WO2013014321A2 - Methods and systems for mems cmos devices including a multiwire compass - Google Patents

Methods and systems for mems cmos devices including a multiwire compass Download PDF

Info

Publication number
WO2013014321A2
WO2013014321A2 PCT/ES2012/070569 ES2012070569W WO2013014321A2 WO 2013014321 A2 WO2013014321 A2 WO 2013014321A2 ES 2012070569 W ES2012070569 W ES 2012070569W WO 2013014321 A2 WO2013014321 A2 WO 2013014321A2
Authority
WO
WIPO (PCT)
Prior art keywords
resonant
electrode
resonant element
sensitive electrode
resonant elements
Prior art date
Application number
PCT/ES2012/070569
Other languages
Spanish (es)
French (fr)
Other versions
WO2013014321A8 (en
WO2013014321A3 (en
Inventor
Josep MONTANYÀ SILVESTRE
Juan José VALLE FRAGA
Laura BARRACHINA SARALEGUI
Original Assignee
Baolab Microsystems Sl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baolab Microsystems Sl filed Critical Baolab Microsystems Sl
Publication of WO2013014321A2 publication Critical patent/WO2013014321A2/en
Publication of WO2013014321A3 publication Critical patent/WO2013014321A3/en
Publication of WO2013014321A8 publication Critical patent/WO2013014321A8/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/038Measuring direction or magnitude of magnetic fields or magnetic flux using permanent magnets, e.g. balances, torsion devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers
    • G01R33/0283Electrodynamic magnetometers in which a current or voltage is generated due to relative movement of conductor and magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers
    • G01R33/0286Electrodynamic magnetometers comprising microelectromechanical systems [MEMS]

