission / reception point and the interference may vary depending on the system construction situation, and may vary depending on time since the load in the network changes over time.
  • J 0 for PUSCH (re) transmission for semi-persistent grant
  • j 1 for PUSCH (re) transmission for dynamic scheduled grant
  • random J 2 for PUSCH (re) transmission for random access response grant.
  • RSRP reference signal transmitted power-reference signal received power
  • ⁇ TF, c (i) is an offset determined by the Modulation and Coding Scheme (MCS) for cell c.
  • MCS Modulation and Coding Scheme
  • f c (i) is a value for directly adjusting the PUSCH transmit power through an explicit transmit power control command.
  • f c (i) is a cumulative value, increasing or decreasing by a specific amount.
  • f c (i) may be included in an UL scheduling grant.
  • a second transmission / reception point 312 whose terminal 320 is RRH1 may be located nearby.
  • the uplink transmission of the terminal 320 toward the first transmission / reception point eNB is performed by the second transmission / reception.
  • Serious interference can be caused to point 312.
  • the terminal may be located far from the first transmission / reception point eNB compared to the distance to other transmission / reception points.
  • the terminal 320 when the terminal 320 performs high power uplink transmission to the first transmission / reception point eNB, the uplink transmission of the terminal 320 is different RRHs (eg, RRH2 and RRH3). (314, 316) may cause interference.
  • RRHs eg, RRH2 and RRH3
  • the path loss is measured based on the first transmission / reception point 310 regardless of whether the uplink CoMP is operated.
  • Uplink transmission based on this measurement may cause severe uplink interference to one or multiple RRHs, eg, second to fourth transmit / receive points 312, 314, 316. That is, power control suitable for uplink CoMP operation cannot be performed.
  • the UE may control uplink transmission power through path loss estimation using CSI-RS along with path loss estimation using CRS described in FIG. 3.
  • FIG. 5 is a flowchart illustrating a method of controlling uplink power according to an embodiment.
  • At least a first transmission / reception point 410 controlling a plurality of transmission / reception terminals constituting a CoMP set may perform downlink or uplink CoMP operation with the terminal 420.
  • One transmission / reception point, for example, the second to fourth transmission / reception points 412, 414, and 416 may be searched for (S501).
  • the CoMP system according to another embodiment is a cooperative multi-point communication system described with reference to FIG. 4, but is not limited thereto.
  • the transmission and reception points participating in the cooperative communication may be four, as shown in FIGS. 4 and 5, but the present invention is not limited thereto and may be two, three, five, or more.
  • transmission and reception points participating in the cooperative communication will be described as the first to fourth transmission and reception points 410, 412, 414, and 416 as illustrated in FIGS. 4 and 5.
  • the first transmission / reception point 410 may designate the second to fourth transmission / reception points 412, 414, and 416 for performing downlink to the terminal 420, and the second to fourth transmission / reception points for performing downlink. 412, 414, and 416 may be changed by the first transmission / reception point 410 according to an environment change of the system.
  • the first transmission / reception point 410 may designate second to fourth transmission / reception points 412, 414, and 416 that receive uplink data from the terminal 420, and receive the uplink data.
  • the fourth transmission / reception point 412, 414, 416 may be changed by the first transmission / reception point 410 according to an environment change of the system.
  • the first transmission / reception point 410 searches for all transmission / reception points that may transmit / receive data with the terminal 420 as well as the transmission / reception point for transmitting / receiving data with the current terminal 420, and then at least one transmission / reception point that is optimal.
  • allocating a transmission / reception point means that the terminal 420 informs the terminal 420 of information necessary to receive a signal from each transmission / reception point.
  • the first transmission / reception point 410 capable of controlling other transmission / reception points may transmit information on a CoMP set (CoMP set) to cooperatively transmit a higher layer message, for example, radio resource control (RRC) signaling and downlink. It may transmit to the terminal 420 through the control channel.
  • CoMP set CoMP set
  • RRC radio resource control
  • the first transmission / reception point 410 may transmit the terminal specific reference signal transmission power information and the terminal specific reference signal configuration information of the searched second to fourth transmission / reception points 412, 414, and 416 to the terminal 420.
  • the terminal specific reference signal may be, for example, CSI-RS or DM-RS.
  • the first transmission / reception point 410 stores CSI-RS transmission power information and CSI-RS configuration information of the searched second and third transmission / reception points 412 and 414 in step S502. It may be transmitted to the terminal 420.
  • the CSI-RS transmission power information and the CSI-RS configuration information may be stored in a table in the terminal 420 or preset in the system so that the terminal 420 may know in advance.
  • the first transmission / reception point 410 transmits information on CSI-RS transmission power for eight antenna ports of the first transmission / reception point 410, and the second to fourth transmission / reception points 412, 414, 416 Information about the CSI-RS transmit power for four or less antenna ports may be transmitted.
  • the first transmission / reception point 410 may transmit information on the number of antenna ports and the CSI-RS pattern of each of the second to fourth transmission / reception points 412, 414, and 416.
  • higher layer signaling for example, RRC (Radio Resource Control) signaling may be used.
  • the CRS transmission power and the CSI-RS transmission power transmitted from the first transmission / reception point 410 to the terminal by higher layer signaling, for example, RRC signaling, are 43 dBM and transmitted from the second transmission / reception point 412.
  • CSI-RS transmit power is 23 dBM.
  • the above-described CSI-RS transmission power information and CSI-RS configuration information may be transmitted in RRC (Radio Resource Control) format as a higher layer. Alternatively, they may be transmitted in the form of system information.
  • RRC Radio Resource Control
  • the terminal may perform measurement of the CSI-RS reception power transmitted by each transceiver through the above-described information on the CSI-RS transmission, and compares each of the notified transceiver CSI-RS transmission powers with the reception power.
  • the path attenuation between the CSI-RS transmitting and receiving terminal and the corresponding terminal can be measured.
  • path attenuation measurement may be performed using DM-RS, which is one of the terminal specific reference signals.
  • the first transmission / reception point S502 may transmit DM-RS transmission power information and DM-RS configuration information of the first transmission / reception point and the searched second and third transmission / reception points 412 and 414 to the terminal 420.
  • DM-RS transmission power information and DM-RS configuration information may be stored in a table in the terminal 420.
  • the terminal may perform the reception power measurement and the path attenuation measurement of the transmitting and receiving terminal DM-RS using the table information.
  • the terminal 420 may receive one or more transmit power control (TPC) commands through the first transmit / receive point 410 or another transmit / receive end (S510). ).
  • TPC transmit power control
  • the TPC command may be included in a response message for the preamble for random access or transmitted through a physical downlink control channel (PDCCH).
  • PDCCH may have various formats according to downlink control information (DCI), and a TPC command transmitted according to the format may be different.
  • the terminal 420 may include PDCCHs of various formats, such as a format for downlink scheduling, a format for uplink scheduling, a TPC-only format for an uplink data channel (PUSCH), and a TPC-only format for an uplink control channel (PUCCH). Can be received.
  • the TPC command may be used to determine transmit power for each component carrier, transmit power for a component carrier group, or transmit power for an entire component carrier.
  • the TPC command may be used to determine the transmit power for each signal (eg, PUSCH, PUCCH, etc.).
  • the TPC command includes PDCCHs in various formats such as a format for downlink scheduling, a format for uplink scheduling, a TPC-only format for an uplink data channel (eg, PUSCH), and a TPC-only format for an uplink control channel (eg, PUCCH). Can be received via.
  • the terminal 420 receives a cell specific reference signal and / or a UE specific RS, for example, at least one reference signal RS among CRS, CSI-RS, and DM-RS. In operation 511, the terminal may receive the received data from the receiver 410.
  • the terminal 420 may be configured with an uplink CoMP set (for example, the second to fourth transmission and reception points (412, 414, 416)) terminal specific reference signal (UE specific RS) from the transmission and reception point, for example
  • UE specific RS terminal specific reference signal
  • CSI-RS and / or DM-RS may be received (S512, S514, and S516).
  • the terminal 420 may perform a substantial path loss for a specific plurality of transmission / reception points r (0 ⁇ r ⁇ R) based on one or more reference signals among CRS, CSI-RS, or DM-RS. Can be calculated (S520).
  • step S520 the terminal 420 receives the CRS through the first transmission / reception point 410 (eNB) capable of controlling the second to fourth transmission / reception points (for example, 1 to 3 RRHs) and based on the CRS.
  • the path loss from the first transmission / reception point 410 may be calculated.
  • the terminal 420 When the terminal 420 knows the transmission power of the CSI-RS or the DM-RS of the second to fourth transmission / reception points 412, 414, and 416 in step S520, the terminal 10 transmits the CSI-RS or DM-RS.
  • the downlink path loss may be calculated from the second to fourth transmit / receive points 412, 414, and 416 capable of driving Uplink CoMP by measuring the received power of.
  • each transmission / reception point 410, 412, 414, 416 including the first transmission / reception point may be distinguished from other transmission / reception points by a CSI-RS or DM-RS configuration, for example, a sequence, ports ( ports, mapping, or subframes, and information about the CSI-RS or DM-RS configuration may be notified to the terminal 420.
  • a CSI-RS or DM-RS configuration for example, a sequence, ports ( ports, mapping, or subframes, and information about the CSI-RS or DM-RS configuration may be notified to the terminal 420.
  • the terminal 420 may measure path loss for at least one transmission / reception point, and perform uplink transmission power control based on the measurement result.
  • Equation 1 to 3 a path loss calculated for a specific transmit / receive point r based on one or more reference signals among CRS, CSI-RS, or DM-RS, (Reference Signal Received Power (RSRP)).
  • RSRP Reference Signal Received Power
  • the CRS is transmitted in all resource blocks, and each resource block includes 12 subcarriers on the frequency axis and 0.5 ms slot on the time axis.
  • the CSI-RSs are transmitted at intervals of 5, 10, 20, 40, or 80 subframes, and each subframe has a size of 1 ms.
  • the DM-RS exists for PDSCH demodulation only when PDSCH transmission is related to a corresponding antenna port, and the DM-RS is transmitted only to a resource block to which a corresponding PDSCH is mapped.
  • CRS has a larger time coverage than CSI-RS and a greater frequency coverage than DM-RS. Therefore, for the transmitting end transmitting the CRS, it is possible to calculate the path loss using the CRS instead of the CSI-RS or the DM-RS.
  • the PUCCH and the PUSCH receive multiple transmit / receive points. You get multiple point reception gain.
  • the transmission power of the terminal 420 uses less transmission power than the non-CoMP case in which only the first transmission / reception point 410 corresponding to the serving cell receives the uplink transmission.
  • the terminal 420 performs uplink transmission, and interference of uplink transmission of the terminal 420 on the fourth transmission / reception point 416 may be reduced.
  • the terminal 420 Uplink transmission can be further lowered such that the uplink transmission is received at the second transmission / reception point 412 and the third transmission / reception point 414 and the reception is not suitable at the first transmission / reception point 410.
  • reception reliability of PUSCH and PUCCH is increased. Assuming that the reception reliability of the DM-RS is sufficiently high that there is no influence due to a channel estimation error, the PUSCH / PUCCH reception power after multiple points reception combining is determined by each of the transmission and reception points 410,. 412 and 414)
  • the sum of the respective PUSCH / PUCCH received powers may be given as follows.
  • the reception power of the DM-RS may not be considered.
  • the substantial path loss When interpreted as a reduction due to the substantial path loss of the transmission power of the terminal 420, the substantial path loss may be defined as follows.
  • Equation (5) (0 or a natural number where 0 ⁇ r ⁇ R) is a path loss calculated for a specific transmission / reception point r based on one or more reference signals of CRS, CSI-RS, or DM-RS.
  • the terminal 420 may calculate the actual path loss calculated for a specific plurality of transmission / reception points r (0 ⁇ r ⁇ R) based on one or more reference signals among CRS, CSI-RS, or DM-RS. In consideration of the uplink transmission power can be controlled (S521).
  • the transmission power P PUCCH, C (i) of the PUCCH may be determined by Equation 6 below.
  • Equation 5 a substantial path loss calculated by Equation 5 in subframe (i) Transmission power of the PUSCH ) May be determined by Equation 7 below.
  • This substantial path loss ( ) May represent a path loss when the terminal 420 assumes a maximum of multiple points reception gain.
  • the terminal 420 when the transmission power for the uplink physical channel is controlled, the terminal 420 generates an uplink physical channel having the corresponding transmission power, and then the terminal 420 generates each transmission / reception point 410 through the generated uplink physical channel. 412, 414, (S530, S532, S534).
  • the control of the transmission power for the uplink physical channel may be performed in the frequency domain before the inverse fast Fourier transform (IFFT).
  • the control of the transmission power may be performed in units of subcarriers, for example, may be performed by multiplying a weight by a modulation value mapped to a subcarrier.
  • the weights can be multiplied using a diagonal matrix (power diagonal matrix) where each element represents a value related to transmit power.
  • the transmit power may be controlled by using a weighted precoding matrix, or by multiplying a pre-coded modulation value by a power diagonal matrix. Therefore, even when a plurality of physical channels are included in the frequency band to which the same IFFT is applied, the transmission power of each physical channel can be easily controlled.
  • control of the transmit power for the uplink physical channel may be performed in the time domain after the IFFT.
  • transmission power control in the time domain may be achieved in various functional blocks.
  • the transmit power control may be performed in the DAC block and / or the RF block.
  • the simultaneous or the same time period may include the same transmission time interval (TTI) or subframe, but is not limited thereto.
  • TTI transmission time interval
  • the uplink power control method in the CoMP system according to an embodiment has been described above with reference to FIG. 5, and the uplink power control method in the CoMP system according to another embodiment will now be described with reference to FIG. 6.
  • the uplink power control method in the CoMP system according to another embodiment described with reference to FIG. 6 since other steps in the uplink power control method in the CoMP system according to another embodiment described with reference to FIG. 6 are the same as those described with reference to FIG. 5, only the uplink power control step will be described in detail.
  • FIG. 6 is a flowchart illustrating an uplink control method according to another embodiment.
  • Substantial path loss ( Calculate For example, if it is interpreted as a reduction due to the substantial path loss of the transmission power of the terminal 420, the substantial path loss may be defined as in Equation 5.
  • the terminal 420 may calculate the actual path loss calculated by considering the cooperative reception gain of a plurality of specific transmission / reception points based on one or more reference signals among CRS, CSI-RS, or DM-RS. ) To control the uplink transmission power of the PUSCH.
  • the terminal 420 is the actual path loss calculated by the equation (5)
  • the transmission power (P PUCCH, C (i)) and the PUSCH of the PUCCH are not simultaneously transmitted in the subframe (i).
  • Transmit power of the PUSCH ( ) When the PUSCH is transmitted simultaneously with the PUCCH, the transmit power of the PUSCH ( ) May be determined by Equations 6 to 8, respectively.
  • the transmission power of the uplink DM-RS of the UE 420 ( Determine (S620).
  • the transmission power should be controlled such that the DM-RS received at each reception point has sufficient reliability or reception power to perform channel estimation.
  • the received power of the PUSCH for each transmit / receive point r such that the DM-RS received at each transmit / receive point has sufficient reliability or receive power to perform channel estimation.
  • the reception power of the PUSCH of each transmission / reception point must have sufficient reliability or reception power, that is, transmission power required for reception, for uplink DM-RSs received by each transmission / reception point to perform channel estimation. Since all transmit / receive points should be able to estimate the channel by receiving the DM-RS, the transmit power request value of the uplink DM-RS of the user equipment ( ) Should be the maximum of the transmit powers of the uplink DM-RS of each transmit / receive point.
  • the above offset may be determined by a modulation and coding scheme (MCS) of a transmission PUSCH / PUCCH, or may be determined by high layer signaling.
  • MCS modulation and coding scheme
  • the terminal 420 determines an uplink transmission power that is larger than a maximum value of transmission powers required for reception of each of the uplink DM-RSs received by each of the transmission and reception points (S630).
  • step S630 the terminal 420 transmits an uplink DM-RS, and the transmission / reception points 410, 412, 414, and 416 receive the uplink DM-RS and use the uplink DM-RS.
  • the terminal 420 determines the uplink transmission power so as to have the reliability of performing the link physical channel estimation.
  • the uplink transmission power of the terminal 420 ( ) Is a transmit power request value of the uplink DM-RS of the UE 420 as represented by Equation (11). May be greater than).
  • the selection of the transmission / reception points constituting the uplink CoMP may be selected in the order of high reliability of the received signal or in the order of low path loss. That is, if the number of transmit / receive points constituting the uplink CoMP increases, the transmit power required for PUSCH transmission decreases due to the increase of the combined gain, while performing DM-RS transmission for the transmit / receive point having a larger path loss.
  • the transmit power requirement to support estimation can increase.
  • the transmission power for supporting channel estimation through DM-RS while guaranteeing 'maximum multiple transmit / receive point combined gain' includes transmission power and uplink for supporting PUSCH transmission for each transmit / receive point r (0 ⁇ r ⁇ R).
  • the maximum value of the transmission power request values of the DM-RS is defined as follows.
  • Equation 12 f c (i) is a value for directly adjusting the PUSCH transmit power through an explicit transmit power control command.
  • a transmit power request value of an uplink DM-RS of a terminal for supporting channel estimation through a DM-RS necessary to obtain the combined gain ( ) Is the maximum value.
  • the uplink power control method in the CoMP system according to another embodiment has been described with reference to FIGS. 5 and 6, and the PUSCH considering the combining gain and the DM-RS reliability in consideration of the coupling gain will now be described with reference to FIG. 7.
  • the uplink power control method in which the UE controls the uplink transmission power in consideration of the transmission power and flexibly performs transmission / reception point selection in this process will be described.
  • FIG. 7 is a flowchart of an uplink control method according to another embodiment.
  • the terminal 420 may calculate a substantial path loss calculated for a plurality of specific transmission / reception points based on one or more reference signals among CRS, CSI-RS, or DM-RS. ), The uplink transmission power may be controlled.
  • the method for controlling uplink power requires that all transmission / reception points 410, 412, and 414 receive the DM-RS to estimate the channel, thereby uplink DM of the terminal 420.
  • RS transmit power And uplink transmit power greater than the maximum of the required transmit powers of each of the uplink DM-RSs to be received by each of the transmit and receive points 410, 412, 414. It may include a step (S720) to determine. Operation S720 is the same as operation S610 and operation S620 described with reference to FIG. 6.
  • the uplink transmission power for transmitting a signal through the uplink physical channel ( ) Is the maximum value of the received powers of each of the uplink DM-RSs to be received by each of Greater than) means that the uplink transmit power is sufficient to support accurate channel estimation.
  • R R + 1, that is, an additional transmission / reception point that is a target of uplink transmission may be added or increased to the CoMP set (S735). After that, at S720 And Can be recalculated.
  • the value increases while the combined gain of additional transmit / receive points The value can be decreased. Compare these two values If the value is larger, these additional transmit / receive points may be included in the CoMP set.
  • steps S720 and S730 may be repeated.
  • steps S720 and S730 may be repeated.
  • the number R of transmit / receive points added to the CoMP set in step S737 is greater than the total number of transmit / receive points M receiving the downlink reference signals (M)
  • steps S740 and S730 will not be repeated. Can be performed. If the number R of transmit / receive points added to the CoMP set is larger than the total number M of transmit / receive points receiving downlink reference signals, this may mean that there are no more transmit / receive points.
  • all transmit / receive points recognized by the terminal 420 is defined as a CoMP set or all transmit / receive points within a category allowed by the first transmit / receive point 410 corresponding to the serving cell. It may mean that it is included in the CoMP set.
  • step S730 Value is If the number (R) of transmission / reception points added to the CoMP set is greater than or greater than the total number (M) of transmission / reception points receiving the downlink reference signals (S737), the terminal 420 may add a transmission / reception point before adding another transmission / reception point.
  • R-1) transmission / reception points may be selected as a CoMP set (S740).
  • step S740 the terminal 420 measures the path loss, and when the uplink CoMP transmission, can set the CoMP set to the minimum transmission power.
  • the terminal 420 may transmit the set CoMP set information to the first transmission / reception point 410 corresponding to the serving cell periodically or aperiodically.
  • the terminal 420 may periodically transmit CoMP set information that is periodically set to the serving transmission / reception point 410.
  • the terminal 420 transmits aperiodic CoMP set information to the first transmission / reception point 410 aperiodically only when it is triggered to feed back the CoMP set information set from the first transmission / reception point 410. Can be.
  • the terminal 420 transmits uplink transmission power (R-1) defined in Equation 11 to (R-1) transmission / reception points. ) May be determined (S750). In other words, calculated for the R transmission and reception points in step S750 this If not greater than (R-1) calculated for the transmit and receive points The uplink transmission power can be determined.
  • Equation 12 A value of + fc (i)) is calculated for (R-1) transmit / receive points Is greater than ( The value of + fc (i) may be determined as the final uplink transmission power of the terminal 420.
  • the terminal 420 when transmission power for an uplink physical channel is determined in S530, S532, and S534, the terminal 420 generates an uplink physical channel and then generates a corresponding transmission power through an uplink physical channel generated. Uplink transmission may be performed.
  • FIG. 8 is a block diagram illustrating a terminal and a transmission / reception point according to another embodiment.
  • the terminal 800 may include a terminal RF unit 805 and a terminal processor 810.
  • the terminal RF unit 805 receives a reference signal from two or more transmission / reception points and receives information on the transmission power of the reference signals of the transmission / reception points from one of the transmission / reception points 850 and through the uplink physical channel. As described with reference to FIG. 7, a signal may be transmitted using uplink transmission power. In addition, the terminal RF unit 805 may transmit CoMP set information in which at least one transmission / reception point is configured as a CoMP set.
  • the terminal processor 810 determines an uplink transmission power for transmitting a signal through an uplink physical channel, generates an uplink physical channel, and then uplinks the uplink transmission power with the determined uplink transmission power. It may be controlled to transmit a signal through a physical channel.
  • the terminal processor 810 determines a UL transmission power for transmitting a signal through an UL physical channel and at least a power controller 812 for controlling the UL transmission power. It may include all or part of the CoMP set determination unit 814 for generating CoMP set information consisting of a CoMP set of one transmission point.
  • the power controller 812 considers information on the transmission power of the received reference signals and the actual path loss obtained from the measured reception powers of the reference signals received through the downlink physical channel from the transmission and reception points.
  • the uplink transmission power for transmitting a signal through the uplink physical channel can be determined based on Equations 6 to 8.
  • the power control unit 812 may determine the uplink transmission power so that the uplink DM-RS received by the transmission / reception points has reliability to perform uplink physical channel estimation. For example, the power control unit 812 may use the uplink transmit power equal to or greater than the maximum value of each of the uplink DM-RSs received by each of the transmit and receive points based on Equations 10 and 11, respectively. Can be determined.
  • the power control unit 812 considers uplink transmission power for transmitting a signal through an uplink physical channel in consideration of a substantial path loss. ) And the maximum transmit power required of uplink DM-RSs to be received by each of the transmit and receive points ( ), this If greater, add another transmit / receive point to the CoMP set Is calculated, this Is not larger than before adding another send / receive point or (
  • the uplink transmission power may be determined as the maximum value of the + fc (i)) value (f c (i) is a value for directly controlling the PUSCH transmission power through an explicit transmission power control command).
  • CoMP set determination unit 814 is described with reference to FIG. Remind me If it is not larger, CoMP set information including a CoMP set may be generated as at least one transmit / receive point before adding another transmit / receive point.
  • the transmission / reception point 850 may include a transmission / reception point RF unit 855 and a transmission / reception point processor 860.
  • the transmission / reception point RF unit 855 transmits a reference signal to the terminal 800, transmits transmission power information of its reference signal and transmission power information of the reference signal of at least one other transmission / reception point to the terminal, and transmits uplink.
  • the power signal may be transmitted through the uplink physical channel.
  • control information B may include some or all of the information generating unit 866 for generating system information.
  • the terminal 800 and the transmission / reception point 860 described with reference to FIG. 8 have been described as including a CoMP set determination unit 814 and a CoMP set determination unit 862, respectively.
  • the UE 800 includes a CoMP set determination unit 814, but otherwise, at least one of the UE 800 and the transmission / reception point 860.
  • One may include a CoMP set determination unit.
  • an interference problem may cause more serious performance degradation.
  • uplink transmission is performed in a heterogeneous network in which a physical boundary between cells is ambiguous, more serious interference may occur regardless of whether CoMP is driven or not.
  • the above-described embodiments provide a method and apparatus for recognizing transmission and reception points adjacent to the terminal and determining power required for performing uplink transmission to the transmission and reception points and determining an appropriate transmission power.
  • Multiple point reception gains obtained by measuring a substantial path loss for a plurality of transmission and reception points and performing uplink transmission to the plurality of transmission and reception points by the power control method and apparatus according to the above-described embodiment gain) can be inferred and used for power control.

