WO2013069481A1 - Method for producing triazole compound and intermediate of triazole compound - Google Patents

Method for producing triazole compound and intermediate of triazole compound Download PDF

Info

Publication number
WO2013069481A1
WO2013069481A1 PCT/JP2012/077762 JP2012077762W WO2013069481A1 WO 2013069481 A1 WO2013069481 A1 WO 2013069481A1 JP 2012077762 W JP2012077762 W JP 2012077762W WO 2013069481 A1 WO2013069481 A1 WO 2013069481A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
halogen atom
diastereomer
atom
Prior art date
Application number
PCT/JP2012/077762
Other languages
French (fr)
Japanese (ja)
Inventor
須藤 敬一
大河 正野
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2013069481A1 publication Critical patent/WO2013069481A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/14Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D317/16Radicals substituted by halogen atoms or nitro radicals

Definitions

  • the present invention relates to a method for producing a triazole compound.
  • Patent Document 1 discloses, as an active ingredient of a plant disease control agent, a hydroxyethylazole derivative which is a hetero 5-membered ring containing 2 or more nitrogen atoms in the ring, and further has a cycloalkyl group on the carbon atom to which the hydroxy group is bonded. Or a derivative in which an alkyl group in which some hydrogen atoms are substituted with a cycloalkyl group is bonded.
  • Patent Document 1 Since the compound described in Patent Document 1 has excellent activity as a plant disease control agent, a method for producing such a compound efficiently and at low cost is required. In addition, such a compound has a plurality of diastereomers, but there is a demand for a production method that minimizes the possibility of unnecessary diastereomers being mixed into the finally obtained compound. Yes.
  • an object of the present invention is to provide a production method for efficiently and inexpensively producing a compound that meets the above-mentioned demand.
  • a method for producing a triazole compound according to the present invention includes a diol production step of producing a diol compound represented by the following general formula (Ia) from an oxirane compound represented by the following general formula (III): ,
  • X 3 to X 5 represent a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • a plurality of X 4 are the same atom
  • a plurality of X 5 are the same atom.
  • X 4 and X 5 are different from each other, and n represents 0 to 3.
  • R 2 represents a C3 to C6 cycloalkyl group or a C1 to C4 substituted with the cycloalkyl group
  • the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 cycloalkyl group, an aryl group, or an arylalkyl group (alkyl
  • the aromatic ring of the aryl group and the arylalkyl group may be a halogen atom, a C1-C4 alkyl group, Haloalkyl group 1 ⁇ C4, alkoxy group of C1 ⁇ C4, or may be substituted with a haloalkoxy group having C1 ⁇ C4.
  • X 3 to X 5 represent a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • a plurality of X 4 are the same atom
  • a plurality of X 5 are the same atom.
  • X 4 and X 5 are different from each other, and n represents 0 to 3.
  • R 2 represents a C3 to C6 cycloalkyl group or a C1 to C4 substituted with the cycloalkyl group
  • the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 cycloalkyl group, an aryl group, or an arylalkyl group (alkyl
  • the aromatic ring of the aryl group and the arylalkyl group may be a halogen atom, a C1-C4 alkyl group, Haloalkyl group 1 ⁇ C4, alkoxy group of C1 ⁇ C4, or may be substituted with a haloalkoxy group having C1 ⁇ C4.)
  • a first oxirane diastereomer producing step for producing a first oxirane diastereomer of the oxirane compound represented by the general formula (III)
  • X 1 ⁇ X 4 represents a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • a plurality of X 2 are the same atom together
  • X 1 and At least one of X 2 is a halogen atom
  • a plurality of X 4 are the same atom
  • a plurality of X 5 are the same atom
  • X 4 and X 5 are different atoms
  • the intermediate compound according to the present invention is an intermediate compound of the above triazole compound, and is characterized by being represented by the following general formula (Ia).
  • X 3 to X 5 represent a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • a plurality of X 4 are the same atom
  • a plurality of X 5 are the same atom.
  • X 4 and X 5 are different from each other, and n represents 0 to 3.
  • R 2 represents a C3 to C6 cycloalkyl group or a C1 to C4 substituted with the cycloalkyl group
  • the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 cycloalkyl group, an aryl group, or an arylalkyl group (alkyl
  • the aromatic ring of the aryl group and the arylalkyl group may be a halogen atom, a C1-C4 alkyl group, Haloalkyl group 1 ⁇ C4, alkoxy group of C1 ⁇ C4, or may be substituted with a haloalkoxy group having C1 ⁇ C4.
  • the intermediate compound according to the present invention is an intermediate compound of the above-described triazole compound triazole compound, and is characterized by being represented by the following general formula (Ib).
  • X 3 to X 5 represent a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • a plurality of X 4 are the same atom
  • a plurality of X 5 are the same atom.
  • X 4 and X 5 are different from each other, and n represents 0 to 3.
  • R 2 represents a C3 to C6 cycloalkyl group or a C1 to C4 substituted with the cycloalkyl group
  • the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 cycloalkyl group, an aryl group, or an arylalkyl group (alkyl
  • the aromatic ring of the aryl group and the arylalkyl group may be a halogen atom, a C1-C4 alkyl group, Haloalkyl group 1 ⁇ C4, alkoxy group of C1 ⁇ C4, or may be substituted with a haloalkoxy group having C1 ⁇ C4.
  • the intermediate compound according to the present invention is the above-described triazole compound intermediate compound, and is characterized by being represented by the following general formula (Ic).
  • X 3 to X 5 represent a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • a plurality of X 4 are the same atom
  • a plurality of X 5 are the same atom.
  • X 4 and X 5 are mutually different atoms
  • n represents 0 to 3
  • L represents a halogen atom or a sulfonyloxy group
  • R 2 represents a C3 to C6 cycloalkyl group, Or a C1-C4 alkyl group substituted with the cycloalkyl group, wherein the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6
  • the aryl group and the arylalkyl may be substituted with a cycloalkyl group, an aryl group, or an
  • a triazole compound having an excellent bactericidal action against many bacteria causing disease to plants can be produced efficiently and at low cost. Therefore, according to the present invention, a plant disease control agent comprising the triazole compound produced according to the present invention as an active ingredient and exhibiting a high control effect against a wide range of plant diseases can be produced easily and at low cost. .
  • the method for producing a triazole compound according to the present invention includes a diol production step for producing a diol compound represented by the following general formula (Ia) from an oxirane compound represented by the following general formula (III):
  • X 3 to X 5 represent a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • a plurality of X 4 are the same atom
  • a plurality of X 5 are the same atom.
  • X 4 and X 5 are different from each other, and n represents 0 to 3.
  • R 2 represents a C3 to C6 cycloalkyl group or a C1 to C4 substituted with the cycloalkyl group
  • the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 cycloalkyl group, an aryl group, or an arylalkyl group (alkyl
  • the aromatic ring of the aryl group and the arylalkyl group may be a halogen atom, a C1-C4 alkyl group, Haloalkyl group 1 ⁇ C4, alkoxy group of C1 ⁇ C4, or may be substituted with a haloalkoxy group having C1 ⁇ C4.
  • X 3 to X 5 represent a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • a plurality of X 4 are the same atom
  • a plurality of X 5 are the same atom.
  • X 4 and X 5 are different from each other, and n represents 0 to 3.
  • R 2 represents a C3 to C6 cycloalkyl group or a C1 to C4 substituted with the cycloalkyl group
  • the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 cycloalkyl group, an aryl group, or an arylalkyl group (alkyl
  • the aromatic ring of the aryl group and the arylalkyl group may be a halogen atom, a C1-C4 alkyl group, Haloalkyl group 1 ⁇ C4, alkoxy group of C1 ⁇ C4, or may be substituted with a haloalkoxy group having C1 ⁇ C4.)
  • a first oxirane diastereomer producing step for producing a first oxirane diastereomer of the oxirane compound represented by the general formula (III)
  • X 1 ⁇ X 4 represents a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • a plurality of X 2 are the same atom together
  • X 1 and At least one of X 2 is a halogen atom
  • a plurality of X 4 are the same atom
  • a plurality of X 5 are the same atom
  • X 4 and X 5 are different atoms
  • Triazole compound The triazole compound produced by the method for producing a triazole compound in the present embodiment is represented by the following general formula (I):
  • X 1 ⁇ X 4 represents a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • a plurality of X 2 are the same atom together
  • X 1 and At least one of X 2 is a halogen atom
  • a plurality of X 4 are the same atom
  • a plurality of X 5 are the same atom
  • X 4 and X 5 are different atoms
  • X 1 to X 4 each independently represents a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • Examples of the halogen atom in X 1 to X 4 and X 5 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and among them, a chlorine atom and a bromine atom are preferable.
  • a plurality (four) of X 2 are the same atom, and at least one of X 1 and X 2 is a halogen atom. Of these, X 1 is a halogen atom, it is preferred that X 2 is a hydrogen atom.
  • X 3 is a hydrogen atom or a halogen atom, and preferably a hydrogen atom.
  • Plural (two) X 4 are the same atom, and similarly plural (two) X 5 are the same atom.
  • X 4 and X 5 are atoms different from each other. For example, when two X 4 are both hydrogen atoms and two X 5 are both chlorine atoms, or two X 4 are both hydrogen atoms and two X 5 are Examples of these include, but are not limited to, a bromine atom.
  • X 4 and X 5 may be different halogen atoms.
  • M and n each independently represents an integer of 0 to 3.
  • m is preferably 0 or 1, and 0 is particularly preferable.
  • n is preferably from 0 to 2, particularly preferably 1 or 2.
  • compound (I) examples include, for example, a compound represented by the following formula (I-1).
  • Compound (I) has two asymmetric carbon atoms. Accordingly, compound (I) has a plurality of diastereomers.
  • the “diastereomer” refers to a stereoisomer generated by the presence of a plurality of asymmetric carbon atoms in a molecule and not having a mirror image relationship.
  • the triazole compound is a more active diastereomer among a plurality of diastereomers.
  • all diastereomers other than the higher activity diastereomers among the plurality of diastereomers are referred to as lower activity diastereomers.
  • the term “higher activity diastereomer” intends a diastereomer having an excellent control effect against plant diseases than other diastereomers. Further, the “lower activity diastereomer” intends a diastereomer having a control effect which is inferior to the above-mentioned “higher activity diastereomer” against plant diseases.
  • X 1 to X 4 represent a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • a plurality of X 2 are the same atom
  • At least one of 1 and X 2 is a halogen atom
  • a plurality of X 4 are the same atom
  • a plurality of X 5 are the same atom
  • X 4 and X 5 are atoms different from each other
  • m And n represents 0 to 3.
  • * represents an asymmetric carbon atom.
  • compound (IA) Of the two diastereomers in the compound represented by the formula (I-2), the more active diastereomer is referred to as “compound (IA)”. Of the two diastereomers in the compound represented by the formula (I-2), the less active diastereomer is referred to as “compound (IB)”.
  • compound (I) is a compound represented by the following formula (VII) obtained by a known technique (hereinafter referred to as “compound (VII)”), and a compound represented by the following known technique. It can be produced from a compound represented by the formula (VI) (hereinafter referred to as “compound (VI)”).
  • X 3 , X 4 and n are synonymous with the above-mentioned X 3 , X 4 and n.
  • X 6 represents a halogen atom.
  • L 1 represents alkali metal, alkaline earth metal-Q1 (Q1 is a halogen atom), 1/2 (Cu alkali metal), or zinc-Q2 (Q2 is a halogen atom).
  • the alkali metal include lithium, sodium, and potassium, and lithium is particularly preferable.
  • magnesium etc. are mentioned as an alkaline-earth metal.
  • R 2 represents a functional group represented by the following formula (XIV).
  • X 1 , X 2 and m have the same meanings as X 1 , X 2 and m described above.
  • the solvent used is not particularly limited as long as it is an inert solvent, and examples thereof include ethers such as diethyl ether, tetrahydrofuran and dioxane, and aromatic hydrocarbons such as benzene, toluene and xylene. These solvents can also be used as a mixture.
  • water when used for the reaction, it can be used by mixing with an organic solvent.
  • a tetrabutylammonium salt, trimethylbenzylammonium salt is added to the reaction mixture as necessary. It is also possible to carry out the reaction by adding a phase transfer catalyst such as a salt and a quaternary ammonium salt such as triethylbenzylammonium salt, and crown ether and the like.
  • the amount of compound (VI) to be used relative to compound (VII) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol.
  • Compound (VI) is preferably prepared just before the reaction. Moreover, it may be possible to carry out the reaction while generating the compound (VI) in the reaction system. In particular, when L 1 is zinc-Q2 (Q2 is a halogen atom), it is preferable to carry out the reaction while generating compound (IX) in the reaction system.
  • a Lewis acid may be added if desired.
  • the amount of the Lewis acid used relative to compound (VI) is, for example, 0 to 5 times mol (excluding 0), preferably 0.1 to 2 times mol.
  • the Lewis acid include aluminum chloride, zinc chloride, cerium chloride and the like.
  • the reaction temperature and reaction time can be appropriately set depending on the type of the solvent, compound (VI), compound (VI) and the like.
  • the reaction temperature is preferably ⁇ 100 ° C. to 200 ° C., more preferably ⁇ 70 ° C. to 100 ° C.
  • the reaction time is preferably 0.1 to 12 hours, and more preferably 0.5 to 6 hours.
  • compound (VI) a commercially available compound or a compound that can be produced by an existing synthesis technique such as conversion of a halogenated alkenyl compound into an organometallic reagent can be used.
  • compound (VII) a commercially available compound or a compound that can be produced by existing techniques can be used.
  • the amount of the base used for compound (V) is, for example, 0.5 to 20 times mol, preferably 0.8 to 5 times mol.
  • Bases used include alkali metal or alkaline earth metal hydroxide salts such as sodium hydroxide, potassium hydroxide and calcium hydroxide, and alkali metal carbonates or hydrogen carbonates such as sodium carbonate and potassium carbonate. However, it is not limited to these.
  • the solvent to be used is not particularly limited.
  • alcohols such as methanol, ethanol and isopropanol
  • ethers such as diethyl ether, tetrahydrofuran and dioxane
  • N, N-dimethylformamide, N, N-dimethylacetamide and N -Amides such as methyl-2-pyrrolidinone
  • Hydrocarbons such as n-hexane, methylcyclohexane, benzene, toluene and xylene
  • Halogenated hydrocarbons such as dichloroethane and chloroform
  • mixed solvents thereof are examples of mixed solvents thereof.
  • the reaction mixture contains quaternary ammonium salts such as tetrabutylammonium salt, trimethylbenzylammonium salt and triethylbenzylammonium salt, and interphases such as crown ether and the like. It is also possible to carry out the reaction by adding a transfer catalyst.
  • the reaction temperature and reaction time can be appropriately set depending on the solvent, the type of compound (V), and the like.
  • the reaction temperature is preferably ⁇ 20 ° C. to 150 ° C., and more preferably 0 ° C. to 100 ° C.
  • the reaction time is preferably 0.1 to 24 hours, and more preferably 0.5 to 12 hours.
  • X 5 has the same meaning as X 5 above.
  • trihalomethane used examples include chloroform, bromoform, chlorodifluoromethane, dichlorofluoromethane, and dibromofluoromethane.
  • the amount of trihalomethane used with respect to compound (IV) is not particularly limited, and is, for example, 0.5 to 1000 times mol, preferably 0.8 to 100 times mol.
  • trihalomethane itself or other solvents such as dichloromethane and toluene inert to the reaction can be used.
  • phase transfer catalyst When adding a base, when using an aqueous solution such as an aqueous sodium hydroxide solution, it is preferable to use a phase transfer catalyst.
  • the phase transfer catalyst is not particularly limited, and includes quaternary ammonium salts such as tetramethylammonium chloride, tetrabutylammonium bromide, cetyltrimethylammonium bromide, benzyltriethylammonium chloride and benzyltrimethylammonium chloride, and three such as triethylamine and tripropylamine. Secondary amines can be used.
  • the amount of the phase transfer catalyst used relative to the compound (IV) is, for example, 0.001 to 5 times mol, preferably 0.01 to 2 times mol.
  • the base to be used is not particularly limited, and examples thereof include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and are often used as an aqueous solution.
  • the amount of the base used relative to compound (IV) is, for example, 0.1 to 100 times mol, preferably 0.8 to 50 times mol.
  • the concentration of the aqueous solution of alkali metal hydroxide at this time is, for example, 10% to a saturated aqueous solution, and preferably 30% to a saturated aqueous solution.
  • the reaction temperature is, for example, 0 ° C. to 200 ° C., preferably 10 ° C. to 150 ° C.
  • the reaction time is, for example, 0.1 hour to several days, preferably 0.2 hour to 2 days.
  • M represents a hydrogen atom or an alkali metal.
  • the solvent to be used is not particularly limited, and examples thereof include amides such as N-methylpyrrolidone and N, N-dimethylformamide.
  • the amount of the compound (II) used relative to the compound (III) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol. Moreover, you may add a base if desired. In this case, the amount of the base used relative to the compound (II) is, for example, 0 to 10 times mol (excluding 0), preferably 0.5 to 5 times mol.
  • the reaction temperature and reaction time can be appropriately set depending on the solvent, base and the like.
  • the reaction temperature is preferably 0 ° C. to 250 ° C., more preferably 10 ° C. to 150 ° C.
  • the reaction time is preferably 0.1 hour to several days, more preferably 0.5 hour to 2 days.
  • the compound (IA) can be efficiently produced without requiring a separation step of the compound (I) from the diastereomer mixture.
  • an intermediate which is separated and no longer necessary in the production process of compound (IA) can be reused and used for the production of compound (IA).
  • compound (IA) can be produced efficiently and at low cost.
  • the following compounds (Ia), (Ib) and (Ic), which are intermediate compounds of the triazole compound used in the method for producing a triazole compound according to the present invention, are also included in the category of the present invention. .
  • compound (IA) can be produced from compound (III) obtained by a known technique as shown in Scheme 2 below.
  • the amount of the acid catalyst used relative to compound (III) is, for example, 0.001 to 2 times mol, preferably 0.01 to 1 times mol.
  • the acid catalyst used include sulfuric acid, hydrochloric acid, hydrobromic acid and perchloric acid.
  • the reaction temperature and reaction time can be appropriately set depending on the type of solvent and acid catalyst.
  • the reaction temperature is preferably 0 to 200 ° C, more preferably 80 to 150 ° C.
  • the reaction time is preferably 0.1 to 12 hours, more preferably 0.5 to 2 hours.
  • compound (Ia) acetonides compound (III) in a solvent containing a Lewis acid catalyst to obtain a dioxolane compound represented by the following formula (Ib) (hereinafter referred to as “compound (Ib)”). It can also be obtained by deprotecting compound (Ib) in a solvent containing a catalyst (the following reaction formula (6)).
  • the amount of the Lewis acid catalyst used relative to compound (III) is, for example, 0.001 to 2 times mol, preferably 0.01 to 0.1 times mol.
  • the Lewis acid catalyst used include tin (II) chloride, tin (IV) chloride, boron trifluoride, copper sulfate, copper (II) trifluoromethanesulfonate, and titanium (IV) chloride.
  • the reaction temperature and each reaction time can be appropriately set depending on the type of solvent and acid catalyst.
  • the reaction temperature is preferably ⁇ 20 to 50 ° C., more preferably ⁇ 10 to 30 ° C.
  • the reaction time is preferably 0.1 to 12 hours, more preferably 0.5 to 3 hours.
  • the amount of the acid catalyst used relative to compound (Ib) is, for example, 0.01 to 20 times mol, preferably 0.1 to 2 times mol.
  • the acid catalyst used include hydrochloric acid, sulfuric acid, acetic acid, methanesulfonic acid, and p-toluenesulfonic acid.
  • the reaction temperature and each reaction time can be appropriately set depending on the type of solvent and acid catalyst.
  • the reaction temperature is preferably ⁇ 20 to 150 ° C., more preferably 20 to 100 ° C.
  • the reaction time is preferably 0.5 to 24 hours, and more preferably 1 to 12 hours.
  • Compound (Ia) is produced from a compound represented by the following formula (Ia-1) obtained by a known technique (hereinafter referred to as “compound (Ia-1)”) as shown in Scheme 3 below. You can also
  • compound (Ia-1) is hydrolyzed in a solvent containing an acid catalyst to obtain a diol compound represented by the above formula (Ia-2) (hereinafter referred to as “compound (Ia-2)”).
  • compound (Ia-2) is acetonated in acetone containing an acid catalyst to obtain a dioxolane compound represented by the above formula (Ia-3) (hereinafter referred to as “compound (Ia-3)”).
  • compound (Ia-3) 2,2-dimethoxypropane may be allowed to coexist in acetone.
  • compound (Ib) is synthesized from compound (Ia-3) by reaction of trihalomethane with a base.
  • Compound (Ia) is obtained by deprotecting the obtained compound (Ib) in a solvent containing an acid catalyst.
  • compound (IbA) A diastereomer (hereinafter referred to as “compound (IbA)”) finally derived from compound (IA) is separated from the obtained diastereomeric mixture of compound (Ib), and compound (IbA) is used. To obtain compound (Ia). Thus obtained compound (Ia) is a diastereomer finally derived from compound (IA).
  • compound (IaA) the diastereomer derived from compound (IA) is referred to as “compound (IaA)” or “first diol diastereomer”.
  • the compound (IaA) thus obtained may contain other diastereomers, it is possible to further purify the compound by further separating other diastereomers from the obtained compound (IaA). High compound (IaA) is obtained.
  • the amount of the acid catalyst used relative to compound (Ia-1) is, for example, 0.001 to 2 times mol, preferably 0.01 to 1 times mol.
  • the acid catalyst used include sulfuric acid, hydrochloric acid, hydrobromic acid and perchloric acid.
  • the reaction temperature and reaction time can be appropriately set depending on the type of solvent and acid catalyst.
  • the reaction temperature is preferably 0 to 200 ° C, more preferably 80 to 150 ° C.
  • the reaction time is preferably 0.1 to 12 hours, more preferably 0.5 to 2 hours.
  • the amount of the acid catalyst used relative to compound (Ia-2) is, for example, 0.001 to 2 moles, preferably 0.01 to 1 moles.
  • the acid catalyst used include hydrochloric acid, sulfuric acid, p-toluenesulfonic acid and the like.
  • 2,2-dimethoxypropane can be added to the solvent, and the amount used is, for example, 0.1 to 10 times mol, preferably 1 to 5 times mol.
  • the reaction temperature and reaction time can be appropriately set depending on the type of solvent and acid catalyst.
  • the reaction temperature is preferably 0 to 150 ° C., more preferably 20 to 80 ° C.
  • the reaction time is preferably 1 to 24 hours, and more preferably 2 to 10 hours.
  • the amount of trihalomethane used in the synthesis using compound (Ia-3) is, for example, 0.5 to 1000 times mol, preferably 0.8 to 100 times mol.
  • examples of the trihalomethane used include chloroform, bromoform, chlorodifluoromethane, dichlorofluoromethane, and dibromofluoromethane.
  • the amount of base used in the synthesis using compound (Ia-3) is, for example, 0.1 to 100 times mol, preferably 0.8 to 50 times mol.
  • the phase transfer catalyst is not particularly limited, and includes quaternary ammonium salts such as tetramethylammonium chloride, tetrabutylammonium bromide, cetyltrimethylammonium bromide, benzyltriethylammonium chloride and benzyltrimethylammonium chloride, and three such as triethylamine and tripropylamine. Secondary amines can be used.
  • the amount of the phase transfer catalyst used is, for example, 0.001 to 5 times mol, preferably 0.01 to 2 times mol, of the compound (IV).
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide are preferably used, and in many cases, used as an aqueous solution.
  • the amount of the base to be used is, for example, 0.1 to 100 times mol, preferably 0.8 to 50 times mol with respect to compound (IV). Further, the concentration of the aqueous solution of alkali metal hydroxide at this time is, for example, 10% to a saturated aqueous solution, and preferably 30% to a saturated aqueous solution.
  • the reaction temperature is, for example, 0 ° C. to 200 ° C., preferably 10 ° C. to 150 ° C.
  • the reaction time is, for example, 0.1 hour to several days, preferably 0.2 hour to 2 days.
  • the amount of the acid catalyst used relative to compound (Ib) is, for example, 0.01 to 20 times mol, preferably 0.1 to 2 times mol.
  • the acid catalyst used include hydrochloric acid, sulfuric acid, acetic acid, methanesulfonic acid and p-toluenesulfonic acid.
  • the reaction temperature and each reaction time can be appropriately set depending on the type of solvent and acid catalyst.
  • the reaction temperature is preferably ⁇ 20 to 150 ° C., more preferably 20 to 100 ° C.
  • the reaction time is preferably 0.5 to 24 hours, and more preferably 1 to 12 hours.
  • a halohydrin compound represented by the following formula (Ic) (L represents a halogen atom) from the compound (Ia) obtained in Step B1, Step B1-1, or Step C1 by reaction with a halogenating agent Alternatively, a sulfonyl compound represented by the following formula (Ic) (L represents a sulfonyloxy group) is obtained by reaction with a sulfonyl halide (see the following reaction formula (7)).
  • these compounds are referred to as “compound (Ic)”.
  • the amount of the halogenating agent used relative to compound (Ia) is, for example, 0.5 to 10 times mol, preferably 0.8 to 2 times mol.
  • the halogenating agent used include phosphorus pentachloride, phosphorus pentabromide, sulfuryl chloride, thionyl chloride and the like.
  • the reaction temperature and reaction time for obtaining the halohydrin compound can be appropriately set depending on the type of the solvent and the halogenating agent.
  • the reaction temperature is preferably ⁇ 20 to 100 ° C., more preferably 0 to 50 ° C.
  • the reaction time is preferably 0.5 to 24 hours, and more preferably 1 to 12 hours.
  • the amount of the sulfonyl halide used relative to the compound (Ia) is, for example, 0.5 to 10 times mol, preferably 0.8 to 2 times mol. .
  • the sulfonyl halide used include mesyl chloride and tosyl chloride.
  • the reaction temperature and reaction time for obtaining the sulfonyl compound can be appropriately set depending on the solvent, the type of sulfonyl halide, and the like.
  • the reaction temperature is preferably ⁇ 20 to 100 ° C., more preferably 0 to 50 ° C.
  • the reaction time is preferably 0.5 to 24 hours, and more preferably 1 to 12 hours.
  • compound (Ia) a diastereomer mixture of compound (Ia) may be used, compound (IaA) separated from diastereomer mixture of compound (Ia), or compound obtained from compound (IbA) (IaA) may be used.
  • Compound (Ic) obtained using compound (IaA) is a diastereomer finally derived from compound (IA).
  • the diastereomer derived from compound (IA) is referred to as “compound (IcA)” or “first halohydrin or sulfonyl diastereomer”.
  • the compound (IcA) having higher purity can be obtained by further separating other diastereomers from the obtained compound (IcA). ) Is obtained.
  • the amount of the base used relative to compound (Ic) is, for example, 0.5 to 20 times mol, preferably 0.8 to 5 times mol.
  • Examples of the base used include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate and the like.
  • the reaction temperature and reaction time can be appropriately set depending on the type of solvent and base.
  • the reaction temperature is preferably ⁇ 20 to 150 ° C., more preferably 20 to 100 ° C.
  • the reaction time is preferably 0.1 to 24 hours, and more preferably 0.5 to 12 hours.
  • compound (Ic) it is preferable to use (IcA) separated from the diastereomeric mixture of compound (Ic) or compound (IcA) obtained from compound (IaA).
  • Compound (III) obtained using compound (IcA) is a diastereomer finally derived from compound (IA).
  • the diastereomer derived from compound (IA) is referred to as “compound (IIIA)” or “first oxirane diastereomer”.
  • Compound (IA) can be produced by reacting compound (IIIA) obtained in this step according to the above step A4.
  • the diastereomer derived from the diastereomer of the target compound (I) (compound (IA)) is separated from the intermediate diastereomer mixture obtained in the production process of the compound (I). Used for the production of compound (IA).
  • separating the target diastereomer from the diastereomeric mixture of the compound (I) which is a final product is unnecessary, and a compound (IA) can be manufactured efficiently.
  • Compound (IaA) is obtained from the diastereomeric mixture of compound (Ia) obtained in the above-described step, Compound (IbA) is obtained from the diastereomeric mixture of compound (Ib), and Compound is obtained from the diastereomeric mixture of compound (Ic). Compound (Ia) is obtained from diastereomer remaining after separation of (IcA), and is reused in the production of compound (IA) (see the following reaction formula (9)).
  • the diastereomer remaining after separating the compound (IaA) from the diastereomeric mixture of the compound (Ia) is referred to as “compound (IaB)” or “second diol diastereomer”.
  • the diastereomer remaining after separation of compound (IbA) from the diastereomeric mixture of compound (Ib) is referred to as “compound IbB”.
  • the diastereomer remaining after separation of the compound (IcA) from the diastereomeric mixture of the compound (Ic) is referred to as “compound (IcB)” or “second halohydrin or sulfonyl diastereomer”.
  • diastereomers other than compound (IIIA) are referred to as “compound (IIIB)” or “second oxirane diastereomer”.
  • reaction formula (9) compound (IbB) to compound (IaB), compound (IaB) to compound (IcB), compound (IcB) to compound (IIIB), compound (IIIB) to compound (Ia)
  • the above-described method can be employed.
  • the method mentioned above is employable also about the method of obtaining compound (IA) from compound (Ia).
  • the catalyst and solvent to be used, the amount used, the reaction temperature, the reaction time, etc. are appropriately selected.
  • Compound (IaB), Compound (IbB), Compound (IcB) and Compound (IIIB) are each derived from Compound (IB).
  • compound (IA) and each intermediate derived from compound (IA) are sometimes referred to as “diastereomers (A)” in comparison with other diastereomers, respectively.
  • compound (IB) and each intermediate derived from compound (IB) may be referred to as “diastereomer (B)” in comparison with other diastereomers, respectively.
  • Compound (IaB), Compound (IbB), Compound (IcB) and Compound (IIIB) are not required in the production of Compound (IA).
  • compound (Ia) is obtained from compound (IaB), compound (IbB), compound (IcB) and compound (IIIB), and is reused in the production of compound (IA).
  • compound (IA) can be produced at low cost without wasting diastereomers.
  • silica gel As the stationary phase in column chromatography, silica gel, a highly polar stationary phase such as alumina, and a low polarity stationary phase such as alkyl group-bonded silica gel such as octadecylsilyl silica gel can be used.
  • organic solvents such as hexane, ethyl acetate, chloroform, alcohols and acetonitrile, water, and a mixture thereof can be used, and can be appropriately determined according to the type of stationary phase.
  • a plurality of separation methods may be combined, for example, after separation by column chromatography, separation and purification by recrystallization may be further performed.
  • optical center carbon of each diastereomer separated may be determined according to a conventionally known method.
  • the solvent, base, acid, and the like used can be as follows unless otherwise specified.
  • the solvent used is not particularly limited as long as it does not participate in the reaction, but usually ethers such as diethyl ether, tetrahydrofuran and dioxane; alcohols such as methanol, ethanol and isopropanol; aromatics such as benzene, toluene and xylene Hydrocarbons; aliphatic ethers such as petroleum ether, hexane and methylcyclohexane; and amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidinone it can.
  • ethers such as diethyl ether, tetrahydrofuran and dioxane
  • alcohols such as methanol, ethanol and isopropanol
  • aromatics such as benzene, toluene and xylene Hydrocarbons
  • aliphatic ethers such as petroleum ether, hexane and methylcyclohex
  • solvent water, acetonitrile, ethyl acetate, acetic anhydride, acetic acid, pyridine, dimethyl sulfoxide, and the like can be used as the solvent. These solvents may be used as a mixture of two or more.
  • examples of the solvent include a solvent composition composed of solvents that do not form a uniform layer with each other.
  • a phase transfer catalyst such as a conventional quaternary ammonium salt or crown ether may be added to the reaction system.
  • the base used is not particularly limited.
  • examples of the base include alkali metal carbonates such as sodium carbonate, sodium hydrogen carbonate, potassium carbonate and potassium hydrogen carbonate; alkaline earth metal carbonates such as calcium carbonate and barium carbonate; sodium hydroxide and potassium hydroxide Alkali metal hydroxides; alkali metals such as lithium, sodium and potassium; alkali metal alkoxides such as sodium methoxide, sodium ethoxide and potassium t-butoxide; sodium hydride, potassium hydride and lithium hydride, etc.
  • Alkali metal hydrogen compounds such as n-butyllithium; alkali metal amides such as lithium diisopropylamide; and triethylamine, pyridine, 4-dimethylaminopyridine, N, N-dimethyla Phosphorus and 1,8-diazabicyclo-7- [5.4.0] Organic amines such as undecene, and the like.
  • the acid used is not particularly limited.
  • the acid include inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid and sulfuric acid; organic acids such as formic acid, acetic acid, butyric acid, trifluoroacetic acid and p-toluenesulfonic acid; and lithium chloride, bromide Mention may be made of Lewis acids such as lithium, rhodium chloride, aluminum chloride and boron trifluoride.
  • the triazole compound according to the present embodiment can be used in a plant disease control agent and a plant disease control method using the same.
  • Triazole compounds have a controlling effect against a wide range of plant diseases including foliage diseases, seed infectious diseases and soil infectious diseases.
  • triazole compounds exhibit an effect of increasing the yield by controlling the growth and an effect of improving the quality of a wide variety of crops and horticultural plants.
  • the plant disease control agent containing a triazole compound can be applied by non-foliage treatment such as seed treatment, irrigation treatment, water surface treatment, etc. in addition to foliage treatment such as foliage spraying.
  • non-foliage treatment such as seed treatment, irrigation treatment, water surface treatment, etc.
  • foliage treatment such as foliage spraying.
  • a labor can be reduced compared with the case where a foliage process is performed.
  • the plant disease control agent containing a triazole compound can control not only non-foliage diseases but also foliage diseases by non-foliage treatment.
  • reaction solution was poured into ice water and extracted with dichloromethane.
  • the organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate.
  • the solvent was distilled off under reduced pressure, and excess bromoform was distilled off from the resulting crude extract by distillation under reduced pressure.
  • the distillation residue partially solidified and separated into two diastereomers when the solid and oil were separated.
  • the solvent was distilled off under reduced pressure to obtain 0.45 g of a crude product of the diastereomer (A) of the target compound (Ia-a) as a pale yellow oil which was later solidified at room temperature as a pale yellow solid. .
  • the yield was 93%.
  • the diastereomer (B) of the compound (Ib-a) reacted in the same manner to obtain 0.49 g of a crude product containing the diastereomer (B) of the target compound (Ia-a).
  • the olefin compound derived from the compound (Ia-3a) and other impurities, which are impurities contained in the diastereomer (B) of the compound (Ia-a) are distilled away by washing with hexane, and the target compound (Ia-a) 0.31 g of diastereomer (B) was obtained as a white solid. The yield was 64%.
  • the organic layer was washed with saturated aqueous sodium hydrogen carbonate, water and saturated brine, and dried over anhydrous sodium sulfate.
  • the solvent was distilled off under reduced pressure to obtain 0.51 g of the diastereomer (A) of the target compound (Ic-a) as a yellow oil. The yield was 96%.
  • the diastereomer (B) of the compound (Ic-a) reacted in the same manner to obtain 0.36 g of the diastereomer (B) of the target compound (Ic-a) as a white solid.
  • the yield was 99%.
  • ethyl acetate was used instead of toluene as an extraction solvent after the reaction.
  • the diastereomer (B) of the compound (Ic-a) reacted in the same manner to obtain 0.25 g of the diastereomer (B) of the target compound (III-a) as a colorless oil.
  • the yield was 92%.
  • the respective diastereomeric ratios are as follows.
  • the organic layer was washed with saturated aqueous sodium hydrogen carbonate, water and saturated brine, and dried over anhydrous sodium sulfate.
  • the solvent was distilled off under reduced pressure, and 0.37 g of the target compound (Ic-b) was quantitatively obtained as a diastereomeric mixture of yellow oil.
  • the diastereomer (B) of the compound (Ia-b) was subjected to the same reaction as described above to obtain 0.32 g of the target compound (Ic-b) as a white crystal diastereomer mixture.
  • the yield was 94%.
  • the diastereomer ratio in the obtained diastereomer mixture is almost different from the ratio in the diastereomer (B) of the starting compound (Ia-b). Not estimated.
  • the solvent was distilled off under reduced pressure to obtain 0.21 g of the objective compound (III-b) as a diastereomeric mixture of pale yellow oil.
  • the yield was 91%.
  • This crude extract was dissolved in 2.0 ml of methanol, and a solution in which 0.40 g of sodium hydroxide was dissolved in 1.0 ml of water was added. After stirring at room temperature for 1 hour, the reaction solution was poured into ice water and extracted with hexane. The organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting oil was purified by silica gel column chromatography. 0.13 g of the target compound (III-b) was obtained as a diastereomeric mixture of pale yellow oil. The yield was 53%.
  • the present invention can also be expressed as follows.
  • the method for producing a triazole compound according to the present invention includes a second oxirane diastereomer that produces a second oxirane diastereomer of the oxirane compound represented by the general formula (III) from the diol compound produced in the diol production step.
  • the method further includes a stereomer production step and a diol regeneration step of producing the diol compound using the second oxirane diastereomer produced in the second oxirane diastereomer production step.
  • the oxirane compound is hydrolyzed to produce a diol compound.
  • the oxirane compound in the diol production step, is acetonated to produce a dioxolane compound represented by the following general formula (Ib):
  • X 3 to X 5 represent a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • a plurality of X 4 are the same atom
  • a plurality of X 5 are the same atom.
  • X 4 and X 5 are different from each other, and n represents 0 to 3.
  • R 2 represents a C3 to C6 cycloalkyl group or a C1 to C4 substituted with the cycloalkyl group
  • the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 cycloalkyl group, an aryl group, or an arylalkyl group (alkyl
  • the aromatic ring of the aryl group and the arylalkyl group may be a halogen atom, a C1-C4 alkyl group, Haloalkyl group 1 ⁇ C4, alkoxy group of C1 ⁇ C4, or may be substituted with a haloalkoxy group having C1 ⁇ C4.) It is preferable to hydrolyze the dioxolane compound to produce a diol compound.
  • a first dioxolane diastereomer is separated from the dioxolane compound, and the first dioxolane diastereomer is hydrolyzed to obtain a diol compound. It is preferable to produce.
  • a halohydrin or sulfonyl compound represented by the following general formula (Ic) is obtained from the diol compound produced in the diol production step in the first oxirane diastereomer production step.
  • X 3 to X 5 represent a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • a plurality of X 4 are the same atom
  • a plurality of X 5 are the same atom.
  • X 4 and X 5 are mutually different atoms
  • n represents 0 to 3
  • L represents a halogen atom or a sulfonyloxy group
  • R 2 represents a C3 to C6 cycloalkyl group, Or a C1-C4 alkyl group substituted with the cycloalkyl group, wherein the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6
  • the aryl group and the arylalkyl may be substituted with a cycloalkyl group, an aryl group, or an
  • the method for producing a triazole compound according to the present invention includes separating the first diol diastereomer from the diol compound produced in the diol production step in the first oxirane diastereomer production step. From the diol diastereomer, a first halohydrin or sulfonyl diastereomer of a halohydrin or sulfonyl compound represented by the following general formula (Ic) is produced:
  • X 3 to X 5 represent a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • a plurality of X 4 are the same atom
  • a plurality of X 5 are the same atom.
  • X 4 and X 5 are mutually different atoms
  • n represents 0 to 3
  • L represents a halogen atom or a sulfonyloxy group
  • R 2 represents a C3 to C6 cycloalkyl group, Or a C1-C4 alkyl group substituted with the cycloalkyl group, wherein the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6
  • the aryl group and the arylalkyl may be substituted with a cycloalkyl group, an aryl group, or an
  • the first oxirane diastereomer is generated from the first halohydrin or sulfonyl diastereomer.
  • a halohydrin or sulfonyl compound represented by the following general formula (Ic) is obtained from the diol compound produced in the diol production step in the second oxirane diastereomer production step.
  • X 3 to X 5 represent a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • a plurality of X 4 are the same atom
  • a plurality of X 5 are the same atom.
  • X 4 and X 5 are mutually different atoms
  • n represents 0 to 3
  • L represents a halogen atom or a sulfonyloxy group
  • R 2 represents a C3 to C6 cycloalkyl group, Or a C1-C4 alkyl group substituted with the cycloalkyl group, wherein the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6
  • the aryl group and the arylalkyl may be substituted with a cycloalkyl group, an aryl group, or an
  • the second halohydrin or sulfonyl diastereomer is separated from the halohydrin or sulfonyl compound to produce the second oxirane diastereomer from the second halohydrin or sulfonyl diastereomer.
  • the second diol diastereomer is separated from the diol compound produced in the diol production step.
  • a second halohydrin or sulfonyl diastereomer of the halohydrin or sulfonyl compound represented by the following general formula (Ic) is produced:
  • X 3 to X 5 represent a hydrogen atom or a halogen atom
  • X 5 represents a halogen atom
  • a plurality of X 4 are the same atom
  • a plurality of X 5 are the same atom.
  • X 4 and X 5 are mutually different atoms
  • n represents 0 to 3
  • L represents a halogen atom or a sulfonyloxy group
  • R 2 represents a C3 to C6 cycloalkyl group, Or a C1-C4 alkyl group substituted with the cycloalkyl group, wherein the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6
  • the aryl group and the arylalkyl may be substituted with a cycloalkyl group, an aryl group, or an
  • the second oxirane diastereomer is produced from the second halohydrin or sulfonyl diastereomer.
  • the present invention can be suitably used as a method for producing an active ingredient of a control material capable of controlling plant diseases by foliage treatment and non-foliage treatment.