Definitions

  • Motion sensor devices such as magnetometers and accelerometers are typically embedded in today's electronic devices.
  • such devices are typically manufactured using a MEMS-based micro-electromechanical process and include an anchored test mass. Any movement of the test mass causes a capacitance variation with respect to a reference electrode, and the variation is measured to determine the target vector, such as a magnetic field or acceleration.
  • the anchored test mass is typically susceptible to interference from the environment such as electromagnetic or electrostatic dispersion fields or other effects such as those.
  • the interference may affect the sensitivity of the motion sensor device that has the test mass and makes it unsuitable for high sensitivity applications, for example, magnetic resonance imaging (MRI).
  • MRI magnetic resonance imaging
  • the reduced sensitivity results in a lower signal-to-noise ratio (SNR) and can make measurements made using the motion sensor device inaccurate.
  • the systems and methods described herein address deficiencies in the prior art by allowing the manufacture of a motion sensor device, whether based on MEMS, based on NEMS or based on CMOS MEMS, which is minimally susceptible to interference
  • a magnetometer device in which an objective magnetic field to be measured is larger than the earth's magnetic field (approximately 60 ⁇ ), the sensitivity needs of the magnetometer device is generally low.
  • the target magnetic field to be measured is small, for example, in the vicinity or lower than the geomagnetic noise (approximately 0.1 nT)
  • Such magnetometer devices are typically needed in medical and biomedical applications, such as MRI and molecule labeling, and radio communications, such as a receiving antenna for RF signals.
  • a magnetometer device that includes a resonant element having an inner wire enclosed in a protective electrode.
  • the protective electrode can decrease unwanted effects of interference on the resonant element and improve the SNR of the magnetometer device.
  • the protective electrode that encloses the inner wire It can also allow an easier measurement of the capacitance variation between the resonant element and a sensitive electrode.
  • a constant voltage can be applied to the protective electrode with respect to the sensitive electrode such that the capacitance variation is not affected by any voltage drop in the inner wire. Without the protective electrode, the voltage drop due to current flow and the resistance of the inner wire can induce electrostatic force and / or electrostatic interference. These can interfere with the capacitance variation and introduce errors in the measurement of a target magnetic field.
  • the systems and methods described herein are provided for a magnetometer device.
  • a sensitive electrode is disposed within the magnetometer device, and a resonant element is disposed close to the sensitive electrode.
  • the resonant element includes a protective electrode arranged around an inner wire.
  • the device also includes a source for generating current that is connected to the resonant element. The current, when applied through the inner wire, causes a displacement of the resonant element perpendicular to the magnetic field.
  • the magnetometer device measures a magnetic field of the resonant element as a variation of capacitance between the protective electrode and the sensitive electrode.
  • the device further includes a plurality of resonant elements arranged close to the resonant element present, and a plurality of guide wires arranged close to the resonant elements.
  • the guide wires electrically connect the resonant elements such that the same current propagates through all the resonant elements.
  • the current applied to the resonant element is periodic.
  • the device includes a voltage source connected to the protective electrode that applies a constant voltage to the protective electrode.
  • two or more resonant elements are mechanically coupled with such that they share a resonant frequency.
  • the mechanical coupling of the resonant elements may include physically connecting their respective protective electrode with conductive material.
  • the sensitive electrode is oriented with respect to the displacement of the resonant element that occurs in the plane, thereby allowing the measurement of the magnetic field in the Z direction. In some embodiments, the sensitive electrode is oriented with respect to the displacement of the resonant element that occurs outside the plane, thereby allowing the measurement of the magnetic field in the X or Y direction.
  • the orientation of the resonant element for measurements in the X direction is orthogonal to the orientation of the resonant element for measurements in the Y direction.
  • two or more sensitive electrodes are oriented such that they measure the displacement of the resonant element in multiple directions.
  • two sensitive electrodes may be oriented to measure the displacement of the resonant element in the X and Z directions.
  • the sensitive electrode is supported at least on some edges of the device by a plurality of dense column distributions.
  • each column is in contact with only one of the sensitive electrode and a lower electrode. In some embodiments, each column is in contact with both the sensitive electrode and the lower electrode.
  • the sensitive electrode is surrounded by a protective electrode to minimize parasitic capacitance.
  • an upper electrode and a lower electrode of the device are connected by two columns having rust in between, thereby receiving support for the upper electrode from the two columns.
  • a plurality of resonator devices can be used to form a three-dimensional compass, an accelerometer or any other suitable device.
  • the systems and methods described herein provide a magnetometer device. A source for generating a current disposed within the magnetometer device, and a plurality of resonant elements are arranged close to the source. Only one of the resonant elements is connected to the source.
  • the device also includes a plurality of guide wires arranged close to the resonant elements.
  • the guide wires electrically connect the resonant elements in such a way that the current applied in the resonant element connected to the source is propagated through the resonant elements.
  • the guide wires can be arranged in such a way that they do not affect the capacitance variation. For example, the result can be achieved by arranging metallic wires without releasing. This can ensure that the displacement (and the capacitance variation) with respect to the guide wires does not cancel the capacitance variation such that the net capacitance variation becomes zero.
  • an accelerometer device A sensitive electrode is disposed within the accelerometer device, and a resonant element is disposed close to the sensitive electrode.
  • the resonant element includes a protective electrode disposed around an inner core of dielectric material.
  • the device also includes a source to generate a voltage. The source is connected to the resonant element and applies the voltage.
  • the accelerometer device measures an external acceleration of the resonant element as a variation of capacitance between the protective electrode and the sensitive electrode. Displacement can occur due to external acceleration, while voltage can be applied to measure capacitance variation.
  • a chip comprising a MEMS device arranged in an integrated circuit.
  • the chip includes electronic elements formed on a substrate of semiconductor material and a stack of interconnection layers produced above the substrate of semiconductor material.
  • the interconnection layers include a plurality of layers of conductive material. Each layer of conductive material is separated by a layer of dielectric material.
  • the MEMS device is formed within the interconnection layer stack by applying HF (hydrogen fluoride) gas to the interconnection layer stack.
  • the MEMS device includes a protective electrode of conductive material disposed around an inner core of dielectric material.
  • FIG. 1 depicts a schematic cross section of a prior art motion sensor device
  • Fig. 2 depicts a schematic cross section of a motion sensor device, according to an illustrative embodiment of the invention
  • Fig. 3A depicts a cross section of a MEMS device having a plurality of resonant elements, according to an illustrative embodiment of the invention
  • Fig. 3B represents a cross section of a MEMS device having a plurality of resonant elements, according to another illustrative embodiment of the invention
  • Fig. 4 depicts a schematic flow of a current through a plurality of resonant elements, according to an illustrative embodiment of the invention
  • Fig. 5A represents a cross section of a MEMS device having a plurality of resonant elements and corresponding guide wires, according to an illustrative embodiment of the invention
  • Fig. 5B represents a cross section of a MEMS device having a resonant element and corresponding guide wires, according to an illustrative embodiment of the invention
  • Fig. 6 represents a plurality of elements that are mechanically coupled, according to an illustrative embodiment of the invention
  • Fig. 7 A represents a cross section of a MEMS device having a plurality of resonant elements that are mechanically coupled, according to an illustrative embodiment of the invention
  • Fig. 7B depicts a cross section of a MEMS device having a plurality of resonant elements that are mechanically coupled, according to another illustrative embodiment of the invention.
  • Fig. 8A represents a schematic orientation for a resonant element, according to an illustrative embodiment of the invention.
  • Fig. 8B represents a schematic orientation for a resonant element, according to another illustrative embodiment of the invention.
  • Fig. 8C represents a schematic orientation for a resonant element, according to even another illustrative embodiment of the invention
  • Fig. 9 represents a cross section of a MEMS device having a plurality of resonant elements and support anchors, according to an illustrative embodiment of the invention
  • Fig. 10 depicts a cross section of a MEMS device having a plurality of resonant elements and support anchors, according to another illustrative embodiment of the invention
  • Fig. 11 A represents a cross section of a first set of process flow steps for manufacturing a MEMS device having a plurality of resonant elements, according to an illustrative embodiment of the invention
  • Fig. 11B represents a cross section of a second set of process flow steps for manufacturing a MEMS device having a plurality of resonant elements, according to an illustrative embodiment of the invention
  • Fig. 11C depicts a cross section of a third set of process flow steps for manufacturing a MEMS device having a plurality of resonant elements, according to an illustrative embodiment of the invention
  • Fig. 12A depicts a schematic view of a MEMS device having a thin finger, according to an illustrative embodiment of the invention
  • Fig. 12B represents a schematic view of a MEMS device having a thin finger, according to another illustrative embodiment of the invention.
  • Fig. 1 depicts an illustrative schematic cross section of a prior art motion sensor device 100.
  • the device 100 includes a resonant element in the form of test mass 102, which is anchored by springs 104.
  • the test mass 102 is arranged in the vicinity of a sensitive electrode 106.
  • the device 100 functions as a magnetometer, for example, a magnetometer based on Lorentz force or a compass, which is a specific case of a magnetometer.
  • a magnetometer depends on the mechanical movement of the test mass 102 due to the Lorentz force acting on the test mass when a current is applied to the test mass 102 in the presence of a target magnetic field.
  • the test mass 102 can be brought to its resonance in order to obtain the maximum output signal.
  • the mechanical movement of the test mass 102 can be felt either electronically or optically.
  • a piezoresistive and electrostatic transduction method can be used for electronic detection. Displacement measurement with laser source or LED source can be used for optical detection.
  • a current is applied to the test mass 102 in the presence of the target magnetic field.
  • the applied current can be monotonous or periodic.
  • the test mass 102 exhibits a movement with respect to the electrode Sensitive 106, causing a capacitance variation between the test mass 102 and the sensitive electrode 106.
  • the capacitance variation can be measured using a load amplifier that produces a voltage proportional to the capacitance between the test mass 102 and the sensitive electrode 106.
  • the output voltage of the load amplifier can be connected to a comparator that compares the output voltage corresponding to the new capacitance with a reference voltage corresponding to the original capacitance.
  • the reference voltage and the output voltage can be received in analog or digital form in a processor to calculate the target magnetic field.
  • the capacitance variation is produced as a current and is calculated on the basis of output and reference currents.
  • the motion sensor device described above may be susceptible to interference from electromagnetic or electrostatic dispersion fields or other similar effects, leading to lower sensitivity.
  • interference from Brownian noise due to the air medium present within the device may further affect the sensitivity of the device.
  • interference may affect the capacitance variation between test mass 102 and sensitive electrode 106.
  • the target magnetic field can be measured by incorrectly interpreting the device unsuitable for its intended purpose.
  • FIG. 2 depicts an illustrative schematic cross section of a motion sensor device 200.
  • the device 200 includes a resonant element having a wire 202 enclosed in oxide 204 and a protective electrode 206, in addition to the sensitive electrode 208.
  • the mechanical structure depicted includes oxide 204 and a protective electrode 206 protects the wire 202 from interference effects.
  • the mechanical structure can also act as an electrical protector between the sensitive electrode 208 and the wire 202.
  • the Mechanical structure can also act as a mechanical barrier against chemical attack agents used during the manufacturing process of a CMOS. Since the wire 202 is embedded in the oxide, its electro-migration limit does not change.
  • the mechanical structure may include a mixture of one or more metals and oxide.
  • the mismatch of the thermal expansion coefficient (CTE) between the resonant element and the underlying wafer can be reduced, producing a better robustness against temperature.
  • a voltage source is connected to the mechanical structure to apply a constant voltage. The mechanical structure allows an extra electrical point that can be set at a desired voltage that facilitates electronic design.
  • the device 200 includes multiple threads embedded in rust.
  • the wires can be connected in series through guide wires included in the device 200.
  • the Lorentz current through a wire interacts with the magnetic field and creates a magnetic force that excites the vibration of the structure. Connecting the wires in series can create a multiplicative effect on Lorentz's strength, achieving high performance with a low current value. As a result, only one electrical source may be necessary to supply current to the wires in the device 200.
  • the wires are connected in parallel. The current can be divided between the wires that need a higher current to be introduced compared to the serial configuration. In series configuration, the current can propagate through the resonant wires in the same direction.
  • the effects on each other can be nullified.
  • the guide wires can ensure that such cancellation does not take place, which may be the case if the resonant wires were simply connected end to end without guide wires.
  • the protective electrode 206 may include a thin finger or path on its surface in front of the sensitive electrode 208.
  • the thin finger may be manufactured as a path that has no metal disposed thereon.
  • the thin finger is essentially deposited as a projection on the surface of the sensitive electrode 208. Since the thin finger is disposed closer to the sensitive electrode 208, it can help increase the capacitance variation between the protective electrode 206 and the sensitive electrode 208 with respect to a similar displacement of the protective electrode 206.
  • the movement of the thin finger also produces a topological change because the thin finger enters the cavity of the sensitive electrode 208, which is then added to the capacitance of its walls as well as to the surface. As a result, the capacitance variation by vertical displacement may be higher, and therefore the electrostatic pressure may be higher as well.
  • Both devices 100 and 200 can be configured to function as magnetometers, accelerometers or any other suitable sensor device. They can be manufactured using the nanoEMS TM process described in U.S. Patent Application Publication. commonly possessed no. 2010/0295138, entitled “Methods and Systems for the Manufacture of MEMS CMOS Devices", and hereby incorporated by reference in its entirety.
  • Fig. 3A depicts an illustrative cross section of a MEMS device 300 having a plurality of resonant elements and a sensitive electrode 308.
  • the MEMS device 300 includes about 50 to 100 resonant elements.
  • Each resonant element includes a wire 302 embedded in oxide 304.
  • the resonant element also includes a protective electrode 306 made of conductive material.
  • the MEMS device 300 is configured to be a magnetometer. When a current is applied to the resonant element in the presence of an objective magnetic field, the resonant element may exhibit a movement with respect to the sensitive electrode 308, causing a capacitance variation between the resonant element and the sensitive electrode 308.
  • the Capacitance variation can be measured using a load amplifier that produces a voltage proportional to the capacitance between the element resonant and sensitive electrode 308.
  • Multiple resonant elements or distributions may be included for redundancy and / or for measuring the magnetic field in multiple dimensions. For example, each of three resonant elements can measure the magnetic field in the X, Y, and Z directions.
  • the sensing electronics for the magnetometer includes a transimpedance amplifier (which converts current to voltage).
  • the resonant element may include more than one thread. This is illustrated in the MEMS device 350 of Fig. 3B.
  • Fig. 3B depicts an illustrative cross section of a MEMS device 350 having a plurality of resonant elements.
  • Each resonant element includes threads 352 and 354 embedded in oxide 356.
  • each resonant element includes up to about twelve resonant elements.
  • the resonant element also includes a protective electrode 358 made of conductive material.
  • the MEMS 350 device is configured to be a magnetometer.
  • the resonant element When a current is applied to the resonant element in the presence of an objective magnetic field, the resonant element may exhibit a movement with respect to the sensitive electrode 360, causing a capacitance variation between the resonant element and the sensitive electrode 360.
  • the Capacitance variation can be measured using a load amplifier that produces a voltage proportional to the capacitance between the resonant element and the sensitive electrode 360.
  • Multiple resonant elements or distributions can be included for redundancy and / or for measuring the magnetic field in multiple dimensions. For example, each of three resonant elements can measure the magnetic field in the X, Y, and Z directions.
  • multiple oxide-embedded wires of a resonant element in series can be connected by guide wires arranged in the MEMS device.
  • the Lorentz current through each wire interacts with the magnetic field and can create a magnetic force that excites the vibration of the resonant element.
  • Connecting the wires in series can create a multiplicative effect in the Lorentz force, achieving high performance with a low current value.
  • only one electrical source may be necessary to supply current to the wires in the resonant element.
  • the electrical source may be a current source, a voltage source or any other suitable source.
  • the current can propagate in the same direction in all resonant elements.
  • Both devices 300 and 350 can be configured to function as magnetometers, accelerometers or any other suitable sensor device. They can be manufactured using the nanoEMS TM process described in U.S. Patent Application Publication. Commonly possessed No. 2010/0295138, entitled “Methods and Systems for the Manufacture of MEMS CMOS Devices", and hereby incorporated by reference in its entirety.
  • Fig. 4 depicts an illustrative schematic flow 400 of current through a plurality of wires 402.
  • the wires 402 may be embedded in oxide of a single resonant element or may be scattered over multiple resonant elements.
  • the wires 402 may vary from about 300 to about 400 ⁇ in length. In some embodiments, threads 402 may be approximately 800 ⁇ long.
  • the wires 402 are connected in series by the guide wires 404 and require only one electrical source to propagate the current through the wires 402.
  • the wires 404 connected in series function as a single resonant element and can allow a Low current requirement (for example, less than 1 mA) for a motion sensor device having such a configuration. The current can propagate in the same direction in all resonant elements.
  • Figs. 5A and 5B represent illustrative cross sections of MEMS devices having resonant elements connected in series.
  • Fig. 5 A depicts an illustrative cross section of a MEMS device 500 having a plurality of resonant elements and corresponding guide wires.
  • Each resonant element includes a 502 thread embedded in oxide.
  • Each element Resonant also includes a protective electrode made of conductive material.
  • the wires 502 for the resonant elements are connected in series through guide wires 504.
  • Fig. 5B represents an illustrative cross-section of another MEMS device 550 having a resonant element and corresponding guide wires.
  • the resonant element includes multiple threads 552 embedded in oxide.
  • the resonant element also includes a protective electrode made of conductive material.
  • the wires 552 for the resonant elements are connected in series via guide wires 554.
  • the guide wires 504 or 554 can be arranged under the resonant elements as illustrated in Figs. 5A and 5B, or may be arranged in any other suitable part of the MEMS device as necessary.
  • the current can propagate in the same direction in the 502 or 552 threads.
  • the 504 or 554 guide wires can be loose metal wires in such a way that they do not cancel their accumulated force effects. As mentioned before, connecting the wires in series can allow high performance of the MEMS device with a low current value.
  • the electrical source may be a current source, a voltage source or any other suitable source.
  • wires 502 or 552 can be connected in parallel or a combination that includes serial and parallel configurations.
  • MEMS 500 or 550 device is configured to be a magnetometer.
  • each resonant element can exhibit a movement with respect to a sensitive electrode, causing a capacitance variation between the resonant element and the sensitive electrode.
  • the capacitance variation can be measured using a charge amplifier that produces a voltage proportional to the capacitance between the resonant element and the sensitive electrode.
  • an amplifier of transimpedance to measure the capacitance variation for a MEMS compass device is configured to be a magnetometer.
  • Both devices 500 and 550 can be configured to function as magnetometers, accelerometers or any other suitable sensor device. They can be manufactured using the nanoEMS TM process described in U.S. Patent Application Publication. commonly possessed no. 2010/0295138, entitled “Methods and Systems for the Manufacture of MEMS CMOS Devices", and hereby incorporated by reference in its entirety.
  • the mechanical structures of multiple resonant elements are mechanically coupled such that they vibrate with a single resonant frequency. This may be the case even if the resonant frequency of each resonant element is slightly different. This allows the resonant elements to interfere in a constructive manner and the felt current can be maximized.
  • Fig. 6 depicts an illustrative mechanical structure 600 having a plurality of resonant elements 602 that are mechanically coupled.
  • the N resonant elements (with stiffness from Ki to K) can be joined through couplings with stiffness K C.
  • K c «Ki and K c « K 2 and so on the N resonant elements vibrate on the same frequency behaving as a single resonant element with stiffness Ki + K 2 + ... + K.
  • the low value of K c can help keep the accumulated stiffness of the coupled resonant elements low.
  • the protective electrodes of respective resonant elements may be connected by conductive material to achieve mechanical coupling.
  • the conductive material may include metals such as aluminum, copper or any other suitable metal and / or alloys such as an AlCu alloy.
  • the connection can be established in several parts of the protective electrode as illustrated in Figs. 7A and 7B.
  • the mechanical coupling conductive material may bend while allowing each Resonant element significantly maintain its curvature. This can help the resonant elements mechanically coupled to vibrate on a single resonant frequency.
  • the low value of K c can help ensure soft mechanical couplings for this purpose.
  • Fig. 7A depicts an illustrative cross-section of a MEMS device 700 having a plurality of resonant elements 702 that are mechanically coupled through a conductive material 704.
  • Conductive material 704 connects the resonant elements 702 and may allow the elements resonants vibrate on a single resonant frequency.
  • Fig. 7B depicts an illustrative cross section of another MEMS device 750 having a plurality of resonant elements 752 that are mechanically coupled through a conductive material 754.
  • Conductive material 754 connects the resonant elements 752 in a different position to the depicted in Fig. 7A, but provide a similar ability to resonant elements to vibrate on a single resonant frequency.
  • Both 700 and 750 devices can be configured to function as magnetometers, accelerometers or any other suitable sensor device. They can be manufactured using the nanoEMS TM process described in U.S. Patent Application Publication. commonly possessed no. 2010/0295138, entitled “Methods and Systems for the Manufacture of MEMS CMOS Devices", and hereby incorporated by reference in its entirety.
  • Fig. 8A represents an illustrative schematic orientation 800 for the resonant element 802.
  • a MEMS device that includes a resonant element 802 has the sensitive electrode oriented with respect to the displacement of the resonant element 802 that occurs outside the plane, thereby allowing the measurement of the magnetic field in the X direction.
  • FIG. 8B represents an illustrative schematic orientation 840 for the resonant element 842.
  • a MEMS device which includes a resonant element 842 has the sensitive electrode oriented with respect to the displacement of the resonant element 842 that occurs outside the plane, thereby allowing the measurement of the magnetic field in the Y direction.
  • Fig. 8C represents an illustrative schematic orientation 880 for the resonant element 882.
  • a MEMS device that includes a resonant element 882 has the sensitive electrode oriented with respect to the displacement of the resonant element that occurs in the plane, thereby allowing the measurement of the magnetic field in the Z direction.
  • a plurality of such resonant elements or distributions and the corresponding sensitive electrodes can be included in a MEMS device to form a three-dimensional magnetometer.
  • Fig. 9 depicts an illustrative cross section of a MEMS device 900 having a plurality of resonant elements 902 and support anchors 906.
  • the resonant elements can be designed in different ways, for example, in the form of bridges, cantilever beams, coils or any other suitable configuration.
  • Cantilever beams can be much less sensitive to temperature variations than bridges. It may be desirable to use this type of structure if better robustness is sought against temperature.
  • Bridges may be preferred if the length needs to be maximized. This is because the Applicant has experimentally verified that the residual tension in the metallic layers of the CMOS processes is generally of tension, and therefore tends to maintain a great degree of flatness in the bridges.
  • bridges can be used to build a magnetometer in which current is required to flow in one direction all the time. Since the bridges are connected in series, the current will flow only in one direction (due to the guide wires) and are well adapted to build a magnetometer.
  • a cantilever beam structure may be a better option.
  • the proposed configuration may require anchors 906 to support the sensitive electrode 904, and ensure that the sensitive electrode 904 does not bend or damage the MEMS device.
  • the anchors 906 can occupy variable spaces in a given die. For example, the occupied die area for a given set of anchors can be approximately 10 ⁇ x 10 ⁇ .
  • the occupied area of dice can be approximately 5 ⁇ x 5 ⁇ .
  • This set of anchors allows a denser distribution of anchor sets. The thicker the anchors, the more sets of anchors can be placed in a given die space. More anchors per area can also cover more parasitic capacitance. The best result can be obtained by minimizing the distance between sets of anchors so that the total area in the die dedicated to the anchors can be reduced. Additionally, thin anchors take up less space and allow more space for the MEMS device itself to be placed in the given space of the die.
  • the anchors 906 are constructed in such a way that they are electrically isolated from the top to the bottom.
  • the anchors are manufactured in such a way that when chemical attack with HF steam is carried out, it has to travel a longer path to record the oxide. As a result, part of the oxide 908 remains after etching with HF steam and insulates the anchors from the covers and / or the lower metal layer of the MEMS device.
  • Fig. 10 represents an illustrative cross section of a MEMS device 1000 having a plurality of resonant elements 1002 and support column anchors 1008.
  • anchor and “column” can be used interchangeably in the context of this description.
  • the MEMS 1000 device differs from the MEMS 900 device in certain aspects.
  • column anchors 1008 can support the upper metal covering or layer 1006 in the MEMS 1000 device, for example, spray deposition of Al or any other suitable thin film covering, and ensure that it does not bend.
  • column anchors 1008 are metal-only structures, for example, metal columns and tracks. Such anchors can Short circuit cover 1006 with the bottom metal layer of the MEMS device. As illustrated in Fig.
  • a portion of the stack is replaced by dielectric material 1010 between column anchors 1008.
  • the oxide portion may have a square shape or any other suitable shape such that the oxide is not etched by chemical attack.
  • the cover 1006 cannot have relief holes to preserve the oxide below.
  • the combination of metal and oxide can provide better robustness compared to other anchor implementations.
  • the mechanical robustness of column anchors 1008 is independent of the etching time by chemical attack. Therefore, even long etch times cannot cause a decrease in the support provided by the column anchors 1008 in the covering 1006.
  • the MEMS 1000 device differs from the MEMS 900 device in another aspect.
  • the sensitive electrode 1004 of the MEMS 1000 device is disposed within the cavity next to the resonant element 1002 and is electrically protected from the outside world. It is surrounded by a protective enclosure that includes conductive material of covering 1006, column anchors 1008, and the bottom layer of the MEMS device. As such, there is minimal or no interference by external electromagnetic or electrostatic fields. This reduces the parasitic capacitance in the sensitive electrode 1004 and further helps to increase the SNR of the MEMS 1000 device to allow a higher sensitivity.
  • the MEMS 1000 device can detect even smaller changes in a target magnetic field compared to the MEMS 900 device and allows a larger dynamic range for the target magnetic field.
  • the proposed configuration can provide better performance during manufacturing as well as allow larger (or longer) resonant elements 102, if so desired.
  • Both 900 and 1000 devices can be configured to function as magnetometers, accelerometers or any other suitable sensor device. They can be manufactured using the nanoEMS process described in U.S. Patent Application Publication. commonly possessed no. 2010/0295138, entitled “Methods and Systems for the Manufacture of MEMS CMOS Devices", and hereby incorporated by reference in its entirety.
  • the following describes process flow steps for manufacturing a MEMS device from a distribution through a CMOS MEMS based process, for example, a nanoEMS TM process.
  • manufacturing processes for the MEMS device should not be limited to CMS MEMS based processes and may include MEMS based processes, NEMS based processes and other suitable processes.
  • Fig. HA represents an illustrative cross section of a first set of process flow steps for manufacturing a MEMS device having a plurality of resonant elements. The thickness of the layers has been increased.
  • the MEMS device is manufactured using a standard CMOS process.
  • the MEMS device is manufactured in a cavity formed within interconnection layers of a CMOS chip.
  • the MEMS device is manufactured as a stand-alone MEMS device. Initially a metallic layer is deposited.
  • the metal layer can be made of, for example, AlCu metal alloy.
  • a masking layer is deposited on top of the metal layer, and then the metal layer is etched by chemical attack to form the plates 1102.
  • An Intermediate Metal Dielectric layer is deposited on top of the plates 1102, followed by a masking layer and then The IMD layer is etched by chemical attack and is filled with metal to form separators or tracks 1106.
  • the IMD layer includes an undoped oxide layer.
  • Another metal layer is deposited followed by a masking layer deposited on top of the metal layer, and then the metal layer is etched by chemical attack to form plates 1104.
  • Another FMD layer is deposited on top of plates 1104, followed by a masking layer and then the IMD layer is etched by chemical attack and filled with metal to form separators or tracks 1108.
  • the plates 1102 and 1104 and the separators 1106 and 1108 together form part of the protective electrode for the resonant element.
  • a metal layer is deposited on the spacers 1 108 to form another part of the protective electrode.
  • Another IMD layer is deposited on the bridge 410, followed by the upper metal layer 11 12.
  • a masking layer is deposited on the upper metal layer 11 12.
  • the upper metal layer 1 112 is then etched by chemical attack to form through holes 1 114. Through holes may allow the passage of the chemical attack agent, for example, gaseous HF, to etch the material under the upper metal layer 1112 by chemical attack.
  • the chemical attack agent for example, gaseous HF
  • Figs. 1 1B and 1 1C represent cross sections of a second and a third set of process flow steps for manufacturing a MEMS device having a plurality of resonant elements.
  • a chemical attack agent for example, dry HF
  • the chemical attack agent etches part of the IMD layers by chemical attack to release the anchors and the MEMS device bridge, as shown in Fig. 11B.
  • the oxide 1 142 of the IMD layers remains to provide support to the MEMS device.
  • a metallization layer 1 182 is deposited on the upper metal layer 1 1 12 to seal the MEMS device from the outdoor environment, as shown in Fig. 1 1 C, for example, by normally sputtering deposition. ) of Al and modeling.
  • the MEMS device is manufactured using integrated chip technology based on MEMS, based on NEMS or based on CMOS MEMS.
  • a MEMS device is arranged in an integrated circuit.
  • the process flow stages of Figs. 1 1A-1 1 C are made in the interconnection layers of the integrated circuit.
  • the layers that form the electrical and / or electronic elements in a semiconductor material substrate are produced.
  • the interconnection layers are produced, including a lower layer of conductive material and an upper layer of conductive material, separated by at least one layer of dielectric material.
  • the top layers or passivation layers, made with a sub-layer of silicon oxide and TiN on top, can be modeled to open then the necessary holes to apply the vHF later.
  • a part of the MEMS device is formed within the interconnection layers by applying gaseous HF to the at least one layer of dielectric material according to the process flow steps described with respect to Figs. 11A-11C.
  • a MEMS device includes a resonant element that has a protective electrode that includes a finger or thin path on its surface in front of a sensitive electrode.
  • the thin finger can increase the sensitivity of inertia devices or any electrostatic device, and is not limited to the embodiment discussed below.
  • the thin finger can be manufactured as a path that has no metal arranged on top of it. As such, the thin finger is essentially deposited as a protrusion on the surface of the sensitive electrode.
  • Figs. 12A and 12B show illustrative embodiments of MEMS 1200 and 1250 devices having thin fingers.
  • the device 1200 includes the sensitive electrode 1202 and the resonant element 1204 having a protective electrode that includes a thin finger 1206 on its surface in front of the sensitive electrode 1202.
  • the device 1250 includes the sensitive electrode 1252 and the resonant element 1254 having a protective electrode that includes a thin finger 1256 on its surface in front of the sensitive electrode 1252.
  • the sensitive electrode 1202 is a three-sided structure
  • the sensitive electrode 1252 includes four sides. Many variations of the sensitive electrode are possible as can be established by one skilled in the art.
  • the thin finger 1206 or 1256 is arranged closer to the sensitive electrode 1202 or 1252, it can help increase the capacitance variation between the resonant electrode 1204 or 1254 and the sensitive electrode 1202 with respect to a similar displacement of the resonant electrode.
  • the movement of the thin finger also produces a topological change because the thin finger enters the cavity of the sensitive electrode, which is then added to the capacitance of its walls as well as to the surface.
  • the capacitance variation by vertical displacement may be higher, and therefore the electrostatic pressure can be higher too.
  • the fingers are more effective when the vertical separation is relatively larger than the lateral separation.
  • the potential improvement of vertical sensitivity may be up to about 550%.
  • multiple resonant elements can be manufactured in the interconnection layers and disposed on top of a specific application integrated circuit (ASIC) that can selectively control the resonant elements.
  • ASIC application integrated circuit
  • a single type of MEMS device is manufactured on top of the ASIC, for example, a magnetometer. Certain devices may not be used initially and be reserved for redundancy in case of failure of another device in use. In case of failure of a device due to issues during manufacturing, the redundant device can help improve performance. In the event of a device failure during operation, the redundant device can help improve long-term reliability.
  • the multiple resonant elements are configured as sensors of different types.
  • resonant elements may include a magnetometer, a gyroscope and an accelerometer.
  • resonant elements may include a 3D magnetometer, a 3D gyroscope and a 3D accelerometer.
  • the resonant elements are constructed on top of an ASIC and the ASIC can switch between each resonant element as necessary.
  • a configurable motion sensor cell can be formed including a magnetometer, gyroscope and accelerometer within the interconnection layers of the ASIC.
  • the ASIC controller of the motion sensor cell can then select whether the sensor cell of Movement must offer the functionality of a magnetometer, gyroscope or accelerometer.
  • a hybrid motion sensor is constructed with redundant elements as well as multiple types of motion sensor devices, thereby offering the combined benefits of configuration capacity, redundancy and reliability.