Abstract

Disclosed are a coordinated multi-point communication system, a communication method thereof, and a device thereof.

Description

협력형 다중 포인트 통신시스템에서 단말의 상향링크 전력 제어 방법 및 송수신 포인트의 상향링크 통신방법, 그 송수신 포인트, 그 단말Uplink power control method of a terminal and uplink communication method of a transmission / reception point, a transmission / reception point thereof, and the terminal in a cooperative multi-point communication system
본 발명은 둘 이상의 송수신 포인트들이 협력하여 신호를 전송하는 협력형 다중 포인트 통신시스템에서 상향링크 전력 제어에 관한 것이다.The present invention relates to uplink power control in a cooperative multi-point communication system in which two or more transmission / reception points transmit signals in cooperation.
무선 통신 시스템에서, 각 단말은 서로 다른 상향링크 물리채널들과 신호들이 적절한 전력으로 기지국(셀)에서 수신되도록 물리채널 및 신호의 전력을 제어한다.In a wireless communication system, each terminal controls power of a physical channel and a signal such that different uplink physical channels and signals are received at a base station (cell) at an appropriate power.
이 상향링크 전력제어는 단말의 전송 전력이 하향링크 경로 손실에 따라 달라지는 개루프 방식과 추가적으로 하향링크로 전송되는 명시적 전력제어 명령(power control command)을 통하여 단말의 전송 전력을 직접 제어하는 폐루프 방식이 있다.This uplink power control is a closed loop that directly controls the transmit power of the terminal through an open loop scheme in which the transmit power of the terminal varies according to downlink path loss and an explicit power control command transmitted in downlink. There is a way.
본 발명은, 헤테로지니어스 네트워크(Heterogeneous network)에 적합한 상향링크 전력제어 방법 및 상향링크 전력제어에 필요한 정보를 단말에 전달하는 방법을 제시하는 것을 목적으로 한다. An object of the present invention is to provide an uplink power control method suitable for a heterogeneous network and a method for transmitting information necessary for uplink power control to a terminal.
일실시예는, 둘 이상의 송수신 포인트들과 단말이 협력 통신하는 무선통신 시스템에서, 상기 송수신 포인트들로부터 참조신호들을 수신하는 단계; 상기 수신된 참조신호들의 수신전력들을 측정하는 단계; 상기 송수신 포인트들의 참조신호 전송전력의 정보를 상기 송수신 포인트들 중 적어도 하나로부터 수신하는 단계; 수신한 상기 참조신호 전송전력 정보와 상기 측정된 수신전력들로부터 획득된 실질적 경로손실(Path Loss)을 고려한 상기 상향링크 전송전력이, 상기 송수신 포인트들 각각에 의해 수신을 위해 요구되는 상향링크 DM-RS 전송전력들 각각의 최대값과 같거나 크도록 상향링크 전송전력을 결정하는 단계; 및 상향링크 물리채널을 통해 상기 상향링크 전송전력으로 신호를 전송하는 단계를 포함하는 단말의 상향링크 전력 제어 방법을 제공한다.In one embodiment, a wireless communication system in which a terminal is in cooperative communication with two or more transmission and reception points, receiving reference signals from the transmission and reception points; Measuring reception powers of the received reference signals; Receiving information of reference signal transmission power of the transmission and reception points from at least one of the transmission and reception points; The uplink transmission power in which the uplink transmission power considering the received reference signal transmission power information and the actual path loss obtained from the measured reception powers is required for reception by each of the transmission / reception points. Determining uplink transmit power to be equal to or greater than a maximum value of each of the RS transmit powers; And transmitting a signal with the uplink transmission power through an uplink physical channel.
다른 실시예에는 둘 이상의 송수신 포인트들과 단말이 협력 통신하는 무선통신 시스템에서, 참조신호를 상기 단말로 전송하는 단계; 상기 참조신호 전송전력 정보 및 적어도 하나의 다른 송수신 포인트의 참조신호의 전송전력 정보를 상기 단말로 전송하는 단계; 및 수신한 상기 참조신호 전송전력 정보 및 상기 참조신호와 적어도 하나의 다른 송수신 포인트로부터 수신한 상기 참조신호의 측정된 수신전력들로부터 획득된 실질적 경로손실(Path Loss)을 고려한 상기 상향링크 전송전력이, 상기 송수신 포인트들 각각에 의해 수신을 위해 요구되는 상향링크 DM-RS 전송전력들 각각의 최대값과 같거나 크도록 결정된 상향링크 전송전력으로 상기 단말로부터 상향링크 물리채널을 통해 전송된 신호를 수신하는 단계를 포함하는 송수신 포인트의 상향링크 통신방법을 제공한다.In another embodiment, in a wireless communication system in which the terminal is a cooperative communication with two or more transmission and reception points, transmitting a reference signal to the terminal; Transmitting transmission power information of the reference signal transmission power information and reference signal of at least one other transmission / reception point to the terminal; And the uplink transmit power considering the received reference signal transmit power information and the actual path loss obtained from the measured receive powers of the reference signal received from the reference signal and at least one other transmission / reception point. Receiving a signal transmitted through an uplink physical channel from the terminal with an uplink transmission power determined to be equal to or greater than a maximum value of each of uplink DM-RS transmission powers required for reception by each of the transmission and reception points. It provides an uplink communication method of a transmission and reception point comprising the step of.
또 다른 실시예는 둘 이상의 송수신 포인트들과 단말이 협력 통신하는 무선통신 시스템에서, 상기 송수신 포인트들로부터 참조신호들을 수신하고, 상기 송수신 포인트들의 참조신호들의 전송전력의 정보를 상기 송수신 포인트들 중 하나로부터 수신하는 RF부; 및 수신한 상기 참조신호들의 수신전력들을 측정하여 수신한 상기 참조신호 전송전력 정보와 상기 측정한 수신전력들로부터 획득된 실질적 경로손실(Path Loss)을 고려한 상기 상향링크 전송전력이, 상기 송수신 포인트들 각각에 의해 수신을 위해 요구되는 상향링크 DM-RS 전송전력들 각각의 최대값과 같거나 크도록 상향링크 전송전력을 결정하는 프로세서를 포함하며, 상기 RF부는 상향링크 물리채널을 통해 상기 상향링크 전송전력으로 신호를 전송하는 것을 특징으로 하는 단말을 제공한다.Another embodiment is a wireless communication system in which a terminal is in cooperative communication with two or more transmission and reception points, receiving reference signals from the transmission and reception points, the information of the transmission power of the reference signals of the transmission and reception points one of the transmission and reception points RF unit for receiving from; And the uplink transmit power in consideration of the reference signal transmit power information received by measuring the received powers of the received reference signals and the actual path loss obtained from the measured receive powers. And a processor for determining an uplink transmission power to be equal to or greater than a maximum value of each of uplink DM-RS transmission powers required for reception by each, wherein the RF unit transmits the uplink transmission through an uplink physical channel. Provided is a terminal that transmits a signal with power.
또 다른 실시예는, 둘 이상의 송수신 포인트들과 단말이 협력 통신하는 무선통신 시스템에서, 참조신호를 상기 단말로 전송하고, 상기 참조신호의 전송전력 정보 및 적어도 하나의 다른 송수신 포인트의 참조신호의 전송전력 정보를 상기 단말로 전송하고, 수신한 상기 참조신호 전송전력 정보 및 상기 참조신호와 적어도 하나의 다른 송수신 포인트로부터 하향링크 물리채널을 통한 수신한 상기 참조신호의 측정된 수신전력들로부터 획득된 실질적 경로손실(Path Loss)을 고려한 상기 상향링크 전송전력이, 상기 송수신 포인트들 각각에 의해 수신을 위해 요구되는 상향링크 DM-RS 전송전력들 각각의 최대값과 같거나 크도록 결정된 상향링크 전송전력으로 상기 단말로부터 상향링크 물리채널을 통해 전송된 신호를 수신하는 RF부; 및 상기 단말로부터 상향링크 전송을 제어하는 프로세서를 포함하는 송수신 포인트를 제공한다.In another embodiment, in a wireless communication system in which a terminal cooperates with two or more transmission / reception points, a reference signal is transmitted to the terminal, and transmission power information of the reference signal and reference signals of at least one other transmission / reception point are transmitted. Transmitting power information to the terminal and receiving the received reference signal transmission power information and the received received powers of the reference signal received from the reference signal and at least one other transmission / reception point through a downlink physical channel The uplink transmission power considering the path loss is an uplink transmission power determined to be equal to or greater than the maximum value of each of the uplink DM-RS transmission powers required for reception by each of the transmission and reception points. An RF unit for receiving a signal transmitted through an uplink physical channel from the terminal; And a processor for controlling uplink transmission from the terminal.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸 블록도이다.1 is a block diagram showing a wireless communication system to which the present invention is applied.
도 2는 본 발명의 일 예에 따른 하향링크 CoMP 시스템의 개념도이다. 2 is a conceptual diagram of a downlink CoMP system according to an embodiment of the present invention.
도 3은 본 발명이 적용되는 COMP 시스템에서 CRS 및 물리적 상향링크 채널의 전송에 관한 개념도이다.3 is a conceptual diagram for transmitting a CRS and a physical uplink channel in a COMP system to which the present invention is applied.
도 4는 CRS 및 CSI-RS 전송을 도시한 개념도이다.4 is a conceptual diagram illustrating CRS and CSI-RS transmission.
도 5는 일실시예에 따른 상향링크 전력 제어방법의 흐름도이다.5 is a flowchart illustrating a method of controlling uplink power according to an embodiment.
도 6은 다른 실시예에 따른 상향링크 제어방법의 흐름도이다.6 is a flowchart illustrating an uplink control method according to another embodiment.
도 7은 또 다른 실시예에 따른 상향링크 제어방법의 흐름도이다.7 is a flowchart of an uplink control method according to another embodiment.
도 8은 또 다른 실시예에 따른 단말과 송수신 포인트를 나타내는 블록도이다.8 is a block diagram illustrating a terminal and a transmission / reception point according to another embodiment.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 명세서는 통신 네트워크를 대상으로 설명하며, 통신 네트워크에서 이루어지는 작업은 해당 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 네트워크에 링크된 단말에서 작업이 이루어질 수 있다.The present specification describes a communication network, and the work performed in the communication network is performed in the process of controlling the network and transmitting data in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in
본 발명의 실시예들에 따르면, '제어 채널을 전송한다'라는 의미는 특정 채널을 통해 제어 정보가 전송되는 의미로 해석될 수 있다. 여기서, 제어 채널은 일례로 물리 하향링크 제어채널(Physical Downlink Control Channel: PDCCH) 혹은 물리 상향링크 제어채널(Physical Uplink Control Channel: PUCCH)가 될 수 있다.According to embodiments of the present invention, 'transmitting a control channel' may be interpreted as meaning that control information is transmitted through a specific channel. Here, the control channel may be, for example, a physical downlink control channel (PDCCH) or a physical uplink control channel (PUCCH).
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸 블록도이다.1 is a block diagram showing a wireless communication system to which the present invention is applied.
도 1을 참조하면, 무선통신 시스템(100)은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. Referring to FIG. 1, the wireless communication system 100 is widely deployed to provide various communication services such as voice and packet data.
무선통신 시스템(100)은 적어도 하나의 송수신 포인트(110; transmission/reception point)를 포함한다. 각 송수신 포인트(110)은 특정한 지리적 영역 또는 주파수 영역에 대해 통신 서비스를 제공하며, 사이트(site)라고 불릴 수 있다. 사이트(site)는 섹터라 부를 수 있는 다수의 영역들(150a, 150b, 150c)로 나누어질 수 있으며, 이러한 섹터는 각기 서로 다른 셀 아이디를 가질 수가 있다.The wireless communication system 100 includes at least one transmission / reception point 110. Each transmit / receive point 110 provides a communication service for a specific geographic area or frequency area and may be called a site. A site may be divided into a number of regions 150a, 150b, 150c, which may be called sectors, and these sectors may have different cell IDs.
단말(120; User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. The user equipment (UE) 120 may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms.
송수신 포인트(110)는 일반적으로 단말(120)과 통신하는 지점(station)을 말하며, 요소 반송파 또는 셀, eNodeB (evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), 펨토 기지국(Femto eNodeB), 가내 기지국(Home eNodeB: HeNodeB), 릴레이(relay), 피코 기지국(Pico eNodeB), 원격 무선 헤드(remote radio head: 이하 "RRH"라 함), 핫스팟(Hot spot) 중 어느 것으로 정의될 수 있다. 송수신 포인트(110)는 안테나 포트(antenna port)들의 집합으로 정의될 수 있다. 그리고 송수신 포인트(110)는 송수신 포인트(110)의 안테나 포트들의 집합에 관한 정보를 무선자원제어(radio resource control: RRC)시그널링(signaling)으로 단말에 전송할 수 있다. 따라서 하나의 셀 내에 다수의 송수신 포인트들을 안테나 포트들의 집합으로 정의할 수 있다. The transmission / reception point 110 generally refers to a station communicating with the terminal 120, and may include a component carrier or cell, an evolved-NodeB (eNodeB), a base transceiver system (BTS), an access point, and a femto base station. (Femto eNodeB), home base station (Home eNodeB: HeNodeB), relay (relay), pico base station (Pico eNodeB), remote radio head (hereinafter referred to as "RRH"), any of the hot spot (Hot spot) Can be defined. The transmission / reception point 110 may be defined as a set of antenna ports. The transmission / reception point 110 may transmit information on the set of antenna ports of the transmission / reception point 110 to the terminal through radio resource control (RRC) signaling. Therefore, a plurality of transmission / reception points in one cell may be defined as a set of antenna ports.
셀(150a, 150b, 150c)은 송수신 포인트(110)가 커버하는 일부 영역을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 등 다양한 커버리지 영역을 모두 포괄하는 의미이다. 송수신 포인트(110)는 통신 서비스를 제공하기 위해 신호를 전송하는 전송포인트(transmission point)를 의미할 수 있으며 통신 서비스를 제공하기 위해 단말(120)로부터 신호를 수신할 수도 있다. Cells 150a, 150b, and 150c should be interpreted in a comprehensive sense to indicate some areas covered by the transmit / receive points 110 and cover all of the various coverage areas such as megacells, macrocells, microcells, picocells, femtocells, and the like. It means. The transmission / reception point 110 may refer to a transmission point for transmitting a signal to provide a communication service, and may receive a signal from the terminal 120 to provide a communication service.
본 명세서에서 송수신 포인트(110)와 단말(120)은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다.In the present specification, the transmission and reception point 110 and the terminal 120 are two transmission / reception subjects used to implement the technology or technical idea described in this specification, and are used in a comprehensive sense and are not limited by the terms or words specifically referred to. Do not.
이하에서 하향링크(downlink)는 송수신 포인트(110)에서 단말(120)로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말(120)에서 송수신 포인트(110)으로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 송수신 포인트(110)의 일부분일 수 있고, 수신기는 단말(120)의 일부분일 수 있다. 상향링크에서 송신기는 단말(120)의 일부분일 수 있고, 수신기는 송수신 포인트(110)의 일부분일 수 있다. Hereinafter, downlink (downlink) means a communication or communication path from the transmission and reception point 110 to the terminal 120, uplink (uplink) indicates a communication or communication path from the terminal 120 to the transmission and reception point 110. it means. In downlink, the transmitter may be part of the transmission / reception point 110 and the receiver may be part of the terminal 120. In uplink, the transmitter may be part of the terminal 120 and the receiver may be part of the transmission / reception point 110.
무선통신 시스템(100)에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier-FDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중접속 기법을 사용할 수 있다. 이들 변조 기법들은 통신 시스템의 다중 사용자들로부터 수신된 신호들을 복조하여 통신 시스템의 용량을 증가시킨다. 상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.There is no limitation on the multiple access scheme applied to the wireless communication system 100. Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-FDMA (SC-FDMA), OFDM-FDMA, OFDM-TDMA For example, various multiple access schemes such as OFDM-CDMA may be used. These modulation techniques demodulate signals received from multiple users of a communication system to increase the capacity of the communication system. The uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme transmitted using different times or a frequency division duplex (FDD) scheme transmitted using different frequencies.
본 발명의 일실시예는 GSM, WCDMA, HSPA를 거쳐 LTE(Long Term Evolution) 및 LTE-advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB(Ultra Mobile Broadband)로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.One embodiment of the present invention is asynchronous wireless communication evolving into Long Term Evolution (LTE) and LTE-advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving into CDMA, CDMA-2000 and Ultra Mobile Broadband (UMB) Applicable to resource allocation in sectors, etc. The present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
실시예들이 적용되는 무선통신 시스템(100)은 둘 이상의 송수신 포인트들이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(coordinated multi-point transmission/reception System; CoMP 시스템) 또는 협력형 다중 안테나 전송방식(coordinated multi-antenna transmission system), 협력형 다중 포인트 통신시스템일 수 있다.The wireless communication system 100 to which the embodiments are applied includes a coordinated multi-point transmission / reception system (CoMP system) or a cooperative multi-antenna transmission scheme in which two or more transmission / reception points cooperate to transmit a signal. coordinated multi-antenna transmission system), a cooperative multi-point communication system.
CoMP 시스템은 CoMP를 지원하는 통신 시스템 또는 CoMP가 적용되는 통신 시스템을 말한다. CoMP는 다중 송수신 포인트들(multi transmission/reception(Tx/Rx) points)에 의해 전송 또는 수신되는 신호들을 조정 또는 조합하는 기술이다. CoMP는 데이터 전송률(throughput)을 증가시키고 높은 품질을 제공할 수 있다.The CoMP system refers to a communication system supporting CoMP or a communication system to which CoMP is applied. CoMP is a technique for adjusting or combining signals transmitted or received by multi transmission / reception (Tx / Rx) points. CoMP can increase data throughput and provide high quality.
이 CoMP 시스템에서 송수신 포인트들은 하나의 사용자 단말(120)에게 협력형 송수신을 시도할 때 동일한 시간에 동일한 주파수 자원을 할당하여 서비스를 제공할 수 있다. 즉 동일 시간에 협력형 송수신 포인트로 선택된 송수신 포인트들은 동일한 주파수 자원을 사용하여 하나의 사용자 단말(120)과 데이터를 송수신할 수 있다.In this CoMP system, transmission / reception points may provide a service by allocating the same frequency resource at the same time when attempting cooperative transmission / reception to one user terminal 120. That is, the transmission / reception points selected as the cooperative transmission / reception points at the same time may transmit and receive data with one user terminal 120 using the same frequency resource.
각 송수신 포인트 또는 셀들은 다중 송수신 포인트들을 구성할 수 있다. 예컨대, 다중 송수신 포인트들은 호모지니어스 네트워크(homogeneous network)를 형성하는 매크로(Macro) 셀들일 수 있다. 또한, 다중 송수신 포인트는 매크로 셀과 높은 전송파워를 갖는 RRH들일 수도 있다. 또한, 다중 송수신 포인트는 매크로 셀과 매크로 셀영역 내의 낮은 전송파워를 갖는 RRH들일 수도 있다.Each transmit / receive point or cells may constitute multiple transmit / receive points. For example, the multiple transmit / receive points may be macro cells that form a homogeneous network. In addition, the multiple transmission / reception points may be RRHs having a macro cell and high transmission power. In addition, the multiple transmission / reception points may be RRHs having low transmission power in the macro cell and the macro cell region.
CoMP 시스템은 CoMP를 선택적으로 적용할 수 있다. 즉, CoMP 시스템은 CoMP를 통신동작에 적용할 수도 있고, 적용하지 않을 수도 있다. CoMP 시스템에서 송수신 포인트와 단말이 CoMP를 이용하여 통신을 수행하는 모드를 CoMP 모드라 하고, 그렇지 않은 모드를 일반 모드(normal mode) 또는 비 CoMP 모드(non-CoMP mode)라 한다.The CoMP system may selectively apply CoMP. That is, the CoMP system may or may not apply CoMP to a communication operation. In the CoMP system, a mode in which a transmission / reception point and a terminal perform communication using CoMP is referred to as a CoMP mode, and a mode not otherwise referred to as a normal mode or a non-CoMP mode.
단말(120)은 CoMP 단말일 수 있다. CoMP 단말은 CoMP 시스템을 구성하는 요소로서, CoMP 협력 집합(CoMP Cooperating Set) 또는 CoMP 세트(CoMP set)와 통신을 수행한다. CoMP 단말도 CoMP 시스템과 마찬가지로 CoMP 모드로 동작하거나, 일반 모드로 동작할 수 있다. 그리고 CoMP 세트는 CoMP 단말에 대하여 어떤 시간-주파수 자원에서 데이터 전송에 직/간접적으로 참여하는 송수신 포인트들의 집합일 수 있다. 또한, CoMP 단말은 단일 사용자 다중 안테나(SU-MIMO) 방식뿐만 아니라, 다중 사용자 다중 안테나(MU-MIMO) 방식을 적용할 수 있다. 단말(120)은 송수신 포인트로부터 각각 데이터를 수신하지만, 연합 데이터를 수신하는 주파수 대역이 동일하기 때문에, 단말 입장에서는 하나의 송수신 포인트로부터 데이터를 수신하는 것으로 볼 수도 있다. The terminal 120 may be a CoMP terminal. The CoMP terminal is a component of the CoMP system and performs communication with a CoMP cooperating set or a CoMP set. Like the CoMP system, the CoMP terminal may operate in the CoMP mode or in the normal mode. The CoMP set may be a set of transmission / reception points that directly or indirectly participate in data transmission in a certain time-frequency resource for the CoMP terminal. In addition, the CoMP terminal may apply a multi-user multi-antenna (MU-MIMO) scheme as well as a single-user multi-antenna (SU-MIMO) scheme. Although the terminal 120 receives data from the transmission and reception points, respectively, since the frequency bands for receiving the association data are the same, the terminal 120 may be regarded as receiving data from one transmission and reception point.
데이터 전송 또는 수신에 직접 참여한다는 것은 송수신 포인트들이 해당 시간-주파수 자원에서 실제로 데이터를 CoMP 단말로 전송하거나 CoMP 단말로부터 수신하는 것을 의미한다. 데이터 전송 또는 수신에 간접 참여한다는 것은 송수신 포인트들이 해당 시간-주파수 자원에서 실제로 데이터를 CoMP 단말로 전송하거나 CoMP 단말로부터 수신하지 않지만, 사용자 스케줄링/빔포밍에 대한 결정을 내리는 데에 공헌한다는 것을 의미할 수 있다.Participating directly in data transmission or reception means that transmission / reception points actually transmit data to or receive data from a CoMP terminal in a corresponding time-frequency resource. Indirect participation in data transmission or reception may mean that the transmit / receive points do not actually transmit or receive data to or from the CoMP terminal at that time-frequency resource, but contribute to making a decision about user scheduling / beamforming. Can be.
CoMP 단말은 CoMP 세트로부터 동시에 신호를 수신하거나, CoMP 세트로 동시에 신호를 전송할 수 있다. 이때 CoMP 시스템은 CoMP 세트를 구성하는 각 셀의 채널 환경을 고려하여 CoMP 세트 간에 간섭 영향을 최소화할 수 있다.The CoMP terminal may simultaneously receive signals from the CoMP set or transmit signals to the CoMP set at the same time. At this time, the CoMP system may minimize the interference effect between the CoMP sets in consideration of the channel environment of each cell constituting the CoMP set.
CoMP 시스템의 운용 시, 다양한 시나리오가 가능하다. 제1 CoMP 시나리오는 하나의 송수신 포인트 내에 다수의 셀들 간에 동종 네트워크(homogeneous)로 구성되는 CoMP로, 인트라-사이트(intra-site) CoMP라 불릴 수도 있다. 제2 CoMP 시나리오는 하나의 매크로 셀 및 하나 이상의 고-전력(High-Power) RRH에 대한 동종 네트워크로 구성되는 CoMP이다. 제3 CoMP 시나리오 및 제4 CoMP 시나리오는 하나의 매크로 셀 및 매크로 셀 영역 내의 하나 이상의 저-전력(low-power) RRH에 대한 헤테로지니어스 네트워크(heterogeneous network)로 구성되는 CoMP이다. 이 때, RRH들의 물리적 셀 ID가 매크로 셀의 물리적 셀 ID와 동일하지 않는 경우는 제3 CoMP 시나리오에 해당하며, 동일한 경우는 제4 CoMP 시나리오에 해당한다.When operating a CoMP system, various scenarios are possible. The first CoMP scenario is CoMP, which is composed of a homogeneous network among a plurality of cells in one transmission / reception point, and may be referred to as intra-site CoMP. The second CoMP scenario is CoMP, which consists of a homogeneous network for one macro cell and one or more high-power RRHs. The third CoMP scenario and the fourth CoMP scenario are CoMPs that consist of a heterogeneous network for one macro cell and one or more low-power RRHs in the macro cell region. In this case, when the physical cell IDs of the RRHs are not the same as the physical cell IDs of the macro cells, they correspond to the third CoMP scenario and the same cases correspond to the fourth CoMP scenario.
CoMP의 범위(category)에는 조인트 프로세싱(Joint Processing: JP, 이하 'JP'라 함)과 협력 스케줄링/빔포밍(Coordinated Scheduling/Beamforming: CS/CB, 이하 'CS/CB'라 함)이 있으며 JP와 CS/CB를 혼합하는 것도 가능하다.CoMP's category includes Joint Processing (JP) and Coordinated Scheduling / Beamforming (CS / CB). It is also possible to mix CS and CB.
JP는 조인트 트랜스미션(Joint Transmission: JT, 이하 'JT' 라 함)과 동적 송수신 포인트 선택(Dynamic Point Selection: DPS, 이하 'DPS'라 함) 또는 동적 송수신 포인트 스케줄링/블래킹(dynamic point scheduling/dynamic point blanking, DPS/DPB)을 포함할 수 있다.JP stands for Joint Transmission (JT), Dynamic Point Selection (DPS), or Dynamic Point Scheduling / Dynamic. point blanking, DPS / DPB).
JT는 시간-주파수 자원에서 한 단말 또는 복수의 단말들에게 CoMP 세트에 속하는 다중 송수신 포인트들(multi-points)로부터 동시에 데이터 전송이 수행되는 것을 말한다. JT의 경우에 한 단말에 대하여 데이터를 전송하는 다중 셀(다중 송수신 포인트)들은 동일한 시간/주파수 자원을 이용하여 전송을 수행할 수 있다.JT refers to simultaneous data transmission from multiple transmission / reception points belonging to a CoMP set to one terminal or a plurality of terminals in time-frequency resources. In the case of JT, multiple cells (multiple transmission / reception points) for transmitting data to one terminal may perform transmission using the same time / frequency resource.
