WO2013069256A1 - Inkjet application device and inkjet application method - Google Patents

Inkjet application device and inkjet application method Download PDF

Info

Publication number
WO2013069256A1
WO2013069256A1 PCT/JP2012/007096 JP2012007096W WO2013069256A1 WO 2013069256 A1 WO2013069256 A1 WO 2013069256A1 JP 2012007096 W JP2012007096 W JP 2012007096W WO 2013069256 A1 WO2013069256 A1 WO 2013069256A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
head
ink
axial direction
group
Prior art date
Application number
PCT/JP2012/007096
Other languages
French (fr)
Japanese (ja)
Inventor
真介 井口
定信 池本
聡 雨宮
Original Assignee
株式会社アルバック
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック, 住友化学株式会社 filed Critical 株式会社アルバック
Priority to CN201280054307.9A priority Critical patent/CN103918350A/en
Priority to KR1020147011336A priority patent/KR20140088116A/en
Publication of WO2013069256A1 publication Critical patent/WO2013069256A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • the present invention relates to an ink jet coating apparatus and an ink jet coating method for ejecting ink droplets containing an organic EL material for forming an organic EL element on a substrate, for example.
  • the ink jet method can accurately drop ink at a predetermined position on a substrate, and is widely used in a process of manufacturing a liquid crystal display or an organic EL display using an ink containing spacer particles or an organic light emitting material, for example.
  • the following Patent Document 1 describes a method of forming a spacer by an inkjet method
  • the following Patent Document 2 discloses R (red), G (green), and B (blue) organic light emitting materials by an inkjet method. A method of forming a layer is described.
  • the inkjet coating apparatus typically has one or a plurality of ink heads in which nozzles for ejecting ink are formed at a predetermined pitch, and while relatively moving the substrate horizontally in a uniaxial direction with respect to the ink heads, Ink droplets are applied to a plurality of locations on the substrate from the ink head.
  • JP 2011-147861 A Japanese Patent Laid-Open No. 2003-77678
  • an object of the present invention is to provide an ink jet coating apparatus and an ink jet coating method that can suppress uneven drying of ink applied on a substrate.
  • an inkjet coating apparatus includes a stage, a first ink head module, a moving mechanism, and a controller.
  • the stage has a support surface parallel to the first axial direction and a second axial direction orthogonal to the first axial direction, and is configured to be able to support the substrate on the support surface.
  • the first ink head module has a first head group and a second head group. When the first head group divides the entire surface of the substrate on the support surface into a plurality of regions arranged along the first axial direction, a predetermined first of the plurality of regions is formed. An ink droplet is applied to one region group.
  • the second head group is disposed at a position offset by a predetermined distance in the second axial direction with respect to the first head group, and the remaining second region group of the plurality of rows of regions is filled with ink. Configured to apply droplets.
  • the moving mechanism is configured to move the stage in the second axial direction.
  • the controller has a predetermined time period from when the liquid droplets from the first head group land on the substrate to when the liquid droplets from the second head group land on the substrate. The moving mechanism is controlled so that
  • An inkjet coating method includes disposing a substrate on a support surface that is parallel to each of a first axial direction and a second axial direction orthogonal to the first axial direction.
  • a plurality of rows of heads arranged so as to correspond to the plurality of rows of regions when the entire surface of the substrate on the support surface is partitioned by a plurality of rows of regions arranged along the first axial direction.
  • the nozzle pitch of each of the plurality of head portions is adjusted such that ink droplets ejected from each portion land on the substrate at a predetermined pitch in the first axial direction.
  • the support surface is moved relative to the plurality of rows of head portions in the second axial direction.
  • the droplets are ejected to a first region group selected every other row of the plurality of regions. Within a predetermined time after ink droplets are ejected to the first region group, the droplets are ejected to the remaining second region group of the plurality of regions.
  • An inkjet coating apparatus includes a stage, a first ink head module, and a moving mechanism.
  • the stage has a support surface parallel to the first axial direction and a second axial direction orthogonal to the first axial direction, and is configured to be able to support the substrate on the support surface.
  • the first ink head module has a first head group and a second head group.
  • first head group divides the entire surface of the substrate on the support surface into a plurality of regions arranged along the first axial direction, a predetermined first of the plurality of regions is formed.
  • An ink droplet is applied to one region group.
  • the second head group is disposed at a position offset by a predetermined distance in the second axial direction with respect to the first head group, and the remaining second region group of the plurality of rows of regions is filled with ink. Configured to apply droplets.
  • the moving mechanism is configured to move the stage in the second axial direction.
  • the controller has a predetermined time period from when the liquid droplets from the first head group land on the substrate to when the liquid droplets from the second head group land on the substrate.
  • the moving mechanism is controlled so that
  • ink droplets can be applied to the entire surface of the substrate by a single movement operation of the substrate with respect to the first head module. Thereby, productivity can be improved.
  • the time from when the droplets from the first head group land on the substrate to when the droplets from the second head group land on the substrate is within a predetermined time, so that the coating is performed on the substrate. Unevenness of dried ink can be suppressed. Thereby, it is possible to realize a high-quality printing process in which variations in thickness and shape of the ink layer are suppressed.
  • the predetermined time For the adjustment of the predetermined time, an appropriate method such as adjusting the moving speed of the stage or adjusting the magnitude of the offset between the first head group and the second head group can be adopted. It is. Further, the predetermined time can be set to an appropriate time that does not cause unevenness of ink drying, and is typically set according to the drying speed of the ink. The predetermined time can be, for example, 10 seconds or less.
  • the stage may further include a cooling mechanism configured to cool the substrate on the support surface to a predetermined temperature or lower.
  • a cooling mechanism configured to cool the substrate on the support surface to a predetermined temperature or lower.
  • the substrate cooling temperature is not particularly limited, and can be set as appropriate according to the drying speed of the ink. If the substrate temperature is excessively high, ink drying is promoted, and if the substrate temperature is excessively low, condensation may occur on the substrate. Typically, the substrate temperature is set to 20 ° C. or lower, for example.
  • a plurality of rows of regions that virtually divide the substrate surface on the support surface are divided into a first region group processed by the first head group and a second region group processed by the second head group. Divided.
  • the first region and the second region may be selected in any manner, and each of the first region and the second region is constituted by, for example, a plurality of regions selected every other row.
  • the ink heads constituting the first head group and the second head group may be arranged in any way, may be arranged along the first axial direction, or may be arranged in the first axial direction. Alternatively, they may be arranged along a horizontal direction that crosses diagonally.
  • the plurality of ink heads constituting the first head group and the second head group respectively have a plurality of droplet discharge nozzles.
  • the relative positions of the plurality of ink heads with respect to the substrate can be adjusted so that the droplets ejected from the plurality of droplet ejection nozzles land on the substrate at a predetermined pitch along the first axial direction.
  • the adjustment mechanism is configured by a mechanism that can individually rotate the ink head around the normal direction of the substrate. Thereby, it is possible to apply droplets at a desired pitch along the first axial direction on the substrate.
  • the ink may include an organic EL material for forming an organic EL (Electro-Luminescence) element.
  • an organic EL Electro-Luminescence
  • the inkjet coating apparatus may further include a second head module and a third head module.
  • the second head module is arranged in series with the first head module in the second axial direction, and has the same configuration as the first head module.
  • the third head module is arranged in series with the first and second head modules in the second axial direction, and has the same configuration as the first head module.
  • the second head module is configured to eject ink droplets containing a second organic EL material having a color different from that of the first organic EL material ejected from the first head module.
  • the third head module ejects ink droplets containing a third organic EL material having a different color from the first and second organic EL materials ejected from the first and second head modules, respectively.
  • Composed whereby, for example, the organic EL layer of R, G, B can be continuously formed on the substrate by only one movement operation of the substrate in the second axial direction. Productivity can be improved.
  • An inkjet coating method includes disposing a substrate on a support surface that is parallel to a first axial direction and a second axial direction orthogonal to the first axial direction. .
  • a plurality of rows of heads arranged so as to correspond to the plurality of rows of regions when the entire surface of the substrate on the support surface is partitioned by a plurality of rows of regions arranged along the first axial direction.
  • the nozzle pitch of each of the plurality of head portions is adjusted such that ink droplets ejected from each portion land on the substrate at a predetermined pitch in the first axial direction.
  • the support surface is moved relative to the plurality of rows of head portions in the second axial direction.
  • the droplets are ejected to a first region group selected every other row of the plurality of regions. Within a predetermined time after ink droplets are ejected to the first region group, the droplets are ejected to the remaining second region group of the plurality of regions.
  • ink droplets can be applied to the entire surface of the substrate by a single movement operation of the substrate with respect to the first head module. Thereby, productivity can be improved. Further, by discharging droplets to the second region group within a predetermined time after discharging the ink droplets to the first region group, drying unevenness of the ink applied on the substrate is suppressed. Can do. Thereby, it is possible to realize a high-quality printing process in which variations in thickness and shape of the ink layer are suppressed.
  • FIG. 1 is a schematic plan view showing an inkjet coating apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic side view thereof.
  • the X axis and the Y axis indicate horizontal directions orthogonal to each other
  • the Z axis indicates a vertical direction orthogonal to the X axis and Y axis, respectively.
  • the inkjet coating apparatus 1 of the present embodiment includes a stage 11 that supports a substrate S, a head module 12 that applies ink droplets to the substrate S on the stage 11, and a moving mechanism 13 that moves the stage 11 in a uniaxial direction.
  • the substrate S is composed of a substantially rectangular glass substrate.
  • substrate S is not specifically limited, For example, they are 1850 mm wide and 1500 mm long.
  • the substrate S may be composed of a plate, sheet, or film substrate such as metal, plastic, or paper.
  • the substrate S is not limited to a single layer, and may have a multilayer structure in which a solid film such as an insulating film or a conductive film or a functional film patterned in a predetermined shape is laminated on the surface.
  • the stage 11 is installed on the base unit 10 so as to be movable in the Y-axis direction.
  • the stage 11 has a support surface 11a supported by the substrate S.
  • the support surface 11a belongs to planes (XY plane) parallel to the X-axis direction and the Y-axis direction, respectively, and is configured by a substantially rectangular flat surface in the present embodiment.
  • the stage 11 may include various chuck mechanisms for holding the substrate S on the support surface 11a.
  • the inkjet coating apparatus 1 has a cooling mechanism 14 for cooling the support surface 11a of the stage 11 to a predetermined temperature or lower.
  • the cooling mechanism 14 includes, for example, a cooling water circulation passage formed inside the stage 11 and a pump unit that circulates the cooling water through the circulation passage.
  • the cooling mechanism 14 has a function of cooling the substrate S supported on the support surface 11 a to the temperature by maintaining the support surface 11 a at 20 ° C. or less, preferably 18 ° C. or less.
  • the pump unit may be integrally attached to the stage 11 or may be installed on the base portion 10 or other part via a flexible pipe member through which cooling water passes.
  • the moving mechanism 13 controls a pair of guide rails 13a and 13b laid on the base portion 10, a driving source such as a linear motor that moves the stage 11 along the guide rails 13a and 13b, and the driving source. Includes a control unit and the like.
  • the pair of guide rails 13a and 13b extend parallel to the Y-axis direction, and the stage 11 is installed on the guide rails 13a and 13b.
  • the drive source is arranged inside the stage 11, and the control unit performs highly accurate movement control of the stage 11 along the guide rail.
  • the head module 12 has a plurality of ink heads 121, 122, 123, 124, 125, 126.
  • the ink heads 121 to 126 are configured to apply a predetermined ink droplet D over the entire surface of the substrate S on the stage 11 moving in the Y-axis direction along the guide rails 13a and 13b.
