WO2013069468A1 - Heat-radiating coating and structure - Google Patents

Heat-radiating coating and structure Download PDF

Info

Publication number
WO2013069468A1
WO2013069468A1 PCT/JP2012/077609 JP2012077609W WO2013069468A1 WO 2013069468 A1 WO2013069468 A1 WO 2013069468A1 JP 2012077609 W JP2012077609 W JP 2012077609W WO 2013069468 A1 WO2013069468 A1 WO 2013069468A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
heat
group
formula
weight
Prior art date
Application number
PCT/JP2012/077609
Other languages
French (fr)
Japanese (ja)
Inventor
茂木 繁
和紀 石川
赤塚 泰昌
長嶋 憲幸
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Publication of WO2013069468A1 publication Critical patent/WO2013069468A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/32Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints

Definitions

  • the present invention relates to a paint excellent in heat dissipation and a structure to which the paint is applied. More specifically, it is excellent in thermal radiation with the effect of suppressing the temperature rise of the object by forming a coating film by applying it to an object that easily accumulates heat and making it easy to release the heat accumulated by the coating film.
  • the present invention relates to an electrically insulating paint and a structure obtained by applying the electrically insulating paint to a metal heat conductor.
  • Far-infrared radiation coating materials have been known for a long time, and are used, for example, to increase the thermal efficiency of heating elements such as far-infrared heaters. Most of these paints are obtained by dispersing an inorganic oxide filler such as aluminum oxide, titanium, silicon, zirconium, iron, copper, cobalt, nickel, manganese, and chromium in a binder.
  • Patent Document 1 acrylic resin, epoxy resin, silicone resin, phosphate, silicate and the like are used.
  • Patent Document 1 When an acrylic resin or an epoxy resin is used as a binder, even if heat resistance is high, it is around 150 ° C., and when used at a high temperature for a long time, there is a problem that the coating film deteriorates and peels off. Further, when the inorganic filler is dispersed, if the specific gravity of the filler is high, the filler is settled, and there is a problem that the coating film surface becomes non-uniform.
  • the object of the present invention is to obtain a heat-radiating paint having excellent heat resistance and insulating properties and having a smooth coated finish without using an inorganic filler.
  • the present inventors have conducted intensive studies, and as a result, a paint produced using a resin composition comprising a polymer having a specific structure and an epoxy resin satisfies the above-mentioned purpose. As a result, the present invention has been completed.
  • Ar 1 is a divalent aromatic group
  • Ar 2 is a divalent aromatic group having a phenolic hydroxyl group
  • Ar 3 is a divalent aromatic group
  • Ar 1 in the compound of formula (1) is a residue of one or more acids selected from the group consisting of phthalic acid, isophthalic acid, terephthalic acid, succinic acid, and fumaric acid
  • Ar 2 is 5-hydroxyisophthalic acid
  • the heat resistance of the coating film according to the present invention is as high as 250 ° C., excellent in heat dissipation, excellent in insulation, and contains no inorganic filler, so that the coating film properties do not become uneven and the surface is smooth. Also excellent.
  • the phenolic hydroxyl group-containing aromatic polyamide resin as component (A) is used as a curing agent for the epoxy resin as component (B).
  • the polyamide resin of component (A) can be synthesized according to, for example, the description in JP-A No. 2006-124545. Below, it explains in detail about the manufacturing method of the component (A) used in this invention.
  • the following aromatic diamine (formula (i)) is added to the total number of moles of aromatic dicarboxylic acid (formula (ii) and optionally formula (iii)). Charge to condense and condense.
  • Ar 3 represents a divalent aromatic group.
  • Ar 2 represents a divalent aromatic group having a phenolic hydroxyl group.
  • Ar 1 represents a divalent aromatic group.
  • aromatic diamines represented by formula (i) include diaminobenzenes such as diaminobenzene, diaminotoluene, diaminophenol, diaminomethylbenzene, diaminomesitylene, diaminochlorobenzene, diaminonitrobenzene or diaminoazobenzene; diamino such as diaminonaphthalene; Naphthalenes; diaminobiphenyls such as diaminobiphenyl or diaminodimethoxybiphenyl; diaminodiphenyl ethers such as 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, or diaminodiphenyl ethers such as diaminodimethyldiphenyl ether Ale, methylene dianiline, methylene bis (methoxyaniline), methylene
  • aromatic dicarboxylic acids having a phenolic hydroxyl group of formula (ii) include hydroxyisophthalic acid such as 5-hydroxyisophthalic acid, 4-hydroxyisophthalic acid, 2-hydroxyphthalic acid, 3-hydroxyphthalic acid, and dihydroxyisophthalic acid.
  • hydroxyisophthalic acids such as acids; hydroxyterephthalic acids such as hydroxyterephthalic acid and dihydroxyterephthalic acid, and the like.
  • 5-hydroxyisophthalic acid, 4-hydroxyisophthalic acid, 2-hydroxyphthalic acid, and 3-hydroxyphthalic acid are preferable.
  • aromatic dicarboxylic acids having no phenolic hydroxyl group of formula (iii) include phthalic acids such as phthalic acid, isophthalic acid, terephthalic acid, benzenediacetic acid, benzenedipropionic acid, biphenyldicarboxylic acid, oxydibenzoic acid, thiodi Benzoic acids such as benzoic acid, dithiodibenzoic acid, dithiobis (nitrobenzoic acid), carbonyldibenzoic acid, sulfonyldibenzoic acid, naphthalenedicarboxylic acid, methylenedibenzoic acid, isopropylidenedibenzoic acid, hexafluoroisopropylidenebenzoic acid, naphthalene Examples thereof include dicarboxylic acid and pyridinedicarboxylic acid, and phthalic acid, isophthalic acid, terephthalic acid, succinic acid, and fumaric acid
  • the aromatic dicarboxylic acid of the formula (ii) is essential, but it is harder to use the aromatic dicarboxylic acid of the formula (iii) in combination. It is preferable because it is easy to give flexibility to objects.
  • the structures of the aromatic dicarboxylic acids of the formulas (ii) and (iii) are preferably combinations having both isophthalic acid skeletons.
  • the proportion of the hydroxyl group contained in the dicarboxylic acid component is usually 0.5 mol% or more, preferably 1 mol% or more, particularly preferably 5 Both are used within a range of at least mol%.
  • aromatic dicarboxylic acid refers to both aromatic dicarboxylic acids of the formula (ii) and formula (iii).
  • the combination of a preferable compound is still more preferable.
  • the condensation reaction between the aromatic dicarboxylic acid and the aromatic diamine is carried out in the presence of an aromatic phosphite as a condensing agent. At this time, it is preferable to use a pyridine derivative as a catalyst.
  • the aromatic phosphite used here includes triphenyl phosphite, diphenyl phosphite, tri-o-tolyl phosphite, di-o-tolyl phosphite, tri-m-tolyl phosphite. , Di-m-tolyl phosphite, tri-p-tolyl phosphite, di-p-tolyl phosphite, tri-p-chlorophenyl phosphite and the like.
  • the amount of the aromatic phosphite used is generally 0.6 to 1.5 mol, preferably 0.7 to 1.2 mol, per 1 mol of the total of aromatic diamine and aromatic dicarboxylic acid.
  • Examples of the pyridine derivative include pyridine, 2-picoline, 3-picoline, 4-picoline, 2,4-lutidine, 2,6-lutidine, 3,5-lutidine and the like.
  • the amount of the pyridine derivative to be used is usually 1.0 to 5.0 mol, preferably 2.0 to 4.0 mol, per 1 mol of the total of aromatic diamine and aromatic dicarboxylic acid.
  • the reaction can be carried out by adding inorganic salts such as lithium chloride.
  • the amount of the inorganic salt used is usually 0.01 to 0.5 mol, preferably 0.05 to 0.3 mol, per 1 mol of the total of the aromatic diamine and aromatic dicarboxylic acid.
  • the reaction is performed by charging an aromatic dicarboxylic acid, an aromatic diamine, a condensing agent, and if necessary, a pyridine derivative and an inorganic salt in a solvent.
  • the solvent is not particularly limited as long as it is a solvent that solvates with an aromatic polyamide resin. Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and dimethyl. Examples thereof include sulfoxide and mixed solvents thereof, and N-methyl-2-pyrrolidone is particularly preferable.
  • the amount of the solvent used is preferably such that the concentration of the aromatic polyamide resin to be produced is 2 to 50% by weight, but considering the production efficiency and the solution viscosity with good operability, the amount to be 5 to 30% by weight. Particularly preferred.
  • the reaction temperature in the condensation reaction is usually 60 to 150 ° C., preferably 70 to 120 ° C., and the reaction time is usually 1 to 15 hours, preferably 2 to 10 hours.
  • the aromatic polyamide thus obtained is usually represented by the following formula (1).
  • n and n are average values, 0.005 ⁇ n / (m + n) ⁇ 1, and m + n is a positive number from 0 to 230.
  • Ar 1 is a divalent aromatic group
  • Ar 2 is a divalent aromatic group having a phenolic hydroxyl group
  • Ar 3 is a divalent aromatic group
  • the intrinsic viscosity value (measured with a 0.5 g / dl N, N-dimethylacetamide solution at 30 ° C.) of this aromatic polyamide resin having a preferred average degree of polymerization is in the range of 0.1 to 4.0 dl / g. .
  • whether or not the polymer has a preferable average degree of polymerization is determined by referring to the intrinsic viscosity.
  • the intrinsic viscosity is less than 0.1 dl / g, the film formability and the appearance of properties as an aromatic polyamide resin are insufficient, which may not be preferable.
  • the intrinsic viscosity is larger than 4.0 dl / g, there is a possibility that the degree of polymerization is so high that the solvent solubility is deteriorated and the molding processability is deteriorated.
  • component (A) water is added to the reaction system after completion of the condensation reaction to hydrolyze the aromatic phosphite.
  • the addition of water is usually performed by heating to 60 to 110 ° C., preferably 70 to 100 ° C. with stirring.
  • the addition of water is continued under stirring until the oil layer and the aqueous layer begin to separate, but usually 10 to 230% by weight, preferably 20 to 150% by weight, is sufficient based on the total weight of the reaction solution.
  • it is preferable that water is added dropwise over 30 minutes to 15 hours, preferably 1 to 10 hours, rather than adding all the necessary amount at once.
  • the aromatic phosphite is hydrolyzed to phosphate ions and phenols.
  • the aqueous layer contains impurities such as phosphoric acid, phosphorous acid, catalysts, phenols, pyridine derivatives, and a part of the solvent.
  • the organic solvent that can be used in this case is N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide and the like.
  • the amount of the solvent to be used is not particularly limited as long as the viscosity is sufficiently lowered, but is usually 5 to 100% by weight, preferably 10 to 80% by weight, based on the weight of the oil layer.
  • the poor solvent is not particularly limited as long as it is a liquid that does not easily solvate with the aromatic polyamide resin, but specific examples include water, methanol, ethanol, and a mixed solvent thereof.
  • the amount used is preferably as small as possible within the range in which the precipitated aromatic polyamide resin can be filtered out without any problem in operation, and is 0. 0 part by weight with respect to 1 part by weight of the solvent (including the dilution solvent) used in the reaction. 5 to 50 parts by weight is preferable, and 1 to 10 parts by weight is particularly preferable.
  • the poor solvent may be gradually added to the reaction solution with stirring, or the diluted solution of the oil layer may be added to the poor solvent with stirring.
  • the aromatic polyamide resin having an appropriate particle diameter easily precipitates. preferable.
  • the temperature at which the oil layer diluent and the poor solvent are mixed is usually 0 to 100 ° C., preferably 20 to 80 ° C.
  • the aromatic polyamide resin precipitated by mixing with a poor solvent is isolated by filtration, and ionic impurities are removed by washing the cake with water.
  • An aromatic polyamide resin can be obtained by drying the cake, but ionic impurities can be further reduced by washing with a water-soluble organic solvent.
  • water-soluble organic solvents examples include alcohols such as methanol, ethanol, n-propanol, and isopropanol, and acetone. These may be used alone or in combination, with methanol being particularly preferred.
  • washing with a water-soluble organic solvent is effective even if the polyamide resin cake isolated by filtration is washed on a filter, but it is wet, that is, an aromatic polyamide containing a good solvent and a poor solvent.
  • the resin cake or the aromatic polyamide resin from which the good solvent and the poor solvent have been removed by drying and the water-soluble organic solvent are newly charged in a container, suspended by stirring, and then filtered again to further remove the cake. Excellent purification effect.
  • the water-soluble organic solvent is used in an amount of 1 to 100 parts by weight, preferably 2 to 50 parts by weight with respect to 1 part by weight of the net polyamide resin, and the stirring temperature is from room temperature to the boiling point of the suspension. Stirring at the boiling point is particularly preferable.
  • the stirring time is 0.1 to 24 hours, preferably 1 to 5 hours. Furthermore, this operation is usually performed under normal pressure, but can also be performed under pressure.
  • the polyamide resin is filtered off, usually further washed with a cake using the above water-soluble organic solvent, and then optionally further washed with water and then dried.
  • a polyamide resin with less ionic impurities can be obtained.
  • the epoxy resin as the component (B) is not particularly limited as long as it has two or more epoxy groups in one molecule.
  • novolac type epoxy resin dicyclopentadiene phenol condensation type epoxy resin, xylylene skeleton containing phenol novolak type epoxy resin, biphenyl skeleton containing novolak type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethylbiphenol Examples thereof include, but are not limited to, type epoxy resins. Two or more of these epoxy resins can be used in combination.
  • curing agents can be used in combination in the epoxy resin composition of the present invention.
  • curing agents that can be used in combination include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, a polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, trimellitic anhydride Acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phenol novolac, phenol aralkyl, triphenylmethane and These modified products, imidazoles, BF3-
  • the curing catalyst as component (C) include, for example, imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, 1, And tertiary amines such as 8-diaza-bicyclo (5,4,0) undecene-7, phosphines such as triphenylphosphine, and metal compounds such as tin octylate. If necessary, the curing catalyst is used in an amount of 0.1 to 5.0 parts by weight based on 100 parts by weight of the epoxy resin.
  • Examples of the organic solvent that is the component (D) used in the thermal radiation paint of the present invention include ⁇ -butyrolactones, N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, Amide solvents such as N-dimethylacetamide and N, N-dimethylimidazolidinone, sulfones such as tetramethylene sulfone, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, propylene Ether solvents such as glycol monobutyl ether, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, toluene, xylene, etc.
  • NMP N-methyl-2-pyrrolidone
  • DMF N
  • aromatic solvents including but not limited to these organic solvents. Any solvent that can uniformly dissolve and homogenize each component of the heat-radiating paint of the present invention can be used regardless of whether it is a polar or non-polar solvent.
  • the organic solvent concentration in the thermal radiation coating material of the present invention is 30 to 2000 parts by weight with respect to 100 parts by weight in total of the phenolic hydroxyl group-containing aromatic polyamide resin (A), epoxy resin (B) and curing catalyst (C). In terms of% by weight, when the total composition is 100% by weight, it is usually 20 to 95% by weight, preferably 30 to 90% by weight. If the amount of the organic solvent used is extremely small, the viscosity becomes high and the coating property is lowered, and if it is extremely large, unevenness may occur during coating or a sufficient coating film may not be formed.
  • the thermal radiation paint of the present invention includes a silane coupling agent, a release agent such as stearic acid, palmitic acid, zinc stearate, calcium stearate, a dispersing agent, a compatibilizing agent, a stabilizer, an antioxidant, and a surface modification agent.
  • a silane coupling agent such as stearic acid, palmitic acid, zinc stearate, calcium stearate
  • a dispersing agent such as stearic acid, palmitic acid, zinc stearate, calcium stearate
  • a dispersing agent such as stearic acid, palmitic acid, zinc stearate, calcium stearate
  • a compatibilizing agent such as a stabilizer, an antioxidant, and a surface modification agent.
  • the thermal radiation paint of the present invention can be obtained by uniformly mixing the components (A), (B), (C), (D) and other components as necessary.
  • a mixing method an Eirich mixer, a planetary mixer, a roll mill, a dissolver and the like can be used, but are not particularly limited.
  • the structure of the present invention having the layer of the heat-radiating paint can be obtained by applying the heat-radiating paint thus obtained to the outermost surface of the heat conductor as the adherend and drying it.
  • the obtained resin composition is applied to a heat conductor such as copper or aluminum by a roll coater, a bar coater, brush coating, spraying, roller dipping, ink jetting, printing or the like.
  • a heat conductor such as copper or aluminum
  • an adherend that has been previously treated with an acid or alkali or physically roughened.
  • the adherend is preferably a metal from the viewpoint of thermal radiation.
  • the organic solvent is further removed by heating and drying, and then the curing reaction of the high resin components (components (A) and (B)) is allowed to proceed, whereby the structure of the present invention can be obtained. .
  • the temperature for drying and curing is usually 50 to 300 ° C., particularly preferably 80 to 250 ° C.
  • the time for drying and curing is usually 5 minutes to 3 hours, preferably 10 minutes to 2 hours.
  • a drying process is preferred in which the coating is dried at a relatively low temperature and the temperature is increased as the component (D) decreases. Care should be taken because it may cause
  • the thickness of the dried coating film is usually 0.5 to 300 ⁇ m, preferably 2 to 230 ⁇ m. If the coating film is too thin, the metal casing will be partially exposed when processing later, and will not be fully effective. If it is too thick, the thermal resistance between the metal casing and the coating surface will increase, and the surface heat will increase. Regardless of the radiation, the rapid heat conduction from the metal casing to the coating surface is inhibited.
  • the thermal radiation paint of the present invention does not contain an inorganic filler, and the surface after coating and drying on a metal casing is smooth and uniform. Moreover, since the inorganic filler is not included, even when the paint is stored for a long period of time, non-uniformity such as sedimentation of the inorganic filler does not occur. Therefore, the thermal radiation paint of the present invention is a paint having excellent workability without requiring an operation such as stirring and mixing before coating. Moreover, since the thermal radiation coating material of the present invention has a polyamide skeleton as a main component, it has high heat resistance and excellent insulating properties.
  • the active hydrogen equivalent of the polyamide resin is the average mass of the compound per hydroxyl group and terminal active hydrogen
  • the epoxy equivalent is the mass of the epoxy resin per epoxy group
  • the hydroxyl equivalent Is the mass of the compound per hydroxyl group (OH group).
  • “parts” and “%” are based on weight unless otherwise specified.
  • the thermal radiation test is a structure that is excellent in heat dissipation by measuring the temperature at a certain distance from the part heated to a certain temperature of the metal substrate coated and dried with the thermal radiation resin by the presence or absence of the application of the thermal radiation resin. The measured temperature is lowered.
  • the amount of applied electric power for keeping the applied heating unit constant increases as the structure has better heat dissipation, and decreases as the heat dissipation decreases.
  • Example 1 After the surface is sufficiently degreased and washed, using a polyimide tape and masking so that an uncoated part of 50 mm square is formed at the center of one side of the surface untreated aluminum substrate having a width of 50 mm, a length of 250 mm and a thickness of 1 mm, The heat-radiating paint obtained in Formulation Example 1 was applied to the entire front and back surfaces using a spray gun. Next, it was put into a circulation oven set at 150 ° C. and dried for 10 minutes. Further, after repeating the above spray coating and drying operations twice, it was dried and cured in a circulation oven set at 170 ° C. for 1 hour, and the coating thickness A heat dissipation structure having a thickness of 25 ⁇ m was obtained.
  • thermocouple for temperature control was adhered, and a film heater (40 V, 50 W) of 50 mm square and 200 ⁇ m thickness, aluminum of 50 mm square and 1 mm thickness. Two plates were stacked one on top of the other and the four sides were fixed with clips.
  • a film type thermocouple for temperature measurement was adhered to the center of the surface of both end portions 110 mm away from the center of the test piece with a clip coated with Teflon (registered trademark) to prepare a thermal radiation measurement sample.
  • Teflon registered trademark
  • Table 1 shows the average temperature at both ends when the center of the test piece is heated by setting the heater set temperature 180 ° C. and the heater applied voltage 40 V and the temperature at the ends is sufficiently stabilized.
  • Table 1 shows the voltage when the heater applied voltage was adjusted and the temperature controller was adjusted to a voltage capable of maintaining 180 ° C. with almost no on / off of the temperature controller.
  • the thermal radiation coating material obtained in Formulation Example 1 was applied to release PET, (PET-38AL5 (manufactured by Lintec Corporation)) using a bar coater so that the thickness after drying was 25 ⁇ m, and then 150 After drying at 30 ° C. for 30 minutes, it was peeled off from the release PET and further dried and cured at 170 ° C. for 1 hour to obtain a thermal test sample. Next, the obtained test piece was cut to a width of 10 mm, and measured using a viscoelasticity measuring device DMS6100 (manufactured by SII Nanotechnology Co., Ltd.) at a heating rate of 5 ° C./min. The temperature is shown in Table 1.
  • Example 2 In Compounding Example 1, as an epoxy resin, a cresol novolac type epoxy resin (trade name EOCN-1020, epoxy equivalent of 280 g / eq, manufactured by Nippon Kayaku Co., Ltd.) and a phenol novolac type resin H-1 (manufactured by Meiwa Kasei Co., Ltd.) as a curing agent A hydroxyl group equivalent of 105 g / eq) was blended in the same manner as in Blending Example 1 except that the composition distribution shown in Table 1 was blended to obtain a thermal radiation paint having a viscosity of 140 cPs with an E-type viscometer at 25 ° C. Example 2). Table 1 shows the results obtained by coating and curing in the same manner as in Example 1 and preparing thermal radiation measurement samples and viscoelasticity measurement test pieces and evaluating in the same manner as in Example 1.
  • EOCN-1020 epoxy equivalent of 280 g / eq, manufactured by Nippon Kayaku Co., Ltd.
  • H-1
  • Example 3 An E-type viscometer at 25 ° C. was blended in the same manner as in Blending Example 1, except that NC-3000 as an epoxy resin, GPH-65 as a curing agent, and C11Z-A as a curing catalyst were blended in the composition distribution shown in Table 1. A thermal radiation coating with a viscosity of 153 cPs was obtained (Formulation Example 3). Table 1 shows the results of coating, drying and curing in the same manner as in Example 1 and producing thermal radiation measurement samples and viscoelasticity test specimens and evaluating them in the same manner as in Example 1.
  • Table 1 shows the heat dissipation when evaluated in the same manner as in Example 1 with a film heater attached to an untreated aluminum substrate on which no resin composition was applied to the surface.
  • Comparative Example 2 ⁇ -butyrolactone, epoxy resin NC-3000, curing agent GPH-65, and curing catalyst C11Z-A were blended in the composition distribution shown in Table 1 to prepare a resin composition that does not contain a phenolic hydroxyl group-containing aromatic polyamide resin.
  • Table 1 shows the results of coating, drying, curing and evaluation in the same manner as in Example 1.
  • the viscoelasticity measurement is fragile in a film and cannot be set in a measuring device. Therefore, an uncured film peeled off from the release PET after drying is layered, and further, press-cured at 170 ° C. for 1 hour to obtain a 2 mm thick test piece. Created and measured.
  • the heat radiation paint of the present invention and the structure obtained by coating and drying the heat radiation paint of the present invention have extremely low end temperatures. Moreover, since the heat of the heat generating part can be quickly released to the outside, a larger applied voltage is required to keep the heating part at a constant temperature. For these reasons, it is possible to keep the temperature of the heat generating part lower even under high load by connecting with various heat generating elements. Therefore, the structure obtained by coating and drying and curing the thermal radiation paint of the present invention is expected to be used in power devices in the fields of electricity, electronics, automobiles, etc., particularly in the fields of high output inverters, high output motors, etc. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)

