WO2013068633A2 - Methods and systems for cmos-based radio-frequency filters of mems having organized sets of elements - Google Patents

Methods and systems for cmos-based radio-frequency filters of mems having organized sets of elements Download PDF

Info

Publication number
WO2013068633A2
WO2013068633A2 PCT/ES2012/070788 ES2012070788W WO2013068633A2 WO 2013068633 A2 WO2013068633 A2 WO 2013068633A2 ES 2012070788 W ES2012070788 W ES 2012070788W WO 2013068633 A2 WO2013068633 A2 WO 2013068633A2
Authority
WO
WIPO (PCT)
Prior art keywords
layers
mems
layer
resonator
chip
Prior art date
Application number
PCT/ES2012/070788
Other languages
Spanish (es)
French (fr)
Other versions
WO2013068633A3 (en
Inventor
Josep MONTANYÀ SILVESTRE
Marc Antonio LLAMAS MOROTE
Original Assignee
Baolab Microsystems Sl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/364,149 external-priority patent/US20120194286A1/en
Application filed by Baolab Microsystems Sl filed Critical Baolab Microsystems Sl
Publication of WO2013068633A2 publication Critical patent/WO2013068633A2/en
Publication of WO2013068633A3 publication Critical patent/WO2013068633A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00222Integrating an electronic processing unit with a micromechanical structure
    • B81C1/00246Monolithic integration, i.e. micromechanical structure and electronic processing unit are integrated on the same substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/0072Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks
    • H03H3/0073Integration with other electronic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0271Resonators; ultrasonic resonators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/07Integrating an electronic processing unit with a micromechanical structure
    • B81C2203/0707Monolithic integration, i.e. the electronic processing unit is formed on or in the same substrate as the micromechanical structure
    • B81C2203/0714Forming the micromechanical structure with a CMOS process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/07Integrating an electronic processing unit with a micromechanical structure
    • B81C2203/0707Monolithic integration, i.e. the electronic processing unit is formed on or in the same substrate as the micromechanical structure
    • B81C2203/0742Interleave, i.e. simultaneously forming the micromechanical structure and the CMOS circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/07Integrating an electronic processing unit with a micromechanical structure
    • B81C2203/0707Monolithic integration, i.e. the electronic processing unit is formed on or in the same substrate as the micromechanical structure
    • B81C2203/0757Topology for facilitating the monolithic integration
    • B81C2203/0771Stacking the electronic processing unit and the micromechanical structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H2009/02283Vibrating means
    • H03H2009/02291Beams
    • H03H2009/02299Comb-like, i.e. the beam comprising a plurality of fingers or protrusions along its length
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H9/2447Beam resonators
    • H03H9/2463Clamped-clamped beam resonators