Abstract

In this method for producing a triazole compound, a diol compound is produced from an oxirane compound, a first oxirane diastereomer is produced from the diol compound, and a triazole compound is produced using the first oxirane diastereomer. The first oxirane diastereomer is a diastereomer from which a diastereomer of the aimed triazole compound is derived. Consequently, a triazole compound is efficiently produced at low cost.

Description

トリアゾール化合物の製造方法、及びトリアゾール化合物の中間体Method for producing triazole compound, and intermediate of triazole compound
 本発明は、トリアゾール化合物の製造方法に関する。 The present invention relates to a method for producing a triazole compound.
 特許文献1には、植物病害防除剤の有効成分として、環内に窒素原子2個以上を含む複素5員環であるヒドロキシエチルアゾール誘導体であり、ヒドロキシ基が結合する炭素原子にさらにシクロアルキル基、もしくは一部の水素原子がシクロアルキル基で置換されたアルキル基が結合している誘導体が記載されている。 Patent Document 1 discloses, as an active ingredient of a plant disease control agent, a hydroxyethylazole derivative which is a hetero 5-membered ring containing 2 or more nitrogen atoms in the ring, and further has a cycloalkyl group on the carbon atom to which the hydroxy group is bonded. Or a derivative in which an alkyl group in which some hydrogen atoms are substituted with a cycloalkyl group is bonded.
国際公開パンフレット「WO2011/070742号(2011年6月16日公開)」International Publication Pamphlet “WO2011 / 070742 (Released on June 16, 2011)”
 特許文献1に記載の化合物は、植物病害防除剤として優れた活性を有するものであるため、このような化合物を、効率よく低コストに製造する方法が求められている。また、このような化合物には、複数のジアステレオマーが存在するが、最終的に得られた化合物に不要なジアステレオマーが混入する可能性を最低限に抑えるような製造方法が求められている。 Since the compound described in Patent Document 1 has excellent activity as a plant disease control agent, a method for producing such a compound efficiently and at low cost is required. In addition, such a compound has a plurality of diastereomers, but there is a demand for a production method that minimizes the possibility of unnecessary diastereomers being mixed into the finally obtained compound. Yes.
 そこで、本発明は上記の問題点に鑑みてなされたものであり、その目的は、上記の要望に応える化合物を効率よく低コストに製造する製造方法を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a production method for efficiently and inexpensively producing a compound that meets the above-mentioned demand.
 上記の課題を解決するために、本発明に係るトリアゾール化合物の製造方法は、下記一般式(III)に示されるオキシラン化合物から下記一般式(Ia)に示されるジオール化合物を生成するジオール生成工程と、 In order to solve the above-described problems, a method for producing a triazole compound according to the present invention includes a diol production step of producing a diol compound represented by the following general formula (Ia) from an oxirane compound represented by the following general formula (III): ,
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。) (X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are different from each other, and n represents 0 to 3. R 2 represents a C3 to C6 cycloalkyl group or a C1 to C4 substituted with the cycloalkyl group The cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 cycloalkyl group, an aryl group, or an arylalkyl group (alkyl The aromatic ring of the aryl group and the arylalkyl group may be a halogen atom, a C1-C4 alkyl group, Haloalkyl group 1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。)
 前記ジオール生成工程において生成されたジオール化合物から、前記一般式(III)に示されるオキシラン化合物の第1のオキシランジアステレオマーを生成する第1のオキシランジアステレオマー生成工程と、前記第1のオキシランジアステレオマー生成工程において生成した第1のオキシランジアステレオマーを用いて、下記一般式(I)に示されるトリアゾール化合物を生成するトリアゾール化合物生成工程と、
(X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are different from each other, and n represents 0 to 3. R 2 represents a C3 to C6 cycloalkyl group or a C1 to C4 substituted with the cycloalkyl group The cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 cycloalkyl group, an aryl group, or an arylalkyl group (alkyl The aromatic ring of the aryl group and the arylalkyl group may be a halogen atom, a C1-C4 alkyl group, Haloalkyl group 1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
A first oxirane diastereomer producing step for producing a first oxirane diastereomer of the oxirane compound represented by the general formula (III) from the diol compound produced in the diol producing step; Using the first oxirane diastereomer produced in the diastereomer production step, a triazole compound production step for producing a triazole compound represented by the following general formula (I);
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式(I)中、X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、XおよびXの少なくとも一方はハロゲン原子であり、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、mおよびnは0~3を表している。)
を包含し、
 前記第1のオキシランジアステレオマーは、上記一般式(I)に示されるトリアゾール化合物における目的とするトリアゾール化合物のジアステレオマーに誘導されるものであることを特徴としている。
(In the formula (I), X 1 ~ X 4 represents a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 2 are the same atom together, X 1 and At least one of X 2 is a halogen atom, a plurality of X 4 are the same atom, a plurality of X 5 are the same atom, X 4 and X 5 are different atoms, m and n Represents 0 to 3.)
Including
The first oxirane diastereomer is derived from a diastereomer of a target triazole compound in the triazole compound represented by the general formula (I).
 本発明に係る中間体化合物は、上記のトリアゾール化合物の中間体化合物であって、下記一般式(Ia)に示されることを特徴としている。 The intermediate compound according to the present invention is an intermediate compound of the above triazole compound, and is characterized by being represented by the following general formula (Ia).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。) (X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are different from each other, and n represents 0 to 3. R 2 represents a C3 to C6 cycloalkyl group or a C1 to C4 substituted with the cycloalkyl group The cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 cycloalkyl group, an aryl group, or an arylalkyl group (alkyl The aromatic ring of the aryl group and the arylalkyl group may be a halogen atom, a C1-C4 alkyl group, Haloalkyl group 1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
 本発明に係る中間体化合物は、上記のトリアゾール化合物トリアゾール化合物の中間体化合物であって、下記一般式(Ib)に示されることを特徴としている。 The intermediate compound according to the present invention is an intermediate compound of the above-described triazole compound triazole compound, and is characterized by being represented by the following general formula (Ib).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。) (X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are different from each other, and n represents 0 to 3. R 2 represents a C3 to C6 cycloalkyl group or a C1 to C4 substituted with the cycloalkyl group The cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 cycloalkyl group, an aryl group, or an arylalkyl group (alkyl The aromatic ring of the aryl group and the arylalkyl group may be a halogen atom, a C1-C4 alkyl group, Haloalkyl group 1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
 本発明に係る中間体化合物は、上記のトリアゾール化合物中間体化合物であって、下記一般式(Ic)に示されることを特徴としている。 The intermediate compound according to the present invention is the above-described triazole compound intermediate compound, and is characterized by being represented by the following general formula (Ic).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表しており、Lはハロゲン原子又はスルホニルオキシ基を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。) (X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are mutually different atoms, n represents 0 to 3, L represents a halogen atom or a sulfonyloxy group, R 2 represents a C3 to C6 cycloalkyl group, Or a C1-C4 alkyl group substituted with the cycloalkyl group, wherein the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 The aryl group and the arylalkyl may be substituted with a cycloalkyl group, an aryl group, or an arylalkyl group (carbon chain C1 to C3 of the alkyl moiety). The aromatic ring, a halogen atom, an alkyl group of C1 ~ C4, haloalkyl group of C1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
 本発明に係るトリアゾール化合物の製造方法によれば、植物に病害を引き起こす多くの菌に対して優れた殺菌作用を有するトリアゾール化合物を効率よく低コストに製造することができる。したがって、本発明によれば、本発明により製造したトリアゾール化合物を有効成分として含み、広範な植物病害に対して高い防除効果を発揮する植物病害防除剤を、容易且つ低コストに製造することができる。 According to the method for producing a triazole compound according to the present invention, a triazole compound having an excellent bactericidal action against many bacteria causing disease to plants can be produced efficiently and at low cost. Therefore, according to the present invention, a plant disease control agent comprising the triazole compound produced according to the present invention as an active ingredient and exhibiting a high control effect against a wide range of plant diseases can be produced easily and at low cost. .
 以下、本発明に係るトリアゾール化合物の製造方法について説明する。 Hereinafter, the method for producing the triazole compound according to the present invention will be described.
 本発明に係るトリアゾール化合物の製造方法は、下記一般式(III)に示されるオキシラン化合物から下記一般式(Ia)に示されるジオール化合物を生成するジオール生成工程と、 The method for producing a triazole compound according to the present invention includes a diol production step for producing a diol compound represented by the following general formula (Ia) from an oxirane compound represented by the following general formula (III):
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。) (X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are different from each other, and n represents 0 to 3. R 2 represents a C3 to C6 cycloalkyl group or a C1 to C4 substituted with the cycloalkyl group The cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 cycloalkyl group, an aryl group, or an arylalkyl group (alkyl The aromatic ring of the aryl group and the arylalkyl group may be a halogen atom, a C1-C4 alkyl group, Haloalkyl group 1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。)
 前記ジオール生成工程において生成されたジオール化合物から、前記一般式(III)に示されるオキシラン化合物の第1のオキシランジアステレオマーを生成する第1のオキシランジアステレオマー生成工程と、
 前記第1のオキシランジアステレオマー生成工程において生成した第1のオキシランジアステレオマーを用いて、下記一般式(I)に示されるトリアゾール化合物を生成するトリアゾール化合物生成工程と
(X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are different from each other, and n represents 0 to 3. R 2 represents a C3 to C6 cycloalkyl group or a C1 to C4 substituted with the cycloalkyl group The cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 cycloalkyl group, an aryl group, or an arylalkyl group (alkyl The aromatic ring of the aryl group and the arylalkyl group may be a halogen atom, a C1-C4 alkyl group, Haloalkyl group 1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
A first oxirane diastereomer producing step for producing a first oxirane diastereomer of the oxirane compound represented by the general formula (III) from the diol compound produced in the diol producing step;
A triazole compound production step for producing a triazole compound represented by the following general formula (I) using the first oxirane diastereomer produced in the first oxirane diastereomer production step;
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式(I)中、X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、XおよびXの少なくとも一方はハロゲン原子であり、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、mおよびnは0~3を表している。)
を包含し、前記第1のオキシランジアステレオマーは、上記一般式(I)に示されるトリアゾール化合物における目的とするトリアゾール化合物のジアステレオマーに誘導されるものであることを特徴としている。
(In the formula (I), X 1 ~ X 4 represents a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 2 are the same atom together, X 1 and At least one of X 2 is a halogen atom, a plurality of X 4 are the same atom, a plurality of X 5 are the same atom, X 4 and X 5 are different atoms, m and n Represents 0 to 3.)
And the first oxirane diastereomer is derived from the diastereomer of the desired triazole compound in the triazole compound represented by the general formula (I).
 〔1.トリアゾール化合物〕
 本実施の形態におけるトリアゾール化合物の製造方法によって製造されるトリアゾール化合物は、下記一般式(I)
[1. Triazole compound)
The triazole compound produced by the method for producing a triazole compound in the present embodiment is represented by the following general formula (I):
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(式(I)中、X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、XおよびXの少なくとも一方はハロゲン原子であり、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、mおよびnは0~3を表している。)
で示されるトリアゾール化合物である。
(In the formula (I), X 1 ~ X 4 represents a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 2 are the same atom together, X 1 and At least one of X 2 is a halogen atom, a plurality of X 4 are the same atom, a plurality of X 5 are the same atom, X 4 and X 5 are different atoms, m and n Represents 0 to 3.)
It is a triazole compound shown by these.
 X~Xは、それぞれ独立に水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表している。X~XおよびXにおけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられ、なかでも塩素原子および臭素原子が好ましい。 X 1 to X 4 each independently represents a hydrogen atom or a halogen atom, and X 5 represents a halogen atom. Examples of the halogen atom in X 1 to X 4 and X 5 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and among them, a chlorine atom and a bromine atom are preferable.
 複数(4つ)あるXは互いに同一の原子であり、XおよびXの少なくとも一方はハロゲン原子である。なかでも、Xがハロゲン原子であり、Xが水素原子であることが好ましい。 A plurality (four) of X 2 are the same atom, and at least one of X 1 and X 2 is a halogen atom. Of these, X 1 is a halogen atom, it is preferred that X 2 is a hydrogen atom.
 上記のとおり、Xは水素原子またはハロゲン原子であるが、なかでも水素原子であることが好ましい。 As described above, X 3 is a hydrogen atom or a halogen atom, and preferably a hydrogen atom.
 複数(2つ)あるXは互いに同一の原子であり、同様に、複数(2つ)あるXは互いに同一の原子である。また、XおよびXは互いに異なる原子である。例えば、2つあるXが何れも水素原子であり、2つあるXが何れも塩素原子である場合、あるいは、2つあるXが何れも水素原子であり、2つあるXが何れも臭素原子である場合等が挙げられるが、これらに限定されるものではない。例えば、XおよびXが互いに異なるハロゲン原子同士であってもよい。 Plural (two) X 4 are the same atom, and similarly plural (two) X 5 are the same atom. X 4 and X 5 are atoms different from each other. For example, when two X 4 are both hydrogen atoms and two X 5 are both chlorine atoms, or two X 4 are both hydrogen atoms and two X 5 are Examples of these include, but are not limited to, a bromine atom. For example, X 4 and X 5 may be different halogen atoms.
 mおよびnはそれぞれ独立に0~3の整数を表している。なかでも、mは0または1であることが好ましく、0が特に好ましい。一方、nは0~2であることが好ましく、1または2であることが特に好ましい。 M and n each independently represents an integer of 0 to 3. Among these, m is preferably 0 or 1, and 0 is particularly preferable. On the other hand, n is preferably from 0 to 2, particularly preferably 1 or 2.
 上記式(I)で示される化合物(以下、「化合物(I)」と称する)の具体例としては、例えば、下記式(I-1)で示される化合物が挙げられる。 Specific examples of the compound represented by the above formula (I) (hereinafter referred to as “compound (I)”) include, for example, a compound represented by the following formula (I-1).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(式(I-1)中、X1aおよびX5aは、それぞれ独立に塩素原子または臭素原子を表しており、nは、0、1または2を表している。) (Formula (I-1) in, X 1a and X 5a are each independently a chlorine atom or a bromine atom, n a represents 0, 1 or 2.)
 化合物(I)には、不斉炭素原子が2つ存在する。したがって、化合物(I)には、複数のジアステレオマーが存在する。なお、本明細書において「ジアステレオマー」とは、分子内の複数の不斉炭素原子の存在によって生じる立体異性体であって、鏡像関係にないものをいう。本実施の形態において、トリアゾール化合物は、複数のジアステレオマーのうち、より高活性のジアステレオマーである。なお、本実施の形態においては、複数のジアステレオマーのうち、より高活性のジアステレオマー以外のジアステレオマーを全て、より低活性のジアステレオマーと称する。 Compound (I) has two asymmetric carbon atoms. Accordingly, compound (I) has a plurality of diastereomers. In the present specification, the “diastereomer” refers to a stereoisomer generated by the presence of a plurality of asymmetric carbon atoms in a molecule and not having a mirror image relationship. In the present embodiment, the triazole compound is a more active diastereomer among a plurality of diastereomers. In the present embodiment, all diastereomers other than the higher activity diastereomers among the plurality of diastereomers are referred to as lower activity diastereomers.
 本明細書において「より高活性のジアステレオマー」とは、他のジアステレオマーよりも植物病害に対して優れた防除効果を有するジアステレオマーを意図している。また、「より低活性のジアステレオマー」とは、上述の「より高活性のジアステレオマー」よりも植物病害に対して劣る防除効果を有するジアステレオマーを意図している。 As used herein, the term “higher activity diastereomer” intends a diastereomer having an excellent control effect against plant diseases than other diastereomers. Further, the “lower activity diastereomer” intends a diastereomer having a control effect which is inferior to the above-mentioned “higher activity diastereomer” against plant diseases.
 本実施の形態においては、下記式(I-2)で示されるように、化合物(I)に2つの不斉炭素原子が存在する場合を例として説明する。 In the present embodiment, the case where two asymmetric carbon atoms are present in compound (I) will be described as an example, as shown by the following formula (I-2).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(式(I-2)中、X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、XおよびXの少なくとも一方はハロゲン原子であり、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、mおよびnは0~3を表している。*は、不斉炭素原子を示している。) (In Formula (I-2), X 1 to X 4 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, and a plurality of X 2 are the same atom, At least one of 1 and X 2 is a halogen atom, a plurality of X 4 are the same atom, a plurality of X 5 are the same atom, X 4 and X 5 are atoms different from each other, m And n represents 0 to 3. * represents an asymmetric carbon atom.)
 上記式(I-2)で示される化合物における2種のジアステレオマーのうち、より高活性のジアステレオマーを「化合物(IA)」と称する。なお、上記式(I-2)で示される化合物における2種のジアステレオマーのうち、より低活性のジアステレオマーを「化合物(IB)」と称する。 Of the two diastereomers in the compound represented by the formula (I-2), the more active diastereomer is referred to as “compound (IA)”. Of the two diastereomers in the compound represented by the formula (I-2), the less active diastereomer is referred to as “compound (IB)”.
 〔2:トリアゾール化合物の製造工程〕
 まず、化合物(I)の製造方法の一実施形態について説明する。
[2: Triazole compound production process]
First, an embodiment of a method for producing compound (I) will be described.
 化合物(I)は、下記スキーム1に示すように、公知の技術により得られる下記式(VII)で示される化合物(以下、「化合物(VII)」と称する)、および公知の技術により得られる下記式(VI)で示される化合物(以下、「化合物(VI)」と称する)から、製造することができる。 As shown in the following scheme 1, compound (I) is a compound represented by the following formula (VII) obtained by a known technique (hereinafter referred to as “compound (VII)”), and a compound represented by the following known technique. It can be produced from a compound represented by the formula (VI) (hereinafter referred to as “compound (VI)”).
 (スキーム1) (Scheme 1)
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 以下、各工程について説明する。 Hereinafter, each process will be described.
 (工程A1)
 まず、溶媒中で化合物(VII)に化合物(VI)を反応させ、有機金属化合物による化合物(VII)のカルボニル炭素原子への求核付加反応により、炭素-炭素結合を生成させる。これにより、下記式(V)で示されるハロヒドリン化合物(以下、「化合物(V)」と称する)を得る(下記反応式(1)参照)。
(反応式(1))
(Process A1)
First, compound (VII) is reacted with compound (VII) in a solvent, and a carbon-carbon bond is generated by a nucleophilic addition reaction of compound (VII) to the carbonyl carbon atom with an organometallic compound. Thereby, a halohydrin compound represented by the following formula (V) (hereinafter referred to as “compound (V)”) is obtained (see the following reaction formula (1)).
(Reaction Formula (1))
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 ここで、X、Xおよびnは、上述のX、Xおよびnと同義である。 Here, X 3 , X 4 and n are synonymous with the above-mentioned X 3 , X 4 and n.
 Xは、ハロゲン原子を表している。 X 6 represents a halogen atom.
 Lは、アルカリ金属、アルカリ土類金属-Q1(Q1はハロゲン原子)、1/2(Cuアルカリ金属)、または亜鉛-Q2(Q2はハロゲン原子)を表している。アルカリ金属としては、リチウム、ナトリウムおよびカリウム等が挙げられ、なかでもリチウムが好ましい。また、アルカリ土類金属としては、マグネシウム等が挙げられる。 L 1 represents alkali metal, alkaline earth metal-Q1 (Q1 is a halogen atom), 1/2 (Cu alkali metal), or zinc-Q2 (Q2 is a halogen atom). Examples of the alkali metal include lithium, sodium, and potassium, and lithium is particularly preferable. Moreover, magnesium etc. are mentioned as an alkaline-earth metal.
 Rは、下記式(XIV)で示す官能基を表している。 R 2 represents a functional group represented by the following formula (XIV).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式(XIV)中の、X、Xおよびmは、上述のX、Xおよびmと同義である。 In the formula (XIV), X 1 , X 2 and m have the same meanings as X 1 , X 2 and m described above.
 使用される溶媒としては、不活性溶媒であれば特に限定されず、例えば、ジエチルエーテル、テトラヒドロフラン及びジオキサン等のエーテル類、並びにベンゼン、トルエン及びキシレン等の芳香炭化水素類が挙げられる。これらの溶媒は、混合して使用することも可能である。 The solvent used is not particularly limited as long as it is an inert solvent, and examples thereof include ethers such as diethyl ether, tetrahydrofuran and dioxane, and aromatic hydrocarbons such as benzene, toluene and xylene. These solvents can also be used as a mixture.
 また、反応に水を用いる場合は、有機溶媒と混合して使用することも可能であり、疎水性有機溶媒と共に用いる場合には必要に応じ、反応混合物中に、テトラブチルアンモニウム塩、トリメチルベンジルアンモニウム塩及びトリエチルベンジルアンモニウム塩等の4級アンモニウム塩、並びにクラウンエーテルとその類似物等の相間移動触媒を添加して反応を行うことも可能である。 In addition, when water is used for the reaction, it can be used by mixing with an organic solvent. When used with a hydrophobic organic solvent, a tetrabutylammonium salt, trimethylbenzylammonium salt is added to the reaction mixture as necessary. It is also possible to carry out the reaction by adding a phase transfer catalyst such as a salt and a quaternary ammonium salt such as triethylbenzylammonium salt, and crown ether and the like.