Abstract

[Problem] Provided are: a heat-radiating resin that exhibits excellent heat resistance while simultaneously exhibiting excellent heat-radiating properties, without including any fillers, as a type of cooling method such as those used in power devices in such fields as the electric, electronic and automotive fields, and specifically in the fields of high-output inverters, high-output motors, and the like; and a structure obtained by applying a coating of the heat-radiating resin, and then drying and hardening the same. [Solution] A heat-radiating coating characterized by containing: an aromatic polyamide resin (A) containing a phenolic hydroxyl group and having a structure represented by formula (1) (in the formula, m and n satisfy the following relationship, in mean values: 0.005≤n/(m+n)<1. Also, m+n is an integer between 0 and 230, inclusive. Ar1 represents a divalent aromatic group. Ar2 represents a divalent aromatic group having a phenolic hydroxyl group. Ar3 represents a divalent aromatic group.); an epoxy resin (B); a curing catalyst (C); and an organic solvent (D) in the amount of 30-2,000 parts by weight in relation to 100 parts by weight of the sum of the aforementioned components (A, B, C).

Description

熱放射性塗料及び構造体Thermal radiation paint and structure
 本発明は、放熱性に優れた塗料、及び該塗料の塗工された構造体に関する。より詳細には、熱の蓄積しやすい物体に塗布することにより塗膜を形成し、その塗膜によって蓄積した熱を放出しやすくすることにより、物体の温度上昇を抑える作用を持つ熱放射性に優れた電気絶縁性塗料、及び該電気絶縁性塗料を金属熱伝導体に塗工して得られる構造体に関する。 The present invention relates to a paint excellent in heat dissipation and a structure to which the paint is applied. More specifically, it is excellent in thermal radiation with the effect of suppressing the temperature rise of the object by forming a coating film by applying it to an object that easily accumulates heat and making it easy to release the heat accumulated by the coating film. The present invention relates to an electrically insulating paint and a structure obtained by applying the electrically insulating paint to a metal heat conductor.
 近年モーターや半導体モジュールなどの電気・電気機器においては機器のパワーアップに伴い、作動時の発熱が大きな問題となっている。この熱を適切に除去することが出来ず機器の温度が上昇した場合、機器の能力が低下する他、機器の寿命を短くする事さえある。
 遠赤外線放射用塗料は古くから知られており、例えば遠赤外線ヒーターなどの発熱体の熱効率を高めるために用いられている。これらの塗料は酸化アルミニウムやチタン、ケイ素、ジルコニウム、鉄、銅、コバルト、ニッケル、マンガン、クロムなどの無機酸化物フィラーをバインダーに分散させたものが殆どである。バインダーとしてはアクリル樹脂、エポキシ樹脂、シリコーン樹脂、リン酸塩、ケイ酸塩などが用いられている。(特許文献1)
 アクリル樹脂やエポキシ樹脂をバインダーに用いた場合は、耐熱性が高くても150℃前後であり、長期間高温下で使用した場合、塗膜が劣化し剥離するといった問題がある。また、無機フィラーを分散させた場合フィラーの比重が高いとフィラーの沈降が生じ、塗膜表面が不均一になるといった問題がある。
In recent years, in electric and electric devices such as motors and semiconductor modules, heat generation during operation has become a major problem as the devices are powered up. If this heat cannot be removed properly and the temperature of the device rises, the capability of the device will decrease and the life of the device may even be shortened.
Far-infrared radiation coating materials have been known for a long time, and are used, for example, to increase the thermal efficiency of heating elements such as far-infrared heaters. Most of these paints are obtained by dispersing an inorganic oxide filler such as aluminum oxide, titanium, silicon, zirconium, iron, copper, cobalt, nickel, manganese, and chromium in a binder. As the binder, acrylic resin, epoxy resin, silicone resin, phosphate, silicate and the like are used. (Patent Document 1)
When an acrylic resin or an epoxy resin is used as a binder, even if heat resistance is high, it is around 150 ° C., and when used at a high temperature for a long time, there is a problem that the coating film deteriorates and peels off. Further, when the inorganic filler is dispersed, if the specific gravity of the filler is high, the filler is settled, and there is a problem that the coating film surface becomes non-uniform.
特開2009-136848号公報JP 2009-136848 A
 本発明は、無機フィラーを使用しなくても、耐熱性、絶縁性に優れしかも塗工仕上げ面の平滑な熱放射性塗料を得ることを目的とするものである。 The object of the present invention is to obtain a heat-radiating paint having excellent heat resistance and insulating properties and having a smooth coated finish without using an inorganic filler.
 本発明者らは、上記課題を解決するために、鋭意検討を重ねた結果、特定の構造のポリマーおよびエポキシ樹脂からなる樹脂組成物を用いて製造された塗料が、上記目的を満たすものであることを見出し、本発明を完成させた。 In order to solve the above-mentioned problems, the present inventors have conducted intensive studies, and as a result, a paint produced using a resin composition comprising a polymer having a specific structure and an epoxy resin satisfies the above-mentioned purpose. As a result, the present invention has been completed.
 即ち、本発明は、(1)下記式(1) That is, the present invention provides (1) the following formula (1)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、m、nは平均値で、0.005≦n/(m+n)<1を示し、また、m+nは0~230の正数である。Arは二価の芳香族基、Arはフェノール性水酸基を有する二価の芳香族基、Arは二価の芳香族基を示す)で表される構造を有するフェノール性水酸基含有芳香族ポリアミド樹脂(A)、エポキシ樹脂(B)、硬化触媒(C)の合計100重量部に対して有機溶媒(D)を30~2000重量部含有することを特徴とする熱放射性塗料、
(2)式(1)の化合物におけるArがフタル酸、イソフタル酸、テレフタル酸、コハク酸、フマル酸からなる群から選ばれる1種以上の酸の残基、Arが5-ヒドロキシイソフタル酸、4-ヒドロキシイソフタル酸、2-ヒドロキシフタル酸、3-ヒドロキシフタル酸からなる群から選ばれる1種以上の酸の残基、及びArが3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテルからなる群から選ばれる1種以上のアミンの残基である上記(1)記載の熱放射性塗料、
(3)無機フィラーを含有しない上記(1)または(2)記載の熱放射性塗料、
(4)熱伝導体及びその再外面に上記(1)~(3)のいずれか1項に記載の熱放射性塗料を塗工乾燥、硬化した層を有する構造体、
(5)熱放射性塗料層の厚さが0.5~300μmである上記(4)の構造体、
に関するものである。
 なお、本明細書において「酸の残基」及び「アミンの残基」は、ジカルボン酸とジアミンの脱水縮合により形成される、当業者における技術常識である残基構造を示す。
(In the formula, m and n are average values, 0.005 ≦ n / (m + n) <1, and m + n is a positive number from 0 to 230. Ar 1 is a divalent aromatic group, Ar 2 is a divalent aromatic group having a phenolic hydroxyl group, Ar 3 is a divalent aromatic group), and a phenolic hydroxyl group-containing aromatic polyamide resin (A) or epoxy resin (B) having a structure represented by A thermal radiation paint comprising 30 to 2000 parts by weight of an organic solvent (D) with respect to 100 parts by weight of the total of the curing catalyst (C),
(2) Ar 1 in the compound of formula (1) is a residue of one or more acids selected from the group consisting of phthalic acid, isophthalic acid, terephthalic acid, succinic acid, and fumaric acid, and Ar 2 is 5-hydroxyisophthalic acid A residue of one or more acids selected from the group consisting of 4-hydroxyisophthalic acid, 2-hydroxyphthalic acid, 3-hydroxyphthalic acid, and Ar 3 is 3,3′-diaminodiphenyl ether, 3,4′- The thermal radiation coating composition according to the above (1), which is a residue of one or more amines selected from the group consisting of diaminodiphenyl ether and 4,4′-diaminodiphenyl ether,
(3) The thermal radiation paint according to the above (1) or (2), which does not contain an inorganic filler,
(4) a heat conductor and a structure having a layer obtained by applying the heat-radiating paint according to any one of (1) to (3) above to the outer surface and drying and curing the coating;
(5) The structure according to (4) above, wherein the thickness of the thermal radiation coating layer is 0.5 to 300 μm,
It is about.
In the present specification, “residue of acid” and “residue of amine” indicate a residue structure that is formed by dehydration condensation of a dicarboxylic acid and a diamine and is technical common knowledge in the art.
 本発明による塗膜の耐熱性は250℃と非常に高く、熱放熱性に優れる他、絶縁性に優れ、無機フィラーを含まないために塗膜物性が不均一化することが無く表面平滑性にも優れる。 The heat resistance of the coating film according to the present invention is as high as 250 ° C., excellent in heat dissipation, excellent in insulation, and contains no inorganic filler, so that the coating film properties do not become uneven and the surface is smooth. Also excellent.
 以下に、本発明の実施形態について説明する。
 本発明においては、成分(A)であるフェノール性水酸基含有芳香族ポリアミド樹脂を成分(B)であるエポキシ樹脂の硬化剤として使用する。成分(A)のポリアミド樹脂は、例えば特開2006-124545号公報の記載に準じて合成することができる。以下に本発明において使用する成分(A)の製法につき詳細に説明する。
Hereinafter, embodiments of the present invention will be described.
In the present invention, the phenolic hydroxyl group-containing aromatic polyamide resin as component (A) is used as a curing agent for the epoxy resin as component (B). The polyamide resin of component (A) can be synthesized according to, for example, the description in JP-A No. 2006-124545. Below, it explains in detail about the manufacturing method of the component (A) used in this invention.
成分(A)の芳香族ポリアミド樹脂の製造においては、下記芳香族ジアミン(式(i))を、芳香族ジカルボン酸(式(ii)及び必要により式(iii))の総モル数に対して過剰になるように仕込んで縮合する。 In the production of the aromatic polyamide resin of component (A), the following aromatic diamine (formula (i)) is added to the total number of moles of aromatic dicarboxylic acid (formula (ii) and optionally formula (iii)). Charge to condense and condense.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中Arは二価の芳香族基を表す。) (In the formula, Ar 3 represents a divalent aromatic group.)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中Arはフェノール性水酸基を有する二価の芳香族基を表す。) (In the formula, Ar 2 represents a divalent aromatic group having a phenolic hydroxyl group.)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中Arは二価の芳香族基を表す。) (In the formula, Ar 1 represents a divalent aromatic group.)