Definitions

  • An integrated circuit is a semiconductor device that has a substrate of a semiconductor material on which a series of layers have been deposited using photolithographic techniques.
  • the layers are adulterated or doped, polarized and attacked, in such a way that electrical elements (for example, resistors, capacitors or impedances) or electronic elements (for example, diodes or transistors) are produced. Subsequently, other layers that form the interconnection layer structure necessary for electrical connections are deposited.
  • a chip can include a microelectromechanical system device (MEMS) and an integrated circuit, such that the integrated circuit can control the MEMS.
  • MEMS microelectromechanical system device
  • Another technique includes manufacturing MEMS devices inside the interconnection layers of the integrated circuit, using most or all of the interconnection layers.
  • this technique leaves little space in the interconnection layers for routing to and from the electronic elements that are also in the integrated circuit. As a result, it is not possible to typically use any silicon area of the chip assigned to the MEMS device for routing, and therefore it is added to the silicon area required to manufacture the integrated circuit.
  • CMOS complementary metal-oxide-semiconductor
  • RF radiofrequency
  • the systems and methods described herein address the shortcomings of the prior art by allowing the manufacture of MEMS devices within the interconnection layers of an integrated circuit, without using most or all of the interconnection layers. .
  • the systems and methods described herein make it possible to manufacture a MEMS device within the interconnection layers of an integrated circuit, using at most two layers of conductive material.
  • RF filters using MEMS-based devices are described, which have a low manufacturing cost and are integrated into CMOS.
  • the RF filter includes an ordered set of mechanically decoupled resonator elements.
  • the RF filters are tunable and result in reduced computation, size and manufacturing cost.
  • the systems and methods described herein make possible a method of manufacturing a chip that includes a radio frequency filter based on MEMS and arranged in an integrated circuit.
  • the method includes forming electronic elements on a substrate of semiconductor material.
  • the method further includes forming a stack or stack of layers above the semiconductor material substrate. of interconnection layers including layers of conductive material separated by layers of dielectric material.
  • the method further includes forming a radiofrequency filter within the stack of interconnection layers by applying HF [hydrogen fluoride] gas to the interconnection layers.
  • the formed radio frequency filter includes a plurality of mechanically decoupled resonator elements.
  • the chip is manufactured using a CMOS procedure of 180 nm or less. In some embodiments, the chip is manufactured using a 22 nm CMOS procedure, a 32 nm CMOS procedure, a 45 nm CMOS procedure or a 65 nm CMOS procedure. In some embodiments, a portion of the radiofrequency filter is made of tungsten.
  • the radiofrequency filter includes an orderly sensor assembly of mechanically decoupled resonator elements.
  • the ordered sensor assembly is configured to function collectively as a radio frequency filter.
  • the sensor array includes between about 60 and about 200 resonator elements.
  • the sensor array is densely formed in a small area of the interconnection layers in order to reduce the frequency mismatch between the resonator elements of the sensor array.
  • the sensor array has a Q factor of 100 or higher. In some embodiments, the sensor array has a Q factor that ranges from about 5 to about 20.
  • the plurality of resonator elements are calibrated using an external clock. In some embodiments, the plurality of resonator elements are of different sizes, and each resonator element has been configured to be activated, or connected, and deactivated, or disconnected. In some embodiments, the radio frequency filter has been configured for the UMTS frequency range, for the GSM frequency range, for the LTE frequency range, the cell frequency range, the WiFi frequency range or any other proper frequency range.
  • the resonator elements are electrically connected in series. In some embodiments, the resonator elements are electrically connected in parallel. In some embodiments, the resonator elements are physically placed in a configuration corresponding to one of a line, a square and a grid or grid. In some embodiments, the chip includes a controller to adjust a voltage or electrical voltage applied to one or more resonator elements in order to adjust a resonance frequency of the radiofrequency filter.
  • the formation of a resonator element includes forming a movable bridge and at least one capacitance electrode separated from the movable bridge by a first distance, so as to form an initial gap or gap within the resonator element.
  • the method further includes forming at least one mechanical stop within the resonator element, such that the mechanical stop extends beyond the at least one capacitance electrode in a second distance.
  • the method further includes applying a drive voltage to at least one drive electrode to move the movable bridge into contact with the at least one mechanical stop, so as to form an approximately equal operating separation space. at the second distance between the movable bridge and the at least one capacitance electrode.
  • the operating separation space is less than or equal to approximately one of 1 nm, 5 nm, 10 nm, 20 nm, 50 nm and 100 nm.
  • the method further includes applying the drive voltage after the installation of the chip within an electronic consumer device.
  • the systems and methods described herein provide a chip that includes a radio frequency filter based on MEMS and arranged in an integrated circuit, in accordance with the above description. It should be appreciated, on the other hand, that the systems and methods described above may be applied to, or used in accordance with, other systems and methods set forth elsewhere in this description.
  • a chip includes a MEMS device formed within a stack or stack of interconnecting layers of an integrated circuit.
  • the stack includes, for example, six layers of conductive material, separated by six layers of dielectric material, and in it the layer upper is a layer of conductive material (sometimes referred to as the cover or cover).
  • the MEMS device is formed inside the stack of interconnecting layers by applying HF [hydrofluoric acid] gas to at least one layer of dielectric material located higher up in the stack. As a result, the MEMS device is released into the two layers of conductive material located higher in the stack. However, the remaining layers of dielectric material are not chemically attacked on their surface, and one or more of the remaining layers of conductive material can be used for routing the connections. Accordingly, a MEMS device can be manufactured within a stack of interconnecting layers of an integrated circuit, while still allowing the routing of connections within the lower layers of the stack, whereby the silicon area needed for the chip.
  • the described solution may also be beneficial for the manufacture of a MEMS device within a stack of interconnecting layers of an integrated circuit, when a complementary metal-oxide-semiconductor (CMOS) manufacturing process is used.
  • CMOS complementary metal-oxide-semiconductor
  • CMOS complementary metal-oxide-semiconductor
  • CMOS complementary metal-oxide-semiconductor
  • a layer of silicon dioxide dielectric material may be included as the highest layer of dielectric material in the cell, while the remaining layers may include low number k dielectric material.
  • the MEMS device can be formed within the stack of interconnecting layers by applying gaseous HF to the silicon oxide dielectric material layer, without the need for superficial chemical attack of any of the low-number dielectric material layers k. Additionally, surface chemical attack using gaseous HF can provide relatively uniform results and provide a higher production capacity when manufacturing such MEMS devices. The superficial chemical attack of a smaller number of layers during manufacturing can also reduce the By-products of surface chemical attack as well as reducing the risk of corrosion of the MEMS device, thereby improving long-term reliability.
  • any support anchors for the MEMS device may require a smaller area within the interconnection layers, because the MEMS device is partially supported by the battery layers not chemically attacked on its surface. This can also reduce the parasitic capabilities that are typically observed when a MEMS device has been manufactured within most of the interconnection layers of an integrated circuit, or all of them.
  • a MEMS device manufactured within the interconnection layers of an integrated circuit using the described solution may not have the sensitivity required for the application for which it is intended. This is because the MEMS element released or released from the layers of conductive material may not be of sufficient length or mass.
  • a MEMS accelerometer may require a certain test or critical mass for use in the environment to which it is intended.
  • an array or array of MEMS devices can be manufactured within the interconnection layers. For example, an ordered set of MEMS accelerometers having an appropriate combined test mass may be used, as an accelerometer having the required test mass.
  • multiple ordered sets of MEMS devices can be manufactured within the interconnection layers and arranged above an application-specific integrated circuit (ASIC - " application specific integrated circuit "), which can selectively control the ordered sets.
  • ASIC application-specific integrated circuit
  • multiple ordered sets are manufactured, each of which has a different type of MEMS device, and then the ASIC can switch between each ordered set, as required.
  • a reconfigurable motion detection cell can be formed that includes an ordered set of accelerometers, an ordered set of gyroscopes and an ordered set of magnetometers, manufactured within the interconnection layers of the ASIC. The ASIC of the motion detection cell can then select whether the motion detection cell is to offer the functional capability of an accelerometer, gyroscope or magnetometer.
  • a single type of MEMS device is manufactured above the ASIC. Certain devices may be initially deprecated and reserved as redundancy in case of failure of another device in use. In the event of a device failure due to problems during manufacturing, the redundant device can help improve the production capacity. In case of failure of a device during operation, the redundant device can help improve long-term reliability.
  • a hybrid motion sensor is constructed that has redundant elements as well as multiple types of ordered sets of devices, thereby offering the combined benefits of reconfiguration, redundancy and reliability.
  • the systems and methods described herein provide a method for manufacturing a chip that includes MEMS devices arranged within an integrated circuit.
  • the method includes forming electronic elements in a substrate of semiconductor material.
  • the method additionally includes forming, above the semiconductor material substrate, a stack or stack of interconnecting layers that includes layers of conductive material separated by layers of dielectric material.
  • the method further includes forming MEMS devices within the stack of interconnecting layers by applying gaseous HF to a first layer of dielectric material located in the highest position of the interconnecting layer stack, while at least one of the layers of dielectric material is allowed to remain unchecked chemically on its surface, and at least one of the layers of conductive material is enabled for routing the connections to and from the electronic elements.
  • the layer not subjected to surface chemical attack of the dielectric material is the lowest layer of the dielectric material in the cell.
  • the chip is manufactured using a CMOS method of 180 nm or less. In some embodiments, the chip is manufactured using one of a 22 nm CMOS method, a 32 nm CMOS procedure, a 45 nm CMOS procedure and a 65 nm CMOS procedure.
  • the highest layer of conductive material in the stack includes aluminum.
  • the first layer of dielectric material includes silicon dioxide.
  • the method further includes forming at least one anchor within the layers of conductive material in order to support a MEMS device or an upper layer of the plurality of layers of conductive material.
  • the MEMS devices are of the same type. In some embodiments, MEMS devices comprise a first device and a second device, and the second device is reserved as redundancy in the event of failure of the first device. In some embodiments, MEMS devices are of different types and include a magnetometer, gyroscope or accelerometer.
  • MEMS devices include an ordered detection or sensor assembly of MEMS devices that is configured to function, as a whole, as a resonator.
  • the ordered array of detection includes a first set of MEMS devices configured to function, as a whole, as a first type of device, and a second set of MEMS devices configured to function, as a whole, as a Second type of device.
  • the ordered detection set is capable of being reconfigured starting from an operation as the first type of device, up to an operation as the second type of device.
  • the ordered detection set is densely formed in a small area of the interconnection layers in order to reduce the frequency mismatch between the MEMS devices of the ordered detection set.
  • the ordered detection set has a Q factor [quality factor] of 100 or greater.
  • the ordered detection set has a Q factor that ranges from about 5 to about 20.
  • the systems and methods described herein make possible a chip that includes electronic elements formed on a substrate of semiconductor material.
  • the chip additionally includes, above the substrate of semiconductor material, a stacking or stack of interconnecting layers that includes layers of conductive material separated by layers of dielectric material.
  • MEMS devices are formed within the stack of interconnection layers by applying gaseous HF to a first layer of dielectric material located higher in the stack of interconnecting layers, while allowing at least one layer of Dielectric material not subjected to surface chemical attack remains unchecked chemically on its surface, and at least one layer of conductive material is enabled for routing connections to and from the electronic elements.
  • the layer of dielectric material not subjected to surface chemical attack is the lowest layer of dielectric material in the cell.
  • the chip is manufactured using a CMOS method of 180 nm or less. In some embodiments, the chip is manufactured using one of a 22 nm CMOS procedure, a 32 nm CMOS procedure, a 45 nm CMOS procedure and a 65 nm CMOS procedure.
  • the highest layer of conductive material in the stack includes aluminum.
  • the first layer of dielectric material includes silicon dioxide.
  • the chip additionally includes at least one anchor within the layers of conductive material to support a MEMS device or an upper layer of the plurality of layers of conductive material.
  • the MEMS devices are of the same type. In some embodiments, MEMS devices comprise a first device and a second device, and the second device is reserved as redundancy in the event of failure of the first device. In some embodiments, MEMS devices are of different types and include a magnetometer, gyroscope or accelerometer.
  • MEMS devices include an ordered detection set consisting of MEMS devices, which is configured to function, as a whole, as a resonator.
  • the ordered detection set includes a first set of MEMS devices configured to function, as a whole, as a first type of device, and a second set of MEMS devices configured to function, as a whole, as a second type from device.
  • the ordered detection set is capable of being reconfigured from an operation as the first type of device to an operation as the second type of device.
  • the ordered detection set is densely formed in a small area of interconnection layers in order to reduce the frequency mismatch between the MEMS devices of the ordered detection set.
  • the ordered detection set has a Q factor of 100 or greater. In some embodiments, the ordered detection set has a Q factor that ranges from about 5 to about 20.
  • the systems and methods described herein make possible a method of manufacturing a chip that includes MEMS devices arranged within an integrated circuit.
  • the method includes forming electronic elements on a substrate of semiconductor material.
  • the method further includes forming, above the semiconductor material substrate, a stack of interconnecting layers that includes layers of conductive material separated by layers of dielectric material.
  • the method further includes forming MEMS devices within the stack of interconnecting layers by applying gaseous HF to a first layer of dielectric material located higher in the stack of interconnecting layers, while allowing at least A layer of dielectric material remains without undergoing surface chemical attack.
  • the chip is manufactured in a CMOS process that includes a low number k dielectric material and has a lower dielectric constant than silicon dioxide.
  • the first layer of dielectric material includes silicon dioxide, and the at least one layer of dielectric material not subjected to surface chemical attack includes low number k dielectric material.
  • the CMOS procedure is a CMOS procedure of 130 nm or less.
  • the systems and methods described herein make possible a chip that includes MEMS devices arranged within an integrated circuit.
  • the chip includes electronic elements formed on a substrate of semiconductor material.
  • the chip further includes, produced above the substrate of semiconductor material, a stack of interconnecting layers that includes layers of conductive material, separated by layers of dielectric material.
  • the chip additionally includes MEMS devices formed within the stack of interconnecting layers by applying gaseous HF to a first layer of dielectric material located higher in the stack of interconnecting layers, while it allows at least one of the layers of dielectric material to remain unchecked chemically on its surface.
  • the chip is manufactured in a CMOS process that includes a low-k dielectric material having a dielectric constant less than that of silicon dioxide.
  • the first layer of dielectric material includes silicon dioxide and the at least one layer of dielectric material that has not been subjected to surface chemical attack includes a material of low number k.
  • the CMOS procedure is a CMOS procedure of 130 nm or less.
  • the systems and methods described herein make possible a MEMS resonator device that includes a resonator element, a support member fixed to the resonator element, and a calibration element arranged close to the resonator element.
  • the resonator element is calibrated based on a magnetic field generated by the passage of current through the calibration element.
  • the resonator element is formed within a first layer of conductive material, and the calibration element is formed within a second adjacent layer of conductive material.
  • the resonator element is further calibrated based on a capacity generated between the first layer of conductive material and the second layer of conductive material. The capacity helps determine a distance between the calibration element and the resonator element.
  • the MEMS resonator device additionally includes a first capacitive element disposed within the adjacent second layer of conductive material.
  • the resonator element is further calibrated based on a first capacity of the first capacitive element.
  • the first capacity helps determine a thickness of the first layer of conductive material.
  • the resonator element is further calibrated based on a second capacity of the second capacitive element.
  • the second capacity helps determine a thickness of the second layer of conductive material.
  • the calibration element includes a metal wire arranged close to the resonator element, in a parallel arrangement. In some embodiments, the calibration element includes an inductor arranged close to the resonator element. In some embodiments, a portion of the calibration element is disposed in a layer of dielectric material not subjected to surface chemical attack. In some embodiments, the resonator element includes a magnetometer, and the calibration of the resonator element includes calibrating a gain of the magnetometer.
  • the systems and methods described herein make possible a calibration method of a MEMS resonator device.
  • the MEMS resonator device includes a resonator element, formed inside a first layer of conductive material, a support member, fixed to the resonator element, and a calibration element, formed within a second, adjacent layer of conductive material. .
  • the calibration element is arranged close to the resonator element.
  • the method includes applying a current to the calibration element in order to generate a magnetic field, and measuring a capacity generated between the first layer of conductive material and the second layer of conductive material. The capacity helps determine a distance between the calibration element and the resonator element.
  • the method further includes calibrating the resonator element based on the magnetic field and the measured capacity.
  • the MEMS resonator device includes a first capacitive element disposed within the first layer of conductive material, and a second capacitive element disposed within the second, adjacent layer of conductive material.
  • the method further includes calibrating the resonator element based on a first capacity of the first capacitive element.
  • the first capacity helps determine a thickness of the first layer of conductive material.
  • the method further includes calibrating the resonator element based on a second capacity of the second capacitive element.
  • the second capacity helps determine a thickness of the second layer of conductive material.
  • the systems and methods described in The present specification makes possible a method for manufacturing a chip that includes anchors arranged within an integrated circuit.
  • the method includes forming electronic elements in a substrate of semiconductor material.
  • the method further includes forming a stack of interconnecting layers above the semiconductor material substrate.
  • the stack of interconnecting layers includes layers of conductive material separated by layers of dielectric material.
  • the method further includes forming the anchors within the interconnecting layer stack by applying gaseous HF to a first layer of dielectric material of the interconnecting layer stack, while allowing a layer of dielectric material to remain without undergoing superficial chemical attack, and a layer of conductive material is enabled for routing the connections to and from the electronic elements.
  • Each anchor includes certain portions from the layers of conductive material, separated by tracks.
  • Each anchor supports a top layer of conductive material or a MEMS device formed within the stack of interconnecting layers.
  • a portion of an anchor includes dielectric material that replaces the conductive or track material.
  • an anchor is formed according to a violation of the CMOS procedure design rules. Violation of design rules may include portions of conductive layer and tracks that are substantially similar in width and that do not overlap. Violation of the design rules may include tracks that are wider than a width according to the CMOS procedure.
  • the systems and methods described herein provide a chip that includes anchors arranged within an integrated circuit.
  • the chip includes electronic elements formed on a substrate of semiconductor material.
  • the chip additionally includes a stack of interconnection layers formed above the substrate of semiconductor material.
  • the stack of interconnecting layers includes layers of conductive material separated by layers of dielectric material.
  • the chip additionally includes the anchors formed within the stack of interconnecting layers by applying gaseous HF to a first layer of dielectric material of the interconnecting layer stack, while allowing a layer of material dielectric remains unattached chemically on its surface, and a layer of conductive material is enabled for routing the connections to and from the electronic elements.
  • Each anchor includes portions of the conductive layer from the layers of conductive material, separated by tracks.
  • Each anchor supports a top layer of conductive material or a MEMS device formed within the stack of interconnecting layers.
  • a portion of an anchor includes dielectric material that replaces the conductive or track material.
  • an anchor is formed in accordance with a violation of the CMOS procedure design rules. Violation of design rules may include portions of conductive layer and tracks that are substantially similar in width and that do not overlap. Violation of the design rules may include tracks that are wider than a width according to the CMOS procedure.
  • Figure 1 represents a cross-section of a flow stage or process sequence, in the course of manufacturing a MEMS device of an ordered assembly, in accordance with an illustrative embodiment of the invention
  • Figure 2A illustrates a cross-section of a stage of the process sequence, in the course of manufacturing a MEMS device of an ordered assembly, according to another illustrative embodiment of the invention
  • Figure 2B illustrates a cross-section of a stage of the process sequence, during the manufacture of a MEMS device of an ordered assembly, in accordance with yet another illustrative embodiment of the invention
  • Figure 3 represents a flow chart for manufacturing a chip that has a geometrically arranged set of MEMS devices arranged in integrated circuit, in accordance with an illustrative embodiment of the invention
  • Figure 4A represents a cross-section after a first set of steps of the process sequence for manufacturing a MEMS device of an ordered assembly, in accordance with an illustrative embodiment of the invention
  • Figure 4B depicts a cross-section after a second set of steps of the process sequence for manufacturing a MEMS device of an ordered assembly, in accordance with an illustrative embodiment of the invention
  • Figure 4C illustrates a cross-section after a third set of steps of the process sequence for manufacturing a MEMS device of an ordered assembly, in accordance with an illustrative embodiment of the invention
  • Figure 5A depicts a perspective view of a partially manufactured MEMS device, belonging to an ordered assembly, in accordance with an illustrative embodiment of the invention
  • Figure 5B represents a perspective view of a manufactured MEMS device, belonging to a geometrically arranged assembly, in accordance with an illustrative embodiment of the invention
  • Figure 5C shows a column anchor for supporting a cover or cover and / or a MEMS device, in accordance with an illustrative embodiment of the invention
  • Figure 5D shows a column anchor to support a cover and / or a MEMS device, according to another illustrative embodiment of the invention
  • Figure 5E shows a column anchor to support a cover and / or a MEMS device, in accordance with yet another illustrative embodiment of the invention
  • Figure 5F shows a column anchor to support a cover and / or a MEMS device, in accordance with yet another illustrative embodiment of the invention
  • Figure 5G shows a column anchor to support a cover and / or a MEMS device, in accordance with yet another illustrative embodiment of the invention
  • Figure 6A represents a schematic view of an assembly MEMS device sorting, in accordance with an illustrative embodiment of the invention.
  • Figure 6B illustrates a schematic view of an ordered and reconfigurable set of MEMS devices, in accordance with an illustrative embodiment of the invention
  • Figure 6C depicts a perspective view of an ordered set of MEMS devices, in accordance with an illustrative embodiment of the invention.
  • Figure 7A illustrates schematic view of a chip having an ordered set of MEMS devices disposed within an integrated circuit, in accordance with an illustrative embodiment of the invention
  • Figure 7B represents a schematic view of a chip having an ordered set of MEMS devices arranged within an integrated circuit, in accordance with another illustrative embodiment of the invention.
  • Figure 8A illustrates a schematic view of a resonator element, in accordance with an illustrative embodiment of the invention
  • Figure 8B depicts schematic views of several resonator elements, in accordance with an illustrative embodiment of the invention.
  • Figure 8C depicts a perspective view of a MEMS resonator device that includes a resonator element and a calibration element arranged close to the resonator element, in accordance with an illustrative embodiment of the invention.
  • Figures 9A and 9B represent schematic views, according to the prior art, of a SAW filter and a BAW filter, respectively;
  • Figures 10A and 10B represent schematic views of ordered sets of resonators for an absorption filter, in accordance with an illustrative embodiment of the invention
  • Figure 1 1 represents a schematic view of a resonator element with a narrow lateral separation space, in accordance with an illustrative embodiment of the invention
  • Figure 12 depicts a schematic view of a resonator element for an RF filter, in accordance with an illustrative embodiment of the invention. Detailed description of achievements
  • Figure 1 represents a typical cross section of a MEMS device manufactured inside the interconnection layers of an integrated circuit.
  • the MEMS 100 device is manufactured within all six metal (or conductive material) layers of the stacking or stack of interconnecting layers, including the upper metal layer 106 and the lower metal layer 108.
  • the MEMS device 100 It includes an element 102 supported by anchors 104.
  • this technique leaves no space within the interconnection layers, for example, the metal layer 108, for routing to and from electronic elements that are also present on the integrated circuit. .
  • no silicon area of the chip assigned to the MEMS 100 device can be used for routing, and therefore it is added to the silicon area needed to manufacture the integrated circuit.
  • Figure 1 may also be disadvantageous in terms of long-term reliability.
  • long metal planes and continuous tracks are used to limit the horizontal surface chemical attack and the vertical surface chemical attack, respectively, of the interconnecting layers by HF [hydrofluoric acid] gas.
  • HF hydrofluoric acid
  • this solution may allow the water molecules produced as a by-product or by-product of the surface chemical attack reaction to become trapped and cause corrosion and long-term reliability problems.
  • Figure 2A depicts an illustrative cross-section of a MEMS device 200 manufactured within two metal layers of the stack of interconnecting layers.
  • the stack includes six layers of metal separated by six layers of dielectric material, such that the top layer 206 is a layer of conductive material (sometimes referred to as the cover or envelope).
  • the MEMS device 200 is formed inside the stack of interconnecting layers by applying gaseous HF to the two layers of dielectric material 216 and 218 located higher in the stack. As a result, the MEMS device 200 is released or released into the two layers of conductive material 202 and 206 located higher in the stack. However, the remaining layers of dielectric material remain unchecked chemically on their surface, and one or more of the remaining layers of conductive material 208, 210, 212 or 214 can be used for routing the connections.
  • layers 208 and 210 include anchors 204 to support the MEMS device 200, these can still be used for routing the connections due to the small space required for anchors 204.
  • anchors 204 are implemented inside. of two layers of conductive material in order to take into account the variation (around 10%) of the height of the layers in CMOS procedures. Accordingly, a MEMS device can be manufactured within a stack of interconnecting layers of an integrated circuit, while still allowing the routing of the connections within the lower layers of the stack, thereby reducing the silicon area needed for the chip. In one example, this configuration can be used to make a resonator element for an accelerometer or gyroscope.
  • FIG. 2B depicts another illustrative cross-section of a MEMS device 250 manufactured inside two metal layers of the stack of interconnecting layers.
  • the stack includes six layers of metal separated by six layers of dielectric material, such that the top layer 256 is a layer of conductive material (sometimes referred to as a cover or cover).
  • the MEMS 250 device has been formed inside a stack of interconnecting layers by the application of gaseous HF.
  • the gaseous HF chemically attacks the surface of one of the layers of dielectric material 268, located higher in the stack.
  • the MEMS 250 device is released within the two layers of material conductor 252 and 256 located higher in the stack.
  • the remaining layers of dielectric material, including layer 266, are left unchecked chemically on their surface.
  • One or more of the remaining layers of conductive material 258, 260, 262 or 264 may be used for routing the connections.
  • the layer 258 includes anchors 254 to support the MEMS device 250, it can still be used for routing the connections due to the small space required for the anchors 254.
  • This configuration may be advantageous over the configuration of Figure 2A because the layer of dielectric material 268 not subjected to surface chemical attack provides support to the MEMS device 250. Accordingly, only small single level anchors 254 are needed to additionally support the MEMS device 250.
  • the layer of dielectric material 268 not chemically attacked on its surface supports only the MEMS 250 device, thereby eliminating the need for anchors.
  • this configuration can be used to manufacture a sensor element for a pressure sensor.
  • CMOS - complementary metal-oxide-semiconductor manufacturing processes
  • complementary metal oxide semiconductor including dielectric materials of low number k, for example, CMOS processes of 130 nm or less.
  • Such procedures can provide advantages such as a smaller die area, lower cost and lower power consumption, compared to CMOS procedures of more than 130 nm.
  • Low number k dielectric materials have dielectric constants lower than that of silicon dioxide and are typically difficult to chemically attack on their surface, compared to silicon dioxide, when, for example, gaseous HF is used.
  • a layer of silicon dioxide dielectric material may be included as the highest layer of dielectric material in the stack, while the remaining layers may include a low number material k.
  • the MEMS device can be formed within the stack of interconnecting layers by applying gaseous HF to the layer of silicon dioxide dielectric material, without the need for superficial chemical attack of any of the layers of dielectric material of low number k.
  • surface chemical attack using gaseous HF can provide relatively uniform results and provide a higher production capacity when manufacturing such MEMS devices.
  • the surface chemical attack of a smaller number of layers during manufacturing can also reduce the by-products or by-products of the surface chemical attack and reduce the risk of corrosion of the MEMS device, thereby improving long-term reliability.
  • a time-based stop can be used to limit the surface chemical attack of the interconnection layers by the gaseous HF.
  • surface chemical attack by gaseous HF can be limited by stopping the attack after a very short period of time. This solution can achieve a minimum risk of corrosion as a result of trapped water molecules that are produced as a byproduct of the surface chemical attack reaction.
  • Both Figure 2A and 2B are illustrative embodiments of this solution to form a MEMS device.
  • any support anchors for the MEMS device may require a smaller area within the interconnection layers, because the MEMS device is partially supported by the battery layers that have not been chemically attacked on its surface. This can also reduce the parasitic capabilities that are typically observed when the MEMS device is manufactured within most or all of the interconnecting layers of an integrated circuit.
  • FIG. 3 depicts an illustrative flow chart 300 for manufacturing a chip having an ordered set of MEMS devices arranged within an integrated circuit.
  • the chip is manufactured using a CMOS procedure of 180 nm or less, for example, a 22 nm CMOS procedure, a 32 nm CMOS procedure, a 45 nm CMOS procedure or a 65 nm CMOS procedure.
  • electronic elements are formed on a substrate of semiconductor material.
  • step 304 it is formed, above the material substrate semiconductor, a stack of interconnecting layers that includes layers of conductive material separated by layers of dielectric material.
  • gaseous HF is applied to the interconnection layers.
  • a first layer of dielectric material placed higher in the stack of interconnecting layers is subjected to surface chemical attack.
  • a first layer of dielectric material includes silicon dioxide.
  • a second, adjacent layer of dielectric material can also be chemically attacked on its surface. At least one of the layers of dielectric material remains unchecked chemically on its surface.
  • the unattached layer of the dielectric material is the lowest layer of the dielectric material in the stack.
  • MEMS devices are released within the stack of interconnecting layers.
  • the MEMS devices are of the same type.
  • MEMS devices comprise a first device and a second device, and the second device is reserved as redundancy in the event of failure of the first device.
  • MEMS devices are of different types, including a magnetometer, gyroscope or accelerometer.
  • One or more anchors can also be formed to support a MEMS device or an upper layer of the plurality of conductive material layers, within the conductive material layers.
  • routing connections to and from the electronic elements are still formed within at least one layer of conductive material.
  • CMOS MEMS based procedure The steps of the flow or the process sequence for the manufacture of a MEMS device of an ordered set are described below, by means of a CMOS MEMS based procedure.
  • the MEMS device may be manufactured using a CMOS MEMS-based procedure described in Patent Application Publication No. 9 2010/0295138, jointly owned herein and entitled “Methods and systems for the manufacture of MEMS CMOS devices ".
  • CMOS MEMS based procedures may include MEMS based procedures, NEMS based procedures [nanoelectromechanical system - "nano-electro-mechanical system "] as well as other suitable procedures.
  • Figure 4A represents an illustrative cross-section after a first set of steps of the process sequence for the manufacture of a MEMS device of an ordered set. The thickness of the layers has been increased.
  • the MEMS device is manufactured using a standard CMOS method.
  • the MEMS device is manufactured within a cavity formed inside interconnection layers of a CMOS chip.
  • the MEMS device is manufactured as a stand-alone MEMS device. Initially, a layer of metal is deposited.
  • the metal layer may be made, for example, of a metal alloy of AlCu.
  • a masking layer is deposited above the metal layer, and then the metal layer is chemically attacked on its surface using, for example, dry HF, to form plates 402.
  • a dielectric layer is deposited between metals (IMD - "Dielectric Inter Metal") above the plates 402, followed by a masking layer, and then the IMD layer is subjected to surface chemical attack and filled with metal to form separators or tracks 404.
  • the IMD layer includes an unadulterated or doped oxide layer.
  • Another metal layer is deposited, followed by a masking layer deposited above the metal layer, and then the metal layer is subjected to surface chemical attack using, for example, dry HF, to form plates 406
  • Another IMD layer is deposited above the plates 406, followed by a masking layer, and then the IMD layer is subjected to surface chemical attack and filled with metal to form separators or tracks 408.
  • plates 402 and 404 and spacers 406 and 408 together form anchors for the MEMS device.
  • a metal layer is deposited on the spacers 408 to form a bridge 410 of the MEMS device.
  • Another layer of IMD is deposited on the bridge 410, followed by an upper metal layer 412.
  • a masking layer is deposited on the upper metal layer 412.
  • the upper metal layer 412 is then subjected to surface chemical attack to form some through holes 414. Through holes may allow the passage of surface chemical attack agent, for example, gaseous HF, for the attack of the material located below the upper metal layer 412.
  • Figures 4B and 4C represent cross sections after a second and a third set of steps of the process sequence, respectively, to manufacture a MEMS device of an ordered set.
  • a surface chemical attack agent for example, dry HF
  • the surface chemical attack agent removes certain portions of the IMD layers by attack to release the anchors and the bridge of the MEMS device, as shown in Figure 4B.
  • Bottom plates 402 are embedded or embedded in the remaining oxide 442 of the IMD layers, in order to provide support to the MEMS device.
  • a metallization layer 428 is deposited on the upper metal layer 412 in order to seal or seal the MEMS device with respect to the outside environment, as shown in Figure 4C.
  • the MEMS device is manufactured using integrated chip technology based on MEMS, based on NEMS or based on CMOS of MEMS.
  • a MEMS device is disposed within an integrated circuit.
  • the steps of the process sequence of Figures 4A-4C are carried out in the interconnection layers of the integrated circuit. Layers are produced that form electrical and / or electronic elements on a substrate of semiconductor material. Interconnection layers are produced that include a bottom layer of conductive material and an upper layer of conductive material, separated by at least one layer of dielectric material. A portion of the MEMS device is formed within the interconnection layers by applying gaseous HF to at least one layer of dielectric material, in accordance with the steps of the process sequence that have been described in relation to Figures 4A- 4C.
  • Figure 5 represents an illustrative perspective view of a MEMS device of an ordered, partially manufactured assembly.
  • Figure 5A illustrates a resonator element 500 manufactured with a mobile bridge 502 and connected with anchors 504.
  • the anchors 504 are embedded in the oxide of the dielectric layer between metals (IMD - "Inter Metal Dielectic") 506 with in order to provide support to the resonator element.
  • the deformation or movement of the bridge 502 is limited by the elastic strength of the metal used to make the bridge 502.
  • the length of the bridge 502 ranges between about 50 ⁇ and approximately 100 ⁇ m. In some embodiments, the length of bridge 502 reaches approximately 300 ⁇ m.
  • Figure 5B depicts an illustrative perspective view of a resonator element 500 with a cover or cover 552 (element 550).
  • the separation and size of the release holes 554 may be more important for MEMS devices manufactured within at most two conductive layers of a stack of interconnecting layers. Typical manufacturing within most layers, or all layers, of the stack is aimed at excessive surface chemical attack, since there are attack blocking structures designed to prevent an unwanted surface chemical attack.
  • a time control can be used to limit the surface chemical attack.
  • the ordered set of release holes is denser in configurations similar to those of Figures 2A and 2B, compared to a configuration similar to that of Figure 1.
  • the proposed configuration may require anchors 556 to support the cover 552 and ensure that the cover 552 does not bend or damage the MEMS device.
  • a dense array of anchors 556 is required to support the cover 552.
  • anchors 558 can be used to support the MEMS device.
  • the need for these anchors can be eliminated simply by embedding the MEMS device in a dielectric layer (for example, silicon dioxide), which is illustrated in Figure 2B. Since nothing of the dielectric material has been removed by surface chemical attack, the MEMS device will be supported instead by the surrounding dielectric material.
  • Figures 5C-5G show illustrative column anchors intended to support cover 552 and / or the MEMS device.
  • the terms “column” and “anchor” can be used interchangeably for structures that support deck 552 or a MEMS device.
  • Figure 5C shows an embodiment of column 560 implemented within a stack of metal layers, which extends from an upper metal layer 568 to a metal layer 562.
  • column 560 includes portions of metal layer 562- 568 separated by tracks 570, inside a stack.
  • the tracks may have a projected area, or "footprint”, square and a fixed size in accordance with the design rules of the CMOS procedures. Additionally, the metal layer portions may have minimal overlap from the track.
  • Figure 5D shows another embodiment of column 560 in which tracks 570 have been extended or extended to have a larger projection area. This can help make the column more robust and provide better support for the 552 cover and / or the MEMS device.
  • Figure 5E shows a column 580 implemented within a stack of metal layers, which extends from an upper metal layer 588 to a metal layer 582.
  • Column 580 has an extended or extended width of portions of metal layer 582 -588 and 590 tracks, compared to column 560, which can help make the column more robust.
  • the metal layer portions and the tracks may have similar widths (Figure 5E), or the metal layer portions may have minimal overlap from the tracks in accordance with the design rules of the CMOS procedures ( Figure 5F) .
  • Figure 5G shows another embodiment of column 580 in which a portion of the cell has been replaced by dielectric material.
  • the oxide portion may have a square shape or any other suitable shape, such that the oxide is not removed by surface chemical attack.
  • the upper metal layer 588 may not have release holes in order to retain the oxide below.
  • the combination of metal and oxide can provide greater robustness, compared to other implementations.
  • Figure 6A depicts an illustrative schematic view of an ordered array 600 of MEMS devices 602.
  • a MEMS device manufactured within interconnecting layers of an integrated circuit using the described solution may not have the sensitivity required for application to which it is intended. This is because the MEMS element released from the layers of conductive material may not be of sufficient length or mass.
  • a MEMS accelerometer may require some test or critical mass to be used in the environment to which it is intended.
  • an ordered set of MEMS devices can be manufactured within the interconnection layers.
  • an ordered set of MEMS accelerometers having an appropriate combined test mass, such as an accelerometer having the required test mass can be used.
  • multiple ordered sets of MEMS can be manufactured within the interconnection layers, and arranged above an application-specific integrated circuit (ASIC - "application specific integrated circuit ") which is capable of selectively controlling the ordered sets.
  • ASIC application-specific integrated circuit
  • a single type of MEMS device is manufactured above the ASIC.
  • Certain devices may not be used initially and be reserved as redundancy in the event of failure of another device being used.
  • the redundant device can help improve production capacity.
  • the redundant device can help improve long-term reliability.
  • a metal layer is subjected to superficial chemical attack using a time-based arrest, in order to form a MEMS device having a movable plate and springs or springs attached to it.
  • the MEMS device is formed from a single metal layer, a typical movable plate can bend or sink with a surrounding electrode or oxide.
  • the movable plate can be divided into multiple smaller movable layers. Consequently, an ordered set of MEMS devices can be constructed, each of which has a movable plate and springs attached to it. Such an ordered set will have a higher stiffness as a result of the combined stiffness of the springs.
  • soft springs can be used to counteract stiffness (which are further described in relation to Figure 6C, below).
  • the geometrically arranged set of MEMS devices includes redundant elements to improve production capacity and / or long-term reliability.
  • the ordered set of MEMS devices may include a certain number of accelerometers.
  • the ordered set of MEMS devices includes sensors of different types.
  • the ordered set of MEMS devices may include a magnetometer, a gyroscope and an accelerometer.
  • the ordered set of MEMS devices may include a three-dimensional magnetometer, or 3-D, a 3-D gyroscope and a 3-D accelerometer.
  • the ordered set of MEMS devices is constructed on top of an ASIC.
  • MEMS devices include an ordered detection or sensor assembly of MEMS devices that is configured to function, as a whole, as a resonator.
  • the sensor array includes between about 60 and about 200 MEMS devices.
  • the ordered sensor assembly is densely formed in a small area of the interconnection layers in order to reduce the frequency mismatch between the MEMS devices of the ordered detection assembly.
  • the sensor array has a Q factor of 100 or higher.
  • the ordered detection set has a Q factor that ranges from about 5 to about 20.
  • the ordered set of MEMS is used to build a gyroscope.
  • a gyroscope may require the implementation of a large test or critical mass through the use of MEMS technology.
  • an ordered set of small elements or devices can be produced to achieve an effect similar to that of a large test mass.
  • Such a gyroscope may additionally require self-calibration to compensate, for example, mechanical properties that may change with temperature, aging and production. In some embodiments, they can be measured and stored values of the mass and the test or critical capabilities of the gyroscope, while other parameters, such as vertical and lateral stiffness, can be self-calibrated. In some embodiments, a self-calibration algorithm that does not require the measurement or calibration of the mass and the test capabilities can be used.
  • the ordered set of MEMS is used to construct a magnetometer.
  • the magnetometer can be made with an ordered set of small devices (or elements).
  • the orderly set of small devices can minimize the bending or bending of the structural layers.
  • the ordered set of small devices can simplify the superficial chemical attack by allowing, for example, the attack to be shorter and more controllable.
  • Such an ordered set of small devices can provide a large mass and / or aggregate area.
  • the ordered array can allow the detection of physical quantities with the appropriate sensitivity and can provide a higher reliability than that of one or more large devices.
  • the small devices of the array can be nanometric magnetometers or nanomagnetometers.
  • Figure 6B represents an illustrative schematic view of an ordered and reconfigurable set of MEMS devices.
  • multiple ordered assemblies are manufactured, each of which has a different type of MEMS device, and then the ASIC can switch between each ordered array as required.
  • a reconfigurable motion detection cell 640 may be formed that includes an ordered accelerometer assembly 644 (which includes elements 642), an ordered gyro set 648 (which includes elements 646), an ordered set 652 of compass (which includes elements 650), and an ordered 656 magnetometer assembly (which includes elements 654), manufactured within the interconnection layers of the ASIC.
  • the ASIC 658 controller of the motion detection cell can then select whether the motion detection cell should offer the functional capability of an accelerometer, gyroscope, compass or magnetometer.
  • a hybrid motion sensor is constructed that has redundant elements as well as multiple types of ordered sets of devices, so it offers the benefits combined of susceptibility of reconfiguration, redundancy and reliability.
  • Figure 6C depicts an illustrative perspective view of an ordered set 680 of MEMS devices 682.
  • Devices 682 include anchors 684.
  • a critical amount of length or length is required. mass, respectively, to achieve a given sensitivity that is desired.
  • the array 680 may include elements 682 intended to function as a single device having the intended length or mass.
  • each MEMS 682 device is made from a single layer of metal, a typical movable plate can bend or sink with an electrode or surrounding oxide. In such a case, the movable plate can be divided into multiple smaller movable plates. Consequently, an ordered set of MEMS devices can each be constructed, each of which has a movable plate and springs or springs attached to it. Said ordered assembly will have a higher rigidity as a result of the combined stiffness of the springs.
  • soft springs can be used to counteract stiffness. Such soft springs are manufactured as thin single layer springs, which are fixed to the movable plate and folded together with the movable plate. Thus, since there is no rigid portion that adds stiffness, even the combined stiffness of the soft springs may be suitable to allow the multiple movable plates to work together as a single device.
  • Q quality
  • a magnetometer or gyroscope For devices that require a large quality factor, Q (“quality"), for example, a magnetometer or gyroscope, if the elements of the ordered set are mechanically decoupled, the Q factor of the ordered set will be low due to frequency mismatch of the individual elements. The frequency mismatch may be due to the tolerances of the procedure and the different usage history of each individual element.
  • a low Q of the ordered array, despite having a high Q for the individual elements, can be advantageous in the design of accelerometers, in which there is typically a compromise between the high Q required to reduce Brownian noise and the high Q required to reduce a transient oscillation response to a step function and amplification of high frequency vibrations.
  • an ordered set of mechanically coupled elements can be a challenge in the case of a magnetometer. Since each element is formed from a single layer of metal, any mechanical coupling can electrically short-circuit the elements, and current may not flow in the desired direction.
  • the elements are joined by means of a high density silicon oxide sublayer, which will remain unchecked chemically on its surface while a low oxide density sublayer is removed in the same area, while the sublayer High density remains unchecked chemically on its surface.
  • a column can be placed just below a release hole of the upper conductive layer. The present Applicants have observed that said column can advance the gaseous HF faster vertically below the lower conductive layer, and helps to chemically attack the surface of the target low density sublayer horizontally.
  • the elements are joined by oxide of a metal-insulator-metal (MIM) layer, for example, silicon-enriched silicon nitride, which cannot be easily removed by Superficial chemical attack along with silicon nitride. This may require the addition of MIM capacitors to the ordered assembly between an upper conductive layer and a second adjacent conductive layer.
  • MIM metal-insulator-metal
  • a silicon nitride sublayer is used that is within the dielectric layer between metals of certain CMOS processes (e.g., a CMOS procedure of 130 nm or less).
  • FIG. 7A depicts an illustrative schematic view of a chip 700 having an ordered set of MEMS devices 702 disposed within an integrated circuit.
  • the illustrated chip 700 includes MEMS 702 devices that have been manufactured within the interconnection layers of the integrated circuit using most or all of the interconnection layers. As a result, this configuration leaves little space in the interconnection layers for routing to and from the electronic elements that are also found in the integrated device. Instead, it is necessary to allocate an additional silicon area for routing 704. In this configuration, any silicon area of the chip assigned for the MEMS device, and therefore, this, cannot be used for routing. It is added to the silicon area required to manufacture the integrated circuit.
  • FIG. 7B depicts another illustrative schematic view of a chip 750 having a set of MEMS devices 752 arranged within an integrated circuit.
  • Chip 750 illustrated includes MEMS 752 devices that have been manufactured within the interconnection layers of the integrated circuit by using at most two layers of conductive material. As a result, one or more of the remaining layers of conductive material are used to route connections 756, in addition to routing connections 754 existing in the chip. Accordingly, the MEMS device 752 can be manufactured within a stack of interconnecting layers of an integrated circuit, while still allowing the routing of connections 756 within the lower layers of the stack, thereby the area of silicon needed for the chip is reduced.
  • Figures 8A and 8B represent illustrative schematic views of several resonator elements.
  • a resonator element 800 is illustrated in Figure 8A.
  • the resonator element 800 includes a bridge 804 with additional cantilever side projections 802, in order to maximize the mass of the resonator element 800.
  • This type of resonator element can be used, for example, as a gyroscope.
  • Additional configurations 850 for sensor sensors are illustrated in Figure 8B inertia.
  • any 852-862 configurations may be useful, depending on the type of device considered, for example, a gyroscope, a compass, an accelerometer, a magnetometer or any other suitable device. Bridges may be preferred if the length needs to be maximized.
  • bridges can be used to construct a magnetometer in which current flow in one direction is required at all times. Since the bridges are connected in series, the current will flow only in one direction, so that they are very suitable for the construction of a magnetometer.
  • a cantilever projection type structure may be a better option.
  • Figure 8C depicts an illustrative perspective view of a MEMS resonator device 880 that includes a resonator element 882, support members 884, fixed to the resonator element 882, and a calibration element 888, arranged close to the resonator element 882.
  • the calibration element 888 includes a metal wire arranged close to the resonator element 888, in a parallel arrangement, and a portion of the calibration element 888 is disposed within a layer of dielectric material 886 not subjected to attack surface chemical
  • the calibration element includes an inductor disposed in a position close to the resonator element. The resonator element is calibrated based on a magnetic field generated by the passage of current through the calibration element.
  • the resonator element 882 has been formed within a first layer of conductive material.
  • Calibration element 888 has been formed within a second, adjacent and lower layer of conductive material.
  • the resonator element 882 is further calibrated based on a capacity generated between the first layer of conductive material and the second layer of conductive material. The capacity helps determine a distance between the calibration element and the resonator element.
  • the MEMS 880 resonator device additionally includes a first capacitive element, disposed within the first layer of conductive material, and a second capacitive element, disposed within the second, adjacent layer of conductive material.
  • the resonator element 882 is further calibrated based on a first capacity of the first capacitive element.
  • the first capacity helps determine a thickness of the first layer of conductive material.
  • the resonator element 882 is further calibrated based on a second capacity of the second capacitive element.
  • the second capacity helps determine a thickness of the second layer of conductive material.
  • the resonator element includes a magnetometer
  • the calibration of the resonator element includes calibrating a gain of the magnetometer.
  • the first source may be electronic elements.
  • the runout can be measured by deactivating or cutting the Lorentz current, so that no magnetic force is generated.
  • the second source may be the electrostatic force that adds to the magnetic force.
  • the electrostatic force is proportional to the square of the electrical voltage or voltage. If there is a DC (direct current - "DC (direct curren.)”) And an AC voltage component (alternating current - "AC (alternating curren.)”) (Vdc and Vac) at a frequency f0, the square will generate electrostatic force components at DC, f0 and 2 * f0.
  • the magnetic force will have only one component at f0 (since the Lorentz current is an AC current at f0, the resonant frequency of the resonant element). Consequently, there is a component of the electrostatic force that will add to the magnetic force by adding a runout, since this will be a term constant regardless of the magnetic force.
  • Vdc This term of the electrostatic force at fO is proportional to Vdc * Vac. Since Vac appears due to the voltage drop of the Lorentz current through the resistances of the resonator element, it cannot be eliminated. Instead, Vdc can be reduced to as close to zero as possible. For example, a Vdc of 10 ⁇ may be sufficient to have a contribution almost below the level or magnitude of noise of a magnetometer having approximately 1 ⁇ . A problem may be that the decentralization of the electronic elements is typically in the range between 20 mV and 50 mV, such that it may not be possible to control that DC voltage, at least one open loop.
  • a digital-to-analog converter can be used to test different voltages until the required voltage is reached.
  • the effect of Vdc is detected. This can be achieved by placing an electrode well below the resonator element (for an out-of-plane vibration, that is, X or Y magnetic field components), or parallel to the resonator element (for an in-plane vibration, that is, the magnetic field component Z).
  • the electrode can be electrostatically excited with an AC signal at a faith frequency, such that the bridge presents some deflection at this faith frequency.
  • the determination of the required DC voltage can be carried out by adding a DC voltage, applying two different voltages, and solving a system of equations in order to find the required voltage value.
  • RF filters for example, in cell phone applications and UMTS communications, are usually required to have losses of less than 3 dB and attenuations of more than 50 dB, with narrow passbands. This may involve a quality factor, Q, of the order of 100 in the frequency range of 0.8 GHz to 3 GHz. Due to these demand specifications, such filters cannot be implemented using passive LC filters, due to the high Q required. In other words, inductors and capacitors, especially if they are integrated in a CMOS chip, result in resistances that degrade the quality factor and / or filter insertion losses, so they are not a viable option. These filters cannot be implemented digitally because, in the transmission, they need to handle power signals, and because, in reception, the power consumption needs would be enormous, since it is not possible to reduce the signal bandwidth until the RF filter is applied.
  • SAW filters Surface Acoustic Wave - "Surface Acoustic Wave" are electromechanical devices in which electrical signals are converted into a mechanical wave into a device constructed of a piezoelectric crystal or ceramic.
  • Figure 9A represents a schematic view of such a SAW 900 filter. This wave is delayed as it propagates through the device, before being converted back into an electrical signal by additional electrodes. Delayed outputs are recombined to produce a direct analog implementation of an FIR filter (Finite Impulse Response - "Finite Impulse Response”).
  • FIR filter Finite Impulse Response - "Finite Impulse Response”
  • SAW filters are limited to frequencies up to 3 GHz.
  • BAW filters Volumetric Acoustic Wave - "Bulk Acoustic Wave”
  • BAW filters can implement ladder or grid filters, or grid or grid filters.
  • BAW filters typically operate at frequencies ranging from 2 GHz to 16 GHz and may be smaller or thinner than equivalent SAW filters.
  • An important variant of BAW filters is the FBAR (Thin Film Bulk Acoustic Resonator "). This is a device consisting of a piezoelectric material sandwiched between two electrodes and acoustically isolated from the surrounding environment. FBAR devices that use piezoelectric films with thicknesses ranging from several micrometers down to tenths of a micrometer, resonate in the frequency range of approximately 100 MHz to 10 GHz.
  • Aluminum nitride and zinc oxide are two materials common piezoelectric devices used in FBARs.
  • Figure 9B represents a schematic view of a BAW 950 filter of this type.
  • Figures 10A and 10B show an absorption filter intended for 'absorb' the power of the RF signal at certain frequencies.
  • the filter includes an ordered set of resonator elements, with a resonance frequency equal to the frequency of interest in absorbing.
  • the resonator elements are implemented as a circle in the metal line or conduction that carries the RF signal, suspended by a path in the middle of the circle. This path is connected to a metal layer located below, to which all the paths in which the circular resonators are suspended can be connected.
  • Figure 10A depicts schematic views of an ordered set 1000 of resonators for an absorption filter.
  • the resonator elements can be manufactured using a CMOS method, so that they have a relatively small size characteristic.
  • the resonator elements may have a larger size when implemented in the form of a ring resonator suspended by additional paths.
  • Figure 10B depicts schematic views of such an ordered set 1050 of resonators for an absorption filter.
  • the filters illustrated in Figures 10A and 10B are implemented in conjunction with a switching mechanism, which may be a useful structure in cell phone applications. Additionally, the switching mechanism can provide a tunable filter in the case of disc / ring resonators of different sizes. and that have resonance frequencies and with independent polarization conduits.
  • a DC voltage (direct current - "DC (direct curren.)" Is applied to the resonator elements to activate or deactivate the filter, as required. Due to procedural variations, or otherwise, it may be possible to have resonator elements with different sizes and, therefore, with different resonance frequencies throughout the array. This will make it possible to characterize a filter with any desired shape. And this shape can be adjustable if the design is such that it is possible to apply a different voltage (typically, on or off) to different resonator sizes. However, if desired, the sensor array can be densely formed within a small area of the interconnection layers in order to reduce the frequency mismatch between the resonator elements of the sensor array.
  • the systems and methods described herein make possible a filter that has a large array of mechanically decoupled resonators.
  • a filter can accommodate high resonance frequencies, while maintaining the size of the device. Since small devices have a small mechanical coupling and great resistance to movement, a large array can be constructed having these resonator elements placed in parallel. This can reduce the total resistance to movement, since this will be inversely proportional to the number of resonator elements in parallel.
  • the resonator elements are arranged in series, in a square or in any other desired configuration.
  • FIG. 5A shows a single bridge, as shown in Figure 5A (described above).
  • the bridge has been built using M5, which is a metallic layer located under the uppermost layer and which is anchored using M4 and M3 below.
  • M3 can make the design more robust against surface chemical attack and process variations (since the thickness tolerance in the CMOS procedure is important), and M3 can also be used to route and connect the different bridges.
  • Figure 5B shows the same bridge, but with the coverage and anchor columns to support the coverage.
  • the cover has a plurality of holes to perform the superficial chemical attack with vHF [vapor phase hydrofluoric acid].
  • the coverage columns go from the M6 down to the M4, so that the routing can be done using the M3 level:
  • the bridge made with M5 and the coverage made with M6 defines a capacitance.
  • many of these bridges can be placed in series. If they do not fit in a row, or to make the design more square, some rows of bridges can be placed in series and connected through thick return pipes in M3.
  • Figure 1 1 represents a schematic view of a resonator element with a narrow lateral separation space, in accordance with an illustrative embodiment of the invention.
  • a key parameter may be to reduce the separation space as much as possible.
  • the limit for this separation space is the grid resolution, for example, for nodes of 0.15 ⁇ , the limit is typically approximately 10 nm.
  • the separation space may be larger due to the fact that the cross section of a thin cantilever element is not straight and the walls have a certain angle.
  • the operating separation space may be less than or equal to about 1 nm, 5 nm, 10 nm, 20 nm, 50 nm or 100 nm.
  • each of the sub-layers of the metal stack has its own shape.
  • Figure 1 1 represents a top plan view of M5, which has the bridge and stops.
  • the drive electrodes can drive the movable bridge until it closes by contraction and is crushed against the mechanical stops, leaving a gap with the fixed electrode capacitance.
  • Many variants of this design may be possible, including different positions for capacitance drive electrodes, and other types of movable bridge, such as cantilever elements, and many others.
  • the mechanical stops can be placed in different positions.
  • the closing tension by contraction can be applied during the manufacturing process of the chip in order to adjust the operating separation space at the time of manufacture.
  • the closing voltage by contraction can be applied by the device, for example, an electronic consumer device in which the chip was installed during initial activation or ignition, initialization and / or periodically.
  • a device can detect the position of a bridge with respect to a capacitor electrode to determine if, and when, a shrinkage closing voltage has to be applied to reduce the distance to the distance of operating separation space between bridge its one or more corresponding capacitor electrodes.
  • the mechanical resonator may include electrodes that allow the formation of one or more microsoldaduras, depending on the magnitude of closing tension by contraction applied. In this way, a sufficient closing tension by contraction can be applied so that the bridge is fixed to one or more mechanical stops. Once fixed in position, with the fixed operating separation space, a closing tension by contraction is no longer required.
  • FIG. 12 depicts schematic views (labels or unlabeled) of a resonator element 1200 for an RF filter.
  • the resonator element and other filter structures have been made using tungsten, for example, side elements. Tungsten can make possible more stable devices that do not need to be calibrated or tuned often.
  • the described filters may have been designed to meet the specifications required for the implementation of UMTS filters. It is possible to achieve very low insertion losses by increasing the bias voltage and the number of elements of the ordered array. However, the tension may have a practical limit, and increasing the number of elements may reduce the attenuation in the stop band. In some embodiments, the requirements for insertion losses may be satisfied, but not the requirements for attenuation if an ordered set is used. In some embodiments, the attenuation requirements may be satisfied, but not the insertion loss requirements if a single element is used. Additionally, the separation space can be adjusted to the grid resolution limit, but, due to the non-vertical walls of the metal layers, the actual effective separation space may be smaller than expected.
  • an RF filter operates at any value between approximately 3 Hz and approximately 3 GHz.
  • an RF filter can operate in one or more frequency bands between approximately 400 MHz and approximately 4 GHz
  • these filters may include intelligent circuits to adjust the voltage in such a way that the resonant frequency of these filters that have been matched in frequency is adjusted to the desired center frequency for the filter.
  • the other option is to use variable impedances made with an ordered set of mechanically coupled resonator elements, within a modal filter architecture.
  • the modal filter can provide extremely high attenuation.
  • the modal filter may work well as long as impedance changes of the order of 20 dB are made.
  • an ordered set of mechanical resonators can be designed with a view to minimizing losses, and using the modal architecture to maximize attenuation. In this way, a very high performance, tunable and low cost UMTS filter can be implemented.
  • the filter when implemented in CMOS, the filter can be integrated with other functions, such as the transceiver and amplifiers.