 化合物(VII)に対する化合物(VI)の使用量は、例えば0.5~10倍モルであり、好ましくは0.8~5倍モルである。化合物(VI)は、反応の直前に調製されたものが好ましい。また、反応系内で化合物(VI)を発生させながら反応させることも可能な場合もある。特にLが亜鉛-Q2(Q2はハロゲン原子)の場合には、反応系内で化合物(IX)を発生させながら反応させることが好ましい。 The amount of compound (VI) to be used relative to compound (VII) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol. Compound (VI) is preferably prepared just before the reaction. Moreover, it may be possible to carry out the reaction while generating the compound (VI) in the reaction system. In particular, when L 1 is zinc-Q2 (Q2 is a halogen atom), it is preferable to carry out the reaction while generating compound (IX) in the reaction system.
 また、所望によりルイス酸を添加してもよい。その場合の化合物(VI)に対するルイス酸の使用量は、例えば0~5倍モル(ただし、0は除く)であり、好ましくは0.1~2倍モルである。ルイス酸としては、塩化アルミニウム、塩化亜鉛、塩化セリウム等が挙げられる。 Further, a Lewis acid may be added if desired. In this case, the amount of the Lewis acid used relative to compound (VI) is, for example, 0 to 5 times mol (excluding 0), preferably 0.1 to 2 times mol. Examples of the Lewis acid include aluminum chloride, zinc chloride, cerium chloride and the like.
 反応温度および反応時間は、溶媒、化合物(VI)および化合物(VI)の種類等によって適宜設定することができる。反応温度は、好適には-100℃~200℃であり、より好適には-70℃~100℃である。また、反応時間は、好適には0.1~12時間であり、より好適には0.5~6時間である。 The reaction temperature and reaction time can be appropriately set depending on the type of the solvent, compound (VI), compound (VI) and the like. The reaction temperature is preferably −100 ° C. to 200 ° C., more preferably −70 ° C. to 100 ° C. The reaction time is preferably 0.1 to 12 hours, and more preferably 0.5 to 6 hours.
 なお化合物(VI)は、市販化合物、あるいはハロゲン化アルケニル化合物を有機金属試薬に変換する等の既存の合成技術で製造可能な化合物を使用することができる。同様に、化合物(VII)は、市販化合物、あるいは既存の技術で製造可能な化合物を使用することができる。 As the compound (VI), a commercially available compound or a compound that can be produced by an existing synthesis technique such as conversion of a halogenated alkenyl compound into an organometallic reagent can be used. Similarly, as compound (VII), a commercially available compound or a compound that can be produced by existing techniques can be used.
 (工程A2)
 次に、化合物(V)を、塩基存在下、溶媒中で反応して、下記式(IV)で示される、分子中に二重結合を有するオキシラン化合物(以下、「化合物(IV)」と称する)を得る(下記反応式(2)参照)。
(反応式(2))
(Process A2)
Next, the compound (V) is reacted in a solvent in the presence of a base to give an oxirane compound having a double bond in the molecule represented by the following formula (IV) (hereinafter referred to as “compound (IV)”). (See the following reaction formula (2)).
(Reaction Formula (2))
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 化合物(V)に対する塩基の使用量は、例えば0.5~20倍モルであり、好ましくは0.8~5倍モルである。使用される塩基としては、水酸化ナトリウム、水酸化カリウム及び水酸化カルシウム等のアルカリ金属又はアルカリ土類金属の水酸化物塩、並びに炭酸ナトリウム及び炭酸カリウム等のアルカリ金属の炭酸塩又は炭酸水素塩等が挙げられるが、これらに限定されるものではない。 The amount of the base used for compound (V) is, for example, 0.5 to 20 times mol, preferably 0.8 to 5 times mol. Bases used include alkali metal or alkaline earth metal hydroxide salts such as sodium hydroxide, potassium hydroxide and calcium hydroxide, and alkali metal carbonates or hydrogen carbonates such as sodium carbonate and potassium carbonate. However, it is not limited to these.
 使用される溶媒としては、特に限定されないが、例えば、メタノール、エタノール及びイソプロパノール等のアルコール類;ジエチルエーテル、テトラヒドロフラン及びジオキサン等のエーテル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド及びN-メチル-2-ピロリジノン等のアミド類;n-ヘキサン、メチルシクロヘキサン、ベンゼン、トルエン及びキシレン等の炭化水素類;ジクロロエタン及びクロロホルム等のハロゲン化炭化水素類;並びにこれらの混合溶媒等が挙げられる。 The solvent to be used is not particularly limited. For example, alcohols such as methanol, ethanol and isopropanol; ethers such as diethyl ether, tetrahydrofuran and dioxane; N, N-dimethylformamide, N, N-dimethylacetamide and N -Amides such as methyl-2-pyrrolidinone; Hydrocarbons such as n-hexane, methylcyclohexane, benzene, toluene and xylene; Halogenated hydrocarbons such as dichloroethane and chloroform; and mixed solvents thereof.
 塩基の水溶液を、疎水性溶媒と共に用いる場合には、反応混合物中に、テトラブチルアンモニウム塩、トリメチルベンジルアンモニウム塩及びトリエチルベンジルアンモニウム塩等の4級アンモニウム塩、並びにクラウンエーテルとその類似物等の相間移動触媒を添加して反応を行うこともできる。 When an aqueous solution of a base is used with a hydrophobic solvent, the reaction mixture contains quaternary ammonium salts such as tetrabutylammonium salt, trimethylbenzylammonium salt and triethylbenzylammonium salt, and interphases such as crown ether and the like. It is also possible to carry out the reaction by adding a transfer catalyst.
 反応温度および反応時間は、溶媒、化合物(V)の種類等によって適宜設定することができる。反応温度は、好適には-20℃~150℃であり、より好適には0℃~100℃である。また、反応時間は、好適には0.1~24時間であり、より好適には0.5~12時間である。 The reaction temperature and reaction time can be appropriately set depending on the solvent, the type of compound (V), and the like. The reaction temperature is preferably −20 ° C. to 150 ° C., and more preferably 0 ° C. to 100 ° C. The reaction time is preferably 0.1 to 24 hours, and more preferably 0.5 to 12 hours.
 (工程A3)
 次に、化合物(IV)から、トリハロメタンと水酸化ナトリウム等の塩基との反応によって、式(III)で示される、分子中にgem-ジハロシクロプロパン構造を有する化合物(以下、「化合物(III)」と称する)を合成する。あるいは、化合物(IV)から、トリハロ酢酸塩の熱分解等によって生じるハロカルベン類の付加反応によって、化合物(III)を合成する。これらの反応を、下記反応式(3)に示す。
(反応式(3))
(Process A3)
Next, from the compound (IV), a compound having a gem-dihalocyclopropane structure in the molecule represented by the formula (III) (hereinafter referred to as “compound (III)” by the reaction of trihalomethane with a base such as sodium hydroxide. ) ”)). Alternatively, compound (III) is synthesized from compound (IV) by addition reaction of halocarbenes generated by thermal decomposition of trihaloacetate. These reactions are shown in the following reaction formula (3).
(Reaction Formula (3))
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 上記式(III)中、Xは、上述のXと同義である。 In the formula (III), X 5 has the same meaning as X 5 above.
 以下、化合物(III)を合成する好適な方法として、トリハロメタンと水酸化ナトリウム等の塩基との反応により合成する方法について説明する。 Hereinafter, as a suitable method for synthesizing compound (III), a method for synthesizing by reaction of trihalomethane and a base such as sodium hydroxide will be described.
 使用されるトリハロメタンには、例えば、クロロホルム、ブロモホルム、クロロジフルオロメタン、ジクロロフルオロメタンおよびジブロモフルオロメタン等が用いられる。化合物(IV)に対するトリハロメタンの使用量は、特に限定されず、例えば0.5~1000倍モルであり、好ましくは0.8~100倍モルである。 Examples of the trihalomethane used include chloroform, bromoform, chlorodifluoromethane, dichlorofluoromethane, and dibromofluoromethane. The amount of trihalomethane used with respect to compound (IV) is not particularly limited, and is, for example, 0.5 to 1000 times mol, preferably 0.8 to 100 times mol.
 溶媒には、トリハロメタンそのもの、あるいは、反応に不活性なジクロロメタンおよびトルエン等の他の溶媒を用いることができる。 As the solvent, trihalomethane itself or other solvents such as dichloromethane and toluene inert to the reaction can be used.
 塩基を添加する際、水酸化ナトリウム水溶液等の水溶液を使用する場合は、相関移動触媒を使用することが好ましい。相関移動触媒は、特に限定されず、テトラメチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、セチルトリメチルアンモニウムブロミド、ベンジルトリエチルアンモニウムクロリドおよびベンジルトリメチルアンモニウムクロリド等の四級アンモニウム塩、ならびにトリエチルアミンおよびトリプロピルアミン等の三級アミン類などを用いることができる。化合物(IV)に対しする相関移動触媒の使用量は、例えば0.001~5倍モルであり、好ましくは0.01~2倍モルである。 When adding a base, when using an aqueous solution such as an aqueous sodium hydroxide solution, it is preferable to use a phase transfer catalyst. The phase transfer catalyst is not particularly limited, and includes quaternary ammonium salts such as tetramethylammonium chloride, tetrabutylammonium bromide, cetyltrimethylammonium bromide, benzyltriethylammonium chloride and benzyltrimethylammonium chloride, and three such as triethylamine and tripropylamine. Secondary amines can be used. The amount of the phase transfer catalyst used relative to the compound (IV) is, for example, 0.001 to 5 times mol, preferably 0.01 to 2 times mol.
 使用される塩基としては、特に限定されないが、水酸化ナトリウムおよび水酸化カリウム等のアルカリ金属水酸化物等が挙げられ、多くの場合、水溶液として使用される。化合物(IV)に対する塩基の使用量は、例えば0.1~100倍モルであり、好ましくは0.8~50倍モルである。また、このときのアルカリ金属水酸化物の水溶液の濃度は例えば10%から飽和水溶液であり、好ましくは30%から飽和水溶液である。 The base to be used is not particularly limited, and examples thereof include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and are often used as an aqueous solution. The amount of the base used relative to compound (IV) is, for example, 0.1 to 100 times mol, preferably 0.8 to 50 times mol. Further, the concentration of the aqueous solution of alkali metal hydroxide at this time is, for example, 10% to a saturated aqueous solution, and preferably 30% to a saturated aqueous solution.
 反応温度は、例えば0℃~200℃であり、好適には10℃~150℃である。また、反応時間は、例えば0.1時間~数日であり、好ましくは0.2時間~2日である。 The reaction temperature is, for example, 0 ° C. to 200 ° C., preferably 10 ° C. to 150 ° C. The reaction time is, for example, 0.1 hour to several days, preferably 0.2 hour to 2 days.
 (工程A4)
 次に、化合物(III)と、下記一般式(II)で示される1,2,4-トリアゾール化合物(以下、「化合物(II)」と称する)とを反応させることにより、化合物(I)を得る(下記反応式(4)参照)。
(反応式(4))
(Process A4)
Next, the compound (III) is reacted with a 1,2,4-triazole compound represented by the following general formula (II) (hereinafter referred to as “compound (II)”) to thereby convert the compound (I). (See the following reaction formula (4)).
(Reaction Formula (4))
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 式(II)中、Mは、水素原子またはアルカリ金属を表す。 In formula (II), M represents a hydrogen atom or an alkali metal.
 本工程では、化合物(III)のオキシラン環中の炭素原子と化合物(II)とを反応させて、化合物(III)のオキシラン環中の炭素原子と化合物(II)の窒素原子との間に炭素-窒素結合を生成させる。 In this step, a carbon atom in the oxirane ring of compound (III) is reacted with compound (II), and a carbon atom is present between the carbon atom in the oxirane ring of compound (III) and the nitrogen atom of compound (II). -Generate nitrogen bonds.
 この際、用いられる溶媒は、特に限定されないが、例えば、N-メチルピロリドンおよびN,N-ジメチルホルムアミド等のアミド類が挙げられる。 In this case, the solvent to be used is not particularly limited, and examples thereof include amides such as N-methylpyrrolidone and N, N-dimethylformamide.
 化合物(III)に対する化合物(II)の使用量は、例えば0.5~10倍モルであり、好ましくは0.8~5倍モルである。また、所望により塩基を添加してもよい。その場合の化合物(II)に対する塩基の使用量は、例えば0~10倍モル(ただし、0は除く)であり、好ましくは0.5~5倍モルである。 The amount of the compound (II) used relative to the compound (III) is, for example, 0.5 to 10 times mol, preferably 0.8 to 5 times mol. Moreover, you may add a base if desired. In this case, the amount of the base used relative to the compound (II) is, for example, 0 to 10 times mol (excluding 0), preferably 0.5 to 5 times mol.
 反応温度および反応時間は、溶媒および塩基等によって適宜設定することができる。反応温度は、好適には0℃~250℃であり、より好適には10℃~150℃である。また、反応時間は、好適には0.1時間~数日であり、より好適には0.5時間~2日である。 The reaction temperature and reaction time can be appropriately set depending on the solvent, base and the like. The reaction temperature is preferably 0 ° C. to 250 ° C., more preferably 10 ° C. to 150 ° C. The reaction time is preferably 0.1 hour to several days, more preferably 0.5 hour to 2 days.
 以上により、化合物(I)を得ることができる。 Thus, compound (I) can be obtained.
 (工程A4-1)
 なお、上述したように化合物(III)から化合物(I)を得た場合、得られた化合物(I)は、2種のジアステレオマーを含むジアステレオマー混合物である。したがって、より高活性のジアステレオマーである化合物(IA)を得る場合、化合物(I)のジアステレオマー混合物から分離して残った、より低活性のジアステレオマー(IB)を廃棄することになる。
(Process A4-1)
In addition, when compound (I) is obtained from compound (III) as described above, the obtained compound (I) is a diastereomeric mixture including two kinds of diastereomers. Therefore, when obtaining the compound (IA) which is a higher activity diastereomer, the lower activity diastereomer (IB) remaining separated from the diastereomer mixture of the compound (I) is discarded. Become.
 本発明に係るトリアゾール化合物の製造方法によれば、化合物(I)のジアステレオマー混合物からの分離工程を必要とせず、効率よく化合物(IA)を製造することができる。また、本発明によれば、化合物(IA)の製造過程で分離され不要となった中間体を、再利用して化合物(IA)の製造に用いることができる。このように、本発明によれば、効率よく、低コストに化合物(IA)を製造することができる。また、本発明に係るトリアゾール化合物の製造方法において用いられる、トリアゾール化合物の中間体化合物である、以下に示す化合物(Ia)、化合物(Ib)及び化合物(Ic)も、本発明の範疇に含まれる。 According to the method for producing a triazole compound according to the present invention, the compound (IA) can be efficiently produced without requiring a separation step of the compound (I) from the diastereomer mixture. In addition, according to the present invention, an intermediate which is separated and no longer necessary in the production process of compound (IA) can be reused and used for the production of compound (IA). Thus, according to the present invention, compound (IA) can be produced efficiently and at low cost. The following compounds (Ia), (Ib) and (Ic), which are intermediate compounds of the triazole compound used in the method for producing a triazole compound according to the present invention, are also included in the category of the present invention. .
 本実施形態において、化合物(IA)は、下記スキーム2に示すように、公知の技術により得られる化合物(III)から製造することができる。 In this embodiment, compound (IA) can be produced from compound (III) obtained by a known technique as shown in Scheme 2 below.
 (スキーム2) (Scheme 2)
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 以下、各工程について説明する。 Hereinafter, each process will be described.
 なお、上記スキーム2及び下記の各反応式におけるX~X、R、m及びnは、特に明示しない限り、上述のX~X、R、m及びnと同義である。 Note that X 1 to X 5 , R 2 , m, and n in the above-mentioned scheme 2 and the following reaction formulas are synonymous with the above-described X 1 to X 5 , R 2 , m, and n unless otherwise specified.
 <工程B1>
 まず、酸触媒を含む溶媒中において化合物(III)を加水分解し、下記式(Ia)で示されるジオール化合物(以下、「化合物(Ia)」と称する)を得る(下記反応式(5)参照)。
<Process B1>
First, the compound (III) is hydrolyzed in a solvent containing an acid catalyst to obtain a diol compound represented by the following formula (Ia) (hereinafter referred to as “compound (Ia)”) (see the following reaction formula (5)). ).
 (反応式(5)) (Reaction formula (5))
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 化合物(III)に対する酸触媒の使用量は、例えば0.001~2倍モルであり、好ましくは0.01~1倍モルである。使用される酸触媒としては、硫酸、塩酸、臭化水素酸及び過塩素酸等が挙げられる。 The amount of the acid catalyst used relative to compound (III) is, for example, 0.001 to 2 times mol, preferably 0.01 to 1 times mol. Examples of the acid catalyst used include sulfuric acid, hydrochloric acid, hydrobromic acid and perchloric acid.
 反応温度及び反応時間は、溶媒、酸触媒の種類等によって適宜設定することができる。反応温度は、好適には0~200℃であり、より好適には80~150℃である。また、反応時間は、好適には0.1~12時間であり、より好適には0.5~2時間である。 The reaction temperature and reaction time can be appropriately set depending on the type of solvent and acid catalyst. The reaction temperature is preferably 0 to 200 ° C, more preferably 80 to 150 ° C. The reaction time is preferably 0.1 to 12 hours, more preferably 0.5 to 2 hours.
 <工程B1-1>
 また、化合物(Ia)は、ルイス酸触媒を含む溶媒中において化合物(III)をアセトナイド化し、下記式(Ib)で示されるジオキソラン化合物(以下、「化合物(Ib)」と称する)を得、酸触媒を含む溶媒中において化合物(Ib)を脱保護することによっても得られる(下記反応式(6))。
<Process B1-1>
In addition, compound (Ia) acetonides compound (III) in a solvent containing a Lewis acid catalyst to obtain a dioxolane compound represented by the following formula (Ib) (hereinafter referred to as “compound (Ib)”). It can also be obtained by deprotecting compound (Ib) in a solvent containing a catalyst (the following reaction formula (6)).
 (反応式(6)) (Reaction formula (6))
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 化合物(III)に対するルイス酸触媒の使用量は、例えば0.001~2倍モルであり、好ましくは0.01~0.1倍モルである。使用されるルイス酸触媒としては、塩化スズ(II)、塩化スズ(IV)、三フッ化ホウ素、硫酸銅、トリフルオロメタンスルホン酸銅(II)及び塩化チタン(IV)等が挙げられる。 The amount of the Lewis acid catalyst used relative to compound (III) is, for example, 0.001 to 2 times mol, preferably 0.01 to 0.1 times mol. Examples of the Lewis acid catalyst used include tin (II) chloride, tin (IV) chloride, boron trifluoride, copper sulfate, copper (II) trifluoromethanesulfonate, and titanium (IV) chloride.
 反応温度及び各反応時間は、溶媒、酸触媒の種類等によって適宜設定することができる。反応温度は、好適には-20~50℃であり、より好適には-10~30℃である。また、反応時間は、好適には0.1~12時間であり、より好適には0.5~3時間である。 The reaction temperature and each reaction time can be appropriately set depending on the type of solvent and acid catalyst. The reaction temperature is preferably −20 to 50 ° C., more preferably −10 to 30 ° C. The reaction time is preferably 0.1 to 12 hours, more preferably 0.5 to 3 hours.
 化合物(Ib)に対する酸触媒の使用量は、例えば0.01~20倍モルであり、好ましくは0.1~2倍モルである。使用される酸触媒としては、塩酸、硫酸、酢酸、メタンスルホン酸、及びp-トルエンスルホン酸等が挙げられる。 The amount of the acid catalyst used relative to compound (Ib) is, for example, 0.01 to 20 times mol, preferably 0.1 to 2 times mol. Examples of the acid catalyst used include hydrochloric acid, sulfuric acid, acetic acid, methanesulfonic acid, and p-toluenesulfonic acid.
 反応温度及び各反応時間は、溶媒、酸触媒の種類等によって適宜設定することができる。反応温度は、好適には-20~150℃であり、より好適には20~100℃である。また、反応時間は、好適には0.5~24時間であり、より好適には1~12時間である。 The reaction temperature and each reaction time can be appropriately set depending on the type of solvent and acid catalyst. The reaction temperature is preferably −20 to 150 ° C., more preferably 20 to 100 ° C. The reaction time is preferably 0.5 to 24 hours, and more preferably 1 to 12 hours.
 <工程C1>
 なお、化合物(Ia)は、下記スキーム3に示すように、公知の技術により得られる下記式(Ia-1)で示される化合物(以下、「化合物(Ia-1)と称する」)から製造することもできる。
<Process C1>
Compound (Ia) is produced from a compound represented by the following formula (Ia-1) obtained by a known technique (hereinafter referred to as “compound (Ia-1)”) as shown in Scheme 3 below. You can also
 (スキーム3) (Scheme 3)
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 まず、酸触媒を含む溶媒中において化合物(Ia-1)を加水分解し、上記式(Ia-2)で示されるジオール化合物(以下、「化合物(Ia-2)」と称する)を得る。次に、酸触媒を含むアセトン中において化合物(Ia-2)をアセトナイド化し、上記式(Ia-3)で示されるジオキソラン化合物(以下、「化合物(Ia-3)と称する」)を得る。この際、アセトン中に2,2-ジメトキシプロパンを共存させることもできる。そして、化合物(Ia-3)から、トリハロメタンと塩基との反応によって化合物(Ib)を合成する。得られた化合物(Ib)を、酸触媒を含む溶媒中において脱保護することによって、化合物(Ia)が得られる。 First, compound (Ia-1) is hydrolyzed in a solvent containing an acid catalyst to obtain a diol compound represented by the above formula (Ia-2) (hereinafter referred to as “compound (Ia-2)”). Next, the compound (Ia-2) is acetonated in acetone containing an acid catalyst to obtain a dioxolane compound represented by the above formula (Ia-3) (hereinafter referred to as “compound (Ia-3)”). At this time, 2,2-dimethoxypropane may be allowed to coexist in acetone. Then, compound (Ib) is synthesized from compound (Ia-3) by reaction of trihalomethane with a base. Compound (Ia) is obtained by deprotecting the obtained compound (Ib) in a solvent containing an acid catalyst.
 なお、得られた化合物(Ib)のジアステレオマー混合物から、最終的に化合物(IA)に誘導されるジアステレオマー(以下、「化合物(IbA)」)を分離し、化合物(IbA)を用いて化合物(Ia)を得てもよい。これにより得られる化合物(Ia)は、最終的に化合物(IA)に誘導されるジアステレオマーである。以下、化合物(Ia)のジアステレオマーのうち、化合物(IA)に誘導されるジアステレオマーを、「化合物(IaA)」又は「第1のジオールジアステレオマー」と称する。 A diastereomer (hereinafter referred to as “compound (IbA)”) finally derived from compound (IA) is separated from the obtained diastereomeric mixture of compound (Ib), and compound (IbA) is used. To obtain compound (Ia). Thus obtained compound (Ia) is a diastereomer finally derived from compound (IA). Hereinafter, of the diastereomers of compound (Ia), the diastereomer derived from compound (IA) is referred to as “compound (IaA)” or “first diol diastereomer”.
 このようにして得られた化合物(IaA)には、他のジアステレオマーが含まれることもあるので、得られた化合物(IaA)からさらに他のジアステレオマーを分離することによって、より純度の高い化合物(IaA)が得られる。 Since the compound (IaA) thus obtained may contain other diastereomers, it is possible to further purify the compound by further separating other diastereomers from the obtained compound (IaA). High compound (IaA) is obtained.
 化合物(Ia-1)に対する酸触媒の使用量は、例えば0.001~2倍モルであり、好ましくは0.01~1倍モルである。使用される酸触媒としては、硫酸、塩酸、臭化水素酸及び過塩素酸等が挙げられる。 The amount of the acid catalyst used relative to compound (Ia-1) is, for example, 0.001 to 2 times mol, preferably 0.01 to 1 times mol. Examples of the acid catalyst used include sulfuric acid, hydrochloric acid, hydrobromic acid and perchloric acid.
 反応温度及び反応時間は、溶媒、酸触媒の種類等によって適宜設定することができる。反応温度は、好適には0~200℃であり、より好適には80~150℃である。また、反応時間は、好適には0.1~12時間であり、より好適には0.5~2時間である。 The reaction temperature and reaction time can be appropriately set depending on the type of solvent and acid catalyst. The reaction temperature is preferably 0 to 200 ° C, more preferably 80 to 150 ° C. The reaction time is preferably 0.1 to 12 hours, more preferably 0.5 to 2 hours.
 化合物(Ia-2)に対する酸触媒の使用量は、例えば0.001~2倍モルであり、好ましくは0.01~1倍モルである。使用される酸触媒としては、塩酸、硫酸、p-トルエンスルホン酸等が挙げられる。また、溶媒中に2,2-ジメトキシプロパンを加えることができ、その使用量は、例えば0.1~10倍モルであり、好ましくは1~5倍モルである。 The amount of the acid catalyst used relative to compound (Ia-2) is, for example, 0.001 to 2 moles, preferably 0.01 to 1 moles. Examples of the acid catalyst used include hydrochloric acid, sulfuric acid, p-toluenesulfonic acid and the like. In addition, 2,2-dimethoxypropane can be added to the solvent, and the amount used is, for example, 0.1 to 10 times mol, preferably 1 to 5 times mol.
 反応温度及び反応時間は、溶媒、酸触媒の種類等によって適宜設定することができる。反応温度は、好適には0~150℃であり、より好適には20~80℃である。また、反応時間は、好適には1~24時間であり、より好適には2~10時間である。 The reaction temperature and reaction time can be appropriately set depending on the type of solvent and acid catalyst. The reaction temperature is preferably 0 to 150 ° C., more preferably 20 to 80 ° C. The reaction time is preferably 1 to 24 hours, and more preferably 2 to 10 hours.