 式(i)で表される芳香族ジアミンの例としてはジアミノベンゼン、ジアミノトルエン、ジアミノフェノール、ジアミノメチルベンゼン、ジアミノメシチレン、ジアミノクロロベンゼン、ジアミノニトロベンゼンまたはジアミノアゾベンゼン等のジアミノベンゼン類;ジアミノナフタレン等のジアミノナフタレン類;ジアミノビフェニルまたはジアミノジメトキシビフェニル等のジアミノビフェニル類;3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル等のジアミノジフェニルエーテルまたはジアミノジメチルジフェニルエーテル等のジアミノジフェニルエール類、メチレンジアニリン、メチレンビス(メトキシアニリン)、メチレンビス(ジメトキシアニリン)、メチレンビス(エチルアニリン)、メチレンビス(ジエトキシアニリン)、メチレンビス(エトキシアニリン)、メチレンビス(ジエトキシアニリン)、メチレンビス(ジブロモアニリン)、イソプロピリデンジアニリンまたはヘキサフルオロイソプロピリデンジアニリン等のアニリン類、ジアミノベンゾフェノン等のジアミノジメチルベンゾフェノン等のジアミノベンゾフェノン類;ジアミノアントラキノン、ジアミノジフェニルチオエーテル、ジアミノジフェニルスルホキシドやジアミノフルオレンなどが挙げられ、中でも3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテルが好ましい。芳香族ジアミンの使用量は、下記する芳香族ジカルボン酸1モルに対して、通常1.001~1.5モルである。 Examples of aromatic diamines represented by formula (i) include diaminobenzenes such as diaminobenzene, diaminotoluene, diaminophenol, diaminomethylbenzene, diaminomesitylene, diaminochlorobenzene, diaminonitrobenzene or diaminoazobenzene; diamino such as diaminonaphthalene; Naphthalenes; diaminobiphenyls such as diaminobiphenyl or diaminodimethoxybiphenyl; diaminodiphenyl ethers such as 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, or diaminodiphenyl ethers such as diaminodimethyldiphenyl ether Ale, methylene dianiline, methylene bis (methoxyaniline), methylene bis (dimethoxyaniline) Anilines such as methylene bis (ethylaniline), methylene bis (diethoxyaniline), methylene bis (ethoxyaniline), methylene bis (diethoxyaniline), methylene bis (dibromoaniline), isopropylidenedianiline or hexafluoroisopropylidenedianiline, diaminobenzophenone Diaminobenzophenones such as diaminodimethylbenzophenone, and the like; diaminoanthraquinone, diaminodiphenyl thioether, diaminodiphenyl sulfoxide, diaminofluorene, etc., among others, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4 ′ -Diaminodiphenyl ether is preferred. The amount of the aromatic diamine used is usually 1.001 to 1.5 mol per 1 mol of the aromatic dicarboxylic acid described below.
 式(ii)のフェノール性水酸基を有する芳香族ジカルボン酸の例としては、5-ヒドロキシイソフタル酸、4-ヒドロキシイソフタル酸、2-ヒドロキシフタル酸、3-ヒドロキシフタル酸等のヒドロキシイソフタル酸、ジヒドロキシイソフタル酸等のヒドロキシイソフタル酸類;ヒドロキシテレフタル酸、ジヒドロキシテレフタル酸等のヒドロキシテレフタル酸類等が挙げられ、5-ヒドロキシイソフタル酸、4-ヒドロキシイソフタル酸、2-ヒドロキシフタル酸、3-ヒドロキシフタル酸が好ましい。式(iii)のフェノール性水酸基を有しない芳香族ジカルボン酸の例としてはフタル酸、イソフタル酸、テレフタル酸等のフタル酸類、ベンゼン二酢酸、ベンゼンジプロピオン酸、ビフェニルジカルボン酸、オキシジ安息香酸、チオジ安息香酸、ジチオジ安息香酸、ジチオビス(ニトロ安息香酸)、カルボニルジ安息香酸、スルホニルジ安息香酸、ナフタレンジカルボン酸、メチレンジ安息香酸、イソプロピリデンジ安息香酸、ヘキサフルオロイソプロピリデン安息香酸等の安息香酸類、ナフタレンジカルボン酸、ピリジンジカルボン酸などが挙げられ、フタル酸、イソフタル酸、テレフタル酸、コハク酸、フマル酸が好ましい。成分(A)の芳香族ポリアミド樹脂においては、これら芳香族ジカルボン酸のうち、式(ii)の芳香族ジカルボン酸を必須とするが、式(iii)の芳香族ジカルボン酸を併用するほうが、硬化物に柔軟性を与えやすく、好ましい。併用する場合、式(ii)と式(iii)の芳香族ジカルボン酸の構造は、両者ともイソフタル酸骨格を有する組み合わせが好ましい。式(ii)のジカルボン酸と式(iii)の芳香族ジカルボン酸は、ジカルボン酸成分中に水酸基が含まれる割合が通常0.5モル%以上、好ましくは1モル%以上、特に好ましくは、5モル%以上となる範囲で両者を使用する。なお、以下において単に芳香族ジカルボン酸といった場合は、式(ii)と式(iii)の芳香族ジカルボン酸の両者をさす。
 また、前記芳香族ジアミン及び芳香族ジカルボン酸において、好ましい化合物の組み合わせは、更に好ましい。
Examples of aromatic dicarboxylic acids having a phenolic hydroxyl group of formula (ii) include hydroxyisophthalic acid such as 5-hydroxyisophthalic acid, 4-hydroxyisophthalic acid, 2-hydroxyphthalic acid, 3-hydroxyphthalic acid, and dihydroxyisophthalic acid. Examples include hydroxyisophthalic acids such as acids; hydroxyterephthalic acids such as hydroxyterephthalic acid and dihydroxyterephthalic acid, and the like. 5-hydroxyisophthalic acid, 4-hydroxyisophthalic acid, 2-hydroxyphthalic acid, and 3-hydroxyphthalic acid are preferable. Examples of aromatic dicarboxylic acids having no phenolic hydroxyl group of formula (iii) include phthalic acids such as phthalic acid, isophthalic acid, terephthalic acid, benzenediacetic acid, benzenedipropionic acid, biphenyldicarboxylic acid, oxydibenzoic acid, thiodi Benzoic acids such as benzoic acid, dithiodibenzoic acid, dithiobis (nitrobenzoic acid), carbonyldibenzoic acid, sulfonyldibenzoic acid, naphthalenedicarboxylic acid, methylenedibenzoic acid, isopropylidenedibenzoic acid, hexafluoroisopropylidenebenzoic acid, naphthalene Examples thereof include dicarboxylic acid and pyridinedicarboxylic acid, and phthalic acid, isophthalic acid, terephthalic acid, succinic acid, and fumaric acid are preferable. In the aromatic polyamide resin of the component (A), among these aromatic dicarboxylic acids, the aromatic dicarboxylic acid of the formula (ii) is essential, but it is harder to use the aromatic dicarboxylic acid of the formula (iii) in combination. It is preferable because it is easy to give flexibility to objects. When used in combination, the structures of the aromatic dicarboxylic acids of the formulas (ii) and (iii) are preferably combinations having both isophthalic acid skeletons. In the dicarboxylic acid of the formula (ii) and the aromatic dicarboxylic acid of the formula (iii), the proportion of the hydroxyl group contained in the dicarboxylic acid component is usually 0.5 mol% or more, preferably 1 mol% or more, particularly preferably 5 Both are used within a range of at least mol%. In the following description, the term “aromatic dicarboxylic acid” refers to both aromatic dicarboxylic acids of the formula (ii) and formula (iii).
Moreover, in the said aromatic diamine and aromatic dicarboxylic acid, the combination of a preferable compound is still more preferable.
 芳香族ジカルボン酸と芳香族ジアミンの縮合反応は、縮合剤としての芳香族亜リン酸エステルの存在下に行う。また、この際ピリジン誘導体を触媒として使用するのが好ましい。 The condensation reaction between the aromatic dicarboxylic acid and the aromatic diamine is carried out in the presence of an aromatic phosphite as a condensing agent. At this time, it is preferable to use a pyridine derivative as a catalyst.
 ここで用いられる芳香族亜リン酸エステルとしては、亜リン酸トリフェニル、亜リン酸ジフェニル、亜リン酸トリ-o-トリル、亜リン酸ジ-o-トリル、亜リン酸トリ-m-トリル、亜リン酸ジ-m-トリル、亜リン酸トリ-p-トリル、亜リン酸ジ-p-トリル、亜リン酸トリ-p-クロロフェニルなどが挙げられる。芳香族亜リン酸エステルの使用量は、芳香族ジアミンと芳香族ジカルボン酸の合計1モルに対して、通常0.6~1.5モル、好ましくは0.7~1.2モルである。 The aromatic phosphite used here includes triphenyl phosphite, diphenyl phosphite, tri-o-tolyl phosphite, di-o-tolyl phosphite, tri-m-tolyl phosphite. , Di-m-tolyl phosphite, tri-p-tolyl phosphite, di-p-tolyl phosphite, tri-p-chlorophenyl phosphite and the like. The amount of the aromatic phosphite used is generally 0.6 to 1.5 mol, preferably 0.7 to 1.2 mol, per 1 mol of the total of aromatic diamine and aromatic dicarboxylic acid.
 ピリジン誘導体としては、ピリジン、2-ピコリン、3-ピコリン、4-ピコリン、2,4-ルチジン、2,6-ルチジン、3,5-ルチジンなどが挙げられる。ピリジン誘導体の使用量は、芳香族ジアミンと芳香族ジカルボン酸の合計1モルに対して、通常1.0~5.0モル、好ましくは2.0~4.0モルである。 Examples of the pyridine derivative include pyridine, 2-picoline, 3-picoline, 4-picoline, 2,4-lutidine, 2,6-lutidine, 3,5-lutidine and the like. The amount of the pyridine derivative to be used is usually 1.0 to 5.0 mol, preferably 2.0 to 4.0 mol, per 1 mol of the total of aromatic diamine and aromatic dicarboxylic acid.
 また、より大きい分子量の芳香族ポリアミド樹脂を得るために、塩化リチウム等の無機塩類を添加し反応を行うこともできる。無機塩類の使用量は、芳香族ジアミンと芳香族ジカルボン酸の合計1モルに対して、通常0.01~0.5モル、好ましくは0.05~0.3モルである。 Further, in order to obtain an aromatic polyamide resin having a higher molecular weight, the reaction can be carried out by adding inorganic salts such as lithium chloride. The amount of the inorganic salt used is usually 0.01 to 0.5 mol, preferably 0.05 to 0.3 mol, per 1 mol of the total of the aromatic diamine and aromatic dicarboxylic acid.
 反応は溶媒中に芳香族ジカルボン酸、芳香族ジアミン及び縮合剤並びに必要によりピリジン誘導体及び無機塩類を仕込んで行う。溶媒としては、芳香族ポリアミド樹脂と溶媒和を起こす溶媒であれば特に制限は無いが、具体例としてはN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド等やこれらの混合溶媒が挙げられるが、特にN-メチル-2-ピロリドンが好ましい。また溶媒の使用量は、生成する芳香族ポリアミド樹脂の濃度が2~50重量%となる量が好ましいが、生産効率と操作性の良い溶液粘度とを考慮すると5~30重量%となる量が特に好ましい。縮合反応における反応温度は通常60~150℃、好ましくは70~120℃、反応時間は通常1~15時間、好ましくは2~10時間である。 The reaction is performed by charging an aromatic dicarboxylic acid, an aromatic diamine, a condensing agent, and if necessary, a pyridine derivative and an inorganic salt in a solvent. The solvent is not particularly limited as long as it is a solvent that solvates with an aromatic polyamide resin. Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and dimethyl. Examples thereof include sulfoxide and mixed solvents thereof, and N-methyl-2-pyrrolidone is particularly preferable. The amount of the solvent used is preferably such that the concentration of the aromatic polyamide resin to be produced is 2 to 50% by weight, but considering the production efficiency and the solution viscosity with good operability, the amount to be 5 to 30% by weight. Particularly preferred. The reaction temperature in the condensation reaction is usually 60 to 150 ° C., preferably 70 to 120 ° C., and the reaction time is usually 1 to 15 hours, preferably 2 to 10 hours.
 こうして得られる芳香族ポリアミドは通常下記式(1)で表される。 The aromatic polyamide thus obtained is usually represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、m、nは平均値で、0.005≦n/(m+n)<1を示し、また、m+nは0~230の正数である。Arは二価の芳香族基、Arはフェノール性水酸基を有する二価の芳香族基、Arは二価の芳香族基を示す) (In the formula, m and n are average values, 0.005 ≦ n / (m + n) <1, and m + n is a positive number from 0 to 230. Ar 1 is a divalent aromatic group, Ar 2 is a divalent aromatic group having a phenolic hydroxyl group, Ar 3 is a divalent aromatic group)
 上記式(1)において、mとnの値は芳香族ジアミンと芳香族ジカルボン酸の仕込み比によって決定され、通常平均値でn+m=0~230であり、好ましくは5~150である。 In the above formula (1), the values of m and n are determined by the charging ratio of the aromatic diamine and the aromatic dicarboxylic acid, and the average value is usually n + m = 0 to 230, preferably 5 to 150.
 この、好ましい平均重合度を有する芳香族ポリアミド樹脂の固有粘度値(30℃における0.5g/dlのN,N-ジメチルアセトアミド溶液で測定)は0.1~4.0dl/gの範囲にある。一般に好ましい平均重合度を有するか否かは、固有粘度を参照することにより判断する。固有粘度が0.1dl/gより小さいと、成膜性や芳香族ポリアミド樹脂としての性質出現が不十分であるため、好ましくない場合がある。逆に固有粘度が4.0dl/gより大きいと、重合度が高すぎ溶剤溶解性が悪くなり、かつ成形加工性が悪くなるといった問題が発生する恐れがある。 The intrinsic viscosity value (measured with a 0.5 g / dl N, N-dimethylacetamide solution at 30 ° C.) of this aromatic polyamide resin having a preferred average degree of polymerization is in the range of 0.1 to 4.0 dl / g. . In general, whether or not the polymer has a preferable average degree of polymerization is determined by referring to the intrinsic viscosity. When the intrinsic viscosity is less than 0.1 dl / g, the film formability and the appearance of properties as an aromatic polyamide resin are insufficient, which may not be preferable. On the other hand, if the intrinsic viscosity is larger than 4.0 dl / g, there is a possibility that the degree of polymerization is so high that the solvent solubility is deteriorated and the molding processability is deteriorated.