  • the ink heads 121 to 126 virtually divide the entire surface of the substrate S on the stage 11 into a plurality of regions R1, R2, R3, R4, R5, R6 arranged along the X-axis direction, Arranged so as to correspond to each of the plurality of regions R1 to R6.
  • the regions R1 to R6 partitioned on the surface of the substrate S are formed in a rectangular shape having a longitudinal direction parallel to the Y-axis direction and a width direction in the X-axis direction, and the ink heads 121 to 126 are formed in the regions R1 to R6.
  • Ink droplets D are applied at predetermined pitches in the X-axis direction and the Y-axis direction, respectively.
  • the plurality of regions R1 to R6 are divided into a first region group RA and a second region group RB.
  • the first region group RA is composed of a plurality of regions R1, R3, R5 selected every other column from the plurality of regions R1 to R6, and the second region group RB is composed of a plurality of columns.
  • the regions R1 to R6, a plurality of remaining regions R2, R3, and R5 are formed.
  • the first area group RA is processed by the ink heads 121, 123, and 125. That is, the ink heads 121, 123, and 125 apply the droplets D to the regions R1, R3, and R5 that constitute the first region group RA, respectively.
  • the second region group RB is processed by the ink heads 122, 124 and 126. That is, the ink heads 122, 124, and 126 apply the droplets D to the regions R2, R4, and R6 constituting the second region group RB, respectively.
  • the ink heads 121, 123, and 125 constitute a first head group 12A.
  • the first head group 12A is installed at a position directly above the base portion 10 via the support frame 120A, and the ink heads 121, 123, 125 are respectively in the first area group RA (R1, R3, R5) on the substrate S. Are positioned so as to face each other.
  • the ink heads 122, 124, and 126 constitute the second head group 12B.
  • the second head group 12B is installed at a position directly above the base portion 10 via the support frame 120B, and the ink heads 122, 124, 126 are respectively second region groups RB (R2, R4, R6) on the substrate S. Are positioned so as to face each other.
  • the head module 12 has a plurality of rotation mechanism units M (adjustment mechanisms) that can rotate the ink heads 121 to 126 about the Z axis, respectively.
  • These rotation mechanisms M are provided on the support frames 120A and 120B, respectively, and are configured to be able to individually rotate the ink heads 121 to 126 over a predetermined angular range around the Z axis. These rotation mechanisms M are controlled by the controller 15.
  • the controller 15 is typically composed of a computer including a CPU and various memories.
  • the controller 15 controls driving of various mechanisms such as the head module 12, the moving mechanism 13, and the cooling mechanism 14.
  • the controller 15 is installed in the base unit 10, but may be installed in a position different from the base unit 10.
  • Each of the ink heads 121 to 126 has an ink ejection surface on which a plurality of droplet ejection nozzles are formed.
  • FIG. 3 is an enlarged view of a main part showing the ink discharge surface 121 s of the ink head 121.
  • the ink discharge surface 121s has a substantially rectangular shape, and a plurality of droplet discharge nozzles N are formed at a predetermined pitch p0 along the longitudinal direction thereof.
  • Each droplet discharge nozzle N is connected to an ink tank (not shown), and each droplet discharge nozzle N is provided with a piezoelectric drive unit V for discharging a predetermined amount of ink.
  • the ink discharge surface 121s is disposed so as to face the surface of the substrate S that passes immediately below the ink discharge surface through a predetermined distance.
  • the rotation mechanism M adjusts the droplet discharge pitch along the X-axis direction by rotating the ink head 121 around the Z-axis.
  • FIG. 3A shows a state in which the droplet discharge pitch along the X-axis direction is converted from p0 to p1 when the ink head 121 is tilted by an angle ⁇ 1 around the Z-axis with respect to the X-axis.
  • FIG. 3B the droplet discharge pitch along the X-axis direction when the ink head 121 is inclined by the angle ⁇ 2 ( ⁇ 2> ⁇ 1) around the Z-axis with respect to the X-axis is from p0 to p2 (p2). It shows how it is converted into ⁇ p1). In this way, the droplet discharge pitch along the X-axis direction can be continuously changed according to the rotation angle of the ink head 121.
  • the ink heads 122 to 126 are configured in the same manner as the ink head 121.
  • the ink droplets 121 to 126 are set to have the same droplet discharge pitch along the X-axis direction.
  • the droplet discharge pitch along the X-axis direction is appropriately adjusted according to the type and process of the droplet applied onto the substrate S.
  • the ink heads 121, 123, and 125 constituting the first head group 12A are arranged on the same straight line along their longitudinal directions.
  • the ink heads 122, 124, and 126 that constitute the second head group 12B are arranged on the same straight line along the longitudinal direction thereof.
  • the respective ink heads constituting the first and second head groups 12A and 12B may be arranged along the X-axis direction.
  • the second head group 12B is arranged at a position offset (separated) from the first head group 12A in the moving direction (Y-axis direction) of the substrate S.
  • the ink heads 121 to 126 are arranged corresponding to all the regions R1 to R6 on the substrate S, so that the ink can be spread over the entire surface of the substrate S by one movement operation of the substrate S in the Y axis direction. It is possible to apply the droplets. Thereby, the efficiency of the droplet application process for the substrate S is increased, and the productivity can be improved.
  • FIG. 4 is a schematic plan view showing a state in which droplets are applied to the surface of the substrate S by the head module 12.
  • the substrate S moves at a predetermined speed in the direction indicated by the arrow A along the Y-axis direction directly below the head module 12.
  • droplets D ejected from the head module 12 are applied from the start end S1 toward the end S2.
  • the droplets D are applied at a constant pitch px, py in the X-axis direction and the Y-axis direction.
  • the pitch px is adjusted by the rotation angle of the ink heads 121 to 126 by the rotation mechanism unit M, and the pitch py is adjusted by the discharge timing of the droplets D from the ink heads 121 to 126.
  • the droplet layer formed on the substrate S may be formed by discharging the droplet D once, or may be formed by discharging the droplet D a plurality of times.
  • the head module 12 is configured by the first head group 12A and the second head group 12B, and the first head group 12A is located upstream of the second head group 12B. Be placed. Therefore, as shown in FIG. 4, first, droplets D are ejected onto the substrate S by the first head group 12A (ink heads 121, 123, 125) to the first region group RA (R1, R3, R5). After that, the discharge of the droplet D to the second area group RB (R2, R4, R6) is started by the second head group 12B (ink heads 122, 124, 126).
  • the droplet drying speed at the center side of the droplet group and the end side of the droplet group Differences are likely to occur. This is because the vapor density of the solvent component that volatilizes from the droplet group differs depending on the location of the droplet group. Normally, the outer side of the droplet group is dried more than the inner side of the droplet group. Tend to be fast. Therefore, when drying starts from a droplet located on the outer side of the droplet group, the shape changes so that the inner droplet of the droplet group that has not yet been dried is drawn to the outer side. Will begin. Such drying unevenness causes variations in the shape and height of the droplet layer, making it difficult to realize a high-quality droplet coating process.
  • the controller 15 determines the time from when the droplets ejected from the first head group 12A land on the substrate S to when the droplets ejected from the second head group 12B land on the substrate S.
  • the moving mechanism 13 is controlled to be within a predetermined time. As the predetermined time, an appropriate time during which the drying unevenness of the droplet D applied to the first region group RA does not occur is set.
  • the droplets are applied to each of these regions and then within the predetermined time.
  • the droplets are applied to the second region group RB (R2, R4, R6) adjacent to these.
  • the drying of the droplets positioned on the outer side of the previously applied droplet group can be delayed, so that the droplet layer can be formed in a uniform form without causing uneven drying over the entire surface of the substrate S. Can be formed.
  • the predetermined time is adjusted by the offset amount (separation distance) H between the first head group 12A and the second head group 12B, the moving speed of the stage 11, and the like.
  • the movement of the stage 11 is controlled so that the predetermined time is within 10 seconds, preferably within 7 seconds.
  • the predetermined time can be secured by setting the offset amount H to 600 mm or less and the moving speed of the stage 11 to 70 mm / sec or more.
  • the predetermined time can also be appropriately selected depending on the type of ink constituting the droplet D, the coating pitch, and the like. By setting the predetermined time to 10 seconds or less, variations in the thickness and shape of the ink layer can be suppressed even when the present invention is applied to the ink material constituting the organic EL layer. In particular, since the luminance of the organic EL layer varies depending on the thickness, the organic EL layer having uniform luminance can be formed over the entire surface of the substrate S with the above-described configuration.
  • the drying speed of the droplets applied onto the substrate S can be adjusted by the substrate temperature. . As a result, drying unevenness of the droplets applied on the substrate can be more easily suppressed.
  • the entire surface of the substrate S is partitioned by a first region group RA composed of a plurality of regions selected every other row and a remaining second region group.
  • FIG. 5 is a schematic plan view showing an inkjet coating apparatus according to the second embodiment of the present invention.
  • configurations different from those of the first embodiment will be mainly described, and configurations similar to those of the above-described embodiment will be denoted by the same reference numerals, and description thereof will be omitted or simplified.
  • the inkjet coating apparatus 2 of the present embodiment is an apparatus for applying a droplet layer made of organic light emitting materials of R (red), G (green), and B (blue) on a substrate S.
  • the head module 21, the second head module 22, and the third head module 23 are included.
  • the first head module 21 is configured to apply an R light emitting layer at a predetermined pitch over the entire surface of the substrate S, and is arranged in a plurality of regions (R1 to R6, see FIG. 4) that divide the entire surface of the substrate S. It has a plurality of corresponding ink heads.
  • the first head module 21 has a first head group 21A and a second head group 21B. The first head module 21 is installed at a position directly above the base 20 via the support frame 221.
  • the first head group 21A and the second head group 21B are arranged at a position offset by a predetermined distance (H) with respect to the Y-axis direction, and details thereof are the same as those of the head module 12 in the first embodiment described above. Since it has the same configuration as the first head group 12A and the second head group 12B, detailed description thereof is omitted here.
  • the second head module 22 is configured to apply a G light emitting layer to the entire surface of the substrate S at a predetermined pitch, and a plurality of regions corresponding to a plurality of regions (R1 to R6) that divide the entire surface of the substrate S. It has an ink head.
  • the second head module 22 includes a first head group 22A and a second head group 22B.
  • the first head group 22A and the second head group 22B have the same configuration as the first head group 21A and the second head group 21B of the first head module 21.
  • the second head module 22 is installed at a position directly above the base 20 via the support frame 222.
  • the third head module 23 is configured to apply the B light emitting layer to the entire surface of the substrate S at a predetermined pitch, and a plurality of regions corresponding to a plurality of regions (R1 to R6) defining the entire surface of the substrate S. It has an ink head.
  • the third head module 23 includes a first head group 23A and a second head group 23B.
  • the first head group 23A and the second head group 23B are
  • the first head module 21 has the same configuration as the first head group 21A and the second head group 21B.
  • the third head module 23 is installed at a position directly above the base 20 via the support frame 223.
  • the first to third head modules 21 to 23 are arranged in series along the Y-axis direction. As a result, the substrate S on the stage 11 moves from the position shown in FIG. 5 in the direction indicated by the arrow A, while the R light emitting layer is formed by the first head module 21 and the G light emitting layer is formed by the second head module 22. Then, the B light emitting layer is sequentially applied by the third head module 23.
  • the R, G, and B light emitting layers can be continuously formed over the entire surface of the substrate S by only one movement operation of the substrate S in the Y-axis direction.
  • the productivity of the organic EL display can be improved.
  • since the EL layers of the respective colors can be formed without causing uneven drying, a high-quality organic EL display can be stably manufactured.
  • the head module is configured such that one ink head is arranged in each of a plurality of regions defining the entire surface of the substrate S.
  • a plurality of ink heads may be arranged in the region.
  • the entire surface of the substrate S is divided into six rows of regions (R1 to R6).
  • the number of regions is not limited to this, and is appropriately determined according to the size of the substrate and the form of the ink head. It is possible to change.
  • one head module is composed of two head groups, but may be composed of three or more head groups. For example, among a plurality of rows that divide the entire surface of the substrate S, a first region group selected every two rows, a second region group selected every other two rows, and the remaining third
  • the three head groups can be arranged corresponding to each of these area groups. Also in this case, the offset amount along the Y-axis direction of each head group is set within the above H, so that a predetermined droplet layer can be formed on the substrate without causing uneven drying.