Abstract

The systems and methods described provide for a magnetometer device that includes a resonating element having an inner wire enclosed in a shielding electrode. The shielding electrode decreases the effect of interference on the resonating element. A sensing electrode is disposed proximate to the resonating element. The device further includes a source for generating current that is connected to the resonating element. The current when applied through the inner wire causes a displacement of the resonating element. The magnetometer device measures a magnetic field of the resonating element as a capacitance variation between the shielding electrode and the sensing electrode. The systems and methods herein provide for an accelerometer device that includes a resonating element having an inner core of dielectric material enclosed in a shielding electrode. The accelerometer device measures an acceleration of the resonating element as a capacitance variation between the shielding electrode and the sensing electrode.

Description

MÉTODOS Y SISTEMAS PARA DISPOSITIVOS MEMS (SISTEMAS METHODS AND SYSTEMS FOR MEMS DEVICES (SYSTEMS
MICROELECTROMECÁNICOS) CMOS (SEMICONDUCTORMICROELECTROMECHANICAL) CMOS (SEMICONDUCTOR
COMPLEMENTARIO DE ÓXIDO METÁLICO) QUE INCLUYEN UNA BRÚJULA DE MÚLTD7LES HILOS COMPLEMENTARY OF METAL OXIDE) INCLUDING A MULTIDEL COMPASS THREAD
Referencia Cruzada a Solicitudes Relacionadas Cross Reference to Related Requests
Esta solicitud reivindica prioridad sobre la solicitud provisional de patente de EE.UU. n° 61/511.324 presentada el 25 de julio de 2011, la solicitud provisional de patente de EE.UU. n° 61/606.091 presentada el 2 de marzo de 2012, y la solicitud provisional de patente de EE.UU. n° 61/646.664 presentada el 14 de mayo de 2012, que se incorporan por referencia en esta memoria en su totalidad. This application claims priority over the provisional US patent application. No. 61 / 511,324 filed on July 25, 2011, the provisional US patent application. No. 61 / 606,091 filed on March 2, 2012, and the provisional US patent application. No. 61 / 646,664 filed on May 14, 2012, which are incorporated by reference herein in their entirety.
Antecedentes Background
Los dispositivos de sensores de movimiento tales como magnetómetros y acelerómetros se incrustan típicamente en los aparatos electrónicos actuales. En un aspecto, tales dispositivos se fabrican típicamente utilizando un proceso micro- electromecánico basado en MEMS e incluyen una masa de prueba anclada. Cualquier movimiento de la masa de prueba provoca una variación de capacitancia con respecto a un electrodo de referencia, y la variación es medida para determinar el vector de objetivo, tal como un campo magnético o una aceleración. Motion sensor devices such as magnetometers and accelerometers are typically embedded in today's electronic devices. In one aspect, such devices are typically manufactured using a MEMS-based micro-electromechanical process and include an anchored test mass. Any movement of the test mass causes a capacitance variation with respect to a reference electrode, and the variation is measured to determine the target vector, such as a magnetic field or acceleration.
Sin embargo, la masa de prueba anclada es típicamente susceptible a la interferencia del entorno tal como campos de dispersión electromagnéticos o electrostáticos u otros efectos como esos. La interferencia puede afectar a la sensibilidad del dispositivo de sensor de movimiento que tiene la masa de prueba y lo hace inadecuado para aplicaciones de alta sensibilidad, por ejemplo, toma de imágenes por resonancia magnética (IRM). La reducida sensibilidad tiene como resultado una menor proporción de señal a ruido (SNR: del inglés signal-to-noise ratio) y puede hacer que las mediciones realizadas utilizando el dispositivo de sensor de movimiento sean imprecisas. However, the anchored test mass is typically susceptible to interference from the environment such as electromagnetic or electrostatic dispersion fields or other effects such as those. The interference may affect the sensitivity of the motion sensor device that has the test mass and makes it unsuitable for high sensitivity applications, for example, magnetic resonance imaging (MRI). The reduced sensitivity results in a lower signal-to-noise ratio (SNR) and can make measurements made using the motion sensor device inaccurate.
Por consiguiente, existe la necesidad de un dispositivo de sensor de movimiento que sea mínimamente susceptible a la interferencia y ofrezca una alta SNR. Therefore, there is a need for a motion sensor device that is minimally susceptible to interference and offers a high SNR.
Sumario Los sistemas y los métodos descritos en esta memoria abordan las deficiencias en la técnica anterior al permitir la fabricación de un dispositivo de sensor de movimiento, ya sea basado en MEMS, basado en NEMS o basado en CMOS MEMS, que es mínimamente susceptible a las interferencias. En el caso de un dispositivo de magnetómetro en el que un campo magnético objetivo que va a ser medido es más grande que el campo magnético de la tierra (aproximadamente 60 μΤ), las necesidades en la sensibilidad del dispositivo de magnetómetro es generalmente bajo. Sin embargo, si el campo magnético objetivo que va a ser medido es pequeño, por ejemplo, en las proximidades o más bajo que el ruido geomagnético (aproximadamente 0,1 nT), puede ser necesario un dispositivo de magnetómetro de alta sensibilidad. Tales dispositivos de magnetómetro se necesitan típicamente en aplicaciones médicas y biomédicas, tales como IRM y etiquetado de moléculas, y comunicaciones de radio, tales como una antena receptora para señales de RF. Summary The systems and methods described herein address deficiencies in the prior art by allowing the manufacture of a motion sensor device, whether based on MEMS, based on NEMS or based on CMOS MEMS, which is minimally susceptible to interference In the case of a magnetometer device in which an objective magnetic field to be measured is larger than the earth's magnetic field (approximately 60 μΤ), the sensitivity needs of the magnetometer device is generally low. However, if the target magnetic field to be measured is small, for example, in the vicinity or lower than the geomagnetic noise (approximately 0.1 nT), a high sensitivity magnetometer device may be necessary. Such magnetometer devices are typically needed in medical and biomedical applications, such as MRI and molecule labeling, and radio communications, such as a receiving antenna for RF signals.
Los sistemas y los métodos descritos en esta memoria se proporcionan para un dispositivo de magnetómetro que incluye un elemento resonante que tiene un hilo interior encerrado en un electrodo protector. El electrodo protector puede disminuir los efectos indeseados de interferencia en el elemento resonante y mejorar la SNR del dispositivo de magnetómetro. El electrodo protector que encierra el hilo interior también puede permitir una medición más fácil de la variación de capacitancia entre el elemento resonante y un electrodo sensible. Puede aplicarse un voltaje constante al electrodo protector con respecto al electrodo sensible de tal manera que la variación de capacitancia no sea afectada por cualquier caída de voltaje en el hilo interior. Sin el electrodo protector, la caída de voltaje debida al flujo de corriente y la resistencia del hilo interior pueden inducir una fuerza electrostática y/o una interferencia electrostática. Estos pueden interferir con la variación de capacitancia e introducir errores en la medición de un campo magnético objetivo. En un aspecto, los sistemas y los métodos descritos en esta memoria se proporcionan para un dispositivo de magnetómetro. Un electrodo sensible se dispone dentro del dispositivo de magnetómetro, y un elemento resonante se dispone próximo al electrodo sensible. El elemento resonante incluye un electrodo protector dispuesto alrededor de un hilo interior. El dispositivo incluye además una fuente para generar corriente que está conectada al elemento resonante. La corriente, cuando se aplica a través del hilo interior, provoca un desplazamiento del elemento resonante perpendicular al campo magnético. El dispositivo de magnetómetro mide un campo magnético del elemento resonante como una variación de capacitancia entre el electrodo protector y el electrodo sensible. The systems and methods described herein are provided for a magnetometer device that includes a resonant element having an inner wire enclosed in a protective electrode. The protective electrode can decrease unwanted effects of interference on the resonant element and improve the SNR of the magnetometer device. The protective electrode that encloses the inner wire It can also allow an easier measurement of the capacitance variation between the resonant element and a sensitive electrode. A constant voltage can be applied to the protective electrode with respect to the sensitive electrode such that the capacitance variation is not affected by any voltage drop in the inner wire. Without the protective electrode, the voltage drop due to current flow and the resistance of the inner wire can induce electrostatic force and / or electrostatic interference. These can interfere with the capacitance variation and introduce errors in the measurement of a target magnetic field. In one aspect, the systems and methods described herein are provided for a magnetometer device. A sensitive electrode is disposed within the magnetometer device, and a resonant element is disposed close to the sensitive electrode. The resonant element includes a protective electrode arranged around an inner wire. The device also includes a source for generating current that is connected to the resonant element. The current, when applied through the inner wire, causes a displacement of the resonant element perpendicular to the magnetic field. The magnetometer device measures a magnetic field of the resonant element as a variation of capacitance between the protective electrode and the sensitive electrode.
En algunas realizaciones, el dispositivo incluye además una pluralidad de elementos resonantes dispuestos próximos al elemento resonante presente, y una pluralidad de hilos de guía dispuestos próximos a los elementos resonantes. Los hilos de guía conectan eléctricamente los elementos resonantes de tal manera que la misma corriente se propague por todos los elementos resonantes. En algunas realizaciones, la corriente aplicada al elemento resonante es periódica. In some embodiments, the device further includes a plurality of resonant elements arranged close to the resonant element present, and a plurality of guide wires arranged close to the resonant elements. The guide wires electrically connect the resonant elements such that the same current propagates through all the resonant elements. In some embodiments, the current applied to the resonant element is periodic.
En algunas realizaciones, el dispositivo incluye una fuente de voltaje conectada al electrodo protector que aplica un voltaje constante al electrodo protector. En algunas realizaciones, dos o más elementos resonantes se acoplan mecánicamente de tal manera que compartan una frecuencia resonante. El acoplamiento mecánico de los elementos resonantes puede incluir conectar físicamente su respectivo electrodo protector con material conductor. En algunas realizaciones, el electrodo sensible está orientado con respecto al desplazamiento del elemento resonante que se produce en el plano, permitiendo con ello la medición del campo magnético en la dirección Z. En algunas realizaciones, el electrodo sensible está orientado con respecto al desplazamiento del elemento resonante que se produce fuera del plano, permitiendo con ello la medición del campo magnético en la dirección X o Y. En algunas realizaciones, la orientación del elemento resonante para mediciones en la dirección X es ortogonal a la orientación del elemento resonante para mediciones en la dirección Y. En algunas realizaciones, dos o más electrodos sensibles están orientados de tal manera que miden el desplazamiento del elemento resonante en múltiples direcciones. Por ejemplo, dos electrodos sensibles pueden estar orientados para medir el desplazamiento del elemento resonante en las direcciones X y Z. In some embodiments, the device includes a voltage source connected to the protective electrode that applies a constant voltage to the protective electrode. In some embodiments, two or more resonant elements are mechanically coupled with such that they share a resonant frequency. The mechanical coupling of the resonant elements may include physically connecting their respective protective electrode with conductive material. In some embodiments, the sensitive electrode is oriented with respect to the displacement of the resonant element that occurs in the plane, thereby allowing the measurement of the magnetic field in the Z direction. In some embodiments, the sensitive electrode is oriented with respect to the displacement of the resonant element that occurs outside the plane, thereby allowing the measurement of the magnetic field in the X or Y direction. In some embodiments, the orientation of the resonant element for measurements in the X direction is orthogonal to the orientation of the resonant element for measurements in the Y direction. In some embodiments, two or more sensitive electrodes are oriented such that they measure the displacement of the resonant element in multiple directions. For example, two sensitive electrodes may be oriented to measure the displacement of the resonant element in the X and Z directions.
En algunas realizaciones, el electrodo sensible está soportado por lo menos en unas orillas del dispositivo mediante una pluralidad de distribuciones densas de columnas. En algunas realizaciones, cada columna está en contacto con sólo uno de entre el electrodo sensible y un electrodo inferior. En algunas realizaciones, cada columna está en contacto a la vez con el electrodo sensible y el electrodo inferior. In some embodiments, the sensitive electrode is supported at least on some edges of the device by a plurality of dense column distributions. In some embodiments, each column is in contact with only one of the sensitive electrode and a lower electrode. In some embodiments, each column is in contact with both the sensitive electrode and the lower electrode.
En algunas realizaciones, el electrodo sensible está rodeado por un electrodo protector para minimizar la capacitancia parasitaria. En algunas realizaciones, un electrodo superior y un electrodo inferior del dispositivo están conectados mediante dos columnas que tienen óxido en medio, recibiendo con ello soporte para el electrodo superior desde las dos columnas. En algunas realizaciones, puede utilizarse una pluralidad de dispositivos de resonador para formar una brújula tridimensional, un acelerómetro o cualquier otro dispositivo adecuado. En otro aspecto, los sistemas y los métodos descritos en esta memoria proporcionan un dispositivo de magnetómetro. Una fuente para generar una corriente dispuesta dentro del dispositivo de magnetómetro, y una pluralidad de elementos resonantes se disponen próximos a la fuente. Sólo uno de los elementos resonantes está conectado a la fuente. El dispositivo incluye además una pluralidad de hilos de guía dispuestos próximos a los elementos resonantes. Los hilos de guía conectan eléctricamente los elementos resonantes de tal manera que la corriente aplicada en el elemento resonante conectado a la fuente se propaga a través de los elementos resonantes. Los hilos de guía pueden disponerse de tal manera que no afecten la variación de capacitancia. Por ejemplo, el resultado puede conseguirse disponiendo hilos metálicos sin soltar. Esto puede asegurar que el desplazamiento (y la variación de capacitancia) respecto los hilos de guía no cancela la variación de capacitancia de tal manera que la variación neta de la capacitancia se haga cero. In some embodiments, the sensitive electrode is surrounded by a protective electrode to minimize parasitic capacitance. In some embodiments, an upper electrode and a lower electrode of the device are connected by two columns having rust in between, thereby receiving support for the upper electrode from the two columns. In some embodiments, a plurality of resonator devices can be used to form a three-dimensional compass, an accelerometer or any other suitable device. In another aspect, the systems and methods described herein provide a magnetometer device. A source for generating a current disposed within the magnetometer device, and a plurality of resonant elements are arranged close to the source. Only one of the resonant elements is connected to the source. The device also includes a plurality of guide wires arranged close to the resonant elements. The guide wires electrically connect the resonant elements in such a way that the current applied in the resonant element connected to the source is propagated through the resonant elements. The guide wires can be arranged in such a way that they do not affect the capacitance variation. For example, the result can be achieved by arranging metallic wires without releasing. This can ensure that the displacement (and the capacitance variation) with respect to the guide wires does not cancel the capacitance variation such that the net capacitance variation becomes zero.
En incluso otro aspecto, los sistemas y los métodos descritos en esta memoria se proporcionan para un dispositivo de acelerómetro. Un electrodo sensible se dispone dentro del dispositivo de acelerómetro, y un elemento resonante se dispone próximo al electrodo sensible. El elemento resonante incluye un electrodo protector dispuesto alrededor de un núcleo interior de material dieléctrico. El dispositivo incluye además una fuente para generar un voltaje. La fuente está conectada al elemento resonante y aplica el voltaje. El dispositivo de acelerómetro mide una aceleración externa del elemento resonante como una variación de capacitancia entre el electrodo protector y el electrodo sensible. El desplazamiento puede producirse debido a la aceleración externa, mientras que el voltaje puede ser aplicado para medir la variación de capacitancia. In even another aspect, the systems and methods described herein are provided for an accelerometer device. A sensitive electrode is disposed within the accelerometer device, and a resonant element is disposed close to the sensitive electrode. The resonant element includes a protective electrode disposed around an inner core of dielectric material. The device also includes a source to generate a voltage. The source is connected to the resonant element and applies the voltage. The accelerometer device measures an external acceleration of the resonant element as a variation of capacitance between the protective electrode and the sensitive electrode. Displacement can occur due to external acceleration, while voltage can be applied to measure capacitance variation.