 成分(A)の製造方法では、縮合反応終了後に反応系内に水を添加し、芳香族亜リン酸エステルを加水分解する。水の添加は、撹拌下に通常60~110℃、好ましくは70~100℃に加熱して行う。水の添加は撹拌下において油層と水層とが層分離を起こし始めるまで続けるが、反応液の総重量に対して通常10~230重量%、好ましくは20~150重量%で充分である。なお、加水分解が充分行われるように、水の添加は必要量全量を一度に添加するのではなく、通常、30分~15時間、好ましくは1~10時間かけて滴下するのが好ましい。この水の滴下工程において芳香族亜リン酸エステルは、リン酸イオン及びフェノール類へ加水分解される。 In the production method of component (A), water is added to the reaction system after completion of the condensation reaction to hydrolyze the aromatic phosphite. The addition of water is usually performed by heating to 60 to 110 ° C., preferably 70 to 100 ° C. with stirring. The addition of water is continued under stirring until the oil layer and the aqueous layer begin to separate, but usually 10 to 230% by weight, preferably 20 to 150% by weight, is sufficient based on the total weight of the reaction solution. In order to sufficiently perform hydrolysis, it is preferable that water is added dropwise over 30 minutes to 15 hours, preferably 1 to 10 hours, rather than adding all the necessary amount at once. In this water dropping step, the aromatic phosphite is hydrolyzed to phosphate ions and phenols.
 層分離が始まった時点で撹拌を止め静置し、上層(水層)と下層(樹脂を含む油層)とに分離した時点で、上層の水層を除去する。この場合、通常油層は粘度が高くスラリー状になっているのでデカンテーションなどによって容易に水層は除去できる。またポンプなどで系外に送液することも可能である。水層中にはリン酸、亜リン酸、触媒、フェノール類、ピリジン誘導体などの不純物及び溶剤の一部が含まれている。 Stirring is stopped when the layer separation starts, and the mixture is allowed to stand, and when the upper layer (aqueous layer) and the lower layer (oil layer containing resin) are separated, the upper aqueous layer is removed. In this case, since the oil layer usually has a high viscosity and is in a slurry state, the water layer can be easily removed by decantation or the like. It is also possible to send liquid outside the system with a pump or the like. The aqueous layer contains impurities such as phosphoric acid, phosphorous acid, catalysts, phenols, pyridine derivatives, and a part of the solvent.
 水層を除去して残された油層は溶剤も一部取り除かれており、粘度が上昇して扱いにくいため、再度有機溶剤を加えて希釈する。この場合使用し得る有機溶剤はN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシドなどである。使用する溶剤の量は粘度が十分に下がる範囲であれば特に規定はされないが、通常油層の重量に対して5~100重量%であり、好ましくは10~80重量%である。 Since the oil layer left after the removal of the aqueous layer has partly removed the solvent and the viscosity increases and is difficult to handle, it is diluted by adding an organic solvent again. The organic solvent that can be used in this case is N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide and the like. The amount of the solvent to be used is not particularly limited as long as the viscosity is sufficiently lowered, but is usually 5 to 100% by weight, preferably 10 to 80% by weight, based on the weight of the oil layer.
 次いで、希釈された油層を貧溶媒に加え芳香族ポリアミド樹脂を析出させる。貧溶媒としては芳香族ポリアミド樹脂と溶媒和を起こし難い液体であれば特に制限は無いが、具体例としては水、メタノール、エタノールなどやこれらの混合溶媒が挙げられる。その使用量は析出した芳香族ポリアミド樹脂が操作上問題なく濾別できる範囲で出来るだけ少量であることが望ましく、反応に用いられた溶媒(前記希釈溶媒も含む)1重量部に対して0.5~50重量部が好ましく、特に1~10重量部が好ましい。 Next, the diluted oil layer is added to a poor solvent to precipitate an aromatic polyamide resin. The poor solvent is not particularly limited as long as it is a liquid that does not easily solvate with the aromatic polyamide resin, but specific examples include water, methanol, ethanol, and a mixed solvent thereof. The amount used is preferably as small as possible within the range in which the precipitated aromatic polyamide resin can be filtered out without any problem in operation, and is 0. 0 part by weight with respect to 1 part by weight of the solvent (including the dilution solvent) used in the reaction. 5 to 50 parts by weight is preferable, and 1 to 10 parts by weight is particularly preferable.
 希釈された油層と貧溶媒の混合は反応液中に撹拌下で貧溶媒を徐々に添加しても良いし、貧溶媒中に撹拌下で油層の希釈液を添加しても良い。送液ポンプ、コンプレッサー及び2流体ノズル、あるいは送液ポンプ及び1流体ノズルを用いて油層の希釈液を貧溶媒中に噴霧する方法は、適度な粒径の芳香族ポリアミド樹脂が容易に析出するため好ましい。油層の希釈液と貧溶媒の混合を行う温度は通常0~100℃、好ましくは20~80℃である。 In mixing the diluted oil layer and the poor solvent, the poor solvent may be gradually added to the reaction solution with stirring, or the diluted solution of the oil layer may be added to the poor solvent with stirring. In the method of spraying the diluted liquid of the oil layer into the poor solvent using the liquid feed pump, the compressor and the two-fluid nozzle, or the liquid feed pump and the one-fluid nozzle, the aromatic polyamide resin having an appropriate particle diameter easily precipitates. preferable. The temperature at which the oil layer diluent and the poor solvent are mixed is usually 0 to 100 ° C., preferably 20 to 80 ° C.
 貧溶媒との混合により析出した芳香族ポリアミド樹脂は、濾別により単離され、水でケーキ洗浄することによりイオン性不純物が除去される。このケーキを乾燥することにより芳香族ポリアミド樹脂が得られるが、更に水溶性有機溶剤で洗浄することによりイオン性不純物をより低減することが出来る。 The aromatic polyamide resin precipitated by mixing with a poor solvent is isolated by filtration, and ionic impurities are removed by washing the cake with water. An aromatic polyamide resin can be obtained by drying the cake, but ionic impurities can be further reduced by washing with a water-soluble organic solvent.
 使用できる水溶性有機溶剤としてはメタノール、エタノール、n-プロパノール、イソプロパノールなどのアルコール類やアセトンなどが挙げられ、これらは単独で、または混合して用いられるが、メタノールが特に好ましい。 Examples of water-soluble organic solvents that can be used include alcohols such as methanol, ethanol, n-propanol, and isopropanol, and acetone. These may be used alone or in combination, with methanol being particularly preferred.
 水溶性有機溶剤での洗浄は、上記で濾別により単離されたポリアミド樹脂ケーキを濾過器上で洗浄しても効果があるが、ウエット状態、すなわち良溶媒と貧溶媒を含んだ芳香族ポリアミド樹脂ケーキまたはこのケーキをいったん乾燥により良溶媒及び貧溶媒を除いた芳香族ポリアミド樹脂と上記水溶性有機溶剤とを新たに容器に仕込み、撹拌懸濁させた後、再度濾別することにより、更に優れた精製効果を発揮する。この場合の水溶性有機溶剤の使用量は、正味のポリアミド樹脂1重量部に対して1~100重量部、好ましくは2~50重量部であり、撹拌の温度は常温から懸濁液の沸点が好ましく、特に沸点での撹拌が好ましい。また、撹拌時間は0.1~24時間、好ましくは、1~5時間である。更に通常この操作は常圧下で行われるが、加圧下で行うことも出来る。 Washing with a water-soluble organic solvent is effective even if the polyamide resin cake isolated by filtration is washed on a filter, but it is wet, that is, an aromatic polyamide containing a good solvent and a poor solvent. The resin cake or the aromatic polyamide resin from which the good solvent and the poor solvent have been removed by drying and the water-soluble organic solvent are newly charged in a container, suspended by stirring, and then filtered again to further remove the cake. Excellent purification effect. In this case, the water-soluble organic solvent is used in an amount of 1 to 100 parts by weight, preferably 2 to 50 parts by weight with respect to 1 part by weight of the net polyamide resin, and the stirring temperature is from room temperature to the boiling point of the suspension. Stirring at the boiling point is particularly preferable. The stirring time is 0.1 to 24 hours, preferably 1 to 5 hours. Furthermore, this operation is usually performed under normal pressure, but can also be performed under pressure.
 上記、懸濁処理を行った後、ポリアミド樹脂を濾別し、通常更に上記水溶性有機溶剤を用いてケーキ洗浄を行い、次いで場合により更に水でケーキ洗浄を行った後、乾燥することにより目的のイオン性不純物の少ないポリアミド樹脂を得ることが出来る。 After the above suspension treatment, the polyamide resin is filtered off, usually further washed with a cake using the above water-soluble organic solvent, and then optionally further washed with water and then dried. Thus, a polyamide resin with less ionic impurities can be obtained.
 成分(B)であるエポキシ樹脂としては1分子中にエポキシ基を2個以上有するものであれば特に制限はない。具体的にはノボラック型エポキシ樹脂、ジシクロペンタジエンフェノール縮合型エポキシ樹脂、キシリレン骨格含有フェノールノボラック型エポキシ樹脂、ビフェニル骨格含有ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビフェノール型エポキシ樹脂などが挙げられるがこれらに限定されるものではない。これらのエポキシ樹脂は2種以上を併用することも出来る。 The epoxy resin as the component (B) is not particularly limited as long as it has two or more epoxy groups in one molecule. Specifically, novolac type epoxy resin, dicyclopentadiene phenol condensation type epoxy resin, xylylene skeleton containing phenol novolak type epoxy resin, biphenyl skeleton containing novolak type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethylbiphenol Examples thereof include, but are not limited to, type epoxy resins. Two or more of these epoxy resins can be used in combination.
 本発明のエポキシ樹脂組成物において硬化剤として、式(1)で表されるフェノール性水酸基含有芳香族ポリアミド樹脂以外に他の硬化剤を併用する事が出来る。併用できる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、フェノ-ルノボラック、フェノールアラルキル、トリフェニルメタン及びこれらの変性物、イミダゾ-ル、BF3-アミン錯体、グアニジン誘導体などが挙げられるがこれらに限定されるものではない。これらを併用する場合、式(1)で表されるフェノール性水酸基含有芳香族ポリアミド樹脂が全硬化剤中に占める割合としては通常20重量%以上、好ましくは30重量%以上である。 In addition to the phenolic hydroxyl group-containing aromatic polyamide resin represented by the formula (1), other curing agents can be used in combination in the epoxy resin composition of the present invention. Specific examples of curing agents that can be used in combination include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, a polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, trimellitic anhydride Acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phenol novolac, phenol aralkyl, triphenylmethane and These modified products, imidazoles, BF3-amine complexes, guanidine derivatives and the like are exemplified, but not limited thereto. When these are used in combination, the proportion of the phenolic hydroxyl group-containing aromatic polyamide resin represented by the formula (1) in the total curing agent is usually 20% by weight or more, preferably 30% by weight or more.