 化合物(Ia-3)を用いた合成におけるトリハロメタンの使用量は、例えば0.5~1000倍モルであり、好ましくは0.8~100倍モルである。使用されるトリハロメタンとしては、クロロホルム、ブロモホルム、クロロジフルオロメタン、ジクロロフルオロメタン及びジブロモフルオロメタン等が挙げられる。化合物(Ia-3)を用いた合成における塩基の使用量は、例えば0.1~100倍モルであり、好ましくは0.8~50倍モルである。塩基を添加する際、水酸化ナトリウム水溶液等の水溶液を使用する場合は、相関移動触媒を使用することが好ましい。相関移動触媒は、特に限定されず、テトラメチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、セチルトリメチルアンモニウムブロミド、ベンジルトリエチルアンモニウムクロリドおよびベンジルトリメチルアンモニウムクロリド等の四級アンモニウム塩、ならびにトリエチルアミンおよびトリプロピルアミン等の三級アミン類などを用いることができる。相関移動触媒の使用量は、化合物(IV)に対し、例えば0.001~5倍モルであり、好ましくは0.01~2倍モルである。使用される塩基としては、水酸化ナトリウムおよび水酸化カリウム等のアルカリ金属水酸化物が好適に使用され、多くの場合、水溶液として使用される。塩基の使用量は、化合物(IV)に対し、例えば0.1~100倍モルであり、好ましくは0.8~50倍モルである。また、このときのアルカリ金属水酸化物の水溶液の濃度は例えば10%から飽和水溶液であり、好ましくは30%から飽和水溶液である。 The amount of trihalomethane used in the synthesis using compound (Ia-3) is, for example, 0.5 to 1000 times mol, preferably 0.8 to 100 times mol. Examples of the trihalomethane used include chloroform, bromoform, chlorodifluoromethane, dichlorofluoromethane, and dibromofluoromethane. The amount of base used in the synthesis using compound (Ia-3) is, for example, 0.1 to 100 times mol, preferably 0.8 to 50 times mol. When adding a base, when using an aqueous solution such as an aqueous sodium hydroxide solution, it is preferable to use a phase transfer catalyst. The phase transfer catalyst is not particularly limited, and includes quaternary ammonium salts such as tetramethylammonium chloride, tetrabutylammonium bromide, cetyltrimethylammonium bromide, benzyltriethylammonium chloride and benzyltrimethylammonium chloride, and three such as triethylamine and tripropylamine. Secondary amines can be used. The amount of the phase transfer catalyst used is, for example, 0.001 to 5 times mol, preferably 0.01 to 2 times mol, of the compound (IV). As the base used, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide are preferably used, and in many cases, used as an aqueous solution. The amount of the base to be used is, for example, 0.1 to 100 times mol, preferably 0.8 to 50 times mol with respect to compound (IV). Further, the concentration of the aqueous solution of alkali metal hydroxide at this time is, for example, 10% to a saturated aqueous solution, and preferably 30% to a saturated aqueous solution.
 反応温度は、例えば0℃~200℃であり、好適には10℃~150℃である。また、反応時間は、例えば0.1時間~数日であり、好ましくは0.2時間~2日である。 The reaction temperature is, for example, 0 ° C. to 200 ° C., preferably 10 ° C. to 150 ° C. The reaction time is, for example, 0.1 hour to several days, preferably 0.2 hour to 2 days.
 化合物(Ib)に対する酸触媒の使用量は、例えば0.01~20倍モルであり、好ましくは0.1~2倍モルである。使用される酸触媒としては、塩酸、硫酸、酢酸、メタンスルホン酸及びp-トルエンスルホン酸等が挙げられる。 The amount of the acid catalyst used relative to compound (Ib) is, for example, 0.01 to 20 times mol, preferably 0.1 to 2 times mol. Examples of the acid catalyst used include hydrochloric acid, sulfuric acid, acetic acid, methanesulfonic acid and p-toluenesulfonic acid.
 反応温度及び各反応時間は、溶媒、酸触媒の種類等によって適宜設定することができる。反応温度は、好適には-20~150℃であり、より好適には20~100℃である。また、反応時間は、好適には0.5~24時間であり、より好適には1~12時間である。 The reaction temperature and each reaction time can be appropriately set depending on the type of solvent and acid catalyst. The reaction temperature is preferably −20 to 150 ° C., more preferably 20 to 100 ° C. The reaction time is preferably 0.5 to 24 hours, and more preferably 1 to 12 hours.
 <工程B2>
 工程B1、工程B1-1、又は工程C1において得られた化合物(Ia)から、ハロゲン化剤との反応によって、下記式(Ic)に示されるハロヒドリン化合物(Lはハロゲン原子を表している)、又はスルホニルハライドとの反応によって、下記式(Ic)に示されるスルホニル化合物(Lはスルホニルオキシ基を表している)を得る(下記反応式(7)参照)。以下、これらの化合物を「化合物(Ic)」と称する。
<Process B2>
A halohydrin compound represented by the following formula (Ic) (L represents a halogen atom) from the compound (Ia) obtained in Step B1, Step B1-1, or Step C1 by reaction with a halogenating agent, Alternatively, a sulfonyl compound represented by the following formula (Ic) (L represents a sulfonyloxy group) is obtained by reaction with a sulfonyl halide (see the following reaction formula (7)). Hereinafter, these compounds are referred to as “compound (Ic)”.
 (反応式(7)) (Reaction formula (7))
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 ハロヒドリン化合物(Ic、L=ハロゲン原子)を得るには、化合物(Ia)に対するハロゲン化剤の使用量は、例えば0.5~10倍モルであり、好ましくは0.8~2倍モルである。使用されるハロゲン化剤としては、五塩化リン、五臭化リン、塩化スルフリル、塩化チオニル等が挙げられる。 In order to obtain a halohydrin compound (Ic, L = halogen atom), the amount of the halogenating agent used relative to compound (Ia) is, for example, 0.5 to 10 times mol, preferably 0.8 to 2 times mol. . Examples of the halogenating agent used include phosphorus pentachloride, phosphorus pentabromide, sulfuryl chloride, thionyl chloride and the like.
 ハロヒドリン化合物を得るための反応温度及び反応時間は、溶媒、ハロゲン化剤の種類等によって適宜設定することができる。反応温度は、好適には-20~100℃であり、より好適には0~50℃である。また、反応時間は、好適には0.5~24時間であり、より好適には1~12時間である。 The reaction temperature and reaction time for obtaining the halohydrin compound can be appropriately set depending on the type of the solvent and the halogenating agent. The reaction temperature is preferably −20 to 100 ° C., more preferably 0 to 50 ° C. The reaction time is preferably 0.5 to 24 hours, and more preferably 1 to 12 hours.
 スルホニル化合物(Ic、L=スルホニルオキシ基)を得るには、化合物(Ia)に対するスルホニルハライドの使用量は、例えば0.5~10倍モルであり、好ましくは0.8~2倍モルである。使用されるスルホニルハライドとしては、メシルクロライド、トシルクロライド等が挙げられる。 In order to obtain the sulfonyl compound (Ic, L = sulfonyloxy group), the amount of the sulfonyl halide used relative to the compound (Ia) is, for example, 0.5 to 10 times mol, preferably 0.8 to 2 times mol. . Examples of the sulfonyl halide used include mesyl chloride and tosyl chloride.
 スルホニル化合物をえるための反応温度及び反応時間は、溶媒、スルホニルハライドの種類等によって適宜設定することができる。反応温度は、好適には-20~100℃であり、より好適には0~50℃である。また、反応時間は、好適には0.5~24時間であり、より好適には1~12時間である。 The reaction temperature and reaction time for obtaining the sulfonyl compound can be appropriately set depending on the solvent, the type of sulfonyl halide, and the like. The reaction temperature is preferably −20 to 100 ° C., more preferably 0 to 50 ° C. The reaction time is preferably 0.5 to 24 hours, and more preferably 1 to 12 hours.
 なお、化合物(Ia)として、化合物(Ia)のジアステレオマー混合物を用いてもよいし、化合物(Ia)のジアステレオマー混合物から分離した化合物(IaA)、又は化合物(IbA)から得た化合物(IaA)を用いてもよい。化合物(IaA)を用いて得られる化合物(Ic)は、最終的に化合物(IA)に誘導されるジアステレオマーである。以下、化合物(Ic)のジアステレオマーのうち、化合物(IA)に誘導されるジアステレオマーを、「化合物(IcA)」又は「第1のハロヒドリン又はスルホニルジアステレオマー」と称する。 As compound (Ia), a diastereomer mixture of compound (Ia) may be used, compound (IaA) separated from diastereomer mixture of compound (Ia), or compound obtained from compound (IbA) (IaA) may be used. Compound (Ic) obtained using compound (IaA) is a diastereomer finally derived from compound (IA). Hereinafter, among the diastereomers of compound (Ic), the diastereomer derived from compound (IA) is referred to as “compound (IcA)” or “first halohydrin or sulfonyl diastereomer”.
 得られた化合物(IcA)には、他のジアステレオマーが含まれることもあるので、得られた化合物(IcA)からさらに他のジアステレオマーを分離することによって、より純度の高い化合物(IcA)が得られる。 Since the obtained compound (IcA) may contain other diastereomers, the compound (IcA) having higher purity can be obtained by further separating other diastereomers from the obtained compound (IcA). ) Is obtained.
 <工程B3>
 工程B2において得られた化合物(Ic)から、塩基との反応によって、化合物(III)を得る(下記反応式(8)参照)。
<Process B3>
Compound (III) is obtained from compound (Ic) obtained in step B2 by reaction with a base (see the following reaction formula (8)).
 (反応式(8)) (Reaction formula (8))
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 化合物(Ic)に対する塩基の使用量は、例えば0.5~20倍モルであり、好ましくは0.8~5倍モルである。使用される塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等が挙げられる。 The amount of the base used relative to compound (Ic) is, for example, 0.5 to 20 times mol, preferably 0.8 to 5 times mol. Examples of the base used include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate and the like.
 反応温度及び反応時間は、溶媒、塩基の種類等によって適宜設定することができる。反応温度は、好適には-20~150℃であり、より好適には20~100℃である。また、反応時間は、好適には0.1~24時間であり、より好適には0.5~12時間である。 The reaction temperature and reaction time can be appropriately set depending on the type of solvent and base. The reaction temperature is preferably −20 to 150 ° C., more preferably 20 to 100 ° C. The reaction time is preferably 0.1 to 24 hours, and more preferably 0.5 to 12 hours.
 なお、化合物(Ic)として、化合物(Ic)のジアステレオマー混合物から分離した(IcA)、又は化合物(IaA)から得た化合物(IcA)を用いることが好ましい。化合物(IcA)を用いて得られる化合物(III)は、最終的に化合物(IA)に誘導されるジアステレオマーである。以下、化合物(III)のジアステレオマーのうち、化合物(IA)に誘導されるジアステレオマーを、「化合物(IIIA)」又は「第1のオキシランジアステレオマー」と称する。 As compound (Ic), it is preferable to use (IcA) separated from the diastereomeric mixture of compound (Ic) or compound (IcA) obtained from compound (IaA). Compound (III) obtained using compound (IcA) is a diastereomer finally derived from compound (IA). Hereinafter, of the diastereomers of compound (III), the diastereomer derived from compound (IA) is referred to as “compound (IIIA)” or “first oxirane diastereomer”.
 化合物(III)のジアステレオマー混合物から化合物(IIIA)を分離するのは困難であるため、化合物(IcA)を用いることによって、容易に化合物(IIIA)を得ることができる。その結果、化合物(IIIA)から化合物(IA)を容易に得ることができる。 Since it is difficult to separate the compound (IIIA) from the diastereomeric mixture of the compound (III), the compound (IIIA) can be easily obtained by using the compound (IcA). As a result, compound (IA) can be easily obtained from compound (IIIA).
 なお、化合物(IcA)を用いた場合でも、得られた化合物(IIIA)には、他のジアステレオマーが含まれることもあるので、得られた化合物(IIIA)からさらに他のジアステレオマーを分離することによって、より純度の高い化合物(IIIA)が得られる。 Even when compound (IcA) is used, other diastereomers may be included in the obtained compound (IIIA). By separation, compound (IIIA) with higher purity can be obtained.
 本工程において得られた化合物(IIIA)を、上記工程A4にしたがって反応させることによって、化合物(IA)を製造することができる。このように、化合物(I)の製造過程において得られる中間体のジアステレオマー混合物から、目的とする化合物(I)のジアステレオマー(化合物(IA))に誘導されるジアステレオマーを分離し、化合物(IA)の製造に用いる。これにより、最終産物である化合物(I)のジアステレオマー混合物から目的とするジアステレオマーを分離する工程が不要であり、効率よく化合物(IA)を製造することができる。 Compound (IA) can be produced by reacting compound (IIIA) obtained in this step according to the above step A4. Thus, the diastereomer derived from the diastereomer of the target compound (I) (compound (IA)) is separated from the intermediate diastereomer mixture obtained in the production process of the compound (I). Used for the production of compound (IA). Thereby, the process of isolate | separating the target diastereomer from the diastereomeric mixture of the compound (I) which is a final product is unnecessary, and a compound (IA) can be manufactured efficiently.
 <工程B4>
 上述した工程で得られた化合物(Ia)のジアステレオマー混合物から化合物(IaA)を、化合物(Ib)のジアステレオマー混合物から化合物(IbA)を、化合物(Ic)のジアステレオマー混合物から化合物(IcA)を、それぞれ分離して残ったジアステレオマーから、化合物(Ia)を得て、化合物(IA)の製造に再利用する(下記反応式(9)参照)。
<Process B4>
Compound (IaA) is obtained from the diastereomeric mixture of compound (Ia) obtained in the above-described step, Compound (IbA) is obtained from the diastereomeric mixture of compound (Ib), and Compound is obtained from the diastereomeric mixture of compound (Ic). Compound (Ia) is obtained from diastereomer remaining after separation of (IcA), and is reused in the production of compound (IA) (see the following reaction formula (9)).
 (反応式(9)) (Reaction formula (9))
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 ここで、化合物(Ia)のジアステレオマー混合物から化合物(IaA)を分離して残ったジアステレオマーを、「化合物(IaB)」又は「第2のジオールジアステレオマー」と称する。また、化合物(Ib)のジアステレオマー混合物から化合物(IbA)を分離して残ったジアステレオマーを、「化合物IbB」と称する。また、化合物(Ic)のジアステレオマー混合物から化合物(IcA)を分離して残ったジアステレオマーを、「化合物(IcB)」又は「第2のハロヒドリン又はスルホニルジアステレオマー」と称する。また、化合物(III)のジアステレオマー混合物のうち、化合物(IIIA)以外のジアステレオマーを、「化合物(IIIB)」又は「第2のオキシランジアステレオマー」と称する。 Here, the diastereomer remaining after separating the compound (IaA) from the diastereomeric mixture of the compound (Ia) is referred to as “compound (IaB)” or “second diol diastereomer”. The diastereomer remaining after separation of compound (IbA) from the diastereomeric mixture of compound (Ib) is referred to as “compound IbB”. Further, the diastereomer remaining after separation of the compound (IcA) from the diastereomeric mixture of the compound (Ic) is referred to as “compound (IcB)” or “second halohydrin or sulfonyl diastereomer”. Of the diastereomeric mixture of compound (III), diastereomers other than compound (IIIA) are referred to as “compound (IIIB)” or “second oxirane diastereomer”.
 反応式(9)において、化合物(IbB)から化合物(IaB)を、化合物(IaB)から化合物(IcB)を、化合物(IcB)から化合物(IIIB)を、化合物(IIIB)から化合物(Ia)を得る方法としては、上述した方法を採用することができる。また、化合物(Ia)から化合物(IA)を得る方法についても、上述した方法を採用することができる。使用する触媒及び溶媒、使用量、反応温度、反応時間等は、適宜選択される。 In reaction formula (9), compound (IbB) to compound (IaB), compound (IaB) to compound (IcB), compound (IcB) to compound (IIIB), compound (IIIB) to compound (Ia) As a method for obtaining, the above-described method can be employed. Moreover, the method mentioned above is employable also about the method of obtaining compound (IA) from compound (Ia). The catalyst and solvent to be used, the amount used, the reaction temperature, the reaction time, etc. are appropriately selected.
 化合物(IaB)、化合物(IbB)、化合物(IcB)及び化合物(IIIB)は、それぞれ、化合物(IB)に誘導されるものである。ここで、化合物(IA)及び化合物(IA)に誘導される各中間体を、他のジアステレオマーとの比較において、それぞれ「ジアステレオマー(A)」と称することもある。また、化合物(IB)及び化合物(IB)に誘導される各中間体を、他のジアステレオマーとの比較において、それぞれ「ジアステレオマー(B)」と称することもある。 Compound (IaB), Compound (IbB), Compound (IcB) and Compound (IIIB) are each derived from Compound (IB). Here, compound (IA) and each intermediate derived from compound (IA) are sometimes referred to as “diastereomers (A)” in comparison with other diastereomers, respectively. Further, compound (IB) and each intermediate derived from compound (IB) may be referred to as “diastereomer (B)” in comparison with other diastereomers, respectively.
 化合物(IaB)、化合物(IbB)、化合物(IcB)及び化合物(IIIB)は、化合物(IA)の製造においては不要となってしまう。本発明においては、これらの化合物(IaB)、化合物(IbB)、化合物(IcB)及び化合物(IIIB)から化合物(Ia)を得て、化合物(IA)の製造に再利用するので、不要となったジアステレオマーを無駄にすることがなく、低コストに化合物(IA)を製造することができる。 Compound (IaB), Compound (IbB), Compound (IcB) and Compound (IIIB) are not required in the production of Compound (IA). In the present invention, compound (Ia) is obtained from compound (IaB), compound (IbB), compound (IcB) and compound (IIIB), and is reused in the production of compound (IA). In addition, compound (IA) can be produced at low cost without wasting diastereomers.
 <ジアステレオマーの分離>
 上述した工程で得られた化合物(Ia)、化合物(Ib)及び化合物(Ic)のジアステレオマー混合物からの各ジアステレオマーの分離方法としては、順相カラムクロマトグラフィー、逆相カラムクロマトグラフィー、又は再結晶等の極性、溶解度若しくは融点の違いを利用して分離する公知の技術を挙げることができる。
<Separation of diastereomers>
As a method for separating each diastereomer from the diastereomer mixture of the compound (Ia), the compound (Ib) and the compound (Ic) obtained in the above-mentioned steps, normal phase column chromatography, reverse phase column chromatography, Alternatively, a known technique of separation utilizing the difference in polarity, solubility, or melting point such as recrystallization can be mentioned.
 カラムクロマトグラフィーにおける固定相としては、シリカゲル、およびアルミナ等の高極性固定相、オクタデシルシリルシリカゲル等のアルキル基結合シリカゲル等の低極性固定相、を用いることができる。また、溶離液としては、ヘキサン、酢酸エチル、クロロホルム、アルコール類およびアセトニトリル等の有機溶媒、水、ならびにこれらの混合物を用いることができ、固定相の種類に応じて適宜決定することができる。 As the stationary phase in column chromatography, silica gel, a highly polar stationary phase such as alumina, and a low polarity stationary phase such as alkyl group-bonded silica gel such as octadecylsilyl silica gel can be used. As the eluent, organic solvents such as hexane, ethyl acetate, chloroform, alcohols and acetonitrile, water, and a mixture thereof can be used, and can be appropriately determined according to the type of stationary phase.
 また、複数の分離方法を組み合わせて行ってもよく、例えば、カラムクロマトグラフィーにより分離した後、さらに再結晶による分離および精製を行ってもよい。 Further, a plurality of separation methods may be combined, for example, after separation by column chromatography, separation and purification by recrystallization may be further performed.
 分離された各ジアステレオマーの光学中心炭素は、従来公知の方法にしたがって決定すればよい。 The optical center carbon of each diastereomer separated may be determined according to a conventionally known method.
 なお、上述の製造方法の各工程において、使用される溶媒、塩基および酸等は、特に言及しない限り、次のようなものを用いることができる。 Note that, in each step of the above-described production method, the solvent, base, acid, and the like used can be as follows unless otherwise specified.
 〔3:溶媒〕
 使用される溶媒としては、反応に関与しなければ特に限定されないが、通常、ジエチルエーテル、テトラヒドロフランおよびジオキサン等のエーテル類;メタノール、エタノールおよびイソプロパノール等のアルコール類;ベンゼン、トルエンおよびキシレン等の芳香族炭化水素類;石油エーテル、ヘキサンおよびメチルシクロヘキサン等の脂肪族炭化水素類;ならびにN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドおよびN-メチル-2-ピロリジノン等のアミド類等を挙げることができる。この他、溶媒としては、水、アセトニトリル、酢酸エチル、無水酢酸、酢酸、ピリジンおよびジメチルスルホキシド等も使用可能である。これらの溶媒は、2種類以上を混合して使用してもよい。
[3: Solvent]
The solvent used is not particularly limited as long as it does not participate in the reaction, but usually ethers such as diethyl ether, tetrahydrofuran and dioxane; alcohols such as methanol, ethanol and isopropanol; aromatics such as benzene, toluene and xylene Hydrocarbons; aliphatic ethers such as petroleum ether, hexane and methylcyclohexane; and amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidinone it can. In addition, water, acetonitrile, ethyl acetate, acetic anhydride, acetic acid, pyridine, dimethyl sulfoxide, and the like can be used as the solvent. These solvents may be used as a mixture of two or more.
 また、溶媒としては、互いに均一な層を形成することのない溶媒からなる溶媒組成物も挙げられる。この場合には、反応系に相間移動触媒、例えば、慣用の第4アンモニウム塩またはクラウンエーテルを添加してもよい。 Also, examples of the solvent include a solvent composition composed of solvents that do not form a uniform layer with each other. In this case, a phase transfer catalyst such as a conventional quaternary ammonium salt or crown ether may be added to the reaction system.
 〔4:塩基・酸〕
 上述の溶媒には、塩基または酸を添加してもよい。
[4: Base / acid]
You may add a base or an acid to the above-mentioned solvent.
 用いられる塩基は、特に限定されない。塩基としては、例えば、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウムおよび炭酸水素カリウム等のアルカリ金属の炭酸塩;炭酸カルシウムおよび炭酸バリウム等のアルカリ土類金属の炭酸塩;水酸化ナトリウムおよび水酸化カリウム等のアルカリ金属の水酸化物;リチウム、ナトリウムおよびカリウム等のアルカリ金属;ナトリウムメトキシド、ナトリウムエトキシドおよびカリウムt-ブトキシド等のアルカリ金属のアルコキシド;水素化ナトリウム、水素化カリウムおよび水素化リチウム等のアルカリ金属水素化合物;n-ブチルリチウム等のアルカリ金属の有機金属化合物;リチウムジイソプロピルアミド等のアルカリ金属アミド類;ならびにトリエチルアミン、ピリジン、4-ジメチルアミノピリジン、N,N-ジメチルアニリンおよび1,8-ジアザビシクロ-7-[5.4.0]ウンデセン等の有機アミン類等を挙げることができる。 The base used is not particularly limited. Examples of the base include alkali metal carbonates such as sodium carbonate, sodium hydrogen carbonate, potassium carbonate and potassium hydrogen carbonate; alkaline earth metal carbonates such as calcium carbonate and barium carbonate; sodium hydroxide and potassium hydroxide Alkali metal hydroxides; alkali metals such as lithium, sodium and potassium; alkali metal alkoxides such as sodium methoxide, sodium ethoxide and potassium t-butoxide; sodium hydride, potassium hydride and lithium hydride, etc. Alkali metal hydrogen compounds; organometallic compounds of alkali metals such as n-butyllithium; alkali metal amides such as lithium diisopropylamide; and triethylamine, pyridine, 4-dimethylaminopyridine, N, N-dimethyla Phosphorus and 1,8-diazabicyclo-7- [5.4.0] Organic amines such as undecene, and the like.
 また、用いられる酸は、特に限定されない。酸としては、例えば、塩酸、臭化水素酸、ヨウ化水素酸および硫酸等の無機酸;ギ酸、酢酸、酪酸、トリフルオロ酢酸およびp-トルエンスルホン酸等の有機酸;ならびに塩化リチウム、臭化リチウム、塩化ロジウム、塩化アルミニウムおよび三フッ化ホウ素等のルイス酸を挙げることができる。 Moreover, the acid used is not particularly limited. Examples of the acid include inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid and sulfuric acid; organic acids such as formic acid, acetic acid, butyric acid, trifluoroacetic acid and p-toluenesulfonic acid; and lithium chloride, bromide Mention may be made of Lewis acids such as lithium, rhodium chloride, aluminum chloride and boron trifluoride.
 〔5.トリアゾール化合物の有用性〕
 本実施の形態に係るトリアゾール化合物は、植物病害防除剤、及びこれを用いた植物病害防除方法に利用することができる。
[5. Usefulness of triazole compounds)
The triazole compound according to the present embodiment can be used in a plant disease control agent and a plant disease control method using the same.
 トリアゾール化合物は、茎葉病害、種子伝染病害および土壌伝染病害を含む広範な植物病害に対して防除効果を奏する。また、トリアゾール化合物は、広汎な作物や園芸植物に対して、その成長を調節して収量を増加させる効果やその品質を高める効果を示す。 Triazole compounds have a controlling effect against a wide range of plant diseases including foliage diseases, seed infectious diseases and soil infectious diseases. In addition, triazole compounds exhibit an effect of increasing the yield by controlling the growth and an effect of improving the quality of a wide variety of crops and horticultural plants.
 トリアゾール化合物を含む植物病害防除剤は、茎葉散布といった茎葉処理に加えて、種子処理、潅注処理、水面処理などの非茎葉処理によっても施用できる。なお、非茎葉処理を行う場合には、茎葉処理を行う場合に比べて、労力を低減させることができる。また、トリアゾール化合物を含む植物病害防除剤は、非茎葉処理により非茎葉病害だけでなく、茎葉病害を防除することもできる。 The plant disease control agent containing a triazole compound can be applied by non-foliage treatment such as seed treatment, irrigation treatment, water surface treatment, etc. in addition to foliage treatment such as foliage spraying. In addition, when performing a non-foliage process, a labor can be reduced compared with the case where a foliage process is performed. Moreover, the plant disease control agent containing a triazole compound can control not only non-foliage diseases but also foliage diseases by non-foliage treatment.
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。 Examples will be shown below, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail. Further, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and the present invention is also applied to the embodiments obtained by appropriately combining the disclosed technical means. It is included in the technical scope of the invention. Moreover, all the literatures described in this specification are used as reference.
 〔実施例1〕