Abstract

[Problem] To minimize unevenness in the drying of ink applied to a substrate. [Solution] The inkjet application device in one embodiment of the present invention is provided with an ink head module (12) that has a first head group (12A) and a second head group (12B). Partitioning the entire surface of a substrate (S) into a plurality of regions (R1 to R6) along an X-axis, the first head group (12A) applies ink droplets to a prescribed first set of regions (R1, R3, R5). The second head group (12B) is offset a prescribed distance (H) along a Y-axis from the first head group (12A) and applies ink droplets to the remaining regions, namely a second set of regions (R2, R4, R6). The movement of a stage (11) that supports the substrate (S) is controlled such that the droplets from the second head group (12B) land on the substrate (S) within a prescribed amount of time from when the droplets from the first head group (12A) land on the substrate.

Description

インクジェット塗布装置及びインクジェット塗布方法Inkjet coating apparatus and inkjet coating method
 本発明は、例えば基板上に有機EL素子を形成するための有機EL材料を含むインク液滴を吐出するためのインクジェット塗布装置及びインクジェット塗布方法に関する。 The present invention relates to an ink jet coating apparatus and an ink jet coating method for ejecting ink droplets containing an organic EL material for forming an organic EL element on a substrate, for example.
 インクジェット法は、基板上の所定位置に精度よくインクを滴下することができるため、例えばスペーサ粒子や有機発光材料を含有したインクを用いて液晶ディスプレイや有機ELディスプレイを製造する工程に広く採用されている。例えば下記特許文献1には、インクジェット法によるスペーサの形成方法が記載されており、下記特許文献2には、インクジェット法によりR(赤)、G(緑)、B(青)の各有機発光材料層を形成する方法が記載されている。 The ink jet method can accurately drop ink at a predetermined position on a substrate, and is widely used in a process of manufacturing a liquid crystal display or an organic EL display using an ink containing spacer particles or an organic light emitting material, for example. Yes. For example, the following Patent Document 1 describes a method of forming a spacer by an inkjet method, and the following Patent Document 2 discloses R (red), G (green), and B (blue) organic light emitting materials by an inkjet method. A method of forming a layer is described.
 インクジェット塗布装置は、典型的には、インクを吐出するノズルが所定ピッチで形成された単数又は複数のインクヘッドを有し、当該インクヘッドに対して基板を一軸方向に水平に相対移動させながら、インクヘッドから基板上の複数箇所にインクの液滴を塗布する。 The inkjet coating apparatus typically has one or a plurality of ink heads in which nozzles for ejecting ink are formed at a predetermined pitch, and while relatively moving the substrate horizontally in a uniaxial direction with respect to the ink heads, Ink droplets are applied to a plurality of locations on the substrate from the ink head.
 一方、比較的大型の基板にインクジェット法を適用する場合には、上記一軸方向に基板を移動させた後、上記一軸方向に直交する水平方向に基板を移動させることでインクヘッドとの相対位置を変化させ、再び上記一軸方向へ基板を移動させる。このような操作を必要なだけ繰り返すことで、基板の全面に液滴を塗布するようにしていた(特許文献1参照)。 On the other hand, when the inkjet method is applied to a relatively large substrate, after moving the substrate in the uniaxial direction, the substrate is moved in a horizontal direction orthogonal to the uniaxial direction, so that the relative position to the ink head can be adjusted. The substrate is moved again in the uniaxial direction. Such operations are repeated as many times as necessary to apply droplets to the entire surface of the substrate (see Patent Document 1).
特開2011-147861号公報JP 2011-147861 A 特開2003-77678号公報Japanese Patent Laid-Open No. 2003-77678
 しかしながら上述のようにインクヘッドに対する基板の往復移動を繰り返す方法では、先に液滴が塗布された領域と後に液滴が塗布された領域との間で液滴の乾燥ムラが生じることがある。このような問題は、例えば有機EL材料を含むインクのような比較的乾燥し易いインクを用いた場合により顕著に発生する。乾燥ムラは、有機EL層の厚みや形状のバラツキを引き起こし、画質の低下を招くことになる。 However, in the method of repeating the reciprocating movement of the substrate with respect to the ink head as described above, uneven drying of the droplets may occur between the region where the droplets are applied first and the region where the droplets are applied later. Such a problem remarkably occurs when an ink that is relatively easy to dry, such as an ink containing an organic EL material, is used. Unevenness of drying causes variations in the thickness and shape of the organic EL layer, leading to a decrease in image quality.
 以上のような事情に鑑み、本発明の目的は、基板上に塗布されたインクの乾燥ムラを抑制することができるインクジェット塗布装置及びインクジェット塗布方法を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide an ink jet coating apparatus and an ink jet coating method that can suppress uneven drying of ink applied on a substrate.
 上記目的を達成するため、本発明の一形態に係るインクジェット塗布装置は、ステージと、第1のインクヘッドモジュールと、移動機構と、コントローラとを具備する。
 上記ステージは、第1の軸方向と、上記第1の軸方向に直交する第2の軸方向とにそれぞれ平行な支持面を有し、上記支持面に基板を支持することが可能に構成される。
 上記第1のインクヘッドモジュールは、第1のヘッド群と、第2のヘッド群とを有する。上記第1のヘッド群は、上記支持面上の基板の表面全域を上記第1の軸方向に沿って配列された複数列の領域で区画したときに、上記複数列の領域のうち所定の第1の領域群にインクの液滴を塗布するように構成される。上記第2のヘッド群は、上記第1のヘッド群に対して上記第2の軸方向に所定距離オフセットした位置に配置され、上記複数列の領域のうち残余の第2の領域群にインクの液滴を塗布するように構成される。
 上記移動機構は、上記ステージを上記第2の軸方向に移動させるように構成される。
 上記コントローラは、上記第1のヘッド群からの上記液滴が上記基板上に着弾してから、上記第2のヘッド群からの上記液滴が上記基板上に着弾するまでの時間が所定時間以内となるように、上記移動機構を制御する。
In order to achieve the above object, an inkjet coating apparatus according to an embodiment of the present invention includes a stage, a first ink head module, a moving mechanism, and a controller.
The stage has a support surface parallel to the first axial direction and a second axial direction orthogonal to the first axial direction, and is configured to be able to support the substrate on the support surface. The
The first ink head module has a first head group and a second head group. When the first head group divides the entire surface of the substrate on the support surface into a plurality of regions arranged along the first axial direction, a predetermined first of the plurality of regions is formed. An ink droplet is applied to one region group. The second head group is disposed at a position offset by a predetermined distance in the second axial direction with respect to the first head group, and the remaining second region group of the plurality of rows of regions is filled with ink. Configured to apply droplets.
The moving mechanism is configured to move the stage in the second axial direction.
The controller has a predetermined time period from when the liquid droplets from the first head group land on the substrate to when the liquid droplets from the second head group land on the substrate. The moving mechanism is controlled so that
 本発明の一形態に係るインクジェット塗布方法は、第1の軸方向と、上記第1の軸方向に直交する第2の軸方向とにそれぞれ平行な支持面上に基板を配置することを含む。
 上記支持面上の基板の表面全域を、前記第1の軸方向に沿って配列された複数列の領域で区画したときに、上記複数列の領域に対応するように配置された複数列のヘッド部各々から吐出されるインクの液滴が上記基板上において上記第1の軸方向に所定ピッチで着弾するように上記複数列のヘッド部各々のノズルピッチが調整される。
 上記複数列のヘッド部に対して上記支持面が上記第2の軸方向へ相対移動させられる。
 上記複数列の領域のうち一列おきに選択された第1の領域群に上記液滴が吐出される。
 上記第1の領域群にインクの液滴を吐出してから所定時間以内に、上記複数列の領域のうち残余の第2の領域群に上記液滴が吐出される。
An inkjet coating method according to an aspect of the present invention includes disposing a substrate on a support surface that is parallel to each of a first axial direction and a second axial direction orthogonal to the first axial direction.
A plurality of rows of heads arranged so as to correspond to the plurality of rows of regions when the entire surface of the substrate on the support surface is partitioned by a plurality of rows of regions arranged along the first axial direction. The nozzle pitch of each of the plurality of head portions is adjusted such that ink droplets ejected from each portion land on the substrate at a predetermined pitch in the first axial direction.
The support surface is moved relative to the plurality of rows of head portions in the second axial direction.
The droplets are ejected to a first region group selected every other row of the plurality of regions.
Within a predetermined time after ink droplets are ejected to the first region group, the droplets are ejected to the remaining second region group of the plurality of regions.
本発明の一実施形態に係るインクジェット塗布装置を示す概略平面図である。It is a schematic plan view which shows the inkjet coating apparatus which concerns on one Embodiment of this invention. 上記インクジェット塗布装置を示す概略側面図である。It is a schematic side view which shows the said inkjet coating apparatus. 上記インクジェット塗布装置におけるインクヘッドのインク吐出面を示す要部の拡大図である。It is an enlarged view of the principal part which shows the ink discharge surface of the ink head in the said inkjet coating apparatus. 上記インクジェット塗布装置の作用を説明する概略平面図である。It is a schematic plan view explaining the effect | action of the said inkjet coating apparatus. 本発明の他の実施形態に係るインクジェット塗布装置を示す概略平面図である。It is a schematic plan view which shows the inkjet coating apparatus which concerns on other embodiment of this invention.
 本発明の一実施形態に係るインクジェット塗布装置は、ステージと、第1のインクヘッドモジュールと、移動機構とを具備する。 An inkjet coating apparatus according to an embodiment of the present invention includes a stage, a first ink head module, and a moving mechanism.
 上記ステージは、第1の軸方向と、上記第1の軸方向に直交する第2の軸方向とにそれぞれ平行な支持面を有し、上記支持面に基板を支持することが可能に構成される。したがって支持面上に配置される基板の表面は、上記第1の軸方向及び第2の軸方向にそれぞれ平行な平面内に属することになる。 The stage has a support surface parallel to the first axial direction and a second axial direction orthogonal to the first axial direction, and is configured to be able to support the substrate on the support surface. The Therefore, the surface of the substrate disposed on the support surface belongs to a plane parallel to the first axial direction and the second axial direction.
 上記第1のインクヘッドモジュールは、第1のヘッド群と第2のヘッド群とを有する。上記第1のヘッド群は、上記支持面上の基板の表面全域を上記第1の軸方向に沿って配列された複数列の領域で区画したときに、上記複数列の領域のうち所定の第1の領域群にインクの液滴を塗布するように構成される。上記第2のヘッド群は、上記第1のヘッド群に対して上記第2の軸方向に所定距離オフセットした位置に配置され、上記複数列の領域のうち残余の第2の領域群にインクの液滴を塗布するように構成される。 The first ink head module has a first head group and a second head group. When the first head group divides the entire surface of the substrate on the support surface into a plurality of regions arranged along the first axial direction, a predetermined first of the plurality of regions is formed. An ink droplet is applied to one region group. The second head group is disposed at a position offset by a predetermined distance in the second axial direction with respect to the first head group, and the remaining second region group of the plurality of rows of regions is filled with ink. Configured to apply droplets.
 上記移動機構は、上記ステージを上記第2の軸方向に移動させるように構成される。上記コントローラは、上記第1のヘッド群からの上記液滴が上記基板上に着弾してから、上記第2のヘッド群からの上記液滴が上記基板上に着弾するまでの時間が所定時間以内となるように、上記移動機構を制御する。 The moving mechanism is configured to move the stage in the second axial direction. The controller has a predetermined time period from when the liquid droplets from the first head group land on the substrate to when the liquid droplets from the second head group land on the substrate. The moving mechanism is controlled so that
 上記インクジェット塗布装置によれば、第1のヘッドモジュールに対する基板の一回の移動操作で、基板の表面全域にインクの液滴を塗布することができる。これにより、生産性を向上させることができる。また、第1のヘッド群からの液滴が基板上に着弾してから第2のヘッド群からの液滴が基板上に着弾するまでの時間を所定時間以内にすることで、基板上に塗布されたインクの乾燥ムラを抑制することができる。これにより、インク層の厚みや形状のバラツキが抑制された、高品質な印刷工程を実現することができる。 According to the inkjet coating apparatus, ink droplets can be applied to the entire surface of the substrate by a single movement operation of the substrate with respect to the first head module. Thereby, productivity can be improved. In addition, the time from when the droplets from the first head group land on the substrate to when the droplets from the second head group land on the substrate is within a predetermined time, so that the coating is performed on the substrate. Unevenness of dried ink can be suppressed. Thereby, it is possible to realize a high-quality printing process in which variations in thickness and shape of the ink layer are suppressed.
 上記所定時間の調整には、ステージの移動速度を調整したり、第1のヘッド群と第2のヘッド群との間の上記オフセットの大きさを調整したりする等の適宜の方法が採用可能である。また、上記所定時間はインクの乾燥ムラが生じない適宜の時間が設定可能であり、典型的にはインクの乾燥速度に応じて設定される。上記所定時間としては例えば10秒以下とすることができる。 For the adjustment of the predetermined time, an appropriate method such as adjusting the moving speed of the stage or adjusting the magnitude of the offset between the first head group and the second head group can be adopted. It is. Further, the predetermined time can be set to an appropriate time that does not cause unevenness of ink drying, and is typically set according to the drying speed of the ink. The predetermined time can be, for example, 10 seconds or less.