 成分(C)である硬化触媒の具体例としては例えば2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾ-ル類、2-(ジメチルアミノメチル)フェノール、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、オクチル酸スズ等の金属化合物等が挙げられる。硬化触媒はエポキシ樹脂100重量部に対して0.1~5.0重量部が必要に応じ用いられる。 Specific examples of the curing catalyst as component (C) include, for example, imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, 1, And tertiary amines such as 8-diaza-bicyclo (5,4,0) undecene-7, phosphines such as triphenylphosphine, and metal compounds such as tin octylate. If necessary, the curing catalyst is used in an amount of 0.1 to 5.0 parts by weight based on 100 parts by weight of the epoxy resin.
 本発明の熱放射性塗料に使用される成分(D)である有機溶剤としては、例えばγ-ブチロラクトン類、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、N,N-ジメチルイミダゾリジノン等のアミド系溶剤、テトラメチレンスルフォン等のスルフォン類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノブチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤、トルエン、キシレンなどの芳香族系溶剤が挙げられるがこれら有機溶剤に限定されるものではない。本発明の熱放射性塗料の各組成分を均一に溶解均一化できる溶剤であれば極性、非極性溶剤を問わず使用出来る。本発明の熱放射性塗料中の有機溶剤濃度はフェノール性水酸基含有芳香族ポリアミド樹脂(A)、エポキシ樹脂(B)、硬化触媒(C)の合計100重量部に対して30~2000重量部であり、重量%では全組成物を100重量%とした場合、通常20~95重量%、好ましくは30~90重量%である。有機溶剤の使用量が極端に少ないと粘度が高くなり塗工性が低下する、また極端に多いと塗工時にムラが生じたり充分な塗膜の形成が出来なかったりする場合がある。 Examples of the organic solvent that is the component (D) used in the thermal radiation paint of the present invention include γ-butyrolactones, N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, Amide solvents such as N-dimethylacetamide and N, N-dimethylimidazolidinone, sulfones such as tetramethylene sulfone, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, propylene Ether solvents such as glycol monobutyl ether, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, toluene, xylene, etc. Although aromatic solvents including but not limited to these organic solvents. Any solvent that can uniformly dissolve and homogenize each component of the heat-radiating paint of the present invention can be used regardless of whether it is a polar or non-polar solvent. The organic solvent concentration in the thermal radiation coating material of the present invention is 30 to 2000 parts by weight with respect to 100 parts by weight in total of the phenolic hydroxyl group-containing aromatic polyamide resin (A), epoxy resin (B) and curing catalyst (C). In terms of% by weight, when the total composition is 100% by weight, it is usually 20 to 95% by weight, preferably 30 to 90% by weight. If the amount of the organic solvent used is extremely small, the viscosity becomes high and the coating property is lowered, and if it is extremely large, unevenness may occur during coating or a sufficient coating film may not be formed.
 更に本発明の熱放射性塗料には、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、分散剤、相溶化剤、安定剤、酸化防止剤、表面改質剤、紫外線吸収剤、帯電防止剤、顔料等の種々の配合剤を耐熱性、放熱性、絶縁性、表面平滑性等を損なわない範囲で添加使用することができる。 Further, the thermal radiation paint of the present invention includes a silane coupling agent, a release agent such as stearic acid, palmitic acid, zinc stearate, calcium stearate, a dispersing agent, a compatibilizing agent, a stabilizer, an antioxidant, and a surface modification agent. Various compounding agents such as an agent, an ultraviolet absorber, an antistatic agent and a pigment can be added and used within a range not impairing heat resistance, heat dissipation, insulation, surface smoothness and the like.
 本発明の熱放射性塗料は、成分(A)、(B)、(C)、(D)並びに必要により他の成分を均一に混合することにより得ることができる。混合方法としてはアイリッヒミキサー、プラネタリミキサー、ロールミル、ディゾルバーなどが使用できるが特に限定されるものではない。 The thermal radiation paint of the present invention can be obtained by uniformly mixing the components (A), (B), (C), (D) and other components as necessary. As a mixing method, an Eirich mixer, a planetary mixer, a roll mill, a dissolver and the like can be used, but are not particularly limited.
 こうして得られた熱放射性塗料を、被着体である熱伝導体の最外面に塗布、乾燥することにより熱放射性塗料の層を有する本発明の構造体を得ることができる。具体的には得られた樹脂組成物を銅やアルミニュウム等の熱伝導体に対してロールコーター、バーコーター、刷毛塗り、スプレー、ローラー、ドブ漬け、インクジェット、印刷などにより塗布する。この場合被着体表面は樹脂組成物を付着し易くするため予め酸やアルカリを使用して処理したり、物理的に粗面化処理したりした被着体を使用することも出来る。被着体としては熱放射性の観点から、金属が好ましい。
 塗布工程後、更に加温にて有機溶剤を除去乾燥させ、次いで更に高樹脂成分(成分(A)及び(B))の硬化反応を進行させることにより、本発明の構造体を得ることが出来る。
The structure of the present invention having the layer of the heat-radiating paint can be obtained by applying the heat-radiating paint thus obtained to the outermost surface of the heat conductor as the adherend and drying it. Specifically, the obtained resin composition is applied to a heat conductor such as copper or aluminum by a roll coater, a bar coater, brush coating, spraying, roller dipping, ink jetting, printing or the like. In this case, in order to make the resin composition easy to adhere to the surface of the adherend, it is also possible to use an adherend that has been previously treated with an acid or alkali or physically roughened. The adherend is preferably a metal from the viewpoint of thermal radiation.
After the coating step, the organic solvent is further removed by heating and drying, and then the curing reaction of the high resin components (components (A) and (B)) is allowed to proceed, whereby the structure of the present invention can be obtained. .
 乾燥及び硬化を行う温度は通常50~300℃であり、特に80~250℃が好ましい。乾燥及び硬化を行う時間は通常5分~3時間であり、好ましくは10分~2時間である。成分(D)の含有量が多い塗料では、比較的低い温度で乾燥させ成分(D)が少なく成るに従い温度を高くするような乾燥工程が好ましい、急激に温度を上げると塗布表面や内部に気泡を生じる場合が有るので注意が必要である。乾燥後の塗膜の厚さは通常、0.5~300μmであり、好ましくは2~230μmである。塗膜が薄すぎると後で加工する場合に金属筐体が部分的に露出し充分な効果を発揮しない、余り厚膜だと金属筐体と塗膜表面までの熱抵抗が大きく成り表面の熱放射性とは無関係に金属筐体からの塗膜表面への速やかな熱伝導を阻害することとなる。 The temperature for drying and curing is usually 50 to 300 ° C., particularly preferably 80 to 250 ° C. The time for drying and curing is usually 5 minutes to 3 hours, preferably 10 minutes to 2 hours. For paints with a high content of component (D), a drying process is preferred in which the coating is dried at a relatively low temperature and the temperature is increased as the component (D) decreases. Care should be taken because it may cause The thickness of the dried coating film is usually 0.5 to 300 μm, preferably 2 to 230 μm. If the coating film is too thin, the metal casing will be partially exposed when processing later, and will not be fully effective. If it is too thick, the thermal resistance between the metal casing and the coating surface will increase, and the surface heat will increase. Regardless of the radiation, the rapid heat conduction from the metal casing to the coating surface is inhibited.
 本発明の熱放射性塗料は無機のフィラーを含まず、金属筐体に塗布乾燥後の表面が滑らかであり均一である。また無機フィラーを含まないため長期に塗料を保存した場合でも無機フィラーの沈降等の不均一化が生じない。従って、本発明の熱放射性塗料は、塗布前の攪拌混合等の操作が必要なく作業性に優れた塗料である。また、本発明の熱放射性塗料はポリアミド骨格を主成分とするため耐熱性が高く絶縁性に優れる。 The thermal radiation paint of the present invention does not contain an inorganic filler, and the surface after coating and drying on a metal casing is smooth and uniform. Moreover, since the inorganic filler is not included, even when the paint is stored for a long period of time, non-uniformity such as sedimentation of the inorganic filler does not occur. Therefore, the thermal radiation paint of the present invention is a paint having excellent workability without requiring an operation such as stirring and mixing before coating. Moreover, since the thermal radiation coating material of the present invention has a polyamide skeleton as a main component, it has high heat resistance and excellent insulating properties.
 以下に本発明を実施例で更に詳細に説明する。
 尚、本発明はこれら実施例に限定されるものではない。また以下において、ポリアミド樹脂の活性水素当量とは水酸基、及び末端活性水素1個あたりの化合物の平均的質量であり、エポキシ当量とは、エポキシ基1個あたりのエポキシ樹脂の質量であり、水酸基当量とは水酸基(OH基)1個あたりの化合物の質量である。
 また、以下において「部」及び「%」は、特に記述ない限り重量基準である。尚、熱放射性試験は熱放射性樹脂を塗工・乾燥した金属基板の一定温度に加熱した部位から一定距離における計測温度を熱放射性樹脂の塗布の有無により計測した値で放熱性に優れる構造体ほど計測温度は低くなる。また、印加加熱部を一定に保つための印加電力量は放熱性に優れる構造体ほど大きく成り、放熱性が低いほど小さくなる。
Hereinafter, the present invention will be described in more detail with reference to examples.
The present invention is not limited to these examples. In the following, the active hydrogen equivalent of the polyamide resin is the average mass of the compound per hydroxyl group and terminal active hydrogen, and the epoxy equivalent is the mass of the epoxy resin per epoxy group, and the hydroxyl equivalent Is the mass of the compound per hydroxyl group (OH group).
In the following, “parts” and “%” are based on weight unless otherwise specified. In addition, the thermal radiation test is a structure that is excellent in heat dissipation by measuring the temperature at a certain distance from the part heated to a certain temperature of the metal substrate coated and dried with the thermal radiation resin by the presence or absence of the application of the thermal radiation resin. The measured temperature is lowered. In addition, the amount of applied electric power for keeping the applied heating unit constant increases as the structure has better heat dissipation, and decreases as the heat dissipation decreases.
配合実施例1
 前記式(1)で示されるフェノール性水酸基含有芳香族ポリアミド樹脂(Ar:イソフタル酸残基、Ar:5-ヒドロキシイソフタル酸残基、Ar:3,4’-ジアミノジフェニルエーテル残基、n=2、m=198日本化薬株式会社製 商品名CPAM-750、水酸基当量4900g/eq.)、γ-ブチロラクトン、エポキシ樹脂(ビフェニル-フェノール縮合型エポキシ樹脂、日本化薬株式会社製 商品名NC-3000、エポキシ当量280g/eq.)、硬化剤(ビフェニル-フェノール縮合樹脂、日本化薬株式会社製 商品名GPH-65、水酸基当量203g/eq.)、硬化触媒(イミダゾール系硬化触媒、四国化成株式会社製 商品名C11Z-A)を表1に示される組成配分で夫々順番に溶解させながら加え、均一で褐色透明な本発明の熱放射性塗料を得た。この塗料の25℃におけるE型粘度計での粘度は153cPsであった。
Formulation Example 1