 (1-1:2-(1-クロロシクロプロピル)-4-ペンテン-1,2-ジオール(化合物(Ia-2a))の合成)
 2-(1-クロロシクロプロピル)-4-ペンテン-1,2-ジオール-オキシラン 5.55gを水10.0mlに懸濁し、撹拌しながら70%過塩素酸溶液を数滴加えた。100℃で1時間撹拌後、酢酸エチルで抽出した。有機層を飽和重曹水、水、及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下において溶媒を留去し、目的の化合物(Ia-2a)の粗生成物を、定量的に5.95g得た。
純度:74%(GCarea)
1H-NMR(CDCl3)δ:
 0.86~0.95(m,2H), 1.06~1.18(m,2H), 1.80(dd,1H,J=5.1,8.1Hz), 2.29(s,1H), 2.50(dd,1H,J=8.8,14.1Hz), 2.68(dd,1H,J=6.3,14.1Hz), 3.70(dd,1H,J=8.1,11.5Hz), 3.88(dd,1H,J=5.1,11.5Hz), 5.17~5.21(m,2H), 5.95~6.06(m,1H).
[Example 1]
(Synthesis of 1-1: 2- (1-chlorocyclopropyl) -4-pentene-1,2-diol (compound (Ia-2a)))
5.55 g of 2- (1-chlorocyclopropyl) -4-pentene-1,2-diol-oxirane was suspended in 10.0 ml of water, and several drops of 70% perchloric acid solution were added with stirring. After stirring at 100 ° C. for 1 hour, the mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogen carbonate, water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain 5.95 g of the desired crude product of the compound (Ia-2a) quantitatively.
Purity: 74% (GCarea)
1 H-NMR (CDCl 3 ) δ:
0.86 ~ 0.95 (m, 2H), 1.06 ~ 1.18 (m, 2H), 1.80 (dd, 1H, J = 5.1,8.1Hz), 2.29 (s, 1H), 2.50 (dd, 1H, J = 8.8,14.1 Hz), 2.68 (dd, 1H, J = 6.3, 14.1Hz), 3.70 (dd, 1H, J = 8.1, 11.5Hz), 3.88 (dd, 1H, J = 5.1, 11.5Hz), 5.17 to 5.21 (m , 2H), 5.95 to 6.06 (m, 1H).
 (1-2:4-(1-クロロシクロプロピル)-4-(2-プロペニル)-2,2-ジメチル-1,3-ジオキソラン(化合物(Ia-3a))の合成)
 窒素気流下において、化合物(Ia-2a) 5.80gをアセトン10.0mlに溶解し、2,2-ジメトキシプロパン8.54gとp-トルエンスルホン酸とを触媒量加えた。室温で3時間撹拌後、反応液を氷水中に注ぎ、ヘキサンで抽出した。有機層を飽和重曹水、水、及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下において溶媒を留去し、得られた油状物をシリカゲルカラムクロマトグラフィーで精製し、目的の化合物(Ia-3a)を淡黄色油状物として4.18g得た。
収率:実施例(1-1)の2-(1-クロロシクロプロピル)-4-ペンテン-1,2-ジオール-オキシランからの2段階で58%
1H-NMR(CDCl3)δ:
 0.83~0.91(m,1H),0.95~1.00(m,1H), 1.08~1.27(m,2H), 1.36(s,3H), 1.41(s,3H), 2.58(dd,1H,J=7.1,14.2Hz), 2.78(dd,1H,J=7.4,14.2Hz), 3.94(d,1H,J=8.9Hz), 4.04(d,1H,J=8.9Hz), 5.10~5.18(m,2H), 5.90~6.00(m,1H).
(1-2: Synthesis of 4- (1-chlorocyclopropyl) -4- (2-propenyl) -2,2-dimethyl-1,3-dioxolane (Compound (Ia-3a)))
Under a nitrogen stream, 5.80 g of compound (Ia-2a) was dissolved in 10.0 ml of acetone, and 8.54 g of 2,2-dimethoxypropane and p-toluenesulfonic acid were added in a catalytic amount. After stirring at room temperature for 3 hours, the reaction solution was poured into ice water and extracted with hexane. The organic layer was washed with saturated aqueous sodium hydrogen carbonate, water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting oil was purified by silica gel column chromatography to obtain 4.18 g of the desired compound (Ia-3a) as a pale yellow oil.
Yield: 58% in two steps from 2- (1-chlorocyclopropyl) -4-pentene-1,2-diol-oxirane of Example (1-1)
1 H-NMR (CDCl 3 ) δ:
0.83 ~ 0.91 (m, 1H), 0.95 ~ 1.00 (m, 1H), 1.08 ~ 1.27 (m, 2H), 1.36 (s, 3H), 1.41 (s, 3H), 2.58 (dd, 1H, J = 7.1 , 14.2Hz), 2.78 (dd, 1H, J = 7.4,14.2Hz), 3.94 (d, 1H, J = 8.9Hz), 4.04 (d, 1H, J = 8.9Hz), 5.10-5.18 (m, 2H ), 5.90 to 6.00 (m, 1H).
 (1-3:4-(1-クロロシクロプロピル)-4-(2,2-ジブロモシクロプロピルメチル)-2,2-ジメチル-1,3-ジオキソラン(化合物(Ib-a))の合成)
 化合物(Ia-3a) 4.18gをジクロロメタン4.2mlに溶解し、ブロモホルム4.23mlとBTMAC (ベンジルトリメチルアンモニウムクロライド(Benzyltrimethylammonium chloride)) 0.18gとを加えた。室温下において、反応液を激しく撹拌しながら、水酸化ナトリウム7.72gを水7.72mlに溶解した溶液を加え、50℃で10時間激しく撹拌した。さらに、反応液にブロモホルム4.23mlを加え、50℃で3時間撹拌した。この時点におけるGC分析により、反応液中の比率が、原料として用いた化合物(Ia-3a)が13%、目的の化合物(Ib-a)が87%であった。
(1-3: Synthesis of 4- (1-chlorocyclopropyl) -4- (2,2-dibromocyclopropylmethyl) -2,2-dimethyl-1,3-dioxolane (compound (Ib-a)))
4.18 g of compound (Ia-3a) was dissolved in 4.2 ml of dichloromethane, and 4.23 ml of bromoform and 0.18 g of BTMAC (Benzyltrimethylammonium chloride) were added. A solution prepared by dissolving 7.72 g of sodium hydroxide in 7.72 ml of water was added while vigorously stirring the reaction solution at room temperature, and vigorously stirred at 50 ° C. for 10 hours. Furthermore, 4.23 ml of bromoform was added to the reaction solution, and the mixture was stirred at 50 ° C. for 3 hours. According to GC analysis at this time, the ratio of the compound (Ia-3a) used as a raw material was 13% and the target compound (Ib-a) was 87% in the reaction solution.
 放冷後、反応液を氷水中に注ぎ、ジクロロメタンで抽出した。有機層を水及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下において溶媒を留去し、得られた粗抽出物から減圧蒸留により過剰のブロモホルムを留去した。蒸留残渣は一部固化し、固体と油状物を分離すると、2種のジアステレオマーにそれぞれ分離された。 After cooling, the reaction solution was poured into ice water and extracted with dichloromethane. The organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and excess bromoform was distilled off from the resulting crude extract by distillation under reduced pressure. The distillation residue partially solidified and separated into two diastereomers when the solid and oil were separated.
 ジアステレオマー(A)を白色固体として2.20g得た。収率は29%であった。ジアステレオマー(B)を黄色油状物として2.94g得た。収率は39%であった。ジアステレオマー(B)の油状物には残存した、原料(化合物(Ia-3a))が含まれていた。 2.20 g of diastereomer (A) was obtained as a white solid. The yield was 29%. 2.94 g of diastereomer (B) was obtained as a yellow oil. The yield was 39%. The remaining oil (compound (Ia-3a)) was contained in the diastereomer (B) oil.
 ジアステレオマー(A);
融点:100~101℃
1H-NMR(CDCl3)δ:
 0.91~1.00(m,2H), 1.14~1.21(m,2H), 1.39(s,3H), 1.47(s,3H), 1.48~1.52(m,1H), 1.80~1.85(m,2H), 2.02~2.08(m,1H), 2.26~2.30(m,1H), 4.02(d,1H,J=9.0Hz), 4.12(d,1H,J=9.0Hz).
 ジアステレオマー(B);
 1H-NMR(CDCl3)δ:
.91~0.98(m,1H), 1.07~1.14(m,1H), 1.17~1.25(m,2H), 1.35(s,3H), 1.39(s,3H), 1.76~1.92(m,3H), 2.58(d,1H,J=4.7Hz), 2.62(d,1H,J=4.5Hz), 3.98(d,1H,J=9.0Hz), 4.12(d,1H,J=9.0Hz).
Diastereomer (A);
Melting point: 100-101 ° C
1 H-NMR (CDCl 3 ) δ:
0.91 ~ 1.00 (m, 2H), 1.14 ~ 1.21 (m, 2H), 1.39 (s, 3H), 1.47 (s, 3H), 1.48 ~ 1.52 (m, 1H), 1.80 ~ 1.85 (m, 2H), 2.02 to 2.08 (m, 1H), 2.26 to 2.30 (m, 1H), 4.02 (d, 1H, J = 9.0Hz), 4.12 (d, 1H, J = 9.0Hz).
Diastereomer (B);
1 H-NMR (CDCl 3 ) δ:
.91 to 0.98 (m, 1H), 1.07 to 1.14 (m, 1H), 1.17 to 1.25 (m, 2H), 1.35 (s, 3H), 1.39 (s, 3H), 1.76 to 1.92 (m, 3H) , 2.58 (d, 1H, J = 4.7Hz), 2.62 (d, 1H, J = 4.5Hz), 3.98 (d, 1H, J = 9.0Hz), 4.12 (d, 1H, J = 9.0Hz).
 (1-4:2-(1-クロロシクロプロピル)-3-(2,2-ジブロモシクロプロピル)プロパン-1,2-ジオール(化合物(Ia-a))の合成)
 化合物(Ib-a)のジアステレオマー(A) 0.54gをメタノール5.0mlに溶解し、2N HCl溶液0.7mlを加えた。反応液を2時間加熱還流した後、減圧下において、大部分のメタノールを留去した。残渣を酢酸エチルに溶解し、有機層を飽和重曹水、水、及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下において溶媒を留去し、目的の化合物(Ia-a)のジアステレオマー(A)の粗生成物を淡黄色油状物として、後に室温で固化し淡黄色固体として、0.45g得た。収率は93%であった。
(1-4: Synthesis of 2- (1-chlorocyclopropyl) -3- (2,2-dibromocyclopropyl) propane-1,2-diol (compound (Ia-a)))
0.54 g of diastereomer (A) of compound (Ib-a) was dissolved in 5.0 ml of methanol, and 0.7 ml of 2N HCl solution was added. The reaction solution was heated to reflux for 2 hours, and most of methanol was distilled off under reduced pressure. The residue was dissolved in ethyl acetate, and the organic layer was washed with saturated aqueous sodium hydrogen carbonate, water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain 0.45 g of a crude product of the diastereomer (A) of the target compound (Ia-a) as a pale yellow oil which was later solidified at room temperature as a pale yellow solid. . The yield was 93%.
 化合物(Ib-a)のジアステレオマー(B)も同様に反応し、目的の化合物(Ia-a)のジアステレオマー(B)を含む粗生成物を0.49g得た。化合物(Ia-a)のジアステレオマー(B)に含まれる不純物である、化合物(Ia-3a)由来のオレフィン化合物及びその他不純物を、ヘキサン洗浄により留去し、目的の化合物(Ia-a)のジアステレオマー(B)を白色固体として0.31g得た。収率は64%であった。 The diastereomer (B) of the compound (Ib-a) reacted in the same manner to obtain 0.49 g of a crude product containing the diastereomer (B) of the target compound (Ia-a). The olefin compound derived from the compound (Ia-3a) and other impurities, which are impurities contained in the diastereomer (B) of the compound (Ia-a), are distilled away by washing with hexane, and the target compound (Ia-a) 0.31 g of diastereomer (B) was obtained as a white solid. The yield was 64%.
 ジアステレオマー(A);
融点:79~80℃
1H-NMR(CDCl3)δ:
 0.89~1.00(m,2H), 1.17~1.29(m,2H), 1.38~1.42(m,1H), 1.81~1.94(m,3H), 1.96~2.09(m,2H), 2.72(s,1H), 3.76(dd,1H,J=7.6,11.3Hz), 4.07(dd,1H,J=4.7,11.5Hz).
 ジアステレオマー(B);
融点:103~105℃
1H-NMR(CDCl3)δ:
 0.94~1.01(m,2H), 1.20~1.23(m,2H), 1.33(t,1H,J=7.4Hz), 1.71(dd,1H,J=8.2,14.6Hz), 1.77~1.85(m,2H), 1.88~1.94(m,1H), 2.32(dd,1H,J-4.9,14.6Hz), 2.56(s,1H), 3.70(dd,1H,J=7.8,11.3Hz), 4.03(dd,1H,J=4.8,11.3Hz).
Diastereomer (A);
Melting point: 79-80 ° C
1 H-NMR (CDCl 3 ) δ:
0.89 to 1.00 (m, 2H), 1.17 to 1.29 (m, 2H), 1.38 to 1.42 (m, 1H), 1.81 to 1.94 (m, 3H), 1.96 to 2.09 (m, 2H), 2.72 (s, 1H ), 3.76 (dd, 1H, J = 7.6, 11.3Hz), 4.07 (dd, 1H, J = 4.7, 11.5Hz).
Diastereomer (B);
Melting point: 103-105 ° C
1 H-NMR (CDCl 3 ) δ:
0.94 ~ 1.01 (m, 2H), 1.20 ~ 1.23 (m, 2H), 1.33 (t, 1H, J = 7.4Hz), 1.71 (dd, 1H, J = 8.2,14.6Hz), 1.77 ~ 1.85 (m, 2H), 1.88 to 1.94 (m, 1H), 2.32 (dd, 1H, J-4.9, 14.6Hz), 2.56 (s, 1H), 3.70 (dd, 1H, J = 7.8, 11.3Hz), 4.03 (dd , 1H, J = 4.8,11.3Hz).
 (1-5:2-(1-クロロシクロプロピル)-3-(2,2-ジブロモシクロプロピル)-2-ヒドロキシプロピルメタンスルホン酸エステル(化合物(Ic-a))の合成)
 化合物(Ia-a)のジアステレオマー(A) 0.43gをトルエン5.0mlに溶解し、トリエチルアミン0.26mlとメシルクロライド0.14mlとを加えた。室温で3時間撹拌後、反応液を氷水中に注ぎ、トルエンで抽出した。有機層を飽和重曹水、水、及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下において溶媒を留去し、目的の化合物(Ic-a)のジアステレオマー(A)を黄色油状物として、0.51g得た。収率は96%であった。
(1-5: Synthesis of 2- (1-chlorocyclopropyl) -3- (2,2-dibromocyclopropyl) -2-hydroxypropylmethanesulfonic acid ester (compound (Ic-a)))
0.43 g of the diastereomer (A) of compound (Ia-a) was dissolved in 5.0 ml of toluene, and 0.26 ml of triethylamine and 0.14 ml of mesyl chloride were added. After stirring at room temperature for 3 hours, the reaction solution was poured into ice water and extracted with toluene. The organic layer was washed with saturated aqueous sodium hydrogen carbonate, water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain 0.51 g of the diastereomer (A) of the target compound (Ic-a) as a yellow oil. The yield was 96%.
 化合物(Ic-a)のジアステレオマー(B)も同様に反応し、目的の化合物(Ic-a)のジアステレオマー(B)を白色固体として、0.36g得た。収率は99%であった。なお反応後の抽出溶媒として、トルエンの代わりに酢酸エチルを用いた。 The diastereomer (B) of the compound (Ic-a) reacted in the same manner to obtain 0.36 g of the diastereomer (B) of the target compound (Ic-a) as a white solid. The yield was 99%. In addition, ethyl acetate was used instead of toluene as an extraction solvent after the reaction.
 ジアステレオマー(A);
融点:69~70℃
1H-NMR(CDCl3)δ:
 0.95~1.04(m,2H),1.22~1.27(m,1H), 1.32~1.37(m,1H), 1.38~1.47(m,1H),1.84~1.97(m,2H), 2.06~2.16(m,2H), 2.69(bs,1H), 3.13(s,3H),4.51(d,1H,J=10.9Hz), 4.58(d,1H,J=10.9Hz).
 ジアステレオマー(B);
融点:138~139℃
1H-NMR(CDCl3)δ:
 1.02~1.06(m,2H),1.21~1.27(m,2H), 1.33~1.37(m,1H), 1.73~1.79(m,1H),1.83~1.94(m,2H), 2.41(dd,1H,J=4.6,9.9Hz), 2.51(s,1H), 3.12(s,3H),4.47(d,1H,J=10.9Hz), 4.53(d,1H,J=10.9Hz).
Diastereomer (A);
Melting point: 69-70 ° C
1 H-NMR (CDCl 3 ) δ:
0.95 to 1.04 (m, 2H), 1.22 to 1.27 (m, 1H), 1.32 to 1.37 (m, 1H), 1.38 to 1.47 (m, 1H), 1.84 to 1.97 (m, 2H), 2.06 to 2.16 (m , 2H), 2.69 (bs, 1H), 3.13 (s, 3H), 4.51 (d, 1H, J = 10.9Hz), 4.58 (d, 1H, J = 10.9Hz).
Diastereomer (B);
Melting point: 138-139 ° C
1 H-NMR (CDCl 3 ) δ:
1.02 to 1.06 (m, 2H), 1.21 to 1.27 (m, 2H), 1.33 to 1.37 (m, 1H), 1.73 to 1.79 (m, 1H), 1.83 to 1.94 (m, 2H), 2.41 (dd, 1H , J = 4.6,9.9Hz), 2.51 (s, 1H), 3.12 (s, 3H), 4.47 (d, 1H, J = 10.9Hz), 4.53 (d, 1H, J = 10.9Hz).
 (1-6:2-(1-クロロシクロプロピル)-2-(2,2-ジブロモシクロプロピルメチル)オキシラン(化合物(III-a))の合成)
 化合物(Ic-a)のジアステレオマー(A) 0.51gをメタノール5.0mlに溶解し、2N 水酸化ナトリウム溶液1.5mlを加えた。室温で1時間撹拌後、反応液を氷水中に注ぎ、ヘキサンで抽出した。有機層を水及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下において溶媒を留去し、目的の化合物(III-a)のジアステレオマー(A)の粗生成物を淡黄色油状物として、0.36g得た。収率は91%であった。
(Synthesis of 1-6: 2- (1-chlorocyclopropyl) -2- (2,2-dibromocyclopropylmethyl) oxirane (compound (III-a)))
0.51 g of the diastereomer (A) of compound (Ic-a) was dissolved in 5.0 ml of methanol, and 1.5 ml of 2N sodium hydroxide solution was added. After stirring at room temperature for 1 hour, the reaction solution was poured into ice water and extracted with hexane. The organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain 0.36 g of a crude product of the diastereomer (A) of the target compound (III-a) as a pale yellow oil. The yield was 91%.
 化合物(Ic-a)のジアステレオマー(B)も同様に反応し、目的の化合物(III-a)のジアステレオマー(B)を無色油状物として、0.25g得た。収率は92%であった。 The diastereomer (B) of the compound (Ic-a) reacted in the same manner to obtain 0.25 g of the diastereomer (B) of the target compound (III-a) as a colorless oil. The yield was 92%.
 ジアステレオマー(A);
 1H-NMR(CDCl3)δ:
 0.83~0.89(m,1H), 0.93~0.99(m,1H), 1.02~1.12(m,2H), 1.36~1.40(m,1H),1.58~1.66(m,1H), 1.79~1.84(m,1H), 2.17(dd,1H,J=8.0,15.4Hz),2.34(dd,1H,J=5.9,15.4Hz) 2.83(d,1H,J=4.7Hz), 2.97(d,1H,J=4.7Hz).
 ジアステレオマー(B);
 1H-NMR(CDCl3)δ:
 0.84~0.90(m,1H), 0.93~0.99(m,1H), 1.06~1.15(m,2H), 1.32~1.36(m,1H),1.73~1.82(m,2H), 1.86~1.92(m,1H), 2.53~2.58(m,1H), 2.77(d,1H,J=4.8Hz),2.85(d,1H,J=4.8Hz).
Diastereomer (A);
1 H-NMR (CDCl 3 ) δ:
0.83 to 0.89 (m, 1H), 0.93 to 0.99 (m, 1H), 1.02 to 1.12 (m, 2H), 1.36 to 1.40 (m, 1H), 1.58 to 1.66 (m, 1H), 1.79 to 1.84 (m , 1H), 2.17 (dd, 1H, J = 8.0,15.4Hz), 2.34 (dd, 1H, J = 5.9,15.4Hz) 2.83 (d, 1H, J = 4.7Hz), 2.97 (d, 1H, J = 4.7Hz).
Diastereomer (B);
1 H-NMR (CDCl 3 ) δ:
0.84 to 0.90 (m, 1H), 0.93 to 0.99 (m, 1H), 1.06 to 1.15 (m, 2H), 1.32 to 1.36 (m, 1H), 1.73 to 1.82 (m, 2H), 1.86 to 1.92 (m , 1H), 2.53 to 2.58 (m, 1H), 2.77 (d, 1H, J = 4.8Hz), 2.85 (d, 1H, J = 4.8Hz).
〔実施例2〕
 (2-1:2-(1-クロロシクロプロピル)-5-ヘキセン-1,2-ジオール(化合物(Ia-2b))の合成)
 2-(1-クロロシクロプロピル)-5-ヘキセン-オキシラン 8.60gを水40.0mlに懸濁し、撹拌しながら70%過塩素酸溶液を0.2ml加えた。100℃で1時間撹拌後、ジクロロメタンで抽出した。有機層を水及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下において溶媒を留去し、目的の化合物(Ia-2b)の粗生成物を定量的に9.85g得た。
純度:88%(GCarea)
1H-NMR(CDCl3)δ:
 0.88~0.95(m,2H), 1.07~1.19(m,2H), 1.73~1.80(m,2H), 1.88~1.95(m,1H),2.17~2.37(m,2H), 2.39(s,1H), 3.62(dd,1H,J=7.7,11.1Hz), 3.95(dd,1H,J=4.8,11.3Hz),4.97~5.11(m,2H), 5.82~5.92(m,1H).
[Example 2]
(2-1: Synthesis of 2- (1-chlorocyclopropyl) -5-hexene-1,2-diol (Compound (Ia-2b)))
8.60 g of 2- (1-chlorocyclopropyl) -5-hexene-oxirane was suspended in 40.0 ml of water, and 0.2 ml of 70% perchloric acid solution was added with stirring. After stirring at 100 ° C. for 1 hour, the mixture was extracted with dichloromethane. The organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to quantitatively obtain 9.85 g of a crude product of the target compound (Ia-2b).
Purity: 88% (GCarea)
1 H-NMR (CDCl 3 ) δ:
0.88 to 0.95 (m, 2H), 1.07 to 1.19 (m, 2H), 1.73 to 1.80 (m, 2H), 1.88 to 1.95 (m, 1H), 2.17 to 2.37 (m, 2H), 2.39 (s, 1H ), 3.62 (dd, 1H, J = 7.7, 11.1Hz), 3.95 (dd, 1H, J = 4.8, 11.3Hz), 4.97 to 5.11 (m, 2H), 5.82 to 5.92 (m, 1H).
 (2-2:4-(3-ブテニル)-4-(1-クロロシクロプロピル)-2,2-ジメチル-1,3-ジオキソラン(化合物(Ia-3b))の合成)
 窒素気流下において、化合物(Ia-2b) 9.50gをアセトン20.0mlに溶解し、2,2-ジメトキシプロパン13.0mlとp-トルエンスルホン酸とを触媒量加えた。室温で3.5時間撹拌後、反応液を氷水中に注ぎ、エーテルで抽出した。有機層を飽和重曹水、水、及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下において溶媒を留去し、目的の化合物(Ia-3b)の粗生成物を10.44g得た。
収率:実施例(2-1)の2-(1-クロロシクロプロピル)-5-ヘキセン-オキシランから2段階で90%
純度:94%(GCarea)
1H-NMR(CDCl3)δ:
 0.84~0.91(m,2H),0.98~1.02(m,1H), 1.10~1.17(m,2H), 1.35(s,3H), 1.38(s,3H),2.12~2.22(m,1H), 2.24~2.31(m,2H), 3.91(d,1H,J=8.8Hz), 4.08(d,1H,J=8.8Hz),4.95~5.08(m,2H), 5.81~5.90(m,1H)
(2-2: Synthesis of 4- (3-butenyl) -4- (1-chlorocyclopropyl) -2,2-dimethyl-1,3-dioxolane (Compound (Ia-3b)))
Under a nitrogen stream, 9.50 g of compound (Ia-2b) was dissolved in 20.0 ml of acetone, and 13.0 ml of 2,2-dimethoxypropane and p-toluenesulfonic acid were added in a catalytic amount. After stirring at room temperature for 3.5 hours, the reaction solution was poured into ice water and extracted with ether. The organic layer was washed with saturated aqueous sodium hydrogen carbonate, water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain 10.44 g of a crude product of the target compound (Ia-3b).
Yield: 90% in two steps from 2- (1-chlorocyclopropyl) -5-hexene-oxirane of Example (2-1)
Purity: 94% (GCarea)
1 H-NMR (CDCl 3 ) δ:
0.84 to 0.91 (m, 2H), 0.98 to 1.02 (m, 1H), 1.10 to 1.17 (m, 2H), 1.35 (s, 3H), 1.38 (s, 3H), 2.12 to 2.22 (m, 1H), 2.24 ~ 2.31 (m, 2H), 3.91 (d, 1H, J = 8.8Hz), 4.08 (d, 1H, J = 8.8Hz), 4.95 ~ 5.08 (m, 2H), 5.81 ~ 5.90 (m, 1H)
 (2-3:4-[2-(2,2-ジクロロシクロプロピル)エチル]-4-(1-クロロシクロプロピル)-2,2-ジメチル-1,3-ジオキソラン(化合物(Ib-b))の合成)
 化合物(Ia-3b) 10.90gをクロロホルム40.0mlに溶解し、BTEAC 0.54gを加えた。室温下において、反応液を激しく撹拌しながら、水酸化ナトリウム18.92gを水19.0mlに溶解した溶液を少しずつ加えた。溶液の添加中に、反応液温が約50℃に上昇し、水酸化ナトリウム溶液を全量加えた後も、50℃で激しく撹拌した。2時間撹拌した後、反応液温が50℃以下となり、この時点におけるGC分析により、反応液中の比率が、原料として用いた化合物(Ia-3b)が1.5%、目的の化合物(Ib-b)が97%であった。
(2-3: 4- [2- (2,2-dichlorocyclopropyl) ethyl] -4- (1-chlorocyclopropyl) -2,2-dimethyl-1,3-dioxolane (compound (Ib-b) )
Compound (Ia-3b) 10.90g was melt | dissolved in chloroform 40.0ml, BTEAC 0.54g was added. A solution prepared by dissolving 18.92 g of sodium hydroxide in 19.0 ml of water was added little by little while stirring the reaction solution vigorously at room temperature. During the addition of the solution, the reaction solution temperature rose to about 50 ° C., and after adding the entire amount of sodium hydroxide solution, the mixture was vigorously stirred at 50 ° C. After stirring for 2 hours, the temperature of the reaction solution became 50 ° C. or less, and according to GC analysis at this point, the ratio in the reaction solution was 1.5% of the compound (Ia-3b) used as a raw material and the target compound (Ib -B) was 97%.
 放冷後、反応液を氷水中に注ぎ、ヘキサンで抽出した。有機層を水及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、得られた油状物を、シリカゲルカラムクロマトグラフィーで精製した。目的の化合物(Ib-b)を、黄色油状物のジアステレオマー混合物として、12.25g得た。収率は82%であった。
1H-NMR(CDCl3)δ:
 0.85~0.88(m,2H),0.98~1.06(m,1H), 1.10~1.13(m,2H), 1.33,1.34(s×2,3H),1.39,1.40(s×2,3H), 1.56~1.62(m,2H), 1.70~1.95(m,2H),1.85~1.88,1.97~2.04(m×2,1H), 2.20~2.26,2.33~2.40(m×2,1H),3.93,3.94(d×2,1H,J=8.8Hz), 4.11,4.12(d×2,1H,J=8.8Hz).
After allowing to cool, the reaction solution was poured into ice water and extracted with hexane. The organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting oil was purified by silica gel column chromatography. 12.25 g of the target compound (Ib-b) was obtained as a yellow oily diastereomer mixture. The yield was 82%.
1 H-NMR (CDCl 3 ) δ:
0.85 to 0.88 (m, 2H), 0.98 to 1.06 (m, 1H), 1.10 to 1.13 (m, 2H), 1.33, 1.34 (s x 2, 3H), 1.39, 1.40 (s x 2, 3H), 1.56 ~ 1.62 (m, 2H), 1.70 ~ 1.95 (m, 2H), 1.85 ~ 1.88,1.97 ~ 2.04 (m × 2,1H), 2.20 ~ 2.26,2.33 ~ 2.40 (m × 2,1H), 3.93,3.94 (d × 2,1H, J = 8.8Hz), 4.11,4.12 (d × 2,1H, J = 8.8Hz).
 (2-4:2-(1-クロロシクロプロピル)-4-(2,2-ジクロロシクロプロピル)ブタン-1,2-ジオール(化合物(Ia-b))の合成)
 化合物(Ib-b)12.25gをメタノール200mlに溶解し、2N HCl溶液20.0mlを加えた。反応液を6時間加熱還流後、減圧下、大部分のメタノールを留去した。残渣を酢酸エチルに溶解し、有機層を飽和重曹水、水、及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下において溶媒を留去し、得られた油状物をシリカゲルカラムクロマトグラフィーで精製した。目的の化合物(Ia-b)を黄色固体のジアステレオマー混合物として、10.09g得た。収率は94%であった。
(2-4: Synthesis of 2- (1-chlorocyclopropyl) -4- (2,2-dichlorocyclopropyl) butane-1,2-diol (compound (Ia-b)))
12.25 g of compound (Ib-b) was dissolved in 200 ml of methanol, and 20.0 ml of 2N HCl solution was added. The reaction solution was heated under reflux for 6 hours, and most of methanol was distilled off under reduced pressure. The residue was dissolved in ethyl acetate, and the organic layer was washed with saturated aqueous sodium hydrogen carbonate, water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting oil was purified by silica gel column chromatography. 10.09 g of the target compound (Ia-b) was obtained as a yellow solid diastereomeric mixture. The yield was 94%.
 H-NMR測定の結果、得られたジアステレオマー混合物に含まれる2つのジアステレオマー、ジアステレオマー(A)及びジアステレオマー(B)の生成比は、ほぼA/B=1/1と推定された。この固形物をヘキサンで洗浄し、濾液と不溶物固体に分離し、濾液より黄色油状物(ジアステレオマー(A))(室温静置で一部固化)、不溶物固体より白色結晶(ジアステレオマー(B))を得た。それぞれのジアステレオマー比は、H-NMR測定結果より、油状物(ジアステレオマー(A))がA/B=約70/30、白色結晶(ジアステレオマー(B))がA/B=約30/70と推定された。 As a result of 1 H-NMR measurement, the production ratio of the two diastereomers, diastereomer (A) and diastereomer (B) contained in the obtained diastereomer mixture was approximately A / B = 1/1. It was estimated. This solid is washed with hexane, separated into a filtrate and an insoluble solid, a yellow oil (diastereomer (A)) (partially solidified at room temperature) from the filtrate, and a white crystal (diastereoisomer) from the insoluble solid. (B)). The respective diastereomeric ratios are as follows. From the result of 1 H-NMR measurement, the oily substance (diastereomer (A)) is A / B = about 70/30, and the white crystal (diastereomer (B)) is A / B. = Estimated to be about 30/70.
 ジアステレオマー(A);
 1H-NMR(CDCl3)δ:
 0.86~0.95(m,2H),1.10~1.16(m,3H), 1.56~1.97(m,6H), 2.39(s,3H),3.63(dd,1H,J=7.6,11.2Hz), 3.98(dd,1H,J=4.8,11.2Hz).
 ジアステレオマー(B);
 1H-NMR(CDCl3)δ:
 0.90~0.95(m,2H),1.06~1.19(m,2H), 1.57~1.65(m,2H), 1.68~1.87(m,3H),2.05~2.11(m,1H), 2.42(s,1H), 3.62(d,1H,J=7.5,11.2Hz), 3.99(dd,1H,J=4.9,11.2Hz).。
Diastereomer (A);
1 H-NMR (CDCl 3 ) δ:
0.86 ~ 0.95 (m, 2H), 1.10 ~ 1.16 (m, 3H), 1.56 ~ 1.97 (m, 6H), 2.39 (s, 3H), 3.63 (dd, 1H, J = 7.6,11.2Hz), 3.98 ( dd, 1H, J = 4.8,11.2Hz).
Diastereomer (B);
1 H-NMR (CDCl 3 ) δ:
0.90 to 0.95 (m, 2H), 1.06 to 1.19 (m, 2H), 1.57 to 1.65 (m, 2H), 1.68 to 1.87 (m, 3H), 2.05 to 2.11 (m, 1H), 2.42 (s, 1H ), 3.62 (d, 1H, J = 7.5, 11.2 Hz), 3.99 (dd, 1H, J = 4.9, 11.2 Hz).
 (2-5:2-(1-クロロシクロプロピル)-4-(2,2-ジクロロシクロプロピル)-2-ヒドロキシブチルメタンスルホン酸エステル(化合物(Ic-b))の合成)
 化合物(Ia-b)のジアステレオマー(A) 0.27gとトリエチルアミン0.20mlとをトルエン5.0mlに溶解し、メシルクロライド0.11mlを加えた。室温で3.5時間撹拌後、反応液を氷水中に注ぎ、酢酸エチルで抽出した。有機層を飽和重曹水、水、及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下において溶媒を留去し、目的の化合物(Ic-b)を、黄色油状物のジアステレオマー混合物として、定量的に0.37g得た。
(2-5: Synthesis of 2- (1-chlorocyclopropyl) -4- (2,2-dichlorocyclopropyl) -2-hydroxybutylmethanesulfonic acid ester (compound (Ic-b)))
0.27 g of diastereomer (A) of compound (Ia-b) and 0.20 ml of triethylamine were dissolved in 5.0 ml of toluene, and 0.11 ml of mesyl chloride was added. After stirring at room temperature for 3.5 hours, the reaction mixture was poured into ice water and extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogen carbonate, water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and 0.37 g of the target compound (Ic-b) was quantitatively obtained as a diastereomeric mixture of yellow oil.
 H-NMR測定の結果、得られたジアステレオマー混合物中のジアステレオマー比は、原料である化合物(Ia-b)中の比率とほとんど変化していないと推定された。 As a result of 1 H-NMR measurement, it was estimated that the diastereomer ratio in the obtained diastereomer mixture was hardly changed from the ratio in the starting compound (Ia-b).
 化合物(Ia-b)のジアステレオマー(B)についても上記と同様の反応を行い、目的の化合物(Ic-b)を白色結晶のジアステレオマー混合物として、0.32g得た。収率は94%であった。 The diastereomer (B) of the compound (Ia-b) was subjected to the same reaction as described above to obtain 0.32 g of the target compound (Ic-b) as a white crystal diastereomer mixture. The yield was 94%.
 同様に、H-NMR測定結果より、得られたジアステレオマー混合物中のジアステレオマー比は、原料である化合物(Ia-b)のジアステレオマー(B)中の比率とほとんど変化していないと推定された。 Similarly, from the 1 H-NMR measurement results, the diastereomer ratio in the obtained diastereomer mixture is almost different from the ratio in the diastereomer (B) of the starting compound (Ia-b). Not estimated.
 それぞれのジアステレオマー混合物を、ヘキサン/酢酸エチル=10/1により再結晶し、ジアステレオマー(A)及びジアステレオマー(B)を単離した。 Each diastereomer mixture was recrystallized with hexane / ethyl acetate = 10/1 to isolate the diastereomer (A) and the diastereomer (B).
 ジアステレオマー(A);
白色結晶
融点:86~87℃
1H-NMR(CDCl3)δ:
 0.92~1.00(m,2H),1.11~1.18(m,2H), 1.21~1.27(m,1H), 1.56~1.71(m,3H),1.82~1.88(m,1H), 1.90~2.08(m,2H), 2.28(s,1H), 3.10(s,3H), 4.41(d,1H,J=10.8Hz), 4.48(d,1H,J=10.8Hz).
 ジアステレオマー(B);
白色結晶
融点:78~79℃
1H-NMR(CDCl3)δ:
 0.92~1.00(m,2H),1.09~1.18(m,2H), 1.21~1.25(m,1H), 1.55~1.75(m,3H),1.79~2.05(m,2H), 2.15~2.20(m,1H), 2.29(s,1H), 3.10(s,3H), 4.40(d,1H,J=10.7Hz), 4.49(d,1H,J=10.7Hz).
Diastereomer (A);
White crystalline melting point: 86-87 ° C
1 H-NMR (CDCl 3 ) δ:
0.92 to 1.00 (m, 2H), 1.11 to 1.18 (m, 2H), 1.21 to 1.27 (m, 1H), 1.56 to 1.71 (m, 3H), 1.82 to 1.88 (m, 1H), 1.90 to 2.08 (m , 2H), 2.28 (s, 1H), 3.10 (s, 3H), 4.41 (d, 1H, J = 10.8Hz), 4.48 (d, 1H, J = 10.8Hz).
Diastereomer (B);
White crystalline melting point: 78-79 ° C
1 H-NMR (CDCl 3 ) δ:
0.92 to 1.00 (m, 2H), 1.09 to 1.18 (m, 2H), 1.21 to 1.25 (m, 1H), 1.55 to 1.75 (m, 3H), 1.79 to 2.05 (m, 2H), 2.15 to 2.20 (m , 1H), 2.29 (s, 1H), 3.10 (s, 3H), 4.40 (d, 1H, J = 10.7Hz), 4.49 (d, 1H, J = 10.7Hz).
 (2-6:2-(1-クロロシクロプロピル)-2-[2-(2,2-ジクロロシクロプロピル)エチル]オキシラン(化合物(III-b))の合成)
 化合物(Ic-b)のジアステレオマー(B) 0.32gをメタノール2.0mlに溶解し、水酸化ナトリウム0.40gを水1.0mlに溶解した溶液を加えた。室温で1時間撹拌後、反応液を氷水中に注ぎ、ヘキサンで抽出した。有機層を水及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下において溶媒を留去し、目的の化合物(III-b)を淡黄色油状物のジアステレオマー混合物として、0.21g得た。収率は91%であった。H-NMR測定の結果、ジアステレオマー(A)及びジアステレオマー(B)のジアステレオマー比は、A/B=34/66と推測され、原料として用いた化合物(Ic-b)のジアステレオマー(B)におけるジアステレオマー比(A/B=3/7)から変化していないと推測された。
(2-6: Synthesis of 2- (1-chlorocyclopropyl) -2- [2- (2,2-dichlorocyclopropyl) ethyl] oxirane (Compound (III-b)))
A solution of 0.32 g of the diastereomer (B) of compound (Ic-b) in 2.0 ml of methanol and a solution of 0.40 g of sodium hydroxide in 1.0 ml of water were added. After stirring at room temperature for 1 hour, the reaction solution was poured into ice water and extracted with hexane. The organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain 0.21 g of the objective compound (III-b) as a diastereomeric mixture of pale yellow oil. The yield was 91%. As a result of 1 H-NMR measurement, the diastereomer ratio of diastereomer (A) and diastereomer (B) was estimated to be A / B = 34/66, and the compound (Ic-b) used as the starting material It was speculated that there was no change from the diastereomer ratio (A / B = 3/7) in the diastereomer (B).
 また、化合物(Ic-b)のジアステレオマー(B) 0.10gをメタノール1.5mlに溶解し、この中へ2N 水酸化ナトリウム溶液1.5mlを加えた。室温で1時間撹拌後、反応液を氷水中に注ぎ、ヘキサンで抽出した。有機層を水及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下において溶媒を留去し、目的の化合物(III-b)を無色油状物として、56mg得た。収率は77%であった。H-NMR測定の結果、得られた化合物(III-b)はジアステレオマー(B)のみを含むことが確認された。 Further, 0.10 g of diastereomer (B) of compound (Ic-b) was dissolved in 1.5 ml of methanol, and 1.5 ml of 2N sodium hydroxide solution was added thereto. After stirring at room temperature for 1 hour, the reaction solution was poured into ice water and extracted with hexane. The organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain 56 mg of the objective compound (III-b) as a colorless oil. The yield was 77%. As a result of 1 H-NMR measurement, it was confirmed that the obtained compound (III-b) contained only the diastereomer (B).
 (2-7:2-(1-クロロシクロプロピル)-2-[2-(2,2-ジクロロシクロプロピル)エチル]オキシラン(化合物(III-b))の合成)
 化合物(Ia-b)のジアステレオマー(B) 0.27gを30%HBr酢酸溶液2.0ml(ca. 5.2mmol)中に少量ずつ添加した。室温で1.5時間撹拌後、反応液を氷水中に注ぎ、エーテルで抽出した。有機層を水及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下において溶媒を留去し、目的の中間体アセトキシブロマイドの粗抽出物を黄色油状物として、定量的に0.32g得た。
(2-7: Synthesis of 2- (1-chlorocyclopropyl) -2- [2- (2,2-dichlorocyclopropyl) ethyl] oxirane (compound (III-b)))
0.27 g of the diastereomer (B) of compound (Ia-b) was added in small portions to 2.0 ml (ca. 5.2 mmol) of 30% HBr acetic acid solution. After stirring at room temperature for 1.5 hours, the reaction solution was poured into ice water and extracted with ether. The organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to quantitatively obtain 0.32 g of a crude extract of the target intermediate acetoxy bromide as a yellow oil.
 この粗抽出物を、メタノール2.0mlに溶解し、水酸化ナトリウム0.40gを水1.0mlに溶解した溶液を加えた。室温で1時間撹拌後、反応液を氷水中に注ぎ、ヘキサンで抽出した。有機層を水及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下において溶媒を留去し、得られた油状物をシリカゲルカラムクロマトグラフィーで精製した。目的の化合物(III-b)を淡黄色油状物のジアステレオマー混合物として、0.13g得た。収率は53%であった。H-NMR測定の結果、ジアステレオマー(A)及びジアステレオマー(B)の生成比は、ほぼA/B=47/53と推定された。これは原料として用いた化合物(Ia-b)のジアステレオマー(B)のジアステレオマー含有比率3/7から変化しており、ラセミ化が進行したと推測された。 This crude extract was dissolved in 2.0 ml of methanol, and a solution in which 0.40 g of sodium hydroxide was dissolved in 1.0 ml of water was added. After stirring at room temperature for 1 hour, the reaction solution was poured into ice water and extracted with hexane. The organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting oil was purified by silica gel column chromatography. 0.13 g of the target compound (III-b) was obtained as a diastereomeric mixture of pale yellow oil. The yield was 53%. As a result of 1 H-NMR measurement, the production ratio of diastereomer (A) and diastereomer (B) was estimated to be approximately A / B = 47/53. This changed from the diastereomer content ratio 3/7 of the diastereomer (B) of the compound (Ia-b) used as a raw material, and it was speculated that racemization proceeded.
 (2-8:アセトキシ-2-ブロモ-2-(1-クロロシクロプロピル)-4-(2,2-ジクロロシクロプロピル)ブタン(化合物(III-c))の合成)
 化合物(Ia-b)のジアステレオマー(B) 1.01gを飽和HBr酢酸溶液2.17mlに、少量ずつ撹拌しながら添加し、その後室温で1時間撹拌した。反応液を氷水中に注ぎ、炭酸ナトリウムを加えて中和した後、エーテルで抽出した。有機層を水及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下において溶媒を留去し、得られた油状物1.25gをシリカゲルカラムクロマトグラフィーで精製した。目的の化合物(III-c)を無色油状物として0.39g得た。収率は28%であった。H-NMR測定の結果、ジアステレオマー(A)及びジアステレオマー(B)の生成比はほぼA/B=1/1と推定された。
1H-NMR(CDCl3)δ:
 1.06~1.17(m,3H), 1.36~1.48(m,2H), 1.57~1.64(m,2H), 1.74~1.86(m,1H),1.90~2.00(m,1H), 2.10~2.43(m,2H), 2.13,2.14(s×2,3H), 4.48~4.55(m,2H)
(2-8: Synthesis of acetoxy-2-bromo-2- (1-chlorocyclopropyl) -4- (2,2-dichlorocyclopropyl) butane (compound (III-c)))
1.01 g of diastereomer (B) of compound (Ia-b) was added to 2.17 ml of a saturated HBr acetic acid solution while stirring little by little, and then stirred at room temperature for 1 hour. The reaction solution was poured into ice water, neutralized with sodium carbonate, and extracted with ether. The organic layer was washed with water and saturated brine, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and 1.25 g of the obtained oil was purified by silica gel column chromatography. 0.39 g of the objective compound (III-c) was obtained as a colorless oil. The yield was 28%. As a result of 1 H-NMR measurement, the production ratio of diastereomer (A) and diastereomer (B) was estimated to be approximately A / B = 1/1.
1 H-NMR (CDCl 3 ) δ:
1.06 to 1.17 (m, 3H), 1.36 to 1.48 (m, 2H), 1.57 to 1.64 (m, 2H), 1.74 to 1.86 (m, 1H), 1.90 to 2.00 (m, 1H), 2.10 to 2.43 (m , 2H), 2.13, 2.14 (s × 2,3H), 4.48 to 4.55 (m, 2H)
 (2-9:2-(1-クロロシクロプロピル)-4-(2,2-ジクロロシクロプロピル)ブタン-1,2-ジオール(化合物(Ia-b))の合成)
 化合物(III-b) 0.51gを水15.0mlとt-ブタノール5.0mlの混合溶液に溶解し、濃硫酸を1滴加えた。室温で5時間撹拌後、反応が進行していなかったので、100℃でさらに1時間撹拌した。反応液を氷水中に注ぎ、酢酸エチルで抽出した。有機層を飽和重曹水、水、及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下において溶媒を留去し、得られた油状物をシリカゲルカラムクロマトグラフィーで精製した。目的の化合物(Ia-b)を淡黄色油状物のジアステレオマー混合物として、0.44g得た。収率は81%であった。H-NMR測定の結果、ジアステレオマー(A)及びジアステレオマー(B)の生成比はほぼA/B=1/1と推定された。
(2-9: Synthesis of 2- (1-chlorocyclopropyl) -4- (2,2-dichlorocyclopropyl) butane-1,2-diol (compound (Ia-b)))
0.51 g of compound (III-b) was dissolved in a mixed solution of 15.0 ml of water and 5.0 ml of t-butanol, and 1 drop of concentrated sulfuric acid was added. After 5 hours of stirring at room temperature, the reaction was not progressing, so the mixture was further stirred at 100 ° C for 1 hour. The reaction mixture was poured into ice water and extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogen carbonate, water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting oil was purified by silica gel column chromatography. 0.44 g of the target compound (Ia-b) was obtained as a diastereomeric mixture of pale yellow oil. The yield was 81%. As a result of 1 H-NMR measurement, the production ratio of diastereomer (A) and diastereomer (B) was estimated to be approximately A / B = 1/1.
 また、化合物(III-b)のジアステレオマー(B) 0.21gを、水4.5mlとt-ブタノール1.5mlとの混合溶液に溶解し、濃硫酸を1滴加えた。100℃で2時間撹拌後、反応液を氷水中に注ぎ、酢酸エチルで抽出した。有機層を飽和重曹水、水及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下において溶媒を留去し、目的の化合物(Ia-b)を、淡黄色油状物のジアステレオマー混合物として、定量的に0.24g得た。H-NMR測定の結果、ジアステレオマー(A)及びジアステレオマー(B)の生成比はほぼA/B=33/67と推定された。 Further, 0.21 g of diastereomer (B) of compound (III-b) was dissolved in a mixed solution of 4.5 ml of water and 1.5 ml of t-butanol, and 1 drop of concentrated sulfuric acid was added. After stirring at 100 ° C. for 2 hours, the reaction mixture was poured into ice water and extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogen carbonate, water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and 0.24 g of the target compound (Ia-b) was quantitatively obtained as a diastereomeric mixture of pale yellow oil. As a result of 1 H-NMR measurement, the production ratio of diastereomer (A) and diastereomer (B) was estimated to be approximately A / B = 33/67.
 本発明を以下のように表現することもできる。 The present invention can also be expressed as follows.
 本発明に係るトリアゾール化合物の製造方法は、前記ジオール生成工程において生成されたジオール化合物から、前記一般式(III)に示されるオキシラン化合物の第2のオキシランジアステレオマーを生成する第2のオキシランジアステレオマー生成工程と、前記第2のオキシランジアステレオマー生成工程において生成した第2のオキシランジアステレオマーを用いて前記ジオール化合物を生成するジオール再生成工程をさらに包含することが好ましい。 The method for producing a triazole compound according to the present invention includes a second oxirane diastereomer that produces a second oxirane diastereomer of the oxirane compound represented by the general formula (III) from the diol compound produced in the diol production step. Preferably, the method further includes a stereomer production step and a diol regeneration step of producing the diol compound using the second oxirane diastereomer produced in the second oxirane diastereomer production step.
 さらに、本発明に係るトリアゾール化合物の製造方法は、前記ジオール生成工程において、前記オキシラン化合物を加水分解してジオール化合物を生成することが好ましい。 Furthermore, in the method for producing a triazole compound according to the present invention, it is preferable that in the diol production step, the oxirane compound is hydrolyzed to produce a diol compound.
 また、本発明に係るトリアゾール化合物の製造方法は、前記ジオール生成工程において、前記オキシラン化合物をアセトナイド化して、下記一般式(Ib)に示されるジオキソラン化合物を生成し、 Further, in the method for producing a triazole compound according to the present invention, in the diol production step, the oxirane compound is acetonated to produce a dioxolane compound represented by the following general formula (Ib):
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
(X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。)
 当該ジオキソラン化合物を加水分解してジオール化合物を生成することが好ましい。
(X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are different from each other, and n represents 0 to 3. R 2 represents a C3 to C6 cycloalkyl group or a C1 to C4 substituted with the cycloalkyl group The cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 cycloalkyl group, an aryl group, or an arylalkyl group (alkyl The aromatic ring of the aryl group and the arylalkyl group may be a halogen atom, a C1-C4 alkyl group, Haloalkyl group 1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
It is preferable to hydrolyze the dioxolane compound to produce a diol compound.
 また、本発明に係るトリアゾール化合物の製造方法は、前記ジオール生成工程において、前記ジオキソラン化合物から第1のジオキソランジアステレオマーを分離し、当該第1のジオキソランジアステレオマーを加水分解してジオール化合物を生成することが好ましい。 In the method for producing a triazole compound according to the present invention, in the diol production step, a first dioxolane diastereomer is separated from the dioxolane compound, and the first dioxolane diastereomer is hydrolyzed to obtain a diol compound. It is preferable to produce.
 さらに、本発明に係るトリアゾール化合物の製造方法は、前記第1のオキシランジアステレオマー生成工程において、前記ジオール生成工程において生成したジオール化合物から、下記一般式(Ic)に示されるハロヒドリン又はスルホニル化合物を生成し、 Furthermore, in the method for producing a triazole compound according to the present invention, a halohydrin or sulfonyl compound represented by the following general formula (Ic) is obtained from the diol compound produced in the diol production step in the first oxirane diastereomer production step. Generate
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
(X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表しており、Lはハロゲン原子又はスルホニルオキシ基を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。)
 当該ハロヒドリン又はスルホニル化合物から第1のハロヒドリン又はスルホニルジアステレオマーを分離し、当該第1のハロヒドリン又はスルホニルジアステレオマーから前記第1のオキシランジアステレオマーを生成することが好ましい。
(X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are mutually different atoms, n represents 0 to 3, L represents a halogen atom or a sulfonyloxy group, R 2 represents a C3 to C6 cycloalkyl group, Or a C1-C4 alkyl group substituted with the cycloalkyl group, wherein the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 The aryl group and the arylalkyl may be substituted with a cycloalkyl group, an aryl group, or an arylalkyl group (carbon chain C1 to C3 of the alkyl moiety). The aromatic ring, a halogen atom, an alkyl group of C1 ~ C4, haloalkyl group of C1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
It is preferred to separate the first halohydrin or sulfonyl diastereomer from the halohydrin or sulfonyl compound to produce the first oxirane diastereomer from the first halohydrin or sulfonyl diastereomer.
 また、本発明に係るトリアゾール化合物の製造方法は、前記第1のオキシランジアステレオマー生成工程において、前記ジオール生成工程において生成したジオール化合物から第1のジオールジアステレオマーを分離し、当該第1のジオールジアステレオマーから、下記一般式(Ic)に示されるハロヒドリン又はスルホニル化合物の第1のハロヒドリン又はスルホニルジアステレオマーを生成し、 Further, the method for producing a triazole compound according to the present invention includes separating the first diol diastereomer from the diol compound produced in the diol production step in the first oxirane diastereomer production step. From the diol diastereomer, a first halohydrin or sulfonyl diastereomer of a halohydrin or sulfonyl compound represented by the following general formula (Ic) is produced:
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
(X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表しており、Lはハロゲン原子又はスルホニルオキシ基を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。)
 当該第1のハロヒドリン又はスルホニルジアステレオマーから前記第1のオキシランジアステレオマーを生成することが好ましい。
(X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are mutually different atoms, n represents 0 to 3, L represents a halogen atom or a sulfonyloxy group, R 2 represents a C3 to C6 cycloalkyl group, Or a C1-C4 alkyl group substituted with the cycloalkyl group, wherein the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 The aryl group and the arylalkyl may be substituted with a cycloalkyl group, an aryl group, or an arylalkyl group (carbon chain C1 to C3 of the alkyl moiety). The aromatic ring, a halogen atom, an alkyl group of C1 ~ C4, haloalkyl group of C1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
Preferably, the first oxirane diastereomer is generated from the first halohydrin or sulfonyl diastereomer.
 さらに、本発明に係るトリアゾール化合物の製造方法は、前記第2のオキシランジアステレオマー生成工程において、前記ジオール生成工程において生成したジオール化合物から、下記一般式(Ic)に示されるハロヒドリン又はスルホニル化合物を生成し、 Furthermore, in the method for producing a triazole compound according to the present invention, a halohydrin or sulfonyl compound represented by the following general formula (Ic) is obtained from the diol compound produced in the diol production step in the second oxirane diastereomer production step. Generate
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
(X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表しており、Lはハロゲン原子又はスルホニルオキシ基を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。)
 当該ハロヒドリン又はスルホニル化合物から第2のハロヒドリン又はスルホニルジアステレオマーを分離し、当該第2のハロヒドリン又はスルホニルジアステレオマーから前記第2のオキシランジアステレオマーを生成することが好ましい。
(X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are mutually different atoms, n represents 0 to 3, L represents a halogen atom or a sulfonyloxy group, R 2 represents a C3 to C6 cycloalkyl group, Or a C1-C4 alkyl group substituted with the cycloalkyl group, wherein the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 The aryl group and the arylalkyl may be substituted with a cycloalkyl group, an aryl group, or an arylalkyl group (carbon chain C1 to C3 of the alkyl moiety). The aromatic ring, a halogen atom, an alkyl group of C1 ~ C4, haloalkyl group of C1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
It is preferred that the second halohydrin or sulfonyl diastereomer is separated from the halohydrin or sulfonyl compound to produce the second oxirane diastereomer from the second halohydrin or sulfonyl diastereomer.
 また、本発明に係るトリアゾール化合物の製造方法は、前記第2のオキシランジアステレオマー生成工程において、前記ジオール生成工程において生成したジオール化合物から第2のジオールジアステレオマーを分離し、当該第2のジオールジアステレオマーから、下記一般式(Ic)に示されるハロヒドリン又はスルホニル化合物の第2のハロヒドリン又はスルホニルジアステレオマーを生成し、 In the method for producing a triazole compound according to the present invention, in the second oxirane diastereomer production step, the second diol diastereomer is separated from the diol compound produced in the diol production step. From the diol diastereomer, a second halohydrin or sulfonyl diastereomer of the halohydrin or sulfonyl compound represented by the following general formula (Ic) is produced:
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
(X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表しており、Lはハロゲン原子又はスルホニルオキシ基を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。)
 当該第2のハロヒドリン又はスルホニルジアステレオマーから前記第2のオキシランジアステレオマーを生成することが好ましい。
(X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are mutually different atoms, n represents 0 to 3, L represents a halogen atom or a sulfonyloxy group, R 2 represents a C3 to C6 cycloalkyl group, Or a C1-C4 alkyl group substituted with the cycloalkyl group, wherein the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 The aryl group and the arylalkyl may be substituted with a cycloalkyl group, an aryl group, or an arylalkyl group (carbon chain C1 to C3 of the alkyl moiety). The aromatic ring, a halogen atom, an alkyl group of C1 ~ C4, haloalkyl group of C1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
Preferably, the second oxirane diastereomer is produced from the second halohydrin or sulfonyl diastereomer.
 本発明は、茎葉処理及び非茎葉処理により植物病害を防除できる防除材の有効成分の製造方法として好適に利用することができる。 The present invention can be suitably used as a method for producing an active ingredient of a control material capable of controlling plant diseases by foliage treatment and non-foliage treatment.