Abstract

The invention provides systems and methods for producing a chip comprising a radio-frequency filter which is based on MEMS and is arranged inside an integrated circuit. In one aspect, the systems and methods provide a chip which includes electronic elements formed on a substrate made of semiconductor material. The chip additionally includes an interconnection layer stack which includes layers of conductive material which are separated by layers of dielectric material. A radio-frequency filter is formed inside the interconnection layer stack by applying gaseous HF to the interconnection layers. The radio-frequency filter includes a plurality of resonator elements which are mechanically decoupled.

Description

MÉTODOS Y SISTEMAS PARA FILTROS DE RADIOFRECUENCIA BASADOS EN CMOS DE MEMS QUE TIENEN CONJUNTOS ORDENADOS METHODS AND SYSTEMS FOR RADIOFREQUENCY FILTERS BASED ON CMOS OF MEMS THAT HAVE ORDERED SETS
DE ELEMENTOS OF ELEMENTS
Referencia cruzada a solicitudes relacionadas Cross reference to related requests
Esta Solicitud reivindica la prioridad de la Solicitud de Patente Provisional norteamericana N9 61 /558.689, depositada el 1 1 de noviembre de 201 1 , y de la Solicitud de Patente norteamericana Ns 13/364.149, depositada el 1 de febrero de 2012, todas las cuales se incorporal a la presente memoria como referencia en su totalidad. This application claims the priority of US Provisional Patent Application N /558.689 September 61, filed on 1 November 1, 201 1, and U.S. Patent Application N s 13 / 364,149, filed on February 1 , 2012, all which is incorporated herein by reference in its entirety.
Antecedentes Background
Un circuito integrado es un dispositivo semiconductor que tiene un sustrato de un material semiconductor sobre el que se han depositado una serie de capas utilizando técnicas fotolitográficas. Las capas son adulteradas o dopadas, polarizadas y atacadas, de tal manera que se producen elementos eléctricos (por ejemplo, resistencias, condensadores o impedancias) o elementos electrónicos (por ejemplo, diodos o transistores). De forma subsiguiente, se depositan otras capas que forman la estructura de capas de interconexión necesaria para las conexiones eléctricas.  An integrated circuit is a semiconductor device that has a substrate of a semiconductor material on which a series of layers have been deposited using photolithographic techniques. The layers are adulterated or doped, polarized and attacked, in such a way that electrical elements (for example, resistors, capacitors or impedances) or electronic elements (for example, diodes or transistors) are produced. Subsequently, other layers that form the interconnection layer structure necessary for electrical connections are deposited.
Un chip puede incluir un dispositivo de sistema microelectromecánico (MEMS -"micro-electro-mechanical system") y un circuito integrado, de tal manera que el circuito integrado puede controlar el MEMS. Existen diversas técnicas para fabricar un chip que incluye tanto un MEMS como un circuito integrado. Otra técnica incluye fabricar dispositivos de MEMS en el interior de las capas de interconexión del circuito integrado, utilizando la mayor parte de las capas de interconexión o todas ellas. Sin embargo, esta técnica deja poco espacio en las capas de interconexión para el encaminamiento hacia y desde los elementos electrónicos que también se encuentran en el circuito integrado. Como resultado de ello, no es posible utilizar, típicamente, para el encaminamiento cualquier área de silicio del chip asignada al dispositivo de MEMS, y, por tanto, esta se añade al área de silicio requerida para fabricar el circuito integrado.  A chip can include a microelectromechanical system device (MEMS) and an integrated circuit, such that the integrated circuit can control the MEMS. There are several techniques for manufacturing a chip that includes both a MEMS and an integrated circuit. Another technique includes manufacturing MEMS devices inside the interconnection layers of the integrated circuit, using most or all of the interconnection layers. However, this technique leaves little space in the interconnection layers for routing to and from the electronic elements that are also in the integrated circuit. As a result, it is not possible to typically use any silicon area of the chip assigned to the MEMS device for routing, and therefore it is added to the silicon area required to manufacture the integrated circuit.
De acuerdo con ello, existe la necesidad de una técnica para fabricar dispositivos de MEMS dentro de las capas de interconexión de un circuito integrado, que permita un uso más razonable del área de silicio del chip. Accordingly, there is a need for a technique to manufacture MEMS devices within the interconnection layers of an integrated circuit, which allows more reasonable use of the silicon area of the chip.
Además, existe la necesidad de filtros de radiofrecuencia (RF) de bajo coste e integrados en CMOS [metal-óxido-semiconductor complementario -"complementary metal oxide semiconductor"], con factores de calidad muy altos y pérdidas de inserción muy bajas. Las soluciones comercialmente disponibles, tales como los filtros de Onda Acústica Superficial (SAW - "Surface Acoustic Wave") y de Onda Acústica Volumétrica (BAW -"Bulk Acoustic Wave"), no están integradas en CMOS. En consecuencia, no pueden ser integradas con transmisores-receptores, o transceptores, ni con amplificadores, lo que eleva el coste de fabricación.  In addition, there is a need for low-cost radiofrequency (RF) filters integrated in CMOS [complementary metal-oxide-semiconductor ", with very high quality factors and very low insertion losses. Commercially available solutions, such as Surface Acoustic Wave (SAW - "Surface Acoustic Wave") and Volumetric Acoustic Wave (BAW - "Bulk Acoustic Wave") filters, are not integrated into CMOS. Consequently, they cannot be integrated with transceivers, or transceivers, or with amplifiers, which increases the manufacturing cost.
Sumario Summary
Los sistemas y métodos que se describen en la presente memoria acometen las deficiencias de la técnica anterior al permitir la fabricación de dispositivos de MEMS dentro de las capas de interconexión de un circuito integrado, sin utilizar la mayor parte de las capas de interconexión o todas ellas. En particular, los sistemas y métodos que aquí se describen hacen posible la fabricación de un dispositivo de MEMS dentro de las capas de interconexión de un circuito integrado, utilizando a lo sumo dos capas de material conductor.  The systems and methods described herein address the shortcomings of the prior art by allowing the manufacture of MEMS devices within the interconnection layers of an integrated circuit, without using most or all of the interconnection layers. . In particular, the systems and methods described herein make it possible to manufacture a MEMS device within the interconnection layers of an integrated circuit, using at most two layers of conductive material.
Adicionalmente, se describen filtros de RF que utilizan dispositivos basados en MEMS, los cuales tienen un coste de fabricación bajo y están integrados en CMOS. En algunas realizaciones, el filtro de RF incluye un conjunto ordenado de elementos resonadores desacoplados mecánicamente. En algunas realizaciones, los filtros de RF son sintonizables y dan como resultado un cómputo parcial, tamaño y coste de fabricación reducidos.  Additionally, RF filters using MEMS-based devices are described, which have a low manufacturing cost and are integrated into CMOS. In some embodiments, the RF filter includes an ordered set of mechanically decoupled resonator elements. In some embodiments, the RF filters are tunable and result in reduced computation, size and manufacturing cost.
En un aspecto, los sistemas y los métodos que se describen en la presente memoria hacen posible un método para fabricar un chip que incluye un filtro de radiofrecuencia basado en MEMS y dispuesto en un circuito integrado. El método incluye formar elementos electrónicos sobre un sustrato de material semiconductor. El método incluye, de manera adicional, formar por encima del sustrato de material semiconductor un apilamiento o pila de capas de capas de interconexión que incluyen capas de material conductor separadas por capas de material dieléctrico. El método incluye, adicionalmente, formar un filtro de radiofrecuencia dentro de la pila de capas de interconexión mediante la aplicación de HF [fluoruro de hidrógeno] gaseoso a las capas de interconexión. El filtro de radiofrecuencia formado incluye una pluralidad de elementos resonadores desacoplados mecánicamente. In one aspect, the systems and methods described herein make possible a method of manufacturing a chip that includes a radio frequency filter based on MEMS and arranged in an integrated circuit. The method includes forming electronic elements on a substrate of semiconductor material. The method further includes forming a stack or stack of layers above the semiconductor material substrate. of interconnection layers including layers of conductive material separated by layers of dielectric material. The method further includes forming a radiofrequency filter within the stack of interconnection layers by applying HF [hydrogen fluoride] gas to the interconnection layers. The formed radio frequency filter includes a plurality of mechanically decoupled resonator elements.
En algunas realizaciones, el chip se fabrica utilizando un procedimiento de CMOS de 180 nm o inferior. En algunas realizaciones, el chip se fabrica utilizando un procedimiento de CMOS de 22 nm, un procedimiento de CMOS de 32 nm, un procedimiento de CMOS de 45 nm o un procedimiento de CMOS de 65 nm. En algunas realizaciones, una porción del filtro de radiofrecuencia está hecha de tungsteno.  In some embodiments, the chip is manufactured using a CMOS procedure of 180 nm or less. In some embodiments, the chip is manufactured using a 22 nm CMOS procedure, a 32 nm CMOS procedure, a 45 nm CMOS procedure or a 65 nm CMOS procedure. In some embodiments, a portion of the radiofrequency filter is made of tungsten.
En algunas realizaciones, el filtro de radiofrecuencia incluye un conjunto ordenado sensor de elementos resonadores desacoplados mecánicamente. El conjunto ordenado sensor está configurado para funcionar colectivamente como un filtro de radiofrecuencia. En algunas realizaciones, el conjunto ordenado sensor incluye entre aproximadamente 60 y aproximadamente 200 elementos resonadores.  In some embodiments, the radiofrequency filter includes an orderly sensor assembly of mechanically decoupled resonator elements. The ordered sensor assembly is configured to function collectively as a radio frequency filter. In some embodiments, the sensor array includes between about 60 and about 200 resonator elements.
En algunas realizaciones, el conjunto ordenado sensor está densamente formado en una pequeña área de las capas de interconexión con el fin de reducir el desajuste de frecuencias entre los elementos resonadores del conjunto ordenado sensor. En algunas realizaciones, el conjunto ordenado sensor tiene un factor Q de 100 o superior. En algunas realizaciones, el conjunto ordenado sensor tiene un factor Q que oscila entre aproximadamente 5 y aproximadamente 20.  In some embodiments, the sensor array is densely formed in a small area of the interconnection layers in order to reduce the frequency mismatch between the resonator elements of the sensor array. In some embodiments, the sensor array has a Q factor of 100 or higher. In some embodiments, the sensor array has a Q factor that ranges from about 5 to about 20.
En algunas realizaciones, la pluralidad de elementos resonadores se calibran utilizando un reloj externo. En algunas realizaciones, la pluralidad de elementos resonadores son de diferentes tamaños, y cada elemento resonador se ha configurado para ser activado, o conectado, y desactivado, o desconectado. En algunas realizaciones, el filtro de radiofrecuencia se ha configurado para el intervalo de frecuencias de UMTS, para el intervalo de frecuencias de GSM, para el intervalo de frecuencias de LTE, el intervalo de frecuencias celular, el intervalo de frecuencias de WiFi o cualquier otro intervalo de frecuencias adecuado.  In some embodiments, the plurality of resonator elements are calibrated using an external clock. In some embodiments, the plurality of resonator elements are of different sizes, and each resonator element has been configured to be activated, or connected, and deactivated, or disconnected. In some embodiments, the radio frequency filter has been configured for the UMTS frequency range, for the GSM frequency range, for the LTE frequency range, the cell frequency range, the WiFi frequency range or any other proper frequency range.
En algunas realizaciones, los elementos resonadores están conectados eléctricamente en serie. En algunas realizaciones, los elementos resonadores están conectados eléctricamente en paralelo. En algunas realizaciones, los elementos resonadores están colocados físicamente en una configuración correspondiente a una de entre una línea, un cuadrado y una rejilla o retícula. En algunas realizaciones, el chip incluye un controlador para ajusfar un voltaje o tensión eléctrica aplicada a uno o más elementos resonadores con el fin de ajusfar una frecuencia de resonancia del filtro de radiofrecuencia. In some embodiments, the resonator elements are electrically connected in series. In some embodiments, the resonator elements are electrically connected in parallel. In some embodiments, the resonator elements are physically placed in a configuration corresponding to one of a line, a square and a grid or grid. In some embodiments, the chip includes a controller to adjust a voltage or electrical voltage applied to one or more resonator elements in order to adjust a resonance frequency of the radiofrequency filter.
En algunas realizaciones, la formación de un elemento resonador incluye formar un puente movible y al menos un electrodo de capacitancia separado del puente movible por una primera distancia, a fin de formar un espacio de separación o intersticio inicial dentro del elemento resonador. En algunas realizaciones, el método incluye, de manera adicional, formar al menos un tope mecánico dentro del elemento resonador, de tal manera que el tope mecánico se extiende más allá del al menos un electrodo de capacitancia en una segunda distancia. En algunas realizaciones, el método incluye, adicionalmente, aplicar una tensión de accionamiento a al menos un electrodo de accionamiento para desplazar el puente movible hasta ponerlo en contacto con el al menos un tope mecánico, a fin de formar un espacio de separación operativo aproximadamente igual a la segunda distancia entre el puente movible y el al menos un electrodo de capacitancia. En algunas realizaciones, el espacio de separación operativo es menor o igual que aproximadamente uno de 1 nm, 5 nm, 10 nm, 20 nm, 50 nm y 100 nm. En algunas realizaciones, el método incluye, de manera adicional, aplicar la tensión de accionamiento tras la instalación del chip dentro de un dispositivo electrónico de consumidor.  In some embodiments, the formation of a resonator element includes forming a movable bridge and at least one capacitance electrode separated from the movable bridge by a first distance, so as to form an initial gap or gap within the resonator element. In some embodiments, the method further includes forming at least one mechanical stop within the resonator element, such that the mechanical stop extends beyond the at least one capacitance electrode in a second distance. In some embodiments, the method further includes applying a drive voltage to at least one drive electrode to move the movable bridge into contact with the at least one mechanical stop, so as to form an approximately equal operating separation space. at the second distance between the movable bridge and the at least one capacitance electrode. In some embodiments, the operating separation space is less than or equal to approximately one of 1 nm, 5 nm, 10 nm, 20 nm, 50 nm and 100 nm. In some embodiments, the method further includes applying the drive voltage after the installation of the chip within an electronic consumer device.
En otro aspecto, los sistemas y métodos descritos en la presente memoria proporcionan un chip que incluye un filtro de radiofrecuencia basado en MEMS y dispuesto en un circuito integrado, de acuerdo con la descripción anterior. Debe apreciarse, por otra parte, que los sistemas y los métodos que se han descrito anteriormente pueden ser aplicados a, o utilizados de acuerdo con, otros sistemas y métodos expuestos en otros lugares de esta descripción.  In another aspect, the systems and methods described herein provide a chip that includes a radio frequency filter based on MEMS and arranged in an integrated circuit, in accordance with the above description. It should be appreciated, on the other hand, that the systems and methods described above may be applied to, or used in accordance with, other systems and methods set forth elsewhere in this description.
En algunas realizaciones, un chip incluye un dispositivo de MEMS formado dentro de un apilamiento o pila de capas de interconexión de un circuito integrado. La pila incluye, por ejemplo, seis capas de material conductor, separadas por seis capas de material dieléctrico, y en ella la capa superior es una capa de material conductor (a la que se hace referencia, en ocasiones, como la tapa o cubierta). El dispositivo de MEMS se forma en el interior de la pila de capas de interconexión mediante la aplicación de HF [ácido fluorhídrico] gaseoso a al menos una capa de material dieléctrico situada más arriba en la pila. Como resultado de ello, el dispositivo de MEMS es liberado dentro de las dos capas de material conductor situadas más arriba en la pila. Sin embargo, las capas restantes de material dieléctrico no son atacadas químicamente en su superficie, y una o más de las capas restantes de material conductor pueden ser utilizadas para el encaminamiento de las conexiones. De acuerdo con ello, un dispositivo de MEMS puede fabricarse dentro de una pila de capas de interconexión de un circuito integrado, al tiempo que se sigue permitiendo el encaminamiento de las conexiones dentro de las capas inferiores de la pila, por lo que se reduce el área de silicio necesaria para el chip. In some embodiments, a chip includes a MEMS device formed within a stack or stack of interconnecting layers of an integrated circuit. The stack includes, for example, six layers of conductive material, separated by six layers of dielectric material, and in it the layer upper is a layer of conductive material (sometimes referred to as the cover or cover). The MEMS device is formed inside the stack of interconnecting layers by applying HF [hydrofluoric acid] gas to at least one layer of dielectric material located higher up in the stack. As a result, the MEMS device is released into the two layers of conductive material located higher in the stack. However, the remaining layers of dielectric material are not chemically attacked on their surface, and one or more of the remaining layers of conductive material can be used for routing the connections. Accordingly, a MEMS device can be manufactured within a stack of interconnecting layers of an integrated circuit, while still allowing the routing of connections within the lower layers of the stack, whereby the silicon area needed for the chip.
La solución descrita puede también ser beneficiosa para la fabricación de un dispositivo de MEMS dentro de una pila de capas de interconexión de un circuito integrado, cuando se utiliza un procedimiento de fabricación de metal-óxido-semiconductor complementario (CMOS - "complementary metal oxide semiconductor") que incluye materiales dieléctricos de bajo número k, por ejemplo, procedimientos de CMOS de 130 nm o menos. Los materiales dieléctricos de bajo número k tienen una constante dieléctrica más pequeña que la del óxido de silicio y son, típicamente, difíciles de atacar químicamente en su superficie, en comparación con el dióxido de silicio, cuando se utiliza, por ejemplo, HF gaseoso. Puede incluirse una capa de material dieléctrico de dióxido de silicio como capa más alta de material dieléctrico de la pila, en tanto que las capas restantes pueden incluir material dieléctrico de bajo número k. El dispositivo de MEMS puede formarse en el seno de la pila de capas de interconexión mediante la aplicación de HF gaseoso a la capa de material dieléctrico de óxido de silicio, sin necesidad de ataque químico superficial de ninguna de las capas de material dieléctrico de bajo número k. Adicionalmente, el ataque químico superficial utilizando HF gaseoso puede proporcionar resultados relativamente uniformes y procurar una capacidad de producción más alta a la hora de fabricar tales dispositivos de MEMS. El ataque químico superficial de un número menor de capas durante la fabricación puede también reducir los subproductos del ataque químico superficial así como reducir el riesgo de corrosión del dispositivo de MEMS, con lo que se mejora la fiabilidad de largo plazo. The described solution may also be beneficial for the manufacture of a MEMS device within a stack of interconnecting layers of an integrated circuit, when a complementary metal-oxide-semiconductor (CMOS) manufacturing process is used. ") which includes dielectric materials of low number k, for example, CMOS processes of 130 nm or less. Low number k dielectric materials have a smaller dielectric constant than silicon oxide and are typically difficult to chemically attack on their surface, compared to silicon dioxide, when, for example, gaseous HF is used. A layer of silicon dioxide dielectric material may be included as the highest layer of dielectric material in the cell, while the remaining layers may include low number k dielectric material. The MEMS device can be formed within the stack of interconnecting layers by applying gaseous HF to the silicon oxide dielectric material layer, without the need for superficial chemical attack of any of the low-number dielectric material layers k. Additionally, surface chemical attack using gaseous HF can provide relatively uniform results and provide a higher production capacity when manufacturing such MEMS devices. The superficial chemical attack of a smaller number of layers during manufacturing can also reduce the By-products of surface chemical attack as well as reducing the risk of corrosion of the MEMS device, thereby improving long-term reliability.
La solución descrita también ofrece algunas otras ventajas. Por ejemplo, cualesquiera anclajes de soporte para el dispositivo de MEMS pueden requerir una menor área dentro de las capas de interconexión, debido a que el dispositivo de MEMS es parcialmente soportado por las capas de la pila no atacadas químicamente en su superficie. Esto puede reducir también las capacidades parásitas que se observan típicamente cuando un dispositivo de MEMS se ha fabricado dentro de la mayor parte de las capas de interconexión de un circuito integrado, o todas ellas.  The described solution also offers some other advantages. For example, any support anchors for the MEMS device may require a smaller area within the interconnection layers, because the MEMS device is partially supported by the battery layers not chemically attacked on its surface. This can also reduce the parasitic capabilities that are typically observed when a MEMS device has been manufactured within most of the interconnection layers of an integrated circuit, or all of them.
En ciertos casos, un dispositivo de MEMS fabricado dentro de las capas de interconexión de un circuito integrado utilizando la solución descrita, puede no tener la sensibilidad requerida para la aplicación a la que está destinado. Esto es debido a que el elemento de MEMS liberado o soltado desde las capas de material conductor puede no tener una longitud o masa suficiente. Por ejemplo, un acelerómetro de MEMS puede requerir una cierta masa de prueba o crítica para su uso en el entorno a que está destinado. A fin de conseguir una masa o longitud crítica para que el dispositivo de MEMS tenga la sensibilidad que se busca, puede fabricarse una matriz o conjunto ordenado de dispositivos de MEMS dentro de las capas de interconexión. Puede utilizarse, por ejemplo, un conjunto ordenado de acelerómetros de MEMS que tengan una masa de prueba combinada apropiada, a modo de acelerómetro que tiene la masa de prueba requerida.  In certain cases, a MEMS device manufactured within the interconnection layers of an integrated circuit using the described solution may not have the sensitivity required for the application for which it is intended. This is because the MEMS element released or released from the layers of conductive material may not be of sufficient length or mass. For example, a MEMS accelerometer may require a certain test or critical mass for use in the environment to which it is intended. In order to achieve a critical mass or length so that the MEMS device has the desired sensitivity, an array or array of MEMS devices can be manufactured within the interconnection layers. For example, an ordered set of MEMS accelerometers having an appropriate combined test mass may be used, as an accelerometer having the required test mass.
Por otra parte, debido al ahorro en área de silicio que se obtiene con la solución descrita, pueden fabricarse múltiples conjuntos ordenados de dispositivos de MEMS dentro de las capas de interconexión y disponerse por encima de un circuito integrado específico de la aplicación (ASIC -"application specific integrated circuit"), que puede controlar selectivamente los conjuntos ordenados. En algunas realizaciones, se fabrican múltiples conjuntos ordenados, cada uno de los cuales tiene un tipo diferente de dispositivo de MEMS, y, a continuación, el ASIC puede conmutar entre cada conjunto ordenado, según se requiera. Por ejemplo, puede formarse una célula de detección de movimiento reconfigurable que incluya un conjunto ordenado de acelerómetros, un conjunto ordenado de giroscopios y un conjunto ordenado de magnetómetros, fabricada dentro de las capas de interconexión del ASIC. El ASIC de la célula de detección de movimiento puede seleccionar entonces si la célula de detección de movimiento ha de ofrecer la capacidad funcional de un acelerómetro, de un giroscopio o de un magnetómetro. On the other hand, due to the saving in silicon area that is obtained with the described solution, multiple ordered sets of MEMS devices can be manufactured within the interconnection layers and arranged above an application-specific integrated circuit (ASIC - " application specific integrated circuit "), which can selectively control the ordered sets. In some embodiments, multiple ordered sets are manufactured, each of which has a different type of MEMS device, and then the ASIC can switch between each ordered set, as required. For example, a reconfigurable motion detection cell can be formed that includes an ordered set of accelerometers, an ordered set of gyroscopes and an ordered set of magnetometers, manufactured within the interconnection layers of the ASIC. The ASIC of the motion detection cell can then select whether the motion detection cell is to offer the functional capability of an accelerometer, gyroscope or magnetometer.
En algunas realizaciones, se fabrica un único tipo de dispositivo de MEMS por encima del ASIC. Ciertos dispositivos pueden estar inicialmente en desuso y reservarse como redundancia en caso de fallo de otro dispositivo en uso. En el caso de fallo de un dispositivo debido a problemas durante la fabricación, el dispositivo redundante puede ayudar a mejorar la capacidad de producción. En caso de fallo de un dispositivo durante el funcionamiento, el dispositivo redundante puede contribuir a mejorar la fiabilidad de largo plazo. En algunas realizaciones, se construye un sensor de movimiento híbrido que tiene elementos redundantes así como tipos múltiples de conjuntos ordenados de dispositivos, con lo que se ofrecen los beneficios combinados de susceptibilidad de reconfiguración, redundancia y fiabilidad.  In some embodiments, a single type of MEMS device is manufactured above the ASIC. Certain devices may be initially deprecated and reserved as redundancy in case of failure of another device in use. In the event of a device failure due to problems during manufacturing, the redundant device can help improve the production capacity. In case of failure of a device during operation, the redundant device can help improve long-term reliability. In some embodiments, a hybrid motion sensor is constructed that has redundant elements as well as multiple types of ordered sets of devices, thereby offering the combined benefits of reconfiguration, redundancy and reliability.
En un aspecto, los sistemas y métodos que se describen en la presente memoria proporcionan un método para fabricar un chip que incluye dispositivos de MEMS dispuestos dentro de un circuito integrado. El método incluye formar elementos electrónicos en un sustrato de material semiconductor. El método incluye, de manera adicional, formar, por encima del sustrato de material semiconductor, un apilamiento o pila de capas de interconexión que incluye capas de material conductor separadas por capas de material dieléctrico. El método incluye, adicionalmente, formar dispositivos de MEMS en el seno de la pila de capas de interconexión mediante la aplicación de HF gaseoso a una primera capa de material dieléctrico situada en la posición más alta de la pila de capas de interconexión, al tiempo que se permite que al menos una de las capas de material dieléctrico permanezca sin ser atacada químicamente en su superficie, y se habilita al menos una de las capas de material conductor para el encaminamiento de las conexiones hacia y desde los elementos electrónicos.  In one aspect, the systems and methods described herein provide a method for manufacturing a chip that includes MEMS devices arranged within an integrated circuit. The method includes forming electronic elements in a substrate of semiconductor material. The method additionally includes forming, above the semiconductor material substrate, a stack or stack of interconnecting layers that includes layers of conductive material separated by layers of dielectric material. The method further includes forming MEMS devices within the stack of interconnecting layers by applying gaseous HF to a first layer of dielectric material located in the highest position of the interconnecting layer stack, while at least one of the layers of dielectric material is allowed to remain unchecked chemically on its surface, and at least one of the layers of conductive material is enabled for routing the connections to and from the electronic elements.
En algunas realizaciones, la capa no sometida a ataque químico superficial del material dieléctrico es la capa más baja del material dieléctrico en la pila. En algunas realizaciones, el chip se fabrica utilizando un procedimiento de CMOS de 180 nm o menos. En algunas realizaciones, el chip se fabrica utilizando uno de entre un procedimiento de CMOS de 22 nm, un procedimiento de CMOS de 32 nm, un procedimiento de CMOS de 45 nm y un procedimiento de CMOS de 65 nm. In some embodiments, the layer not subjected to surface chemical attack of the dielectric material is the lowest layer of the dielectric material in the cell. In some embodiments, the chip is manufactured using a CMOS method of 180 nm or less. In some embodiments, the chip is manufactured using one of a 22 nm CMOS method, a 32 nm CMOS procedure, a 45 nm CMOS procedure and a 65 nm CMOS procedure.
En algunas realizaciones, la capa más alta de material conductor de la pila incluye aluminio. En algunas realizaciones, la primera capa de material dieléctrico incluye dióxido de silicio. En algunas realizaciones, el método incluye, de manera adicional, formar al menos un anclaje dentro de las capas de material conductor con el fin de soportar un dispositivo de MEMS o una capa superior de la pluralidad de capas de material conductor.  In some embodiments, the highest layer of conductive material in the stack includes aluminum. In some embodiments, the first layer of dielectric material includes silicon dioxide. In some embodiments, the method further includes forming at least one anchor within the layers of conductive material in order to support a MEMS device or an upper layer of the plurality of layers of conductive material.
En algunas realizaciones, los dispositivos de MEMS son de un mismo tipo. En algunas realizaciones, los dispositivos de MEMS comprenden un primer dispositivo y un segundo dispositivo, y el segundo dispositivo se reserva como redundancia en caso de fallo del primer dispositivo. En algunas realizaciones, los dispositivos de MEMS son de tipos diferentes e incluyen un magnetómetro, un giroscopio o un acelerómetro.  In some embodiments, the MEMS devices are of the same type. In some embodiments, MEMS devices comprise a first device and a second device, and the second device is reserved as redundancy in the event of failure of the first device. In some embodiments, MEMS devices are of different types and include a magnetometer, gyroscope or accelerometer.
En algunas realizaciones, los dispositivos de MEMS incluyen un conjunto ordenado de detección o sensor de dispositivos de MEMS que está configurado para funcionar, en su conjunto, como un resonador. En algunas realizaciones, el conjunto ordenado de detección incluye un primer conjunto de dispositivos de MEMS configurados para funcionar, en su conjunto, como un primer tipo de dispositivo, y un segundo conjunto de dispositivos de MEMS configurados para funcionar, en su conjunto, como un segundo tipo de dispositivo. El conjunto ordenado de detección es susceptible de volverse a configurar partiendo de un funcionamiento como el primer tipo de dispositivo, hasta un funcionamiento como el segundo tipo de dispositivo. En algunas realizaciones, el conjunto ordenado de detección está densamente formado en una pequeña área de las capas de interconexión con el fin de reducir el desajuste de frecuencias entre los dispositivos de MEMS del conjunto ordenado de detección. En algunas realizaciones, el conjunto ordenado de detección tiene un factor Q [factor de calidad] de 100 o mayor. En algunas realizaciones, el conjunto ordenado de detección tiene un factor Q que va de aproximadamente 5 a aproximadamente 20.  In some embodiments, MEMS devices include an ordered detection or sensor assembly of MEMS devices that is configured to function, as a whole, as a resonator. In some embodiments, the ordered array of detection includes a first set of MEMS devices configured to function, as a whole, as a first type of device, and a second set of MEMS devices configured to function, as a whole, as a Second type of device. The ordered detection set is capable of being reconfigured starting from an operation as the first type of device, up to an operation as the second type of device. In some embodiments, the ordered detection set is densely formed in a small area of the interconnection layers in order to reduce the frequency mismatch between the MEMS devices of the ordered detection set. In some embodiments, the ordered detection set has a Q factor [quality factor] of 100 or greater. In some embodiments, the ordered detection set has a Q factor that ranges from about 5 to about 20.
En otro aspecto, los sistemas y métodos que se describen en la presente memoria hacen posible un chip que incluye elementos electrónicos formados sobre un sustrato de material semiconductor. El chip incluye, de manera adicional, por encima del sustrato de material semiconductor, un apilamiento o pila de capas de interconexión que incluye capas de material conductor separadas por capas de material dieléctrico. Se forman dispositivos de MEMS dentro de la pila de capas de interconexión mediante la aplicación de HF gaseoso a una primera capa de material dieléctrico situada en posición más alta en la pila de capas de interconexión, al tiempo que se permite que al menos una capa de material dieléctrico no sometida a ataque químico superficial siga sin ser atacada químicamente en su superficie, y se habilita al menos una capa de material conductor para el encaminamiento de conexiones hacia y desde los elementos electrónicos. In another aspect, the systems and methods described herein make possible a chip that includes electronic elements formed on a substrate of semiconductor material. The chip additionally includes, above the substrate of semiconductor material, a stacking or stack of interconnecting layers that includes layers of conductive material separated by layers of dielectric material. MEMS devices are formed within the stack of interconnection layers by applying gaseous HF to a first layer of dielectric material located higher in the stack of interconnecting layers, while allowing at least one layer of Dielectric material not subjected to surface chemical attack remains unchecked chemically on its surface, and at least one layer of conductive material is enabled for routing connections to and from the electronic elements.
En algunas realizaciones, la capa de material dieléctrico no sometida a ataque químico superficial es la capa más baja del material dieléctrico en la pila. En algunas realizaciones, el chip se fabrica utilizando un procedimiento de CMOS de 180 nm o menos. En algunas realizaciones, el chip se fabrica utilizando uno de entre un procedimiento de CMOS de 22 nm, un procedimiento de CMOS de 32 nm, un procedimiento de CMOS de 45 nm y un procedimiento de CMOS de 65 nm.  In some embodiments, the layer of dielectric material not subjected to surface chemical attack is the lowest layer of dielectric material in the cell. In some embodiments, the chip is manufactured using a CMOS method of 180 nm or less. In some embodiments, the chip is manufactured using one of a 22 nm CMOS procedure, a 32 nm CMOS procedure, a 45 nm CMOS procedure and a 65 nm CMOS procedure.