En incluso otro aspecto más, los sistemas y los métodos descritos en esta memoria se proporcionan para un chip que comprende un dispositivo de MEMS dispuesto en un circuito integrado. El chip incluye elementos electrónicos formados sobre un sustrato de material semiconductor y una pila de capas de interconexión producidas por encima del sustrato de material semiconductor. Las capas de interconexión incluyen una pluralidad de capas de material conductor. Cada capa de material conductor está separada por una capa de material dieléctrico. El dispositivo de MEMS se forma dentro de la pila de capas de interconexión aplicando HF (fluoruro de hidrógeno) gaseoso a la pila de capas de interconexión. El dispositivo de MEMS incluye un electrodo protector de material conductor dispuesto alrededor de un núcleo interior de material dieléctrico. Breve descripción de los dibujos In yet another aspect, the systems and methods described herein are provided for a chip comprising a MEMS device arranged in an integrated circuit. The chip includes electronic elements formed on a substrate of semiconductor material and a stack of interconnection layers produced above the substrate of semiconductor material. The interconnection layers include a plurality of layers of conductive material. Each layer of conductive material is separated by a layer of dielectric material. The MEMS device is formed within the interconnection layer stack by applying HF (hydrogen fluoride) gas to the interconnection layer stack. The MEMS device includes a protective electrode of conductive material disposed around an inner core of dielectric material. Brief description of the drawings
Otras ventajas y características de los sistemas y los métodos descritos en esta memoria descriptiva pueden ser apreciadas a partir de la siguiente descripción, que proporciona una descripción no limitativa de las realizaciones ilustrativas, haciendo referencia a los dibujos adjuntos, en los que: Other advantages and characteristics of the systems and methods described in this specification can be appreciated from the following description, which provides a non-limiting description of the illustrative embodiments, referring to the accompanying drawings, in which:
La Fig. 1 representa una sección transversal esquemática de un dispositivo de sensor de movimiento de la técnica anterior; La Fig. 2 representa una sección transversal esquemática de un dispositivo de sensor de movimiento, según una realización ilustrativa de la invención; Fig. 1 depicts a schematic cross section of a prior art motion sensor device; Fig. 2 depicts a schematic cross section of a motion sensor device, according to an illustrative embodiment of the invention;
La Fig. 3A representa una sección transversal de un dispositivo de MEMS que tiene una pluralidad de elementos resonantes, según una realización ilustrativa de la invención; Fig. 3A depicts a cross section of a MEMS device having a plurality of resonant elements, according to an illustrative embodiment of the invention;
La Fig. 3B representa una sección transversal de un dispositivo de MEMS que tiene una pluralidad de elementos resonantes, según otra realización ilustrativa de la invención; La Fig. 4 representa un flujo esquemático de una corriente a través de una pluralidad de elementos resonantes, según una realización ilustrativa de la invención; Fig. 3B represents a cross section of a MEMS device having a plurality of resonant elements, according to another illustrative embodiment of the invention; Fig. 4 depicts a schematic flow of a current through a plurality of resonant elements, according to an illustrative embodiment of the invention;
La Fig. 5A representa una sección transversal de un dispositivo de MEMS que tiene una pluralidad de elementos resonantes y los correspondientes hilos de guía, según una realización ilustrativa de la invención; Fig. 5A represents a cross section of a MEMS device having a plurality of resonant elements and corresponding guide wires, according to an illustrative embodiment of the invention;
La Fig. 5B representa una sección transversal de un dispositivo de MEMS que tiene un elemento resonante y los correspondientes hilos de guía, según una realización ilustrativa de la invención; Fig. 5B represents a cross section of a MEMS device having a resonant element and corresponding guide wires, according to an illustrative embodiment of the invention;
La Fig. 6 representa una pluralidad de elementos que están acoplados mecánicamente, según una realización ilustrativa de la invención; La Fig. 7 A representa una sección transversal de un dispositivo de MEMS que tiene una pluralidad de elementos resonantes que están acoplados mecánicamente, según una realización ilustrativa de la invención; Fig. 6 represents a plurality of elements that are mechanically coupled, according to an illustrative embodiment of the invention; Fig. 7 A represents a cross section of a MEMS device having a plurality of resonant elements that are mechanically coupled, according to an illustrative embodiment of the invention;
La Fig. 7B representa una sección transversal de un dispositivo de MEMS que tiene una pluralidad de elementos resonantes que están acoplados mecánicamente, según otra realización ilustrativa de la invención; Fig. 7B depicts a cross section of a MEMS device having a plurality of resonant elements that are mechanically coupled, according to another illustrative embodiment of the invention;
La Fig. 8A representa una orientación esquemática para un elemento resonante, según una realización ilustrativa de la invención; Fig. 8A represents a schematic orientation for a resonant element, according to an illustrative embodiment of the invention;
La Fig. 8B representa una orientación esquemática para un elemento resonante, según otra realización ilustrativa de la invención; Fig. 8B represents a schematic orientation for a resonant element, according to another illustrative embodiment of the invention;
La Fig. 8C representa una orientación esquemática para un elemento resonante, según incluso otra realización ilustrativa de la invención; La Fig. 9 representa una sección transversal de un dispositivo de MEMS que tiene una pluralidad de elementos resonantes y anclajes de soporte, según una realización ilustrativa de la invención; Fig. 8C represents a schematic orientation for a resonant element, according to even another illustrative embodiment of the invention; Fig. 9 represents a cross section of a MEMS device having a plurality of resonant elements and support anchors, according to an illustrative embodiment of the invention;
La Fig. 10 representa una sección transversal de un dispositivo de MEMS que tiene una pluralidad de elementos resonantes y anclajes de soporte, según otra realización ilustrativa de la invención; La Fig. 11 A representa una sección transversal de un primer conjunto de etapas de flujo de proceso para fabricar un dispositivo de MEMS que tiene una pluralidad de elementos resonantes, según una realización ilustrativa de la invención; Fig. 10 depicts a cross section of a MEMS device having a plurality of resonant elements and support anchors, according to another illustrative embodiment of the invention; Fig. 11 A represents a cross section of a first set of process flow steps for manufacturing a MEMS device having a plurality of resonant elements, according to an illustrative embodiment of the invention;
La Fig. 11B representa una sección transversal de un segundo conjunto de etapas de flujo de proceso para fabricar un dispositivo de MEMS que tiene una pluralidad de elementos resonantes, según una realización ilustrativa de la invención; Fig. 11B represents a cross section of a second set of process flow steps for manufacturing a MEMS device having a plurality of resonant elements, according to an illustrative embodiment of the invention;
La Fig. 11C representa una sección transversal de un tercer conjunto de etapas de flujo de proceso para fabricar un dispositivo de MEMS que tiene una pluralidad de elementos resonantes, según una realización ilustrativa de la invención; Fig. 11C depicts a cross section of a third set of process flow steps for manufacturing a MEMS device having a plurality of resonant elements, according to an illustrative embodiment of the invention;
La Fig. 12A representa una vista esquemática de un dispositivo de MEMS que tiene un dedo delgado, según una realización ilustrativa de la invención; y La Fig. 12B representa una vista esquemática de un dispositivo de MEMS que tiene un dedo delgado, según otra realización ilustrativa de la invención. Descripción detallada de unas realizaciones Fig. 12A depicts a schematic view of a MEMS device having a thin finger, according to an illustrative embodiment of the invention; and Fig. 12B represents a schematic view of a MEMS device having a thin finger, according to another illustrative embodiment of the invention. Detailed description of some embodiments
Para proporcionar una comprensión total de los sistemas y los métodos descritos en esta memoria descriptiva, ahora se describirán determinadas realizaciones ilustrativas. Sin embargo, un experto en la técnica entenderá que los sistemas y los métodos descritos en esta memoria pueden ser adaptados y ser modificados según sea apropiado para la aplicación que se está abordando y que los sistemas y los métodos descritos en esta memoria pueden ser empleados en otras aplicaciones adecuadas, y que esas otras adiciones y modificaciones no se apartarán del alcance de la misma. To provide a full understanding of the systems and methods described in this specification, certain illustrative embodiments will now be described. However, one skilled in the art will understand that the systems and methods described herein can be adapted and modified as appropriate for the application being addressed and that the systems and methods described herein can be used in other suitable applications, and that those other additions and modifications will not depart from the scope thereof.
La Fig. 1 representa una sección transversal esquemática ilustrativa de un dispositivo 100 de sensor de movimiento de la técnica anterior. El dispositivo 100 incluye un elemento resonante en forma de masa de prueba 102, que se ancla mediante resortes 104. La masa de prueba 102 está dispuesta en las proximidades de un electrodo sensible 106. En algunas realizaciones, el dispositivo 100 funciona como un magnetómetro, por ejemplo, un magnetómetro basado en fuerza de Lorentz o una brújula, que es un caso específico de un magnetómetro. Tal magnetómetro depende del movimiento mecánico de la masa de prueba 102 debido a la fuerza de Lorentz que actúa sobre la masa de prueba cuando se aplica una corriente a la masa de prueba 102 en presencia de un campo magnético objetivo. La masa de prueba 102 puede ser llevada a su resonancia con el fin de obtener la señal de salida máxima. El movimiento mecánico de la masa de prueba 102 puede ser sentido ya sea de manera electrónica u óptica. Puede utilizarse un método de transducción piezorresistiva y electrostática para la detección electrónica. Puede utilizarse medición del desplazamiento con fuente láser o fuente LED para la detección óptica. Fig. 1 depicts an illustrative schematic cross section of a prior art motion sensor device 100. The device 100 includes a resonant element in the form of test mass 102, which is anchored by springs 104. The test mass 102 is arranged in the vicinity of a sensitive electrode 106. In some embodiments, the device 100 functions as a magnetometer, for example, a magnetometer based on Lorentz force or a compass, which is a specific case of a magnetometer. Such a magnetometer depends on the mechanical movement of the test mass 102 due to the Lorentz force acting on the test mass when a current is applied to the test mass 102 in the presence of a target magnetic field. The test mass 102 can be brought to its resonance in order to obtain the maximum output signal. The mechanical movement of the test mass 102 can be felt either electronically or optically. A piezoresistive and electrostatic transduction method can be used for electronic detection. Displacement measurement with laser source or LED source can be used for optical detection.
Se aplica una corriente a la masa de prueba 102 en presencia del campo magnético objetivo. La corriente aplicada puede ser monótona o periódica. Como resultado, la masa de prueba 102 exhibe un movimiento con respecto al electrodo sensible 106, provocando una variación de capacitancia entre la masa de prueba 102 y el electrodo sensible 106. En una realización, la variación de capacitancia puede ser medida utilizando un amplificador de carga que produce un voltaje proporcional a la capacitancia entre la masa de prueba 102 y el electrodo sensible 106. El voltaje de salida del amplificador de carga puede ser conectado a un comparador que compara el voltaje de salida correspondiente a la nueva capacitancia con un voltaje de referencia correspondiente a la capacitancia original. El voltaje de referencia y el voltaje de salida pueden ser recibidos en forma analógica o digital en un procesador para calcular el campo magnético objetivo. En otra realización, la variación de capacitancia es producida como una corriente y se calcula sobre la base de corrientes de salida y de referencia. A current is applied to the test mass 102 in the presence of the target magnetic field. The applied current can be monotonous or periodic. As a result, the test mass 102 exhibits a movement with respect to the electrode Sensitive 106, causing a capacitance variation between the test mass 102 and the sensitive electrode 106. In one embodiment, the capacitance variation can be measured using a load amplifier that produces a voltage proportional to the capacitance between the test mass 102 and the sensitive electrode 106. The output voltage of the load amplifier can be connected to a comparator that compares the output voltage corresponding to the new capacitance with a reference voltage corresponding to the original capacitance. The reference voltage and the output voltage can be received in analog or digital form in a processor to calculate the target magnetic field. In another embodiment, the capacitance variation is produced as a current and is calculated on the basis of output and reference currents.
Sin embargo, el dispositivo de sensor de movimiento antes descrito puede ser susceptible a la interferencia de campos de dispersión electromagnéticos o electrostáticos u otros efectos similares, llevando a una menor sensibilidad. Además, la interferencia del ruido Browniano debido al medio aéreo presente dentro del dispositivo puede afectar aún más a la sensibilidad del dispositivo. Por ejemplo, la interferencia puede afectar a la variación de capacitancia entre la masa de prueba 102 y el electrodo sensible 106. Como resultado, el campo magnético objetivo puede ser medido interpretando incorrectamente el dispositivo inadecuado para su finalidad pretendida. However, the motion sensor device described above may be susceptible to interference from electromagnetic or electrostatic dispersion fields or other similar effects, leading to lower sensitivity. In addition, interference from Brownian noise due to the air medium present within the device may further affect the sensitivity of the device. For example, interference may affect the capacitance variation between test mass 102 and sensitive electrode 106. As a result, the target magnetic field can be measured by incorrectly interpreting the device unsuitable for its intended purpose.
Una realización ilustrativa de un dispositivo de sensor de movimiento para abordar tal interferencia se representa en la Fig. 2. La Fig. 2 representa una sección transversal esquemática ilustrativa de un dispositivo 200 de sensor de movimiento. El dispositivo 200 incluye un elemento resonante que tiene un hilo 202 encerrado en óxido 204 y un electrodo protector 206, además del electrodo sensible 208. La estructura mecánica representada incluye óxido 204 y un electrodo protector 206 protege el hilo 202 de efectos de interferencia. La estructura mecánica puede actuar además como un protector eléctrico entre el electrodo sensible 208 y el hilo 202. La estructura mecánica también puede actuar como una barrera mecánica contra agentes de ataque químico utilizados durante el proceso de fabricación de un CMOS. Dado que el hilo 202 está incrustado en el óxido, su límite de electro-migración no cambia. La estructura mecánica puede incluir una mezcla de uno o más metales y óxido. Además, puede disminuir la no coincidencia del coeficiente de expansión térmica (CTE) entre el elemento resonante y la oblea subyacente, produciendo una mejor robustez frente a la temperatura. En algunas realizaciones, una fuente de voltaje se conecta a la estructura mecánica para aplicar un voltaje constante. La estructura mecánica permite un punto eléctrico extra que pueda ser fijado en un voltaje deseado que facilita el diseño electrónico. An illustrative embodiment of a motion sensor device for addressing such interference is depicted in Fig. 2. Fig. 2 depicts an illustrative schematic cross section of a motion sensor device 200. The device 200 includes a resonant element having a wire 202 enclosed in oxide 204 and a protective electrode 206, in addition to the sensitive electrode 208. The mechanical structure depicted includes oxide 204 and a protective electrode 206 protects the wire 202 from interference effects. The mechanical structure can also act as an electrical protector between the sensitive electrode 208 and the wire 202. The Mechanical structure can also act as a mechanical barrier against chemical attack agents used during the manufacturing process of a CMOS. Since the wire 202 is embedded in the oxide, its electro-migration limit does not change. The mechanical structure may include a mixture of one or more metals and oxide. In addition, the mismatch of the thermal expansion coefficient (CTE) between the resonant element and the underlying wafer can be reduced, producing a better robustness against temperature. In some embodiments, a voltage source is connected to the mechanical structure to apply a constant voltage. The mechanical structure allows an extra electrical point that can be set at a desired voltage that facilitates electronic design.
En algunas realizaciones, el dispositivo 200 incluye múltiples hilos incrustados en óxido. Los hilos pueden conectarse en serie a través de hilos de guía incluidos en el dispositivo 200. La corriente de Lorentz por un hilo interacciona con el campo magnético y crea una fuerza magnética que excita la vibración de la estructura. Conectar los hilos en serie puede crear un efecto multiplicativo en la fuerza de Lorentz, logrando altas prestaciones con un valor bajo de corriente. Como resultado, puede ser necesaria sólo una fuente eléctrica para suministrar corriente a los hilos en el dispositivo 200. En una realización, los hilos se conectan en paralelo. La corriente puede dividirse entre los hilos que necesitan que se introduzca una mayor corriente en comparación con la configuración en serie. En la configuración en serie, la corriente puede propagarse por los hilos resonantes en el mismo sentido. De otro modo si alguno de los hilos resonantes tenía corriente fluyendo en sentido opuesto a otros hilos resonantes, pueden anularse los efectos entre sí. Los hilos de guía pueden garantizar que tal cancelación no tenga lugar, que puede ser el caso si los hilos resonantes estaban conectados simplemente de punta a punta sin hilos de guía. In some embodiments, the device 200 includes multiple threads embedded in rust. The wires can be connected in series through guide wires included in the device 200. The Lorentz current through a wire interacts with the magnetic field and creates a magnetic force that excites the vibration of the structure. Connecting the wires in series can create a multiplicative effect on Lorentz's strength, achieving high performance with a low current value. As a result, only one electrical source may be necessary to supply current to the wires in the device 200. In one embodiment, the wires are connected in parallel. The current can be divided between the wires that need a higher current to be introduced compared to the serial configuration. In series configuration, the current can propagate through the resonant wires in the same direction. Otherwise, if any of the resonant wires had current flowing in the opposite direction to other resonant wires, the effects on each other can be nullified. The guide wires can ensure that such cancellation does not take place, which may be the case if the resonant wires were simply connected end to end without guide wires.