 上記ステージは、上記支持面上の基板を所定温度以下に冷却するように構成された冷却機構をさらに有してもよい。これにより、基板上に塗布された液滴の乾燥速度を調整することができるため、基板上に塗布された液滴の乾燥ムラをより容易に抑制することができる。上記冷却機構は、典型的には、ステージの内部に冷却水を循環させる機構が採用可能である。 The stage may further include a cooling mechanism configured to cool the substrate on the support surface to a predetermined temperature or lower. Thereby, since the drying speed of the droplet applied on the substrate can be adjusted, drying unevenness of the droplet applied on the substrate can be more easily suppressed. As the cooling mechanism, a mechanism that circulates cooling water inside the stage can be typically employed.
 基板の冷却温度は特に限定されず、インクの乾燥速度等に応じて適宜設定可能である。基板温度が過度に高いとインクの乾燥が促進され、基板温度が過度に低いと基板への結露が生じるおそれがある。典型的には、基板温度は例えば20℃以下に設定される。 The substrate cooling temperature is not particularly limited, and can be set as appropriate according to the drying speed of the ink. If the substrate temperature is excessively high, ink drying is promoted, and if the substrate temperature is excessively low, condensation may occur on the substrate. Typically, the substrate temperature is set to 20 ° C. or lower, for example.
 支持面上の基板表面を仮想的に区画する複数列の領域は、第1のヘッド群によって処理される第1の領域群と、第2のヘッド群によって処理される第2の領域群とに分けられる。第1の領域及び第2の領域はどのように選定されてもよく、例えば一列おきに選択された複数の領域でそれぞれ構成される。これにより、第1及び第2のヘッド群を構成する個々のインクヘッドの大きさの制限を小さくでき、各インクヘッドの設置レイアウトの自由度を高めることができる。 A plurality of rows of regions that virtually divide the substrate surface on the support surface are divided into a first region group processed by the first head group and a second region group processed by the second head group. Divided. The first region and the second region may be selected in any manner, and each of the first region and the second region is constituted by, for example, a plurality of regions selected every other row. As a result, the restriction on the size of the individual ink heads constituting the first and second head groups can be reduced, and the degree of freedom in the installation layout of each ink head can be increased.
 第1のヘッド群及び第2のヘッド群を構成する各インクヘッドはどのように配置されてもよく、上記第1の軸方向に沿って配置されてもよいし、上記第1の軸方向に対して斜めに交差する水平方向に沿って配置されてもよい。 The ink heads constituting the first head group and the second head group may be arranged in any way, may be arranged along the first axial direction, or may be arranged in the first axial direction. Alternatively, they may be arranged along a horizontal direction that crosses diagonally.
 第1のヘッド群及び第2のヘッド群をそれぞれ構成する複数のインクヘッドは、複数の液滴吐出ノズルをそれぞれ有する。この場合、上記複数の液滴吐出ノズルから吐出される液滴が基板上に上記第1の軸方向に沿って所定ピッチで着弾するように、上記複数のインクヘッドの基板に対する相対位置を調整可能な調整機構を有してもよい。上記調整機構としては、典型的には、基板の法線方向を軸としてインクヘッドを個々に回転させることができる機構で構成される。これにより、基板上に第1の軸方向に沿って所望のピッチで液滴を塗布することができる。 The plurality of ink heads constituting the first head group and the second head group respectively have a plurality of droplet discharge nozzles. In this case, the relative positions of the plurality of ink heads with respect to the substrate can be adjusted so that the droplets ejected from the plurality of droplet ejection nozzles land on the substrate at a predetermined pitch along the first axial direction. You may have an adjustment mechanism. Typically, the adjustment mechanism is configured by a mechanism that can individually rotate the ink head around the normal direction of the substrate. Thereby, it is possible to apply droplets at a desired pitch along the first axial direction on the substrate.
 上記インクは、有機EL(Electro-Luminescence)素子を形成するための有機EL材料を含んでもよい。これにより、有機EL層の厚みや形状のバラツキが抑制された、高画質な有機ELディスプレイを安定に製造することができる。 The ink may include an organic EL material for forming an organic EL (Electro-Luminescence) element. As a result, a high-quality organic EL display in which variations in thickness and shape of the organic EL layer are suppressed can be stably manufactured.
 上記インクジェット塗布装置は、第2のヘッドモジュールと、第3のヘッドモジュールとをさらに具備してもよい。
 上記第2のヘッドモジュールは、第2の軸方向に第1のヘッドモジュールと直列に配置され、第1のヘッドモジュールと同一の構成を有する。上記第3のヘッドモジュールは、第2の軸方向に第1及び第2のヘッドモジュールと直列に配置され、第1のヘッドモジュールと同一の構成を有する。
 この場合、第2のヘッドモジュールは、第1のヘッドモジュールから吐出される第1の有機EL材料とは異なる色の第2の有機EL材料を含むインク液滴を吐出するように構成される。第3のヘッドモジュールは、第1及び第2のヘッドモジュールからそれぞれ吐出される第1及び第2の有機EL材料とは異なる色の第3の有機EL材料を含むインク液滴を吐出するように構成される。
 これにより、上記第2の軸方向への基板の一回の移動操作のみで、例えば、R,G,Bの有機EL層を基板上に連続して形成することができるので、有機ELディスプレイの生産性を向上させることができる。
The inkjet coating apparatus may further include a second head module and a third head module.
The second head module is arranged in series with the first head module in the second axial direction, and has the same configuration as the first head module. The third head module is arranged in series with the first and second head modules in the second axial direction, and has the same configuration as the first head module.
In this case, the second head module is configured to eject ink droplets containing a second organic EL material having a color different from that of the first organic EL material ejected from the first head module. The third head module ejects ink droplets containing a third organic EL material having a different color from the first and second organic EL materials ejected from the first and second head modules, respectively. Composed.
Thereby, for example, the organic EL layer of R, G, B can be continuously formed on the substrate by only one movement operation of the substrate in the second axial direction. Productivity can be improved.
 本発明の一実施形態に係るインクジェット塗布方法は、第1の軸方向と、上記第1の軸方向に直交する第2の軸方向とにそれぞれ平行な支持面上に基板を配置することを含む。
 上記支持面上の基板の表面全域を、前記第1の軸方向に沿って配列された複数列の領域で区画したときに、上記複数列の領域に対応するように配置された複数列のヘッド部各々から吐出されるインクの液滴が上記基板上において上記第1の軸方向に所定ピッチで着弾するように上記複数列のヘッド部各々のノズルピッチが調整される。
 上記複数列のヘッド部に対して上記支持面が上記第2の軸方向へ相対移動させられる。
 上記複数列の領域のうち一列おきに選択された第1の領域群に上記液滴が吐出される。
 上記第1の領域群にインクの液滴を吐出してから所定時間以内に、上記複数列の領域のうち残余の第2の領域群に上記液滴が吐出される。
An inkjet coating method according to an embodiment of the present invention includes disposing a substrate on a support surface that is parallel to a first axial direction and a second axial direction orthogonal to the first axial direction. .
A plurality of rows of heads arranged so as to correspond to the plurality of rows of regions when the entire surface of the substrate on the support surface is partitioned by a plurality of rows of regions arranged along the first axial direction. The nozzle pitch of each of the plurality of head portions is adjusted such that ink droplets ejected from each portion land on the substrate at a predetermined pitch in the first axial direction.
The support surface is moved relative to the plurality of rows of head portions in the second axial direction.
The droplets are ejected to a first region group selected every other row of the plurality of regions.
Within a predetermined time after ink droplets are ejected to the first region group, the droplets are ejected to the remaining second region group of the plurality of regions.
 上記インクジェット塗布方法によれば、第1のヘッドモジュールに対する基板の一回の移動操作で、基板の表面全域にインクの液滴を塗布することができる。これにより、生産性を向上させることができる。また、第1の領域群にインクの液滴を吐出してから所定時間以内に、第2の領域群に液滴を吐出することで、基板上に塗布されたインクの乾燥ムラを抑制することができる。これにより、インク層の厚みや形状のバラツキが抑制された、高品質な印刷工程を実現することができる。 According to the above-described ink jet coating method, ink droplets can be applied to the entire surface of the substrate by a single movement operation of the substrate with respect to the first head module. Thereby, productivity can be improved. Further, by discharging droplets to the second region group within a predetermined time after discharging the ink droplets to the first region group, drying unevenness of the ink applied on the substrate is suppressed. Can do. Thereby, it is possible to realize a high-quality printing process in which variations in thickness and shape of the ink layer are suppressed.
 以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<第1の実施形態>
 図1は、本発明の一実施形態に係るインクジェット塗布装置を示す概略平面図であり、図2はその概略側面図である。各図においてX軸及びY軸は相互に直交する水平方向を示し、Z軸はX軸及びY軸にそれぞれ直交する鉛直方向を示している。
<First Embodiment>
FIG. 1 is a schematic plan view showing an inkjet coating apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic side view thereof. In each drawing, the X axis and the Y axis indicate horizontal directions orthogonal to each other, and the Z axis indicates a vertical direction orthogonal to the X axis and Y axis, respectively.
 本実施形態のインクジェット塗布装置1は、基板Sを支持するステージ11と、ステージ11上の基板Sにインクの液滴を塗布するヘッドモジュール12と、ステージ11を一軸方向に移動させる移動機構13とを有する。 The inkjet coating apparatus 1 of the present embodiment includes a stage 11 that supports a substrate S, a head module 12 that applies ink droplets to the substrate S on the stage 11, and a moving mechanism 13 that moves the stage 11 in a uniaxial direction. Have
 基板Sは、略矩形状のガラス基板で構成される。基板Sの大きさは特に限定されず、例えば横1850mm、縦1500mmである。基板Sとしては、上記以外にも、金属、プラスチック、紙等のプレート状、シート状あるいはフィルム状の基材で構成されてもよい。また、基板Sは単一層で構成されたものに限られず、表面に絶縁膜や導電膜等のベタ膜あるいは所定形状にパターニングされた機能膜が積層された多層構造を有していてもよい。 The substrate S is composed of a substantially rectangular glass substrate. The magnitude | size of the board | substrate S is not specifically limited, For example, they are 1850 mm wide and 1500 mm long. In addition to the above, the substrate S may be composed of a plate, sheet, or film substrate such as metal, plastic, or paper. The substrate S is not limited to a single layer, and may have a multilayer structure in which a solid film such as an insulating film or a conductive film or a functional film patterned in a predetermined shape is laminated on the surface.
 ステージ11は、ベース部10の上にY軸方向に移動可能に設置される。ステージ11は、基板Sが支持する支持面11aを有する。支持面11aは、X軸方向及びY軸方向にそれぞれ平行な平面(XY平面)に属し、本実施形態では略矩形の平坦な面で構成される。ステージ11は、支持面11a上に基板Sを保持するための各種チャック機構を備えていてもよい。 The stage 11 is installed on the base unit 10 so as to be movable in the Y-axis direction. The stage 11 has a support surface 11a supported by the substrate S. The support surface 11a belongs to planes (XY plane) parallel to the X-axis direction and the Y-axis direction, respectively, and is configured by a substantially rectangular flat surface in the present embodiment. The stage 11 may include various chuck mechanisms for holding the substrate S on the support surface 11a.
 インクジェット塗布装置1は、ステージ11の支持面11aを所定温度以下に冷却するための冷却機構14を有する。冷却機構14は、例えば、ステージ11の内部に形成された冷却水の循環通路と、当該循環通路に冷却水を循環させるポンプユニットを含む。冷却機構14は、支持面11aを20℃以下、好ましくは18℃以下に維持することで、支持面11a上に支持された基板Sを当該温度に冷却する機能を有する。上記ポンプユニットは、ステージ11に一体的に取り付けられてもよいし、冷却水が通過するフレキシブル性の管部材を介してベース部10あるいはこれ以外の部位に設置されてもよい。 The inkjet coating apparatus 1 has a cooling mechanism 14 for cooling the support surface 11a of the stage 11 to a predetermined temperature or lower. The cooling mechanism 14 includes, for example, a cooling water circulation passage formed inside the stage 11 and a pump unit that circulates the cooling water through the circulation passage. The cooling mechanism 14 has a function of cooling the substrate S supported on the support surface 11 a to the temperature by maintaining the support surface 11 a at 20 ° C. or less, preferably 18 ° C. or less. The pump unit may be integrally attached to the stage 11 or may be installed on the base portion 10 or other part via a flexible pipe member through which cooling water passes.
 移動機構13は、ベース部10の上に敷設された一対のガイドレール13a,13bと、ステージ11をガイドレール13a,13bに沿って移動させるリニアモータ等の駆動源と、上記駆動源を制御する制御部等を含む。一対のガイドレール13a,13bはY軸方向に平行に延び、ステージ11はガイドレール13a,13bの上に設置される。上記駆動源はステージ11の内部に配置され、上記制御部によってガイドレールに沿ったステージ11の高精度な移動制御が行われる。 The moving mechanism 13 controls a pair of guide rails 13a and 13b laid on the base portion 10, a driving source such as a linear motor that moves the stage 11 along the guide rails 13a and 13b, and the driving source. Includes a control unit and the like. The pair of guide rails 13a and 13b extend parallel to the Y-axis direction, and the stage 11 is installed on the guide rails 13a and 13b. The drive source is arranged inside the stage 11, and the control unit performs highly accurate movement control of the stage 11 along the guide rail.