En algunas realizaciones, la capa más alta de material conductor de la pila incluye aluminio. En algunas realizaciones, la primera capa de material dieléctrico incluye dióxido de silicio. En algunas realizaciones, el chip incluye, de manera adicional, al menos un anclaje dentro de las capas de material conductor para soportar un dispositivo de MEMS o una capa superior de la pluralidad de capas de material conductor.  In some embodiments, the highest layer of conductive material in the stack includes aluminum. In some embodiments, the first layer of dielectric material includes silicon dioxide. In some embodiments, the chip additionally includes at least one anchor within the layers of conductive material to support a MEMS device or an upper layer of the plurality of layers of conductive material.
En algunas realizaciones, los dispositivos de MEMS son de un mismo tipo. En algunas realizaciones, los dispositivos de MEMS comprenden un primer dispositivo y un segundo dispositivo, y el segundo dispositivo se reserva como redundancia en caso de fallo del primer dispositivo. En algunas realizaciones, los dispositivos de MEMS son de tipos diferentes e incluyen un magnetómetro, un giroscopio o un acelerómetro.  In some embodiments, the MEMS devices are of the same type. In some embodiments, MEMS devices comprise a first device and a second device, and the second device is reserved as redundancy in the event of failure of the first device. In some embodiments, MEMS devices are of different types and include a magnetometer, gyroscope or accelerometer.
En algunas realizaciones, los dispositivos de MEMS incluyen un conjunto ordenado de detección formado por dispositivos de MEMS, que está configurado para funcionar, en su conjunto, como resonador. En algunas realizaciones, el conjunto ordenado de detección incluye un primer conjunto de dispositivos de MEMS configurados para funcionar, en conjunto, como un primer tipo de dispositivo, y un segundo conjunto de dispositivos de MEMS configurados para funcionar, en conjunto, como un segundo tipo de dispositivo. El conjunto ordenado de detección es susceptible de ser reconfigurado desde un funcionamiento como el primer tipo de dispositivo hasta un funcionamiento como el segundo tipo de dispositivo. En algunas realizaciones, el conjunto ordenado de detección está densamente formado en una pequeña área de capas de interconexión con el fin de reducir el desajuste de frecuencias entre los dispositivos de MEMS del conjunto ordenado de detección. En algunas realizaciones, el conjunto ordenado de detección tiene un factor Q de 100 o mayor. En algunas realizaciones, el conjunto ordenado de detección tiene un factor Q que va de aproximadamente 5 a aproximadamente 20. In some embodiments, MEMS devices include an ordered detection set consisting of MEMS devices, which is configured to function, as a whole, as a resonator. In some embodiments, the ordered detection set includes a first set of MEMS devices configured to function, as a whole, as a first type of device, and a second set of MEMS devices configured to function, as a whole, as a second type from device. The ordered detection set is capable of being reconfigured from an operation as the first type of device to an operation as the second type of device. In some embodiments, the ordered detection set is densely formed in a small area of interconnection layers in order to reduce the frequency mismatch between the MEMS devices of the ordered detection set. In some embodiments, the ordered detection set has a Q factor of 100 or greater. In some embodiments, the ordered detection set has a Q factor that ranges from about 5 to about 20.
En aún otro aspecto, los sistemas y métodos que se describen en la presente memoria hacen posible un método para fabricar un chip que incluye dispositivos de MEMS dispuestos dentro de un circuito integrado. El método incluye formar elementos electrónicos sobre un sustrato de material semiconductor. El método incluye, de manera adicional, formar, por encima del sustrato de material semiconductor, una pila de capas de interconexión que incluye capas de material conductor separadas por capas de material dieléctrico. El método incluye, de manera adicional, formar los dispositivos de MEMS dentro de la pila de capas de interconexión aplicando HF gaseoso a una primera capa de material dieléctrico situada más arriba en la pila de capas de interconexión, al tiempo que se permite que al menos una capa de material dieléctrico permanezca sin someterse a ataque químico superficial. El chip se fabrica en un procedimiento de CMOS que incluye un material dieléctrico de bajo número k y que tiene una constante dieléctrica más baja que el dióxido de silicio. La primera capa de material dieléctrico incluye dióxido de silicio, y la al menos una capa de material dieléctrico no sometida a ataque químico superficial incluye material dieléctrico de bajo número k. En algunas realizaciones, el procedimiento de CMOS es un procedimiento de CMOS de 130 nm o menos.  In yet another aspect, the systems and methods described herein make possible a method of manufacturing a chip that includes MEMS devices arranged within an integrated circuit. The method includes forming electronic elements on a substrate of semiconductor material. The method further includes forming, above the semiconductor material substrate, a stack of interconnecting layers that includes layers of conductive material separated by layers of dielectric material. The method further includes forming MEMS devices within the stack of interconnecting layers by applying gaseous HF to a first layer of dielectric material located higher in the stack of interconnecting layers, while allowing at least A layer of dielectric material remains without undergoing surface chemical attack. The chip is manufactured in a CMOS process that includes a low number k dielectric material and has a lower dielectric constant than silicon dioxide. The first layer of dielectric material includes silicon dioxide, and the at least one layer of dielectric material not subjected to surface chemical attack includes low number k dielectric material. In some embodiments, the CMOS procedure is a CMOS procedure of 130 nm or less.
En aún otro aspecto, los sistemas y métodos que se describen en la presente memoria hacen posible un chip que incluye dispositivos de MEMS dispuestos dentro de un circuito integrado. El chip incluye elementos electrónicos formados sobre un sustrato de material semiconductor. El chip incluye, adicionalmente, producida por encima del sustrato de material semiconductor, una pila de capas de interconexión que incluye capas de material conductor, separadas por capas de material dieléctrico. El chip incluye, de manera adicional, dispositivos de MEMS formados dentro de la pila de capas de interconexión mediante la aplicación de HF gaseoso a una primera capa de material dieléctrico situada en posición más alta en la pila de capas de interconexión, al tiempo que se permite que al menos una de las capas de material dieléctrico permanezca sin ser atacada químicamente en su superficie. El chip se fabrica en un procedimiento de CMOS que incluye un material dieléctrico de bajo número k y que tiene una constante dieléctrica menor que la del dióxido de silicio. La primera capa de material dieléctrico incluye dióxido de silicio y la al menos una capa de material dieléctrico que no se ha sometido a ataque químico superficial incluye un material de bajo número k. En algunas realizaciones, el procedimiento de CMOS es un procedimiento de CMOS de 130 nm o menos. In yet another aspect, the systems and methods described herein make possible a chip that includes MEMS devices arranged within an integrated circuit. The chip includes electronic elements formed on a substrate of semiconductor material. The chip further includes, produced above the substrate of semiconductor material, a stack of interconnecting layers that includes layers of conductive material, separated by layers of dielectric material. The chip additionally includes MEMS devices formed within the stack of interconnecting layers by applying gaseous HF to a first layer of dielectric material located higher in the stack of interconnecting layers, while it allows at least one of the layers of dielectric material to remain unchecked chemically on its surface. The chip is manufactured in a CMOS process that includes a low-k dielectric material having a dielectric constant less than that of silicon dioxide. The first layer of dielectric material includes silicon dioxide and the at least one layer of dielectric material that has not been subjected to surface chemical attack includes a material of low number k. In some embodiments, the CMOS procedure is a CMOS procedure of 130 nm or less.
En aún otro aspecto, los sistemas y métodos descritos en la presente memoria hacen posible un dispositivo resonador de MEMS que incluye un elemento resonador, un miembro de soporte fijado al elemento resonador, y un elemento de calibración dispuesto próximo al elemento resonador. El elemento resonador se calibra basándose en un campo magnético generado por el paso de corriente a través del elemento de calibración.  In yet another aspect, the systems and methods described herein make possible a MEMS resonator device that includes a resonator element, a support member fixed to the resonator element, and a calibration element arranged close to the resonator element. The resonator element is calibrated based on a magnetic field generated by the passage of current through the calibration element.
En algunas realizaciones, el elemento resonador se forma en el seno de una primera capa de material conductor, y el elemento de calibración se forma en el seno de una segunda capa adyacente de material conductor. El elemento resonador se calibra, adicionalmente, basándose en una capacidad generada entre la primera capa de material conductor y la segunda capa de material conductor. La capacidad ayuda a determinar una distancia entre el elemento de calibración y el elemento resonador.  In some embodiments, the resonator element is formed within a first layer of conductive material, and the calibration element is formed within a second adjacent layer of conductive material. The resonator element is further calibrated based on a capacity generated between the first layer of conductive material and the second layer of conductive material. The capacity helps determine a distance between the calibration element and the resonator element.
En algunas realizaciones, el dispositivo resonador de MEMS incluye, de manera adicional, un primer elemento capacitivo dispuesto en el seno de la segunda capa adyacente de material conductor. El elemento resonador se calibra, adicionalmente, basándose en una primera capacidad del primer elemento capacitivo. La primera capacidad ayuda a determinar un espesor de la primera capa de material conductor. El elemento resonador se calibra, de manera adicional, basándose en una segunda capacidad del segundo elemento capacitivo. La segunda capacidad ayuda a determinar un espesor de la segunda capa de material conductor. In some embodiments, the MEMS resonator device additionally includes a first capacitive element disposed within the adjacent second layer of conductive material. The resonator element is further calibrated based on a first capacity of the first capacitive element. The first capacity helps determine a thickness of the first layer of conductive material. The resonator element is further calibrated based on a second capacity of the second capacitive element. The second capacity helps determine a thickness of the second layer of conductive material.
En algunas realizaciones, el elemento de calibración incluye un alambre de metal dispuesto próximo al elemento resonador, en una disposición en paralelo. En algunas realizaciones, el elemento de calibración incluye un inductor dispuesto próximo al elemento resonador. En algunas realizaciones, una porción del elemento de calibración se dispone en una capa de material dieléctrico no sometida a ataque químico superficial. En algunas realizaciones, el elemento resonador incluye un magnetómetro, y la calibración del elemento resonador incluye calibrar una ganancia del magnetómetro.  In some embodiments, the calibration element includes a metal wire arranged close to the resonator element, in a parallel arrangement. In some embodiments, the calibration element includes an inductor arranged close to the resonator element. In some embodiments, a portion of the calibration element is disposed in a layer of dielectric material not subjected to surface chemical attack. In some embodiments, the resonator element includes a magnetometer, and the calibration of the resonator element includes calibrating a gain of the magnetometer.
De acuerdo con aún otro aspecto, los sistemas y métodos que se describen en la presente memoria hacen posible un método de calibración de un dispositivo resonador de MEMS. El dispositivo resonador de MEMS incluye un elemento resonador, formado en el interior de una primera capa de material conductor, un miembro de soporte, fijado al elemento resonador, y un elemento de calibración, formado dentro de una segunda capa, adyacente, de material conductor. El elemento de calibración está dispuesto próximo al elemento resonador. El método incluye aplicar una corriente al elemento de calibración con el fin de generar un campo magnético, y medir una capacidad generada entre la primera capa de material conductor y la segunda capa de material conductor. La capacidad ayuda a determinar una distancia entre el elemento de calibración y el elemento resonador. El método incluye, de manera adicional, calibrar el elemento resonador basándose en el campo magnético y en la capacidad medida.  In accordance with yet another aspect, the systems and methods described herein make possible a calibration method of a MEMS resonator device. The MEMS resonator device includes a resonator element, formed inside a first layer of conductive material, a support member, fixed to the resonator element, and a calibration element, formed within a second, adjacent layer of conductive material. . The calibration element is arranged close to the resonator element. The method includes applying a current to the calibration element in order to generate a magnetic field, and measuring a capacity generated between the first layer of conductive material and the second layer of conductive material. The capacity helps determine a distance between the calibration element and the resonator element. The method further includes calibrating the resonator element based on the magnetic field and the measured capacity.
En algunas realizaciones, el dispositivo resonador de MEMS incluye un primer elemento capacitivo dispuesto dentro de la primera capa de material conductor, y un segundo elemento capacitivo dispuesto en el interior de la segunda capa, adyacente, de material conductor. El método incluye, de manera adicional, calibrar elemento resonador basándose en una primera capacidad del primer elemento capacitivo. La primera capacidad ayuda a determinar un espesor de la primera capa de material conductor. El método incluye, de manera adicional, calibrar el elemento resonador basándose en una segunda capacidad del segundo elemento capacitivo. La segunda capacidad ayuda a determinar un espesor de la segunda capa de material conductor.  In some embodiments, the MEMS resonator device includes a first capacitive element disposed within the first layer of conductive material, and a second capacitive element disposed within the second, adjacent layer of conductive material. The method further includes calibrating the resonator element based on a first capacity of the first capacitive element. The first capacity helps determine a thickness of the first layer of conductive material. The method further includes calibrating the resonator element based on a second capacity of the second capacitive element. The second capacity helps determine a thickness of the second layer of conductive material.
En aún otro aspecto, los sistemas y métodos que se describen en la presente memoria hacen posible un método para la fabricación de un chip que incluye unos anclajes dispuestos dentro de un circuito integrado. El método incluye formar elementos electrónicos en un sustrato de material semiconductor. El método incluye, de manera adicional, formar una pila de capas de interconexión por encima del sustrato de material semiconductor. La pila de capas de interconexión incluye capas de material conductor separadas por capas de material dieléctrico. El método incluye, adicionalmente, formar los anclajes dentro de la pila de capas de interconexión mediante la aplicación de HF gaseoso a una primera capa de material dieléctrico de la pila de capas de interconexión, al tiempo que se permite que una capa de material dieléctrico permanezca sin someterse a ataque químico superficial, y se habilita una capa de material conductor para el encaminamiento de las conexiones hacia y desde los elementos electrónicos. Cada anclaje incluye ciertas porciones desde las capas de material conductor, separadas por vías. Cada anclaje soporta una capa superior de material conductor o un dispositivo de MEMS formado dentro de la pila de capas de interconexión. In yet another aspect, the systems and methods described in The present specification makes possible a method for manufacturing a chip that includes anchors arranged within an integrated circuit. The method includes forming electronic elements in a substrate of semiconductor material. The method further includes forming a stack of interconnecting layers above the semiconductor material substrate. The stack of interconnecting layers includes layers of conductive material separated by layers of dielectric material. The method further includes forming the anchors within the interconnecting layer stack by applying gaseous HF to a first layer of dielectric material of the interconnecting layer stack, while allowing a layer of dielectric material to remain without undergoing superficial chemical attack, and a layer of conductive material is enabled for routing the connections to and from the electronic elements. Each anchor includes certain portions from the layers of conductive material, separated by tracks. Each anchor supports a top layer of conductive material or a MEMS device formed within the stack of interconnecting layers.
En algunas realizaciones, una porción de un anclaje incluye material dieléctrico que sustituye el material conductor o vía. En algunas realizaciones, se forma un ancla de acuerdo con una violación de las reglas de diseño del procedimiento de CMOS. La violación de las reglas de diseño puede incluir porciones de capa conductora y vías que son sustancialmente similares en anchura y que no se solapan. La violación de las reglas de diseño puede incluir vías que son más anchas que una anchura de acuerdo con el procedimiento de CMOS.  In some embodiments, a portion of an anchor includes dielectric material that replaces the conductive or track material. In some embodiments, an anchor is formed according to a violation of the CMOS procedure design rules. Violation of design rules may include portions of conductive layer and tracks that are substantially similar in width and that do not overlap. Violation of the design rules may include tracks that are wider than a width according to the CMOS procedure.
En aún otro aspecto, los sistemas y métodos que se describen en la presente memoria proporcionan un chip que incluye anclajes dispuestos dentro de un circuito integrado. El chip incluye elementos electrónicos formados sobre un sustrato de material semiconductor. El chip incluye adicionalmente una pila de capas de interconexión formadas por encima del sustrato de material semiconductor. La pila de capas de interconexión incluye capas de material conductor separadas por capas de material dieléctrico. El chip incluye, de manera adicional, los anclajes formados dentro de la pila de capas de interconexión mediante la aplicación de HF gaseoso a una primera capa de material dieléctrico de la pila de capas de interconexión, al tiempo que se permite que una capa de material dieléctrico quede sin ser atacada químicamente en su superficie, y se habilita una capa de material conductor para el encaminamiento de las conexiones hacia y desde los elementos electrónicos. Cada anclaje incluye porciones de capa conductora desde las capas de material conductor, separadas por vías. Cada anclaje soporta una capa superior de material conductor o un dispositivo de MEMS formado dentro de la pila de capas de interconexión. In yet another aspect, the systems and methods described herein provide a chip that includes anchors arranged within an integrated circuit. The chip includes electronic elements formed on a substrate of semiconductor material. The chip additionally includes a stack of interconnection layers formed above the substrate of semiconductor material. The stack of interconnecting layers includes layers of conductive material separated by layers of dielectric material. The chip additionally includes the anchors formed within the stack of interconnecting layers by applying gaseous HF to a first layer of dielectric material of the interconnecting layer stack, while allowing a layer of material dielectric remains unattached chemically on its surface, and a layer of conductive material is enabled for routing the connections to and from the electronic elements. Each anchor includes portions of the conductive layer from the layers of conductive material, separated by tracks. Each anchor supports a top layer of conductive material or a MEMS device formed within the stack of interconnecting layers.
En algunas realizaciones, una porción de un anclaje incluye material dieléctrico que reemplaza el material conductor o vía. En algunas realizaciones, un anclaje se forma de acuerdo con una violación de las reglas de diseño del procedimiento de CMOS. La violación de las reglas de diseño puede incluir porciones de capa conductora y vías que son sustancialmente similares en anchura y que no se solapan. La violación de las reglas de diseño puede incluir vías que son más anchas que una anchura de acuerdo con el procedimiento de CMOS.  In some embodiments, a portion of an anchor includes dielectric material that replaces the conductive or track material. In some embodiments, an anchor is formed in accordance with a violation of the CMOS procedure design rules. Violation of design rules may include portions of conductive layer and tracks that are substantially similar in width and that do not overlap. Violation of the design rules may include tracks that are wider than a width according to the CMOS procedure.
Breve descripción de los dibujos Brief description of the drawings
Otras ventajas y características de los sistemas y métodos que se describen en la presente memoria se apreciarán por la siguiente descripción, que proporciona una descripción no limitativa de realizaciones ilustrativas, con referencia a los dibujos que se acompañan, en los cuales:  Other advantages and characteristics of the systems and methods described herein will be appreciated by the following description, which provides a non-limiting description of illustrative embodiments, with reference to the accompanying drawings, in which:
La Figura 1 representa un corte transversal de una etapa del flujo o la secuencia de procedimiento, en el curso de la fabricación de un dispositivo de MEMS de un conjunto ordenado, de acuerdo con una realización ilustrativa de la invención;  Figure 1 represents a cross-section of a flow stage or process sequence, in the course of manufacturing a MEMS device of an ordered assembly, in accordance with an illustrative embodiment of the invention;
La Figura 2A ilustra un corte transversal de una etapa de la secuencia de procedimiento, en el curso de la fabricación de un dispositivo de MEMS de un conjunto ordenado, de acuerdo con otra realización ilustrativa de la invención;  Figure 2A illustrates a cross-section of a stage of the process sequence, in the course of manufacturing a MEMS device of an ordered assembly, according to another illustrative embodiment of the invention;
La Figura 2B ilustra un corte transversal de una etapa de la secuencia de procedimiento, durante la fabricación de un dispositivo de MEMS de un conjunto ordenado, de acuerdo con aún otra realización ilustrativa de la invención;  Figure 2B illustrates a cross-section of a stage of the process sequence, during the manufacture of a MEMS device of an ordered assembly, in accordance with yet another illustrative embodiment of the invention;
La Figura 3 representa un diagrama de flujo para fabricar un chip que tiene un conjunto geométricamente ordenado de dispositivos de MEMS dispuestos en circuito integrado, de acuerdo con una realización ilustrativa de la invención; Figure 3 represents a flow chart for manufacturing a chip that has a geometrically arranged set of MEMS devices arranged in integrated circuit, in accordance with an illustrative embodiment of the invention;
La Figura 4A representa un corte transversal tras un primer conjunto de etapas de la secuencia de procedimiento para fabricar un dispositivo de MEMS de un conjunto ordenado, de acuerdo con una realización ilustrativa de la invención;  Figure 4A represents a cross-section after a first set of steps of the process sequence for manufacturing a MEMS device of an ordered assembly, in accordance with an illustrative embodiment of the invention;
La Figura 4B representa un corte transversal después de un segundo conjunto de etapas de la secuencia de procedimiento para fabricar un dispositivo de MEMS de un conjunto ordenado, de acuerdo con una realización ilustrativa de la invención;  Figure 4B depicts a cross-section after a second set of steps of the process sequence for manufacturing a MEMS device of an ordered assembly, in accordance with an illustrative embodiment of the invention;
La Figura 4C ilustra un corte transversal después de un tercer conjunto de etapas de la secuencia de procedimiento para fabricar un dispositivo de MEMS de un conjunto ordenado, de acuerdo con una realización ilustrativa de la invención;  Figure 4C illustrates a cross-section after a third set of steps of the process sequence for manufacturing a MEMS device of an ordered assembly, in accordance with an illustrative embodiment of the invention;
La Figura 5A representa una vista en perspectiva de un dispositivo de MEMS parcialmente fabricado, perteneciente a un conjunto ordenado, de acuerdo con una realización ilustrativa de la invención;  Figure 5A depicts a perspective view of a partially manufactured MEMS device, belonging to an ordered assembly, in accordance with an illustrative embodiment of the invention;
La Figura 5B representa una vista en perspectiva de un dispositivo de MEMS fabricado, perteneciente a un conjunto geométricamente ordenado, de acuerdo con una realización ilustrativa de la invención;  Figure 5B represents a perspective view of a manufactured MEMS device, belonging to a geometrically arranged assembly, in accordance with an illustrative embodiment of the invention;
La Figura 5C muestra un anclaje de columna para soportar una tapa o cubierta y/o un dispositivo de MEMS, de acuerdo con una realización ilustrativa de la invención;  Figure 5C shows a column anchor for supporting a cover or cover and / or a MEMS device, in accordance with an illustrative embodiment of the invention;
La Figura 5D muestra un anclaje de columna para soportar una cubierta y/o un dispositivo de MEMS, de acuerdo con otra realización ilustrativa de la invención;  Figure 5D shows a column anchor to support a cover and / or a MEMS device, according to another illustrative embodiment of the invention;
La Figura 5E muestra un anclaje de columna para soportar una cubierta y/o un dispositivo de MEMS, de acuerdo con aún otra realización ilustrativa de la invención;  Figure 5E shows a column anchor to support a cover and / or a MEMS device, in accordance with yet another illustrative embodiment of the invention;
La Figura 5F muestra un anclaje de columna para soportar una cubierta y/o un dispositivo de MEMS, de acuerdo con aún otra realización ilustrativa de la invención;  Figure 5F shows a column anchor to support a cover and / or a MEMS device, in accordance with yet another illustrative embodiment of the invention;
La Figura 5G muestra un anclaje de columna para soportar una cubierta y/o un dispositivo de MEMS, de acuerdo con aún otra realización ilustrativa de la invención;  Figure 5G shows a column anchor to support a cover and / or a MEMS device, in accordance with yet another illustrative embodiment of the invention;
La Figura 6A representa una vista esquemática de un conjunto ordenado de dispositivos de MEMS, de acuerdo con una realización ilustrativa de la invención; Figure 6A represents a schematic view of an assembly MEMS device sorting, in accordance with an illustrative embodiment of the invention;
La Figura 6B ilustra una vista esquemática de un conjunto ordenado y reconfigurable de dispositivos de MEMS, de acuerdo con una realización ilustrativa de la invención;  Figure 6B illustrates a schematic view of an ordered and reconfigurable set of MEMS devices, in accordance with an illustrative embodiment of the invention;
La Figura 6C representa una vista en perspectiva de un conjunto ordenado de dispositivos de MEMS, de acuerdo con una realización ilustrativa de la invención;  Figure 6C depicts a perspective view of an ordered set of MEMS devices, in accordance with an illustrative embodiment of the invention;
La Figura 7A ilustra vista esquemática de un chip que tiene un conjunto ordenado de dispositivos de MEMS dispuestos dentro de un circuito integrado, de acuerdo con una realización ilustrativa de la invención;  Figure 7A illustrates schematic view of a chip having an ordered set of MEMS devices disposed within an integrated circuit, in accordance with an illustrative embodiment of the invention;
La Figura 7B representa una vista esquemática de un chip que tiene un conjunto ordenado de dispositivos de MEMS dispuestos dentro de un circuito integrado, de acuerdo con otra realización ilustrativa de la invención;  Figure 7B represents a schematic view of a chip having an ordered set of MEMS devices arranged within an integrated circuit, in accordance with another illustrative embodiment of the invention;
La Figura 8A ilustra una vista esquemática de un elemento resonador, de acuerdo con una realización ilustrativa de la invención;  Figure 8A illustrates a schematic view of a resonator element, in accordance with an illustrative embodiment of the invention;
La Figura 8B representa vistas esquemáticas de varios elementos resonadores, de acuerdo con una realización ilustrativa de la invención; y  Figure 8B depicts schematic views of several resonator elements, in accordance with an illustrative embodiment of the invention; Y
La Figura 8C representa una vista en perspectiva de un dispositivo resonador de MEMS que incluye un elemento resonador y un elemento de calibración dispuesto próximo al elemento resonador, de acuerdo con una realización ilustrativa de la invención.  Figure 8C depicts a perspective view of a MEMS resonator device that includes a resonator element and a calibration element arranged close to the resonator element, in accordance with an illustrative embodiment of the invention.
Las Figuras 9A y 9B representan vistas esquemáticas, según la técnica anterior, de un filtro de SAW y un filtro de BAW, respectivamente;  Figures 9A and 9B represent schematic views, according to the prior art, of a SAW filter and a BAW filter, respectively;
Las Figuras 10A y 10B representan vistas esquemáticas de conjuntos ordenados de resonadores para un filtro de absorción, de acuerdo con una realización ilustrativa de la invención;  Figures 10A and 10B represent schematic views of ordered sets of resonators for an absorption filter, in accordance with an illustrative embodiment of the invention;
La Figura 1 1 representa una vista esquemática de un elemento resonador con un espacio de separación lateral estrecho, de acuerdo con una realización ilustrativa de la invención; y  Figure 1 1 represents a schematic view of a resonator element with a narrow lateral separation space, in accordance with an illustrative embodiment of the invention; Y
La Figura 12 representa una vista esquemática de un elemento resonador para un filtro de RF, de acuerdo con una realización ilustrativa de la invención. Descripción detallada de realizaciones Figure 12 depicts a schematic view of a resonator element for an RF filter, in accordance with an illustrative embodiment of the invention. Detailed description of achievements
A fin de proporcionar una comprensión global de los sistemas y métodos que se describen en la presente memoria, se describirán a continuación ciertas realizaciones ilustrativas. Se comprenderá, sin embargo, por parte de una persona con conocimientos ordinarios de la técnica, que los sistemas y los métodos que aquí se describen pueden ser adaptados y modificados según sea apropiado para la aplicación que se esté tratando, y que los sistemas y métodos aquí descritos pueden ser empleados en otras aplicaciones adecuadas, y que dichas otras adiciones y modificaciones no se apartarán del ámbito de la misma.  In order to provide a comprehensive understanding of the systems and methods described herein, certain illustrative embodiments will be described below. It will be understood, however, by a person with ordinary knowledge of the art, that the systems and methods described herein can be adapted and modified as appropriate for the application being treated, and that the systems and methods described herein may be used in other suitable applications, and that said other additions and modifications will not depart from the scope thereof.
La Figura 1 representa un corte transversal típico de un dispositivo de MEMS fabricado en el interior de las capas de interconexión de un circuito integrado. El dispositivo de MEMS 100 está fabricado dentro de todas las seis capas de metal (o de material conductor) del apilamiento o pila de capas de interconexión, incluyendo la capa de metal superior 106 y la capa de metal inferior 108. El dispositivo de MEMS 100 incluye un elemento 102 soportado por unos anclajes 104. Sin embargo, esta técnica no deja espacio dentro de las capas de interconexión, por ejemplo, la capa de metal 108, para el encaminamiento hacia y desde elementos electrónicos que también están presentes sobre el circuito integrado. Como resultado de ello, no puede utilizarse para el encaminamiento, típicamente, cualquier área de silicio del chip asignada al dispositivo de MEMS 100, y, por tanto, esta se añade al área de silicio que se necesita para fabricar el circuito integrado.  Figure 1 represents a typical cross section of a MEMS device manufactured inside the interconnection layers of an integrated circuit. The MEMS 100 device is manufactured within all six metal (or conductive material) layers of the stacking or stack of interconnecting layers, including the upper metal layer 106 and the lower metal layer 108. The MEMS device 100 It includes an element 102 supported by anchors 104. However, this technique leaves no space within the interconnection layers, for example, the metal layer 108, for routing to and from electronic elements that are also present on the integrated circuit. . As a result, typically, no silicon area of the chip assigned to the MEMS 100 device can be used for routing, and therefore it is added to the silicon area needed to manufacture the integrated circuit.