En algunas realizaciones, el electrodo protector 206 puede incluir un dedo o vía delgados en su superficie frente al electrodo sensible 208. El dedo delgado puede fabricarse como una vía que no tiene metal dispuesto encima de la misma. Como tal, el dedo delgado se deposita en esencia como un saliente en la superficie del electrodo sensible 208. Dado que el dedo delgado está dispuesto más cerca del electrodo sensible 208, puede ayudar a aumentar la variación de capacitancia entre el electrodo protector 206 y el electrodo sensible 208 con respecto a un desplazamiento semejante del electrodo protector 206. En algunas realizaciones, el movimiento del dedo delgado también produce un cambio topológico a causa de que el dedo delgado entra en la cavidad del electrodo sensible 208, que entonces se añade a la capacitancia de sus paredes así como a la superficie. Como resultado, la variación de capacitancia por el desplazamiento vertical puede ser más alta, y por consiguiente la presión electrostática puede ser más alta también. In some embodiments, the protective electrode 206 may include a thin finger or path on its surface in front of the sensitive electrode 208. The thin finger may be manufactured as a path that has no metal disposed thereon. As such, The thin finger is essentially deposited as a projection on the surface of the sensitive electrode 208. Since the thin finger is disposed closer to the sensitive electrode 208, it can help increase the capacitance variation between the protective electrode 206 and the sensitive electrode 208 with respect to a similar displacement of the protective electrode 206. In some embodiments, the movement of the thin finger also produces a topological change because the thin finger enters the cavity of the sensitive electrode 208, which is then added to the capacitance of its walls as well as to the surface. As a result, the capacitance variation by vertical displacement may be higher, and therefore the electrostatic pressure may be higher as well.
Ambos dispositivos 100 y 200 pueden configurarse para funcionar como magnetómetros, acelerómetros o cualquier otro dispositivo adecuado de sensor. Pueden fabricarse utilizando el proceso de nanoEMS™ descrito en la publicación de solicitud de patente de EE.UU. poseída comúnmente n°. 2010/0295138, titulada "Métodos y Sistemas para la Fabricación de Dispositivos de MEMS CMOS", y por la presente incorporada a modo de referencia en su totalidad. Both devices 100 and 200 can be configured to function as magnetometers, accelerometers or any other suitable sensor device. They can be manufactured using the nanoEMS ™ process described in U.S. Patent Application Publication. commonly possessed no. 2010/0295138, entitled "Methods and Systems for the Manufacture of MEMS CMOS Devices", and hereby incorporated by reference in its entirety.
La Fig. 3A representa una sección transversal ilustrativa de un dispositivo de MEMS 300 que tiene una pluralidad de elementos resonantes y un electrodo sensible 308. En algunas realizaciones, el dispositivo de MEMS 300 incluye alrededor de 50 a 100 elementos resonantes. Cada elemento resonante incluye un hilo 302 incrustado en óxido 304. El elemento resonante también incluye un electrodo protector 306 hecho de material conductor. En una realización, el dispositivo de MEMS 300 está configurado para ser un magnetómetro. Cuando se aplica una corriente al elemento resonante en presencia de un campo magnético objetivo, el elemento resonante puede exhibir un movimiento con respecto al electrodo sensible 308, causando una variación de capacitancia entre el elemento resonante y el electrodo sensible 308. En una realización, la variación de capacitancia puede ser medida utilizando un amplificador de carga que produce un voltaje proporcional a la capacitancia entre el elemento resonante y el electrodo sensible 308. Pueden incluirse múltiples elementos resonantes o distribuciones para que haya redundancia y/o para medir el campo magnético en múltiples dimensiones. Por ejemplo, cada uno de tres elementos resonantes puede medir el campo magnético en la direcciones X, Y, y Z. En alguna realización, la electrónica de detección para el magnetómetro incluye un amplificador de transimpedancia (que convierte corriente en voltaje). Fig. 3A depicts an illustrative cross section of a MEMS device 300 having a plurality of resonant elements and a sensitive electrode 308. In some embodiments, the MEMS device 300 includes about 50 to 100 resonant elements. Each resonant element includes a wire 302 embedded in oxide 304. The resonant element also includes a protective electrode 306 made of conductive material. In one embodiment, the MEMS device 300 is configured to be a magnetometer. When a current is applied to the resonant element in the presence of an objective magnetic field, the resonant element may exhibit a movement with respect to the sensitive electrode 308, causing a capacitance variation between the resonant element and the sensitive electrode 308. In one embodiment, the Capacitance variation can be measured using a load amplifier that produces a voltage proportional to the capacitance between the element resonant and sensitive electrode 308. Multiple resonant elements or distributions may be included for redundancy and / or for measuring the magnetic field in multiple dimensions. For example, each of three resonant elements can measure the magnetic field in the X, Y, and Z directions. In some embodiment, the sensing electronics for the magnetometer includes a transimpedance amplifier (which converts current to voltage).
El elemento resonante puede incluir más de un hilo. Esto se ilustra en el dispositivo de MEMS 350 de la Fig. 3B. La Fig. 3B representa una sección transversal ilustrativa de un dispositivo de MEMS 350 que tiene una pluralidad de elementos resonantes. Cada elemento resonante incluye unos hilos 352 y 354 incrustados en óxido 356. En algunas realizaciones, cada elemento resonante incluye hasta alrededor de doce elementos resonantes. El elemento resonante también incluye un electrodo protector 358 hecho de material conductor. En una realización, el dispositivo de MEMS 350 está configurado para ser un magnetómetro. Cuando se aplica una corriente al elemento resonante en presencia de un campo magnético objetivo, el elemento resonante puede exhibir un movimiento con respecto al electrodo sensible 360, causando una variación de capacitancia entre el elemento resonante y el electrodo sensible 360. En una realización, la variación de capacitancia puede ser medida utilizando un amplificador de carga que produce un voltaje proporcional a la capacitancia entre el elemento resonante y el electrodo sensible 360. Pueden incluirse múltiples elementos resonantes o distribuciones para que haya redundancia y/o para medir el campo magnético en múltiples dimensiones. Por ejemplo, cada uno de tres elementos resonantes puede medir el campo magnético en las direcciones X, Y, y Z. The resonant element may include more than one thread. This is illustrated in the MEMS device 350 of Fig. 3B. Fig. 3B depicts an illustrative cross section of a MEMS device 350 having a plurality of resonant elements. Each resonant element includes threads 352 and 354 embedded in oxide 356. In some embodiments, each resonant element includes up to about twelve resonant elements. The resonant element also includes a protective electrode 358 made of conductive material. In one embodiment, the MEMS 350 device is configured to be a magnetometer. When a current is applied to the resonant element in the presence of an objective magnetic field, the resonant element may exhibit a movement with respect to the sensitive electrode 360, causing a capacitance variation between the resonant element and the sensitive electrode 360. In one embodiment, the Capacitance variation can be measured using a load amplifier that produces a voltage proportional to the capacitance between the resonant element and the sensitive electrode 360. Multiple resonant elements or distributions can be included for redundancy and / or for measuring the magnetic field in multiple dimensions. For example, each of three resonant elements can measure the magnetic field in the X, Y, and Z directions.
En algunas realizaciones, se pueden conectar múltiples hilos incrustados en óxido de un elemento resonante en serie mediante hilos de guía dispuestos en el dispositivo de MEMS. La corriente de Lorentz a través de cada hilo interacciona con el campo magnético y puede crear una fuerza magnética que excita la vibración del elemento resonante. Conectar los hilos en serie puede crear un efecto multiplicativo en la fuerza de Lorentz, logrando altas prestaciones con un valor bajo de corriente. Como resultado, puede ser necesaria sólo una fuente eléctrica para suministrar corriente a los hilos en el elemento resonante. La fuente eléctrica puede ser una fuente de corriente, una fuente de voltaje o cualquier otra fuente adecuada. La corriente puede propagarse en el mismo sentido en todos los elementos resonantes. In some embodiments, multiple oxide-embedded wires of a resonant element in series can be connected by guide wires arranged in the MEMS device. The Lorentz current through each wire interacts with the magnetic field and can create a magnetic force that excites the vibration of the resonant element. Connecting the wires in series can create a multiplicative effect in the Lorentz force, achieving high performance with a low current value. As a result, only one electrical source may be necessary to supply current to the wires in the resonant element. The electrical source may be a current source, a voltage source or any other suitable source. The current can propagate in the same direction in all resonant elements.
Ambos dispositivos 300 y 350 pueden configurarse para funcionar como magnetómetros, acelerómetros o cualquier otro dispositivo adecuado de sensor. Pueden fabricarse utilizando el proceso de nanoEMS™ descrito en la publicación de solicitud de patente de EE.UU. poseída comúnmente n° 2010/0295138, titulada "Métodos y Sistemas para la Fabricación de Dispositivos de MEMS CMOS", y por la presente incorporada a modo de referencia en su totalidad. Both devices 300 and 350 can be configured to function as magnetometers, accelerometers or any other suitable sensor device. They can be manufactured using the nanoEMS ™ process described in U.S. Patent Application Publication. Commonly possessed No. 2010/0295138, entitled "Methods and Systems for the Manufacture of MEMS CMOS Devices", and hereby incorporated by reference in its entirety.
La Fig. 4 representa un flujo esquemático ilustrativo 400 de corriente a través de una pluralidad de hilos 402. Los hilos 402 pueden incrustarse en óxido de un solo elemento resonante o pueden esparcirse por múltiples elementos resonantes. Los hilos 402 pueden variar de aproximadamente 300 a aproximadamente 400 μηι de largo. En algunas realizaciones, los hilos 402 pueden ser aproximadamente de 800 μιη de largo. En cualquier caso, los hilos 402 se conectan en serie mediante los hilos de guía 404 y requieren sólo una fuente eléctrica para propagar la corriente a través de los hilos 402. Los hilos 404 conectados en serie funcionan como un solo elemento resonante y pueden permitir un requisito de corriente baja (por ejemplo, inferior a 1 mA) para un dispositivo de sensor de movimiento que tiene tal configuración. La corriente puede propagarse en el mismo sentido en todos los elementos resonantes. Fig. 4 depicts an illustrative schematic flow 400 of current through a plurality of wires 402. The wires 402 may be embedded in oxide of a single resonant element or may be scattered over multiple resonant elements. The wires 402 may vary from about 300 to about 400 μηι in length. In some embodiments, threads 402 may be approximately 800 μιη long. In any case, the wires 402 are connected in series by the guide wires 404 and require only one electrical source to propagate the current through the wires 402. The wires 404 connected in series function as a single resonant element and can allow a Low current requirement (for example, less than 1 mA) for a motion sensor device having such a configuration. The current can propagate in the same direction in all resonant elements.
Las Figs. 5A y 5B representan unas secciones transversales ilustrativas de dispositivos de MEMS que tienen elementos resonantes conectados en serie. La Fig. 5 A representa una sección transversal ilustrativa de un dispositivo de MEMS 500 que tiene una pluralidad de elementos resonantes y unos correspondientes hilos de guía. Cada elemento resonante incluye un hilo 502 incrustado en óxido. Cada elemento resonante también incluye un electrodo protector hecho de material conductor. Los hilos 502 para los elementos resonantes se conectan en serie a través de hilos de guía 504. La Fig. 5B representa una sección transversal ilustrativa de otro dispositivo de MEMS 550 que tiene un elemento resonante y unos correspondientes hilos de guía. En esta realización, el elemento resonante incluye múltiples hilos 552 incrustados en óxido. El elemento resonante también incluye un electrodo protector hecho de material conductor. Los hilos 552 para los elementos resonantes se conectan en serie a través de hilos de guía 554. Los hilos de guía 504 o 554 pueden disponerse debajo de los elementos resonantes como se ilustra en las Figs. 5A y 5B, o pueden disponerse en cualquier otra parte adecuada del dispositivo de MEMS según sena necesario. La corriente puede propagarse en el mismo sentido en los hilos 502 o 552. Los hilos de guía 504 o 554 pueden ser hilos metálicos sin soltar de tal manera que no cancelen sus efectos acumulados de fuerza. Como se ha comentado antes, conectar los hilos en serie puede permitir altas prestaciones del dispositivo de MEMS con un valor bajo de corriente. Como resultado, puede ser necesaria sólo una fuente eléctrica para suministrar corriente a los hilos en el elemento resonante. La fuente eléctrica puede ser una fuente de corriente, una fuente de voltaje o cualquier otra fuente adecuada. En algunas realizaciones, los hilos 502 o 552 pueden conectarse en paralelo o una combinación que incluye configuraciones en serie y en paralelo. Figs. 5A and 5B represent illustrative cross sections of MEMS devices having resonant elements connected in series. Fig. 5 A depicts an illustrative cross section of a MEMS device 500 having a plurality of resonant elements and corresponding guide wires. Each resonant element includes a 502 thread embedded in oxide. Each element Resonant also includes a protective electrode made of conductive material. The wires 502 for the resonant elements are connected in series through guide wires 504. Fig. 5B represents an illustrative cross-section of another MEMS device 550 having a resonant element and corresponding guide wires. In this embodiment, the resonant element includes multiple threads 552 embedded in oxide. The resonant element also includes a protective electrode made of conductive material. The wires 552 for the resonant elements are connected in series via guide wires 554. The guide wires 504 or 554 can be arranged under the resonant elements as illustrated in Figs. 5A and 5B, or may be arranged in any other suitable part of the MEMS device as necessary. The current can propagate in the same direction in the 502 or 552 threads. The 504 or 554 guide wires can be loose metal wires in such a way that they do not cancel their accumulated force effects. As mentioned before, connecting the wires in series can allow high performance of the MEMS device with a low current value. As a result, only one electrical source may be necessary to supply current to the wires in the resonant element. The electrical source may be a current source, a voltage source or any other suitable source. In some embodiments, wires 502 or 552 can be connected in parallel or a combination that includes serial and parallel configurations.
En una realización, dispositivo de MEMS 500 o 550 está configurado para ser un magnetómetro. Cuando se aplica una corriente al elemento resonante en presencia de un campo magnético objetivo, cada elemento resonante puede exhibir un movimiento con respecto a electrodo sensible, provocando una variación de capacitancia entre el elemento resonante y el electrodo sensible. En una realización, la variación de capacitancia puede ser medida utilizando un amplificador de carga que produce un voltaje proporcional a la capacitancia entre el elemento resonante y el electrodo sensible. En algunas realizaciones, se utiliza un amplificador de transimpedancia para medir la variación de capacitancia para un dispositivo de brújula de MEMS. In one embodiment, MEMS 500 or 550 device is configured to be a magnetometer. When a current is applied to the resonant element in the presence of a target magnetic field, each resonant element can exhibit a movement with respect to a sensitive electrode, causing a capacitance variation between the resonant element and the sensitive electrode. In one embodiment, the capacitance variation can be measured using a charge amplifier that produces a voltage proportional to the capacitance between the resonant element and the sensitive electrode. In some embodiments, an amplifier of transimpedance to measure the capacitance variation for a MEMS compass device.
Ambos dispositivos 500 y 550 pueden configurarse para funcionar como magnetómetros, acelerómetros o cualquier otro dispositivo adecuado de sensor. Pueden fabricarse utilizando el proceso de nanoEMS™ descrito en la publicación de solicitud de patente de EE.UU. poseída comúnmente n°. 2010/0295138, titulada "Métodos y Sistemas para la Fabricación de Dispositivos de MEMS CMOS", y por la presente incorporada a modo de referencia en su totalidad. Both devices 500 and 550 can be configured to function as magnetometers, accelerometers or any other suitable sensor device. They can be manufactured using the nanoEMS ™ process described in U.S. Patent Application Publication. commonly possessed no. 2010/0295138, entitled "Methods and Systems for the Manufacture of MEMS CMOS Devices", and hereby incorporated by reference in its entirety.