 ヘッドモジュール12は複数のインクヘッド121,122,123,124,125,126を有する。インクヘッド121~126は、ガイドレール13a,13bに沿ってY軸方向に移動するステージ11上の基板Sの表面全域に、所定のインクの液滴Dを塗布するように構成される。 The head module 12 has a plurality of ink heads 121, 122, 123, 124, 125, 126. The ink heads 121 to 126 are configured to apply a predetermined ink droplet D over the entire surface of the substrate S on the stage 11 moving in the Y-axis direction along the guide rails 13a and 13b.
 インクヘッド121~126は、ステージ11上の基板Sの表面全域をX軸方向に沿って配列された複数列の領域R1,R2,R3,R4,R5,R6で仮想的に区画したときに、上記複数列の領域R1~R6の各々に対応するように配置されている。基板Sの表面に区画された領域R1~R6はそれぞれY軸方向に平行な長手方向、X軸方向に幅方向を有する矩形状に形成され、インクヘッド121~126はこれら各領域R1~R6にインクの液滴DをX軸方向及びY軸方向にそれぞれ所定ピッチで塗布する。 When the ink heads 121 to 126 virtually divide the entire surface of the substrate S on the stage 11 into a plurality of regions R1, R2, R3, R4, R5, R6 arranged along the X-axis direction, Arranged so as to correspond to each of the plurality of regions R1 to R6. The regions R1 to R6 partitioned on the surface of the substrate S are formed in a rectangular shape having a longitudinal direction parallel to the Y-axis direction and a width direction in the X-axis direction, and the ink heads 121 to 126 are formed in the regions R1 to R6. Ink droplets D are applied at predetermined pitches in the X-axis direction and the Y-axis direction, respectively.
 上記複数列の領域R1~R6は、第1の領域群RAと、第2の領域群RBとに分けられる。本実施形態において第1の領域群RAは、複数列の領域R1~R6のうち一列おきに選択された複数の領域R1,R3,R5で構成され、第2の領域群RBは、複数列の領域R1~R6のうち残余の複数の領域R2、R3,R5で構成される。 The plurality of regions R1 to R6 are divided into a first region group RA and a second region group RB. In the present embodiment, the first region group RA is composed of a plurality of regions R1, R3, R5 selected every other column from the plurality of regions R1 to R6, and the second region group RB is composed of a plurality of columns. Among the regions R1 to R6, a plurality of remaining regions R2, R3, and R5 are formed.
 第1の領域群RAは、インクヘッド121,123,125によって処理される。すなわちインクヘッド121,123,125は、第1の領域群RAを構成する領域R1,R3,R5にそれぞれ液滴Dを塗布する。一方、第2の領域群RBは、インクヘッド122,124,126によって処理される。すなわちインクヘッド122,124,126は、第2の領域群RBを構成する領域R2,R4,R6にそれぞれ液滴Dを塗布する。 The first area group RA is processed by the ink heads 121, 123, and 125. That is, the ink heads 121, 123, and 125 apply the droplets D to the regions R1, R3, and R5 that constitute the first region group RA, respectively. On the other hand, the second region group RB is processed by the ink heads 122, 124 and 126. That is, the ink heads 122, 124, and 126 apply the droplets D to the regions R2, R4, and R6 constituting the second region group RB, respectively.
 インクヘッド121,123,125は、第1のヘッド群12Aを構成する。第1のヘッド群12Aは、支持フレーム120Aを介してベース部10の直上位置に設置され、インクヘッド121,123,125がそれぞれ基板S上の第1の領域群RA(R1,R3,R5)に対向するように位置決め配置されている。一方、インクヘッド122,124,126は、第2のヘッド群12Bを構成する。第2のヘッド群12Bは、支持フレーム120Bを介してベース部10の直上位置に設置され、インクヘッド122,124,126がそれぞれ基板S上の第2の領域群RB(R2,R4,R6)に対向するように位置決め配置されている。 The ink heads 121, 123, and 125 constitute a first head group 12A. The first head group 12A is installed at a position directly above the base portion 10 via the support frame 120A, and the ink heads 121, 123, 125 are respectively in the first area group RA (R1, R3, R5) on the substrate S. Are positioned so as to face each other. On the other hand, the ink heads 122, 124, and 126 constitute the second head group 12B. The second head group 12B is installed at a position directly above the base portion 10 via the support frame 120B, and the ink heads 122, 124, 126 are respectively second region groups RB (R2, R4, R6) on the substrate S. Are positioned so as to face each other.
 ヘッドモジュール12は、インクヘッド121~126をそれぞれZ軸まわりに回動させることが可能な複数の回転機構部M(調整機構)を有する。これら回転機構部Mは、支持フレーム120A,120Bにそれぞれ設けられ、インクヘッド121~126を各々個別にZ軸まわりに所定角度範囲にわたって回転させることが可能に構成されている。これら回転機構部Mは、コントローラ15によって制御される。 The head module 12 has a plurality of rotation mechanism units M (adjustment mechanisms) that can rotate the ink heads 121 to 126 about the Z axis, respectively. These rotation mechanisms M are provided on the support frames 120A and 120B, respectively, and are configured to be able to individually rotate the ink heads 121 to 126 over a predetermined angular range around the Z axis. These rotation mechanisms M are controlled by the controller 15.
 コントローラ15は、典型的にはCPUや各種メモリを含むコンピュータで構成される。コントローラ15は、ヘッドモジュール12、移動機構13、冷却機構14等の各種機構部の駆動を制御する。コントローラ15は、ベース部10に設置されるが、ベース部10とは異なる位置に設置されてもよい。 The controller 15 is typically composed of a computer including a CPU and various memories. The controller 15 controls driving of various mechanisms such as the head module 12, the moving mechanism 13, and the cooling mechanism 14. The controller 15 is installed in the base unit 10, but may be installed in a position different from the base unit 10.
 各インクヘッド121~126は、複数の液滴吐出ノズルが形成されたインクの吐出面を有する。図3は、インクヘッド121のインク吐出面121sを示す要部の拡大図である。インク吐出面121sは、略長方形状を有し、その長手方向に沿って複数の液滴吐出ノズルNが所定ピッチp0で形成されている。各々の液滴吐出ノズルNは、図示しないインクタンクに接続されており、各々の液滴吐出ノズルNには所定量のインクを吐出するための圧電駆動部Vが配置されている。インク吐出面121sは、その直下を通過する基板Sの表面に対して所定の距離を介して対向するように配置される。 Each of the ink heads 121 to 126 has an ink ejection surface on which a plurality of droplet ejection nozzles are formed. FIG. 3 is an enlarged view of a main part showing the ink discharge surface 121 s of the ink head 121. The ink discharge surface 121s has a substantially rectangular shape, and a plurality of droplet discharge nozzles N are formed at a predetermined pitch p0 along the longitudinal direction thereof. Each droplet discharge nozzle N is connected to an ink tank (not shown), and each droplet discharge nozzle N is provided with a piezoelectric drive unit V for discharging a predetermined amount of ink. The ink discharge surface 121s is disposed so as to face the surface of the substrate S that passes immediately below the ink discharge surface through a predetermined distance.
 回転機構部Mは、インクヘッド121をZ軸まわりに回転させることで、X軸方向に沿った液滴の吐出ピッチを調整する。例えば図3(A)は、X軸に対してZ軸まわりに角度θ1だけインクヘッド121を傾けたときのX軸方向に沿った液滴の吐出ピッチがp0からp1に変換される様子を示し、図3(B)は、X軸に対してZ軸まわりに角度θ2(θ2>θ1)だけインクヘッド121を傾けたときのX軸方向に沿った液滴の吐出ピッチがp0からp2(p2<p1)に変換される様子を示している。このようにインクヘッド121の回動角度によってX軸方向に沿った液滴の吐出ピッチを連続的に変化させることができる。 The rotation mechanism M adjusts the droplet discharge pitch along the X-axis direction by rotating the ink head 121 around the Z-axis. For example, FIG. 3A shows a state in which the droplet discharge pitch along the X-axis direction is converted from p0 to p1 when the ink head 121 is tilted by an angle θ1 around the Z-axis with respect to the X-axis. In FIG. 3B, the droplet discharge pitch along the X-axis direction when the ink head 121 is inclined by the angle θ2 (θ2> θ1) around the Z-axis with respect to the X-axis is from p0 to p2 (p2). It shows how it is converted into <p1). In this way, the droplet discharge pitch along the X-axis direction can be continuously changed according to the rotation angle of the ink head 121.
 インクヘッド122~126もインクヘッド121と同様に構成される。各インクヘッド121~126のX軸方向に沿った液滴の吐出ピッチは同一に設定される。X軸方向に沿った液滴の吐出ピッチは、基板S上に塗布される液滴の種類や工程に応じて適宜調整される。 The ink heads 122 to 126 are configured in the same manner as the ink head 121. The ink droplets 121 to 126 are set to have the same droplet discharge pitch along the X-axis direction. The droplet discharge pitch along the X-axis direction is appropriately adjusted according to the type and process of the droplet applied onto the substrate S.
 第1のヘッド群12Aを構成するインクヘッド121,123,125は、これらの長手方向に沿って同一の直線上に配列されている。同様に、第2のヘッド群12Bを構成するインクヘッド122,124,126は、これらの長手方向に沿って同一の直線上に配列されている。これに代えて、第1及び第2のヘッド群12A,12Bを構成する各々のインクヘッドは、X軸方向に沿って配列されてもよい。 The ink heads 121, 123, and 125 constituting the first head group 12A are arranged on the same straight line along their longitudinal directions. Similarly, the ink heads 122, 124, and 126 that constitute the second head group 12B are arranged on the same straight line along the longitudinal direction thereof. Instead of this, the respective ink heads constituting the first and second head groups 12A and 12B may be arranged along the X-axis direction.
 第2のヘッド群12Bは、第1のヘッド群12Aよりも基板Sの移動方向(Y軸方向)に関してオフセット(離間)した位置に配置されている。このようにインクヘッド121~126が基板S上の全領域R1~R6に対応して配置されることで、Y軸方向への基板Sの一回の移動操作で、基板Sの表面全域にインクの液滴を塗布することが可能となる。これにより、基板Sに対する液滴塗布工程の効率が高まり、生産性を向上させることができる。 The second head group 12B is arranged at a position offset (separated) from the first head group 12A in the moving direction (Y-axis direction) of the substrate S. As described above, the ink heads 121 to 126 are arranged corresponding to all the regions R1 to R6 on the substrate S, so that the ink can be spread over the entire surface of the substrate S by one movement operation of the substrate S in the Y axis direction. It is possible to apply the droplets. Thereby, the efficiency of the droplet application process for the substrate S is increased, and the productivity can be improved.
 図4は、ヘッドモジュール12によって基板Sの表面に液滴を塗布する様子を示す概略平面図である。基板Sはヘッドモジュール12の直下をY軸方向に沿って矢印Aで示す方向に所定速度で移動する。基板Sの表面には、その始端S1から終端S2に向かってヘッドモジュール12から吐出される液滴Dが塗布される。 FIG. 4 is a schematic plan view showing a state in which droplets are applied to the surface of the substrate S by the head module 12. The substrate S moves at a predetermined speed in the direction indicated by the arrow A along the Y-axis direction directly below the head module 12. On the surface of the substrate S, droplets D ejected from the head module 12 are applied from the start end S1 toward the end S2.
 液滴Dは、X軸方向及びY軸方向に一定のピッチpx,pyで塗布される。ピッチpxは、回転機構部Mによるインクヘッド121~126の回転角度で調整され、ピッチpyは、インクヘッド121~126からの液滴Dの吐出タイミングで調整される。基板S上に形成される液滴層は、一回の液滴Dの吐出によって形成されてもよいし、複数回の液滴Dの吐出によって形成されてもよい。 The droplets D are applied at a constant pitch px, py in the X-axis direction and the Y-axis direction. The pitch px is adjusted by the rotation angle of the ink heads 121 to 126 by the rotation mechanism unit M, and the pitch py is adjusted by the discharge timing of the droplets D from the ink heads 121 to 126. The droplet layer formed on the substrate S may be formed by discharging the droplet D once, or may be formed by discharging the droplet D a plurality of times.
 本実施形態では上述のようにヘッドモジュール12が第1のヘッド群12Aと第2のヘッド群12Bとで構成されており、第1のヘッド群12Aが第2のヘッド群12Bよりも上流側に配置される。したがって図4に示すように、基板Sには先ず、第1のヘッド群12A(インクヘッド121,123,125)により第1の領域群RA(R1,R3,R5)へ液滴Dの吐出が開始され、その後、第2のヘッド群12B(インクヘッド122,124,126)により第2の領域群RB(R2,R4,R6)へ液滴Dの吐出が開始される。 In the present embodiment, as described above, the head module 12 is configured by the first head group 12A and the second head group 12B, and the first head group 12A is located upstream of the second head group 12B. Be placed. Therefore, as shown in FIG. 4, first, droplets D are ejected onto the substrate S by the first head group 12A (ink heads 121, 123, 125) to the first region group RA (R1, R3, R5). After that, the discharge of the droplet D to the second area group RB (R2, R4, R6) is started by the second head group 12B (ink heads 122, 124, 126).
 ここで、基板上の一つの領域に単一のインクヘッドで複数の液滴群を所定ピッチで塗布する場合、液滴群の中央側と液滴群の端部側とでは液滴の乾燥速度に差が生じやすい。これは、液滴群から揮発する溶剤成分の蒸気密度が液滴群の場所によって異なるためであり、通常では、液滴群の外方側の方が液滴群の内方側よりも乾燥が速い傾向がある。したがって液滴群の外方側に位置する液滴から乾燥が始まると、未だ乾燥が始まっていない液滴群の内方側の液滴が外方側に引き寄せられるように形状が変化しながら乾燥が始まることになる。このような乾燥ムラは液滴層の形状や高さのバラツキを招くため、品質の高い液滴塗布処理を実現することが困難となる。 Here, when a plurality of droplet groups are applied to a single area on the substrate with a single ink head at a predetermined pitch, the droplet drying speed at the center side of the droplet group and the end side of the droplet group Differences are likely to occur. This is because the vapor density of the solvent component that volatilizes from the droplet group differs depending on the location of the droplet group. Normally, the outer side of the droplet group is dried more than the inner side of the droplet group. Tend to be fast. Therefore, when drying starts from a droplet located on the outer side of the droplet group, the shape changes so that the inner droplet of the droplet group that has not yet been dried is drawn to the outer side. Will begin. Such drying unevenness causes variations in the shape and height of the droplet layer, making it difficult to realize a high-quality droplet coating process.