A phenolic hydroxyl group-containing aromatic polyamide resin represented by the formula (1) (Ar 1 : isophthalic acid residue, Ar 2 : 5-hydroxyisophthalic acid residue, Ar 3 : 3,4′-diaminodiphenyl ether residue, n = 2 and m = 198 Nippon Kayaku Co., Ltd. product name CPAM-750, hydroxyl group equivalent 4900 g / eq.), Γ-butyrolactone, epoxy resin (biphenyl-phenol condensation type epoxy resin, Nippon Kayaku Co., Ltd. product name NC) -3000, epoxy equivalent 280 g / eq.), Curing agent (biphenyl-phenol condensation resin, Nippon Kayaku Co., Ltd., trade name GPH-65, hydroxyl group equivalent 203 g / eq.), Curing catalyst (imidazole-based curing catalyst, Shikoku Chemicals) The product name C11Z-A) made by Co., Ltd. was added while being dissolved in order according to the composition distribution shown in Table 1. To obtain a heat radiation paint color transparent present invention. The viscosity of this paint with an E-type viscometer at 25 ° C. was 153 cPs.
実施例1
 表面が充分に脱脂洗浄された巾50mm、長さ250mm、厚み1mmの表面無処理アルミニウム基板の片面中央部に50mm四方の未塗工部分が出来るようにポリイミドテープを使用しマスキングを施した後、前記配合実施例1で得られた熱放射性塗料を、スプレーガンを用いて表裏全面に塗工した。次いで150℃に設定した循環式オーブンに投入し10分間乾燥した、更に上記のスプレー塗工、乾燥操作を二度繰り返した後170℃に設定した循環式オーブンにて1時間乾燥硬化させ塗膜厚さが25μmの放熱構造体を得た。次いで得られた構造体の中央ポリイミドテープマスキング部を剥がしフィルム状の温度コントロール用熱電対を密着させた、更に50mm角で厚み200μmのフィルム状ヒーター(40V・50W)、50mm角で厚み1mmのアルミ板2枚を順次重ね4辺をクリップで固定した。次いで試験片中央部から110mm離れた両端部表面中央に夫々温度計測用フィルムタイプ熱電対を、テフロン(登録商標)コートを施したクリップにて密着させ熱放射性計測サンプルを作成した。次いで前記加熱計測可能と成った試験構造体を外部からの温度、風、熱反射等の影響を受け難いボックスに収め、フィルム状ヒーターにはパワーサプライ電源からの導線を、温度調節計を介して接続し両端部の温度計測用熱電対は温度記録計に接続した。次いでヒーター設定温度180℃、ヒーター印加電圧40Vの設定で試験片中央部を加熱し端部の温度が十分に安定した時の両端部の平均温度を表1に示す。また、ヒーター印加電圧を調整し温度調節計のオン、オフが殆どなく180℃を維持出来る電圧に調製した時の電圧を表1に示す。
Example 1
After the surface is sufficiently degreased and washed, using a polyimide tape and masking so that an uncoated part of 50 mm square is formed at the center of one side of the surface untreated aluminum substrate having a width of 50 mm, a length of 250 mm and a thickness of 1 mm, The heat-radiating paint obtained in Formulation Example 1 was applied to the entire front and back surfaces using a spray gun. Next, it was put into a circulation oven set at 150 ° C. and dried for 10 minutes. Further, after repeating the above spray coating and drying operations twice, it was dried and cured in a circulation oven set at 170 ° C. for 1 hour, and the coating thickness A heat dissipation structure having a thickness of 25 μm was obtained. Next, the central polyimide tape masking part of the obtained structure was peeled off and a film-like thermocouple for temperature control was adhered, and a film heater (40 V, 50 W) of 50 mm square and 200 μm thickness, aluminum of 50 mm square and 1 mm thickness. Two plates were stacked one on top of the other and the four sides were fixed with clips. Next, a film type thermocouple for temperature measurement was adhered to the center of the surface of both end portions 110 mm away from the center of the test piece with a clip coated with Teflon (registered trademark) to prepare a thermal radiation measurement sample. Next, the test structure capable of measuring heat is placed in a box that is not easily affected by temperature, wind, heat reflection, etc. from the outside, and a conductive wire from a power supply power source is connected to the film heater via a temperature controller. The temperature measuring thermocouples at both ends were connected to a temperature recorder. Next, Table 1 shows the average temperature at both ends when the center of the test piece is heated by setting the heater set temperature 180 ° C. and the heater applied voltage 40 V and the temperature at the ends is sufficiently stabilized. Table 1 shows the voltage when the heater applied voltage was adjusted and the temperature controller was adjusted to a voltage capable of maintaining 180 ° C. with almost no on / off of the temperature controller.
 また配合実施例1で得られた熱放射性塗料を離型PET、(PET-38AL5(リンテック(株)製))に乾燥後の厚みが25μmと成るようにバーコーターを用いて塗工、次いで150℃で30分間乾燥後に離型PETから剥離し更に170℃で1時間乾燥・硬化させ熱試験サンプルを得た。次いで得られた試験片を10mm巾にカットし粘弾性測定装置DMS6100(エスアイアイ・ナノテクノロジー(株)製)を使用し昇温速度5℃/minで測定を行った時のtanδ最大値での温度を表1に示す。 Also, the thermal radiation coating material obtained in Formulation Example 1 was applied to release PET, (PET-38AL5 (manufactured by Lintec Corporation)) using a bar coater so that the thickness after drying was 25 μm, and then 150 After drying at 30 ° C. for 30 minutes, it was peeled off from the release PET and further dried and cured at 170 ° C. for 1 hour to obtain a thermal test sample. Next, the obtained test piece was cut to a width of 10 mm, and measured using a viscoelasticity measuring device DMS6100 (manufactured by SII Nanotechnology Co., Ltd.) at a heating rate of 5 ° C./min. The temperature is shown in Table 1.
実施例2
 配合実施例1においてエポキシ樹脂として、クレゾールノボラック型エポキシ樹脂(日本化薬株式会社製 商品名EOCN-1020 エポキシ当量280g/eq)、硬化剤としてフェノールノボラック型樹脂H-1(明和化成株式会社製、水酸基当量105g/eq)を表1に示される組成配分で配合した他は配合実施例1と同様に配合し、25℃におけるE型粘度計での粘度140cPsの熱放射性塗料を得た(配合実施例2)。次いで実施例1と同様に塗工乾燥硬化し熱放射性計測サンプル、および粘弾性測定用試験片を作成し実施例1と同様に評価した結果を表1に示す。
Example 2
In Compounding Example 1, as an epoxy resin, a cresol novolac type epoxy resin (trade name EOCN-1020, epoxy equivalent of 280 g / eq, manufactured by Nippon Kayaku Co., Ltd.) and a phenol novolac type resin H-1 (manufactured by Meiwa Kasei Co., Ltd.) as a curing agent A hydroxyl group equivalent of 105 g / eq) was blended in the same manner as in Blending Example 1 except that the composition distribution shown in Table 1 was blended to obtain a thermal radiation paint having a viscosity of 140 cPs with an E-type viscometer at 25 ° C. Example 2). Table 1 shows the results obtained by coating and curing in the same manner as in Example 1 and preparing thermal radiation measurement samples and viscoelasticity measurement test pieces and evaluating in the same manner as in Example 1.
実施例3
 エポキシ樹脂としてNC-3000、硬化剤としてGPH-65、硬化触媒としてC11Z-Aを表1に示される組成配分で配合した他は配合実施例1と同様に配合し、25℃におけるE型粘度計での粘度153cPsの熱放射性塗料を得た(配合実施例3)。次いで実施例1と同様に塗工、乾燥、硬化し熱放射性計測サンプル、および粘弾性測定用試験片を作成し実施例1と同様に評価した結果を表1に示す。
Example 3
An E-type viscometer at 25 ° C. was blended in the same manner as in Blending Example 1, except that NC-3000 as an epoxy resin, GPH-65 as a curing agent, and C11Z-A as a curing catalyst were blended in the composition distribution shown in Table 1. A thermal radiation coating with a viscosity of 153 cPs was obtained (Formulation Example 3). Table 1 shows the results of coating, drying and curing in the same manner as in Example 1 and producing thermal radiation measurement samples and viscoelasticity test specimens and evaluating them in the same manner as in Example 1.
比較例1
 表面に樹脂組成分を全く塗工しない無処理アルミニウム基板にフィルムヒーターを取り付け実施例1と同様に評価した時の放熱性を表1に示す。
Comparative Example 1
Table 1 shows the heat dissipation when evaluated in the same manner as in Example 1 with a film heater attached to an untreated aluminum substrate on which no resin composition was applied to the surface.
比較例2
 γ-ブチロラクトン、エポキシ樹脂NC-3000、硬化剤GPH-65、硬化触媒C11Z-Aを表1に示される組成配分で配合しフェノール性水酸基含有芳香族ポリアミド樹脂を含まない樹脂組成物を調製し25℃におけるE型粘度計での粘度121cPsの比較用の塗料を得た(配合比較例)。次いで実施例1と同様に塗工、乾燥、硬化し評価した結果を表1に示す。尚、粘弾性測定はフィルム化物では脆く測定装置にセット不可能なため乾燥後に離型PETから剥離した未硬化フィルム化物を重ね、更に170℃×1時間プレス加熱硬化し厚さ2mmの試験片を作成し測定した。
Comparative Example 2
γ-butyrolactone, epoxy resin NC-3000, curing agent GPH-65, and curing catalyst C11Z-A were blended in the composition distribution shown in Table 1 to prepare a resin composition that does not contain a phenolic hydroxyl group-containing aromatic polyamide resin. A comparative paint having a viscosity of 121 cPs with an E-type viscometer at ° C. was obtained (Comparative Comparative Example). Table 1 shows the results of coating, drying, curing and evaluation in the same manner as in Example 1. The viscoelasticity measurement is fragile in a film and cannot be set in a measuring device. Therefore, an uncured film peeled off from the release PET after drying is layered, and further, press-cured at 170 ° C. for 1 hour to obtain a 2 mm thick test piece. Created and measured.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
尚、表1において略号は下記のものを示す。
A:フェノール性水酸基含有芳香族ポリアミド樹脂:CPAM-750
B:エポキシ樹脂:NC-3000
C:エポキシ樹脂:EOCN-1020エポキシ当量195)
D:硬化剤   :GPH-65
E:硬化剤   :H-1
F:硬化触媒 :C11Z-A
In Table 1, the abbreviations indicate the following.
A: Aromatic polyamide resin containing phenolic hydroxyl group: CPAM-750
B: Epoxy resin: NC-3000
C: Epoxy resin: EOCN-1020 epoxy equivalent 195)
D: Curing agent: GPH-65
E: Curing agent: H-1
F: Curing catalyst: C11Z-A
 表1からも明らかなように本発明の熱放射性塗料、及び本発明の熱放射性塗料を塗工乾燥硬化してなる構造体は端部の温度が極めて低く成っている。また、発熱部の熱を速やかに外部に放出する事が出来るため加熱部を一定温度に保つにはより大きな印加電圧を必要とする。これらの事から各種発熱体と接続加工する事により高負荷時でも発熱部温度をより低く維持する事が可能である。従って本発明の熱放射性塗料を塗工乾燥硬化してなる構造体は電気・電子・自動車等の分野のパワーデバイス、特に高出力インバーター、高出力モーター等の分野での使用が期待出来る物である。 As is clear from Table 1, the heat radiation paint of the present invention and the structure obtained by coating and drying the heat radiation paint of the present invention have extremely low end temperatures. Moreover, since the heat of the heat generating part can be quickly released to the outside, a larger applied voltage is required to keep the heating part at a constant temperature. For these reasons, it is possible to keep the temperature of the heat generating part lower even under high load by connecting with various heat generating elements. Therefore, the structure obtained by coating and drying and curing the thermal radiation paint of the present invention is expected to be used in power devices in the fields of electricity, electronics, automobiles, etc., particularly in the fields of high output inverters, high output motors, etc. .