La configuración de la Figura 1 puede resultar también desventajosa en cuanto a fiabilidad de largo plazo. En la realización que se muestra, se utilizan planos largos de metal y vías continuas para limitar el ataque químico superficial horizontal y el ataque químico superficial vertical, respectivamente, de las capas de interconexión mediante HF [ácido fluorhídrico] gaseoso. Sin embargo, semejante estructura compleja puede forzar el HF gaseoso a desplazarse a través de largos recorridos, evitando así un ataque químico superficial no deseado de las capas de interconexión. Por otra parte, esta solución puede permitir que las moléculas de agua producidas como producto secundario o subproducto de la reacción de ataque químico superficial queden atrapadas y provoquen corrosión y problemas de fiabilidad de largo plazo. La Figura 2A representa un corte transversal ilustrativo de un dispositivo de MEMS 200 fabricado dentro de dos capas de metal de la pila de capas de interconexión. La pila incluye seis capas de metal separadas por seis capas de material dieléctrico, de tal manera que la capa superior 206 es una capa de material conductor (al que se hace referencia en ocasiones como la tapa o envoltura). El dispositivo de MEMS 200 se forma en el interior de la pila de capas de interconexión mediante la aplicación de HF gaseoso a las dos capas de material dieléctrico 216 y 218 situadas más arriba en la pila. Como resultado de ello, el dispositivo de MEMS 200 se suelta o libera dentro de las dos capas de material conductor 202 y 206 situadas más arriba en la pila. Sin embargo, las restantes capas de material dieléctrico quedan sin ser atacadas químicamente en su superficie, y pueden utilizarse una o más de las restantes capas de material conductor 208, 210, 212 o 214 para el encaminamiento de las conexiones. Aunque las capas 208 y 210 incluyen anclajes 204 para soportar el dispositivo de MEMS 200, estas aún pueden ser utilizadas para el encaminamiento de las conexiones debido al pequeño espacio requerido para los anclajes 204. En algunas realizaciones, los anclajes 204 se implementan en el interior de dos capas de material conductor con el fin de tener en cuenta la variación (en torno al 10%) de la altura de las capas en procedimientos de CMOS. De acuerdo con ello, un dispositivo de MEMS puede ser fabricado dentro de una pila de capas de interconexión de un circuito integrado, al tiempo que se sigue permitiendo el encaminamiento de las conexiones dentro de las capas inferiores de la pila, con lo que se reduce el área de silicio necesaria para el chip. En un ejemplo, esta configuración puede ser utilizada para fabricar un elemento resonador para un acelerómetro o un giroscopio. The configuration of Figure 1 may also be disadvantageous in terms of long-term reliability. In the embodiment shown, long metal planes and continuous tracks are used to limit the horizontal surface chemical attack and the vertical surface chemical attack, respectively, of the interconnecting layers by HF [hydrofluoric acid] gas. However, such a complex structure can force the gaseous HF to travel through long distances, thus avoiding an unwanted surface chemical attack of the interconnection layers. On the other hand, this solution may allow the water molecules produced as a by-product or by-product of the surface chemical attack reaction to become trapped and cause corrosion and long-term reliability problems. Figure 2A depicts an illustrative cross-section of a MEMS device 200 manufactured within two metal layers of the stack of interconnecting layers. The stack includes six layers of metal separated by six layers of dielectric material, such that the top layer 206 is a layer of conductive material (sometimes referred to as the cover or envelope). The MEMS device 200 is formed inside the stack of interconnecting layers by applying gaseous HF to the two layers of dielectric material 216 and 218 located higher in the stack. As a result, the MEMS device 200 is released or released into the two layers of conductive material 202 and 206 located higher in the stack. However, the remaining layers of dielectric material remain unchecked chemically on their surface, and one or more of the remaining layers of conductive material 208, 210, 212 or 214 can be used for routing the connections. Although layers 208 and 210 include anchors 204 to support the MEMS device 200, these can still be used for routing the connections due to the small space required for anchors 204. In some embodiments, anchors 204 are implemented inside. of two layers of conductive material in order to take into account the variation (around 10%) of the height of the layers in CMOS procedures. Accordingly, a MEMS device can be manufactured within a stack of interconnecting layers of an integrated circuit, while still allowing the routing of the connections within the lower layers of the stack, thereby reducing the silicon area needed for the chip. In one example, this configuration can be used to make a resonator element for an accelerometer or gyroscope.
La Figura 2B representa otro corte transversal ilustrativo de un dispositivo de MEMS 250 fabricado en el interior de dos capas de metal de la pila de capas de interconexión. La pila incluye seis capas de metal separadas por seis capas de material dieléctrico, de tal manera que la capa superior 256 es una capa de material conductor (al que se hace referencia en ocasiones como tapa o cubierta). El dispositivo de MEMS 250 se ha formado en el interior de una pila de capas de interconexión mediante la aplicación de HF gaseoso. El HF gaseoso ataca químicamente la superficie de una de las capas de material dieléctrico 268, situada más arriba en la pila. Como resultado de ello, el dispositivo de MEMS 250 se libera dentro de las dos capas de material conductor 252 y 256 situadas más arriba en la pila. Sin embargo, las restantes capas de material dieléctrico, incluyendo la capa 266, se dejan sin atacarse químicamente en su superficie. Una o más de las capas restantes de material conductor 258, 260, 262 o 264 pueden ser utilizadas para el encaminamiento de las conexiones. Aunque la capa 258 incluye unos anclajes 254 para soportar el dispositivo de MEMS 250, puede seguir siendo utilizada para el encaminamiento de las conexiones debido al pequeño espacio que se requiere para los anclajes 254. Esta configuración puede ser ventajosa sobre la configuración de la Figura 2A debido a que la capa de material dieléctrico 268 no sometida a ataque químico superficial proporciona soporte al dispositivo de MEMS 250. De acuerdo con ello, tan solo se necesitan pequeños anclajes de un único nivel 254 para soportar adicionalmente el dispositivo de MEMS 250. En algunas realizaciones, la capa de material dieléctrico 268 no atacada químicamente en su superficie soporta únicamente el dispositivo de MEMS 250, con lo que se elimina la necesidad de anclajes. En un ejemplo, esta configuración puede ser utilizada para fabricar un elemento sensor para un sensor de presión. Figure 2B depicts another illustrative cross-section of a MEMS device 250 manufactured inside two metal layers of the stack of interconnecting layers. The stack includes six layers of metal separated by six layers of dielectric material, such that the top layer 256 is a layer of conductive material (sometimes referred to as a cover or cover). The MEMS 250 device has been formed inside a stack of interconnecting layers by the application of gaseous HF. The gaseous HF chemically attacks the surface of one of the layers of dielectric material 268, located higher in the stack. As a result, the MEMS 250 device is released within the two layers of material conductor 252 and 256 located higher in the stack. However, the remaining layers of dielectric material, including layer 266, are left unchecked chemically on their surface. One or more of the remaining layers of conductive material 258, 260, 262 or 264 may be used for routing the connections. Although the layer 258 includes anchors 254 to support the MEMS device 250, it can still be used for routing the connections due to the small space required for the anchors 254. This configuration may be advantageous over the configuration of Figure 2A because the layer of dielectric material 268 not subjected to surface chemical attack provides support to the MEMS device 250. Accordingly, only small single level anchors 254 are needed to additionally support the MEMS device 250. In some embodiments, the layer of dielectric material 268 not chemically attacked on its surface supports only the MEMS 250 device, thereby eliminating the need for anchors. In one example, this configuration can be used to manufacture a sensor element for a pressure sensor.
Las configuraciones descritas con respecto a las Figuras 2A y 2B pueden ser también beneficiosas para fabricar un dispositivo de MEMS dentro de una pila de capas de interconexión de un circuito integrado cuando se utilizan procedimientos de fabricación de metal-óxido-semiconductor complementario (CMOS -"complementary metal oxide semiconductor") que incluyen materiales dieléctricos de bajo número k, por ejemplo, procedimientos de CMOS de 130 nm o menos. Tales procedimientos pueden procurar ventajas tales como un área de troquel más pequeña, un coste más bajo y un menor consumo de potencia, en comparación con procedimientos de CMOS de más de 130 nm. Los materiales dieléctricos de bajo número k tienen constantes dieléctricas menores que la del dióxido de silicio y son, típicamente, difíciles de atacar químicamente en su superficie, en comparación con el dióxido de silicio, cuando se utiliza, por ejemplo, HF gaseoso. Puede incluirse una capa de material dieléctrico de dióxido de silicio como capa más alta de material dieléctrico en la pila, en tanto que las restantes capas pueden incluir un material de bajo número k. El dispositivo de MEMS puede formarse dentro de la pila de capas de interconexión aplicando HF gaseoso a la capa de material dieléctrico de dióxido de silicio, sin necesidad de ataque químico superficial de cualquiera de las capas de material dieléctrico de bajo número k. The configurations described with respect to Figures 2A and 2B may also be beneficial for manufacturing a MEMS device within a stack of interconnecting layers of an integrated circuit when complementary metal-oxide-semiconductor manufacturing processes (CMOS - "are used. complementary metal oxide semiconductor ") including dielectric materials of low number k, for example, CMOS processes of 130 nm or less. Such procedures can provide advantages such as a smaller die area, lower cost and lower power consumption, compared to CMOS procedures of more than 130 nm. Low number k dielectric materials have dielectric constants lower than that of silicon dioxide and are typically difficult to chemically attack on their surface, compared to silicon dioxide, when, for example, gaseous HF is used. A layer of silicon dioxide dielectric material may be included as the highest layer of dielectric material in the stack, while the remaining layers may include a low number material k. The MEMS device can be formed within the stack of interconnecting layers by applying gaseous HF to the layer of silicon dioxide dielectric material, without the need for superficial chemical attack of any of the layers of dielectric material of low number k.
Adicionalmente, el ataque químico superficial utilizando HF gaseoso puede proporcionar resultados relativamente uniformes y proporcionar una capacidad de producción más alta a la hora de fabricar tales dispositivos de MEMS. El ataque químico superficial de un número menor de capas durante la fabricación puede también reducir los productos secundarios o subproductos del ataque químico superficial y aminorar el riesgo de corrosión del dispositivo de MEMS, con lo que se mejora la fiabilidad de largo plazo. En algunas realizaciones, puede utilizarse una detención basada en el tiempo para limitar el ataque químico superficial de las capas de interconexión por el HF gaseoso. Sin añadir estructuras complejas según se describe con respecto a la Figura 1 , el ataque químico superficial mediante HF gaseoso puede ser limitado deteniendo el ataque después de un periodo muy corto de tiempo. Esta solución puede conseguir un mínimo riesgo de corrosión como consecuencia de las moléculas de agua atrapadas que se producen como subproducto de la reacción de ataque químico superficial. Tanto la Figura 2A como la 2B son realizaciones ilustrativas de esta solución para formar un dispositivo de MEMS.  Additionally, surface chemical attack using gaseous HF can provide relatively uniform results and provide a higher production capacity when manufacturing such MEMS devices. The surface chemical attack of a smaller number of layers during manufacturing can also reduce the by-products or by-products of the surface chemical attack and reduce the risk of corrosion of the MEMS device, thereby improving long-term reliability. In some embodiments, a time-based stop can be used to limit the surface chemical attack of the interconnection layers by the gaseous HF. Without adding complex structures as described with respect to Figure 1, surface chemical attack by gaseous HF can be limited by stopping the attack after a very short period of time. This solution can achieve a minimum risk of corrosion as a result of trapped water molecules that are produced as a byproduct of the surface chemical attack reaction. Both Figure 2A and 2B are illustrative embodiments of this solution to form a MEMS device.
Las configuraciones que se describen con respecto a las Figuras 2A y 2B también ofrecen algunas otras ventajas. Por ejemplo, cualesquiera anclajes de soporte para el dispositivo de MEMS pueden requerir un área menor dentro de las capas de interconexión, debido a que el dispositivo de MEMS está parcialmente soportado por las capas de la pila que no se han atacado químicamente en su superficie. Esto puede también reducir las capacidades parásitas que se observan típicamente cuando el dispositivo de MEMS se fabrica dentro de la mayor parte o todas las capas de interconexión de un circuito integrado.  The configurations described with respect to Figures 2A and 2B also offer some other advantages. For example, any support anchors for the MEMS device may require a smaller area within the interconnection layers, because the MEMS device is partially supported by the battery layers that have not been chemically attacked on its surface. This can also reduce the parasitic capabilities that are typically observed when the MEMS device is manufactured within most or all of the interconnecting layers of an integrated circuit.
La Figura 3 representa un diagrama de flujo ilustrativo 300 para la fabricación de un chip que tiene un conjunto ordenado de dispositivos de MEMS dispuestos dentro de un circuito integrado. El chip se fabrica utilizando un procedimiento de CMOS de 180 nm o menos, por ejemplo, un procedimiento de CMOS de 22 nm, un procedimiento de CMOS de 32 nm, un procedimiento de CMOS de 45 nm o un procedimiento de CMOS de 65 nm. En la etapa 302, se forman elementos electrónicos sobre un sustrato de material semiconductor. En la etapa 304, se forma, por encima del sustrato de material semiconductor, una pila de capas de interconexión que incluye capas de material conductor separadas por capas de material dieléctrico. En la etapa 306, se aplica HF gaseoso a las capas de interconexión. En la etapa 308, se somete a ataque químico superficial una primera capa de material dieléctrico situada en posición más alta en la pila de capas de interconexión. En algunas realizaciones, una primera capa de material dieléctrico incluye dióxido de silicio. Una segunda capa, adyacente, de material dieléctrico puede también ser atacada químicamente en su superficie. Al menos una de las capas de material dieléctrico permanece sin ser atacada químicamente en su superficie. En algunas realizaciones, la capa no atacada del material dieléctrico es la capa más baja del material dieléctrico en la pila. En la etapa 310, los dispositivos de MEMS son liberados en el seno de la pila de capas de interconexión. En algunas realizaciones, los dispositivos de MEMS son de un mismo tipo. En algunas realizaciones, los dispositivos de MEMS comprenden un primer dispositivo y un segundo dispositivo, y el segundo dispositivo se reserva como redundancia en caso de fallo del primer dispositivo. En algunas realizaciones, los dispositivos de MEMS son de diferentes tipos, incluyendo un magnetómetro, un giroscopio o un acelerómetro. Pueden también formarse uno o más anclajes para soportar un dispositivo de MEMS o una capa superior de la pluralidad de capas de material conductor, dentro de las capas de material conductor. En la etapa 312, aún se forman dentro de al menos una capa de material conductor conexiones de encaminamiento hacia y desde los elementos electrónicos. Figure 3 depicts an illustrative flow chart 300 for manufacturing a chip having an ordered set of MEMS devices arranged within an integrated circuit. The chip is manufactured using a CMOS procedure of 180 nm or less, for example, a 22 nm CMOS procedure, a 32 nm CMOS procedure, a 45 nm CMOS procedure or a 65 nm CMOS procedure. In step 302, electronic elements are formed on a substrate of semiconductor material. In step 304, it is formed, above the material substrate semiconductor, a stack of interconnecting layers that includes layers of conductive material separated by layers of dielectric material. In step 306, gaseous HF is applied to the interconnection layers. In step 308, a first layer of dielectric material placed higher in the stack of interconnecting layers is subjected to surface chemical attack. In some embodiments, a first layer of dielectric material includes silicon dioxide. A second, adjacent layer of dielectric material can also be chemically attacked on its surface. At least one of the layers of dielectric material remains unchecked chemically on its surface. In some embodiments, the unattached layer of the dielectric material is the lowest layer of the dielectric material in the stack. In step 310, MEMS devices are released within the stack of interconnecting layers. In some embodiments, the MEMS devices are of the same type. In some embodiments, MEMS devices comprise a first device and a second device, and the second device is reserved as redundancy in the event of failure of the first device. In some embodiments, MEMS devices are of different types, including a magnetometer, gyroscope or accelerometer. One or more anchors can also be formed to support a MEMS device or an upper layer of the plurality of conductive material layers, within the conductive material layers. In step 312, routing connections to and from the electronic elements are still formed within at least one layer of conductive material.
Más adelante se describen etapas del flujo o la secuencia de procedimiento para la fabricación de un dispositivo de MEMS de un conjunto ordenado, mediante un procedimiento basado en MEMS de CMOS. Por ejemplo, el dispositivo de MEMS puede fabricarse utilizando un procedimiento basado en MEMS de CMOS que se describe en la Publicación de Solicitud de Patente N9 2010/0295138, de propiedad en común con la presente y titulada "Métodos y sistemas para la fabricación de dispositivos de CMOS de MEMS". Sin embargo, no es preciso que los procedimientos de fabricación para el dispositivo de MEMS estén limitados a procedimientos basados en MEMS de CMOS, sino que estos pueden incluir procedimientos basados en MEMS, procedimientos basados en NEMS [sistema nanoelectromecánico -"nano- electro-mechanical system"] así como otros procedimientos adecuados. La Figura 4A representa un corte transversal ilustrativo después de un primer conjunto de etapas de la secuencia de procedimiento para la fabricación de un dispositivo de MEMS de un conjunto ordenado. El espesor de las capas se ha aumentado. En una realización, el dispositivo de MEMS se fabrica utilizando un procedimiento de CMOS estándar. En una realización, el dispositivo de MEMS se fabrica dentro de una cavidad formada en el interior de capas de interconexión de un chip de CMOS. En una realización alternativa, el dispositivo de MEMS se fabrica como un dispositivo de MEMS autónomo. Inicialmente, se deposita una capa de metal. La capa de metal puede estar hecha, por ejemplo, de una aleación metálica de AlCu. Una capa de enmascaramiento se deposita por encima de la capa de metal y, a continuación, la capa de metal es atacada químicamente en su superficie utilizando, por ejemplo, HF seco, para formar unas placas 402. Se deposita una capa de dieléctrico entre metales (IMD -"Inter Metal Dieléctrico") por encima de las placas 402, seguida por una capa de enmascaramiento, y, a continuación, la capa de IMD es sometida a ataque químico superficial y llenada con metal para formar unos separadores o vías 404. En una realización, la capa de IMD incluye una capa de óxido no adulterado o dopado. Se deposita otra capa de metal, seguida por una capa de enmascaramiento depositada por encima de la capa de metal, y, a continuación, la capa de metal se somete a ataque químico superficial utilizando, por ejemplo, HF seco, para formar unas placas 406. Se deposita otra capa de IMD por encima de las placas 406, seguida por una capa de enmascaramiento, y, a continuación, la capa de IMD se somete a ataque químico superficial y se llena con metal para formar unos separadores o vías 408. Las placas 402 y 404 y los separadores 406 y 408 forman, conjuntamente, unos anclajes para el dispositivo de MEMS. Se deposita una capa de metal sobre los separadores 408 para formar un puente 410 del dispositivo de MEMS. Se deposita otra capa de IMD sobre el puente 410, seguida por una capa de metal superior 412. Se deposita una capa de enmascaramiento sobre la capa de metal superior 412. La capa de metal superior 412 se somete entonces a ataque químico superficial para formar unos orificios pasantes 414. Los orificios pasantes pueden permitir el paso de agente de ataque químico superficial, por ejemplo, HF gaseoso, para el ataque del material situado por debajo de la capa de metal superior 412. The steps of the flow or the process sequence for the manufacture of a MEMS device of an ordered set are described below, by means of a CMOS MEMS based procedure. For example, the MEMS device may be manufactured using a CMOS MEMS-based procedure described in Patent Application Publication No. 9 2010/0295138, jointly owned herein and entitled "Methods and systems for the manufacture of MEMS CMOS devices ". However, it is not necessary that the manufacturing procedures for the MEMS device be limited to CMOS MEMS based procedures, but these may include MEMS based procedures, NEMS based procedures [nanoelectromechanical system - "nano-electro-mechanical system "] as well as other suitable procedures. Figure 4A represents an illustrative cross-section after a first set of steps of the process sequence for the manufacture of a MEMS device of an ordered set. The thickness of the layers has been increased. In one embodiment, the MEMS device is manufactured using a standard CMOS method. In one embodiment, the MEMS device is manufactured within a cavity formed inside interconnection layers of a CMOS chip. In an alternative embodiment, the MEMS device is manufactured as a stand-alone MEMS device. Initially, a layer of metal is deposited. The metal layer may be made, for example, of a metal alloy of AlCu. A masking layer is deposited above the metal layer, and then the metal layer is chemically attacked on its surface using, for example, dry HF, to form plates 402. A dielectric layer is deposited between metals (IMD - "Dielectric Inter Metal") above the plates 402, followed by a masking layer, and then the IMD layer is subjected to surface chemical attack and filled with metal to form separators or tracks 404. In one embodiment, the IMD layer includes an unadulterated or doped oxide layer. Another metal layer is deposited, followed by a masking layer deposited above the metal layer, and then the metal layer is subjected to surface chemical attack using, for example, dry HF, to form plates 406 Another IMD layer is deposited above the plates 406, followed by a masking layer, and then the IMD layer is subjected to surface chemical attack and filled with metal to form separators or tracks 408. plates 402 and 404 and spacers 406 and 408 together form anchors for the MEMS device. A metal layer is deposited on the spacers 408 to form a bridge 410 of the MEMS device. Another layer of IMD is deposited on the bridge 410, followed by an upper metal layer 412. A masking layer is deposited on the upper metal layer 412. The upper metal layer 412 is then subjected to surface chemical attack to form some through holes 414. Through holes may allow the passage of surface chemical attack agent, for example, gaseous HF, for the attack of the material located below the upper metal layer 412.
Las Figuras 4B y 4C representan cortes transversales después de un segundo y un tercer conjuntos de etapas de la secuencia de procedimiento, respectivamente, para fabricar un dispositivo de MEMS de un conjunto ordenado. Un agente de ataque químico superficial, por ejemplo, HF seco, se libera a través de los orificios pasantes 414 existentes en la capa de metal superior 412. El agente de ataque químico superficial elimina por ataque ciertas porciones de las capas de IMD para liberar los anclajes y el puente del dispositivo de MEMS, tal como se muestra en la Figura 4B. Unas placas de fondo 402 están embebidas o empotradas en el óxido restante 442 de las capas de IMD, a fin de proporcionar soporte al dispositivo de MEMS. Por último, se deposita una capa de metalización 428 sobre la capa de metal superior 412 con el fin de obturar o encerrar herméticamente el dispositivo de MEMS con respecto al entorno exterior, tal como se muestra en la Figura 4C. En una realización, el dispositivo de MEMS se fabrica utilizando tecnología de chip integrado basada en MEMS, basada en NEMS o basada en CMOS de MEMS. Figures 4B and 4C represent cross sections after a second and a third set of steps of the process sequence, respectively, to manufacture a MEMS device of an ordered set. A surface chemical attack agent, for example, dry HF, is released through the through holes 414 in the upper metal layer 412. The surface chemical attack agent removes certain portions of the IMD layers by attack to release the anchors and the bridge of the MEMS device, as shown in Figure 4B. Bottom plates 402 are embedded or embedded in the remaining oxide 442 of the IMD layers, in order to provide support to the MEMS device. Finally, a metallization layer 428 is deposited on the upper metal layer 412 in order to seal or seal the MEMS device with respect to the outside environment, as shown in Figure 4C. In one embodiment, the MEMS device is manufactured using integrated chip technology based on MEMS, based on NEMS or based on CMOS of MEMS.
En algunas realizaciones, se dispone un dispositivo de MEMS dentro de un circuito integrado. Las etapas de la secuencia de procedimiento de las Figuras 4A-4C se llevan a cabo en las capas de interconexión del circuito integrado. Se producen capas que forman elementos eléctricos y/o electrónicos sobre un sustrato de material semiconductor. Se producen capas de interconexión que incluyen una capa de fondo de material conductor y una capa superior de material conductor, separadas por al menos una capa de material dieléctrico. Se forma una porción del dispositivo de MEMS dentro de las capas de interconexión mediante la aplicación de HF gaseoso a al menos una capa de material dieléctrico, de acuerdo con las etapas de la secuencia de procedimiento que se han descrito en relación con las Figuras 4A-4C.  In some embodiments, a MEMS device is disposed within an integrated circuit. The steps of the process sequence of Figures 4A-4C are carried out in the interconnection layers of the integrated circuit. Layers are produced that form electrical and / or electronic elements on a substrate of semiconductor material. Interconnection layers are produced that include a bottom layer of conductive material and an upper layer of conductive material, separated by at least one layer of dielectric material. A portion of the MEMS device is formed within the interconnection layers by applying gaseous HF to at least one layer of dielectric material, in accordance with the steps of the process sequence that have been described in relation to Figures 4A- 4C.
La Figura 5 representa una vista en perspectiva ilustrativa de un dispositivo de MEMS de un conjunto ordenado, parcialmente fabricado. En particular, la Figura 5A ilustra un elemento resonador 500 fabricado con un puente móvil 502 y conectado con unos anclajes 504. Los anclajes 504 están empotrados en el óxido de la capa de dieléctrico entre metales (IMD -"Inter Metal Dielectic") 506 con el fin de proporcionar soporte al elemento resonador. La deformación o movimiento del puente 502 se ve limitado por la resistencia elástica del metal utilizado para fabricar el puente 502. En una realización, la longitud del puente 502 oscila entre aproximadamente 50 μηι y aproximadamente 100 μm. En algunas realizaciones, la longitud del puente 502 llega hasta aproximadamente 300 μm. Figure 5 represents an illustrative perspective view of a MEMS device of an ordered, partially manufactured assembly. In particular, Figure 5A illustrates a resonator element 500 manufactured with a mobile bridge 502 and connected with anchors 504. The anchors 504 are embedded in the oxide of the dielectric layer between metals (IMD - "Inter Metal Dielectic") 506 with in order to provide support to the resonator element. The deformation or movement of the bridge 502 is limited by the elastic strength of the metal used to make the bridge 502. In one embodiment, the length of the bridge 502 ranges between about 50 μηι and approximately 100 μm. In some embodiments, the length of bridge 502 reaches approximately 300 μm.
La Figura 5B representa una vista en perspectiva ilustrativa de un elemento resonador 500 con una tapa o cubierta 552 (elemento 550). La separación y el tamaño de los orificios de liberación 554 puede ser más importante para los dispositivos de MEMS fabricados dentro de a lo sumo dos capas conductoras de una pila de capas de interconexión. La fabricación típica dentro de la mayor parte de capas, o de todas las capas, de la pila está encaminada al ataque químico superficial excesivo, puesto que existen estructuras de bloqueo del ataque destinadas a evitar un ataque químico superficial no deseado. Sin embargo, para la configuración propuesta (similar a la de las Figuras 2A y 2B), puede utilizarse un control de tiempo para limitar el ataque químico superficial. Como la configuración propuesta requiere que el HF gaseoso se desplace verticalmente, como mucho, por debajo de la segunda capa conductora, al tiempo que se desplaza horizontalmente dentro de todo el dispositivo de MEMS para liberar el dispositivo, es necesario considerar cuidadosamente la separación máxima y el tamaño mínimo de los orificios de liberación practicados en la cubierta. Si los orificios de liberación son demasiado grandes o están demasiado cerca, puede no quedar material tras el ataque químico superficial para implementar el dispositivo de MEMS. En algunas realizaciones, el conjunto ordenado de orificios de liberación es más denso en configuraciones similares a las de las Figuras 2A y 2B, en comparación con una configuración similar a la de la Figura 1 .  Figure 5B depicts an illustrative perspective view of a resonator element 500 with a cover or cover 552 (element 550). The separation and size of the release holes 554 may be more important for MEMS devices manufactured within at most two conductive layers of a stack of interconnecting layers. Typical manufacturing within most layers, or all layers, of the stack is aimed at excessive surface chemical attack, since there are attack blocking structures designed to prevent an unwanted surface chemical attack. However, for the proposed configuration (similar to that of Figures 2A and 2B), a time control can be used to limit the surface chemical attack. As the proposed configuration requires that the gaseous HF travel vertically, at most, below the second conductive layer, while moving horizontally within the entire MEMS device to release the device, it is necessary to carefully consider the maximum separation and the minimum size of the release holes made in the cover. If the release holes are too large or too close, there may be no material left after the surface chemical attack to implement the MEMS device. In some embodiments, the ordered set of release holes is denser in configurations similar to those of Figures 2A and 2B, compared to a configuration similar to that of Figure 1.
Adicionalmente, la configuración propuesta puede requerir unos anclajes 556 para soportar la cubierta 552 y asegurarse de que la cubierta 552 no se dobla ni daña en el dispositivo de MEMS. En algunas realizaciones, se requiere un denso conjunto ordenado de anclajes 556 para soportar la cubierta 552. Además de soportar la cubierta 552, pueden utilizarse unos anclajes 558 para soportar el dispositivo de MEMS. Sin embargo, la necesidad de estos anclajes puede eliminarse simplemente empotrando el dispositivo de MEMS en una capa dieléctrica (por ejemplo, de dióxido de silicio), que se ilustra en la Figura 2B. Puesto que no se ha eliminado por ataque químico superficial nada del material dieléctrico, el dispositivo de MEMS será soportado en su lugar por el material dieléctrico que lo rodea.  Additionally, the proposed configuration may require anchors 556 to support the cover 552 and ensure that the cover 552 does not bend or damage the MEMS device. In some embodiments, a dense array of anchors 556 is required to support the cover 552. In addition to supporting the cover 552, anchors 558 can be used to support the MEMS device. However, the need for these anchors can be eliminated simply by embedding the MEMS device in a dielectric layer (for example, silicon dioxide), which is illustrated in Figure 2B. Since nothing of the dielectric material has been removed by surface chemical attack, the MEMS device will be supported instead by the surrounding dielectric material.
Las Figuras 5C-5G muestran anclajes de columna ilustrativos destinados a soportar la cubierta 552 y/o el dispositivo de MEMS. Los términos "columna" y "anclaje" pueden utilizarse de forma intercambiable para estructuras que soporten la cubierta 552 o un dispositivo de MEMS. La Figura 5C muestra una realización de columna 560 implementada dentro de una pila de capas de metal, que se extiende desde una capa de metal superior 568 hasta una capa de metal 562. En particular, la columna 560 incluye porciones de capa de metal 562-568 separadas por vías 570, dentro de una pila. Las vías pueden tener un área en proyección, o "huella", cuadrada y un tamaño fijo de conformidad con las reglas de diseño de los procedimientos de CMOS. Adicionalmente, las porciones de capa de metal pueden tener un solapamiento mínimo desde la vía. La Figura 5D muestra otra realización de columna 560 en la que unas vías 570 se han extendido o prologado para que tengan una mayor área en proyección. Esto puede ayudar a hacer la columna más robusta y proporcionar un mejor soporte para la cubierta 552 y/o el dispositivo de MEMS. Figures 5C-5G show illustrative column anchors intended to support cover 552 and / or the MEMS device. The terms "column" and "anchor" can be used interchangeably for structures that support deck 552 or a MEMS device. Figure 5C shows an embodiment of column 560 implemented within a stack of metal layers, which extends from an upper metal layer 568 to a metal layer 562. In particular, column 560 includes portions of metal layer 562- 568 separated by tracks 570, inside a stack. The tracks may have a projected area, or "footprint", square and a fixed size in accordance with the design rules of the CMOS procedures. Additionally, the metal layer portions may have minimal overlap from the track. Figure 5D shows another embodiment of column 560 in which tracks 570 have been extended or extended to have a larger projection area. This can help make the column more robust and provide better support for the 552 cover and / or the MEMS device.
La Figura 5E muestra una columna 580 implementada dentro de una pila de capas de metal, que se extiende desde una capa de metal superior 588 hasta una capa de metal 582. La columna 580 tiene una anchura extendida o prologada de porciones de capa de metal 582-588 y vías 590, en comparación con la columna 560, lo que puede ayudar a hacer la columna más robusta. Las porciones de capa de metal y las vías pueden tener anchuras similares (Figura 5E), o bien las porciones de capa de metal pueden presentar un solapamiento mínimo desde las vías de conformidad con las reglas de diseño de los procedimientos de CMOS (Figura 5F). La Figura 5G muestra otra realización de columna 580 en la que una porción de la pila se ha reemplazado por material dieléctrico. La porción de óxido puede tener una forma cuadrada o cualquier otra forma adecuada, de tal manera que el óxido no sea eliminado por ataque químico superficial. Por ejemplo, la capa de metal superior 588 puede no tener orificios de liberación con el fin de conservar el óxido situado por debajo. La combinación de metal y óxido puede proporcionar una mayor robustez, en comparación con otras implementaciones.  Figure 5E shows a column 580 implemented within a stack of metal layers, which extends from an upper metal layer 588 to a metal layer 582. Column 580 has an extended or extended width of portions of metal layer 582 -588 and 590 tracks, compared to column 560, which can help make the column more robust. The metal layer portions and the tracks may have similar widths (Figure 5E), or the metal layer portions may have minimal overlap from the tracks in accordance with the design rules of the CMOS procedures (Figure 5F) . Figure 5G shows another embodiment of column 580 in which a portion of the cell has been replaced by dielectric material. The oxide portion may have a square shape or any other suitable shape, such that the oxide is not removed by surface chemical attack. For example, the upper metal layer 588 may not have release holes in order to retain the oxide below. The combination of metal and oxide can provide greater robustness, compared to other implementations.
La Figura 6A representa una vista esquemática ilustrativa de un conjunto ordenado 600 de dispositivos de MEMS 602. En ciertos casos, un dispositivo de MEMS fabricado dentro de capas de interconexión de un circuito integrado utilizando la solución descrita, puede no tener la sensibilidad requerida para la aplicación a la que está destinado. Esto es debido a que el elemento de MEMS liberado desde las capas de material conductor puede no tener una longitud o masa suficiente. Por ejemplo, un acelerómetro de MEMS puede requerir cierta masa de prueba o crítica para utilizarse en el entorno a que está destinado. A fin de conseguir una masa o longitud crítica para que el dispositivo de MEMS tenga la sensibilidad que se busca, puede fabricarse un conjunto ordenado de dispositivos de MEMS dentro de las capas de interconexión. Por ejemplo, puede utilizarse un conjunto ordenado de acelerómetros de MEMS que tienen una masa de prueba combinada apropiada, como acelerómetro que tiene la masa de prueba requerida. Figure 6A depicts an illustrative schematic view of an ordered array 600 of MEMS devices 602. In certain cases, a MEMS device manufactured within interconnecting layers of an integrated circuit using the described solution may not have the sensitivity required for application to which it is intended. This is because the MEMS element released from the layers of conductive material may not be of sufficient length or mass. For example, a MEMS accelerometer may require some test or critical mass to be used in the environment to which it is intended. In order to achieve a critical mass or length so that the MEMS device has the desired sensitivity, an ordered set of MEMS devices can be manufactured within the interconnection layers. For example, an ordered set of MEMS accelerometers having an appropriate combined test mass, such as an accelerometer having the required test mass, can be used.