En algunas realizaciones, las estructuras mecánicas de múltiples elementos resonantes se acoplan mecánicamente de tal manera que vibran con una sola frecuencia resonante. Este puede ser el caso incluso si la frecuencia resonante de cada elemento resonante es ligeramente diferente. Esto permite a los elementos resonantes interferir de una manera constructiva y la corriente sentida puede ser maximizada. La Fig. 6 representa una estructura mecánica ilustrativa 600 que tiene una pluralidad de elementos resonantes 602 que se acoplan mecánicamente. Los N elementos resonantes (con rigidez de Ki a K ) pueden unirse a través de acoplamientos con rigidez KC. Si Kc « Ki y Kc «K2 etcétera, los N elementos resonantes vibran en la misma frecuencia comportándose como un solo elemento resonante con rigidez Ki + K2 + ... + K . El valor bajo de Kc puede ayudar a mantener baja la rigidez acumulada de los elementos resonantes acoplados. In some embodiments, the mechanical structures of multiple resonant elements are mechanically coupled such that they vibrate with a single resonant frequency. This may be the case even if the resonant frequency of each resonant element is slightly different. This allows the resonant elements to interfere in a constructive manner and the felt current can be maximized. Fig. 6 depicts an illustrative mechanical structure 600 having a plurality of resonant elements 602 that are mechanically coupled. The N resonant elements (with stiffness from Ki to K) can be joined through couplings with stiffness K C. If K c «Ki and K c « K 2 and so on, the N resonant elements vibrate on the same frequency behaving as a single resonant element with stiffness Ki + K 2 + ... + K. The low value of K c can help keep the accumulated stiffness of the coupled resonant elements low.
En algunas realizaciones, los electrodos protectores de respectivos elementos resonantes pueden ser conectados mediante material conductor para lograr el acoplamiento mecánico. El material conductor puede incluir metales tales como aluminio, cobre o cualquier otro metal adecuado y/o aleaciones tales como una aleación de AlCu. La conexión puede establecerse en varias partes del electrodo protector como se ilustra en las Figs. 7A y 7B. En algunas realizaciones, el material conductor del acoplamiento mecánico puede doblarse al tiempo que permite a cada elemento resonante mantener significativamente su curvatura. Esto puede ayudar a los elementos resonantes acoplados mecánicamente a vibrar en una sola frecuencia resonante. El valor bajo de Kc puede ayudar a asegurar acoplamientos mecánicos blandos para este fin. In some embodiments, the protective electrodes of respective resonant elements may be connected by conductive material to achieve mechanical coupling. The conductive material may include metals such as aluminum, copper or any other suitable metal and / or alloys such as an AlCu alloy. The connection can be established in several parts of the protective electrode as illustrated in Figs. 7A and 7B. In some embodiments, the mechanical coupling conductive material may bend while allowing each Resonant element significantly maintain its curvature. This can help the resonant elements mechanically coupled to vibrate on a single resonant frequency. The low value of K c can help ensure soft mechanical couplings for this purpose.
La Fig. 7A representa una sección transversal ilustrativa de un dispositivo de MEMS 700 que tiene una pluralidad de elementos resonantes 702 que se acoplan mecánicamente a través de un material conductor 704. El material conductor 704 conecta los elementos resonantes 702 y puede permitir que los elementos resonantes vibren en una sola frecuencia resonante. La Fig. 7B representa una sección transversal ilustrativa de otro dispositivo de MEMS 750 que tiene una pluralidad de elementos resonantes 752 que se acoplan mecánicamente a través de un material conductor 754. El material conductor 754 conecta los elementos resonantes 752 en una posición diferente a la representada en la Fig. 7A, pero proporcionan una capacidad semejante a los elementos resonantes para vibrar en una sola frecuencia resonante. Fig. 7A depicts an illustrative cross-section of a MEMS device 700 having a plurality of resonant elements 702 that are mechanically coupled through a conductive material 704. Conductive material 704 connects the resonant elements 702 and may allow the elements resonants vibrate on a single resonant frequency. Fig. 7B depicts an illustrative cross section of another MEMS device 750 having a plurality of resonant elements 752 that are mechanically coupled through a conductive material 754. Conductive material 754 connects the resonant elements 752 in a different position to the depicted in Fig. 7A, but provide a similar ability to resonant elements to vibrate on a single resonant frequency.
Ambos dispositivos 700 y 750 pueden configurarse para funcionar como magnetómetros, acelerómetros o cualquier otro dispositivo adecuado de sensor. Pueden fabricarse utilizando el proceso de nanoEMS™ descrito en la publicación de solicitud de patente de EE.UU. poseída comúnmente n°. 2010/0295138, titulada "Métodos y Sistemas para la Fabricación de Dispositivos de MEMS CMOS", y por la presente incorporada a modo de referencia en su totalidad. La Fig. 8A representa una orientación esquemática ilustrativa 800 para el elemento resonante 802. Un dispositivo de MEMS que incluye un elemento resonante 802 tiene el electrodo sensible orientado con respecto al desplazamiento del elemento resonante 802 que se produce fuera del plano, permitiendo con ello la medición del campo magnético en la dirección X. La Fig. 8B representa una orientación esquemática ilustrativa 840 para el elemento resonante 842. Un dispositivo de MEMS que incluye un elemento resonante 842 tiene el electrodo sensible orientado con respecto al desplazamiento del elemento resonante 842 que se produce fuera del plano, permitiendo con ello la medición del campo magnético en la dirección Y. La Fig. 8C representa una orientación esquemática ilustrativa 880 para el elemento resonante 882. Un dispositivo de MEMS que incluye un elemento resonante 882 tiene el electrodo sensible orientado con respecto al desplazamiento del elemento resonante que se produce en el plano, permitiendo con ello la medición del campo magnético en la dirección Z. En algunas realizaciones, una pluralidad de tales elementos resonantes o distribuciones y los correspondientes electrodos sensibles pueden incluirse en un dispositivo de MEMS para formar un magnetómetro tridimensional. Both 700 and 750 devices can be configured to function as magnetometers, accelerometers or any other suitable sensor device. They can be manufactured using the nanoEMS ™ process described in U.S. Patent Application Publication. commonly possessed no. 2010/0295138, entitled "Methods and Systems for the Manufacture of MEMS CMOS Devices", and hereby incorporated by reference in its entirety. Fig. 8A represents an illustrative schematic orientation 800 for the resonant element 802. A MEMS device that includes a resonant element 802 has the sensitive electrode oriented with respect to the displacement of the resonant element 802 that occurs outside the plane, thereby allowing the measurement of the magnetic field in the X direction. Fig. 8B represents an illustrative schematic orientation 840 for the resonant element 842. A MEMS device which includes a resonant element 842 has the sensitive electrode oriented with respect to the displacement of the resonant element 842 that occurs outside the plane, thereby allowing the measurement of the magnetic field in the Y direction. Fig. 8C represents an illustrative schematic orientation 880 for the resonant element 882. A MEMS device that includes a resonant element 882 has the sensitive electrode oriented with respect to the displacement of the resonant element that occurs in the plane, thereby allowing the measurement of the magnetic field in the Z direction. In some embodiments , a plurality of such resonant elements or distributions and the corresponding sensitive electrodes can be included in a MEMS device to form a three-dimensional magnetometer.
La Fig. 9 representa una sección transversal ilustrativa de un dispositivo de MEMS 900 que tiene una pluralidad de elementos resonantes 902 y unos anclajes de soporte 906. Los elementos resonantes pueden diseñarse de maneras diferentes, por ejemplo, en forma de puentes, vigas voladizas, bobinas o cualquier otra configuración adecuada. Las vigas voladizas pueden ser mucho menos sensibles a variaciones de temperatura que los puentes. Puede ser deseable utilizar este tipo de estructura si se busca mejor robustez frente a la temperatura. Pueden preferirse los puentes si se necesita maximizar la longitud. Esto es porque el Solicitante ha verificado experimentalmente que la tensión residual en las capas metálicas de los procesos de CMOS es generalmente de tensión, y por consiguiente tiende a mantener un gran grado de la planitud en los puentes. Por ejemplo, los puentes pueden utilizarse para construir un magnetómetro en el que se necesita que la corriente fluya en un sentido todo el tiempo. Dado que los puentes se conectan en serie, la corriente fluirá sólo en un sentido (debido a los hilos de guía) y están bien adaptados para construir un magnetómetro. Sin embargo, si la limitación es reducir la no coincidencia de frecuencia para maximizar el factor de calidad, Q, de la distribución, entonces una estructura de tipo viga voladiza puede ser una mejor opción. Adicionalmente, la configuración propuesta puede necesitar unos anclajes 906 para soportar el electrodo sensible 904, y asegurar que el electrodo sensible 904 no dobla ni daña el dispositivo de MEMS. Los anclajes 906 pueden ocupar espacios variables en un dado determinado. Por ejemplo, el área ocupada de dado para un conjunto determinado de anclajes puede ser aproximadamente de 10 μηι x 10 μπι. En otro ejemplo, el área ocupada de dado puede ser aproximadamente de 5 μηι x 5 μηι. Este conjunto de anclajes permite una distribución más densa de conjuntos de anclajes. Cuanto más gruesos son los anclajes, más conjuntos de anclajes se pueden colocar en un espacio determinado de dado. Más anclajes por área también pueden permitir tapar más capacitancia parasitaria. El mejor resultado puede obtenerse minimizando la distancia entre conjuntos de anclajes de modo que el área total en el dado dedicado a los anclajes pueda reducirse. Adicionalmente, los anclajes delgados ocupan menos espacio y permiten más espacio para que el propio dispositivo de MEMS sea colocado en el espacio determinado del dado. Los anclajes 906 se construyen de tal manera que estén aislados eléctricamente de la parte superior a la inferior. Los anclajes se fabrican de tal manera que cuando se realiza ataque químico con vapor de HF, tiene que recorrer una trayectoria más larga para grabar el óxido. Como resultado, parte del óxido 908 se queda después del grabado con vapor HF y aisle los anclajes respecto las tapas y/o la capa metálica inferior del dispositivo de MEMS. Fig. 9 depicts an illustrative cross section of a MEMS device 900 having a plurality of resonant elements 902 and support anchors 906. The resonant elements can be designed in different ways, for example, in the form of bridges, cantilever beams, coils or any other suitable configuration. Cantilever beams can be much less sensitive to temperature variations than bridges. It may be desirable to use this type of structure if better robustness is sought against temperature. Bridges may be preferred if the length needs to be maximized. This is because the Applicant has experimentally verified that the residual tension in the metallic layers of the CMOS processes is generally of tension, and therefore tends to maintain a great degree of flatness in the bridges. For example, bridges can be used to build a magnetometer in which current is required to flow in one direction all the time. Since the bridges are connected in series, the current will flow only in one direction (due to the guide wires) and are well adapted to build a magnetometer. However, if the limitation is to reduce the frequency mismatch to maximize the quality factor, Q, of the distribution, then a cantilever beam structure may be a better option. Additionally, the proposed configuration may require anchors 906 to support the sensitive electrode 904, and ensure that the sensitive electrode 904 does not bend or damage the MEMS device. The anchors 906 can occupy variable spaces in a given die. For example, the occupied die area for a given set of anchors can be approximately 10 μηι x 10 μπι. In another example, the occupied area of dice can be approximately 5 μηι x 5 μηι. This set of anchors allows a denser distribution of anchor sets. The thicker the anchors, the more sets of anchors can be placed in a given die space. More anchors per area can also cover more parasitic capacitance. The best result can be obtained by minimizing the distance between sets of anchors so that the total area in the die dedicated to the anchors can be reduced. Additionally, thin anchors take up less space and allow more space for the MEMS device itself to be placed in the given space of the die. The anchors 906 are constructed in such a way that they are electrically isolated from the top to the bottom. The anchors are manufactured in such a way that when chemical attack with HF steam is carried out, it has to travel a longer path to record the oxide. As a result, part of the oxide 908 remains after etching with HF steam and insulates the anchors from the covers and / or the lower metal layer of the MEMS device.
La Fig. 10 representa una sección transversal ilustrativa de un dispositivo de MEMS 1000 que tiene una pluralidad de elementos resonantes 1002 y unos anclajes de columna de soporte 1008. El término "anclaje" y "columna" puede utilizarse de manera intercambiable en el contexto de esta descripción. El dispositivo de MEMS 1000 difiere del dispositivo de MEMS 900 en determinados aspectos. Por ejemplo, los anclajes de columna 1008 pueden soportar el cubrimiento o capa metálica superior 1006 en el dispositivo de MEMS 1000, por ejemplo, deposición por pulverización (sputtering) de Al o cualquier otro cubrimiento delgado adecuado de película, y asegurar que no doble. Sin embargo, los anclajes de columna 1008 son estructuras solo de metal, por ejemplo, columnas de metal y vías. Tales anclajes pueden cortocircuitar el cubrimiento 1006 con la capa metálica inferior del dispositivo de MEMS. Según se ilustra en la Fig. 10, una parte de la pila es reemplazada por material dieléctrico 1010 entre anclajes de columna 1008. La parte del óxido puede tener una forma cuadrada o cualquier otra forma adecuada de tal manera que el óxido no sea grabado por ataque químico. El cubrimiento 1006 no puede tener agujeros de alivio para preservar el óxido de debajo. La combinación de metal y óxido puede proporcionar mejor robustez en comparación con otras implementaciones de anclajes. La robustez mecánica de los anclajes de columna 1008 es independiente del tiempo de grabado por ataque químico. Por lo tanto, incluso largos tiempos de grabado por ataque químico no pueden provocar una disminución en el soporte proporcionado por los anclajes de columna 1008 en el cubrimiento 1006. Fig. 10 represents an illustrative cross section of a MEMS device 1000 having a plurality of resonant elements 1002 and support column anchors 1008. The term "anchor" and "column" can be used interchangeably in the context of this description. The MEMS 1000 device differs from the MEMS 900 device in certain aspects. For example, column anchors 1008 can support the upper metal covering or layer 1006 in the MEMS 1000 device, for example, spray deposition of Al or any other suitable thin film covering, and ensure that it does not bend. However, column anchors 1008 are metal-only structures, for example, metal columns and tracks. Such anchors can Short circuit cover 1006 with the bottom metal layer of the MEMS device. As illustrated in Fig. 10, a portion of the stack is replaced by dielectric material 1010 between column anchors 1008. The oxide portion may have a square shape or any other suitable shape such that the oxide is not etched by chemical attack. The cover 1006 cannot have relief holes to preserve the oxide below. The combination of metal and oxide can provide better robustness compared to other anchor implementations. The mechanical robustness of column anchors 1008 is independent of the etching time by chemical attack. Therefore, even long etch times cannot cause a decrease in the support provided by the column anchors 1008 in the covering 1006.
El dispositivo de MEMS 1000 difiere del dispositivo de MEMS 900 en otro aspecto. El electrodo sensible 1004 del dispositivo de MEMS 1000 se dispone dentro de la cavidad próxima al elemento resonante 1002 y está protegido eléctricamente del mundo del exterior. Está rodeado por un recinto protector que incluye material conductor del cubrimiento 1006, los anclajes de columna 1008, y la capa inferior del dispositivo de MEMS. Como tal, hay una mínima o ninguna interferencia por campos externos electromagnéticos o electrostáticos. Esto reduce la capacitancia parasitaria en el electrodo sensible 1004 y ayuda además a aumentar el SNR del dispositivo de MEMS 1000 para permitir una sensibilidad más alta. Por ejemplo, el dispositivo de MEMS 1000 puede detectar los cambios incluso más pequeños en un campo magnético objetivo en comparación con el dispositivo de MEMS 900 y permite un alcance dinámico más grande para el campo magnético objetivo. Además, la configuración propuesta puede proporcionar mejor rendimiento durante la fabricación así como permitir elementos resonantes 102 más grandes (o más largos), si así se desea. The MEMS 1000 device differs from the MEMS 900 device in another aspect. The sensitive electrode 1004 of the MEMS 1000 device is disposed within the cavity next to the resonant element 1002 and is electrically protected from the outside world. It is surrounded by a protective enclosure that includes conductive material of covering 1006, column anchors 1008, and the bottom layer of the MEMS device. As such, there is minimal or no interference by external electromagnetic or electrostatic fields. This reduces the parasitic capacitance in the sensitive electrode 1004 and further helps to increase the SNR of the MEMS 1000 device to allow a higher sensitivity. For example, the MEMS 1000 device can detect even smaller changes in a target magnetic field compared to the MEMS 900 device and allows a larger dynamic range for the target magnetic field. In addition, the proposed configuration can provide better performance during manufacturing as well as allow larger (or longer) resonant elements 102, if so desired.