Claims (5)

  1.  下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、m、nは平均値で、0.005≦n/(m+n)<1を示し、また、m+nは0~230の正数である。Arは二価の芳香族基、Arはフェノール性水酸基を有する二価の芳香族基、Arは二価の芳香族基を示す)で表される構造を有するフェノール性水酸基含有芳香族ポリアミド樹脂(A)、エポキシ樹脂(B)、硬化触媒(C)の合計100重量部に対して有機溶媒(D)を30~2000重量部含有することを特徴とする熱放射性塗料。
    Following formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, m and n are average values, 0.005 ≦ n / (m + n) <1, and m + n is a positive number from 0 to 230. Ar 1 is a divalent aromatic group, Ar 2 is a divalent aromatic group having a phenolic hydroxyl group, Ar 3 is a divalent aromatic group), and a phenolic hydroxyl group-containing aromatic polyamide resin (A) or epoxy resin (B) having a structure represented by A heat-radiating paint comprising 30 to 2000 parts by weight of an organic solvent (D) with respect to 100 parts by weight of the total of the curing catalyst (C).
  2.  式(1)の化合物におけるArがフタル酸、イソフタル酸、テレフタル酸、コハク酸、フマル酸からなる群から選ばれる1種以上の酸の残基、Arが5-ヒドロキシイソフタル酸、4-ヒドロキシイソフタル酸、2-ヒドロキシフタル酸、3-ヒドロキシフタル酸からなる群から選ばれる1種以上の酸の残基、及びArが3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテルからなる群から選ばれる1種以上のアミンの残基である請求項1記載の熱放射性塗料。 Ar 1 in the compound of the formula (1) is a residue of one or more acids selected from the group consisting of phthalic acid, isophthalic acid, terephthalic acid, succinic acid and fumaric acid, Ar 2 is 5-hydroxyisophthalic acid, 4- A residue of at least one acid selected from the group consisting of hydroxyisophthalic acid, 2-hydroxyphthalic acid, 3-hydroxyphthalic acid, and Ar 3 is 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 2. The thermal radiation paint according to claim 1, which is a residue of one or more amines selected from the group consisting of 4,4′-diaminodiphenyl ether.
  3.  無機フィラーを含有しない請求項1または2記載の熱放射性塗料。 The thermal radiation paint according to claim 1 or 2, which does not contain an inorganic filler.
  4.  熱伝導体の最外面に請求項1~3のいずれか1項に記載の熱放射性塗料を塗工乾燥、硬化した層を有する構造体。 A structure having a layer obtained by applying the heat-radiating paint according to any one of claims 1 to 3 to the outermost surface of the heat conductor, drying and curing.
  5.  熱放射性塗料層の皮膜の厚さが0.5~300μmである請求項4記載の構造体。 The structure according to claim 4, wherein the thickness of the coating film of the thermal radiation coating layer is 0.5 to 300 µm.
PCT/JP2012/077609 2011-11-09 2012-10-25 Heat-radiating coating and structure WO2013069468A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-245027 2011-11-09
JP2011245027A JP2013100409A (en) 2011-11-09 2011-11-09 Heat-radiating coating and structure