DPS의 경우에는 시간-주파수 자원에서 CoMP 세트의 한 송수신 포인트로부터 데이터 전송이 수행될 수 있다. 송수신 포인트는 간섭을 고려하여 서브프레임마다 바뀔 수 있다. 전송되는 데이터는 복수의 송수신 포인트들에서 동시에 이용 가능하다. DPS는 동적 셀 선택(Dynamic Cell Selection: DCS)를 포함한다.In the case of DPS, data transmission may be performed from one transmission / reception point of a CoMP set in time-frequency resources. The transmission and reception points may be changed for each subframe in consideration of interference. The data to be transmitted is simultaneously available at a plurality of transmit and receive points. DPS includes Dynamic Cell Selection (DCS).
CS의 경우에, 데이터는 시간-주파수 자원에 대하여 CoMP 세트 내의 한 송수신 포인트로부터 전송되는데, 단말을 위한 상향링크 또는 하향링크 스케줄링은 해당 CoMP 세트의 송수신 포인트들 사이에서 협력(coordination)에 의해 결정될 수 있다.In the case of CS, data is transmitted from one transmit / receive point in a CoMP set for time-frequency resources, and uplink or downlink scheduling for a terminal may be determined by coordination between transmit / receive points of the CoMP set. have.
CB의 경우 역시, 해당 CoMP 세트의 송수신 포인트들 사이에서 협력에 의해 단말을 위한 상향링크 또는 하향링크 스케줄링이 결정된다. CB(Coordinated Beamforming)에 의해 이웃 셀의 단말들과의 사이에서 발생하는 간섭을 피할 수 있다.In the case of CB, uplink or downlink scheduling for the UE is determined by cooperation between the transmission and reception points of the CoMP set. By the CB (Coordinated Beamforming) it is possible to avoid the interference occurring between the terminals of the neighbor cell.
상기 CS/CB는 송수신 포인트를 반정적(semi-static)으로 선택(변경)할 수 있는 SSPS(Semi-Static Point Selection)를 포함할 수 있다.The CS / CB may include a semi-static point selection (SSPS) that may select (change) a transmission / reception point semi-statically.
상술한 바와 같이, CoMP는 JP와 CS/CB가 혼합된 형태로 동작하는 방식도 가능하다. 예컨대, CoMP 세트 내의 몇몇 송수신 포인트들은 JP에 따라서 타겟 단말에 데이터를 전송하고, CoMP 세트 내의 다른 송수신 포인트들은 CS/CB를 수행할 수도 있다.As described above, CoMP may be operated in a manner in which JP and CS / CB are mixed. For example, some transmit / receive points in the CoMP set may transmit data to the target terminal according to JP, and other transmit / receive points in the CoMP set may perform CS / CB.
본 발명이 적용되는 송수신 포인트는 기지국(매크로 기지국 또는 마이크로 기지국(로컬 기지국)), 셀 또는 RRH를 포함할 수 있다. 즉 기지국 또는 RRH가 송수신 포인트가 될 수 있다. 한편 복수의 기지국이 다중 송수신 포인트들이 될 수도 있고, 복수의 RRH들이 다중 송수신 포인트들이 될 수도 있다. 물론 본 발명에서 설명되는 모든 기지국 또는 RRH의 동작은 다른 형태의 송수신 포인트에도 동일하게 적용될 수 있다.The transmission and reception points to which the present invention is applied may include a base station (macro base station or micro base station (local base station)), a cell, or an RRH. That is, the base station or the RRH may be a transmission / reception point. Meanwhile, the plurality of base stations may be multiple transmission / reception points, and the plurality of RRHs may be multiple transmission / reception points. Of course, the operation of all base stations or RRH described in the present invention can be equally applied to other types of transmission and reception points.
단말과 송수신 포인트 사이의 무선 인터페이스 프로토콜(radio interface)이 있다. 물론 본 발명에서 설명되는 모든 기지국 또는 RRH의 동작은 다른 형태의 송수신 포인트에도 동일하게 적용될 수 있다.There is a radio interface protocol between a terminal and a transmission / reception point. Of course, the operation of all base stations or RRH described in the present invention can be equally applied to other types of transmission and reception points.
단말과 송수신 포인트 사이의 무선 인터페이스 프로토콜(radio interface protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 모델의 하위 3개 계층을 바탕으로 제1 계층(L1), 제2 계층(L2), 제3 계층(L3)으로 구분될 수 있다. 이 중에서 제1 계층에 속하는 물리계층은 물리채널(physical channel)을 이용한 정보 전송 서비스(information transfer service)를 제공한다.Layers of a radio interface protocol between a terminal and a transmission / reception point are based on the lower three layers of the Open System Interconnection (OSI) model, which is well known in a communication system. It may be divided into a second layer L2 and a third layer L3. Among them, the physical layer belonging to the first layer provides an information transfer service using a physical channel.
물리계층에서 사용되는 몇몇 물리채널들이 있다. 물리하향링크 제어채널(physical downlink control channel: 이하 PDCCH)은 하향링크 공용채널(Downlink Shared Channel: DL-SCH)의 자원 할당 및 전송 포맷, 상향링크 공용채널(Uplink Shared Channel: UL-SCH)의 자원 할당 정보, 물리하향링크 공용채널(physical downlink shared channel: PDSCH)상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 단말 그룹내 개별 단말들에 대한 전송 전력 제어(transmission power control: TPC) 명령(command)의 집합 등을 나를 수 있다. 복수의 PDCCH가 서브프레임의 제어영역 내에 매핑되어 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링할 수 있다.There are several physical channels used in the physical layer. The physical downlink control channel (PDCCH) is a resource allocation and transmission format of a downlink shared channel (DL-SCH), a resource of an uplink shared channel (UL-SCH). Resource allocation of upper layer control messages, such as allocation information, random access responses transmitted on a physical downlink shared channel (PDSCH), and transmission power control for individual terminals in any terminal group : TPC) can carry a set of commands. A plurality of PDCCHs may be mapped and transmitted in a control region of a subframe, and the terminal may monitor the plurality of PDCCHs.
PDCCH에 맵핑되는 물리계층의 제어정보를 하향링크 제어정보(downlink control information; 이하 DCI)라고 한다. 즉, DCI는 PDCCH을 통해 전송된다. DCI는 상향링크 또는 하향링크 자원할당필드, 상향링크 전송전력제어 명령 필드, 페이징을 위한 제어필드, 랜덤 액세스 응답(RA response)을 지시(indicate)하기 위한 제어필드 등을 포함할 수 있다.Control information of the physical layer mapped to the PDCCH is referred to as downlink control information (DCI). That is, DCI is transmitted through the PDCCH. The DCI may include an uplink or downlink resource allocation field, an uplink transmission power control command field, a control field for paging, a control field for indicating a random access response (RA response), and the like.
송수신 포인트(110)는 PDCCH(Physical Downlink Control Channel) 및 PDSCH(Physical Downlink Shared Channel)를 통해 제어신호 및 데이터 중 적어도 하나를 송신한다. 상기 PDCCH 및 PDSCH에 대응되는 채널들로는 PUCCH(Physical Uplink Control Channel) 및 PUSCH(Physical Uplink Shared Channel)가 있을 수 있다. 단말(120)은 상기 PUCCH 및 PUSCH를 통해 제어신호 및 데이터 중 적어도 하나를 송신한다. 이하에서는 PUCCH, PUSCH, PDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 'PUCCH, PUSCH, PDCCH 및 PDSCH를 전송, 수신한다'는 형태로 표기하기도 한다.The transmission / reception point 110 transmits at least one of a control signal and data through a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH). Channels corresponding to the PDCCH and PDSCH may include a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH). The terminal 120 transmits at least one of a control signal and data through the PUCCH and the PUSCH. Hereinafter, a situation in which a signal is transmitted and received through a channel such as a PUCCH, a PUSCH, a PDCCH, and a PDSCH may be described in the form of 'sending and receiving a PUCCH, a PUSCH, a PDCCH, and a PDSCH.'
무선 프레임(radio frame)은 10개의 서브프레임(subframe)을 포함한다. 하나의 서브프레임은 2개의 슬롯(slot)을 포함한다. 하나의 서브 프레임을 전송하는 시간(길이)을 전송 시간 구역(Transmission Time Interval: TTI)라 한다. 예컨대, 한 서브프레임(1 subframe)의 길이는 1ms 이고, 한 슬롯(1 slot)의 길이는 0.5ms 일 수 있다.A radio frame includes 10 subframes. One subframe includes two slots. The time (length) of transmitting one subframe is called a transmission time interval (TTI). For example, one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
한 슬롯은 시간 영역에서 복수의 심벌(symbol)들을 포함할 수 있다. 예컨대, 하향링크(DownLink, DL)에서 OFDMA(Orthogonal Frequency Division Multiple Access)를 사용하는 무선 시스템의 경우에 상기 심벌은 OFDM(Orthogonal Frequency Division Multiplexing) 심벌일 수 있다. 한편, 시간 영역의 심벌 구간(symbol period)에 대한 표현이 다중 접속 방식이나 명칭에 의해 제한되는 것은 아니다. 예를 들어, 시간 영역에 있어서 복수의 심벌은 OFDM 심벌 외에 SCFDMA(Single Carrier-Frequency Division Multiple Access) 심벌, 심벌 구간 등일 수도 있다.One slot may include a plurality of symbols in the time domain. For example, in a wireless system using orthogonal frequency division multiple access (OFDMA) in downlink (DL), the symbol may be an orthogonal frequency division multiplexing (OFDM) symbol. Meanwhile, the representation of the symbol period in the time domain is not limited by the multiple access scheme or the name. For example, the plurality of symbols in the time domain may be a Single Carrier-Frequency Division Multiple Access (SCFDMA) symbol, a symbol interval, etc. in addition to the OFDM symbol.
하나의 슬롯에 포함되는 OFDM 심벌의 개수는 CP(Cyclic Prefix)의 길이에 따라 달라질 수 있다. 예컨대, 정규(normal) CP인 경우에 1 슬롯은 7 OFDM 심벌을 포함하고, 확장(extended) CP인 경우에 1 슬롯은 6 OFDM 심벌을 포함할 수 있다.The number of OFDM symbols included in one slot may vary depending on the length of a cyclic prefix (CP). For example, in case of a normal CP, one slot may include 7 OFDM symbols, and in case of an extended CP, one slot may include 6 OFDM symbols.
자원 블록(Resource Block, RB)은 자원 할당 단위로, 시간 축으로 하나의 슬롯과 주파수 축으로 180kHz에 해당하는 시간-주파수 자원을 포함한다. 예를 들어, 시간 축으로 하나의 슬롯이 7개의 심볼을 포함하고, 주파수 축으로 180kHz가 12개의 부반송파를 포함한다면, 하나의 자원 블록은 7*12개의 자원 요소(Resource Element, RE)를 포함할 수 있다.A resource block (RB) is a resource allocation unit and includes a time-frequency resource corresponding to one slot on the time axis and 180 kHz on the frequency axis. For example, if one slot includes seven symbols on the time axis and 180 kHz on the frequency axis includes 12 subcarriers, one resource block may include 7 * 12 resource elements (REs). Can be.
자원 요소는 데이터 채널의 변조 심벌 또는 제어 채널의 변조 심벌 등이 맵핑되는 가장 작은 시간-주파수 단위를 나타낸다.The resource element represents the smallest time-frequency unit to which a modulation symbol of a data channel or a modulation channel of a control channel is mapped.
무선 통신 시스템에서는 데이터의 송/수신, 시스템 동기 획득, 채널 정보 피드백 등을 위하여 상향링크 채널 또는 하향링크의 채널을 추정할 필요가 있다. 급격한 채널환경의 변화에 의하여 생기는 신호의 왜곡(distortion)을 보상하여 전송 신호를 복원하는 과정을 채널 추정(channel estimation)이라고 한다. 또한 단말이 속한 셀 혹은 다른 셀에 대한 채널 상태(channel state) 역시 측정할 필요가 있다. 일반적으로 채널 추정 또는 채널 상태 측정을 위해서 단말과 송수신 포인트 상호 간에 알고 있는 참조 신호(RS: Reference Signal)를 이용하게 된다.In a wireless communication system, it is necessary to estimate an uplink channel or a downlink channel for data transmission / reception, system synchronization acquisition, channel information feedback, and the like. The process of restoring a transmission signal by compensating for distortion of a signal caused by a sudden change in channel environment is called channel estimation. In addition, it is also necessary to measure the channel state (channel state) for the cell to which the terminal belongs or other cells. In general, a reference signal (RS) that is known between a terminal and a transmission / reception point is used for channel estimation or channel state measurement.
하향링크 참조 신호로는 셀 특정 참조 신호(CRS: Cell-specific RS), MBSFN(Multimedia Broadcast and multicast Single Frequency Network) 참조신호, 단말 특정 참조 신호(UE-specific RS), 포지셔닝 참조 신호(PRS: Positioning RS) 및 채널상태정보 참조신호(Channel State Information RS, CSI-RS) 등이 있다.The downlink reference signal includes a cell-specific RS (CRS), a Multimedia Broadcast and Multicast Single Frequency Network (MBSFN) reference signal, a UE-specific RS (UE) -specific RS, and a positioning reference signal (PRS) RS and Channel State Information RS (CSI-RS).
CRS는 셀 내 모든 단말에게 전송되는 참조 신호로 채널 추정에 사용된다. CRS는 PDSCH 전송을 지원하는 셀 내의 모든 하향링크 서브프레임에서 전송될 수 있다.The CRS is a reference signal transmitted to all terminals in a cell and used for channel estimation. The CRS may be transmitted in all downlink subframes in a cell supporting PDSCH transmission.
단말 특정 참조 신호는 셀 내 특정 단말 또는 특정 단말 그룹이 수신하는 참조 신호로, 특정 단말 또는 특정 단말 그룹의 데이터 복조(demodulation)에 주로 사용되므로 복조 참조 신호(Demodulation RS: DM-RS)라 불릴 수 있다.The UE-specific reference signal is a reference signal received by a specific terminal or a specific terminal group in a cell, and may be called a demodulation RS (DM-RS) because it is mainly used for data demodulation of a specific terminal or a specific terminal group. have.
MBSFN 참조 신호는 MBMS(Multimedia Broadcast Multicast Service)를 제공하기 위한 참조 신호로, PRS는 단말의 위치 측정을 위한 참조 신호로 사용될 수 있다.The MBSFN reference signal is a reference signal for providing a multimedia broadcast multicast service (MBMS), and the PRS may be used as a reference signal for position measurement of the terminal.
CSI-RS는 채널 정보의 추정을 위해 사용될 수 있다. CSI-RS는 주파수 영역 또는 시간 영역에서 배치된다. CSI-RS를 이용한 채널 상태의 추정을 통해 필요한 경우에 채널 품질 지시자(CQI: Channel Quality Indicator), 프리코딩 행렬 지시자(PMI: Precoding Matrix Indicator) 및 랭크 지시자(RI: Rank Indicator) 등이 채널 정보로서 단말로부터 보고될 수 있다. CSI-RS는 하나 이상의 안테나 포트상에서 전송될 수 있다.CSI-RS may be used for estimation of channel information. The CSI-RS is placed in the frequency domain or time domain. Channel quality indicator (CQI), precoding matrix indicator (PMI), rank indicator (RI), etc. may be used as channel information when necessary through channel state estimation using CSI-RS. It may be reported from the terminal. The CSI-RS may be transmitted on one or more antenna ports.
상향링크 데이터 채널(Physical Uplink Shared Channel, 이하, "PUSCH"라 함)은 시스템 대역의 PUCCH와 SRS 영역을 제외한 영역에서 전송된다. PUCCH는 HARQ (Hybrid Automatic Repeat reQuest) 동작을 위한 ACK (Acknowledge)/NACK (Negative ACK), 하향링크 데이터 스케줄링을 위한 채널 상태 정보인 RI (Rank Indicator), PMI (Precoding Matrix Indicator), CQI (Channel Quality Indication) 정보 등을 포함하고, SRS는 시스템 전대역에 대한 사용자별 상향링크채널 정보 획득 및 상향링크 송신 타이밍 조정을 위한 신호이다. The uplink data channel (hereinafter referred to as "PUSCH") is transmitted in a region excluding the PUCCH and SRS regions of the system band. PUCCH includes ACK (Acknowledge) / NACK (Negative ACK) for HARQ (Hybrid Automatic Repeat reQuest) operation, RI (Rank Indicator), channel status information for downlink data scheduling, Precoding Matrix Indicator (PMI), and Channel Quality (CQI). Indication) information, and the like, and the SRS is a signal for acquiring uplink channel information for each user and adjusting uplink transmission timing for the entire system.
채널 상태 정보의 피드백 방법은 PUCCH를 이용하여 주기적으로 전송하는 방법과 송수신 포인트의 요청에 따라 피드백을 위해 할당된 PUSCH를 이용하여 비주기적으로 전송하는 방법이 있다.The feedback method of the channel state information includes a method of periodically transmitting using a PUCCH and a method of periodically transmitting using a PUSCH allocated for feedback according to a request of a transmission / reception point.
도 2는 본 발명의 일 예에 따른 하향링크 CoMP 시스템의 개념도이다. 2 is a conceptual diagram of a downlink CoMP system according to an embodiment of the present invention.
도 2를 참조하면, 일실시예에 따른 협력형 다중 포인트 통신시스템은 송수신 포인트들(210, 212, 214, 216)과 단말(220)이 협력형 통신을 수행할 수 있다. 예를 들어 단말(220)에 대해 서빙 셀(또는 송수신 포인트)은 각각 매크로 셀인 제1송수신 포인트(210), RRH1인 제2송수신 포인트(212), RRH2인 제3송수신 포인트(214), RRH3인 제4송수신 포인트(216)일 수 있다. Referring to FIG. 2, in the cooperative multi-point communication system according to an exemplary embodiment, transmission / reception points 210, 212, 214, and 216 and a terminal 220 may perform cooperative communication. For example, the serving cell (or transmit / receive point) for the terminal 220 may be a first transmit / receive point 210 which is a macro cell, a second transmit / receive point 212 that is RRH1, a third transmit / receive point 214 that is RRH2, and an RRH3, respectively. It may be a fourth transmission / reception point 216.
이때 협력형 통신에 참여하는 송수신 포인트들로 4개의 송수신 포인트들(210, 212, 214, 216)만을 예시적으로 설명하나 2개 또는 3개, 5개 이상의 송수신 포인트들이 단말(220)과 협력형 통신에 참여할 수도 있다.In this case, only four transmission / reception points 210, 212, 214, and 216 are exemplarily described as transmission / reception points participating in the cooperative communication, but two, three, five, or more transmission / reception points are cooperative with the terminal 220. You can also participate in the communication.
도 1 및 도 2에 도시한 송수신 포인트들 각각, 예를 들어 송수신 포인트(210)는 둘 이상의 안테나들을 포함하는 안테나 어레이를 포함할 수 있다. 송수신 포인트(210)를 예시적으로 설명하나 도 1 및 도 2를 참조하여 설명한 다른 매크로 또는 마이크로 기지국들도 동일할 수 있다. 마찬가지로 도 1 및 도 2에 도시한 단말(220)도 둘 이상의 안테나들을 포함하는 안테나 어레이를 포함할 수 있다.Each of the transmission / reception points illustrated in FIGS. 1 and 2, for example, the transmission / reception point 210 may include an antenna array including two or more antennas. Although the transmission / reception point 210 is described as an example, other macro or micro base stations described with reference to FIGS. 1 and 2 may be the same. Likewise, the terminal 220 illustrated in FIGS. 1 and 2 may also include an antenna array including two or more antennas.
이때 송수신 포인트(210)와 단말(220)의 안테나 어레이들은 통신시스템에서 한정된 공간에 보다 많은 안테나들을 배열하기 위해 서로 다른 편파를 가지는 두 개의 안테나들을 교차하여 설치한 이중 편파 안테나 어레이(dual polarized antenna array)를 사용할 수 있다. 위 실시예에서 이중편파 안테나 어레이를 예를 들어 설명하였으나 본 발명은 이에 제한되지 않는다. 예를 들어 삼중편파나 사중편파 안테나 어레이와 같이 다중편파 안테나 어레이일 수도 있다. 또한 송수신 포인트와 단말이 하나의 이중편파 안테나와 같은 다중편파 안테나 어레이를 포함하는 것에 제한되지 않고 두 개 이상의 다중 편파 안테나 어레이들 및 단일 어레이 안테나(linear array antenna), 이들의 조합을 포함할 수 있다. 이때 송수신 포인트(210)와 단말(220)은 통신에 두 개 이상의 다중 편파 안테나 어레이들을 모두 사용할 수도 있고 이들 중 일부를 선택적으로 사용할 수도 있다.In this case, the antenna arrays of the transmission and reception point 210 and the terminal 220 are dual polarized antenna arrays in which two antennas having different polarizations are alternately installed in order to arrange more antennas in a limited space in a communication system. ) Can be used. In the above embodiment, a dual polarization antenna array has been described as an example, but the present invention is not limited thereto. For example, it may be a multi-polarized antenna array, such as a triple polarized wave or quadrupole antenna array. In addition, the transmitting and receiving point and the terminal is not limited to including a multi-polarized antenna array, such as a single polarized antenna, and may include two or more multi-polarized antenna arrays and a linear array antenna, a combination thereof. . In this case, the transmission / reception point 210 and the terminal 220 may both use two or more multiple polarized antenna arrays for communication or may selectively use some of them.
송수신 포인트들(210, 212, 214, 216)은 자신의 프리코딩 행렬을 사용하여 데이터심볼을 프리코딩하고 프리코딩된 데이터심볼을 2n개(n은 1 또는 1보다 큰 자연수)를 안테나 어레이를 통하여 공중으로 전파할 수 있다. The transmit / receive points 210, 212, 214, and 216 precode data symbols using their precoding matrix, and transmit 2n precoded data symbols (n is 1 or a natural number greater than 1) through the antenna array. Can propagate into the air.
한편 송수신 포인트들(210, 212, 214, 216)은 각각 W=W1*W2의 이중 구조 프리코딩(프리코더) 행렬을 사용할 수도 있고 단일 구조 프리코딩(프리코더) 행렬을 사용할 수도 있다. Meanwhile, the transmit / receive points 210, 212, 214, and 216 may use a dual structure precoding (precoder) matrix of W = W 1 * W 2 , or a single structure precoding (precoder) matrix.
이때 W1은 [Xn0;0Xn]의 블럭대각행렬(block diagonal matrix)이다. W2는 빔 선택(beam selection)을 수행하며 안테나 그룹(antenna group) 간 위상불일치에 대해 보정하는 위상 일치(co-phasing) 작업을 수행하는 행렬이다. In this case, W 1 is a block diagonal matrix of [X n 0; 0X n ]. W 2 is a matrix that performs beam selection and performs co-phasing to correct for phase mismatch between antenna groups.
이때 프리코딩 행렬을 단말로부터 수신한 채널 정보, 예를 들어 CQI/PMI/RI를 사용하여 송수신 포인트들(210, 212, 214, 216)은 자신의 프리코딩 행렬을 사용하여 데이터심볼을 프리코딩하고 프리코딩된 데이터심볼을 2n개(n은 1 또는 1보다 큰 자연수)를 안테나 어레이를 통하여 공중으로 전파할 수 있다.In this case, the transmission / reception points 210, 212, 214, and 216 precode data symbols using their precoding matrix using channel information received from the UE, for example, CQI / PMI / RI. 2n precoded data symbols (n is 1 or a natural number greater than 1) may propagate into the air through the antenna array.
도 1 및 도 2를 참조하여 설명한 무선통신 시스템은 다수의 송수신 포인트가 각각 독립적인 셀을 이루고 각 셀 간 동일 대역을 사용하여 상향링크/하향링크 전송을 수행한다. 이때 상향링크 전송 시 발생하는 셀 간 간섭 또는 동일 대역을 사용하는 셀 내 단말들 간 발생하는 셀 내 간섭을 제어하기 위하여 상향링크 전력 제어(uplink power control)를 수행할 수 있다. In the wireless communication system described with reference to FIGS. 1 and 2, a plurality of transmit and receive points form independent cells, and perform uplink / downlink transmission using the same band between each cell. In this case, uplink power control may be performed to control inter-cell interference occurring during uplink transmission or intra-cell interference occurring between terminals in cells using the same band.
도 3은 본 발명이 적용되는 COMP 시스템에서 CRS 및 물리적 상향링크 채널의 전송에 관한 개념도이다.3 is a conceptual diagram for transmitting a CRS and a physical uplink channel in a COMP system to which the present invention is applied.
도 3을 참조하면, 하나의 메크로 셀 영역 전체에 대해 송신을 수행할 수 있는 제1송수신포인트(eNB)와 상기 eNB에 의해 제어되며 낮은 전력 전송을 수행하는 다수의 제2 내지 4 송수신 포인트(1~3 low power RRH)은 각각의 셀 ID(cell ID)를 갖거나 동일한 셀 ID(cell ID)을 공유하며 eNB은 CRS 전송을 수행할 수 있다.Referring to FIG. 3, a first transmission / reception point eNB capable of performing transmission over an entire macro cell region and a plurality of second to fourth transmission / reception points 1 controlled by the eNB and performing low power transmission (1) ˜3 low power RRHs have cell IDs or share the same cell IDs, and the eNB may perform CRS transmission.
도 3을 참조하면, 각 송수신 포인트(310, 312, 314, 316)는 독립된 셀 ID(cell ID)을 가질 수 있다. 또는, 공통의 셀 ID를 가질 수도 있다. 각기 다른 자원을 사용하여 CRS을 전송할 수 있다. 단말(320)은 제1송수신 포인트(310)인 eNB을 통해 PDCCH 수신을 수행하고, 하향링크 CoMP 동작에 의해 RRH1 내지 RRH3인 제2 내지 제4송수신 포인트(312, 314, 316)로부터 PDSCH을 수신할 수 있다.Referring to FIG. 3, each transmission / reception point 310, 312, 314, 316 may have an independent cell ID. Or, it may have a common cell ID. Different resources can be used to send CRS. The terminal 320 performs PDCCH reception through the eNB, which is the first transmission / reception point 310, and receives a PDSCH from the second to fourth transmission / reception points 312, 314, and 316, which are RRH1 to RRH3, by a downlink CoMP operation. can do.
상향링크 전송을 수행할 단말(320)은 제1송수신 포인트(310)인 eNB가 전송하는 CRS의 수신 전력을 측정하고 측정 전력과 CRS 전송전력을 비교하여 경로손실(path loss)을 추정할 수 있다. The terminal 320 to perform uplink transmission may estimate the path loss by measuring the reception power of the CRS transmitted by the eNB, which is the first transmission / reception point 310, and comparing the measured power and the CRS transmission power. .
추정된 경로손실은 장주기 측정값(long term measurement)이다. 이 경로손실을 상향링크 전송에서 발생하는 경로손실과 유사하다고 가정하고, 각 단말은 상향링크 전송전력을 결정할 수 있다. 이 과정에서, 하향링크 경로손실(downlink path loss)과 상향링크 경로손실(uplink path loss)의 차이를 고려하여 상위계층(high layer)에서 결정하는 값인
Figure PCTKR2012009347-appb-I000001
가 사용되며, eNB의 제어 정보 전송 또는 RRH의 제어 정보 전송을 통해 통보되는 전송 전력 제어 명령(transmission power control commend 또는 TPC 명령)을 고려하여 단말의 전송전력이 결정될 수 있다.
The estimated path loss is a long term measurement. Assuming that the path loss is similar to the path loss generated in the uplink transmission, each terminal can determine the uplink transmission power. In this process, considering the difference between downlink path loss and uplink path loss, a value determined by a higher layer,
Figure PCTKR2012009347-appb-I000001
Is used, the transmission power of the terminal may be determined in consideration of a transmission power control command (TPC command) that is notified through transmission of control information of the eNB or transmission of control information of the RRH.
각 단말이 셀(c)내에서(in) PUCCH를 전송할 때 서브프레임(i)에서(at) PUCCH의 전송 전력(PPUCCH,C(i))은 다음의 수학식 1에 의해 결정될 수 있다.When each UE transmits a PUCCH in cell (c), the transmit power (P PUCCH, C (i)) of the PUCCH in subframe (i) may be determined by Equation 1 below.
전술한 부분에서 셀 내에서 신호를 전송한다 함은 해당 셀을 커버하는 송수신 포인트가 해당 신호가 포함하는 정보를 파악할 수 있도록 해당 셀을 커버하는 송수신 포인트에 신호가 수신됨을 의미할 수 있다. 또한 여기서의 수신은 신호가 간섭으로 수신되는 것을 의미하는 것이 아니라 원하는 신호로서 단말이 전송한 신호의 목적에 맞게 수신되는 것을 의미할 수 있다.In the above-described part, transmitting a signal in a cell may mean that a signal is received at a transmitting / receiving point covering the cell so that the transmitting / receiving point covering the cell may grasp information included in the corresponding signal. In addition, the reception here does not mean that the signal is received by interference but may mean that the signal is received according to the purpose of the signal transmitted by the terminal as a desired signal.