Por otra parte, debido al ahorro de área de silicio que se obtiene de la solución descrita, pueden fabricarse múltiples conjuntos ordenados de MEMS dentro de las capas de interconexión, y disponerse por encima de un circuito integrado específico de aplicación (ASIC -"application specific integrated circuit") que es capaz de controlar selectivamente los conjuntos ordenados. En algunas realizaciones, se fabrica un único tipo de dispositivo de MEMS por encima del ASIC. Ciertos dispositivos pueden no ser utilizados inicialmente y reservarse como redundancia en el caso de fallo de otro dispositivo que se esté utilizando. En caso de fallo de un dispositivo como consecuencia de problemas durante la fabricación, el dispositivo redundante puede ayudar a mejorar la capacidad de producción. En caso de fallo de un dispositivo durante el funcionamiento, el dispositivo redundante puede ayudar a mejorar la fiabilidad de largo plazo.  On the other hand, due to the silicon area savings obtained from the described solution, multiple ordered sets of MEMS can be manufactured within the interconnection layers, and arranged above an application-specific integrated circuit (ASIC - "application specific integrated circuit ") which is capable of selectively controlling the ordered sets. In some embodiments, a single type of MEMS device is manufactured above the ASIC. Certain devices may not be used initially and be reserved as redundancy in the event of failure of another device being used. In case of failure of a device as a result of problems during manufacturing, the redundant device can help improve production capacity. In case of failure of a device during operation, the redundant device can help improve long-term reliability.
En algunas realizaciones, una capa de metal se somete a ataque químico superficial utilizando una detención basada en el tiempo, a fin de formar un dispositivo de MEMS que tiene una placa móvil y unos muelles o resortes fijados a ella. Puesto que el dispositivo de MEMS está formado a partir de una única capa de metal, una placa movible típica puede doblarse o hundirse con un electrodo u óxido circundante. En tal caso, la placa movible puede quedar dividida en múltiples capas movibles más pequeñas. En consecuencia, puede construirse un conjunto ordenado de dispositivos de MEMS, cada uno de los cuales tiene una placa movible y unos resortes fijados a ella. Semejante conjunto ordenado tendrá una rigidez efectivamente más elevada como consecuencia de la rigidez combinada de los resortes. Sin embargo, pueden utilizarse resortes blandos para contrarrestar la rigidez (que se describen adicionalmente en relación con la Figura 6C, más adelante). Otra ventaja que ofrece semejante conjunto ordenado de dispositivos de MEMS hechos a partir de una única capa de metal, es que puede ser apilado encima de un circuito integrado específico de aplicación (ASIC), debido a su pequeño espesor. En algunas realizaciones, el conjunto geométricamente ordenado de dispositivos de MEMS incluye elementos redundantes para mejorar la capacidad de producción y/o la fiabilidad de largo plazo. Por ejemplo, el conjunto ordenado de dispositivos de MEMS puede incluir un cierto número de acelerómetros. En algunas realizaciones, el conjunto ordenado de dispositivos de MEMS incluye sensores de diferentes tipos. Por ejemplo, el conjunto ordenado de dispositivos de MEMS puede incluir un magnetómetro, un giroscopio y un acelerómetro. En otro ejemplo, el conjunto ordenado de dispositivos de MEMS puede incluir un magnetómetro en tres dimensiones, o 3-D, un giroscopio 3-D y un acelerómetro 3-D. En algunas realizaciones, el conjunto ordenado de dispositivos de MEMS se construye encima de un ASIC. In some embodiments, a metal layer is subjected to superficial chemical attack using a time-based arrest, in order to form a MEMS device having a movable plate and springs or springs attached to it. Since the MEMS device is formed from a single metal layer, a typical movable plate can bend or sink with a surrounding electrode or oxide. In such a case, the movable plate can be divided into multiple smaller movable layers. Consequently, an ordered set of MEMS devices can be constructed, each of which has a movable plate and springs attached to it. Such an ordered set will have a higher stiffness as a result of the combined stiffness of the springs. However, soft springs can be used to counteract stiffness (which are further described in relation to Figure 6C, below). Other The advantage offered by such an ordered set of MEMS devices made from a single metal layer is that it can be stacked on top of an application-specific integrated circuit (ASIC), due to its small thickness. In some embodiments, the geometrically arranged set of MEMS devices includes redundant elements to improve production capacity and / or long-term reliability. For example, the ordered set of MEMS devices may include a certain number of accelerometers. In some embodiments, the ordered set of MEMS devices includes sensors of different types. For example, the ordered set of MEMS devices may include a magnetometer, a gyroscope and an accelerometer. In another example, the ordered set of MEMS devices may include a three-dimensional magnetometer, or 3-D, a 3-D gyroscope and a 3-D accelerometer. In some embodiments, the ordered set of MEMS devices is constructed on top of an ASIC.
En algunas realizaciones, los dispositivos de MEMS incluyen un conjunto ordenado de detección o sensor de dispositivos MEMS que está configurado para funcionar, en su conjunto, como un resonador. En algunas realizaciones, el conjunto ordenado sensor incluye entre aproximadamente 60 y aproximadamente 200 dispositivos de MEMS. En algunas realizaciones, el conjunto ordenado sensor está densamente formado en una pequeña área de las capas de interconexión con el fin de reducir el desajuste de frecuencias entre los dispositivos de MEMS del conjunto ordenado de detección. En algunas realizaciones, el conjunto ordenado sensor tiene un factor Q de 100 o superior. En algunas realizaciones, el conjunto ordenado de detección tiene un factor Q que va desde aproximadamente 5 hasta aproximadamente 20.  In some embodiments, MEMS devices include an ordered detection or sensor assembly of MEMS devices that is configured to function, as a whole, as a resonator. In some embodiments, the sensor array includes between about 60 and about 200 MEMS devices. In some embodiments, the ordered sensor assembly is densely formed in a small area of the interconnection layers in order to reduce the frequency mismatch between the MEMS devices of the ordered detection assembly. In some embodiments, the sensor array has a Q factor of 100 or higher. In some embodiments, the ordered detection set has a Q factor that ranges from about 5 to about 20.
En algunas realizaciones, el conjunto ordenado de MEMS se utiliza para construir un giroscopio. Dicho giroscopio puede requerir la implementación de una gran masa de prueba o crítica mediante el uso de tecnología de MEMS. En realizaciones en las que las capas estructurales producidas mediante la tecnología de MEMS son delgadas, puede producirse un conjunto ordenado de pequeños elementos o dispositivos para procurar un efecto similar al de una gran masa de prueba. Semejante giroscopio puede requerir, adicionalmente, autocalibración para compensar, por ejemplo, propiedades mecánicas que pueden cambiar con la temperatura, el envejecimiento y la producción. En algunas realizaciones, pueden medirse y almacenarse valores de la masa y las capacidades de prueba o críticas del giroscopio, en tanto que otros parámetros, tales como la rigidez vertical y lateral, pueden ser autocalibrados. En algunas realizaciones puede utilizarse un algoritmo de autocalibración que no necesite de la medición o la calibración de la masa y las capacidades de prueba. In some embodiments, the ordered set of MEMS is used to build a gyroscope. Such a gyroscope may require the implementation of a large test or critical mass through the use of MEMS technology. In embodiments in which the structural layers produced by MEMS technology are thin, an ordered set of small elements or devices can be produced to achieve an effect similar to that of a large test mass. Such a gyroscope may additionally require self-calibration to compensate, for example, mechanical properties that may change with temperature, aging and production. In some embodiments, they can be measured and stored values of the mass and the test or critical capabilities of the gyroscope, while other parameters, such as vertical and lateral stiffness, can be self-calibrated. In some embodiments, a self-calibration algorithm that does not require the measurement or calibration of the mass and the test capabilities can be used.
En algunas realizaciones, el conjunto ordenado de MEMS se utiliza para construir un magnetómetro. El magnetómetro puede hacerse con un conjunto ordenado de pequeños dispositivos (o elementos). El conjunto ordenado de pequeños dispositivos puede minimizar el doblamiento o flexión de las capas estructurales. El conjunto ordenado de pequeños dispositivos puede simplificar el ataque químico superficial al permitir, por ejemplo, que el ataque sea más corto y más controlable. Semejante conjunto ordenado de pequeños dispositivos puede proporcionar una gran masa y/o área agregada. El conjunto ordenado puede permitir la detección de magnitudes físicas con la sensibilidad apropiada y puede proporcionar una fiabilidad más alta que la de uno o más dispositivos grandes. En algunas realizaciones, los pequeños dispositivos del conjunto ordenado pueden ser magnetómetros nanométricos o nanomagnetómetros.  In some embodiments, the ordered set of MEMS is used to construct a magnetometer. The magnetometer can be made with an ordered set of small devices (or elements). The orderly set of small devices can minimize the bending or bending of the structural layers. The ordered set of small devices can simplify the superficial chemical attack by allowing, for example, the attack to be shorter and more controllable. Such an ordered set of small devices can provide a large mass and / or aggregate area. The ordered array can allow the detection of physical quantities with the appropriate sensitivity and can provide a higher reliability than that of one or more large devices. In some embodiments, the small devices of the array can be nanometric magnetometers or nanomagnetometers.
La Figura 6B representa una vista esquemática ilustrativa de un conjunto ordenado y reconfigurable de dispositivos de MEMS. En algunas realizaciones se fabrican múltiples conjuntos ordenados, cada uno de los cuales tiene un tipo diferente de dispositivo de MEMS, y, a continuación, el ASIC puede conmutar entre cada conjunto ordenado según se requiera. Por ejemplo, puede formarse una célula de detección de movimiento reconfigurable 640 que incluye un conjunto ordenado 644 de acelerómetro (que incluye los elementos 642), un conjunto ordenado 648 de giroscopio (que incluye los elementos 646), un conjunto ordenado 652 de compás (que incluye los elementos 650), y un conjunto ordenado 656 de magnetómetro (que incluye los elementos 654), fabricados dentro de las capas de interconexión del ASIC. El controlador de ASIC 658 de la célula de detección de movimiento puede seleccionar entonces si la célula de detección de movimiento debe ofrecer la capacidad funcional de un acelerómetro, de un giroscopio, de un compás o de un magnetómetro. En algunas realizaciones, se construye un sensor de movimiento híbrido que tiene elementos redundantes así como múltiples tipos de conjuntos ordenados de dispositivos, por lo que ofrece los beneficios combinados de susceptibilidad de reconfiguración, redundancia y fiabilidad.Figure 6B represents an illustrative schematic view of an ordered and reconfigurable set of MEMS devices. In some embodiments, multiple ordered assemblies are manufactured, each of which has a different type of MEMS device, and then the ASIC can switch between each ordered array as required. For example, a reconfigurable motion detection cell 640 may be formed that includes an ordered accelerometer assembly 644 (which includes elements 642), an ordered gyro set 648 (which includes elements 646), an ordered set 652 of compass ( which includes elements 650), and an ordered 656 magnetometer assembly (which includes elements 654), manufactured within the interconnection layers of the ASIC. The ASIC 658 controller of the motion detection cell can then select whether the motion detection cell should offer the functional capability of an accelerometer, gyroscope, compass or magnetometer. In some embodiments, a hybrid motion sensor is constructed that has redundant elements as well as multiple types of ordered sets of devices, so it offers the benefits combined of susceptibility of reconfiguration, redundancy and reliability.
La Figura 6C representa una vista en perspectiva ilustrativa de un conjunto ordenado 680 de dispositivos de MEMS 682. Los dispositivos 682 incluyen unos anclajes 684. A fin de fabricar dispositivos tales como magnetómetros o sensores de inercia, es necesaria una cantidad crítica de longitud o de masa, respectivamente, para conseguir una sensibilidad dada que se desee. Para conseguir esta masa o longitud crítica, el conjunto ordenado 680 puede incluir elementos 682 destinados a funcionar como un único dispositivo que tiene la longitud o masa pretendida. Figure 6C depicts an illustrative perspective view of an ordered set 680 of MEMS devices 682. Devices 682 include anchors 684. In order to manufacture devices such as magnetometers or inertia sensors, a critical amount of length or length is required. mass, respectively, to achieve a given sensitivity that is desired. To achieve this critical mass or length, the array 680 may include elements 682 intended to function as a single device having the intended length or mass.
Puesto que cada dispositivo de MEMS 682 está hecho a partir de una única capa de metal, una placa movible típica puede doblarse o hundirse con un electrodo u óxido circundante. En tal caso, la placa movible puede ser dividida en múltiples placas movibles más pequeñas. Puede construirse, en consecuencia, un conjunto ordenado de dispositivos de MEMS cada uno de los cuales tiene una placa movible y muelles o resortes fijados a ella. Dicho conjunto ordenado tendrá una rigidez efectivamente superior como consecuencia de la rigidez combinada de los resortes. Sin embargo, pueden utilizarse resortes blandos para contrarrestar la rigidez. Tales resortes blandos se fabrican como resortes delgados de una sola capa, los cuales se fijan a la placa movible y se doblan conjuntamente con la placa movible. Así, puesto que no hay ninguna porción rígida que añada rigidez, incluso la rigidez combinada de los resortes blandos puede ser adecuada para permitir a las múltiples placas movibles funcionar juntas como un único dispositivo.  Since each MEMS 682 device is made from a single layer of metal, a typical movable plate can bend or sink with an electrode or surrounding oxide. In such a case, the movable plate can be divided into multiple smaller movable plates. Consequently, an ordered set of MEMS devices can each be constructed, each of which has a movable plate and springs or springs attached to it. Said ordered assembly will have a higher rigidity as a result of the combined stiffness of the springs. However, soft springs can be used to counteract stiffness. Such soft springs are manufactured as thin single layer springs, which are fixed to the movable plate and folded together with the movable plate. Thus, since there is no rigid portion that adds stiffness, even the combined stiffness of the soft springs may be suitable to allow the multiple movable plates to work together as a single device.
Para los dispositivos que requieren una gran factor de calidad, Q ("quality"), por ejemplo, un magnetómetro o un giroscopio, si los elementos del conjunto ordenado están desacoplados mecánicamente, el factor Q del conjunto ordenado será bajo debido al desajuste de frecuencias de los elementos individuales. El desajuste de frecuencias puede ser debido a las tolerancias del procedimiento y al diferente historial de uso de cada elemento individual. Un bajo Q del conjunto ordenado, a pesar de tener un elevado Q para los elementos individuales, puede resultar ventajoso en el diseño de acelerómetros, en el que existe, típicamente, un compromiso entre el elevado Q requerido para reducir el ruido browniano y el elevado Q requerido para reducir una respuesta de oscilación transitoria a una función de escalón y la amplificación de las vibraciones de alta frecuencia. Con estos conjuntos ordenados de elementos desacoplados mecánicamente, es posible tener un elevado Q para los elementos individuales, que es lo importante a la hora de reducir el ruido browniano, y un bajo Q para el conjunto ordenado, que es lo que cuenta para evitar la amplificación de las vibraciones de alta frecuencia y la oscilación transitoria de la respuesta a un escalón. Los presentes Solicitantes han observado experimentalmente que los valores de Q del conjunto ordenado son suficientes para conseguir las expectativas de sensibilidad para sensores de movimiento satisfactorios para el mercado de los consumidores. For devices that require a large quality factor, Q ("quality"), for example, a magnetometer or gyroscope, if the elements of the ordered set are mechanically decoupled, the Q factor of the ordered set will be low due to frequency mismatch of the individual elements. The frequency mismatch may be due to the tolerances of the procedure and the different usage history of each individual element. A low Q of the ordered array, despite having a high Q for the individual elements, can be advantageous in the design of accelerometers, in which there is typically a compromise between the high Q required to reduce Brownian noise and the high Q required to reduce a transient oscillation response to a step function and amplification of high frequency vibrations. With these sets ordered of mechanically decoupled elements, it is possible to have a high Q for the individual elements, which is the important thing when it comes to reducing Brownian noise, and a low Q for the ordered set, which is what counts to avoid amplifying the High frequency vibrations and transient oscillation of the response to a step. The present Applicants have experimentally observed that the Q values of the ordered set are sufficient to achieve the sensitivity expectations for motion sensors satisfactory to the consumer market.
La construcción de un conjunto ordenado de elementos acoplados mecánicamente puede ser un reto en el caso de un magnetómetro. Como cada elemento está formado a partir de una única capa de metal, cualquier acoplamiento mecánico puede cortocircuitar eléctricamente los elementos, y puede no fluir la corriente en la dirección deseada. En algunas realizaciones, los elementos se unen por medio de una subcapa de alta densidad de óxido de silicio, que permanecerá sin ser atacada químicamente en su superficie mientras una subcapa de baja densidad de óxido es eliminada en la misma área, al tiempo que la subcapa de alta densidad permanece sin ser atacada químicamente en su superficie. Con el fin de facilitar el ataque químico superficial de una subcapa de baja densidad por debajo de una capa conductora inferior, puede colocarse una columna justo por debajo de un orificio de liberación de la capa conductora superior. Los presentes Solicitantes han observado que dicha columna puede hacer avanzar el HF gaseoso más rápido verticalmente por debajo de la capa conductora inferior, y ayuda a atacar químicamente en sentido horizontal la superficie de la subcapa de baja densidad de objetivo.  The construction of an ordered set of mechanically coupled elements can be a challenge in the case of a magnetometer. Since each element is formed from a single layer of metal, any mechanical coupling can electrically short-circuit the elements, and current may not flow in the desired direction. In some embodiments, the elements are joined by means of a high density silicon oxide sublayer, which will remain unchecked chemically on its surface while a low oxide density sublayer is removed in the same area, while the sublayer High density remains unchecked chemically on its surface. In order to facilitate the surface chemical attack of a low density sublayer below a lower conductive layer, a column can be placed just below a release hole of the upper conductive layer. The present Applicants have observed that said column can advance the gaseous HF faster vertically below the lower conductive layer, and helps to chemically attack the surface of the target low density sublayer horizontally.
En algunas realizaciones, los elementos se unen por medio de óxido de una capa de metal-aislante-metal (MIM -"metal-insulator-metal"), por ejemplo, nitruro de silicio enriquecido con silicio, que no puede ser fácilmente eliminado por ataque químico superficial junto con el nitruro de silicio. Esto puede requerir que se implemente la adición de condensadores de MIM al conjunto ordenado entre una capa conductora superior y una segunda capa conductora adyacente. En algunas realizaciones, se utiliza, en lugar de la capa de MIM, una subcapa de nitruro de silicio que se encuentra dentro de la capa de dieléctrico entre metales de ciertos procedimientos de CMOS (por ejemplo, un procedimiento de CMOS de 130 nm o menos). In some embodiments, the elements are joined by oxide of a metal-insulator-metal (MIM) layer, for example, silicon-enriched silicon nitride, which cannot be easily removed by Superficial chemical attack along with silicon nitride. This may require the addition of MIM capacitors to the ordered assembly between an upper conductive layer and a second adjacent conductive layer. In some embodiments, instead of the MIM layer, a silicon nitride sublayer is used that is within the dielectric layer between metals of certain CMOS processes (e.g., a CMOS procedure of 130 nm or less).
La Figura 7A representa una vista esquemática ilustrativa de un chip 700 que tiene un conjunto ordenado de dispositivos de MEMS 702 dispuestos dentro de un circuito integrado. El chip 700 ilustrado incluye dispositivos de MEMS 702 que se han fabricado dentro de las capas de interconexión del circuito integrado utilizando la mayoría de las capas de interconexión o todas ellas. Como resultado de ello, esta configuración deja poco espacio en las capas de interconexión para el encaminamiento hacia y desde los elementos electrónicos que también se encuentran en el dispositivo integrado. En lugar de ello, es necesario asignar un área de silicio adicional para el encaminamiento 704. En esta configuración, no puede utilizarse para el encaminamiento, típicamente, cualquier área de silicio del chip asignada para el dispositivo de MEMS, y, por consiguiente, esta se añade al área de silicio requerida para fabricar el circuito integrado.  Figure 7A depicts an illustrative schematic view of a chip 700 having an ordered set of MEMS devices 702 disposed within an integrated circuit. The illustrated chip 700 includes MEMS 702 devices that have been manufactured within the interconnection layers of the integrated circuit using most or all of the interconnection layers. As a result, this configuration leaves little space in the interconnection layers for routing to and from the electronic elements that are also found in the integrated device. Instead, it is necessary to allocate an additional silicon area for routing 704. In this configuration, any silicon area of the chip assigned for the MEMS device, and therefore, this, cannot be used for routing. It is added to the silicon area required to manufacture the integrated circuit.
La Figura 7B representa otra vista esquemática ilustrativa de un chip 750 que tiene un conjunto de dispositivos de MEMS 752 dispuestos dentro de un circuito integrado. El chip 750 ilustrado incluye dispositivos de MEMS 752 que se han fabricado dentro de las capas de interconexión del circuito integrado mediante el uso de a lo sumo dos capas de material conductor. Como resultado de ello, se utilizan una o más de las restantes capas de material conductor para encaminar las conexiones 756, además de para encaminar las conexiones 754 existentes en el chip. De acuerdo con ello, el dispositivo de MEMS 752 puede ser fabricado dentro de una pila de capas de interconexión de un circuito integrado, al tiempo que se sigue permitiendo el encaminamiento de las conexiones 756 dentro de las capas inferiores de la pila, con lo que se reduce el área de silicio necesaria para el chip.  Figure 7B depicts another illustrative schematic view of a chip 750 having a set of MEMS devices 752 arranged within an integrated circuit. Chip 750 illustrated includes MEMS 752 devices that have been manufactured within the interconnection layers of the integrated circuit by using at most two layers of conductive material. As a result, one or more of the remaining layers of conductive material are used to route connections 756, in addition to routing connections 754 existing in the chip. Accordingly, the MEMS device 752 can be manufactured within a stack of interconnecting layers of an integrated circuit, while still allowing the routing of connections 756 within the lower layers of the stack, thereby the area of silicon needed for the chip is reduced.
Las Figuras 8A y 8B representan vistas esquemáticas ilustrativas de varios elementos resonadores. En el caso de sensores de inercia, es preferible maximizar la masa de un elemento resonador con el fin de recibir la frecuencia de resonancia. En la Figura 8A se ilustra una de tales configuraciones para un elemento resonador 800. El elemento resonador 800 incluye un puente 804 con unos salientes laterales en voladizo adicionales 802, a fin de maximizar la masa del elemento resonador 800. Este tipo de elemento resonador puede ser utilizado, por ejemplo, como giroscopio. En la Figura 8B se ilustran configuraciones adicionales 850 para sensores de inercia. En oposición a la maximización de la masa en el caso de un giroscopio, es preferible para un magnetómetro un sensor de inercia que tenga un área minimizada que no lleve corriente (a fin de maximizar la relación entre señal y ruido para el movimiento browniano). De acuerdo con ello, pueden ser de utilidad cualesquiera configuraciones 852-862, dependiendo del tipo de dispositivo que se considere, por ejemplo, un giroscopio, un compás, un acelerómetro, un magnetómetro o cualquier otro dispositivo adecuado. Pueden preferirse los puentes si se necesita maximizar la longitud. Esto es debido a que el presente Solicitante ha verificado experimentalmente que la tensión residual en las capas de metal de los procedimientos de CMOS es normalmente de tracción, y, por tanto, esta tiende a mantener un alto grado de llanura en los puentes. Por ejemplo, pueden utilizarse puentes para construir un magnetómetro en el que se requiera el flujo de la corriente en una dirección en todo momento. Puesto que los puentes se conectan en serie, la corriente fluirá tan solo en una única dirección, de manera que son muy adecuados para la construcción de un magnetómetro. Sin embargo, si la condición es reducir el desajuste de frecuencias para maximizar el factor de calidad, Q, del conjunto ordenado, entonces una estructura de tipo de saliente en voladizo puede ser una mejor opción. Figures 8A and 8B represent illustrative schematic views of several resonator elements. In the case of inertia sensors, it is preferable to maximize the mass of a resonator element in order to receive the resonance frequency. One such configuration for a resonator element 800 is illustrated in Figure 8A. The resonator element 800 includes a bridge 804 with additional cantilever side projections 802, in order to maximize the mass of the resonator element 800. This type of resonator element can be used, for example, as a gyroscope. Additional configurations 850 for sensor sensors are illustrated in Figure 8B inertia. In contrast to the maximization of the mass in the case of a gyroscope, it is preferable for a magnetometer an inertia sensor that has a minimized area that does not carry current (in order to maximize the signal-to-noise ratio for Brownian motion). Accordingly, any 852-862 configurations may be useful, depending on the type of device considered, for example, a gyroscope, a compass, an accelerometer, a magnetometer or any other suitable device. Bridges may be preferred if the length needs to be maximized. This is due to the fact that the present Applicant has experimentally verified that the residual tension in the metal layers of the CMOS processes is normally tensile, and therefore, this tends to maintain a high degree of plainness in the bridges. For example, bridges can be used to construct a magnetometer in which current flow in one direction is required at all times. Since the bridges are connected in series, the current will flow only in one direction, so that they are very suitable for the construction of a magnetometer. However, if the condition is to reduce the frequency mismatch to maximize the quality factor, Q, of the ordered array, then a cantilever projection type structure may be a better option.
La Figura 8C representa una vista en perspectiva ilustrativa de un dispositivo resonador de MEMS 880 que incluye un elemento resonador 882, unos miembros de soporte 884, fijados al elemento resonador 882, y un elemento de calibración 888, dispuesto próximo al elemento resonador 882. En la realización mostrada, el elemento de calibración 888 incluye un alambre de metal dispuesto próximo al elemento resonador 888, en una disposición en paralelo, y se ha dispuesto una porción del elemento de calibración 888 dentro de una capa de material dieléctrico 886 no sometida a ataque químico superficial. En algunas realizaciones, el elemento de calibración incluye un inductor dispuesto en posición próxima al elemento resonador. El elemento resonador se calibra basándose en un campo magnético generado por el paso de corriente a través del elemento de calibración.  Figure 8C depicts an illustrative perspective view of a MEMS resonator device 880 that includes a resonator element 882, support members 884, fixed to the resonator element 882, and a calibration element 888, arranged close to the resonator element 882. In In the embodiment shown, the calibration element 888 includes a metal wire arranged close to the resonator element 888, in a parallel arrangement, and a portion of the calibration element 888 is disposed within a layer of dielectric material 886 not subjected to attack surface chemical In some embodiments, the calibration element includes an inductor disposed in a position close to the resonator element. The resonator element is calibrated based on a magnetic field generated by the passage of current through the calibration element.
El elemento resonador 882 se ha formado dentro de una primera capa de material conductor. El elemento de calibración 888 se ha formado dentro de una segunda capa, adyacente y más baja, de material conductor. El elemento resonador 882 se calibra adicionalmente basándose en una capacidad generada entre la primera capa de material conductor y la segunda capa de material conductor. La capacidad ayuda a determinar una distancia entre el elemento de calibración y el elemento resonador. The resonator element 882 has been formed within a first layer of conductive material. Calibration element 888 has been formed within a second, adjacent and lower layer of conductive material. The resonator element 882 is further calibrated based on a capacity generated between the first layer of conductive material and the second layer of conductive material. The capacity helps determine a distance between the calibration element and the resonator element.
En algunas realizaciones, el dispositivo resonador de MEMS 880 incluye, de manera adicional, un primer elemento capacitivo, dispuesto dentro de la primera capa de material conductor, y un segundo elemento capacitivo, dispuesto dentro de la segunda capa, adyacente, de material conductor. El elemento resonador 882 se calibra adicionalmente basándose en una primera capacidad del primer elemento capacitivo. La primera capacidad ayuda a determinar un espesor de la primera capa de material conductor. El elemento resonador 882 se calibra, de manera adicional, basándose en una segunda capacidad del segundo elemento capacitivo. La segunda capacidad ayuda a determinar un espesor de la segunda capa de material conductor.  In some embodiments, the MEMS 880 resonator device additionally includes a first capacitive element, disposed within the first layer of conductive material, and a second capacitive element, disposed within the second, adjacent layer of conductive material. The resonator element 882 is further calibrated based on a first capacity of the first capacitive element. The first capacity helps determine a thickness of the first layer of conductive material. The resonator element 882 is further calibrated based on a second capacity of the second capacitive element. The second capacity helps determine a thickness of the second layer of conductive material.
En algunas realizaciones, el elemento resonador incluye un magnetómetro, y la calibración del elemento resonador incluye calibrar una ganancia del magnetómetro. Sin embargo, además de la ganancia, puede ser necesario calibrar también un descentramiento del magnetómetro. Esto puede ser deseable para evitar un alto descentramiento que sature la cadena de detección, o que requiera un terminal final poco factible que tenga un elevado intervalo dinámico, poco realista, así como para evitar un error constante o fijo en la salida.  In some embodiments, the resonator element includes a magnetometer, and the calibration of the resonator element includes calibrating a gain of the magnetometer. However, in addition to the gain, it may also be necessary to calibrate a magnetometer runout. This may be desirable to avoid high runout that saturates the detection chain, or that requires an unfeasible end terminal that has a high dynamic range, unrealistic, as well as to avoid a constant or fixed error in the output.
Puede haber dos fuentes de descentramiento en un magnetómetro. La primera fuente pueden ser los elementos electrónicos. El descentramiento puede ser medido desactivando o cortando la corriente de Lorentz, de manera que no se genere ninguna fuerza magnética. La segunda fuente puede ser la fuerza electrostática que se suma a la fuerza magnética. La fuerza electrostática es proporcional al cuadrado de la tensión eléctrica o voltaje. Si existe una CC (corriente continua -"DC (direct curren.)") y una componente de tensión de CA (corriente alterna -"AC (alternating curren.)") (Vdc y Vac) a una frecuencia f0, el cuadrado generará componentes de fuerza electrostática a CC, f0 y 2*f0. La fuerza magnética tendrá únicamente una componente a f0 (puesto que la corriente de Lorentz es una corriente CA a f0, la frecuencia de resonancia del elemento resonante). En consecuencia, existe una componente de la fuerza electrostática que se sumará a la fuerza magnética añadiendo un descentramiento, puesto que esta será un término constante con independencia de la fuerza magnética. There may be two sources of runout in a magnetometer. The first source may be electronic elements. The runout can be measured by deactivating or cutting the Lorentz current, so that no magnetic force is generated. The second source may be the electrostatic force that adds to the magnetic force. The electrostatic force is proportional to the square of the electrical voltage or voltage. If there is a DC (direct current - "DC (direct curren.)") And an AC voltage component (alternating current - "AC (alternating curren.)") (Vdc and Vac) at a frequency f0, the square will generate electrostatic force components at DC, f0 and 2 * f0. The magnetic force will have only one component at f0 (since the Lorentz current is an AC current at f0, the resonant frequency of the resonant element). Consequently, there is a component of the electrostatic force that will add to the magnetic force by adding a runout, since this will be a term constant regardless of the magnetic force.
Este término de la fuerza electrostática a fO es proporcional a Vdc * Vac. Puesto que Vac aparece debido a la caída de tensión de la corriente de Lorentz a través de las resistencias del elemento resonador, no puede ser eliminada. En vez de eso, Vdc puede ser reducida hasta ser tan próxima a cero como sea posible. Por ejemplo, una Vdc de 10 μν puede bastar para tener una contribución casi por debajo del nivel o magnitud de ruido de un magnetómetro que tiene aproximadamente 1 μΤ. Un problema puede ser que el descentramiento de los elementos electrónicos está comprendido, típicamente, en el intervalo entre 20 mV y 50 mV, de tal manera que puede no ser posible controlar esa tensión de CC, al menos un bucle abierto.  This term of the electrostatic force at fO is proportional to Vdc * Vac. Since Vac appears due to the voltage drop of the Lorentz current through the resistances of the resonator element, it cannot be eliminated. Instead, Vdc can be reduced to as close to zero as possible. For example, a Vdc of 10 μν may be sufficient to have a contribution almost below the level or magnitude of noise of a magnetometer having approximately 1 μΤ. A problem may be that the decentralization of the electronic elements is typically in the range between 20 mV and 50 mV, such that it may not be possible to control that DC voltage, at least one open loop.