Ambos dispositivos 900 y 1000 pueden configurarse para funcionar como magnetómetros, acelerómetros o cualquier otro dispositivo adecuado de sensor. Pueden fabricarse utilizando el proceso de nanoEMS descrito en la publicación de solicitud de patente de EE.UU. poseída comúnmente n°. 2010/0295138, titulada "Métodos y Sistemas para la Fabricación de Dispositivos de MEMS CMOS", y por la presente incorporada a modo de referencia en su totalidad. A continuación se describen etapas de flujo de proceso para la fabricación de un dispositivo de MEMS de una distribución a través de un proceso basado en CMOS MEMS, por ejemplo, un proceso nanoEMS™. Sin embargo, los procesos de fabricación para el dispositivo de MEMS no deben limitarse a procesos basados en CMOS MEMS y pueden incluir procesos basados en MEMS, procesos basados en NEMS y otros procesos adecuados. Both 900 and 1000 devices can be configured to function as magnetometers, accelerometers or any other suitable sensor device. They can be manufactured using the nanoEMS process described in U.S. Patent Application Publication. commonly possessed no. 2010/0295138, entitled "Methods and Systems for the Manufacture of MEMS CMOS Devices", and hereby incorporated by reference in its entirety. The following describes process flow steps for manufacturing a MEMS device from a distribution through a CMOS MEMS based process, for example, a nanoEMS ™ process. However, manufacturing processes for the MEMS device should not be limited to CMS MEMS based processes and may include MEMS based processes, NEMS based processes and other suitable processes.
La Fig. HA representa una sección transversal ilustrativa de un primer conjunto de etapas de flujo de proceso para fabricar un dispositivo de MEMS que tiene una pluralidad de elementos resonantes. El grosor de las capas ha sido aumentado. En una realización, el dispositivo de MEMS es fabricado utilizando un proceso estándar de CMOS. En una realización, el dispositivo de MEMS es fabricado en una cavidad formada dentro de capas de interconexión de un chip CMOS. En una realización alternativa, el dispositivo de MEMS es fabricado como un dispositivo de MEMS autónomo. Inicialmente se deposita una capa metálica. La capa metálica puede hacerse de, por ejemplo, aleación metálica de AlCu. Una capa enmascaradora se deposita encima de la capa metálica, y entonces la capa metálica es grabada por ataque químico para formar las placas 1102. Una capa Dieléctrica Metálica Intermedia (FMD) se deposita encima de las placas 1102, seguida por una capa enmascaradora y entonces la capa IMD es grabada por ataque químico y es rellenada de metal para formar separadores o vías 1106. En una realización, la capa IMD incluye una capa de óxido no dopado. Se deposita otra capa metálica seguida por una capa enmascaradora depositada encima de la capa metálica, y entonces la capa metálica es grabada por ataque químico para formar las placas 1104. Otra capa FMD se deposita encima de las placas 1104, seguida por una capa enmascaradora y entonces la capa IMD es grabada por ataque químico y es rellenada de metal para formar separadores o vías 1108. Las placas 1102 y 1104 y los separadores 1106 y 1108 forman juntos parte del electrodo protector para el elemento resonante. Una capa metálica se deposita sobre los separadores 1 108 para formar otra parte del electrodo protector. Otra capa IMD es depositada en el puente 410, seguido por la capa metálica superior 11 12. Una capa enmascaradora es depositada en la capa metálica superior 11 12. La capa metálica superior 1 112 entonces es grabada por ataque químico para formar unos agujeros pasantes 1 114. Los agujeros pasantes pueden permitir el paso del agente de ataque químico, por ejemplo, HF gaseoso, para grabar por ataque químico el material debajo de la capa metálica superior 1112. Fig. HA represents an illustrative cross section of a first set of process flow steps for manufacturing a MEMS device having a plurality of resonant elements. The thickness of the layers has been increased. In one embodiment, the MEMS device is manufactured using a standard CMOS process. In one embodiment, the MEMS device is manufactured in a cavity formed within interconnection layers of a CMOS chip. In an alternative embodiment, the MEMS device is manufactured as a stand-alone MEMS device. Initially a metallic layer is deposited. The metal layer can be made of, for example, AlCu metal alloy. A masking layer is deposited on top of the metal layer, and then the metal layer is etched by chemical attack to form the plates 1102. An Intermediate Metal Dielectric layer (FMD) is deposited on top of the plates 1102, followed by a masking layer and then The IMD layer is etched by chemical attack and is filled with metal to form separators or tracks 1106. In one embodiment, the IMD layer includes an undoped oxide layer. Another metal layer is deposited followed by a masking layer deposited on top of the metal layer, and then the metal layer is etched by chemical attack to form plates 1104. Another FMD layer is deposited on top of plates 1104, followed by a masking layer and then the IMD layer is etched by chemical attack and filled with metal to form separators or tracks 1108. The plates 1102 and 1104 and the separators 1106 and 1108 together form part of the protective electrode for the resonant element. A metal layer is deposited on the spacers 1 108 to form another part of the protective electrode. Another IMD layer is deposited on the bridge 410, followed by the upper metal layer 11 12. A masking layer is deposited on the upper metal layer 11 12. The upper metal layer 1 112 is then etched by chemical attack to form through holes 1 114. Through holes may allow the passage of the chemical attack agent, for example, gaseous HF, to etch the material under the upper metal layer 1112 by chemical attack.
Las Figs. 1 1B y 1 1C representan secciones transversales de un segundo y un tercer conjunto de etapas de flujo de proceso para fabricar un dispositivo de MEMS que tiene una pluralidad de elementos resonantes. Un agente de ataque químico, por ejemplo, HF seco, es liberado a través de los agujeros pasantes 1 114 en la capa metálica superior 11 12. El agente de ataque químico graba por ataque químico parte de las capas IMD para soltar los anclajes y el puente del dispositivo de MEMS, como se muestra en la Fig. 11B. El óxido 1 142 de las capas IMD se queda para proporcionar soporte al dispositivo de MEMS. Por último, se deposita una capa de metalización 1 182 sobre la capa metálica superior 1 1 12 para sellar el dispositivo de MEMS del ambiente exterior, como se muestra en la Fig. 1 1 C, por ejemplo, mediante normalmente deposición por pulverización (sputtering) de Al y modelado. En una realización, el dispositivo de MEMS es fabricado utilizando tecnología de chip integrado basada en MEMS, basada en NEMS o basada en CMOS MEMS. Figs. 1 1B and 1 1C represent cross sections of a second and a third set of process flow steps for manufacturing a MEMS device having a plurality of resonant elements. A chemical attack agent, for example, dry HF, is released through the through holes 1 114 in the upper metal layer 11 12. The chemical attack agent etches part of the IMD layers by chemical attack to release the anchors and the MEMS device bridge, as shown in Fig. 11B. The oxide 1 142 of the IMD layers remains to provide support to the MEMS device. Finally, a metallization layer 1 182 is deposited on the upper metal layer 1 1 12 to seal the MEMS device from the outdoor environment, as shown in Fig. 1 1 C, for example, by normally sputtering deposition. ) of Al and modeling. In one embodiment, the MEMS device is manufactured using integrated chip technology based on MEMS, based on NEMS or based on CMOS MEMS.
En algunas realizaciones, se dispone un dispositivo de MEMS en un circuito integrado. Las etapas de flujo del proceso de las Figs. 1 1A-1 1 C se realizan en las capas de interconexión del circuito integrado. Se producen las capas que forman los elementos eléctricos y/o electrónicos en un sustrato material semiconductor. Se producen las capas de interconexión, incluyendo una capa inferior de material conductor y una capa superior de material conductor, separadas por lo menos por una capa de material dieléctrico. Las capas superiores o las capas de pasivación, hechas con una sub-capa de óxido de silicio y TiN en la parte superior, pueden ser modeladas para abrir entonces los agujeros necesarios para aplicar el vHF después. Una parte del dispositivo de MEMS se forma dentro de las capas de interconexión aplicando HF gaseoso a la por lo menos una capa de material dieléctrico según las etapas de flujo de proceso descritas con respecto a las Figs. 11A-11C. In some embodiments, a MEMS device is arranged in an integrated circuit. The process flow stages of Figs. 1 1A-1 1 C are made in the interconnection layers of the integrated circuit. The layers that form the electrical and / or electronic elements in a semiconductor material substrate are produced. The interconnection layers are produced, including a lower layer of conductive material and an upper layer of conductive material, separated by at least one layer of dielectric material. The top layers or passivation layers, made with a sub-layer of silicon oxide and TiN on top, can be modeled to open then the necessary holes to apply the vHF later. A part of the MEMS device is formed within the interconnection layers by applying gaseous HF to the at least one layer of dielectric material according to the process flow steps described with respect to Figs. 11A-11C.
En algunas realizaciones, un dispositivo de MEMS incluye un elemento resonante que tiene un electrodo protector que incluye un dedo o vía delgada en su superficie frente a un electrodo sensible. El dedo delgado puede aumentar la sensibilidad de los dispositivos de inercia o cualquier dispositivo electrostático, y no se limita a la realización comentada más adelante. El dedo delgado puede fabricarse como una vía que no tiene metal dispuesto encima de la misma. Como tal, el dedo delgado se deposita en esencia como un saliente en la superficie del electrodo sensible. Las Figs. 12A y 12B muestran realizaciones ilustrativas de dispositivos de MEMS 1200 y 1250 que tienen unos dedos delgados. El dispositivo 1200 incluye el electrodo sensible 1202 y el elemento resonante 1204 que tiene un electrodo protector que incluye un dedo delgado 1206 en su superficie frente al electrodo sensible 1202. Similarmente, el dispositivo 1250 incluye el electrodo sensible 1252 y el elemento resonante 1254 que tiene un electrodo protector que incluye un dedo delgado 1256 en su superficie frente al electrodo sensible 1252. Si bien el electrodo sensible 1202 es una estructura de tres lados, el electrodo sensible 1252 incluye cuatro lados. Son posibles muchas variaciones del electrodo sensible como puede establecer un experto en la técnica.  In some embodiments, a MEMS device includes a resonant element that has a protective electrode that includes a finger or thin path on its surface in front of a sensitive electrode. The thin finger can increase the sensitivity of inertia devices or any electrostatic device, and is not limited to the embodiment discussed below. The thin finger can be manufactured as a path that has no metal arranged on top of it. As such, the thin finger is essentially deposited as a protrusion on the surface of the sensitive electrode. Figs. 12A and 12B show illustrative embodiments of MEMS 1200 and 1250 devices having thin fingers. The device 1200 includes the sensitive electrode 1202 and the resonant element 1204 having a protective electrode that includes a thin finger 1206 on its surface in front of the sensitive electrode 1202. Similarly, the device 1250 includes the sensitive electrode 1252 and the resonant element 1254 having a protective electrode that includes a thin finger 1256 on its surface in front of the sensitive electrode 1252. While the sensitive electrode 1202 is a three-sided structure, the sensitive electrode 1252 includes four sides. Many variations of the sensitive electrode are possible as can be established by one skilled in the art.
Dado que el dedo delgado 1206 o 1256 está dispuesto más cerca del electrodo sensible 1202 o 1252, puede ayudar a aumentar la variación de capacitancia entre el electrodo resonante 1204 o 1254 y el electrodo sensible 1202 con respecto a un desplazamiento semejante del electrodo resonante. En algunas realizaciones, el movimiento del dedo delgado también produce un cambio topológico a causa de que el dedo delgado entra en la cavidad del electrodo sensible, que entonces se añade a la capacitancia de sus paredes así como a la superficie. Como resultado, la variación de capacitancia por el desplazamiento vertical puede ser más alta, y por consiguiente la presión electrostática puede ser más alta también. En algunas realizaciones, los dedos son más efectivos cuando la separación vertical es relativamente más grande que la separación lateral. En algunas realizaciones, la potencial mejora de la sensibilidad vertical puede ser de hasta aproximadamente el 550%. Esto puede tener como resultado una reducción lineal de tamaño de hasta aproximadamente 2,35 en el elemento resonante para sensibilidad semejante, por ejemplo, un elemento de diámetro de 42 μηι con dedos delgados puede ser de sensibilidad equivalente a un elemento de diámetro de 100 μιη sin dedos delgados. En algunas realizaciones, pueden fabricarse múltiples elementos resonantes en las capas de interconexión y disponerse encima de un circuito integrado de aplicación específica (ASIC) que puede controlar selectivamente los elementos resonantes. En algunas realizaciones, un solo tipo de dispositivo de MEMS es fabricado encima del ASIC, por ejemplo, un magnetómetro. Determinados dispositivos pueden no ser usados inicialmente y ser reservados para que haya redundancia en caso de fallo de otro dispositivo en uso. En caso de fallo de un dispositivo debido a asuntos durante la fabricación, el dispositivo redundante puede ayudar a mejorar el rendimiento. En caso de fallo de un dispositivo durante el funcionamiento, el dispositivo redundante puede ayudar a mejorar la fiabilidad a largo plazo. Since the thin finger 1206 or 1256 is arranged closer to the sensitive electrode 1202 or 1252, it can help increase the capacitance variation between the resonant electrode 1204 or 1254 and the sensitive electrode 1202 with respect to a similar displacement of the resonant electrode. In some embodiments, the movement of the thin finger also produces a topological change because the thin finger enters the cavity of the sensitive electrode, which is then added to the capacitance of its walls as well as to the surface. As a result, the capacitance variation by vertical displacement may be higher, and therefore the electrostatic pressure can be higher too. In some embodiments, the fingers are more effective when the vertical separation is relatively larger than the lateral separation. In some embodiments, the potential improvement of vertical sensitivity may be up to about 550%. This can result in a linear reduction in size of up to about 2.35 in the resonant element for similar sensitivity, for example, a 42 μηι diameter element with thin fingers may be of sensitivity equivalent to a 100 μιη diameter element No thin fingers In some embodiments, multiple resonant elements can be manufactured in the interconnection layers and disposed on top of a specific application integrated circuit (ASIC) that can selectively control the resonant elements. In some embodiments, a single type of MEMS device is manufactured on top of the ASIC, for example, a magnetometer. Certain devices may not be used initially and be reserved for redundancy in case of failure of another device in use. In case of failure of a device due to issues during manufacturing, the redundant device can help improve performance. In the event of a device failure during operation, the redundant device can help improve long-term reliability.
En algunas realizaciones, los múltiples elementos resonantes se configuran como sensores de tipos diferentes. Por ejemplo, los elementos resonantes pueden incluir un magnetómetro, un giroscopio y un acelerómetro. En otro ejemplo, los elementos resonantes pueden incluir un magnetómetro de 3D, un giroscopio de 3D y un acelerómetro de 3D. En algunas realizaciones, los elementos resonantes se construyen encima de un ASIC y el ASIC puede cambiar entre cada elemento resonante según sea necesario. Por ejemplo, una célula de sensor de movimiento que se puede configurar puede formarse incluyendo un magnetómetro, un giroscopio y un acelerómetro dentro de las capas de interconexión del ASIC. El controlador ASIC de la célula del sensor movimiento puede seleccionar entonces si la célula de sensor de movimiento debe ofrecer la funcionalidad de un magnetómetro, de un giroscopio o de un acelerómetro. En algunas realizaciones, un sensor híbrido de movimiento se construye con elementos redundantes así como múltiples tipos de dispositivos de sensor de movimiento, ofreciendo de ese modo los beneficios combinados de capacidad de configuración, redundancia y fiabilidad. In some embodiments, the multiple resonant elements are configured as sensors of different types. For example, resonant elements may include a magnetometer, a gyroscope and an accelerometer. In another example, resonant elements may include a 3D magnetometer, a 3D gyroscope and a 3D accelerometer. In some embodiments, the resonant elements are constructed on top of an ASIC and the ASIC can switch between each resonant element as necessary. For example, a configurable motion sensor cell can be formed including a magnetometer, gyroscope and accelerometer within the interconnection layers of the ASIC. The ASIC controller of the motion sensor cell can then select whether the sensor cell of Movement must offer the functionality of a magnetometer, gyroscope or accelerometer. In some embodiments, a hybrid motion sensor is constructed with redundant elements as well as multiple types of motion sensor devices, thereby offering the combined benefits of configuration capacity, redundancy and reliability.
Los solicitantes consideran que todas las combinaciones funcionales de las realizaciones descritas en esta memoria son temas que se pueden patentar. Los expertos en la técnica sabrán o serán capaces de determinar, no usando nada más que una experimentación de rutina, muchos equivalentes de las realizaciones y prácticas descritas en esta memoria. Por consiguiente, se entenderá que los sistemas y los métodos descritos en esta memoria no se deben limitar a las realizaciones descritas en esta memoria, pero se ha de entender, a partir de las reivindicaciones siguientes, que se ha de interpretar de manera tan amplia como permita la ley. También cabe señalar que, si bien las reivindicaciones siguientes se disponen de una manera particular de tal manera que determinadas reivindicaciones dependen de otras reivindicaciones, ya sea directa o indirectamente, cualquiera de las reivindicaciones siguientes puede depender de cualquier otra de las reivindicaciones siguientes, ya sea directa o indirectamente para realizar las diversas realizaciones descritas en esta memoria. Lo que se reivindica es:  Applicants consider that all functional combinations of the embodiments described herein are topics that can be patented. Those skilled in the art will know or be able to determine, by using nothing but routine experimentation, many equivalents of the embodiments and practices described herein. Accordingly, it will be understood that the systems and methods described herein should not be limited to the embodiments described herein, but it is to be understood, from the following claims, that it is to be interpreted as broadly as Allow the law. It should also be noted that, although the following claims are arranged in a particular manner such that certain claims depend on other claims, either directly or indirectly, any of the following claims may depend on any other of the following claims, either directly or indirectly to perform the various embodiments described herein. What is claimed is:

Claims

Reivindicaciones Claims
1. Un dispositivo de magnetómetro, que comprende: 1. A magnetometer device, comprising:
un electrodo sensible dispuesto dentro del dispositivo de magnetómetro;  a sensitive electrode disposed within the magnetometer device;
un elemento resonante dispuesto próximo al electrodo sensible, en donde el elemento resonante incluye un electrodo protector dispuesto alrededor de un hilo interior;  a resonant element disposed close to the sensitive electrode, wherein the resonant element includes a protective electrode disposed around an inner wire;
una fuente para generar una corriente conectada al elemento resonante para aplicar la corriente a través del hilo interior provocando con ello un desplazamiento del elemento resonante;  a source to generate a current connected to the resonant element to apply the current through the inner wire thereby causing a displacement of the resonant element;
en donde un campo magnético del elemento resonante es medido como una variación de capacitancia entre el electrodo protector y el electrodo sensible.  wherein a magnetic field of the resonant element is measured as a capacitance variation between the protective electrode and the sensitive electrode.
2. El dispositivo de la reivindicación 1, que comprende además: 2. The device of claim 1, further comprising:
una pluralidad de elementos resonantes dispuestos próximos al elemento resonante;  a plurality of resonant elements arranged close to the resonant element;
la pluralidad de hilos de guía dispuestos próximos a los elementos resonantes, en donde los hilos de guía conectan eléctricamente los elementos resonantes de tal manera que la corriente se propaga a través de la pluralidad de elementos resonantes en un sentido.  the plurality of guide wires arranged close to the resonant elements, wherein the guide wires electrically connect the resonant elements such that the current propagates through the plurality of resonant elements in one direction.
3. El dispositivo de la reivindicación 1, que comprende además: 3. The device of claim 1, further comprising:
una fuente de voltaje conectada al electrodo protector para aplicar un voltaje constante al electrodo protector con respecto al electrodo sensible.  a voltage source connected to the protective electrode to apply a constant voltage to the protective electrode with respect to the sensitive electrode.
4. El dispositivo de la reivindicación 1, en donde la corriente es periódica. 4. The device of claim 1, wherein the current is periodic.
5. El dispositivo de la reivindicación 1 , en donde los al menos dos elementos resonantes están mecánicamente acoplados de tal manera que comparten una frecuencia resonante, en donde el acoplamiento mecánico de los al menos dos elementos resonantes comprende la conexión física de los respectivos electrodos protectores con material conductor. 5. The device of claim 1, wherein the at least two resonant elements are mechanically coupled such that they share a resonant frequency, wherein the mechanical coupling of the at least two resonant elements comprises the physical connection of the respective protective electrodes with conductive material.
6. El dispositivo de la reivindicación 1, en donde el electrodo sensible está orientado con respecto al desplazamiento del elemento resonante que se produce en el plano, permitiendo con ello la medición del campo magnético en la dirección Z. 6. The device of claim 1, wherein the sensitive electrode is oriented with respect to the displacement of the resonant element that occurs in the plane, thereby allowing the measurement of the magnetic field in the Z direction.
7. El dispositivo de la reivindicación 1, en donde el electrodo sensible está orientado con respecto al desplazamiento del elemento resonante que se produce fuera del plano, permitiendo con ello la medición del campo magnético en la dirección X o Y. 7. The device of claim 1, wherein the sensitive electrode is oriented with respect to the displacement of the resonant element that occurs outside the plane, thereby allowing the measurement of the magnetic field in the X or Y direction.
8. El dispositivo de la reivindicación 5, en donde la orientación del elemento resonador para mediciones en la dirección X es ortogonal a la orientación del elemento resonador para mediciones en la dirección Y. 8. The device of claim 5, wherein the orientation of the resonator element for measurements in the X direction is orthogonal to the orientation of the resonator element for measurements in the Y direction.
9. El dispositivo de la reivindicación 1, en donde el electrodo sensible está soportado por lo menos en unas orillas del dispositivo mediante una pluralidad de distribuciones densas de columnas. 9. The device of claim 1, wherein the sensitive electrode is supported at least on some edges of the device by a plurality of dense column distributions.
10. El dispositivo de la reivindicación 9, en donde cada columna está en contacto con sólo uno de entre el electrodo sensible y un electrodo inferior. 10. The device of claim 9, wherein each column is in contact with only one of the sensitive electrode and a lower electrode.
11. El dispositivo de la reivindicación 1, en donde el electrodo sensible está rodeado por un electrodo protector para minimizar la capacitancia parasitaria. 11. The device of claim 1, wherein the sensitive electrode is surrounded by a protective electrode to minimize parasitic capacitance.
12. El dispositivo de la reivindicación 9, en donde un electrodo superior y un electrodo inferior del dispositivo están conectados mediante dos columnas que tienen óxido en medio, recibiendo con ello soporte para el electrodo superior desde las dos columnas. 12. The device of claim 9, wherein an upper electrode and a lower electrode of the device are connected by two columns having rust in between, thereby receiving support for the upper electrode from the two columns.
13. Un dispositivo de magnetómetro, que comprende: 13. A magnetometer device, comprising:
una fuente para generar una corriente dispuesta dentro del dispositivo de magnetómetro;  a source for generating a current disposed within the magnetometer device;
una pluralidad de elementos resonantes dispuestos próximos a la fuente, en donde sólo uno de los elementos resonantes está conectado a la fuente;  a plurality of resonant elements arranged close to the source, where only one of the resonant elements is connected to the source;
una pluralidad de hilos de guía dispuestos próximos a los elementos resonantes, en donde los hilos de guía conectan eléctricamente los elementos resonantes de tal manera que la corriente aplicada al elemento resonante conectado a la fuente se propaga a través del resto de elementos resonantes en un sentido.  a plurality of guide wires arranged close to the resonant elements, wherein the guide wires electrically connect the resonant elements such that the current applied to the resonant element connected to the source is propagated through the rest of resonant elements in one direction .
14. Un dispositivo de acelerómetro, que comprende: 14. An accelerometer device, comprising:
un electrodo sensible dispuesto dentro del dispositivo de acelerómetro;  a sensitive electrode disposed within the accelerometer device;
un elemento resonante dispuesto próximo al electrodo sensible, en donde el elemento resonante incluye un electrodo protector dispuesto alrededor de un núcleo interior de material dieléctrico;  a resonant element disposed close to the sensitive electrode, wherein the resonant element includes a protective electrode disposed around an inner core of dielectric material;
en donde una aceleración del elemento resonante es medida como una variación de capacitancia entre el electrodo protector y el electrodo sensible.  wherein an acceleration of the resonant element is measured as a variation of capacitance between the protective electrode and the sensitive electrode.
15. Un chip que comprende un dispositivo de MEMS dispuesto en un circuito integrado que comprende: 15. A chip comprising a MEMS device arranged in an integrated circuit comprising:
elementos electrónicos formados en un sustrato de material semiconductor; una pila de capas de interconexión, producidas encima del sustrato de material semiconductor, incluyendo una pluralidad de capas de material conductor, cada capa está separada por una capa de material dieléctrico; y  electronic elements formed in a substrate of semiconductor material; a stack of interconnection layers, produced on top of the substrate of semiconductor material, including a plurality of layers of conductive material, each layer is separated by a layer of dielectric material; Y
el dispositivo de MEMS formado dentro de la pila de capas de interconexión aplicando HF gaseoso a la pila de capas de interconexión, en donde el dispositivo de MEMS incluye un electrodo protector de material conductor dispuesto alrededor de un núcleo interior de material dieléctrico.  the MEMS device formed within the stack of interconnection layers by applying gaseous HF to the stack of interconnection layers, wherein the MEMS device includes a protective electrode of conductive material disposed around an inner core of dielectric material.
PCT/ES2012/070569 2011-07-25 2012-07-25 Methods and systems for mems cmos devices including a multiwire compass WO2013014321A2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201161511324P 2011-07-25 2011-07-25
US61/511,324 2011-07-25
US201261606091P 2012-03-02 2012-03-02
US61/606,091 2012-03-02
US201261646664P 2012-05-14 2012-05-14
US61/646,664 2012-05-14

Publications (3)

Publication Number Publication Date
WO2013014321A2 true WO2013014321A2 (en) 2013-01-31
WO2013014321A3 WO2013014321A3 (en) 2013-08-08
WO2013014321A8 WO2013014321A8 (en) 2014-04-17

Family

ID=47018233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070569 WO2013014321A2 (en) 2011-07-25 2012-07-25 Methods and systems for mems cmos devices including a multiwire compass

Country Status (2)

Country Link
TW (1) TW201319604A (en)
WO (1) WO2013014321A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202142481A (en) 2020-01-08 2021-11-16 西班牙商奈努勝公司 Mems device built using the beol metal layers of a solid state semiconductor process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100295138A1 (en) 2009-05-20 2010-11-25 Baolab Microsystems Sl Methods and systems for fabrication of mems cmos devices

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444235B1 (en) * 2002-12-10 2004-08-16 삼성전기주식회사 Apparatus and method for detecting acceleration and magnetism
US7394245B2 (en) * 2003-09-23 2008-07-01 Qinetiq Limited Resonant magnetometer device
US7221144B2 (en) * 2004-06-07 2007-05-22 General Electric Company Micro-electromechanical system (MEMS) based current and magnetic field sensor having improved sensitivities
US7639104B1 (en) * 2007-03-09 2009-12-29 Silicon Clocks, Inc. Method for temperature compensation in MEMS resonators with isolated regions of distinct material
US7889030B2 (en) * 2008-08-07 2011-02-15 Infineon Technologies Ag Passive temperature compensation of silicon MEMS devices
FR2946478A1 (en) * 2009-06-08 2010-12-10 St Microelectronics Sa RESONATOR WITH VOLUME WAVES.
DE102009046515A1 (en) * 2009-11-09 2011-05-12 Robert Bosch Gmbh Magnetometer e.g. inclination sensor, for electronic compass to detect geomagnetic field, has oscillating structure comprising electrical line, and detector for determining tilting of oscillating structure with respect to substrate
ITTO20090973A1 (en) * 2009-12-10 2011-06-11 St Microelectronics Srl TRIASSIAL INTEGRATED MAGNETOMETER OF SEMICONDUCTOR MATERIAL MADE IN MEMS TECHNOLOGY

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100295138A1 (en) 2009-05-20 2010-11-25 Baolab Microsystems Sl Methods and systems for fabrication of mems cmos devices

Also Published As

Publication number Publication date
WO2013014321A8 (en) 2014-04-17
TW201319604A (en) 2013-05-16
WO2013014321A3 (en) 2013-08-08

Similar Documents

Publication Publication Date Title
KR101113011B1 (en) Acceleration sensor
US20150033856A1 (en) Mems gyroscope
JP5486271B2 (en) Acceleration sensor and method of manufacturing acceleration sensor
JP4801583B2 (en) Thermal device
JP6896576B2 (en) Gas sensor and its manufacturing method
US9310265B2 (en) Tactile sensor and multi-axial tactile sensor
JP6020392B2 (en) Acceleration sensor
CN103713158B (en) Acceleration transducer
JP5930127B2 (en) Acceleration sensor
CN106030314A (en) Accelerometers
JP2007527508A5 (en)
JP2009531714A (en) Vibrating beam magnetometer
US10705158B2 (en) MEMS triaxial magnetic sensor with improved configuration
JP6513519B2 (en) Physical quantity sensor
WO2013014321A2 (en) Methods and systems for mems cmos devices including a multiwire compass
JP2007309654A (en) Acceleration sensor and manufacturing method therefor
US20160161572A1 (en) Mems magnetic field sensor
CN109311656A (en) Micro-mechanical component for pressure sensor apparatus
US9146254B2 (en) Dynamic sensor
JP2010185781A (en) Acceleration sensor
WO2012104465A2 (en) Methods and systems for mems cmos devices having arrays of elements
ES2732024T3 (en) Integrated circuit comprising multilayer micromechanical structures with improved mass and reliability and manufacturing method thereof
US9829318B2 (en) Gyroscope structure and gyroscope device
JP2006214963A (en) Acceleration sensor, electronic equipment, and manufacturing method for acceleration sensor
JP2012083304A (en) Mems sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12772342

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12772342

Country of ref document: EP

Kind code of ref document: A2