[수학식 1][Equation 1]
Figure PCTKR2012009347-appb-I000002
Figure PCTKR2012009347-appb-I000002
수학식 1에서 PCMAX,c(i)는 셀(c)내에서(in) 서브프레임(i)에서(at) 단말(320)의 최대 전송 전력이고, PUCCH 전송 전력은 단말(320)의 최대 전송 전력에 의해 제한된다. In Equation 1, P CMAX, c (i) is the maximum transmit power of the terminal 320 in the subframe (i) (in) in the cell (c), and the PUCCH transmit power is the maximum of the terminal 320. Limited by transmit power.
P0_PUCCH는 PUCCH를 전송함에 있어 보장되어야 하는 수신 전력에 대한 인자이다. P0_PUCCH는 송수신 포인트에서 요구되는 수신 SINR(Signal-to-interference and noise ratio)을 얻기 위해 필요한 수신 전력에 대한 인자이며, PUCCH 포맷 등에 의해 결정된다.P 0_PUCCH is a factor for the received power that should be guaranteed in transmitting the PUCCH. P 0_PUCCH is a factor for reception power required to obtain a reception signal-to-interference and noise ratio (SINR) required at a transmission / reception point, and is determined by a PUCCH format.
PLc는 셀(c)에 대해 단말(320)에서 계산된 하향링크 경로손실(path loss) 추정값으로서, PLc=(기준 신호 전송 전력 - 기준 신호 수신 전력(Reference Signal Received Power, RSRP))의 식으로 결정된다. PL c is an estimate of the downlink path loss calculated by the terminal 320 with respect to the cell c, and PL c = (Reference Signal Received Power (RSRP)). Determined by the equation.
h(nCQI,nHARQ,nSR)는 CQI(Channel Quality Information)에 대한 정보 비트의 수에 해당하는 nCQI,서브프레임(i)으로 전송되는 HARQ 비트의 수인 nHARQ및 서브프레임(i)이 단말에 대한 SR(Scheduling Request)로 구성되었는지 여부를 나타내는 nSR에 의한 전력 오프셋이다. ΔF_PUCCH(F)는 PUCCH 포맷(F)에 의해 결정되는 오프셋이다. ΔTxD(F')는 단말(10)이 2개 안테나 포트에서 PUCCH를 전송하도록 구성되는 경우를 고려한 오프셋이다. h (n CQI , n HARQ, n SR ) is n CQI corresponding to the number of information bits for channel quality information ( CQI ), n HARQ and subframe (i), which is the number of HARQ bits transmitted in subframe (i) A power offset by n SR indicating whether a scheduling request (SR) is configured for the UE. Δ F_PUCCH (F) is an offset determined by the PUCCH format (F). Δ TxD (F ′) is an offset considering the case where the terminal 10 is configured to transmit PUCCH in two antenna ports.
g(i)는 명시적인 전송 전력 제어 명령을 통해 직접적으로 PUCCH 전송 전력을 조절하기 위한 값이다. g(i)는 누적값으로서, 특정 양 만큼 증가 또는 감소시킨다. g(i)는 하향링크 스케줄링 할당에 포함되어 있거나, 여러 개의 단말들에 전송 전력 제어 명령을 동시에 제공하는 특수한 PDCCH 상으로도 제공될 수 있다. 예를들어, DCI 포맷 3/3A에 해당할 수 있다. g(i)는 하향링크 경로 손실에 반영되지 않은 상향링크 다중 경로 페이딩을 보상하기 위한 용도, P0_PUCCH에 반영되지 않은 상향링크 간섭의 변화를 보상하는 용도로 사용될 수 있다.g (i) is a value for directly adjusting the PUCCH transmit power through an explicit transmit power control command. g (i) is cumulative and increases or decreases by a certain amount. g (i) may be included in the downlink scheduling assignment or may be provided on a special PDCCH which simultaneously provides a transmission power control command to multiple terminals. For example, it may correspond to DCI format 3 / 3A. g (i) may be used to compensate for uplink multipath fading not reflected in downlink path loss, and to compensate for a change in uplink interference not reflected in P 0_PUCCH .
무선 통신 시스템에서, 각 단말(320)이 셀(c)에 대해 PUSCH를 PUCCH와 동시에 전송하지 않는 경우, 서브프레임(i)에서 PUSCH의 전송 전력(PPUSCH,c(i))은 다음의 수학식 2에 의해 결정될 수 있다.In the wireless communication system, when each terminal 320 does not simultaneously transmit a PUSCH for the cell c with the PUCCH, the transmit power of the PUSCH (P PUSCH, c (i)) in the subframe (i) is Can be determined by Equation 2.
[수학식 2][Equation 2]
Figure PCTKR2012009347-appb-I000003
Figure PCTKR2012009347-appb-I000003
무선 통신 시스템에서, 각 단말(320)이 PUSCH를 PUCCH와 동시에 전송하는 경우, 서브프레임(i)에서 PUSCH의 전송 전력(PPUSCH,c(i))은 다음의 수학식 3에 의해 결정될 수 있다.In the wireless communication system, when each terminal 320 transmits a PUSCH simultaneously with the PUCCH, the transmission power P PUSCH, c (i) of the PUSCH in the subframe i may be determined by Equation 3 below. .
[수학식 3][Equation 3]
Figure PCTKR2012009347-appb-I000004
Figure PCTKR2012009347-appb-I000004
수학식 2 및 3에서, PCMAX,c(i)는 셀(c)내에서(in)서브프레임(i)에서 단말(320)의 최대 전송 전력이고,
Figure PCTKR2012009347-appb-I000005
는 PCMAX,c(i)의 선형 값(linear value)이다.
Figure PCTKR2012009347-appb-I000006
는 수학식 1에서 규정된 PPUCCH(i)의 선형 값이다. 수학식 2를 참조하면, PUSCH를 PUCCH와 동시에 전송하지 않는 경우, PUSCH 전송 전력은 단말(320)의 최대 전송 전력에 의해 제한된다. 수학식 3을 참조하면, PUSCH를 PUCCH와 동시에 전송하는 경우, PUSCH 전송 전력은 단말(320)의 최대 전송 전력에서 PUCCH의 전송 전력만큼의 제한 값에 의해 제한된다.
In Equations 2 and 3, P CMAX, c (i) is the maximum transmit power of the terminal 320 in the subframe (i) in the cell (c),
Figure PCTKR2012009347-appb-I000005
Is the linear value of P CMAX, c (i).
Figure PCTKR2012009347-appb-I000006
Is a linear value of P PUCCH (i) defined in equation (1). Referring to Equation 2, when the PUSCH is not transmitted simultaneously with the PUCCH, the PUSCH transmission power is limited by the maximum transmission power of the terminal 320. Referring to Equation 3, when the PUSCH is simultaneously transmitted with the PUCCH, the PUSCH transmission power is limited by a limit value of the transmission power of the PUCCH at the maximum transmission power of the terminal 320.
MPUSCH,c(i)는 셀(c) 및 서브프레임(i)에 대해 유효한 자원 블록의 수로 표현되는 PUSCH 자원 할당의 대역폭이다. 더 많은 자원 블록의 할당은 더 높은 송신 전력을 요구한다.M PUSCH, c (i) is the bandwidth of the PUSCH resource allocation expressed as the number of valid resource blocks for cell (c) and subframe (i). Allocation of more resource blocks requires higher transmit power.
P0_PUSCH,c(j)는 PUSCH를 전송함에 있어 보장되어야 하는 수신 전력에 대한 인자이다. P0_PUSCH는 송수신 포인트에서 요구되는 수신 SINR을 얻기 위해 필요한 수신 전력에 대한 인자이며, PUSCH 포맷 등에 의해 결정된다. P0_PUSCH는 송수신 포인트에서 간섭 레벨에 기초하여 결정되는 값이고 간섭은 시스템 구축 상황에 따라 달라질 수도 있고 망 내의 부하가 시간에 따라 변하므로 시간에 따라서 달라질 수도 있다. 준-지속적(semi-persistent) 승인(grant)에 대한 PUSCH (재)전송에 대해 j=0이고, 동적으로 스케줄링되는(dynamic scheduled) 승인에 대한 PUSCH (재)전송에 대해 j=1이며, 랜덤 액세스 응답(random access response) 승인에 대한 PUSCH (재)전송에 대해 j=2이다.P 0_PUSCH, c (j) is a factor for the received power that should be guaranteed in transmitting the PUSCH. P 0_PUSCH is a factor for reception power required to obtain a reception SINR required at a transmission and reception point, and is determined by a PUSCH format and the like. P 0_PUSCH is a value determined based on the interference level at the transmission / reception point and the interference may vary depending on the system construction situation, and may vary depending on time since the load in the network changes over time. J = 0 for PUSCH (re) transmission for semi-persistent grant, j = 1 for PUSCH (re) transmission for dynamic scheduled grant, random J = 2 for PUSCH (re) transmission for random access response grant.
αc(j)는 경로 손실을 보상하는 정도를 나타낸다. αc(j)가 1이면 경로 손실이 완전히 보상되는 것을 의미하고, αc(j)가 1보다 작으면 경로 손실이 완전히 보상되지 않은 것을 의미한다. j=0 또는 1일 때, αc(j)∈{0,0.4,0.5,0.6,0.7,0.8,0.9,1}이고, j=2일 때 αc(j)=1이다.α c (j) represents the extent to which the path loss is compensated. If α c (j) is 1, path loss is completely compensated, and if α c (j) is less than 1, path loss is not completely compensated. α c (j) ∈ {0,0.4,0.5,0.6,0.7,0.8,0.9,1} when j = 0 or 1 and α c (j) = 1 when j = 2.
PLc는 셀(c)에 대해 단말(320)에서 계산된 하향링크 경로-손실(path loss) 추정값으로서, PLc=(기준 신호 전송 전력 - 기준 신호 수신 전력(Reference Signal Received Power, RSRP))의 식으로 결정될 수 있다.PL c is a downlink path loss estimated value calculated by the terminal 320 with respect to the cell c, and PL c = (reference signal transmitted power-reference signal received power (RSRP)) It can be determined by the equation.
ΔTF,c(i)는 셀(c)에 대해 MCS(Modulation and Coding Scheme)에 의해 결정되는 오프셋이다.ΔTF, c (i) is an offset determined by the Modulation and Coding Scheme (MCS) for cell c.
fc(i)는 명시적인 전송전력 제어 명령을 통해 직접적으로 PUSCH 전송 전력을 조절하기 위한 값이다. fc(i)는 누적값으로서, 특정 양 만큼 증가 또는 감소한다. fc(i)는 상향링크 스케줄링 승인(UL grant)에 포함될 수 있다.f c (i) is a value for directly adjusting the PUSCH transmit power through an explicit transmit power control command. f c (i) is a cumulative value, increasing or decreasing by a specific amount. f c (i) may be included in an UL scheduling grant.
예를 들어, 단말(320)이 RRH1인 제2송수신 포인트(312)가 근처에 위치할 수 있다. 이때, 제2송수신 포인트(312)와 단말(320) 사이에 경로손실이 작은 상향링크 채널이 존재하는 상황일 때 단말(320)의 제1송수신 포인트(eNB)를 향한 상향링크 전송은 제2송수신 포인트(312)에게 심각한 간섭을 발생시킬 수 있다. 예를 들어, 단말은 다른 송수신 포인트들과의 거리에 비하여 제1송수신 포인트(eNB)와의 거리가 멀게 위치할 수 있다. 이때, 단말(320)이 제1송수신포인트(eNB)에게 고출력 상향링크 전송을 수행하는 경우, 단말(320)의 상향링크 전송은 다른 RRH(예를 들어, RRH2 및 RRH3인 제3, 4송수신 포인트(314, 316))에게 간섭을 발생 시킬 수도 있다. For example, a second transmission / reception point 312 whose terminal 320 is RRH1 may be located nearby. In this case, when there is a situation in which an uplink channel having a small path loss exists between the second transmission / reception point 312 and the terminal 320, the uplink transmission of the terminal 320 toward the first transmission / reception point eNB is performed by the second transmission / reception. Serious interference can be caused to point 312. For example, the terminal may be located far from the first transmission / reception point eNB compared to the distance to other transmission / reception points. In this case, when the terminal 320 performs high power uplink transmission to the first transmission / reception point eNB, the uplink transmission of the terminal 320 is different RRHs (eg, RRH2 and RRH3). (314, 316) may cause interference.
도 3의 예시에서, 단말(320)은 제1송수신포인트(eNB)를 통해 CRS을 수신하므로, 상향링크 CoMP의 동작 여부와 무관하게 제1송수신 포인트(310)을 기준으로 경로 손실을 측정하며, 이 측정에 기반한 상향링크 전송은 하나 또는 다수의 RRH, 예를 들어 제2 내지 4 송수신 포인트들(312, 314, 316)에 심각한 상향링크 간섭을 야기할 수 있다. 즉, 상향링크 CoMP 동작에 적절한 전력 제어를 수행할 수 없다. In the example of FIG. 3, since the terminal 320 receives the CRS through the first transmission / reception point eNB, the path loss is measured based on the first transmission / reception point 310 regardless of whether the uplink CoMP is operated. Uplink transmission based on this measurement may cause severe uplink interference to one or multiple RRHs, eg, second to fourth transmit / receive points 312, 314, 316. That is, power control suitable for uplink CoMP operation cannot be performed.
도 4는 CRS 및 CSI-RS 전송을 도시한다. CRS와 달리 CSI-RS의 경우, 다수의 송수신 포인트가 동일 셀 ID을 공유하더라도 CSI-RS은 각 송수신 포인트 별 별개의 전송이 가능하며, 따라서 단말은 상기 CSI-RS 수신을 통해 각 송수신 포인트와 자신 간 경로 감쇄 측정이 가능하다. 도 4의 일 실시예에서 단말은 도3 실시예에서 설명한 CRS를 이용한 경로손실 추정과 함께 CSI-RS를 이용한 경로손실 추정을 통하여 상향링크 전송 전력을 제어 할 수 있다.4 illustrates CRS and CSI-RS transmission. Unlike CRS, in case of CSI-RS, even if multiple transmit / receive points share the same cell ID, CSI-RS can transmit each transmit / receive point separately. Liver path attenuation measurements are possible. In an embodiment of FIG. 4, the UE may control uplink transmission power through path loss estimation using CSI-RS along with path loss estimation using CRS described in FIG. 3.
도 5는 일실시예에 따른 상향링크 전력 제어방법의 흐름도이다.5 is a flowchart illustrating a method of controlling uplink power according to an embodiment.
도 4의 (a) 및 도 5를 참조하면, CoMP set을 구성하는 다수의 송수신단을 제어하는 제1송수신 포인트(410)은 단말(420)과 하향 링크 또는 상향링크 CoMP 동작을 할 수 있는 적어도 하나의 송수신 포인트, 예를 들어 제2 내지 4송수신 포인트(412, 414, 416)를 탐색할 수 있다(S501).Referring to FIGS. 4A and 5, at least a first transmission / reception point 410 controlling a plurality of transmission / reception terminals constituting a CoMP set may perform downlink or uplink CoMP operation with the terminal 420. One transmission / reception point, for example, the second to fourth transmission / reception points 412, 414, and 416 may be searched for (S501).
이때 다른 실시예에 따른 CoMP 시스템은 도 4를 참조하여 설명한 협력형 다중 포인트 통신시스템인 것으로 이하 설명하나 이에 제한되지 않는다. 물론 이때 협력형 통신에 참여하는 송수신 포인트들은 도 4 및 도 5에 도시한 바와 같이 4개일 수 있으나 이에 제한되지 않고 2개 또는 3개, 5개 이상일 수도 있다. 다만 설명의 편의를 위해 협력형 통신에 참여하는 송수신 포인트들을 도 4 및 도 5에 도시한 바와 같이 제1 내지 4송수신 포인트(410, 412, 414, 416)로 설명한다.In this case, the CoMP system according to another embodiment is a cooperative multi-point communication system described with reference to FIG. 4, but is not limited thereto. Of course, the transmission and reception points participating in the cooperative communication may be four, as shown in FIGS. 4 and 5, but the present invention is not limited thereto and may be two, three, five, or more. However, for convenience of description, transmission and reception points participating in the cooperative communication will be described as the first to fourth transmission and reception points 410, 412, 414, and 416 as illustrated in FIGS. 4 and 5.
S501단계에서 제1송수신 포인트(410)는 단말(420)로 하향링크를 실행하는 제2 내지 4송수신 포인트(412, 414, 416)을 지정할 수 있고, 하향링크를 실행하는 제2 내지 4송수신 포인트(412, 414, 416)는 시스템의 환경 변화에 따라 제1송수신 포인트(410)에 의해 변경될 수 있다. In operation S501, the first transmission / reception point 410 may designate the second to fourth transmission / reception points 412, 414, and 416 for performing downlink to the terminal 420, and the second to fourth transmission / reception points for performing downlink. 412, 414, and 416 may be changed by the first transmission / reception point 410 according to an environment change of the system.
또한, S501단계에서 제1송수신 포인트(410)는 단말(420)로부터 상향링크 데이터를 수신하는 제2 내지 4송수신 포인트(412, 414, 416)을 지정할 수 있고, 상향링크 데이터를 수신하는 제2 내지 4송수신 포인트(412, 414, 416)는 시스템의 환경 변화에 따라 제1송수신 포인트(410)에 의해 변경될 수 있다.In operation S501, the first transmission / reception point 410 may designate second to fourth transmission / reception points 412, 414, and 416 that receive uplink data from the terminal 420, and receive the uplink data. The fourth transmission / reception point 412, 414, 416 may be changed by the first transmission / reception point 410 according to an environment change of the system.
따라서, 제1송수신 포인트(410)는 현재 단말(420)과 데이터를 송수신 하는 송수신 포인트 뿐만 아니라 단말(420)과 데이터를 송수신 할 가능성이 있는 모든 송수신 포인트를 탐색한 후 최적의 적어도 하나의 송수신 포인트를 단말에 할당한다. 여기서 송수신 포인트를 할당한다 함은, 단말(420)이 각 송수신 포인트로부터 신호를 수신하기 위해 필요한 정보를 단말(420)에 통보함을 의미한다. 다른 송수신 포인트들을 제어할 수 있는 제1송수신 포인트(410)는 협력 전송하는 CoMP 세트(CoMP set)에 대한 정보를 상위 레이어(higher layer) 메시지, 예를 들어 RRC (Radio Resource Control) 시그널링 및 하향링크 제어채널을 통해 단말(420)에게 전송할 수 있다. Accordingly, the first transmission / reception point 410 searches for all transmission / reception points that may transmit / receive data with the terminal 420 as well as the transmission / reception point for transmitting / receiving data with the current terminal 420, and then at least one transmission / reception point that is optimal. To the terminal. In this case, allocating a transmission / reception point means that the terminal 420 informs the terminal 420 of information necessary to receive a signal from each transmission / reception point. The first transmission / reception point 410 capable of controlling other transmission / reception points may transmit information on a CoMP set (CoMP set) to cooperatively transmit a higher layer message, for example, radio resource control (RRC) signaling and downlink. It may transmit to the terminal 420 through the control channel.
다음으로 제1송수신 포인트(410)은 탐색된 제2 내지 4송수신 포인트(412, 414, 416)의 단말 특이적 기준신호 전송 전력 정보 및 단말 특이적 기준신호 구성 정보를 단말(420)로 전송할 수 있다(S502 단계). 단말 특이적 기준신호는 예를 들어 CSI-RS 또는 DM-RS일 수 있다. Next, the first transmission / reception point 410 may transmit the terminal specific reference signal transmission power information and the terminal specific reference signal configuration information of the searched second to fourth transmission / reception points 412, 414, and 416 to the terminal 420. (Step S502). The terminal specific reference signal may be, for example, CSI-RS or DM-RS.
단말 특이적 기준신호가 CSI-RS인 경우 S502단계에서 제1송수신 포인트(410)은 탐색된 제2 및 제3송수신 포인트(412, 414)의 CSI-RS 전송 전력 정보 및 CSI-RS 구성 정보를 단말(420)로 전송할 수 있다.If the UE-specific reference signal is a CSI-RS, the first transmission / reception point 410 stores CSI-RS transmission power information and CSI-RS configuration information of the searched second and third transmission / reception points 412 and 414 in step S502. It may be transmitted to the terminal 420.
CSI-RS 전송 전력 정보 및 CSI-RS 구성 정보는 단말(420) 내에 테이블로 저장되거나 시스템에서 미리 설정되어 단말(420)이 미리 알고 있을 수 있다.The CSI-RS transmission power information and the CSI-RS configuration information may be stored in a table in the terminal 420 or preset in the system so that the terminal 420 may know in advance.
무선통신 시스템에서, CSI-RS는 각각 패턴 p=15, p=15,16, p=15~18, p=15~22을 이용하여 1, 2, 4 또는 8개 안테나 포트에서 전송된다. S502 단계에서, 제1송수신 포인트(410)은 제1송수신 포인트(410)의 8개 안테나 포트에 대한 CSI-RS 전송 전력에 대한 정보를 전송하고, 제2 내지 4송수신 포인트(412, 414, 416)의 4개 이하의 안테나 포트에 대한 CSI-RS 전송 전력에 대한 정보를 전송할 수 있다. In a wireless communication system, the CSI-RS is transmitted on one, two, four or eight antenna ports using patterns p = 15, p = 15,16, p = 15-18, p = 15-22, respectively. In step S502, the first transmission / reception point 410 transmits information on CSI-RS transmission power for eight antenna ports of the first transmission / reception point 410, and the second to fourth transmission / reception points 412, 414, 416 Information about the CSI-RS transmit power for four or less antenna ports may be transmitted.
또한, 제1송수신 포인트(410)은 각 제2 내지 4송수신 포인트(412, 414, 416)의 안테나 포트의 수, CSI-RS 패턴에 대한 정보를 전송할 수 있다. CSI-RS 패턴에 대한 정보는 상위계층 시그널링, 예를 들어 RRC(Radio Resource Control) 시그널링이 이용될 수 있다. In addition, the first transmission / reception point 410 may transmit information on the number of antenna ports and the CSI-RS pattern of each of the second to fourth transmission / reception points 412, 414, and 416. For the information on the CSI-RS pattern, higher layer signaling, for example, RRC (Radio Resource Control) signaling may be used.
예를 들어 상위계층 시그널링, 예를 들어 RRC 시그널링에 의해 제1송수신 포인트(410)에서 단말에 전송되는 CRS 전송 전력 및 CSI-RS 전송 전력은 43 dBM이고, 제2송수신 포인트(412)에서 전송되는 CSI-RS 전송 전력은 23 dBM이다. For example, the CRS transmission power and the CSI-RS transmission power transmitted from the first transmission / reception point 410 to the terminal by higher layer signaling, for example, RRC signaling, are 43 dBM and transmitted from the second transmission / reception point 412. CSI-RS transmit power is 23 dBM.
상술한 CSI-RS 전송 전력 정보 및 CSI-RS 구성 정보는 상위 계층으로서의 RRC(Radio Resource Control) 형식으로 전송될 수 있다. 또는, 이들은 시스템 정보(system information) 형식으로 전송될 수도 있다.The above-described CSI-RS transmission power information and CSI-RS configuration information may be transmitted in RRC (Radio Resource Control) format as a higher layer. Alternatively, they may be transmitted in the form of system information.
단말은 전술한 CSI-RS 전송에 대한 정보를 통해 각 송수신단이 전송한 CSI-RS 수신 전력 측정을 수행할 수 있으며, 또한 통보 받은 각 송수신단 CSI-RS 전송 전력과 상기 수신 전력을 비교하여 각 CSI-RS 전송한 송수신단과 해당 단말 사이의 경로 감쇄를 측정할 수 있다. The terminal may perform measurement of the CSI-RS reception power transmitted by each transceiver through the above-described information on the CSI-RS transmission, and compares each of the notified transceiver CSI-RS transmission powers with the reception power. The path attenuation between the CSI-RS transmitting and receiving terminal and the corresponding terminal can be measured.
또 다른 실시예로, 단말 특이적 기준신호중 하나인 DM-RS를 사용하여 경로 감쇄 측정을 수행할 수 있다. S502단계에서 제1송수신 포인트(S502)은 제1 송수신 포인트 및 탐색된 제2 및 제3송수신 포인트(412, 414)의 DM-RS 전송 전력 정보 및 DM-RS 구성 정보를 단말(420)로 전송할 수 있다. DM-RS 전송 전력 정보 및 DM-RS 구성 정보는 단말(420) 내에 테이블로 저장될 수 있다. 단말은 상기 테이블 정보를 사용하여 각 송수신단이 전송단 DM-RS의 수신 전력 측정 및 경로 감쇄 측정을 수행할 수 있다. In another embodiment, path attenuation measurement may be performed using DM-RS, which is one of the terminal specific reference signals. In operation S502, the first transmission / reception point S502 may transmit DM-RS transmission power information and DM-RS configuration information of the first transmission / reception point and the searched second and third transmission / reception points 412 and 414 to the terminal 420. Can be. DM-RS transmission power information and DM-RS configuration information may be stored in a table in the terminal 420. The terminal may perform the reception power measurement and the path attenuation measurement of the transmitting and receiving terminal DM-RS using the table information.
각 송수신 포인트가 동일한 셀 ID을 공유한 상황에서 단말(420)은 제1송수신 포인트(410) 또는 다른 송수신단을 통해 하나 이상의 전송 전력 제어(Transmit Power Control; TPC) 명령을 수신할 수 있다(S510). In a situation where each transmit / receive point shares the same cell ID, the terminal 420 may receive one or more transmit power control (TPC) commands through the first transmit / receive point 410 or another transmit / receive end (S510). ).
TPC 명령은 랜덤 접속을 위한 프리앰블에 대한 응답 메시지에 포함되거나, PDCCH(Physical Downlink Control CHannel)를 통해 전송될 수 있다. PDCCH는 하향링크 제어 정보(Downlink Control Control; DCI)에 따라 다양한 포맷이 존재하고, 포맷에 따라 전송되는 TPC 명령이 다를 수 있다. 일 예로, 단말(420)은 하향링크 스케줄링을 위한 포맷, 상향링크 스케줄링을 위한 포맷, 상향링크 데이터 채널(PUSCH)용 TPC 전용 포맷, 상향링크 제어 채널(PUCCH)용 TPC 전용 포맷 등 다양한 포맷의 PDCCH를 수신할 수 있다. 또한, TPC 명령은 각각의 콤포넌트 반송파에 대한 전송 전력, 콤포넌트 반송파 그룹에 대한 전송 전력 또는 전체 콤포넌트 반송파에 대한 전송 전력을 결정하는데 사용될 수 있다. 또한, TPC 명령은 각각의 신호(예, PUSCH, PUCCH 등)에 대한 전송 전력을 결정하는데 사용될 수 있다. TPC 명령은 하향링크 스케줄링을 위한 포맷, 상향링크 스케줄링을 위한 포맷, 상향링크 데이터 채널(예, PUSCH)용 TPC 전용 포맷, 상향링크 제어 채널(예, PUCCH)용 TPC 전용 포맷 등 다양한 포맷의 PDCCH를 통해 수신될 수 있다.The TPC command may be included in a response message for the preamble for random access or transmitted through a physical downlink control channel (PDCCH). PDCCH may have various formats according to downlink control information (DCI), and a TPC command transmitted according to the format may be different. For example, the terminal 420 may include PDCCHs of various formats, such as a format for downlink scheduling, a format for uplink scheduling, a TPC-only format for an uplink data channel (PUSCH), and a TPC-only format for an uplink control channel (PUCCH). Can be received. In addition, the TPC command may be used to determine transmit power for each component carrier, transmit power for a component carrier group, or transmit power for an entire component carrier. In addition, the TPC command may be used to determine the transmit power for each signal (eg, PUSCH, PUCCH, etc.). The TPC command includes PDCCHs in various formats such as a format for downlink scheduling, a format for uplink scheduling, a TPC-only format for an uplink data channel (eg, PUSCH), and a TPC-only format for an uplink control channel (eg, PUCCH). Can be received via.
단말(420)은 셀 특이적 참조신호 및/또는 단말 특이적 기준 신호(UE specific RS), 예를 들어 CRS, CSI-RS,DM-RS중 적어도 하나의 참조 신호(RS)를 제1송수신 포인트(410)로부터 수신할 수 있다(S511). The terminal 420 receives a cell specific reference signal and / or a UE specific RS, for example, at least one reference signal RS among CRS, CSI-RS, and DM-RS. In operation 511, the terminal may receive the received data from the receiver 410.
또한, 단말(420)은 상향링크 CoMP set을 구성될 수 있는(예를 들어 제 2 내지 4 송수신 포인트(412, 414, 416))송수신 포인트로부터 단말 특이적 기준 신호(UE specific RS), 예를 들어 CSI-RS 및/또는 DM-RS를 수신할 수 있다(S512, S514, S516). In addition, the terminal 420 may be configured with an uplink CoMP set (for example, the second to fourth transmission and reception points (412, 414, 416)) terminal specific reference signal (UE specific RS) from the transmission and reception point, for example For example, CSI-RS and / or DM-RS may be received (S512, S514, and S516).
단말(420)은 CRS, CSI-RS, 또는 DM-RS 중 하나 또는 하나 이상의 참조신호를 기반으로 특정 다수의 송수신 포인트 r(0≤r<R)에 대한 실질적 경로손실(
Figure PCTKR2012009347-appb-I000007
)을 계산할 수 있다(S520).
The terminal 420 may perform a substantial path loss for a specific plurality of transmission / reception points r (0 ≦ r <R) based on one or more reference signals among CRS, CSI-RS, or DM-RS.
Figure PCTKR2012009347-appb-I000007
Can be calculated (S520).