En algunas realizaciones, puede utilizarse un convertidor de digital a analógico (DAC -"digital-to-analog converter") para probar diferentes tensiones hasta que se llegue a la tensión requerida. A fin de determinar la tensión de CC requerida desde el DAC para que Vdc sea cercana a cero (por ejemplo, comprendida entre aproximadamente -10 μν y aproximadamente +10 μν), se detecta el efecto de Vdc. Esto puede conseguirse colocando un electrodo bien por debajo del elemento resonador (para una vibración fuera del plano, es decir, componentes de campo magnético X o Y), o bien paralelo al elemento resonador (para una vibración dentro del plano, esto es, la componente de campo magnético Z). El electrodo puede ser excitado electrostáticamente con una señal de CA a una frecuencia fe, de tal manera que el puente presenta alguna deflexión a esta frecuencia fe. Esto modula la componente de fuerza electrostática pero no la componente magnética, lo que ayuda a distinguir las dos componentes. Subsiguientemente, la tensión del DAC se ajusta de tal manera que esta componente espectral de la corriente detectada, que estará situada a una distancia fe de la fuerza magnética, se minimiza. Alternativamente, la determinación de la tensión de CC requerida puede llevarse a cabo añadiendo una tensión de CC, aplicando dos tensiones diferentes, y resolviendo un sistema de ecuaciones con el fin de hallar el valor de tensión requerido.  In some embodiments, a digital-to-analog converter (DAC) can be used to test different voltages until the required voltage is reached. In order to determine the DC voltage required from the DAC so that Vdc is close to zero (for example, between approximately -10 μν and approximately +10 μν), the effect of Vdc is detected. This can be achieved by placing an electrode well below the resonator element (for an out-of-plane vibration, that is, X or Y magnetic field components), or parallel to the resonator element (for an in-plane vibration, that is, the magnetic field component Z). The electrode can be electrostatically excited with an AC signal at a faith frequency, such that the bridge presents some deflection at this faith frequency. This modulates the electrostatic force component but not the magnetic component, which helps distinguish the two components. Subsequently, the voltage of the DAC is adjusted in such a way that this spectral component of the detected current, which will be located at a distance faith from the magnetic force, is minimized. Alternatively, the determination of the required DC voltage can be carried out by adding a DC voltage, applying two different voltages, and solving a system of equations in order to find the required voltage value.
A los filtros de RF, por ejemplo, en aplicaciones de telefonía celular y en comunicaciones de UMTS, se les exige, por lo común, que tengan pérdidas menores que 3 dB y atenuaciones de más de 50 dB, con bandas de paso estrechas. Esto puede implicar un factor de calidad, Q, del orden de 100 en el intervalo de frecuencias de 0,8 GHz a 3 GHz. Debido a estas especificaciones de la demanda, tales filtros no pueden ser implementados utilizando filtros de LC pasivos, debido al alto Q requerido. En otras palabras, los inductores y los condensadores, especialmente si están integrados en un chip de CMOS, dan como resultado resistencias que degradan el factor de calidad y/o las pérdidas de inserción del filtro, por lo que no son una opción viable. Estos filtros no pueden ser implementados digitalmente tanto porque, en la transmisión, necesitan manejar señales de potencia, como por que, en la recepción, las necesidades de consumo de potencia serían enormes, ya que no es posible reducir la anchura de banda de la señal hasta que se aplica el filtro de RF. RF filters, for example, in cell phone applications and UMTS communications, are usually required to have losses of less than 3 dB and attenuations of more than 50 dB, with narrow passbands. This may involve a quality factor, Q, of the order of 100 in the frequency range of 0.8 GHz to 3 GHz. Due to these demand specifications, such filters cannot be implemented using passive LC filters, due to the high Q required. In other words, inductors and capacitors, especially if they are integrated in a CMOS chip, result in resistances that degrade the quality factor and / or filter insertion losses, so they are not a viable option. These filters cannot be implemented digitally because, in the transmission, they need to handle power signals, and because, in reception, the power consumption needs would be enormous, since it is not possible to reduce the signal bandwidth until the RF filter is applied.
Por lo común, tales filtros de RF se implementan utilizando filtros de SAW y de BAW. Los filtros de SAW (Onda Acústica Superficial -"Surface Acoustic Wave") son dispositivos electromecánicos en los que las señales eléctricas son convertidas en una onda mecánica en un dispositivo construido de un cristal piezoeléctrico o cerámica. La Figura 9A representa una vista esquemática de un tal filtro de SAW 900. Esta onda se retarda conforme se propaga a través del dispositivo, antes de ser convertida de vuelta en una señal eléctrica por electrodos adicionales. Las salidas retardadas se recombinan para producir una implementación analógica directa de un filtro de FIR (Repuesta de Impulso Finito— "Finite Impulse Response"). Por lo común, los filtros de SAW están limitados a frecuencias de hasta 3 GHz.  Typically, such RF filters are implemented using SAW and BAW filters. SAW filters (Surface Acoustic Wave - "Surface Acoustic Wave") are electromechanical devices in which electrical signals are converted into a mechanical wave into a device constructed of a piezoelectric crystal or ceramic. Figure 9A represents a schematic view of such a SAW 900 filter. This wave is delayed as it propagates through the device, before being converted back into an electrical signal by additional electrodes. Delayed outputs are recombined to produce a direct analog implementation of an FIR filter (Finite Impulse Response - "Finite Impulse Response"). Typically, SAW filters are limited to frequencies up to 3 GHz.
Una evolución de los filtros de SAW son los filtros de BAW (Onda Acústica Volumétrica -"Bulk Acoustic Wave"). Los filtros de BAW pueden implementar filtros de escalera o rejilla, o de red o retícula. Los filtros de BAW operan, típicamente, a frecuencias que van de 2 GHz a 16 GHz y pueden ser más pequeños o más delgados que los filtros de SAW equivalentes. Una variante importante de los filtros de BAW es el FBAR (Resonador Acústico Volumétrico de Película Delgada -"Thin Film Bulk Acoustic Resonator"). Es este un dispositivo que consiste en un material piezoeléctrico emparedado entre dos electrodos y aislado acústicamente el medio circundante. Los dispositivos de FBAR que utilizan películas piezoeléctricas con espesores que van desde varios micrómetros hasta descender a décimas de micrómetro, resuenan en el intervalo de frecuencias de entre aproximadamente 100 MHz y 10 GHz. El nitruro de aluminio y el óxido de zinc son dos materiales piezoeléctricos comunes que se utilizan en los FBARs. La Figura 9B representa una vista esquemática de un filtro de BAW 950 de este tipo. An evolution of SAW filters is BAW filters (Volumetric Acoustic Wave - "Bulk Acoustic Wave"). BAW filters can implement ladder or grid filters, or grid or grid filters. BAW filters typically operate at frequencies ranging from 2 GHz to 16 GHz and may be smaller or thinner than equivalent SAW filters. An important variant of BAW filters is the FBAR (Thin Film Bulk Acoustic Resonator "). This is a device consisting of a piezoelectric material sandwiched between two electrodes and acoustically isolated from the surrounding environment. FBAR devices that use piezoelectric films with thicknesses ranging from several micrometers down to tenths of a micrometer, resonate in the frequency range of approximately 100 MHz to 10 GHz. Aluminum nitride and zinc oxide are two materials common piezoelectric devices used in FBARs. Figure 9B represents a schematic view of a BAW 950 filter of this type.
Otra solución para construir filtros de RF de alto rendimiento consiste en utilizar resonadores micromecánicos por medio de tecnología de MEMS. Desgraciadamente, las frecuencias de estos resonadores pueden ser bastante bajas, típicamente en el intervalo entre 10 kHz y 10 MHz, y pueden ser necesarios amplificadores de transimpedancia activos para detectar las mínimas corrientes que generan. Esto puede limitar su aplicabilidad en aplicaciones de telefonía móvil, que requieren filtros pasivos en torno a 1 GHz.  Another solution to build high-performance RF filters is to use micromechanical resonators through MEMS technology. Unfortunately, the frequencies of these resonators can be quite low, typically in the range between 10 kHz and 10 MHz, and active transimpedance amplifiers may be necessary to detect the minimum currents they generate. This may limit its applicability in mobile phone applications, which require passive filters around 1 GHz.
A diferencia de lo que se hace en los filtros convencionales, en los que la señal, bien circula a través de ellos o bien es rebotada de vuelta, dependiendo de su contenido de frecuencias, las Figuras 10A y 10B muestran un filtro de absorción destinado a 'absorber' la potencia de la señal de RF a ciertas frecuencias. En algunas realizaciones, el filtro incluye un conjunto ordenado de elementos resonadores, con una frecuencia de resonancia igual a la frecuencia que se tiene interés en absorber. En algunas realizaciones, los elementos resonadores son implementados como un círculo en la línea o conducción de metal que lleva la señal de RF, suspendido por una vía en el medio del círculo. Esta vía está conectada a una capa de metal situada por debajo, a la que pueden estar conectadas todas las vías en las que se suspenden los resonadores circulares. La Figura 10A representa vistas esquemáticas de un conjunto ordenado 1000 de resonadores para un filtro de absorción. Para un filtro de absorción que tiene como objetivo las bandas celulares, en torno a 1 -3 GHz, los elementos resonadores pueden ser fabricados con un procedimiento de CMOS, de manera que tengan una característica de tamaño relativamente pequeño. En algunas realizaciones, los elementos resonadores pueden tener un tamaño mayor cuando se implementan en la forma de un resonador de anillo suspendido por vías adicionales. La Figura 10B representa vistas esquemáticas de un tal conjunto ordenado 1050 de resonadores para un filtro de absorción.  Unlike what is done in conventional filters, in which the signal either circulates through them or is bounced back, depending on their frequency content, Figures 10A and 10B show an absorption filter intended for 'absorb' the power of the RF signal at certain frequencies. In some embodiments, the filter includes an ordered set of resonator elements, with a resonance frequency equal to the frequency of interest in absorbing. In some embodiments, the resonator elements are implemented as a circle in the metal line or conduction that carries the RF signal, suspended by a path in the middle of the circle. This path is connected to a metal layer located below, to which all the paths in which the circular resonators are suspended can be connected. Figure 10A depicts schematic views of an ordered set 1000 of resonators for an absorption filter. For an absorption filter that targets cell bands, around 1-3 GHz, the resonator elements can be manufactured using a CMOS method, so that they have a relatively small size characteristic. In some embodiments, the resonator elements may have a larger size when implemented in the form of a ring resonator suspended by additional paths. Figure 10B depicts schematic views of such an ordered set 1050 of resonators for an absorption filter.
En algunas realizaciones, los filtros ilustrados en las Figuras 10A y 10B se implementan conjuntamente con un mecanismo de conmutación, el cual puede ser una estructura de utilidad en aplicaciones de telefonía celular. De manera adicional, el mecanismo de conmutación puede proporcionar un filtro sintonizable en el caso de resonadores de disco / anillo de diferentes tamaños y que tienen frecuencias de resonancia y con conducciones de polarización independientes. In some embodiments, the filters illustrated in Figures 10A and 10B are implemented in conjunction with a switching mechanism, which may be a useful structure in cell phone applications. Additionally, the switching mechanism can provide a tunable filter in the case of disc / ring resonators of different sizes. and that have resonance frequencies and with independent polarization conduits.
En algunas realizaciones, se aplica una tensión de CC (corriente continua -"DC (direct curren.)") a los elementos resonadores para activar el filtro o desactivarlo, según se requiera. Debido a variaciones de procedimiento, o de otra manera, puede ser posible tener elementos resonadores con diferentes tamaños y, por tanto, con diferentes frecuencias de resonancia a través del conjunto ordenado. Esto hará posible la caracterización de un filtro con cualquier forma que se desee. Y esta forma puede ser ajustable si el diseño es tal, que es posible aplicar una tensión diferente (típicamente, de activación o desactivación) a los diferentes tamaños de resonador. Sin embargo, si se desea, el conjunto ordenado sensor puede ser formado densamente dentro de un área pequeña de las capas de interconexión con el fin de reducir el desajuste de frecuencias entre los elementos resonadores del conjunto ordenado sensor.  In some embodiments, a DC voltage (direct current - "DC (direct curren.)") Is applied to the resonator elements to activate or deactivate the filter, as required. Due to procedural variations, or otherwise, it may be possible to have resonator elements with different sizes and, therefore, with different resonance frequencies throughout the array. This will make it possible to characterize a filter with any desired shape. And this shape can be adjustable if the design is such that it is possible to apply a different voltage (typically, on or off) to different resonator sizes. However, if desired, the sensor array can be densely formed within a small area of the interconnection layers in order to reduce the frequency mismatch between the resonator elements of the sensor array.
En algunas realizaciones, los sistemas y los métodos que se describen en la presente memoria hacen posible un filtro que tiene un conjunto ordenado grande de resonadores desacoplados mecánicamente. Semejante filtro puede dar acomodo a frecuencias de resonancia altas, al tiempo que se mantiene el tamaño del dispositivo. Puesto que los dispositivos pequeños tienen un acoplamiento mecánico pequeño y una gran resistencia al movimiento, puede construirse un conjunto ordenado de gran tamaño que tiene estos elementos resonadores colocados en paralelo. Este puede reducir la resistencia total al movimiento, puesto que esta será inversamente proporcional al número de elementos resonadores en paralelo. En algunas realizaciones, los elementos resonadores están dispuestos en serie, en un cuadrado o en cualquier otra configuración deseada.  In some embodiments, the systems and methods described herein make possible a filter that has a large array of mechanically decoupled resonators. Such a filter can accommodate high resonance frequencies, while maintaining the size of the device. Since small devices have a small mechanical coupling and great resistance to movement, a large array can be constructed having these resonator elements placed in parallel. This can reduce the total resistance to movement, since this will be inversely proportional to the number of resonator elements in parallel. In some embodiments, the resonator elements are arranged in series, in a square or in any other desired configuration.
Estos elementos resonadores pueden haberse hecho con un único puente, como se muestra en la Figura 5A (anteriormente descrita). El puente se ha construido utilizando M5, que es una capa metálica situada bajo la capa más superior y que está anclada utilizando M4 y M3 debajo. M3 puede hacer el diseño más robusto contra el ataque químico superficial y las variaciones de procedimiento (puesto la tolerancia de espesor en el procedimiento de CMOS es importante), y M3 puede utilizarse también para encaminar y conectar los diferentes puentes. La Figura 5B (anteriormente descrita) muestra el mismo puente, pero con las columnas de cobertura y de anclaje para sostener la cobertura. La cobertura presenta una pluralidad de orificios para realizar el ataque químico superficial con vHF [ácido fluorhídrico en fase de vapor]. Las columnas de cobertura van de la M6 hacia abajo, hasta la M4, de tal manera que el encaminamiento puede hacerse utilizando el nivel M3: El puente hecho con M5 y la cobertura hecha con M6 define una capacitancia. Para construir un conjunto ordenado, muchos de estos puentes pueden ser colocados en serie. Si no se ajustan en una fila, o para hacer el diseño más cuadrado, pueden colocarse algunas filas de puentes en serie y conectarse a través de unas gruesas conducciones de retorno en M3. These resonator elements may have been made with a single bridge, as shown in Figure 5A (described above). The bridge has been built using M5, which is a metallic layer located under the uppermost layer and which is anchored using M4 and M3 below. M3 can make the design more robust against surface chemical attack and process variations (since the thickness tolerance in the CMOS procedure is important), and M3 can also be used to route and connect the different bridges. Figure 5B (formerly described) shows the same bridge, but with the coverage and anchor columns to support the coverage. The cover has a plurality of holes to perform the superficial chemical attack with vHF [vapor phase hydrofluoric acid]. The coverage columns go from the M6 down to the M4, so that the routing can be done using the M3 level: The bridge made with M5 and the coverage made with M6 defines a capacitance. To build an orderly set, many of these bridges can be placed in series. If they do not fit in a row, or to make the design more square, some rows of bridges can be placed in series and connected through thick return pipes in M3.
La Figura 1 1 representa una vista esquemática de un elemento resonador con un espacio de separación lateral estrecho, de acuerdo con una realización ilustrativa de la invención. En algunas realizaciones, a fin de mejorar el rendimiento de estos filtros, un parámetro clave puede ser reducir el espacio de separación tanto como sea posible. Una manera de reducir este espacio de separación más allá de lo que puede conseguirse por la tecnología, es utilizando puentes laterales. Estos pueden construirse formando una estructura con unos muelles o resortes blandos, que se lleva entonces a cerrarse por contracción, y si existen topes que estén colocados a muy corta distancia de los electrodos fijos, puede conseguirse entonces un espacio de separación muy estrecho. En teoría, el límite para este espacio de separación es la resolución de la rejilla, por ejemplo, para nodos de 0,15 μηη, el límite es, típicamente, de aproximadamente 10 nm. En la práctica, puede ser necesario que el espacio de separación sea mayor debido al hecho de que la sección transversal de un elemento en voladizo delgado no es recta y las paredes tienen un cierto ángulo. En ciertas configuraciones, el espacio de separación operativo puede ser menor o igual que aproximadamente 1 nm, 5 nm, 10 nm, 20 nm, 50 nm o 100 nm. Además, cada una de las subcapas de la pila de metal tiene su propia forma.  Figure 1 1 represents a schematic view of a resonator element with a narrow lateral separation space, in accordance with an illustrative embodiment of the invention. In some embodiments, in order to improve the performance of these filters, a key parameter may be to reduce the separation space as much as possible. One way to reduce this separation space beyond what can be achieved by technology, is by using side bridges. These can be constructed by forming a structure with springs or soft springs, which is then closed by contraction, and if there are stops that are placed very short distance from the fixed electrodes, then a very narrow separation space can be achieved. In theory, the limit for this separation space is the grid resolution, for example, for nodes of 0.15 μηη, the limit is typically approximately 10 nm. In practice, it may be necessary for the separation space to be larger due to the fact that the cross section of a thin cantilever element is not straight and the walls have a certain angle. In certain configurations, the operating separation space may be less than or equal to about 1 nm, 5 nm, 10 nm, 20 nm, 50 nm or 100 nm. In addition, each of the sub-layers of the metal stack has its own shape.
En algunas realizaciones, una vez que se ha liberado la tensión de cierre por contracción, el espacio de separación no se abre de nuevo debido a la estricción. La tensión de cierre por contracción puede ser simplemente activada, estén los puentes ya adosados o aplastados contra los topes o no. La Figura 1 1 representa una vista en planta superior de M5, que tiene el puente y los topes. Los electrodos de accionamiento pueden accionar el puente movible hasta que se cierra por contracción y se aplasta contra los topes mecánicos, con lo que se deja un espacio de separación con la capacitancia de electrodo fijo. Pueden ser posibles muchas variantes de este diseño, incluyendo diferentes posiciones para los electrodos de accionamiento de capacitancia, y otros tipos de puente movible, como elementos en voladizo, y muchos otros. Asimismo, los topes mecánicos pueden ser colocados en diferentes posiciones. In some embodiments, once the closing tension has been released by contraction, the separation space does not open again due to the strictness. The closing tension by contraction can be simply activated, whether the bridges are already attached or crushed against the stops or not. Figure 1 1 represents a top plan view of M5, which has the bridge and stops. The drive electrodes can drive the movable bridge until it closes by contraction and is crushed against the mechanical stops, leaving a gap with the fixed electrode capacitance. Many variants of this design may be possible, including different positions for capacitance drive electrodes, and other types of movable bridge, such as cantilever elements, and many others. Also, the mechanical stops can be placed in different positions.
En ciertas implementaciones, la tensión de cierre por contracción puede ser aplicada durante el procedimiento de fabricación del chip con el fin de ajusfar el espacio de separación operativo en el momento de la fabricación. Sin embargo, en otras implementaciones, la tensión de cierre por contracción puede ser aplicada por el dispositivo, por ejemplo, un dispositivo electrónico de consumidor en el que se ha instalado el chip durante la activación o encendido inicial, su inicialización y/o periódicamente. En algunas implementaciones, un dispositivo puede detectar la posición de un puente con respecto a un electrodo de condensador para determinar si, y cuándo, se ha de aplicar una tensión de cierre por contracción para reducir la distancia a la distancia de espacio de separación operativo entre el puente sus uno o más electrodos de condensador correspondientes. En otra implementación, el resonador mecánico puede incluir electrodos que permiten la formación de una o más microsoldaduras, dependiendo de la magnitud de tensión de cierre por contracción aplicada. De esta forma, puede aplicarse una tensión de cierre por contracción suficiente como para que el puente se fije a uno o más topes mecánicos. Una vez fijado en su posición, con el espacio de separación operativo fijo, ya no se requiere una tensión de cierre por contracción.  In certain implementations, the closing tension by contraction can be applied during the manufacturing process of the chip in order to adjust the operating separation space at the time of manufacture. However, in other implementations, the closing voltage by contraction can be applied by the device, for example, an electronic consumer device in which the chip was installed during initial activation or ignition, initialization and / or periodically. In some implementations, a device can detect the position of a bridge with respect to a capacitor electrode to determine if, and when, a shrinkage closing voltage has to be applied to reduce the distance to the distance of operating separation space between bridge its one or more corresponding capacitor electrodes. In another implementation, the mechanical resonator may include electrodes that allow the formation of one or more microsoldaduras, depending on the magnitude of closing tension by contraction applied. In this way, a sufficient closing tension by contraction can be applied so that the bridge is fixed to one or more mechanical stops. Once fixed in position, with the fixed operating separation space, a closing tension by contraction is no longer required.
Una necesidad importante de los filtros descritos es la capacidad de sintonizarlos fácilmente. Una razón para ello es el hecho de disponer de un único filtro en el terminal frontal de RF del equipo de auriculares del teléfono, en lugar de un banco grande filtros y los multiplexadores o conmutadores correspondientes para seleccionarlos. Esto es especialmente necesario en los nuevos teléfonos celulares de múltiples bandas y múltiples modos que están comenzando a aparecer en el mercado. Pero hay otra razón para esta necesidad de utilizar el procedimiento de fabricación descrito anteriormente en relación con las Figuras 1 -4C. Puede haber tolerancias y desviaciones importantes de la frecuencia de resonancia debidas, en parte, al envejecimiento, a la temperatura y al uso. Esto es debido al uso de la metalización existente del procedimiento de BEOL o de CMOS, especialmente el aluminio. An important need of the described filters is the ability to tune them easily. One reason for this is the fact of having a single filter in the front RF terminal of the telephone's headphone equipment, instead of a large bank of filters and the corresponding multiplexers or switches to select them. This is especially necessary in the new multi-band and multi-mode cell phones that are beginning to appear on the market. But there is another reason for this need to use the manufacturing process described above in relation to Figures 1-4C. There may be significant tolerances and deviations from the resonant frequency due, in part, to the aging, temperature and use. This is due to the use of the existing metallization of the BEOL or CMOS process, especially aluminum.
Como consecuencia de estas tolerancias y desajustes, el filtro puede ser calibrado utilizando un reloj externo, y ajustado tan a menudo como sea necesario. El cambio de la tensión modifica el coeficiente de acoplamiento electromecánico. En consecuencia, tanto la inductancia de movimiento como las capacitancias de movimiento cambian, pero su producto se mantiene constante. Sin embargo, en la práctica, la tensión en los puentes puede cambiar, y el módulo de Young o elástico efectivo puede ser diferente, dependiendo de la tensión de polarización aplicada. Además, la capacitancia o capacidad eléctrica puede cambiar notablemente, y esto puede afectar también a la respuesta en frecuencia. Esta dependencia con la tensión será diferente para cada diseño de resonador. Como ejemplo, la Figura 12 representa vistas esquemáticas (etiquetas o no etiquetadas) de un elemento resonador 1200 para un filtro de RF. En algunas realizaciones, el elemento resonador y otras estructuras de filtro se han hecho utilizando tungsteno, por ejemplo, elementos laterales. El tungsteno puede hacer posibles dispositivos más estables que no necesitan ser calibrados o sintonizados a menudo.  As a consequence of these tolerances and mismatches, the filter can be calibrated using an external clock, and adjusted as often as necessary. The change in voltage modifies the electromechanical coupling coefficient. Consequently, both the inductance of movement and the capacitance of movement change, but its product remains constant. However, in practice, the tension in the bridges can change, and Young's modulus or effective elastic may be different, depending on the polarization voltage applied. In addition, the capacitance or electrical capacity can change markedly, and this can also affect the frequency response. This dependence on tension will be different for each resonator design. As an example, Figure 12 depicts schematic views (labels or unlabeled) of a resonator element 1200 for an RF filter. In some embodiments, the resonator element and other filter structures have been made using tungsten, for example, side elements. Tungsten can make possible more stable devices that do not need to be calibrated or tuned often.
En algunas realizaciones, los filtros descritos pueden haberse diseñado para adecuarse a las especificaciones requeridas para la implementación de filtros de UMTS. Es posible conseguir pérdidas de inserción muy bajas mediante el aumento de la tensión de polarización y del número de elementos del conjunto ordenado. Sin embargo, la tensión puede tener un límite práctico, y el hecho de aumentar el número de elementos puede reducir la atenuación en la banda de detención. En algunas realizaciones, los requisitos relativos a las pérdidas de inserción pueden satisfacerse, pero no así los requisitos relativos a la atenuación si se utiliza un conjunto ordenado. En algunas realizaciones, los requisitos de atenuación pueden ser satisfechos, pero no los requisitos de pérdidas de inserción si se utiliza un único elemento. Adicionalmente, el espacio de separación puede ajustarse al límite de resolución de la rejilla, pero, debido a las paredes no verticales de las capas metálicas, el espacio de separación efectivo real puede ser más pequeño de lo esperado. En algunas configuraciones, el funcionamiento del filtro de RF en intervalos de frecuencia asociados con protocolos para GSM, UMTS, CDMA, AMPS, 802.1 1 , y los protocolos de comunicación de LTE. En algunas configuraciones, un filtro de RF funciona en cualquier valor entre aproximadamente 3 Hz y aproximadamente 3 GHz. Por lo que respecta a las redes de comunicaciones inalámbricas, un filtro de RF puede funcionar en una o más bandas de frecuencias entre aproximadamente 400 MHz y aproximadamente 4 GHz. In some embodiments, the described filters may have been designed to meet the specifications required for the implementation of UMTS filters. It is possible to achieve very low insertion losses by increasing the bias voltage and the number of elements of the ordered array. However, the tension may have a practical limit, and increasing the number of elements may reduce the attenuation in the stop band. In some embodiments, the requirements for insertion losses may be satisfied, but not the requirements for attenuation if an ordered set is used. In some embodiments, the attenuation requirements may be satisfied, but not the insertion loss requirements if a single element is used. Additionally, the separation space can be adjusted to the grid resolution limit, but, due to the non-vertical walls of the metal layers, the actual effective separation space may be smaller than expected. In some configurations, the operation of the RF filter at frequency intervals associated with protocols for GSM, UMTS, CDMA, AMPS, 802.1 1, and LTE communication protocols. In some configurations, an RF filter operates at any value between approximately 3 Hz and approximately 3 GHz. As regards wireless communications networks, an RF filter can operate in one or more frequency bands between approximately 400 MHz and approximately 4 GHz
Existen al menos dos modos de superar este compromiso entre pérdidas y atenuación: presiones menores y filtros modales. La disminución de las presiones de tal manera que el factor de calidad de los elementos resonadores individuales va más allá del valor máximo medido, puede dar como resultado funciones de admitancia y de transferencia de filtro no uniformes debido a la gran cantidad de bordes afilados y al tratamiento de CMOS aleatorio para los dispositivos de MEMS y sus aplicaciones de un dispositivo a otro. Sin embargo, para algunas frecuencias, es posible alinear un número suficientemente grande de elementos resonadores, por lo que se proporciona el rendimiento deseado para esa frecuencia. En algunas realizaciones, estos filtros pueden incluir circuitos inteligentes para ajusfar la tensión de un modo tal, que la frecuencia de resonancia de estos filtros que se han hecho coincidir en frecuencia, se ajusta a la frecuencia central deseada para el filtro.  There are at least two ways to overcome this compromise between losses and attenuation: lower pressures and modal filters. The decrease in pressures in such a way that the quality factor of the individual resonator elements goes beyond the maximum measured value, can result in non-uniform admittance and filter transfer functions due to the large number of sharp edges and the Random CMOS treatment for MEMS devices and their applications from one device to another. However, for some frequencies, it is possible to align a sufficiently large number of resonator elements, whereby the desired performance for that frequency is provided. In some embodiments, these filters may include intelligent circuits to adjust the voltage in such a way that the resonant frequency of these filters that have been matched in frequency is adjusted to the desired center frequency for the filter.
La otra opción es utilizar impedancias variables hechas con un conjunto ordenado de elementos resonadores acoplados mecánicamente, dentro de una arquitectura de filtro modal. El filtro modal puede proporcionar una atenuación extremadamente alta. En algunas realizaciones, el filtro modal puede trabajar bien siempre y cuando se lleven a cabo cambios de impedancia del orden de 20 dB. Utilizando esta combinación, puede diseñarse un conjunto ordenado de resonadores mecánicos con vistas a minimizar pérdidas, y utilizar la arquitectura modal para maximizar la atenuación. Puede implementarse, de esta forma, un filtro de UMTS de muy alto rendimiento, sintonizable y de bajo coste. Por otra parte, al implementarse en CMOS, el filtro puede ser integrado con otras funciones, como el transceptor y los amplificadores.  The other option is to use variable impedances made with an ordered set of mechanically coupled resonator elements, within a modal filter architecture. The modal filter can provide extremely high attenuation. In some embodiments, the modal filter may work well as long as impedance changes of the order of 20 dB are made. Using this combination, an ordered set of mechanical resonators can be designed with a view to minimizing losses, and using the modal architecture to maximize attenuation. In this way, a very high performance, tunable and low cost UMTS filter can be implemented. On the other hand, when implemented in CMOS, the filter can be integrated with other functions, such as the transceiver and amplifiers.
Los presentes Solicitantes consideran como materia objeto patentable todas las combinaciones operativas de las realizaciones divulgadas en la presente memoria. Los expertos de la técnica conocerán o serán capaces de idear, utilizando no más que una experimentación rutinaria, muchos equivalentes a las realizaciones y prácticas aquí descritas. De acuerdo con ello, se comprenderá que los sistemas y métodos aquí descritos no están limitados por las realizaciones que se divulgan en esta memoria, sino que deben entenderse a partir de las siguientes reivindicaciones, las cuales deberán interpretarse en sentido tan amplio como permita la Ley. Debe apreciarse también que, si bien las siguientes reivindicaciones se han dispuesto de una forma concreta, de tal manera que ciertas reivindicaciones dependen de otras reivindicaciones, ya sea directa o indirectamente, cualquiera de las reivindicaciones siguientes puede depender de cualquier otra de las reivindicaciones que siguen, ya sea directa, ya sea indirectamente, para llevar a cabo una cualquiera de las diversas realizaciones aquí descritas. The present Applicants consider as patentable subject matter all the operative combinations of the embodiments disclosed herein. Those skilled in the art will know or be able to devise, using no more than routine experimentation, many equivalents to the realizations and practices described here. Accordingly, it will be understood that the systems and methods described herein are not limited by the embodiments disclosed herein, but should be understood from the following claims, which should be interpreted as broadly as the Law permits. It should also be appreciated that, although the following claims have been arranged in a specific manner, such that certain claims depend on other claims, either directly or indirectly, any of the following claims may depend on any other of the claims that they follow, either directly, or indirectly, to carry out any of the various embodiments described herein.