Publications (1)

Publication Number Publication Date
WO2013069468A1 true WO2013069468A1 (en) 2013-05-16

Family

ID=48289850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077609 WO2013069468A1 (en) 2011-11-09 2012-10-25 Heat-radiating coating and structure

Country Status (3)

Country Link
JP (1) JP2013100409A (en)
TW (1) TW201323537A (en)
WO (1) WO2013069468A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517046A (en) * 2022-03-01 2022-05-20 天津职业技术师范大学(中国职业培训指导教师进修中心) Water-based epoxy coating based on divalent zinc ion modified graphene oxide and preparation method thereof
EP3988621A4 (en) * 2019-06-20 2022-08-17 Posco Thermally conductive and electrically insulating paint composition, and exterior steel sheet for solar cell, comprising same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217959A (en) * 1995-02-10 1996-08-27 Tomoegawa Paper Co Ltd Heat-resistant resin composition
JP2001196366A (en) * 2000-01-07 2001-07-19 Osaka Gas Co Ltd Layer insulating film
WO2004048436A1 (en) * 2002-11-28 2004-06-10 Nippon Kayaku Kabushiki Kaisha Flame-retardant epoxy resin composition and cured object obtained therefrom
JP2007246861A (en) * 2006-03-20 2007-09-27 Nippon Steel Chem Co Ltd Resin composition, and varnish obtained using the resin composition, film adhesive, and copper foil attached with film adhesive
JP2008138191A (en) * 2006-11-07 2008-06-19 Nippon Kayaku Co Ltd Polyamide resin varnish, cured product therefrom and article
WO2011114665A1 (en) * 2010-03-15 2011-09-22 日本化薬株式会社 Heat-resistant adhesive

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217959A (en) * 1995-02-10 1996-08-27 Tomoegawa Paper Co Ltd Heat-resistant resin composition
JP2001196366A (en) * 2000-01-07 2001-07-19 Osaka Gas Co Ltd Layer insulating film
WO2004048436A1 (en) * 2002-11-28 2004-06-10 Nippon Kayaku Kabushiki Kaisha Flame-retardant epoxy resin composition and cured object obtained therefrom
JP2007246861A (en) * 2006-03-20 2007-09-27 Nippon Steel Chem Co Ltd Resin composition, and varnish obtained using the resin composition, film adhesive, and copper foil attached with film adhesive
JP2008138191A (en) * 2006-11-07 2008-06-19 Nippon Kayaku Co Ltd Polyamide resin varnish, cured product therefrom and article
WO2011114665A1 (en) * 2010-03-15 2011-09-22 日本化薬株式会社 Heat-resistant adhesive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3988621A4 (en) * 2019-06-20 2022-08-17 Posco Thermally conductive and electrically insulating paint composition, and exterior steel sheet for solar cell, comprising same
CN114517046A (en) * 2022-03-01 2022-05-20 天津职业技术师范大学(中国职业培训指导教师进修中心) Water-based epoxy coating based on divalent zinc ion modified graphene oxide and preparation method thereof

Also Published As

Publication number Publication date
TW201323537A (en) 2013-06-16
JP2013100409A (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP6740254B2 (en) Resin composition, semi-curable heat conductive film using the same, circuit board and adhesive sheet
JP6712402B2 (en) Coated particles
CN102307924B (en) Homogeneous bismaleimide - triazine - epoxy compositions useful for the manufacture of electrical laminates
TWI713542B (en) Resin composition
JP6167621B2 (en) Resin composition, resin film for printed wiring board and method for producing the same
WO2014050156A1 (en) Conductive composition and conductive molded body using same
JP2002194282A (en) Polyamide resin-containing varnish and its use
JP2002284963A (en) Flame-retardant epoxy resin composition and use thereof
JP5097349B2 (en) Epoxy resin composition and epoxy resin varnish, bonding sheet and coverlay film using the same
JP4616771B2 (en) Flame retardant epoxy resin composition and cured product thereof
JP2019196433A (en) Highly thermoconductive curable resin composition, cured product of the composition, laminate including resin layer provided by using the composition, and power module including the laminate
JP6968018B2 (en) Epoxy resin powder paint
JP6345384B2 (en) Resin composition for printed wiring board, resin film for printed wiring board, and method for producing the same
JPWO2010058734A1 (en) Phenolic hydroxyl group-containing aromatic polyamide resin and use thereof
EP1876873B1 (en) Process for producing double-sided flexible printed board and double-sided flexible printed board
WO2013069468A1 (en) Heat-radiating coating and structure
JP5651641B2 (en) Epoxy resin composition and epoxy resin varnish, bonding sheet and coverlay film using the same
JP2014222973A (en) Coil filled with thermally conductive heat-resistant insulating material, production method thereof, motor and transformer
JP2002012739A (en) Flame-retardant epoxy resin composition and use thereof
JP2004189815A (en) Epoxy resin composition and flexible printed wiring board material obtained using the same
JP5460322B2 (en) Thermosetting resin composition and cured product thereof
JP2002012740A (en) Flame-retardant epoxy resin composition and use thereof
JP2007270151A (en) Flame-retardant resin composition and application thereof
JP5860282B2 (en) Resin composition and optical fiber and electric wire using the same
JP2011086472A (en) Separator of fuel cell, and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846921

Country of ref document: EP

Kind code of ref document: A1