S520단계에서 단말(420)은 제2 내지 4 송수신 포인트들(예를 들어 1~3 RRH들)을 제어할 수 있는 제1송수신 포인트(410)(eNB)를 통해 CRS을 수신하고 CRS를 기준으로 제1송수신 포인트(410)로부터의 경로 손실을 계산할 수 있다.In step S520, the terminal 420 receives the CRS through the first transmission / reception point 410 (eNB) capable of controlling the second to fourth transmission / reception points (for example, 1 to 3 RRHs) and based on the CRS. The path loss from the first transmission / reception point 410 may be calculated.
적어도 하나의 송수신 포인트가 동일한 셀 ID를 갖는 환경에서 제1송수신 포인트(410)를 제외한 다른 송수신 포인트들은 CRS를 전송하지 않기 때문에, CRS를 이용하여 다른 송수신 포인트들로부터의 경로 손실을 측정할 수 없다.In an environment in which at least one transmit / receive point has the same cell ID, other transmit / receive points except for the first transmit / receive point 410 do not transmit CRS, and thus, path loss from other transmit / receive points cannot be measured using the CRS. .
S520단계에서 단말(420)이 제2 내지 제4 송수신 포인트(412, 414, 416)의 CSI-RS 또는 DM-RS의 전송 전력을 알고 있는 경우, 단말(10)은 CSI-RS 또는 DM-RS의 수신 전력을 측정하여 Uplink CoMP 구동이 가능한 제2 내지 제4 송수신 포인트(412, 414, 416)으로부터 하향링크 경로 손실을 계산할 수 있다.When the terminal 420 knows the transmission power of the CSI-RS or the DM-RS of the second to fourth transmission / reception points 412, 414, and 416 in step S520, the terminal 10 transmits the CSI-RS or DM-RS. The downlink path loss may be calculated from the second to fourth transmit / receive points 412, 414, and 416 capable of driving Uplink CoMP by measuring the received power of.
구체적으로 제1송수신 포인트를 포함하여 각 송수신 포인트(410, 412, 414, 416)는 서로 다른 송수신 포인트들과 구분 가능한 CSI-RS 또는 DM-RS 구성, 예를 들어 시퀀스(sequence), 포트들(ports), 매핑(mapping) 또는 서브프레임(subframe)을 가질 수 있으며, 이 CSI-RS 또는 DM-RS 구성에 대한 정보는 단말(420)에 통보될 수 있다. In more detail, each transmission / reception point 410, 412, 414, 416 including the first transmission / reception point may be distinguished from other transmission / reception points by a CSI-RS or DM-RS configuration, for example, a sequence, ports ( ports, mapping, or subframes, and information about the CSI-RS or DM-RS configuration may be notified to the terminal 420.
이 CSI-RS 또는 DM-RS 구성을 기반으로, 단말(420)은 적어도 하나의 송수신 포인트에 대한 경로손실을 측정할 수 있으며, 이 측정 결과를 기반으로 상향링크 전송전력 제어를 수행할 수 있다. Based on the CSI-RS or DM-RS configuration, the terminal 420 may measure path loss for at least one transmission / reception point, and perform uplink transmission power control based on the measurement result.
다시 말해 수학식 1 내지 3에서 CRS, CSI-RS, 또는 DM-RS 중 하나 또는 하나 이상의 참조신호를 기반으로 특정 송수신 포인트 r에 대해 계산된 경로 손실인
Figure PCTKR2012009347-appb-I000008
(기준 신호 전송 전력 - 기준 신호 수신 전력(Reference Signal Received Power, RSRP))의 식으로 계산된다.
In other words, in Equation 1 to 3, a path loss calculated for a specific transmit / receive point r based on one or more reference signals among CRS, CSI-RS, or DM-RS,
Figure PCTKR2012009347-appb-I000008
(Reference Signal Received Power (RSRP)).
무선통신 시스템에서, CRS은 모든 자원 블록(Resource Block)에서 전송되고, 각 자원 블록은 주파수 축으로 12개의 부반송파와 시간 축으로 0.5ms 슬롯으로 이루어진다. 이에 비하여, CSI-RS는 5, 10, 20, 40, 또는 80 서브프레임 간격으로 전송되고, 각 서브프레임은 1ms의 크기를 갖는다. DM-RS는 PDSCH 전송이 해당하는 안테나 포트에 관련된 경우에만 PDSCH 복조를 위해 존재하고, DM-RS는 해당하는 PDSCH가 매핑된 자원 블록에만 전송된다.In a wireless communication system, the CRS is transmitted in all resource blocks, and each resource block includes 12 subcarriers on the frequency axis and 0.5 ms slot on the time axis. In contrast, the CSI-RSs are transmitted at intervals of 5, 10, 20, 40, or 80 subframes, and each subframe has a size of 1 ms. The DM-RS exists for PDSCH demodulation only when PDSCH transmission is related to a corresponding antenna port, and the DM-RS is transmitted only to a resource block to which a corresponding PDSCH is mapped.
따라서, CRS는 CSI-RS에 비하여 시간 커버리지가 크고 DM-RS에 비하여 주파수 커버리지가 크다. 그러므로, CRS을 전송하는 전송단에 대해서는 CSI-RS 또는 DM-RS 대신 기존과 같이 CRS을 사용하여 경로 손실을 계산할 수 있다.Therefore, CRS has a larger time coverage than CSI-RS and a greater frequency coverage than DM-RS. Therefore, for the transmitting end transmitting the CRS, it is possible to calculate the path loss using the CRS instead of the CSI-RS or the DM-RS.
이하 실시예에서는 도 4의 (a)에서 RRH3에 해당하는 제4송수신 포인트(416)가 송출하는 CSI-RS 또는 CRS은 경로손실에 의해 단말(420)에서 수신되지 않는다 가정한다.In the following embodiment, it is assumed in FIG. 4A that the CSI-RS or CRS transmitted by the fourth transmission / reception point 416 corresponding to RRH3 is not received by the terminal 420 due to a path loss.
예를 들어 도 4의 (b)에서 단말(420)이 세 개의 송수신 포인트들(410, 412, 414)에 상향링크 CoMP을 통해 상향링크 협력 전송을 수행하는 경우, PUCCH 및 PUSCH은 다중 송수신 포인트 수신 게인(multiple point reception gain)을 얻게 된다. 이때 다중 송수신 포인트 수신 게인(multiple point reception gain)을 고려한다면, 단말(420)의 상향링크 전송을 서빙 셀에 해당하는 제1송수신 포인트(410)만이 수신하는 비CoMP 경우에 비해 적은 전송전력을 사용하여 단말(420)은 상향링크 전송을 수행하게 되며, 단말(420)의 상향링크 전송이 제4송수신 포인트(416)에 미치는 간섭이 감소할 수 있다. For example, when the UE 420 performs uplink cooperative transmission to three transmit / receive points 410, 412, and 414 through uplink CoMP, in FIG. 4B, the PUCCH and the PUSCH receive multiple transmit / receive points. You get multiple point reception gain. In this case, when considering multiple point reception gain, the transmission power of the terminal 420 uses less transmission power than the non-CoMP case in which only the first transmission / reception point 410 corresponding to the serving cell receives the uplink transmission. Thus, the terminal 420 performs uplink transmission, and interference of uplink transmission of the terminal 420 on the fourth transmission / reception point 416 may be reduced.
또는 단말(420)과 제2송수신 포인트(412) 및 제3송수신 포인트(414) 간 경로손실이 단말(420)과 제1송수신 포인트(410) 간 경로손실에 비해 작은 경우, 단말(420)의 상향링크 전송이 제2송수신 포인트(412) 및 제3송수신 포인트(414)에서 수신되고 제1송수신 포인트(410)에서는 수신이 적합하지 않도록 더욱 전송전력을 낮출 수 있다. Alternatively, when the path loss between the terminal 420 and the second transmission and reception point 412 and the third transmission and reception point 414 is smaller than the path loss between the terminal 420 and the first transmission and reception point 410, the terminal 420 Uplink transmission can be further lowered such that the uplink transmission is received at the second transmission / reception point 412 and the third transmission / reception point 414 and the reception is not suitable at the first transmission / reception point 410.
단말(420)의 상향링크 전송이 제1 내지 제3송수신 포인트(410, 412, 414)에서 수신되어 다중 송수신 포인트 수신 게인(multiple point reception gain)을 얻는 경우, PUSCH 및 PUCCH의 수신 신뢰도가 증가하며, DM-RS의 수신 신뢰도가 충분히 높아 채널 추정 에러(channel estimation error)에 의한 영향이 없다 가정하면 다중 송수신 포인트 수신 결합(multiple points reception combining) 후 PUSCH/PUCCH 수신전력은 각 송수신 포인트들(410, 412, 414) 각각의 PUSCH/PUCCH 수신전력들의 합으로, 다음과 같이 주어질 수 있다.다. When uplink transmission of the terminal 420 is received at the first to third transmission and reception points 410, 412, and 414 to obtain multiple point reception gains, reception reliability of PUSCH and PUCCH is increased. Assuming that the reception reliability of the DM-RS is sufficiently high that there is no influence due to a channel estimation error, the PUSCH / PUCCH reception power after multiple points reception combining is determined by each of the transmission and reception points 410,. 412 and 414) The sum of the respective PUSCH / PUCCH received powers may be given as follows.
[수학식 4][Equation 4]
Figure PCTKR2012009347-appb-I000009
Figure PCTKR2012009347-appb-I000009
이 경우 DM-RS의 수신 신뢰도가 충분히 높다면 DM-RS의 수신전력을 고려하지 않을 수 있다.In this case, if the reception reliability of the DM-RS is sufficiently high, the reception power of the DM-RS may not be considered.
단말(420)의 전송전력의 실질적 경로손실에 의한 감소로 해석하면, 실질적 경로손실은 다음과 같이 정의될 수 있다.When interpreted as a reduction due to the substantial path loss of the transmission power of the terminal 420, the substantial path loss may be defined as follows.
[수학식 5] [Equation 5]
Figure PCTKR2012009347-appb-I000010
Figure PCTKR2012009347-appb-I000010
수학식 5에서
Figure PCTKR2012009347-appb-I000011
(0≤r<R인 0 또는 자연수)는 CRS, CSI-RS, 또는 DM-RS 중 하나 또는 하나 이상의 참조신호를 기반으로 특정 송수신 포인트 r에 대해 계산된 경로손실이다.
In equation (5)
Figure PCTKR2012009347-appb-I000011
(0 or a natural number where 0 ≦ r <R) is a path loss calculated for a specific transmission / reception point r based on one or more reference signals of CRS, CSI-RS, or DM-RS.
다음으로 단말(420)은 CRS, CSI-RS, 또는 DM-RS 중 하나 또는 하나 이상의 참조신호를 기반으로 특정 다수의 송수신 포인트 r(0≤r<R)에 대해 계산된 실질적 경로손실(
Figure PCTKR2012009347-appb-I000012
)을 고려하여 상향링크 전송전력을 제어할 수 있다(S521).
Next, the terminal 420 may calculate the actual path loss calculated for a specific plurality of transmission / reception points r (0 ≦ r <R) based on one or more reference signals among CRS, CSI-RS, or DM-RS.
Figure PCTKR2012009347-appb-I000012
In consideration of the uplink transmission power can be controlled (S521).
수학식 5에 의해 계산된 실질적 경로손실(
Figure PCTKR2012009347-appb-I000013
)을 고려하여 상향링크 전송전력을 제어 시, 보다 낮은 전송전력을 사용하여 충분한 수신 신뢰도를 보장할 수 있다.
The actual path loss calculated by equation (5)
Figure PCTKR2012009347-appb-I000013
), When controlling the uplink transmission power, it is possible to ensure sufficient reception reliability by using a lower transmission power.
각 단말이 셀(c)에 대해 PUCCH를 전송할 때 서브프레임(i)에서 수학식 5에 의해 계산된 실질적 경로손실(
Figure PCTKR2012009347-appb-I000014
)을 고려한 PUCCH의 전송 전력(PPUCCH,C(i))은 다음의 수학식 6에 의해 결정될 수 있다.
When each UE transmits the PUCCH for the cell (c), the actual path loss calculated by Equation 5 in subframe (i)
Figure PCTKR2012009347-appb-I000014
), The transmission power P PUCCH, C (i) of the PUCCH may be determined by Equation 6 below.
[수학식 6][Equation 6]
Figure PCTKR2012009347-appb-I000015
Figure PCTKR2012009347-appb-I000015
무선 통신 시스템에서, 각 단말(420)이 셀(c)에 대해 PUSCH를 PUCCH와 동시에 전송하지 않는 경우 서브프레임(i)에서 수학식 5에 의해 계산된 실질적 경로손실(
Figure PCTKR2012009347-appb-I000016
)을 고려한 PUSCH의 전송 전력(
Figure PCTKR2012009347-appb-I000017
)은 다음의 수학식 7에 의해 결정될 수 있다.
In a wireless communication system, when each terminal 420 does not transmit a PUSCH for a cell c simultaneously with a PUCCH, a substantial path loss calculated by Equation 5 in subframe (i)
Figure PCTKR2012009347-appb-I000016
Transmission power of the PUSCH
Figure PCTKR2012009347-appb-I000017
) May be determined by Equation 7 below.
[수학식 7][Equation 7]
Figure PCTKR2012009347-appb-I000018
Figure PCTKR2012009347-appb-I000018
무선 통신 시스템에서, 각 단말(420)이 셀(c)에 대해 PUSCH를 PUCCH와 동시에 전송하는 경우, 서브프레임(i)에서 수학식 5에 의해 계산된 실질적 경로손실(
Figure PCTKR2012009347-appb-I000019
)을 고려한 PUSCH의 전송 전력(
Figure PCTKR2012009347-appb-I000020
)은 다음의 수학식 8에 의해 결정될 수 있다.
In the wireless communication system, when each terminal 420 simultaneously transmits the PUSCH for the cell c with the PUCCH, the substantial path loss calculated by the equation (5) in the subframe (i)
Figure PCTKR2012009347-appb-I000019
Transmission power of the PUSCH
Figure PCTKR2012009347-appb-I000020
) May be determined by Equation 8 below.
[수학식 8][Equation 8]
Figure PCTKR2012009347-appb-I000021
Figure PCTKR2012009347-appb-I000021
이 실질적 경로손실(
Figure PCTKR2012009347-appb-I000022
)은 단말(420)이 다중 송수신 포인트 수신 게인(multiple points reception gain)을 최대로 얻는다고 가정했을 때의 경로손실을 나타낼 수 있다.
This substantial path loss (
Figure PCTKR2012009347-appb-I000022
) May represent a path loss when the terminal 420 assumes a maximum of multiple points reception gain.
다음으로 상향링크 물리채널에 대한 전송 전력이 제어되면, 단말(420)은 해당 전송전력을 갖는 상향링크 물리채널을 생성한 후 단말(420)은 생성된 상향링크 물리채널을 통해 각 송수신 포인트(410, 412, 414)로 전송한다(S530, S532, S534).Next, when the transmission power for the uplink physical channel is controlled, the terminal 420 generates an uplink physical channel having the corresponding transmission power, and then the terminal 420 generates each transmission / reception point 410 through the generated uplink physical channel. 412, 414, (S530, S532, S534).
이로 제한되는 것은 아니지만, 상향링크 물리채널에 대한 전송전력의 제어는 역 패스트 퓨리에 트렌스폼(Inverse Fast Fourier Transform, IFFT) 이전에 주파수 영역에서 수행될 수 있다. 이 경우, 전송전력의 제어는 부반송파 단위로 이뤄질 수 있으며, 일 예로 부반송파에 매핑되는 변조 값에 가중치를 곱함으로써 수행될 수 있다. 가중치는 각 원소가 전송 전력과 관련된 값을 나타내는 대각 행렬(전력 대각 행렬)을 이용하여 곱해질 수 있다. MIMO(Multiple Input Multiple Output) 시스템인 경우, 전송 전력은 가중치가 반영된 프리코딩 행렬을 이용해 제어되거나, 프리코딩된 변조 값에 전력 대각 행렬을 곱함으로써 제어될 수 있다. 따라서, 동일한 IFFT가 적용되는 주파수 대역 내에 복수의 물리채널이 포함된 경우에도 각 물리채널의 전송 전력을 용이하게 제어할 수 있다. Although not limited thereto, the control of the transmission power for the uplink physical channel may be performed in the frequency domain before the inverse fast Fourier transform (IFFT). In this case, the control of the transmission power may be performed in units of subcarriers, for example, may be performed by multiplying a weight by a modulation value mapped to a subcarrier. The weights can be multiplied using a diagonal matrix (power diagonal matrix) where each element represents a value related to transmit power. In the case of a multiple input multiple output (MIMO) system, the transmit power may be controlled by using a weighted precoding matrix, or by multiplying a pre-coded modulation value by a power diagonal matrix. Therefore, even when a plurality of physical channels are included in the frequency band to which the same IFFT is applied, the transmission power of each physical channel can be easily controlled.
또한, 주파수 영역에서의 전력 제어와 함께/별도로, 상향링크 물리채널에 대한 전송 전력의 제어는 IFFT 이후에 시간 영역에서 수행될 수 있다. 구체적으로, 시간 영역에서의 전송 전력 제어는 다양한 기능 블록에서 이뤄질 수 있다. 일 예로, 전송 전력 제어는 DAC 블록 및/또는 RF 블록에서 수행될 수 있다. In addition to / in addition to power control in the frequency domain, control of the transmit power for the uplink physical channel may be performed in the time domain after the IFFT. In particular, transmission power control in the time domain may be achieved in various functional blocks. As an example, the transmit power control may be performed in the DAC block and / or the RF block.
본 명세서에서 동시 또는 동일한 시구간은 동일한 전송 시간 간격(Transmission Time Interval, TTI) 또는 서브프레임을 포함할 수 있으나 이에 제한되지 않는다.In the present specification, the simultaneous or the same time period may include the same transmission time interval (TTI) or subframe, but is not limited thereto.
이상 도 5를 참조하여 일실시예에 따른 CoMP 시스템에서 상향링크 전력 제어방법을 설명하였으며, 이하 도 6을 참조하여 다른 실시예에 따른 CoMP 시스템에서 상향링크 전력 제어방법을 설명한다. 이때 도 6을 참조하여 설명하는 다른 실시예에 따른 CoMP 시스템에서 상향링크 전력 제어방법에서 다른 단계들은 도 5를 참조하여 설명한 바와 동일하므로 상향링크 전력 제어단계만을 상세히 설명한다.The uplink power control method in the CoMP system according to an embodiment has been described above with reference to FIG. 5, and the uplink power control method in the CoMP system according to another embodiment will now be described with reference to FIG. 6. In this case, since other steps in the uplink power control method in the CoMP system according to another embodiment described with reference to FIG. 6 are the same as those described with reference to FIG. 5, only the uplink power control step will be described in detail.
도 6은 다른 실시예에 따른 상향링크 제어방법의 흐름도이다.6 is a flowchart illustrating an uplink control method according to another embodiment.
도 6을 참조하면, 도 5를 참조하여 설명한 바와 같이 S520단계에서 CRS, CSI-RS, 또는 DM-RS 중 하나 또는 하나 이상의 참조신호를 기반으로 특정 송수신 포인트 r(0≤r<R)에 대한 실질적 경로손실(
Figure PCTKR2012009347-appb-I000023
)을 계산한다. 예를 들어 단말(420)의 전송전력의 실질적 경로손실에 의한 감소로 해석하면, 실질적 경로손실은 수학식 5와 같이 정의될 수 있다.
Referring to FIG. 6, as described with reference to FIG. 5, for a specific transmission / reception point r (0 ≦ r <R) based on one or more reference signals among CRS, CSI-RS, or DM-RS in step S520. Substantial path loss (
Figure PCTKR2012009347-appb-I000023
Calculate For example, if it is interpreted as a reduction due to the substantial path loss of the transmission power of the terminal 420, the substantial path loss may be defined as in Equation 5.
다음으로 S521단계에서 단말(420)은 CRS, CSI-RS, 또는 DM-RS 중 하나 또는 하나 이상의 참조신호를 기반으로 특정 다수의 송수신 포인트의 협력 수신 이득을 고려하여 계산된 실질적 경로손실(
Figure PCTKR2012009347-appb-I000024
)을 고려하여 PUSCH의 상향링크 전송전력을 제어한다.
Next, in step S521, the terminal 420 may calculate the actual path loss calculated by considering the cooperative reception gain of a plurality of specific transmission / reception points based on one or more reference signals among CRS, CSI-RS, or DM-RS.
Figure PCTKR2012009347-appb-I000024
) To control the uplink transmission power of the PUSCH.
S610단계에서 단말(420)은 수학식 5에 의해 계산된 실질적 경로손실(
Figure PCTKR2012009347-appb-I000025
)을 고려하여 셀(c)내에서 다수의 송수신포인트에게 단말이 PUCCH를 전송할 때 서브프레임(i)에서 PUCCH의 전송 전력(PPUCCH,C(i))및 PUSCH를 PUCCH와 동시에 전송하지 않는 경우 PUSCH의 전송 전력(
Figure PCTKR2012009347-appb-I000026
),PUSCH를 PUCCH와 동시에 전송하는 경우 PUSCH의 전송 전력(
Figure PCTKR2012009347-appb-I000027
)을 각각 수학식 6 내지8에 의해 결정될 수 있다.
In step S610, the terminal 420 is the actual path loss calculated by the equation (5)
Figure PCTKR2012009347-appb-I000025
In the case where the UE transmits the PUCCH to a plurality of transmission / reception points in the cell (c), the transmission power (P PUCCH, C (i)) and the PUSCH of the PUCCH are not simultaneously transmitted in the subframe (i). Transmit power of the PUSCH (
Figure PCTKR2012009347-appb-I000026
), When the PUSCH is transmitted simultaneously with the PUCCH, the transmit power of the PUSCH (
Figure PCTKR2012009347-appb-I000027
) May be determined by Equations 6 to 8, respectively.
다음으로 모든 송수신 포인트들이 DM-RS를 수신하여 채널 추정할 수 있어야 하므로 단말(420)의 상향링크 DM-RS의 전송전력(
Figure PCTKR2012009347-appb-I000028
)을 결정한다(S620).
Next, since all transmission and reception points should be able to estimate the channel by receiving the DM-RS, the transmission power of the uplink DM-RS of the UE 420 (
Figure PCTKR2012009347-appb-I000028
Determine (S620).
'최대 다수 수신 포인트들 결합 게인'을 보장하기 위해서는 각 수신 포인트에 수신된 DM-RS가 채널 추정을 수행하기에 충분한 신뢰도 또는 수신 전력을 보유하도록 전송전력이 제어되어야 한다. In order to guarantee the 'maximum multiple reception point combined gain', the transmission power should be controlled such that the DM-RS received at each reception point has sufficient reliability or reception power to perform channel estimation.
PUSCH 전송 전력과 DM RS 전송 전력이 동일하다면, 각 송수신 포인트에 수신된 DM-RS가 채널 추정을 수행하기에 충분한 신뢰도 또는 수신 전력을 보유하도록 각 송수신 포인트 r 에 대하여, PUSCH의 수신전력(
Figure PCTKR2012009347-appb-I000029
)은 DM-RS의 최대 수신전력(
Figure PCTKR2012009347-appb-I000030
)보다 큰 다음 수학식으로 표현된다.
If the PUSCH transmit power and DM RS transmit power are the same, the received power of the PUSCH for each transmit / receive point r such that the DM-RS received at each transmit / receive point has sufficient reliability or receive power to perform channel estimation.
Figure PCTKR2012009347-appb-I000029
) Is the maximum received power of DM-RS (
Figure PCTKR2012009347-appb-I000030
Is expressed as
[수학식 9][Equation 9]
Figure PCTKR2012009347-appb-I000031
Figure PCTKR2012009347-appb-I000031
다시 말해 각 송수신 포인트의 PUSCH의 수신전력은 각 송수신 포인트들에 의해 수신된 상향링크 DM-RS들이 채널 추정을 수행하기에 충분한 신뢰도 또는 수신전력 즉 수신을 위해 요구되는 전송전력을 가져야 한다. 모든 송수신 포인트들이 DM-RS를 수신하여 채널 추정할 수 있어야 하므로 단말의 상향링크 DM-RS의 전송전력 요구값(
Figure PCTKR2012009347-appb-I000032
)은 각 송수신 포인트의 상향링크 DM-RS의 전송전력들 중 최대값이 되어야 한다.
In other words, the reception power of the PUSCH of each transmission / reception point must have sufficient reliability or reception power, that is, transmission power required for reception, for uplink DM-RSs received by each transmission / reception point to perform channel estimation. Since all transmit / receive points should be able to estimate the channel by receiving the DM-RS, the transmit power request value of the uplink DM-RS of the user equipment (
Figure PCTKR2012009347-appb-I000032
) Should be the maximum of the transmit powers of the uplink DM-RS of each transmit / receive point.
[수학식 10][Equation 10]
Figure PCTKR2012009347-appb-I000033
Figure PCTKR2012009347-appb-I000033
수학식 10에서
Figure PCTKR2012009347-appb-I000034
는 특정 송수신 포인트 r에 대해 단말(420)의 상향링크 DM-RS를 전송함에 있어 수신 SINR을 얻기 위해 보장되어야 하는 수신전력 즉 수신을 위해 요구되는 전송전력 값에 대한 인자이다.
Figure PCTKR2012009347-appb-I000035
은 경로 손실을 보상하는 정도를 나타낸다. 즉
Figure PCTKR2012009347-appb-I000036
은 하향링크 참조신호를 통해 측정된 경로손실을 상향링크에 적용하기 위한 scaling parameter 이다.
In equation (10)
Figure PCTKR2012009347-appb-I000034
Is a factor for the reception power, i.e., the transmission power value required for reception, that should be guaranteed to obtain the reception SINR in transmitting the uplink DM-RS of the terminal 420 for a specific transmission / reception point r.
Figure PCTKR2012009347-appb-I000035
Denotes the degree to which the path loss is compensated. In other words
Figure PCTKR2012009347-appb-I000036
Is a scaling parameter for applying the path loss measured through the downlink reference signal to the uplink.
Figure PCTKR2012009347-appb-I000037
는 특정 송수신 포인트 r에 대해 단말(420)에서 계산된 하향링크 경로-손실(path loss) 추정값이다.
Figure PCTKR2012009347-appb-I000038
는 특정 송수신 포인트 r에 대하여 결정되는 오프셋이다. 상기의 오프셋은 전송 PUSCH/PUCCH의 MCS(Modulation and Coding Scheme)에 의해 결정될 수 있으며, 또는 high layer signaling에 의해 결정될 수 있다.
Figure PCTKR2012009347-appb-I000037
Is a downlink path loss estimate calculated by the terminal 420 for a specific transmit / receive point r.
Figure PCTKR2012009347-appb-I000038
Is an offset determined for a specific transmit / receive point r. The above offset may be determined by a modulation and coding scheme (MCS) of a transmission PUSCH / PUCCH, or may be determined by high layer signaling.
다음으로 단말(420)은 송수신 포인트들 각각에 의해 수신된 상향링크 DM-RS들 각각의 수신을 위해 요구되는 전송전력들의 최대값보다 큰 상향링크 전송전력을 결정한다(S630).Next, the terminal 420 determines an uplink transmission power that is larger than a maximum value of transmission powers required for reception of each of the uplink DM-RSs received by each of the transmission and reception points (S630).
다시 말해 S630단계에서 단말(420)이 상향링크 DM-RS를 전송하고 송수신 포인트들(410, 412, 414, 416)이 이 상향링크 DM-RS를 수신하여 이 상향링크 DM-RS를 이용하여 상향링크 물리채널 추정을 수행할 수 있는 신뢰도를 갖도록, 단말(420)은 상향링크 전송전력을 결정한다.In other words, in step S630, the terminal 420 transmits an uplink DM-RS, and the transmission / reception points 410, 412, 414, and 416 receive the uplink DM-RS and use the uplink DM-RS. The terminal 420 determines the uplink transmission power so as to have the reliability of performing the link physical channel estimation.
예를 들어 단말(420)이 전송전력을 제어함에 있어, PUSCH 및 uplink DM-RS의 전송 전력이 동일하다면, 단말(420)의 상향링크 전송전력(
Figure PCTKR2012009347-appb-I000039
)은 수학식 11에 의해 표현된 바와 같이 단말(420)의 상향링크 DM-RS의 전송전력 요구값(
Figure PCTKR2012009347-appb-I000040
)보다 클 수 있다.
For example, when the terminal 420 controls the transmission power, if the transmission power of the PUSCH and the uplink DM-RS are the same, the uplink transmission power of the terminal 420 (
Figure PCTKR2012009347-appb-I000039
) Is a transmit power request value of the uplink DM-RS of the UE 420 as represented by Equation (11).
Figure PCTKR2012009347-appb-I000040
May be greater than).
[수학식 11][Equation 11]
Figure PCTKR2012009347-appb-I000041
Figure PCTKR2012009347-appb-I000041
일반적인 견해로, 상향링크 CoMP을 구성하는 송수신 포인트의 세트 선정은 수신 신호의 신뢰도가 높은 순 또는 경로손실이 적은 순으로 선정될 수 있다. 즉, 상향링크 CoMP을 구성하는 송수신 포인트의 수가 증가하면, 결합 게인의 증가로 PUSCH 전송에 요구되는 전송전력이 감소하는 반면, 경로손실이 보다 큰 송수신 포인트에 대하여 DM-RS 전송을 수행하게 되어 채널 추정을 지원하기 위한 전송전력 요구값이 증가할 수 있다. In general terms, the selection of the transmission / reception points constituting the uplink CoMP may be selected in the order of high reliability of the received signal or in the order of low path loss. That is, if the number of transmit / receive points constituting the uplink CoMP increases, the transmit power required for PUSCH transmission decreases due to the increase of the combined gain, while performing DM-RS transmission for the transmit / receive point having a larger path loss. The transmit power requirement to support estimation can increase.
'최대 다중 송수신 포인트 결합 게인'을 보장하면서 DM-RS를 통한 채널 추정을 지원하기 위한 전송전력은, 각 송수신 포인트 r(0≤r<R)에 대하여 PUSCH 전송을 지원하기 위한 전송전력과 상향링크 DM-RS의 전송전력 요구값 중 최대값으로 다음과 같이 정의된다. The transmission power for supporting channel estimation through DM-RS while guaranteeing 'maximum multiple transmit / receive point combined gain' includes transmission power and uplink for supporting PUSCH transmission for each transmit / receive point r (0≤r <R). The maximum value of the transmission power request values of the DM-RS is defined as follows.