 そこでコントローラ15は、第1のヘッド群12Aから吐出される液滴が基板S上に着弾してから、第2のヘッド群12Bから吐出される液滴が基板S上に着弾するまでの時間が所定時間以内となるように、移動機構13を制御する。上記所定時間としては、第1の領域群RAに塗布された液滴Dの乾燥ムラが生じない適宜の時間が設定される。 Therefore, the controller 15 determines the time from when the droplets ejected from the first head group 12A land on the substrate S to when the droplets ejected from the second head group 12B land on the substrate S. The moving mechanism 13 is controlled to be within a predetermined time. As the predetermined time, an appropriate time during which the drying unevenness of the droplet D applied to the first region group RA does not occur is set.
 本実施形態では、第1の領域群RAは一列おきに選択された複数の領域R1,R3,R5で構成されているため、これら各々の領域に液滴が塗布された後、上記所定時間以内にこれらに隣接する第2の領域群RB(R2,R4,R6)に液滴が塗布される。これにより先に塗布された液滴群の外方側に位置する液滴の乾燥を遅らせることができるので、基板Sの表面全域において乾燥ムラを生じさせることなく一様な形態で液滴層を形成することができる。 In the present embodiment, since the first region group RA is composed of a plurality of regions R1, R3, R5 selected every other row, the droplets are applied to each of these regions and then within the predetermined time. The droplets are applied to the second region group RB (R2, R4, R6) adjacent to these. As a result, the drying of the droplets positioned on the outer side of the previously applied droplet group can be delayed, so that the droplet layer can be formed in a uniform form without causing uneven drying over the entire surface of the substrate S. Can be formed.
 上記所定時間は、第1のヘッド群12Aと第2のヘッド群12Bとの間のオフセット量(離間距離)H、ステージ11の移動速度等によって調整される。本実施形態では上記所定時間が10秒以内、好ましくは7秒以内となるように、ステージ11の移動が制御される。この場合、オフセット量Hを600mm以下、ステージ11の移動速度を70mm/sec以上とすることで、上記所定時間を確保することができる。 The predetermined time is adjusted by the offset amount (separation distance) H between the first head group 12A and the second head group 12B, the moving speed of the stage 11, and the like. In the present embodiment, the movement of the stage 11 is controlled so that the predetermined time is within 10 seconds, preferably within 7 seconds. In this case, the predetermined time can be secured by setting the offset amount H to 600 mm or less and the moving speed of the stage 11 to 70 mm / sec or more.
 上記所定時間はまた、液滴Dを構成するインクの種類や塗布ピッチ等によって適宜選択することができる。上記所定時間を10秒以下とすることで、有機EL層を構成するインク材料に本発明を適用した場合でも、インク層の厚みや形状のバラツキを抑制することができる。特に有機EL層は厚みによって輝度が変化するため、上記構成により基板Sの面内全域にわたって一様な輝度を有する有機EL層を形成することができる。 The predetermined time can also be appropriately selected depending on the type of ink constituting the droplet D, the coating pitch, and the like. By setting the predetermined time to 10 seconds or less, variations in the thickness and shape of the ink layer can be suppressed even when the present invention is applied to the ink material constituting the organic EL layer. In particular, since the luminance of the organic EL layer varies depending on the thickness, the organic EL layer having uniform luminance can be formed over the entire surface of the substrate S with the above-described configuration.
 また本実施形態では、ステージ11の支持面11aを所定温度以下に冷却可能な冷却機構14を備えているため、基板S上に塗布された液滴の乾燥速度を基板温度によって調整することができる。これにより基板上に塗布された液滴の乾燥ムラをより容易に抑制することができる。 In this embodiment, since the cooling mechanism 14 capable of cooling the support surface 11a of the stage 11 to a predetermined temperature or less is provided, the drying speed of the droplets applied onto the substrate S can be adjusted by the substrate temperature. . As a result, drying unevenness of the droplets applied on the substrate can be more easily suppressed.
 さらに本実施形態において、基板Sの表面全域は、一列おきに選択された複数の領域からなる第1の領域群RAと残余の第2の領域群とで区画されている。これにより、これら各領域群に対応するように配置されたヘッド群12A,12Bを構成する個々のインクヘッド121~126の大きさの制限を小さくできるとともに、これらの設置レイアウトの自由度を高めることができる。 Furthermore, in the present embodiment, the entire surface of the substrate S is partitioned by a first region group RA composed of a plurality of regions selected every other row and a remaining second region group. As a result, the size limitation of the individual ink heads 121 to 126 constituting the head groups 12A and 12B arranged so as to correspond to each of these area groups can be reduced, and the degree of freedom of the installation layout can be increased. Can do.
<第2の実施形態>
 図5は、本発明の第2の実施形態に係るインクジェット塗布装置を示す概略平面図である。以下、第1の実施形態と異なる構成について主に説明し、上述の実施形態と同様の構成については同様の符号を付しその説明を省略または簡略化する。
<Second Embodiment>
FIG. 5 is a schematic plan view showing an inkjet coating apparatus according to the second embodiment of the present invention. Hereinafter, configurations different from those of the first embodiment will be mainly described, and configurations similar to those of the above-described embodiment will be denoted by the same reference numerals, and description thereof will be omitted or simplified.
 本実施形態のインクジェット塗布装置2は、基板S上に、R(赤)、G(緑)、B(青)の有機発光材料からなる液滴層を塗布するための装置であり、第1のヘッドモジュール21と、第2のヘッドモジュール22と、第3のヘッドモジュール23とを有する。 The inkjet coating apparatus 2 of the present embodiment is an apparatus for applying a droplet layer made of organic light emitting materials of R (red), G (green), and B (blue) on a substrate S. The head module 21, the second head module 22, and the third head module 23 are included.
 第1のヘッドモジュール21は、基板Sの表面全域にR発光層を所定ピッチで塗布するように構成され、基板Sの表面全域を区画する複数列の領域(R1~R6、図4参照)に対応する複数のインクヘッドを有する。第1のヘッドモジュール21は、第1のヘッド群21Aと、第2のヘッド群21Bとを有する。第1のヘッドモジュール21は支持フレーム221を介して基台20の直上位置に設置されている。 The first head module 21 is configured to apply an R light emitting layer at a predetermined pitch over the entire surface of the substrate S, and is arranged in a plurality of regions (R1 to R6, see FIG. 4) that divide the entire surface of the substrate S. It has a plurality of corresponding ink heads. The first head module 21 has a first head group 21A and a second head group 21B. The first head module 21 is installed at a position directly above the base 20 via the support frame 221.
 第1のヘッド群21A及び第2のヘッド群21Bは、Y軸方向に関して所定距離(H)オフセットした位置に配置されており、その詳細は、上述の第1の実施形態におけるヘッドモジュール12の第1のヘッド群12A及び第2のヘッド群12Bと同一の構成を有しているため、ここでは詳細な説明は省略する。 The first head group 21A and the second head group 21B are arranged at a position offset by a predetermined distance (H) with respect to the Y-axis direction, and details thereof are the same as those of the head module 12 in the first embodiment described above. Since it has the same configuration as the first head group 12A and the second head group 12B, detailed description thereof is omitted here.
 第2のヘッドモジュール22は、基板Sの表面全域にG発光層を所定ピッチで塗布するように構成され、基板Sの表面全域を区画する複数列の領域(R1~R6)に対応する複数のインクヘッドを有する。第2のヘッドモジュール22は、第1のヘッド群22Aと、第2のヘッド群22Bとを有する。第1のヘッド群22A及び第2のヘッド群22Bは、第1のヘッドモジュール21の第1のヘッド群21A及び第2のヘッド群21Bと同一の構成を有している。第2のヘッドモジュール22は支持フレーム222を介して基台20の直上位置に設置されている。 The second head module 22 is configured to apply a G light emitting layer to the entire surface of the substrate S at a predetermined pitch, and a plurality of regions corresponding to a plurality of regions (R1 to R6) that divide the entire surface of the substrate S. It has an ink head. The second head module 22 includes a first head group 22A and a second head group 22B. The first head group 22A and the second head group 22B have the same configuration as the first head group 21A and the second head group 21B of the first head module 21. The second head module 22 is installed at a position directly above the base 20 via the support frame 222.
 第3のヘッドモジュール23は、基板Sの表面全域にB発光層を所定ピッチで塗布するように構成され、基板Sの表面全域を区画する複数列の領域(R1~R6)に対応する複数のインクヘッドを有する。第3のヘッドモジュール23は、第1のヘッド群23Aと、第2のヘッド群23Bとを有する。第1のヘッド群23A及び第2のヘッド群23Bは、
第1のヘッドモジュール21の第1のヘッド群21A及び第2のヘッド群21Bと同一の構成を有している。第3のヘッドモジュール23は支持フレーム223を介して基台20の直上位置に設置されている。
The third head module 23 is configured to apply the B light emitting layer to the entire surface of the substrate S at a predetermined pitch, and a plurality of regions corresponding to a plurality of regions (R1 to R6) defining the entire surface of the substrate S. It has an ink head. The third head module 23 includes a first head group 23A and a second head group 23B. The first head group 23A and the second head group 23B are
The first head module 21 has the same configuration as the first head group 21A and the second head group 21B. The third head module 23 is installed at a position directly above the base 20 via the support frame 223.
 第1~第3のヘッドモジュール21~23は、Y軸方向に沿って各々直列的に配置されている。これによりステージ11上の基板Sは、図5に示す位置から矢印Aで示す方向に移動しながら、第1のヘッドモジュール21によりR発光層が、第2のヘッドモジュール22によりG発光層が、そして第3のヘッドモジュール23によりB発光層が順次塗布される。 The first to third head modules 21 to 23 are arranged in series along the Y-axis direction. As a result, the substrate S on the stage 11 moves from the position shown in FIG. 5 in the direction indicated by the arrow A, while the R light emitting layer is formed by the first head module 21 and the G light emitting layer is formed by the second head module 22. Then, the B light emitting layer is sequentially applied by the third head module 23.
 以上のように本実施形態によれば、Y軸方向への基板Sの一回の移動操作のみで、基板Sの表面全域にR,G,B発光層を連続して形成することができるので、有機ELディスプレイの生産性を向上させることができる。また本実施形態においても乾燥ムラを生じさせることなく各色のEL層を形成することができるので、高画質の有機ELディスプレイを安定して製造することができる。 As described above, according to the present embodiment, the R, G, and B light emitting layers can be continuously formed over the entire surface of the substrate S by only one movement operation of the substrate S in the Y-axis direction. The productivity of the organic EL display can be improved. Also in this embodiment, since the EL layers of the respective colors can be formed without causing uneven drying, a high-quality organic EL display can be stably manufactured.
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 As mentioned above, although embodiment of this invention was described, this invention is not limited only to the above-mentioned embodiment, Of course, in the range which does not deviate from the summary of this invention, a various change can be added.
 例えば以上の実施形態では、基板Sの表面全域を区画する複数列の領域に、インクヘッドが各々1つずつ配置されるようにヘッドモジュールが構成されたが、これに代えて、基板上の各領域にインクヘッドが複数個ずつ配置されてもよい。 For example, in the above embodiment, the head module is configured such that one ink head is arranged in each of a plurality of regions defining the entire surface of the substrate S. A plurality of ink heads may be arranged in the region.
 また以上の実施形態では、基板Sの表面全域が6列の領域(R1~R6)に区画されたが、領域の数は勿論これに限られず、基板の大きさやインクヘッドの形態に応じて適宜変更することが可能である。 In the above embodiment, the entire surface of the substrate S is divided into six rows of regions (R1 to R6). However, the number of regions is not limited to this, and is appropriately determined according to the size of the substrate and the form of the ink head. It is possible to change.
 さらに以上の実施形態では、1つのヘッドモジュールを2つのヘッド群で構成したが、3つ以上のヘッド群で構成されてもよい。例えば基板Sの表面全域を区画する複数列の領域のうち、2列おきに選択された第1の領域群と、他の2列おきに選択された第2の領域群と、残余の第3の領域群とに分け、これら各領域群に対応して3つのヘッド群を配置することができる。この場合も各ヘッド群のY軸方向に沿ったオフセット量が上記H以内に設定されることで、乾燥ムラを生じさせることなく基板上に所定の液滴層を形成することができる。 In the above embodiment, one head module is composed of two head groups, but may be composed of three or more head groups. For example, among a plurality of rows that divide the entire surface of the substrate S, a first region group selected every two rows, a second region group selected every other two rows, and the remaining third The three head groups can be arranged corresponding to each of these area groups. Also in this case, the offset amount along the Y-axis direction of each head group is set within the above H, so that a predetermined droplet layer can be formed on the substrate without causing uneven drying.
 1,2…インクジェット塗布装置
 11…ステージ
 12…ヘッドモジュール
 12A…第1のヘッド群
 12B…第2のヘッド群
 13…移動機構
 14…冷却機構
 15…コントローラ
 21…第1のヘッドモジュール
 22…第2のヘッドモジュール
 23…第3のヘッドモジュール
 121,122,123,124,125,126…インクヘッド
 D…液滴
 M…回転機構部
 N…液滴吐出ノズル
 RA…第1の領域群
 RB…第2の領域群
 S…基板
DESCRIPTION OF SYMBOLS 1, 2 ... Inkjet coating device 11 ... Stage 12 ... Head module 12A ... 1st head group 12B ... 2nd head group 13 ... Movement mechanism 14 ... Cooling mechanism 15 ... Controller 21 ... 1st head module 22 ... 2nd Head module 23 ... third head module 121, 122, 123, 124, 125, 126 ... ink head D ... droplet M ... rotating mechanism N ... droplet discharge nozzle RA ... first region group RB ... second Area group S ... substrate