Claims (12)

  1.  下記一般式(III)に示されるオキシラン化合物から下記一般式(Ia)に示されるジオール化合物を生成するジオール生成工程と、
    Figure JPOXMLDOC01-appb-C000001
    (X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。)
     前記ジオール生成工程において生成されたジオール化合物から、前記一般式(III)に示されるオキシラン化合物の第1のオキシランジアステレオマーを生成する第1のオキシランジアステレオマー生成工程と、
     前記第1のオキシランジアステレオマー生成工程において生成した第1のオキシランジアステレオマーを用いて、下記一般式(I)に示されるトリアゾール化合物を生成するトリアゾール化合物生成工程と
    Figure JPOXMLDOC01-appb-C000003
    (式(I)中、X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、XおよびXの少なくとも一方はハロゲン原子であり、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、mおよびnは0~3を表している。)
    を包含し、
     前記第1のオキシランジアステレオマーは、上記一般式(I)に示されるトリアゾール化合物における目的とするジアステレオマーに誘導されるものであることを特徴とするトリアゾール化合物の製造方法。
    A diol production step of producing a diol compound represented by the following general formula (Ia) from an oxirane compound represented by the following general formula (III):
    Figure JPOXMLDOC01-appb-C000001
    (X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are different from each other, and n represents 0 to 3. R 2 represents a C3 to C6 cycloalkyl group or a C1 to C4 substituted with the cycloalkyl group The cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 cycloalkyl group, an aryl group, or an arylalkyl group (alkyl The aromatic ring of the aryl group and the arylalkyl group may be a halogen atom, a C1-C4 alkyl group, Haloalkyl group 1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
    Figure JPOXMLDOC01-appb-C000002
    (X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are different from each other, and n represents 0 to 3. R 2 represents a C3 to C6 cycloalkyl group or a C1 to C4 substituted with the cycloalkyl group The cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 cycloalkyl group, an aryl group, or an arylalkyl group (alkyl The aromatic ring of the aryl group and the arylalkyl group may be a halogen atom, a C1-C4 alkyl group, Haloalkyl group 1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
    A first oxirane diastereomer producing step for producing a first oxirane diastereomer of the oxirane compound represented by the general formula (III) from the diol compound produced in the diol producing step;
    A triazole compound production step for producing a triazole compound represented by the following general formula (I) using the first oxirane diastereomer produced in the first oxirane diastereomer production step;
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (I), X 1 ~ X 4 represents a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 2 are the same atom together, X 1 and At least one of X 2 is a halogen atom, a plurality of X 4 are the same atom, a plurality of X 5 are the same atom, X 4 and X 5 are different atoms, m and n Represents 0 to 3.)
    Including
    The method for producing a triazole compound, wherein the first oxirane diastereomer is derived from a target diastereomer in the triazole compound represented by the general formula (I).
  2.  前記ジオール生成工程において生成されたジオール化合物から、前記一般式(III)に示されるオキシラン化合物の第2のオキシランジアステレオマーを生成する第2のオキシランジアステレオマー生成工程と、
     前記第2のオキシランジアステレオマー生成工程において生成した第2のオキシランジアステレオマーを用いて前記ジオール化合物を生成するジオール再生成工程をさらに包含することを特徴とする、請求項1に記載のトリアゾール化合物の製造方法。
    A second oxirane diastereomer producing step for producing a second oxirane diastereomer of the oxirane compound represented by the general formula (III) from the diol compound produced in the diol producing step;
    The triazole according to claim 1, further comprising a diol regenerating step of generating the diol compound using the second oxirane diastereomer generated in the second oxirane diastereomer generating step. Compound production method.
  3.  前記ジオール生成工程において、前記オキシラン化合物を加水分解してジオール化合物を生成することを特徴とする請求項1に記載のトリアゾール化合物の製造方法。 The method for producing a triazole compound according to claim 1, wherein, in the diol production step, the oxirane compound is hydrolyzed to produce a diol compound.
  4.  前記ジオール生成工程において、
      前記オキシラン化合物をアセトナイド化して、下記一般式(Ib)に示されるジオキソラン化合物を生成し、
    Figure JPOXMLDOC01-appb-C000004
    (X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。)
      当該ジオキソラン化合物を加水分解してジオール化合物を生成することを特徴とする、請求項1に記載のトリアゾール化合物の製造方法。
    In the diol production step,
    The oxirane compound is acetonated to produce a dioxolane compound represented by the following general formula (Ib):
    Figure JPOXMLDOC01-appb-C000004
    (X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are different from each other, and n represents 0 to 3. R 2 represents a C3 to C6 cycloalkyl group or a C1 to C4 substituted with the cycloalkyl group The cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 cycloalkyl group, an aryl group, or an arylalkyl group (alkyl The aromatic ring of the aryl group and the arylalkyl group may be a halogen atom, a C1-C4 alkyl group, Haloalkyl group 1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
    The method for producing a triazole compound according to claim 1, wherein the dioxolane compound is hydrolyzed to produce a diol compound.
  5.  前記ジオール生成工程において、前記ジオキソラン化合物から第1のジオキソランジアステレオマーを分離し、当該第1のジオキソランジアステレオマーを加水分解してジオール化合物を生成することを特徴とする請求項4に記載のトリアゾール化合物の製造方法。 5. The diol production step according to claim 4, wherein in the diol production step, a first dioxolane diastereomer is separated from the dioxolane compound, and the first dioxolane diastereomer is hydrolyzed to produce a diol compound. A method for producing a triazole compound.
  6.  前記第1のオキシランジアステレオマー生成工程において、
      前記ジオール生成工程において生成したジオール化合物から、下記一般式(Ic)に示されるハロヒドリン又はスルホニル化合物を生成し、
    Figure JPOXMLDOC01-appb-C000005
    (X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表しており、Lはハロゲン原子又はスルホニルオキシ基を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。)
      当該ハロヒドリン又はスルホニル化合物から第1のハロヒドリン又はスルホニルジアステレオマーを分離し、当該第1のハロヒドリン又はスルホニルジアステレオマーから前記第1のオキシランジアステレオマーを生成することを特徴とする請求項1に記載のトリアゾール化合物の製造方法。
    In the first oxirane diastereomer production step,
    A halohydrin or sulfonyl compound represented by the following general formula (Ic) is produced from the diol compound produced in the diol production step,
    Figure JPOXMLDOC01-appb-C000005
    (X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are mutually different atoms, n represents 0 to 3, L represents a halogen atom or a sulfonyloxy group, R 2 represents a C3 to C6 cycloalkyl group, Or a C1-C4 alkyl group substituted with the cycloalkyl group, wherein the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 The aryl group and the arylalkyl may be substituted with a cycloalkyl group, an aryl group, or an arylalkyl group (carbon chain C1 to C3 of the alkyl moiety). The aromatic ring, a halogen atom, an alkyl group of C1 ~ C4, haloalkyl group of C1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
    The first halohydrin or sulfonyl diastereomer is separated from the halohydrin or sulfonyl compound to produce the first oxirane diastereomer from the first halohydrin or sulfonyl diastereomer. The manufacturing method of the triazole compound of description.
  7.  前記第1のオキシランジアステレオマー生成工程において、
      前記ジオール生成工程において生成したジオール化合物から第1のジオールジアステレオマーを分離し、当該第1のジオールジアステレオマーから、下記一般式(Ic)に示されるハロヒドリン又はスルホニル化合物の第1のハロヒドリン又はスルホニルジアステレオマーを生成し、
    Figure JPOXMLDOC01-appb-C000006
    (X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表しており、Lはハロゲン原子又はスルホニルオキシ基を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。)
      当該第1のハロヒドリン又はスルホニルジアステレオマーから前記第1のオキシランジアステレオマーを生成することを特徴とする請求項1に記載のトリアゾール化合物の製造方法。
    In the first oxirane diastereomer production step,
    A first diol diastereomer is separated from the diol compound produced in the diol production step, and from the first diol diastereomer, a halohydrin represented by the following general formula (Ic) or a first halohydrin of a sulfonyl compound or Producing sulfonyl diastereomers,
    Figure JPOXMLDOC01-appb-C000006
    (X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are mutually different atoms, n represents 0 to 3, L represents a halogen atom or a sulfonyloxy group, R 2 represents a C3 to C6 cycloalkyl group, Or a C1-C4 alkyl group substituted with the cycloalkyl group, wherein the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 The aryl group and the arylalkyl may be substituted with a cycloalkyl group, an aryl group, or an arylalkyl group (carbon chain C1 to C3 of the alkyl moiety). The aromatic ring, a halogen atom, an alkyl group of C1 ~ C4, haloalkyl group of C1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
    The method for producing a triazole compound according to claim 1, wherein the first oxirane diastereomer is produced from the first halohydrin or sulfonyl diastereomer.
  8.  前記第2のオキシランジアステレオマー生成工程において、
      前記ジオール生成工程において生成したジオール化合物から、下記一般式(Ic)に示されるハロヒドリン又はスルホニル化合物を生成し、
    Figure JPOXMLDOC01-appb-C000007
    (X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表しており、Lはハロゲン原子又はスルホニルオキシ基を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。)
      当該ハロヒドリン又はスルホニル化合物から第2のハロヒドリン又はスルホニルジアステレオマーを分離し、当該第2のハロヒドリン又はスルホニルジアステレオマーから前記第2のオキシランジアステレオマーを生成することを特徴とする請求項2に記載のトリアゾール化合物の製造方法。
    In the second oxirane diastereomer production step,
    A halohydrin or sulfonyl compound represented by the following general formula (Ic) is produced from the diol compound produced in the diol production step,
    Figure JPOXMLDOC01-appb-C000007
    (X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are mutually different atoms, n represents 0 to 3, L represents a halogen atom or a sulfonyloxy group, R 2 represents a C3 to C6 cycloalkyl group, Or a C1-C4 alkyl group substituted with the cycloalkyl group, wherein the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 The aryl group and the arylalkyl may be substituted with a cycloalkyl group, an aryl group, or an arylalkyl group (carbon chain C1 to C3 of the alkyl moiety). The aromatic ring, a halogen atom, an alkyl group of C1 ~ C4, haloalkyl group of C1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
    3. The second halohydrin or sulfonyl diastereomer is separated from the halohydrin or sulfonyl compound to produce the second oxirane diastereomer from the second halohydrin or sulfonyl diastereomer. The manufacturing method of the triazole compound of description.
  9.  前記第2のオキシランジアステレオマー生成工程において、
      前記ジオール生成工程において生成したジオール化合物から第2のジオールジアステレオマーを分離し、当該第2のジオールジアステレオマーから、下記一般式(Ic)に示されるハロヒドリン又はスルホニル化合物の第2のハロヒドリン又はスルホニルジアステレオマーを生成し、
    Figure JPOXMLDOC01-appb-C000008
    (X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表しており、Lはハロゲン原子又はスルホニルオキシ基を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。)
      当該第2のハロヒドリン又はスルホニルジアステレオマーから前記第2のオキシランジアステレオマーを生成することを特徴とする請求項2に記載のトリアゾール化合物の製造方法。
    In the second oxirane diastereomer production step,
    A second diol diastereomer is separated from the diol compound produced in the diol production step, and from the second diol diastereomer, a halohydrin represented by the following general formula (Ic) or a second halohydrin of a sulfonyl compound or Producing sulfonyl diastereomers,
    Figure JPOXMLDOC01-appb-C000008
    (X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are mutually different atoms, n represents 0 to 3, L represents a halogen atom or a sulfonyloxy group, R 2 represents a C3 to C6 cycloalkyl group, Or a C1-C4 alkyl group substituted with the cycloalkyl group, wherein the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 The aryl group and the arylalkyl may be substituted with a cycloalkyl group, an aryl group, or an arylalkyl group (carbon chain C1 to C3 of the alkyl moiety). The aromatic ring, a halogen atom, an alkyl group of C1 ~ C4, haloalkyl group of C1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
    The method for producing a triazole compound according to claim 2, wherein the second oxirane diastereomer is produced from the second halohydrin or sulfonyl diastereomer.
  10.  請求項1に記載のトリアゾール化合物の製造方法において得られる中間体化合物であって、下記一般式(Ia)に示される、中間体化合物。
    Figure JPOXMLDOC01-appb-C000009
    (X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。)
    An intermediate compound obtained by the method for producing a triazole compound according to claim 1, which is represented by the following general formula (Ia).
    Figure JPOXMLDOC01-appb-C000009
    (X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are different from each other, and n represents 0 to 3. R 2 represents a C3 to C6 cycloalkyl group or a C1 to C4 substituted with the cycloalkyl group The cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 cycloalkyl group, an aryl group, or an arylalkyl group (alkyl The aromatic ring of the aryl group and the arylalkyl group may be a halogen atom, a C1-C4 alkyl group, Haloalkyl group 1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
  11.  請求項1に記載のトリアゾール化合物の製造方法において得られる中間体化合物であって、下記一般式(Ib)に示される、中間体化合物。
    Figure JPOXMLDOC01-appb-C000010
    (X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。)
    An intermediate compound obtained by the method for producing a triazole compound according to claim 1, wherein the intermediate compound is represented by the following general formula (Ib).
    Figure JPOXMLDOC01-appb-C000010
    (X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are different from each other, and n represents 0 to 3. R 2 represents a C3 to C6 cycloalkyl group or a C1 to C4 substituted with the cycloalkyl group The cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 cycloalkyl group, an aryl group, or an arylalkyl group (alkyl The aromatic ring of the aryl group and the arylalkyl group may be a halogen atom, a C1-C4 alkyl group, Haloalkyl group 1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
  12.  請求項1に記載のトリアゾール化合物の製造方法において得られる中間体化合物であって、下記一般式(Ic)に示される中間体化合物。
    Figure JPOXMLDOC01-appb-C000011
    (X~Xは、水素原子またはハロゲン原子を表しており、Xは、ハロゲン原子を表しており、複数あるXは互いに同一の原子であり、複数あるXは互いに同一の原子であり、XおよびXは互いに異なる原子であり、nは0~3を表しており、Lはハロゲン原子又はスルホニルオキシ基を表している。Rは、C3~C6のシクロアルキル基、又は当該シクロアルキル基で置換されているC1~C4のアルキル基を表す。上記シクロアルキル基および上記アルキル基は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C3~C6のシクロアルキル基、アリール基、又はアリールアルキル基(アルキル部分の炭素鎖C1~C3)で置換されていてもよい。上記アリール基及び上記アリールアルキル基の芳香環は、ハロゲン原子、C1~C4のアルキル基、C1~C4のハロアルキル基、C1~C4のアルコキシ基、または、C1~C4のハロアルコキシ基で置換されていてもよい。)
    An intermediate compound obtained by the method for producing a triazole compound according to claim 1, wherein the intermediate compound is represented by the following general formula (Ic).
    Figure JPOXMLDOC01-appb-C000011
    (X 3 to X 5 represent a hydrogen atom or a halogen atom, X 5 represents a halogen atom, a plurality of X 4 are the same atom, and a plurality of X 5 are the same atom. X 4 and X 5 are mutually different atoms, n represents 0 to 3, L represents a halogen atom or a sulfonyloxy group, R 2 represents a C3 to C6 cycloalkyl group, Or a C1-C4 alkyl group substituted with the cycloalkyl group, wherein the cycloalkyl group and the alkyl group are a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C3-C6 The aryl group and the arylalkyl may be substituted with a cycloalkyl group, an aryl group, or an arylalkyl group (carbon chain C1 to C3 of the alkyl moiety). The aromatic ring, a halogen atom, an alkyl group of C1 ~ C4, haloalkyl group of C1 ~ C4, alkoxy group of C1 ~ C4, or may be substituted with a haloalkoxy group having C1 ~ C4.)
PCT/JP2012/077762 2011-11-09 2012-10-26 Method for producing triazole compound and intermediate of triazole compound WO2013069481A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011245828 2011-11-09
JP2011-245828 2011-11-09