[수학식 12][Equation 12]
Figure PCTKR2012009347-appb-I000042
Figure PCTKR2012009347-appb-I000042
수학식 12에서 fc(i)는 명시적인 전송전력 제어 명령을 통해 직접적으로 PUSCH 전송 전력을 조절하기 위한 값이다. In Equation 12, f c (i) is a value for directly adjusting the PUSCH transmit power through an explicit transmit power control command.
다시 말해 '최대 다중 송수신 포인트 결합 게인'을 보장하면서 DM-RS을 통한 채널 추정을 지원하기 위한 전송전력(
Figure PCTKR2012009347-appb-I000043
) 은 최대 다중 송수신 포인트 결합 게인'을 얻을 시 실질적 경로손실을 고려한 PUSCH의 전송전력(
Figure PCTKR2012009347-appb-I000044
)과 상기 결합 게인을 얻기 위해 필요한 DM-RS을 통한 채널 추정을 지원하기 위한 단말의 상향링크 DM-RS의 전송전력 요구값 (
Figure PCTKR2012009347-appb-I000045
)중 최대값이다.
In other words, while guaranteeing the 'maximum multiple transmit / receive point combined gain', the transmit power (
Figure PCTKR2012009347-appb-I000043
Is the transmit power of the PUSCH considering the actual path loss when obtaining the maximum multiple transmit / receive point combined gain.
Figure PCTKR2012009347-appb-I000044
And a transmit power request value of an uplink DM-RS of a terminal for supporting channel estimation through a DM-RS necessary to obtain the combined gain (
Figure PCTKR2012009347-appb-I000045
) Is the maximum value.
다음으로 도 5를 참조하면 S530, S532, S534에서 상향링크 물리채널에 대한 전송 전력이 제어되면, 단말(420)은 상향링크 물리채널을 생성한 후 단말(420)은 생성된 상향링크 물리채널을 통해 각 송수신 포인트(410, 412, 414)에게 해당 전송전력(
Figure PCTKR2012009347-appb-I000046
)으로 신호를 전송한다.
Next, referring to FIG. 5, when transmission power for an uplink physical channel is controlled in S530, S532, and S534, the terminal 420 generates an uplink physical channel, and then the terminal 420 generates the uplink physical channel. Each transmit and receive point (410, 412, 414) through the corresponding transmission power (
Figure PCTKR2012009347-appb-I000046
Send the signal to).
이상 도 5 및 도 6을 참조하여 다른 실시예에 따른 CoMP 시스템에서 상향링크 전력 제어방법을 설명하였으며 이하 도 7을 참조하여 결합 게인(combining gain)을 고려한 PUSCH 전송전력 및 DM-RS 신뢰도를 고려한 PUSCH 전송전력을 고려하여 단말이 상향링크 전송전력을 제어하고 이 과정에서 송수신 포인트 선택을 유동적으로 수행하는 상향링크 전력 제어방법을 설명한다. The uplink power control method in the CoMP system according to another embodiment has been described with reference to FIGS. 5 and 6, and the PUSCH considering the combining gain and the DM-RS reliability in consideration of the coupling gain will now be described with reference to FIG. 7. The uplink power control method in which the UE controls the uplink transmission power in consideration of the transmission power and flexibly performs transmission / reception point selection in this process will be described.
도 7은 또 다른 실시예에 따른 상향링크 제어방법의 흐름도이다.7 is a flowchart of an uplink control method according to another embodiment.
도 5를 참조하여 설명한 바와 같이 S520단계에서 CRS, CSI-RS, 또는 DM-RS 중 하나 또는 하나 이상의 참조신호를 기반으로 다수의 특정 송수신 포인트에 대한 실질적 경로손실(
Figure PCTKR2012009347-appb-I000047
)을 계산할 수 있다.
As described with reference to FIG. 5, in operation S520, substantial path loss for a plurality of specific transmission / reception points based on one or more reference signals among CRS, CSI-RS, or DM-RS (
Figure PCTKR2012009347-appb-I000047
) Can be calculated.
다음으로 S521단계에서 단말(420)은 CRS, CSI-RS, 또는 DM-RS 중 하나 또는 하나 이상의 참조신호를 기반으로 다수의 특정 송수신 포인트에 대해 계산된 실질적 경로손실(
Figure PCTKR2012009347-appb-I000048
)을 고려하여 상향링크 전송전력을 제어할 수 있다.
Next, in step S521, the terminal 420 may calculate a substantial path loss calculated for a plurality of specific transmission / reception points based on one or more reference signals among CRS, CSI-RS, or DM-RS.
Figure PCTKR2012009347-appb-I000048
), The uplink transmission power may be controlled.
도 7을 참조하면 세부적으로 다른 실시예에 따른 상향링크 전력 제어방법은 모든 송수신 포인트들(410, 412, 414)이 DM-RS를 수신하여 채널 추정할 수 있어야 하므로 단말(420)의 상향링크 DM-RS의 전송전력(
Figure PCTKR2012009347-appb-I000049
)과 송수신 포인트들(410, 412, 414) 각각에 의해 수신되기 위해 상향링크 DM-RS들 각각의 요구되는 전송전력들의 최대값보다 큰 상향링크 전송전력(
Figure PCTKR2012009347-appb-I000050
)을 결정하는 단계(S720)를 포함할 수 있다. S720단계는 도 6을 참조하여 설명한 S610단계 및 S620단계와 동일하다.
Referring to FIG. 7, in detail, the method for controlling uplink power according to another embodiment requires that all transmission / reception points 410, 412, and 414 receive the DM-RS to estimate the channel, thereby uplink DM of the terminal 420. RS transmit power (
Figure PCTKR2012009347-appb-I000049
And uplink transmit power greater than the maximum of the required transmit powers of each of the uplink DM-RSs to be received by each of the transmit and receive points 410, 412, 414.
Figure PCTKR2012009347-appb-I000050
It may include a step (S720) to determine. Operation S720 is the same as operation S610 and operation S620 described with reference to FIG. 6.
다시말해 임의의 또는 서빙 셀을 담당하는 제1송수신 포인트(410)에 의해 지시된 CoMP 세트에 대하여
Figure PCTKR2012009347-appb-I000051
Figure PCTKR2012009347-appb-I000052
을 연산할 수 있다.
In other words, for the CoMP set indicated by the first transmit / receive point 410 that is responsible for any or serving cell.
Figure PCTKR2012009347-appb-I000051
And
Figure PCTKR2012009347-appb-I000052
Can be calculated.
다음으로 실질적 경로손실(Path Loss)을 고려하여 상향링크 물리채널을 통해 신호를 전송할 상향링크 전송전력(
Figure PCTKR2012009347-appb-I000053
)과 송수신 포인트들 각각에 의해 수신되기 위해 상향링크 DM-RS들 각각의 요구되는 전송전력들의 최대값(
Figure PCTKR2012009347-appb-I000054
)을 비교할 수 있다(S730).
Next, in consideration of the actual path loss, the uplink transmission power for transmitting a signal through the uplink physical channel (
Figure PCTKR2012009347-appb-I000053
) And the maximum value of the required transmit powers of each of the uplink DM-RSs to be received by each of the transmit and receive points (
Figure PCTKR2012009347-appb-I000054
) Can be compared (S730).
실질적 경로손실(Path Loss)을 고려하여 상향링크 물리채널을 통해 신호를 전송할 상향링크 전송전력(
Figure PCTKR2012009347-appb-I000055
)이 송수신 포인트들 각각에 의해 수신될 상향링크 DM-RS들 각각의 수신전력들의 최대값(
Figure PCTKR2012009347-appb-I000056
)보다 크다면 이는 상향링크 전송전력이 정밀한 채널 추정을 지원하기에 충분함을 의미한다. 이 경우 R=R+1, 즉, 상향링크 전송의 대상이 되는 추가적인(additional) 송수신 포인트를 CoMP 세트에 추가 또는 증가시킬 수 있다(S735). 그 후, S720 단계에서
Figure PCTKR2012009347-appb-I000057
Figure PCTKR2012009347-appb-I000058
을 다시 연산할 수 있다.
In consideration of the actual path loss, the uplink transmission power for transmitting a signal through the uplink physical channel (
Figure PCTKR2012009347-appb-I000055
) Is the maximum value of the received powers of each of the uplink DM-RSs to be received by each of
Figure PCTKR2012009347-appb-I000056
Greater than) means that the uplink transmit power is sufficient to support accurate channel estimation. In this case, R = R + 1, that is, an additional transmission / reception point that is a target of uplink transmission may be added or increased to the CoMP set (S735). After that, at S720
Figure PCTKR2012009347-appb-I000057
And
Figure PCTKR2012009347-appb-I000058
Can be recalculated.
기존 송수신 포인트들에 비하여 경로손실이 큰 송수신 포인트가 추가되었으므로,
Figure PCTKR2012009347-appb-I000059
값은 증가하는 반면 추가적인 송수신 포인트의 결합 게인에 의해
Figure PCTKR2012009347-appb-I000060
값은 감소할 수 있다. 이 두 값들을 비교하여
Figure PCTKR2012009347-appb-I000061
값이 더 크다면 이러한 추가적인 송수신 포인트를 CoMP 세트에 포함시킬 수 있다.
Since the transmission and reception points with a larger path loss than the existing transmission and reception points were added,
Figure PCTKR2012009347-appb-I000059
The value increases while the combined gain of additional transmit / receive points
Figure PCTKR2012009347-appb-I000060
The value can be decreased. Compare these two values
Figure PCTKR2012009347-appb-I000061
If the value is larger, these additional transmit / receive points may be included in the CoMP set.
다음으로 CoMP 세트에 추가한 송수신 포인트의 개수(R)이 하향링크 참조신호들을 수신한 송수신 포인트의 총개수(M)보다 작거나 같은지를 판단할 수 있다(S737). Next, it may be determined whether the number R of transmission / reception points added to the CoMP set is less than or equal to the total number M of transmission / reception points receiving the downlink reference signals (S737).
한편, S737단계에서 CoMP 세트에 추가한 송수신 포인트의 개수(R)이 하향링크 참조신호들을 수신한 송수신 포인트의 총개수(M)보다 작거나 같다면 S720단계 및 S730단계를 반복할 수 있다. 한편 S737 단계에서 CoMP 세트에 추가한 송수신 포인트의 개수(R)이 하향링크 참조신호들을 수신한 송수신 포인트의 총개수(M)보다 크다면 S720단계 및 S730단계를 반복하지 않고 다음에 설명하는 S740단계를 수행할 수 있다. CoMP 세트에 추가한 송수신 포인트의 개수(R)이 하향링크 참조신호들을 수신한 송수신 포인트의 총개수(M)보다 크다면 더 이상 추가할 수 있는 송수신 포인트가 없다는 것을 의미할 수 있다. 더 이상 추가할 수 있는 송수신 포인트가 없다함은, 단말(420)이 인지하는 모든 송수신 포인트가 CoMP 세트로 정의되었거나 서빙 셀에 해당하는 제1송수신 포인트(410)가 허가하는 범주 내의 모든 송수신 포인트가 CoMP set에 포함되었음을 의미할 수 있다. On the other hand, if the number (R) of the transmission and reception points added to the CoMP set in step S737 is less than or equal to the total number (M) of the transmission and reception points receiving the downlink reference signals, steps S720 and S730 may be repeated. On the other hand, if the number R of transmit / receive points added to the CoMP set in step S737 is greater than the total number of transmit / receive points M receiving the downlink reference signals (M), steps S740 and S730 will not be repeated. Can be performed. If the number R of transmit / receive points added to the CoMP set is larger than the total number M of transmit / receive points receiving downlink reference signals, this may mean that there are no more transmit / receive points. No more transmit / receive points that can be added, all transmit / receive points recognized by the terminal 420 is defined as a CoMP set or all transmit / receive points within a category allowed by the first transmit / receive point 410 corresponding to the serving cell. It may mean that it is included in the CoMP set.
S730단계에서
Figure PCTKR2012009347-appb-I000062
값이
Figure PCTKR2012009347-appb-I000063
보다 크거나 S737단계에서 CoMP 세트에 추가한 송수신 포인트의 개수(R)이 하향링크 참조신호들을 수신한 송수신 포인트의 총개수(M)보다 크다면 단말(420)은 다른 송수신 포인트를 추가하기 전의 (R-1)개의 송수신 포인트를 CoMP 세트로 선정할 수 있다(S740). S740단계에서 단말(420)은 경로손실을 측정하여 상향링크 CoMP 전송 시, 전송전력이 최소가 되는 CoMP 세트를 설정할 수 있다.
In step S730
Figure PCTKR2012009347-appb-I000062
Value is
Figure PCTKR2012009347-appb-I000063
If the number (R) of transmission / reception points added to the CoMP set is greater than or greater than the total number (M) of transmission / reception points receiving the downlink reference signals (S737), the terminal 420 may add a transmission / reception point before adding another transmission / reception point. R-1) transmission / reception points may be selected as a CoMP set (S740). In step S740, the terminal 420 measures the path loss, and when the uplink CoMP transmission, can set the CoMP set to the minimum transmission power.
S740단계에서 단말(420)은 설정한 CoMP 세트 정보를 주기 또는 비주기적으로 서빙 셀에 해당하는 제1송수신 포인트(410)에 전송할 수 있다. 예를 들어 단말(420)은 주기적으로 설정한 CoMP 세트 정보를 주기적으로 서빙 송수신 포인트(410)에 전송할 수 있다. 다른 예를 들어 단말(420)은 제1송수신 포인트(410)로부터 설정한 CoMP 세트 정보를 피드백하도록 트리거링된 경우에만 비주기적으로 설정한 CoMP 세트 정보를 비주기적으로 제1송수신 포인트(410)에 전송할 수 있다.In step S740, the terminal 420 may transmit the set CoMP set information to the first transmission / reception point 410 corresponding to the serving cell periodically or aperiodically. For example, the terminal 420 may periodically transmit CoMP set information that is periodically set to the serving transmission / reception point 410. For another example, the terminal 420 transmits aperiodic CoMP set information to the first transmission / reception point 410 aperiodically only when it is triggered to feed back the CoMP set information set from the first transmission / reception point 410. Can be.
다음으로 단말(420)은 (R-1)개의 송수신 포인트를 대상으로 수학식 11에서 정의한 상향링크 전송전력(
Figure PCTKR2012009347-appb-I000064
)을 결정할 수 있다(S750). 다시 말해 S750단계에서 R개의 송수신 포인트들에 대해 계산된
Figure PCTKR2012009347-appb-I000065
Figure PCTKR2012009347-appb-I000066
보다 크지 않은 경우 (R-1)개의 송수신 포인트들에 대해 계산된
Figure PCTKR2012009347-appb-I000067
로 상향링크 전송전력을 결정할 수 있다.
Next, the terminal 420 transmits uplink transmission power (R-1) defined in Equation 11 to (R-1) transmission / reception points.
Figure PCTKR2012009347-appb-I000064
) May be determined (S750). In other words, calculated for the R transmission and reception points in step S750
Figure PCTKR2012009347-appb-I000065
this
Figure PCTKR2012009347-appb-I000066
If not greater than (R-1) calculated for the transmit and receive points
Figure PCTKR2012009347-appb-I000067
The uplink transmission power can be determined.
다만, 수학식 12에 따라 (
Figure PCTKR2012009347-appb-I000068
+fc(i))값이 (R-1)개의 송수신 포인트들에 대해 계산된
Figure PCTKR2012009347-appb-I000069
보다 큰 경우 (
Figure PCTKR2012009347-appb-I000070
+fc(i))값을 단말(420)의 최종적인 상향링크 전송전력으로 결정할 수도 있다.
However, according to Equation 12 (
Figure PCTKR2012009347-appb-I000068
A value of + fc (i)) is calculated for (R-1) transmit / receive points
Figure PCTKR2012009347-appb-I000069
Is greater than (
Figure PCTKR2012009347-appb-I000070
The value of + fc (i) may be determined as the final uplink transmission power of the terminal 420.
다음으로 도 5를 참조하면 S530, S532, S534에서 상향링크 물리채널에 대한 전송 전력이 결정되면 단말(420)은 상향링크 물리채널을 생성한 후 생성된 상향링크 물리채널을 통해 해당 전송전력(
Figure PCTKR2012009347-appb-I000071
)으로 상향링크 전송할 수 있다.
Next, referring to FIG. 5, when transmission power for an uplink physical channel is determined in S530, S532, and S534, the terminal 420 generates an uplink physical channel and then generates a corresponding transmission power through an uplink physical channel generated.
Figure PCTKR2012009347-appb-I000071
Uplink transmission may be performed.
도 8은 또 다른 실시예에 따른 단말과 송수신 포인트를 나타내는 블록도이다.8 is a block diagram illustrating a terminal and a transmission / reception point according to another embodiment.
도 8을 참조하면, 단말(800)은 단말 RF부(805) 및 단말 프로세서(810)를 포함할 수 있다. Referring to FIG. 8, the terminal 800 may include a terminal RF unit 805 and a terminal processor 810.
단말 RF부(805)는 둘 이상의 송수신 포인트들로부터 참조신호를 수신하고 송수신 포인트들의 참조신호들의 전송전력의 정보를 상기 송수신 포인트들 중 하나(850)로부터 수신하고 상향링크 물리채널을 통해 도 4 내지 도 7을 참조하여 설명한 바와 같이 상향링크 전송전력으로 신호를 전송할 수 있다. 또한, 단말 RF부(805)는 적어도 하나의 송수신 포인트를 CoMP 세트로 구성한 CoMP 세트 정보를 전송할 수 있다. The terminal RF unit 805 receives a reference signal from two or more transmission / reception points and receives information on the transmission power of the reference signals of the transmission / reception points from one of the transmission / reception points 850 and through the uplink physical channel. As described with reference to FIG. 7, a signal may be transmitted using uplink transmission power. In addition, the terminal RF unit 805 may transmit CoMP set information in which at least one transmission / reception point is configured as a CoMP set.
단말 프로세서(810)는 도 4 내지 도 7을 참조하여 설명한 바와 같이 상향링크 물리채널을 통해 신호를 전송할 상향링크 전송전력을 결정하고, 상항링크 물리채널을 생성한 후 결정된 상향링크 전송전력으로 상향링크 물리채널을 통해 신호를 전송하도록 제어할 수 있다. As described with reference to FIGS. 4 to 7, the terminal processor 810 determines an uplink transmission power for transmitting a signal through an uplink physical channel, generates an uplink physical channel, and then uplinks the uplink transmission power with the determined uplink transmission power. It may be controlled to transmit a signal through a physical channel.
구체적으로 단말 프로세서(810)는 도 4 내지 도 7을 참조하여 설명한 바와 같이 상향링크 물리채널을 통해 신호를 전송할 상향링크 전송전력을 결정하고 그 상향링크 전송전력을 제어하는 전력 제어부(812) 및 적어도 하나의 송수신 포인트를 CoMP 세트로 구성한 CoMP 세트 정보를 생성하는 CoMP 세트 결정부(814) 전부 또는 일부를 포함할 수 있다. In more detail, as described above with reference to FIGS. 4 through 7, the terminal processor 810 determines a UL transmission power for transmitting a signal through an UL physical channel and at least a power controller 812 for controlling the UL transmission power. It may include all or part of the CoMP set determination unit 814 for generating CoMP set information consisting of a CoMP set of one transmission point.
구체적으로 전력 제어부(812)는 수신한 참조신호들의 전송전력의 정보와 송수신 포인트들로부터 하향링크 물리채널을 통한 수신한 참조신호들의 측정된 수신전력들로부터 획득된 실질적 경로손실(Path Loss)을 고려하여 수학식 6 내지 8을 기초로 상향링크 물리채널을 통해 신호를 전송할 상향링크 전송전력을 결정할 수 있다. In detail, the power controller 812 considers information on the transmission power of the received reference signals and the actual path loss obtained from the measured reception powers of the reference signals received through the downlink physical channel from the transmission and reception points. The uplink transmission power for transmitting a signal through the uplink physical channel can be determined based on Equations 6 to 8.
한편 전력 제어부(812)는 송수신 포인트들에 의해 수신된 상향링크 DM-RS를 이용하여 상향링크 물리채널 추정을 수행할 수 있는 신뢰도를 갖도록 상향링크 전송전력을 결정할 수 있다. 예를 들어 전력 제어부(812)는 수학식 10 및 11을 기초로 송수신 포인트들 각각에 의해 수신된 상향링크 DM-RS들 각각의 수신전력들의 최대값과 같거나 이 최대값보다 큰 상향링크 전송전력을 결정할 수 있다.Meanwhile, the power control unit 812 may determine the uplink transmission power so that the uplink DM-RS received by the transmission / reception points has reliability to perform uplink physical channel estimation. For example, the power control unit 812 may use the uplink transmit power equal to or greater than the maximum value of each of the uplink DM-RSs received by each of the transmit and receive points based on Equations 10 and 11, respectively. Can be determined.
또한 전력 제어부(812)는 실질적 경로손실(Path Loss)을 고려하여 상향링크 물리채널을 통해 신호를 전송할 상향링크 전송전력(
Figure PCTKR2012009347-appb-I000072
)과 송수신 포인트들 각각에 의해 수신되기 위해 상향링크 DM-RS들의 요구되는 전송전력들의 최대값(
Figure PCTKR2012009347-appb-I000073
)을 비교하고,
Figure PCTKR2012009347-appb-I000074
Figure PCTKR2012009347-appb-I000075
보다 큰 경우 다른 송수신 포인트를 CoMP 세트에 추가하여
Figure PCTKR2012009347-appb-I000076
을 계산하고, 계산된
Figure PCTKR2012009347-appb-I000077
Figure PCTKR2012009347-appb-I000078
보다 크지 않은 경우 다른 송수신 포인트를 추가하기 전의
Figure PCTKR2012009347-appb-I000079
또는 (
Figure PCTKR2012009347-appb-I000080
+fc(i))값(fc(i)는 명시적인 전송전력 제어 명령을 통해 직접적으로 PUSCH 전송 전력을 조절하기 위한 값임) 중 최대값으로 상향링크 전송전력을 결정할 수 있다.
In addition, the power control unit 812 considers uplink transmission power for transmitting a signal through an uplink physical channel in consideration of a substantial path loss.
Figure PCTKR2012009347-appb-I000072
) And the maximum transmit power required of uplink DM-RSs to be received by each of the transmit and receive points (
Figure PCTKR2012009347-appb-I000073
),
Figure PCTKR2012009347-appb-I000074
this
Figure PCTKR2012009347-appb-I000075
If greater, add another transmit / receive point to the CoMP set
Figure PCTKR2012009347-appb-I000076
Is calculated,
Figure PCTKR2012009347-appb-I000077
this
Figure PCTKR2012009347-appb-I000078
Is not larger than before adding another send / receive point
Figure PCTKR2012009347-appb-I000079
or (
Figure PCTKR2012009347-appb-I000080
The uplink transmission power may be determined as the maximum value of the + fc (i)) value (f c (i) is a value for directly controlling the PUSCH transmission power through an explicit transmission power control command).
CoMP 세트 결정부(814)는 도 7를 참조하여 설명한
Figure PCTKR2012009347-appb-I000081
이 상기
Figure PCTKR2012009347-appb-I000082
보다 크지 않은 경우 다른 송수신 포인트를 추가하지 전의 적어도 하나의 송수신 포인트로 CoMP 세트로 구성한 CoMP 세트 정보를 생성할 수 있다.
CoMP set determination unit 814 is described with reference to FIG.
Figure PCTKR2012009347-appb-I000081
Remind me
Figure PCTKR2012009347-appb-I000082
If it is not larger, CoMP set information including a CoMP set may be generated as at least one transmit / receive point before adding another transmit / receive point.
송수신 포인트(850)는 송수신 포인트 RF부(855) 및 송수신 포인트 프로세서(860)를 포함할 수 있다. The transmission / reception point 850 may include a transmission / reception point RF unit 855 and a transmission / reception point processor 860.
송수신 포인트 RF부(855)는 참조신호를 단말(800)로 전송하고, 자신의 참조신호의 전송전력 정보 및 적어도 하나의 다른 송수신 포인트의 참조신호의 전송전력 정보를 단말로 전송하고, 상향링크 전송전력으로 상향링크 물리채널로 전송된 신호를 수신할 수 있다. The transmission / reception point RF unit 855 transmits a reference signal to the terminal 800, transmits transmission power information of its reference signal and transmission power information of the reference signal of at least one other transmission / reception point to the terminal, and transmits uplink. The power signal may be transmitted through the uplink physical channel.
송수신 포인트 프로세서(860)는 단말(800)로부터
Figure PCTKR2012009347-appb-I000083
Figure PCTKR2012009347-appb-I000084
보다 크지 않은 경우 다른 송수신 포인트를 추가하지 전의 적어도 하나의 송수신 포인트를 CoMP 세트로 구성한 CoMP 세트 정보를 결정하는 CoMP 세트 결정부(862) 및 참조신호를 생성하는 참조신호 생성부(864), 제어정보나 시스템 정보를 생성하는 정보 생성부(866) 일부 또는 전부를 포함할 수 있다.
The transmit / receive point processor 860 from the terminal 800
Figure PCTKR2012009347-appb-I000083
this
Figure PCTKR2012009347-appb-I000084
If not greater than CoMP set determination unit 862 for determining CoMP set information consisting of a CoMP set of at least one transmit and receive point before adding another transmit and receive points, and a reference signal generator 864 for generating a reference signal, control information B may include some or all of the information generating unit 866 for generating system information.
도 8을 참조하여 설명한 단말(800)과 송수신 포인트(860)는 각각 CoMP 세트 결정부(814)와 CoMP 세트 결정부(862)를 포함하는 것으로 설명하였다. 도 7을 참조하여 설명한 바와 같이 CoMP 세트 결정을 단말(420)이 수행하는 경우 단말(800)이 CoMP 세트 결정부(814)를 포함하나 그렇지 않은 경우 단말(800)과 송수신 포인트(860) 중 적어도 하나가 CoMP 세트 결정부를 포함할 수 있다.The terminal 800 and the transmission / reception point 860 described with reference to FIG. 8 have been described as including a CoMP set determination unit 814 and a CoMP set determination unit 862, respectively. As described with reference to FIG. 7, when the UE 420 performs CoMP set determination, the UE 800 includes a CoMP set determination unit 814, but otherwise, at least one of the UE 800 and the transmission / reception point 860. One may include a CoMP set determination unit.
다수의 송수신 포인트에 상향링크 전송을 수행하는 상향링크 CoMP의 경우, 간섭 문제가 보다 심각한 성능 저하의 요인이 될 수 있다. 특히 셀 간 물리적 경계가 모호한 헤테로지니어스 네트워크(heterogeneous network)에서 상향링크 전송을 수행하는 경우, CoMP의 구동 여부와 관계 없이 보다 심각한 간섭이 발생할 수 있다. In the case of uplink CoMP performing uplink transmission to a plurality of transmission / reception points, an interference problem may cause more serious performance degradation. In particular, when uplink transmission is performed in a heterogeneous network in which a physical boundary between cells is ambiguous, more serious interference may occur regardless of whether CoMP is driven or not.
이러한 간섭 문제를 해결하기 위해, 전술한 실시예들은 단말이 자신과 인접한 송수신 포인트들을 인지하고 이 송수신 포인트들에 상향링크 전송을 수행 시 필요한 전력을 판단하고 적절한 전송 전력을 결정할 수 있는 방법 및 장치를 제공할 수 있다. 전술한 실시예에 따른 전력 제어방법 및 그 장치에 의해 각 단말이 다수의 송수신 포인트에 대하여 실질적 경로손실을 측정하고 다수의 송수신 포인트에 상향링크 전송을 수행함으로 얻어지는 다중 송수신 포인트 수신 게인(multiple point reception gain)을 유추하고 이를 전력 제어에 활용할 수 있다. In order to solve this interference problem, the above-described embodiments provide a method and apparatus for recognizing transmission and reception points adjacent to the terminal and determining power required for performing uplink transmission to the transmission and reception points and determining an appropriate transmission power. Can provide. Multiple point reception gains obtained by measuring a substantial path loss for a plurality of transmission and reception points and performing uplink transmission to the plurality of transmission and reception points by the power control method and apparatus according to the above-described embodiment gain) can be inferred and used for power control.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2011년 11월 7일 한국에 출원한 특허출원번호 제 10-2011-0115447 호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application claims priority under No. 10 (2011) 119 (a) (35 USC § 119 (a)) of the Patent Application No. 10-2011-0115447, filed with Korea on November 7, 2011. All content is incorporated by reference in this patent application. In addition, if this patent application claims priority for the same reason for countries other than the United States, all its contents are incorporated into this patent application by reference.

Claims (12)

  1. 둘 이상의 송수신 포인트들과 단말이 협력 통신하는 무선통신 시스템에서, 상기 송수신 포인트들로부터 참조신호들을 수신하는 단계; Receiving reference signals from the transmission and reception points in a wireless communication system in which the terminal is a cooperative communication with two or more transmission and reception points;
    상기 수신된 참조신호들의 수신전력들을 측정하는 단계; Measuring reception powers of the received reference signals;
    상기 송수신 포인트들의 참조신호 전송전력의 정보를 상기 송수신 포인트들 중 적어도 하나로부터 수신하는 단계;Receiving information of reference signal transmission power of the transmission and reception points from at least one of the transmission and reception points;
    수신한 상기 참조신호 전송전력 정보와 상기 측정된 수신전력들로부터 획득된 실질적 경로손실(Path Loss)을 고려한 상기 상향링크 전송전력이, 상기 송수신 포인트들 각각에 의해 수신을 위해 요구되는 상향링크 DM-RS 전송전력들 각각의 최대값과 같거나 크도록 상향링크 전송전력을 결정하는 단계; 및The uplink transmission power in which the uplink transmission power considering the received reference signal transmission power information and the actual path loss obtained from the measured reception powers is required for reception by each of the transmission / reception points. Determining uplink transmit power to be equal to or greater than a maximum value of each of the RS transmit powers; And
    상향링크 물리채널을 통해 상기 상향링크 전송전력으로 신호를 전송하는 단계를 포함하는 단말의 상향링크 전력 제어 방법.Uplink power control method of a terminal comprising transmitting a signal with the uplink transmission power through an uplink physical channel.
  2. 제1항에 있어서,The method of claim 1,
    상기 둘 이상의 송수신 포인트들 중 하나는 eNodeB이고 적어도 다른 하나는 RRH이며 상기 eNodeB로부터의 참조신호는 셀 특정 참조 신호, 단말 특정 참조 신호 및 채널 상태정보 참조신호 중 적어도 하나이상이며 상기 RRH로부터의 참조신호는 단말 특정 참조 신호 및 채널 상태정보 참조신호 중 적어도 하나 이상인 것을 특징으로 하는 단말의 상향링크 전력 제어 방법.One of the two or more transmission / reception points is an eNodeB, at least another is an RRH, and a reference signal from the eNodeB is at least one of a cell specific reference signal, a terminal specific reference signal, and a channel state information reference signal, and a reference signal from the RRH. Is at least one or more of a terminal specific reference signal and a channel state information reference signal.
  3. 제1항에 있어서,The method of claim 1,
    상기 상향링크 물리채널은 PUCCH 및/또는 PUSCH인 것을 특징으로 하는 단말의 상향링크 전력 제어 방법.The uplink physical channel is a method for controlling uplink power of a terminal, characterized in that the PUCCH and / or PUSCH.
  4. 제1항에 있어서,The method of claim 1,
    상기 실질적 경로손실(Path Loss)을 고려하여 결정된 상향링크 전송전력(이하,"
    Figure PCTKR2012009347-appb-I000085
    "이라 함)과 상기 송수신 포인트들 각각에 의해 수신을 위해 요구되는된 상향링크 DM-RS 의 전송전력들의 최대값(이하, "
    Figure PCTKR2012009347-appb-I000086
    ")을 비교하는 단계; 및
    Uplink transmission power determined in consideration of the actual path loss (hereinafter, referred to as "
    Figure PCTKR2012009347-appb-I000085
    And maximum values of transmit powers of the uplink DM-RS required for reception by each of the transmission / reception points (hereinafter, “”).
    Figure PCTKR2012009347-appb-I000086
    Comparing “); and
    상기
    Figure PCTKR2012009347-appb-I000087
    Figure PCTKR2012009347-appb-I000088
    보다 큰 경우 추가적인 송수신 포인트를 CoMP 세트에 추가하여
    Figure PCTKR2012009347-appb-I000089
    을 계산하고,
    remind
    Figure PCTKR2012009347-appb-I000087
    this
    Figure PCTKR2012009347-appb-I000088
    If greater, add additional transmit / receive points to the CoMP set
    Figure PCTKR2012009347-appb-I000089
    , And
    계산된 상기
    Figure PCTKR2012009347-appb-I000090
    Figure PCTKR2012009347-appb-I000091
    보다 크지 않거나 더 이상 추가할 수 있는 송수신 포인트가 없는 경우 상기 추가적인 송수신 포인트를 CoMP 세트에 추가하기 전의
    Figure PCTKR2012009347-appb-I000092
    또는 (
    Figure PCTKR2012009347-appb-I000093
    +fc(i))값 중 최대값으로 상기 상향링크 전송전력을 결정하는 단계를 포함하며, 상기 fc(i)는 명시적인 전송전력 제어 명령을 통해 직접적으로 PUSCH 전송 전력을 조절하기 위한 값인 단말의 상향링크 전력 제어방법.
    Calculated Remind
    Figure PCTKR2012009347-appb-I000090
    this
    Figure PCTKR2012009347-appb-I000091
    If there are no send / receive points that are greater than or can be added anymore, before adding the additional send / receive points to the CoMP set
    Figure PCTKR2012009347-appb-I000092
    or (
    Figure PCTKR2012009347-appb-I000093
    and determining the uplink transmission power to a maximum value of + fc (i)), wherein f c (i) is a value for directly controlling a PUSCH transmission power through an explicit transmission power control command. UL power control method.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기
    Figure PCTKR2012009347-appb-I000094
    이 상기
    Figure PCTKR2012009347-appb-I000095
    보다 크지 않거나 더 이상 추가할 수 있는 송수신 포인트가 없는 경우 상기 추가적인 송수신 포인트를 CoMP세트에 추가하기 전의 적어도 하나의 송수신 포인트로 CoMP 세트를 구성하고, 이 CoMP 세트 정보를 상기 송수신 포인트들 중 하나로 전송하는 단계를 추가로 포함하는 단말의 상향링크 전력 제어방법.
    remind
    Figure PCTKR2012009347-appb-I000094
    Remind me
    Figure PCTKR2012009347-appb-I000095
    If there is no transmit / receive point that can be added to a larger or no more, configure a CoMP set with at least one transmit / receive point before adding the additional transmit / receive point to the CoMP set, and transmit the CoMP set information to one of the transmit / receive points. Uplink power control method of a terminal further comprising the step.
  6. 둘 이상의 송수신 포인트들과 단말이 협력 통신하는 무선통신 시스템에서, In a wireless communication system in which two or more transmission and reception points and the terminal cooperative communication,
    참조신호를 상기 단말로 전송하는 단계; Transmitting a reference signal to the terminal;
    상기 참조신호 전송전력 정보 및 적어도 하나의 다른 송수신 포인트의 참조신호의 전송전력 정보를 상기 단말로 전송하는 단계; 및Transmitting transmission power information of the reference signal transmission power information and reference signal of at least one other transmission / reception point to the terminal; And
    수신한 상기 참조신호 전송전력 정보 및 상기 참조신호와 적어도 하나의 다른 송수신 포인트로부터 수신한 상기 참조신호의 측정된 수신전력들로부터 획득된 실질적 경로손실(Path Loss)을 고려한 상기 상향링크 전송전력이, 상기 송수신 포인트들 각각에 의해 수신을 위해 요구되는 상향링크 DM-RS 전송전력들 각각의 최대값과 같거나 크도록 결정된 상향링크 전송전력으로 상기 단말로부터 상향링크 물리채널을 통해 전송된 신호를 수신하는 단계를 포함하는 송수신 포인트의 상향링크 통신방법.The uplink transmission power considering the received reference signal transmission power information and the actual path loss obtained from the measured reception powers of the reference signal received from the reference signal and at least one other transmission / reception point, Receiving a signal transmitted through an uplink physical channel from the terminal with the uplink transmission power determined to be equal to or greater than the maximum value of each of the uplink DM-RS transmission powers required for reception by each of the transmission and reception points. Uplink communication method of a transmission and reception point comprising the step.
  7. 제6항에 있어서,The method of claim 6,
    상기 참조신호는 CRS 또는 CSI-RS 중 적어도 하나인 것을 특징으로 하는 송수신 포인트의 상향링크 통신방법.The reference signal is uplink communication method of the transmission and reception point, characterized in that at least one of the CRS or CSI-RS.
  8. 제6항에 있어서,The method of claim 6,
    상기 결정된 상향링크 전송전력은 상기 단말이, 상기 실질적 경로손실(Path Loss)을 고려하여 결정된 상향링크 전송전력(이하, "
    Figure PCTKR2012009347-appb-I000096
    "이라 함)과 상기 송수신 포인트들 각각에 의해 수신되기 위해 요구되는 상향링크 DM-RS 전송전력들의 최대값(이하, "
    Figure PCTKR2012009347-appb-I000097
    ")을 비교하고,
    The determined uplink transmission power is determined by the terminal in consideration of the actual path loss (Path Loss).
    Figure PCTKR2012009347-appb-I000096
    And the maximum value of uplink DM-RS transmit powers required to be received by each of the transmit / receive points (hereinafter,
    Figure PCTKR2012009347-appb-I000097
    "),
    상기
    Figure PCTKR2012009347-appb-I000098
    Figure PCTKR2012009347-appb-I000099
    보다 큰 경우 추가적인 송수신 포인트를 CoMP 세트에 추가하여
    Figure PCTKR2012009347-appb-I000100
    을 계산하고,
    remind
    Figure PCTKR2012009347-appb-I000098
    this
    Figure PCTKR2012009347-appb-I000099
    If greater, add additional transmit / receive points to the CoMP set
    Figure PCTKR2012009347-appb-I000100
    , And
    계산된 상기
    Figure PCTKR2012009347-appb-I000101
    Figure PCTKR2012009347-appb-I000102
    보다 크지 않거나 더 이상 추가할 수 있는 송수신 포인트가 없는 경우 상기 추가적인 송수신 포인트를 상기 CoMP 세트에 추가하기 전의
    Figure PCTKR2012009347-appb-I000103
    또는 (
    Figure PCTKR2012009347-appb-I000104
    +fc(i))값중 최대값으로 결정하며, 상기 fc(i)는 명시적인 전송전력 제어 명령을 통해 직접적으로 PUSCH 전송 전력을 조절하기 위한 값인 것을 특징으로 하는 송수신 포인트의 상향링크 통신방법.
    Calculated Remind
    Figure PCTKR2012009347-appb-I000101
    this
    Figure PCTKR2012009347-appb-I000102
    If there are no transmit / receive points that are greater than or can be added anymore, before adding the additional transmit / receive points to the CoMP set.
    Figure PCTKR2012009347-appb-I000103
    or (
    Figure PCTKR2012009347-appb-I000104
    + f c (i)) is determined as the maximum value, and f c (i) is a value for directly adjusting the PUSCH transmission power through an explicit transmission power control command. .
  9. 제8항에 있어서,The method of claim 8,
    상기 단말로부터 상기
    Figure PCTKR2012009347-appb-I000105
    이 상기
    Figure PCTKR2012009347-appb-I000106
    보다 크지 않거나 더 이상 추가할 수 있는 송수신 포인트가 없는 경우 다른 송수신 포인트를 추가하기 전의 적어도 하나의 송수신 포인트를 CoMP 세트로 구성한 CoMP 세트 정보를 수신하는 단계를 추가로 포함하는 송수신 포인트의 상향링크 통신방법.
    From the terminal to the
    Figure PCTKR2012009347-appb-I000105
    Remind me
    Figure PCTKR2012009347-appb-I000106
    If there is no transmit / receive point that can be added larger or no longer, uplink communication method of a transmit / receive point further comprising receiving CoMP set information including at least one transmit / receive point prior to adding another transmit point. .
  10. 둘 이상의 송수신 포인트들과 단말이 협력 통신하는 무선통신 시스템에서,In a wireless communication system in which two or more transmission and reception points and the terminal cooperative communication,
    상기 송수신 포인트들로부터 참조신호들을 수신하고, 상기 송수신 포인트들의 참조신호들의 전송전력의 정보를 상기 송수신 포인트들 중 하나로부터 수신하는 RF부; 및An RF unit for receiving reference signals from the transmission / reception points and receiving information on transmission power of reference signals of the transmission / reception points from one of the transmission / reception points; And
    수신한 상기 참조신호들의 수신전력들을 측정하여 수신한 상기 참조신호 전송전력 정보와 상기 측정한 수신전력들로부터 획득된 실질적 경로손실(Path Loss)을 고려한 상기 상향링크 전송전력이, 상기 송수신 포인트들 각각에 의해 수신을 위해 요구되는 상향링크 DM-RS 전송전력들 각각의 최대값과 같거나 크도록 상향링크 전송전력을 결정하는 프로세서를 포함하며, The uplink transmission power considering the received reference signal transmission power information received by measuring the reception powers of the received reference signals and the actual path loss obtained from the measured reception powers, respectively, are respectively transmitted and received points. A processor for determining the uplink transmission power to be equal to or greater than the maximum value of each of the uplink DM-RS transmission powers required for reception by
    상기 RF부는 상향링크 물리채널을 통해 상기 상향링크 전송전력으로 신호를 전송하는 것을 특징으로 하는 단말.The RF unit is characterized in that for transmitting a signal in the uplink transmission power through an uplink physical channel.
  11. 제10항에 있어서,The method of claim 10,
    상기 RF부는 상기 실질적 경로손실(Path Loss)을 고려하여 상향링크 물리채널을 통해 신호를 전송할 상향링크 전송전력(이하, "
    Figure PCTKR2012009347-appb-I000107
    "이라 함)과 상기 송수신 포인트들 각각에 의해 수신되기 위해 상향링크 DM-RS의 전송전력들의 최대값(이하, "
    Figure PCTKR2012009347-appb-I000108
    ")을 비교하고,
    The RF unit takes uplink transmission power to transmit a signal through an uplink physical channel in consideration of the substantial path loss.
    Figure PCTKR2012009347-appb-I000107
    And maximum values of transmit powers of an uplink DM-RS to be received by each of the transmit / receive points (hereinafter, “”).
    Figure PCTKR2012009347-appb-I000108
    "),
    상기
    Figure PCTKR2012009347-appb-I000109
    Figure PCTKR2012009347-appb-I000110
    보다 큰 경우 추가적인 송수신 포인트를 CoMP 세트에 추가하여
    Figure PCTKR2012009347-appb-I000111
    을 계산하고,
    remind
    Figure PCTKR2012009347-appb-I000109
    this
    Figure PCTKR2012009347-appb-I000110
    If greater, add additional transmit / receive points to the CoMP set
    Figure PCTKR2012009347-appb-I000111
    , And
    계산된 상기
    Figure PCTKR2012009347-appb-I000112
    Figure PCTKR2012009347-appb-I000113
    보다 크지 않거나 더 이상 추가할 수 있는 송수신 포인트가 없는 경우 상기 추가적인 송수신 포인트를 상기 CoMP 세트에 추가하기 전의
    Figure PCTKR2012009347-appb-I000114
    또는 (
    Figure PCTKR2012009347-appb-I000115
    +fc(i))값 중 최대값으로 상기 상향링크 전송전력을 결정하며, 상기 fc(i)는 명시적인 전송전력 제어 명령을 통해 직접적으로 PUSCH 전송 전력을 조절하기 위한 값인 것을 특징으로 하는 단말.
    Calculated Remind
    Figure PCTKR2012009347-appb-I000112
    this
    Figure PCTKR2012009347-appb-I000113
    If there are no transmit / receive points that are greater than or can be added anymore, before adding the additional transmit / receive points to the CoMP set.
    Figure PCTKR2012009347-appb-I000114
    or (
    Figure PCTKR2012009347-appb-I000115
    The uplink transmission power is determined as a maximum value of + fc (i)), and f c (i) is a value for directly controlling a PUSCH transmission power through an explicit transmission power control command. .
  12. 둘 이상의 송수신 포인트들과 단말이 협력 통신하는 무선통신 시스템에서, In a wireless communication system in which two or more transmission and reception points and the terminal cooperative communication,
    참조신호를 상기 단말로 전송하고, 상기 참조신호의 전송전력 정보 및 적어도 하나의 다른 송수신 포인트의 참조신호의 전송전력 정보를 상기 단말로 전송하고, 수신한 상기 참조신호 전송전력 정보 및 상기 참조신호와 적어도 하나의 다른 송수신 포인트로부터 하향링크 물리채널을 통한 수신한 상기 참조신호의 측정된 수신전력들로부터 획득된 실질적 경로손실(Path Loss)을 고려한 상기 상향링크 전송전력이, 상기 송수신 포인트들 각각에 의해 수신을 위해 요구되는 상향링크 DM-RS 전송전력들 각각의 최대값과 같거나 크도록 결정된 상향링크 전송전력으로 상기 단말로부터 상향링크 물리채널을 통해 전송된 신호를 수신하는 RF부; 및Transmits a reference signal to the terminal, transmits transmission power information of the reference signal and transmission power information of a reference signal of at least one other transmission / reception point to the terminal, and receives the received reference signal transmission power information and the reference signal and The uplink transmission power in consideration of the actual path loss obtained from the measured reception powers of the reference signal received through the downlink physical channel from at least one other transmission / reception point is determined by each of the transmission / reception points. An RF unit for receiving a signal transmitted through an uplink physical channel from the terminal with an uplink transmission power determined to be equal to or greater than a maximum value of each of uplink DM-RS transmission powers required for reception; And
    상기 단말로부터 상향링크 전송을 제어하는 프로세서를 포함하는 송수신 포인트.Transmitting and receiving point comprising a processor for controlling uplink transmission from the terminal.
PCT/KR2012/009347 2011-11-07 2012-11-07 Method for uplink power control of terminal in coordinated multi-point communication system, uplink communication method of transceiving point, transceiving point thereof, and terminal thereof WO2013069966A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110115447 2011-11-07
KR10-2011-0115447 2011-11-07