Claims (9)

  1.  第1の軸方向と、前記第1の軸方向に直交する第2の軸方向とにそれぞれ平行な支持面を有し、前記支持面上に基板を支持することが可能なステージと、
     前記支持面上の基板の表面全域を前記第1の軸方向に沿って配列された複数列の領域で区画したときに、前記複数列の領域のうち所定の第1の領域群にインクの液滴を塗布するように構成された第1のヘッド群と、前記第1のヘッド群に対して前記第2の軸方向に所定距離オフセットした位置に配置され、前記複数列の領域のうち残余の第2の領域群にインクの液滴を塗布するように構成された第2のヘッド群とを有する第1のインクヘッドモジュールと、
     前記ステージを前記第2の軸方向に移動させるように構成された移動機構と、
     前記第1のヘッド群からの前記液滴が前記基板上に着弾してから、前記第2のヘッド群からの前記液滴が前記基板上に着弾するまでの時間が所定時間以内となるように、前記移動機構を制御するコントローラと
     を具備するインクジェット塗布装置。
    A stage having a support surface parallel to each of a first axial direction and a second axial direction perpendicular to the first axial direction and capable of supporting a substrate on the support surface;
    When the entire surface of the substrate on the support surface is partitioned by a plurality of regions arranged along the first axial direction, an ink liquid is applied to a predetermined first region group among the plurality of regions. A first head group configured to apply droplets, and a first head group disposed at a position offset by a predetermined distance in the second axial direction with respect to the first head group; A first ink head module having a second head group configured to apply ink droplets to the second area group;
    A moving mechanism configured to move the stage in the second axial direction;
    The time from when the droplets from the first head group land on the substrate to when the droplets from the second head group land on the substrate is within a predetermined time. An ink jet coating apparatus comprising: a controller that controls the moving mechanism.
  2.  請求項1に記載のインクジェット塗布装置であって、
     前記所定時間は、10秒以内である
     インクジェット塗布装置。
    The inkjet coating apparatus according to claim 1,
    The predetermined time is within 10 seconds.
  3.  請求項1又は請求項2に記載のインクジェット塗布装置であって、
     前記ステージは、前記支持面上の基板を所定温度以下に冷却するように構成された冷却機構をさらに有する
     インクジェット塗布装置。
    The inkjet coating apparatus according to claim 1 or 2,
    The inkjet coating apparatus, wherein the stage further includes a cooling mechanism configured to cool the substrate on the support surface to a predetermined temperature or less.
  4.  請求項3に記載のインクジェット塗布装置であって、
     前記所定温度は20℃以下である
     インクジェット塗布装置。
    The inkjet coating apparatus according to claim 3,
    The said predetermined temperature is 20 degrees C or less. The inkjet coating device.
  5.  請求項1から請求項4のいずれか一項に記載のインクジェット塗布装置であって、
     前記第1の領域群は、前記複数列の領域のうち一列おきに選択された複数の領域で構成される
     インクジェット塗布装置。
    The inkjet coating apparatus according to any one of claims 1 to 4,
    The first region group is configured by a plurality of regions selected every other column from the plurality of regions.
  6.  請求項1から請求項5のいずれか一項に記載のインクジェット塗布装置であって、
     前記第1のヘッド群及び前記第2のヘッド群はそれぞれ、
     複数の液滴吐出ノズルを有する複数のインクヘッドと、
     前記複数の液滴吐出ノズルから吐出される液滴が前記基板上に前記第1の軸方向に沿って所定ピッチで着弾するように、前記複数のインクヘッドの前記基板に対する相対位置を調整可能な調整機構とを有する
     インクジェット塗布装置。
    The inkjet coating apparatus according to any one of claims 1 to 5,
    The first head group and the second head group are respectively
    A plurality of ink heads having a plurality of droplet discharge nozzles;
    The relative positions of the plurality of ink heads with respect to the substrate can be adjusted so that droplets discharged from the plurality of droplet discharge nozzles land on the substrate at a predetermined pitch along the first axial direction. An inkjet coating apparatus having an adjustment mechanism.
  7.  請求項1から請求項6のいずれか一項に記載のインクジェット塗布装置であって、
     前記インクは、有機EL(Electro-Luminescence)素子を形成するための有機EL材料を含む
     インクジェット塗布装置。
    The inkjet coating apparatus according to any one of claims 1 to 6,
    The ink includes an organic EL material for forming an organic EL (Electro-Luminescence) element.
  8.  請求項7に記載のインクジェット塗布装置であって、
     前記第2の軸方向に前記第1のヘッドモジュールと直列に配置され、前記第1のヘッドモジュールと同一の構成を有する第2のヘッドモジュールと、
     前記第2の軸方向に前記第1及び第2のヘッドモジュールと直列に配置され、前記第1のヘッドモジュールと同一の構成を有する第3のヘッドモジュールとをさらに具備し、
     前記第2のヘッドモジュールは、前記第1のヘッドモジュールから吐出される第1の有機EL材料とは異なる色の第2の有機EL材料を含むインク液滴を吐出するように構成され、
     前記第3のヘッドモジュールは、前記第1及び第2のヘッドモジュールからそれぞれ吐出される第1及び第2の有機EL材料とは異なる色の第3の有機EL材料を含むインク液滴を吐出するように構成される
     インクジェット塗布装置。
    The inkjet coating apparatus according to claim 7,
    A second head module disposed in series with the first head module in the second axial direction and having the same configuration as the first head module;
    A third head module disposed in series with the first and second head modules in the second axial direction and having the same configuration as the first head module;
    The second head module is configured to eject ink droplets containing a second organic EL material having a different color from the first organic EL material ejected from the first head module;
    The third head module ejects ink droplets containing a third organic EL material having a different color from the first and second organic EL materials ejected from the first and second head modules, respectively. Constructed as an inkjet coating device.
  9.  第1の軸方向と、前記第1の軸方向に直交する第2の軸方向とにそれぞれ平行な支持面上に基板を配置し、
     前記支持面上の基板の表面全域を、前記第1の軸方向に沿って配列された複数列の領域で区画したときに、前記複数列の領域に対応するように配置された複数列のヘッド部各々から吐出されるインクの液滴が前記基板上において前記第1の軸方向に所定ピッチで着弾するように前記複数列のヘッド部各々のノズルピッチを調整し、
     前記複数列のヘッド部に対して前記支持面を前記第2の軸方向へ相対移動させ、
     前記複数列の領域のうち一列おきに選択された第1の領域群に前記液滴を吐出し、
     前記第1の領域群にインクの液滴を吐出してから所定時間以内に、前記複数列の領域のうち残余の第2の領域群に前記液滴を吐出する
     インクジェット塗布方法。
    A substrate is disposed on a support surface parallel to each of a first axial direction and a second axial direction orthogonal to the first axial direction;
    A plurality of heads arranged so as to correspond to the plurality of regions when the entire surface of the substrate on the support surface is partitioned by the plurality of regions arranged along the first axial direction. Adjusting the nozzle pitch of each of the plurality of head portions so that ink droplets discharged from each portion land on the substrate at a predetermined pitch in the first axial direction;
    Moving the support surface relative to the plurality of head portions in the second axial direction;
    Discharging the droplets to a first region group selected every other row of the plurality of regions;
    An inkjet coating method in which the droplets are ejected to the remaining second region group of the plurality of regions within a predetermined time after the ink droplets are ejected to the first region group.
PCT/JP2012/007096 2011-11-07 2012-11-06 Inkjet application device and inkjet application method WO2013069256A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280054307.9A CN103918350A (en) 2011-11-07 2012-11-06 Inkjet application device and inkjet application method
KR1020147011336A KR20140088116A (en) 2011-11-07 2012-11-06 Inkjet application device and inkjet application method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011243822A JP2013101780A (en) 2011-11-07 2011-11-07 Ink jet application device and ink jet application method
JP2011-243822 2011-11-07

Publications (1)

Publication Number Publication Date
WO2013069256A1 true WO2013069256A1 (en) 2013-05-16

Family

ID=48289425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007096 WO2013069256A1 (en) 2011-11-07 2012-11-06 Inkjet application device and inkjet application method

Country Status (5)

Country Link
JP (1) JP2013101780A (en)
KR (1) KR20140088116A (en)
CN (1) CN103918350A (en)
TW (1) TW201334982A (en)
WO (1) WO2013069256A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10596754B2 (en) * 2016-06-03 2020-03-24 The Boeing Company Real time inspection and correction techniques for direct writing systems
KR102031631B1 (en) * 2017-12-29 2019-10-14 한국기술교육대학교 산학협력단 A slot die head for high-resolution
WO2019132104A1 (en) * 2017-12-29 2019-07-04 한국기술교육대학교 산학협력단 Slot die head for high resolution, method for manufacturing single plate for slot die head for high resolution, and method for coating slot die using slot die head for high resolution
JP6919671B2 (en) * 2019-03-25 2021-08-18 カシオ計算機株式会社 Printing equipment and printing method
JP7342727B2 (en) * 2020-02-06 2023-09-12 トヨタ車体株式会社 Coating equipment, coating method and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255335A (en) * 2003-02-27 2004-09-16 Seiko Epson Corp Method and apparatus for discharging liquid substance, manufacture method for color filter and color filter, liquid crystal display device, manufacture method for electroluminescence device, electroluminescence device, manufacture method for plasma display panel, plasma display panel, and electronic equipment
JP2008041340A (en) * 2006-08-03 2008-02-21 Canon Inc Method of manufacturing functional film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084125A (en) * 2001-07-04 2003-03-19 Seiko Epson Corp Method and device for manufacturing color filter, method and device for manufacturing liquid crystal display device, method and device for manufacturing substrate for installing el (electroluminescence) light emitting layer, method and device for manufacturing el light emitting device, method and device for film forming
JP2003159786A (en) * 2001-11-28 2003-06-03 Seiko Epson Corp Ejection method and its apparatus, electro-optic device, method and apparatus for manufacturing the device, color filter, method and apparatus for manufacturing the filter, device with substrate, and method and apparatus for manufacturing the device
JP4256147B2 (en) * 2002-11-15 2009-04-22 大日本印刷株式会社 Functional element manufacturing method and manufacturing apparatus thereof
JP2004306443A (en) * 2003-04-08 2004-11-04 Seiko Epson Corp Manufacturing method for liquid droplet discharging head, liquid droplet discharging head, and liquid droplet discharging recording device, electroluminescent substrate manufacturing apparatus, micro array manufacturing apparatus and color filter manufacturing apparatus
JP4486316B2 (en) * 2003-04-28 2010-06-23 大日本印刷株式会社 Functional element manufacturing method and manufacturing apparatus thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255335A (en) * 2003-02-27 2004-09-16 Seiko Epson Corp Method and apparatus for discharging liquid substance, manufacture method for color filter and color filter, liquid crystal display device, manufacture method for electroluminescence device, electroluminescence device, manufacture method for plasma display panel, plasma display panel, and electronic equipment
JP2008041340A (en) * 2006-08-03 2008-02-21 Canon Inc Method of manufacturing functional film

Also Published As

Publication number Publication date
TW201334982A (en) 2013-09-01
KR20140088116A (en) 2014-07-09
JP2013101780A (en) 2013-05-23
CN103918350A (en) 2014-07-09

Similar Documents

Publication Publication Date Title
US7347530B2 (en) Inkjet printing of color filters
JP2008544333A (en) Inkjet printing system and method for flat panel display
WO2013069256A1 (en) Inkjet application device and inkjet application method
JP2008171001A (en) Method, apparatus and system for increasing throughput using a plurality of print heads rotatable around common axis
JP2008264608A (en) Liquid droplet coating apparatus and liquid droplet coating method
JP2016215096A (en) Ink drying preventing device
JP2007029946A (en) Droplet discharge method, electro-optical device and electronic device
JP2004031070A (en) Organic el material application device, its application method, and organic el display device
KR101496031B1 (en) Method for forming film
JP2006260779A (en) Manufacturing method of electrooptical device, droplet discharge device, electrooptical device and electronic apparatus
JP5693943B2 (en) Alignment film forming liquid coating apparatus and alignment film forming substrate manufacturing method
WO2010058718A1 (en) Oriented film material dripping method and dripping device
TWI295970B (en) Liquid droplet ejection method, head unit, liquid droplet ejection device, electro-optical device, and electronic equipment
JP2006289322A (en) Composite type ink jet head
JP2006320839A (en) Method and apparatus for discharging liquid droplet for oriented film
KR101759132B1 (en) Coating machine and coating method
TWI398358B (en) Color filter manufacturing method and device thereof
JP2007152316A (en) Inkjet coating apparatus and inkjet coating method
JP2003260389A (en) Apparatus and method for forming thin film, apparatus and method for manufacturing device, and device
JP2007136408A (en) Liquid drop delivery apparatus
JP2003276182A (en) Liquid drop ejection apparatus, method of ejecting liquid drop, device manufacturing machine, method of manufacturing device, and device
KR20230142538A (en) Droplet discharge device and liquid droplet discharge method
JP2005224725A (en) Liquid droplet discharge apparatus, maintenance method of liquid droplet discharge apparatus, electrooptical apparatus and electronic appliance
JP2009028675A (en) Thin film forming apparatus
JP2010201288A (en) Method of applying solution and device for applying solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147011336

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12847535

Country of ref document: EP

Kind code of ref document: A1