Claims

REIVINDICACIONES
1 . Un método para fabricar un chip que comprende un filtro de radiofrecuencia basado en MEMS y dispuesto en un circuito integrado, que comprende: one . A method for manufacturing a chip comprising a radio frequency filter based on MEMS and arranged in an integrated circuit, comprising:
formar elementos electrónicos sobre un sustrato de material semiconductor;  forming electronic elements on a substrate of semiconductor material;
formar, por encima del sustrato de material semiconductor, una pila de capas de interconexión que incluye una pluralidad de capas de material conductor, estando cada capa separada por una capa de material dieléctrico; y formar un filtro de radiofrecuencia dentro de la pila de capas de interconexión mediante la aplicación de HF gaseoso a las capas de interconexión, en donde el filtro de radiofrecuencia incluye una pluralidad de elementos resonadores desacoplados mecánicamente.  forming, above the semiconductor material substrate, a stack of interconnecting layers that includes a plurality of layers of conductive material, each layer being separated by a layer of dielectric material; and forming a radiofrequency filter within the stack of interconnection layers by applying gaseous HF to the interconnection layers, wherein the radiofrequency filter includes a plurality of mechanically decoupled resonator elements.
2. El método de acuerdo con la reivindicación 1 , en el cual el chip se fabrica utilizando un procedimiento de CMOS de 180 nm o inferior.  2. The method according to claim 1, wherein the chip is manufactured using a CMOS method of 180 nm or less.
3. El método de acuerdo con la reivindicación 2, en el cual el chip se fabrica utilizando uno de entre un procedimiento de CMOS de 22 nm, un procedimiento de CMOS de 32 nm, un procedimiento de CMOS de 45 nm y un procedimiento de CMOS de 65 nm.  3. The method according to claim 2, wherein the chip is manufactured using one of a 22 nm CMOS procedure, a 32 nm CMOS procedure, a 45 nm CMOS procedure and a CMOS procedure 65 nm.
4. El método de acuerdo con la reivindicación 1 , en el cual el filtro de radiofrecuencia incluye un conjunto ordenado sensor de elementos resonadores desacoplados mecánicamente, en el que el conjunto ordenado sensor se ha configurado para funcionar colectivamente como un filtro de radiofrecuencia.  4. The method according to claim 1, wherein the radiofrequency filter includes an ordered sensor assembly of mechanically decoupled resonator elements, wherein the ordered sensor assembly has been configured to function collectively as a radiofrequency filter.
5. El método de acuerdo con la reivindicación 4, en el cual el conjunto ordenado sensor comprende de aproximadamente 60 a aproximadamente 200 elementos resonadores.  5. The method according to claim 4, wherein the sensor array comprises from about 60 to about 200 resonator elements.
6. El método de acuerdo con la reivindicación 4, en el cual el conjunto ordenado sensor se forma densamente en un área pequeña de las capas de interconexión con el fin de reducir el desajuste de frecuencias entre los elementos resonadores del conjunto ordenado sensor.  6. The method according to claim 4, wherein the sensor array is densely formed in a small area of the interconnection layers in order to reduce the frequency mismatch between the resonator elements of the sensor array.
7. El método de acuerdo con la reivindicación 1 , en el cual el conjunto ordenado sensor tiene un factor Q de 100 o mayor. 7. The method according to claim 1, wherein the sensor array has a Q factor of 100 or greater.
8. El método de acuerdo con la reivindicación 1 , en el cual el conjunto ordenado sensor tiene un factor Q que va de aproximadamente 5 a aproximadamente 20. 8. The method according to claim 1, wherein the sensor array has a Q factor ranging from about 5 to about 20.
9. El método de acuerdo con la reivindicación 1 , en el cual la pluralidad de elementos resonadores se calibran utilizando un reloj externo.  9. The method according to claim 1, wherein the plurality of resonator elements are calibrated using an external clock.
10. El método de acuerdo con la reivindicación 1 , en el cual la pluralidad de elementos resonadores son de tamaños diferentes, y cada elemento resonador se ha configurado para ser activado o desactivado.  10. The method according to claim 1, wherein the plurality of resonator elements are of different sizes, and each resonator element has been configured to be activated or deactivated.
1 1 . El método de acuerdo con la reivindicación 1 , en el cual el filtro de radiofrecuencia es configurado para uno o más de entre el intervalo de frecuencias de UMTS, el intervalo de frecuencias de GSM, el intervalo de frecuencias de LTE, el intervalo de frecuencias celular y el intervalo de frecuencias de WiFi.  eleven . The method according to claim 1, wherein the radio frequency filter is configured for one or more of the UMTS frequency range, the GSM frequency range, the LTE frequency range, the cellular frequency range and the WiFi frequency range.
12. El método de acuerdo con la reivindicación 1 , en el cual los elementos resonadores se conectan eléctricamente en serie.  12. The method according to claim 1, wherein the resonator elements are electrically connected in series.
13. El método de acuerdo con la reivindicación 1 , en el cual los elementos resonadores se conectan eléctricamente en paralelo.  13. The method according to claim 1, wherein the resonator elements are electrically connected in parallel.
14. El método de acuerdo con la reivindicación 1 , en el cual los elementos resonadores se colocan físicamente en una configuración correspondiente a una de entre una fila, un cuadrado y una rejilla.  14. The method according to claim 1, wherein the resonator elements are physically placed in a configuration corresponding to one of a row, a square and a grid.
15. El método de acuerdo con la reivindicación 1 , en el cual el chip incluye un controlador para ajusfar una tensión aplicada a uno o más elementos resonadores con el fin de ajusfar una frecuencia de resonancia del filtro de radiofrecuencia.  15. The method according to claim 1, wherein the chip includes a controller for adjusting a voltage applied to one or more resonator elements in order to adjust a resonance frequency of the radiofrequency filter.
16. El método de acuerdo con la reivindicación 1 , en el cual formar un elemento resonador incluye formar un puente movible y al menos un electrodo de capacitancia, separado del puente movible una primera distancia con el fin de formar un intersticio o espacio de separación inicial dentro del elemento resonador.  16. The method according to claim 1, wherein forming a resonator element includes forming a movable bridge and at least one capacitance electrode, separated from the movable bridge a first distance in order to form an initial gap or gap within the resonator element.
17. El método de acuerdo con la reivindicación 16, que comprende formar al menos un tope mecánico dentro del elemento resonador, extendiéndose el tope mecánico más allá del al menos un electrodo de capacitancia en una segunda distancia.  17. The method according to claim 16, comprising forming at least one mechanical stop within the resonator element, the mechanical stop extending beyond the at least one capacitance electrode in a second distance.
18. El método de acuerdo con la reivindicación 17, que comprende aplicar una tensión de accionamiento a al menos un electrodo de accionamiento para mover el puente movible hasta su contacto con el al menos un tope mecánico, a fin de formar un espacio de separación operativo igual a aproximadamente la segunda distancia entre el puente movible y el al menos un electrodo de capacitancia. 18. The method according to claim 17, which comprises applying a driving voltage to at least one electrode of drive to move the movable bridge to its contact with the at least one mechanical stop, so as to form an operating separation space equal to approximately the second distance between the movable bridge and the at least one capacitance electrode.
19. El método de acuerdo con la reivindicación 18, en el cual el espacio de separación operativo es menor o igual que aproximadamente uno cualquiera de entre 1 nm, 5 nm, 10 nm, 20 nm, 50 nm y 100 nm.  19. The method according to claim 18, wherein the operating separation space is less than or equal to any one between 1 nm, 5 nm, 10 nm, 20 nm, 50 nm and 100 nm.
20. El método de acuerdo con la reivindicación 18, que comprende aplicar la tensión de accionamiento tras la instalación del chip dentro de un dispositivo electrónico de consumidor.  20. The method according to claim 18, which comprises applying the drive voltage after the installation of the chip within an electronic consumer device.
21 . El método de acuerdo con la reivindicación 1 , en el cual una porción del filtro de radiofrecuencia está hecha de tungsteno.  twenty-one . The method according to claim 1, wherein a portion of the radiofrequency filter is made of tungsten.
22. Un chip que comprende un filtro de radiofrecuencia basado en MEMS y dispuesto dentro de un circuito integrado, que comprende:  22. A chip comprising a radio frequency filter based on MEMS and disposed within an integrated circuit, comprising:
elementos electrónicos formados sobre un sustrato de material semiconductor;  electronic elements formed on a substrate of semiconductor material;
un apilamiento o pila de capas de interconexión, producidas por encima del sustrato de material semiconductor, incluyendo una pluralidad de capas de material semiconductor, estando cada capa separada por una capa de material dieléctrico; y  a stack or stack of interconnection layers, produced above the substrate of semiconductor material, including a plurality of layers of semiconductor material, each layer being separated by a layer of dielectric material; Y
un filtro de radiofrecuencia formado dentro de la pila de capas de interconexión mediante la aplicación de HF gaseoso a las capas de interconexión, en el que el filtro de radiofrecuencia incluye una pluralidad de elementos resonadores desacoplados mecánicamente.  a radiofrequency filter formed within the stack of interconnection layers by applying gaseous HF to the interconnection layers, in which the radiofrequency filter includes a plurality of mechanically decoupled resonator elements.
PCT/ES2012/070788 2011-11-11 2012-11-12 Methods and systems for cmos-based radio-frequency filters of mems having organized sets of elements WO2013068633A2 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201161558689P 2011-11-11 2011-11-11
US61/558,689 2011-11-11
US201261587401P 2012-01-17 2012-01-17
US61/587,401 2012-01-17
US13/364,149 2012-02-01
US13/364,149 US20120194286A1 (en) 2011-02-01 2012-02-01 Methods and systems for mems cmos devices having arrays of elements
US201261646664P 2012-05-14 2012-05-14
US61/646,664 2012-05-14

Publications (2)

Publication Number Publication Date
WO2013068633A2 true WO2013068633A2 (en) 2013-05-16
WO2013068633A3 WO2013068633A3 (en) 2013-08-01

Family

ID=48290700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070788 WO2013068633A2 (en) 2011-11-11 2012-11-12 Methods and systems for cmos-based radio-frequency filters of mems having organized sets of elements

Country Status (1)

Country Link
WO (1) WO2013068633A2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100295138A1 (en) 2009-05-20 2010-11-25 Baolab Microsystems Sl Methods and systems for fabrication of mems cmos devices

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2946478A1 (en) * 2009-06-08 2010-12-10 St Microelectronics Sa RESONATOR WITH VOLUME WAVES.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100295138A1 (en) 2009-05-20 2010-11-25 Baolab Microsystems Sl Methods and systems for fabrication of mems cmos devices

Also Published As

Publication number Publication date
WO2013068633A3 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
US7791432B2 (en) Contour-mode piezoelectric micromechanical resonators
KR101211868B1 (en) Suspended device and method of making
US20140062619A1 (en) Methods and systems for mems cmos-based radio frequency filters having arrays of elements
US6621134B1 (en) Vacuum sealed RF/microwave microresonator
Piazza et al. Single-chip multiple-frequency ALN MEMS filters based on contour-mode piezoelectric resonators
JP5047594B2 (en) Temperature compensated thin film bulk acoustic resonator device
US20050212612A1 (en) Tunable filter and portable telephone
US8111114B2 (en) MEMS filter with voltage tunable center frequency and bandwidth
JP5792554B2 (en) Elastic wave device
US8941286B2 (en) Acoustic wave device
US20100295138A1 (en) Methods and systems for fabrication of mems cmos devices
US10158340B1 (en) Micromechanical devices based on piezoelectric resonators
US20070103258A1 (en) Dielectrically transduced single-ended to differential mems filter
US20120056694A1 (en) Composite bulk acoustic wave resonator
WO2009079017A1 (en) Integrated acoustic bandgap devices for energy confinement and methods of fabricating same
JP2007005909A (en) Electromechanical signal selection element, manufacturing method thereof, and electric apparatus using the method
JP4655919B2 (en) Electrostatic driving element and manufacturing method thereof, semiconductor device, filter, and communication device
WO2013068633A2 (en) Methods and systems for cmos-based radio-frequency filters of mems having organized sets of elements
JP5931490B2 (en) Elastic wave device
WO2012104465A2 (en) Methods and systems for mems cmos devices having arrays of elements
CN100402411C (en) Micromachine and method of producing the same
WO2013014321A2 (en) Methods and systems for mems cmos devices including a multiwire compass
US10587242B2 (en) Acoustic wave filter and method for manufacturing the same
López et al. Micromechanical resonators with sub-micron gaps filled with high-k dielectrics
Lee et al. Lateral mode intrinsically switchable barium titanate film bulk acoustic wave resonators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12812283

Country of ref document: EP

Kind code of ref document: A2

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/10/2014)

122 Ep: pct app. not ent. europ. phase

Ref document number: 12812283

Country of ref document: EP

Kind code of ref document: A2