Publications (1)

Publication Number Publication Date
WO2013069966A1 true WO2013069966A1 (en) 2013-05-16

Family

ID=48290269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009347 WO2013069966A1 (en) 2011-11-07 2012-11-07 Method for uplink power control of terminal in coordinated multi-point communication system, uplink communication method of transceiving point, transceiving point thereof, and terminal thereof

Country Status (2)

Country Link
KR (1) KR20130050267A (en)
WO (1) WO2013069966A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111447594A (en) * 2017-04-13 2020-07-24 上海朗帛通信技术有限公司 Method and device used in user equipment and base station for wireless communication
EP3873018B1 (en) * 2018-11-12 2023-06-28 LG Electronics Inc. Method for transmitting and receiving uplink reference signal for positioning, and device therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9749996B2 (en) 2013-07-29 2017-08-29 Lg Electronics Inc. Method and device for performing coordinated multi-point transmission based on selection of transmission point
KR101611825B1 (en) 2013-11-08 2016-04-14 주식회사 케이티 Methods for controlling transmit power in an uplink and apppartuses thereof
GB2572390B (en) 2018-03-28 2021-03-10 Samsung Electronics Co Ltd Reference signal power boosting in a telecommunication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100126549A (en) * 2008-03-24 2010-12-01 콸콤 인코포레이티드 Uplink power headroom measurement delivery and reception for e-dch in cell fach
KR20110079625A (en) * 2008-09-22 2011-07-07 가부시키가이샤 엔티티 도코모 Transmission power control method, mobile communication system, and wireless base station
KR20110102233A (en) * 2010-03-08 2011-09-16 엘지전자 주식회사 Apparatus and method for controlling uplink transmit power

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100126549A (en) * 2008-03-24 2010-12-01 콸콤 인코포레이티드 Uplink power headroom measurement delivery and reception for e-dch in cell fach
KR20110079625A (en) * 2008-09-22 2011-07-07 가부시키가이샤 엔티티 도코모 Transmission power control method, mobile communication system, and wireless base station
KR20110102233A (en) * 2010-03-08 2011-09-16 엘지전자 주식회사 Apparatus and method for controlling uplink transmit power

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA); Carrier Aggregation; Base Station (BS) radio transmission and reception (Release 10)", 3GPP TR 36.808 V1.7.0, 10 October 2011 (2011-10-10) *
3GPP TS 36.300 V10.5.0, EVOLVED UNIVERSAL TERRESTRIAL RADIO ACCESS (E-UTRA) AND EVOLVED UNIVERSAL TERRESTRIAL RADIO ACCESS NETWORK (E-UTRAN); OVERALL DESCRIPTION; STAGE 2 (RELEASE 10), 3 October 2011 (2011-10-03) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111447594A (en) * 2017-04-13 2020-07-24 上海朗帛通信技术有限公司 Method and device used in user equipment and base station for wireless communication
CN111447594B (en) * 2017-04-13 2022-03-29 上海朗帛通信技术有限公司 Method and device used in user equipment and base station for wireless communication
EP3873018B1 (en) * 2018-11-12 2023-06-28 LG Electronics Inc. Method for transmitting and receiving uplink reference signal for positioning, and device therefor

Also Published As

Publication number Publication date
KR20130050267A (en) 2013-05-15

Similar Documents

Publication Publication Date Title
WO2011078571A2 (en) Apparatus for performing comp communication using a precoded sounding reference signal, and method for same
WO2014010841A1 (en) Controlling transmit power of uplink sounding reference signal
WO2012105766A2 (en) Method and apparatus for inter-cell interference coordination in a wireless communication system
WO2012096476A2 (en) Method and device for transmitting/receiving downlink reference signal in wireless communication system
WO2016099079A1 (en) Method for receiving reference signal in wireless communication system, and apparatus therefor
WO2015065087A1 (en) Apparatus and method for cancelling inter-cell interference in communication system
WO2017034182A1 (en) Method for receiving or transmitting reference signal for location determination in wireless communication system and device for same
WO2016032218A2 (en) Method for receiving reference signal in wireless communication system and apparatus therefor
WO2018147700A1 (en) Method for terminal and base station including multiple transmission and reception points (trp) to transmit/receive signals in wireless communication system, and device therefor
WO2011155763A2 (en) Method and device for transmitting/receiving channel state information in coordinated multipoint communication system
WO2012096532A2 (en) Method and device for setting channel status information measuring resource in a wireless communication system
WO2013025051A2 (en) Method and apparatus for inter-cell interference coordination for transmission point group
WO2016024731A1 (en) Method for channel state report in wireless communication system and apparatus therefor
WO2016018100A1 (en) Method for reporting channel state, and device therefor
WO2012002673A2 (en) Method and device for transmitting/receiving channel state information in a wireless communication system
WO2016163819A1 (en) Method for reporting channel state and apparatus therefor
WO2017086753A1 (en) Method and device for transmitting and receiving channel state information in wireless communication system using multiple antennas
WO2013062359A1 (en) Method for determining transmission power information of downlink subframe and apparatus therefor
WO2016072712A2 (en) Method for channel-related feedback and apparatus for same
WO2016043523A1 (en) Method and device for transmitting and receiving signal to and from enb by user equipment in wireless communication system that supports carrier aggregation
WO2016018094A1 (en) Method for supporting d2d communication to which mimo technology is applied and device therefor
WO2013081368A1 (en) Method and apparatus for transmitting reference signal and uplink transmission
WO2012099412A2 (en) Method and apparatus for transmitting an uplink signal by a relay in a wireless communication system
WO2013069954A1 (en) Apparatus and method for estimating channel
WO2012093759A1 (en) Method and apparatus for selecting a node in a distributed multi-node system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12848293

Country of ref document: EP

Kind code of ref document: A1