Publications (1)

Publication Number Publication Date
WO2013069481A1 true WO2013069481A1 (en) 2013-05-16

Family

ID=48289861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077762 WO2013069481A1 (en) 2011-11-09 2012-10-26 Method for producing triazole compound and intermediate of triazole compound

Country Status (1)

Country Link
WO (1) WO2013069481A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146826A1 (en) * 2007-05-29 2008-12-04 Nihon Nohyaku Co., Ltd. Process for producing optically active styrene oxide compound
WO2010023862A1 (en) * 2008-08-26 2010-03-04 Kureha Corporation 5-benzyl-4-azolylmethyl-4-spiro[2.4]heptanol derivatives, methods for producing the same, and agro-horticultural agents and industrial material protecting agents thereof
WO2010142779A1 (en) * 2009-06-12 2010-12-16 Basf Se Antifungal 1,2,4-triazolyl derivatives having a 5- sulfur substituent
WO2011070742A1 (en) * 2009-12-08 2011-06-16 Kureha Corporation Azole derivatives and methods for producing the same, intermediate compounds for the derivatives and methods for producing the same, and agro-horticultural agents and industrial material protecting agents containing the derivatives

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146826A1 (en) * 2007-05-29 2008-12-04 Nihon Nohyaku Co., Ltd. Process for producing optically active styrene oxide compound
WO2010023862A1 (en) * 2008-08-26 2010-03-04 Kureha Corporation 5-benzyl-4-azolylmethyl-4-spiro[2.4]heptanol derivatives, methods for producing the same, and agro-horticultural agents and industrial material protecting agents thereof
WO2010142779A1 (en) * 2009-06-12 2010-12-16 Basf Se Antifungal 1,2,4-triazolyl derivatives having a 5- sulfur substituent
WO2011070742A1 (en) * 2009-12-08 2011-06-16 Kureha Corporation Azole derivatives and methods for producing the same, intermediate compounds for the derivatives and methods for producing the same, and agro-horticultural agents and industrial material protecting agents containing the derivatives

Similar Documents

Publication Publication Date Title
CZ282922B6 (en) Synthesis process of (4r-cis)-1,1-dimethylethyl-6-cyanomethyl -2,2-dimethyl-1,3-dioxan-4-acetate and intermediates used in such process
KR20060109901A (en) Method for producing 2-dihaloacyl-3-amino-acrylic acid esters and 3-dihalomethylpyrazole-4-carboxylic acid esters
JPH0529216B2 (en)
HU191621B (en) Process for preparing alpha-phenyl- or -naphthyl-alkane-acid derivatives
JP2000504000A (en) Method for producing diketone compound
JP2003335756A (en) Method for producing aromatic aldehyde and chiral diol
WO2013069481A1 (en) Method for producing triazole compound and intermediate of triazole compound
JP2617960B2 (en) Stereoisomerization method for producing optically active carboxylic acids
JP3046401B2 (en) 6- [1- (N-Alkoxyimino) ethyl] salicylic acid derivative and method for producing the same
JP2769058B2 (en) Preparation of cyclopropane derivatives
JP6230528B2 (en) Process for producing optically active 2-vinylcyclopropane-1,1-dicarboxylic acid ester
JP7128629B2 (en) Method for producing lubiprostone
JP2006298872A (en) Manufacturing method of 1-fluoro-1-phenylthioethene
JP2002512210A (en) Method for producing 2-hydroxyalkylhalophenone
WO2004037815A1 (en) Processes for producing optically active n-(2,3-epoxypropan-1-yl)phthalimide
JP3201998B2 (en) Method for producing (S) -benzoxazine derivative and method for racemizing (R) -benzoxazine derivative
JP4330783B2 (en) Method for producing formylcyclopropanecarboxylic acid ester
WO1997017342A1 (en) A process of making 3-phenyl-1-methylenedioxyphenyl-indane-2-carboxylic acid derivatives
JP2014500850A (en) Process for preparing 5- [1- (4-chlorophenyl) -methylene] -1-hydroxymethyl-2,2-dimethyl-cyclopentanol
JP2006124347A (en) New method for producing phenyl 2-pyrimidinyl ketones and new intermediate therefor
JP2003137835A (en) Method for producing (r)-3-hydroxy-3-(2-phenyl)hexanoic acid
US6127579A (en) Method of manufacturing 1-indanone
JP4854255B2 (en) 2-Fluorine-containing alkoxy fatty acid ester compound production method
JPH0543535A (en) Production of phenyl ether derivative
JPWO2010013510A1 (en) Method for producing optically active compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12847508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP