WO2013067976A1 - 一种上行传输的功率控制方法及装置 - Google Patents

一种上行传输的功率控制方法及装置 Download PDF

Info

Publication number
WO2013067976A1
WO2013067976A1 PCT/CN2012/086602 CN2012086602W WO2013067976A1 WO 2013067976 A1 WO2013067976 A1 WO 2013067976A1 CN 2012086602 W CN2012086602 W CN 2012086602W WO 2013067976 A1 WO2013067976 A1 WO 2013067976A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
srs
transmit power
uplink channel
uplink
Prior art date
Application number
PCT/CN2012/086602
Other languages
English (en)
French (fr)
Inventor
高雪娟
林亚男
沈祖康
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210001889.6A external-priority patent/CN102869080B/zh
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2013067976A1 publication Critical patent/WO2013067976A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels

Definitions

  • the invention relates to a Chinese patent application filed on November 7, 2011, the Chinese Patent Office, the application number is 201110349132.1, and the invention name is "an uplink transmission power control method and device", Chinese patent application filed on December 22, 2011, China Patent Office, application number 201110434875.9, the invention titled “A power control method and device for uplink transmission”, and submitted to the China Patent Office on January 5, 2012, The priority of the Chinese Patent Application No. 201210001889.6, entitled “A Power Control Method and Apparatus for Uplink Transmission", the entire contents of which is incorporated herein by reference.
  • the present invention relates to the field of communications technologies, and in particular, to a power control method and apparatus for uplink transmission.
  • the PUCCH (Physical Uplink Control Channel) power control is introduced as follows: In LTE-A Rel-10, the transmit power used by the user equipment (User Equipment, UE) in transmitting the PUCCH on the primary carrier ⁇ PUCCH is as follows: Calculation:
  • PcMAX , e ('') is the maximum transmit power allowed for the carrier configured for carrier C.
  • P° -PUCCH is the PUCCH expected power target value, which is configured by higher layer signaling.
  • P ⁇ is the path loss of the carrier c measured by the UE, and the high-layer signaling configuration UE uses the paired carrier (also referred to as SIB-2 linkage carrier) or the primary carrier notified in the SIB (System Information Block)-2 information. measuring.
  • SIB-2 linkage carrier also referred to as SIB-2 linkage carrier
  • SIB System Information Block
  • CQ 1 , " HAR Q, ) is the power offset associated with the number of bits carried by the PUCCH, where is the number of CSI (Channel State Information) bits of the bearer, which is the bearer ACK. ( ACKnowledgment, positive acknowledgment) / NACK (Non-ACKnowledgment), n s R is the number of SR (Scheduling Request) bits carried.
  • the parameter A F PUCCH (configured by the higher layer, indicating the power offset corresponding to the different PUCCH format (format) relative to the PUCCH format la.
  • ⁇ ( 7 ') represents the transmit diversity power offset, if the UE is configured to transmit on the port of 2 antennas, then
  • ⁇ ⁇ ' configures different PUCCH formats by higher layer signaling, and the value set is ⁇ 0, -2 ⁇ dB; otherwise,
  • g(i) is the cumulative value of the power control command.
  • ⁇ PUCCH is a UE-specific correction value, also called TPC (Transmit Power Control) command, which is expressed in the subframe ik m .
  • TDD Time Division Duplex
  • k m is the index of the downlink subframe in the downlink subframe set that needs to perform uplink information feedback in the current subframe
  • M is the number of downlink subframes in the downlink subframe set
  • FDD Frequency Division Duplex
  • PUSCH Physical Uplink Shared Channel
  • ⁇ '' is calculated according to the following formula:
  • MpuscH , c ('') is the resource size of the PUSCH on the carrier c, and is represented by RB (Resource Block).
  • _ PUSC 3 ⁇ 4 e ( ') is the PUSCH desired power target value on carrier c , configured by higher layer signaling.
  • path loss compensation factor of carrier c which is a cell-specific parameter and is configured by higher layer signaling.
  • ⁇ ⁇ is the path loss of the carrier c measured by the UE, and the high-layer signaling configuration UE uses the paired carrier or the primary carrier notified in the SIB-2 information for measurement.
  • BPRE Bit Per Resource Element indicates the per-oPUSCH in the PUSCH.
  • Poffset indicates the offset between the coding rate of the uplink control information carried in the PUSCH and the coding rate of the uplink data on the PUSCH, and is pre-configured by the higher layer signaling.
  • ( z ) is the PUSCH power control adjustment amount, which has two modes: accumulated value and current absolute value.
  • the transmission power PpuscH ⁇ ('') of the UE transmitting PUSCH on carrier c is calculated according to the following formula: [d Bm ]
  • ⁇ PUCCH is the linear domain value of the above PUCCH transmission power p PUCCH «.
  • the transmit power P required by the UE to transmit SRS on carrier c is defined by the following formula: (') P CMAX, c (0, O) + 1. Log 10 ( SRS)C ) + P 0') + « c (i) ⁇ PL c + fc (') ⁇ [dBm]
  • MsRS , c is the SRS transmission bandwidth on carrier c, expressed in RB number.
  • the remaining parameters are the same as the power control parameters of the PUSCH on the carrier.
  • the PRACH (Physical Random Access Channel) power control is introduced as follows.
  • PREAMBLE_RECEIVED_TARGET_POWER is calculated by the MAC (Media Access Control) layer of the UE and is the PRACH target power.
  • the power scaling scheme is described as follows:
  • the UE should preferentially guarantee the transmit power of the PUCCH when performing power reduction, and the ratio is reduced proportionally.
  • the UE shall give priority to Ensure that the transmit power of the PUCCH is not reduced, and secondly, ensure that the transmit power of the PUSCH carrying the UCI is not reduced, and reduce the PUSCH transmit power on each carrier to meet the maximum transmit power of the UE:
  • LTE-A Rel-10 does not support simultaneous transmission of PUCCH, PUSCH, PRACH and SRS in the same or different carriers in one subframe. If the SRS collides with the PUCCH, when the PUCCH is shortened PUCCH format (the truncated PUCCH format, that is, the last symbol vacates the unmapped data and is reserved for the SRS), the SRS transmits the last symbol in the subframe, otherwise it discards. SRS transmission.
  • the SRS collides with the PUSCH, when the last symbol of the PUSCH is rate matched based on the SRS (ie, the last symbol is vacated and unmapped, reserved for SRS), the SRS is transmitted in the last symbol in the subframe, otherwise the SRS is discarded. transmission. Since the uplink in the Rel-10 supports only Intra-band CA (Carrier Aggregation), the uplink transmission time of multiple carriers is aligned, and the base station can configure the same SRS transmission period and subframe offset for multiple carriers. Move to avoid discarding SRS transmissions.
  • Intra-band CA Carrier Aggregation
  • LTE-A Rel-11 CAs with different inter-band uplinks and CA deployment schemes of macro base station (Macro e B) and remote radio head (RRH) can be supported. Since the wireless signal propagation characteristics of different frequency bands are different, and the propagation paths of the macro base station and the RRH are different, the time when the signals transmitted by different carriers arrive at the base station may be different. Therefore, in Rel-11, the TAs of different carriers may be different, and the uplink transmission times of multiple carriers are not necessarily aligned. Therefore, the SRS on one carrier and the PUCCH or PUSCH on other carriers are not necessarily the last symbol of the PUCCH or PUSCH. Collision, in order to avoid excessive discarding of SRS transmission, SRS and PUCCH, PUSCH, PRACH and other uplink channels need to be supported for simultaneous transmission, but no explicit power control method has been given yet.
  • Embodiments of the present invention provide a power control method and system for uplink transmission, which are used to implement power control when SRS and uplink channels are simultaneously transmitted on different carriers, thereby ensuring that the total transmit power of the UE in one subframe is less than Or equal to the maximum transmit power of the UE to ensure that the system can work normally.
  • a power control method for uplink transmission includes: Determining a target transmit power required for sounding the reference signal SRS, and a target transmit power required for uplink channel transmission, wherein the SRS and the uplink channel are partially single-carrier frequency division multiple access SC on the uplink channel -FDMA symbols are simultaneously transmitted, and the SRS and the uplink channel are transmitted on different uplink carriers;
  • a transmit power determining unit configured to determine a target transmit power required for the sounding of the sounding reference signal SRS, and a target transmit power required for uplink channel transmission, where the SRS and the uplink channel are part of a single carrier of the uplink channel Frequency division multiple access access is simultaneously transmitted on SC-FDMA symbols, and the SRS is transmitted on a different uplink carrier from the uplink channel;
  • a processing unit configured to perform power control on the target transmit power of the SRS and the uplink channel when determining that a sum of the target transmit power of the uplink channel and the uplink channel meets a preset power control condition.
  • the power control of the time ensures that the total transmit power of the UE in one subframe is less than or equal to the maximum transmit power of the UE, ensuring that the system can work normally.
  • 1 is a schematic flowchart of a power control method for uplink transmission according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of uplink transmission according to Embodiment 1 of the present invention.
  • Embodiment 3 is a schematic diagram of uplink transmission according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of uplink transmission according to Embodiment 4 of the present invention.
  • 6a is a schematic structural diagram of a power control apparatus for uplink transmission according to an embodiment of the present invention.
  • FIG. 6b is a schematic structural diagram of another power control apparatus for uplink transmission according to an embodiment of the present invention.
  • Embodiments of the present invention provide a power control method and apparatus for uplink transmission, which are implemented on different carriers. The power control when the SRS and the uplink channel are simultaneously transmitted, so as to ensure that the total transmit power of the UE in one subframe is less than or equal to the maximum transmit power of the UE, and the system can work normally.
  • a power control method for uplink transmission provided by an embodiment of the present invention generally includes the following steps:
  • the uplink channel may be an uplink channel in the same subframe as the SRS, or may be an uplink in an adjacent subframe with the SRS.
  • the channel for example, the upstream channel in the next subframe of the subframe in which the SRS transmission is located.
  • S102 Perform power control on the target transmit power of the SRS and the uplink channel when determining that a sum of the target transmit power of the uplink channel and the uplink channel meets a preset power control condition.
  • the uplink channel in the embodiment of the present invention includes but is not limited to: uplink channels such as PUCCH, PUSCH, and PRACH.
  • the target transmit power required for the uplink channel transmission is specifically:
  • the original transmit power of each uplink channel calculated based on the power control parameters of each carrier and the uplink channel on the carrier (ie, calculated according to the calculation formula of the transmit power of PUCCH, PUSCH, PRACH on each carrier in the background introduction) Power); or,
  • the power of the original transmit power of each uplink channel calculated based on the power control parameters of each carrier and the uplink channel on the carrier is subjected to power control.
  • the target transmit power required for the uplink channel transmission is a power-controlled transmit power of the original transmit power of each uplink channel calculated based on the power control parameters of each carrier and the uplink channel on the carrier.
  • the terminal device preferably needs to perform power control on the original transmit power of the uplink channel, and the power control process specifically includes:
  • the uplink channels (which may be the uplink channels in the same uplink subframe or the uplink channels in the adjacent uplink subframes) exceeds the preset maximum transmit power, when exceeded, Performing power control on the uplink channel to meet the power consumption, and the sum of the transmit powers of the uplink channels does not exceed the preset maximum transmit power, and the transmit power of each uplink channel after the power control is used as the target transmit power; When not exceeding, the original transmit power of each uplink channel is taken as its target transmit power;
  • the power is reduced in proportion, and the uplink channels in different frequency bands are reduced in power according to the power reduction ratio coefficient corresponding to the frequency band;
  • the power of the uplink channel having the same priority is reduced in proportion according to the order of channel/signal priority from low to high; or According to the order of channel/signal priority from low to high, in the uplink channel with the same priority, the uplink channel in the same frequency band is proportionally reduced in power, and the uplink channel in different frequency bands is reduced in accordance with the power reduction ratio coefficient corresponding to the frequency band. Reduce power.
  • the SRS and the uplink channel are Target transmit power for power control, including:
  • the sum of the target transmit power of the SRS and the uplink channel is greater than a preset maximum transmit power, performing equal power reduction on the target transmit power of the SRS, or SRS in the same frequency band in the SRS
  • the target transmit power is reduced in equal power, and the SRSs in different frequency bands are reduced in power according to the power reduction ratio coefficient corresponding to the frequency band, and after the power reduction is performed, the sum of the transmit powers of the SRS is less than or equal to the preset maximum
  • the transmit power is subtracted from the target transmit power of the upstream channel.
  • performing power control on the target transmit power of the SRS and the uplink channel including:
  • the sum of the target transmit power of the SRS and the uplink channel is greater than a preset maximum transmit power, performing equal or non-equal power reduction on the target transmit power of the SRS and the uplink channel to meet After the power is reduced, the sum of the transmit powers of the SRS and the uplink channel is less than or equal to a preset maximum transmit power.
  • the method further includes:
  • the sum of the powers is less than or equal to the preset maximum transmit power, and then based on the transmit power of the uplink channel after the power reduction on the SC-FDMA symbol, in the remaining SC-FDMA symbols of the uplink channel simultaneously transmitted with the SRS, further Judge the rest Whether the sum of the target transmit power of the SRS and the transmit power of the
  • the SRS when the SRS is simultaneously transmitted with multiple SC-FDMA symbols of the uplink channel (in one case, the SRS and the adjacent two SC-FDMA symbols of the uplink channel in the current subframe partially overlap, respectively)
  • the SSC and the last SC-FDMA symbol of the uplink channel in the current subframe and the first SC-FDMA symbol of the uplink channel in the next adjacent subframe of the current subframe respectively
  • a plurality of SC-FDMA symbols are partial SC-FDMA symbols of an uplink channel transmitted in the same uplink subframe as the SRS, or are transmitted in the same uplink subframe as the SRS.
  • the partial SC-FDMA symbol of the uplink channel and the partial SC-FDMA symbol of the uplink channel transmitted in the adjacent uplink subframe of the uplink subframe in which the SRS is located also includes:
  • performing non-equal power reduction on the target transmit power of the SRS and the uplink channel specifically including:
  • performing equal power reduction on the target transmit power of the SRS and the uplink channel in the same frequency band, and reducing a power reduction ratio coefficient corresponding to a target transmit power of the SRS and the uplink channel in different frequency bands according to a frequency band Perform power reduction.
  • performing power control on the transmit power of the SRS and the uplink channel including:
  • the target transmit power of the SRS and the uplink channel is based on a channel/signal (ie, an uplink channel, or a signal, Or an equal or non-equal power reduction of the priority of the uplink channel and the signal, to satisfy the power reduction, the sum of the transmit power of the SRS and the uplink channel is less than or equal to a preset maximum transmit power.
  • a channel/signal ie, an uplink channel, or a signal, Or an equal or non-equal power reduction of the priority of the uplink channel and the signal, to satisfy the power reduction
  • the power reduction of the channel/signal priority based on the target transmit power of the SRS and the uplink channel is performed, and specifically includes:
  • the power of the target transmit power of the SRS and/or the uplink channel having the same channel/signal priority is proportionally reduced in accordance with the order of channel/signal priority from low to high.
  • performing non-equal power reduction based on channel/signal priority on the target transmit power of the SRS and the uplink channel specifically:
  • Target transmission power of the SRS and/or the uplink channel in the same frequency band for the SRS and/or the uplink channel having the same channel/signal priority according to the order of channel/signal priority from low to high A proportional power reduction is performed, and the target transmission power of the SRS and/or the uplink channel in different frequency bands is reduced according to the power reduction ratio coefficient corresponding to the frequency band in which the frequency band is located.
  • the target transmit power of all SC-FDMA symbols in the current subframe of the uplink channel is simultaneously decreased, when the uplink channel has multiple SCs in the current subframe.
  • the FDMA symbol is transmitted simultaneously with the SRS and the power reduction operation is performed in each of the SC-FDMA symbols, respectively, and the minimum value of the transmission power after power reduction in the plurality of SC-FDMA symbols is selected as the uplink after the power reduction
  • the transmit power of all SC-FDMA symbols in the current subframe of the channel or,
  • the target transmit power of the SC-FDMA symbol simultaneously transmitted with the SRS in the current subframe of the uplink channel is reduced only.
  • the preset maximum transmit power specifically includes: a maximum transmit power allowed by the user equipment, and/or a maximum transmit power allowed for each frequency band corresponding to the user equipment.
  • a power control method for simultaneously transmitting SRS and uplink channels on different carriers for the case where SRS and uplink channel transmissions on different carriers exist simultaneously in one subframe, when SRS and uplink channel are transmitted
  • the SRS and the uplink channel are subjected to equal or non-equal power reduction, or a proportional or non-equal power reduction based on the channel/signal priority is performed to satisfy the power reduction.
  • the sum of the uplink channel on which the SRS is located and the transmit power of the specific uplink channel is less than or equal to the maximum transmit power.
  • the operation on the user equipment side of the embodiment of the present invention includes the following steps:
  • the user equipment determines the transmit power of the SRS in the SC-FDMA (Single Carrier-Frequency Division Multiple Access) symbol in which the SRS and the uplink channel are simultaneously transmitted in the current uplink subframe. Whether the sum of the transmit powers of the line channels is greater than a preset maximum transmit power, and the uplink channel and the uplink channel where the SRS is located are located on different uplink carriers;
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the specific uplink channel includes, but is not limited to, PUCCH, PUSCH, PRACH;
  • the user equipment When the sum of the transmit power of the SRS and the transmit power of the uplink channel is greater than the preset maximum transmit power, the user equipment performs power reduction control on the transmit power of the SRS and the transmit power of the uplink channel on the symbol in the SC-FDAM symbol. And satisfying, in the SC-FDMA symbol, a sum of a transmit power of the reduced power SRS and a transmit power of the uplink channel on the symbol is less than or equal to a maximum transmit power.
  • the specific power reduction control methods are as follows:
  • Method 1 performing equal power reduction on the transmit power of the SRS and the transmit power of the uplink channel on the symbol, so as to meet the sum of the transmit power of the SRS and the uplink channel after the power reduction is less than or equal to the SC-FDMA symbol. Pre-set maximum transmit power;
  • Method 2 performing equal power reduction on the transmit power of the SRS and the uplink channel in the same frequency band on the symbol; and reducing the transmit power of the SRS and the uplink channel on the symbol in different frequency bands according to the power corresponding to the frequency band
  • the power ratio is reduced by the low ratio coefficient to satisfy the sum of the transmit power of the SRS and the uplink channel after the power reduction is less than or equal to the maximum transmit power in the SC-FDMA symbol.
  • the power reduction ratio coefficient corresponding to each frequency band is pre-agreed by the user equipment and the base station, or is notified by using a high layer signaling or a Physical Downlink Control Channel (PDCCH), where the high layer signaling may be It is RRC (Radio Resource Control) signaling or MAC (Medium Access Control) signaling.
  • a high layer signaling may be It is RRC (Radio Resource Control) signaling or MAC (Medium Access Control) signaling.
  • Method 3 Based on the channel/signal priority, for the uplink channel and/or the uplink signal (mainly SRS) having the same channel/signal priority in the SRS and the uplink channel, the transmit power on the symbol is equally proportionally reduced, The sum of the transmit powers of all uplink channels and uplink signals (referred to as SRS) after the power reduction is satisfied is less than or equal to the maximum transmit power.
  • SRS transmit power of all uplink channels and uplink signals
  • the user equipment sequentially reduces the transmission power of channels and signals in each channel/signal priority level according to the channel/signal priority from low to high, for multiple channels and/or signals having the same channel/signal priority.
  • the power is reduced proportionally until the sum of the transmit powers of all uplink channels and uplink signals (referred to as SRS) after the power reduction is satisfied is less than or equal to the maximum transmit power. That is: preferentially reduce the transmission power of the channel and/or signal with the lowest channel/signal priority, if there are multiple channels and/or signals with the lowest channel/signal priority at the same time, then these channels and/or signals are etc.
  • the proportional power is reduced.
  • the transmission power of all channels and signals having the lowest channel/signal priority is reduced to 0, the sum of the transmission powers of the remaining priority channels and signals is still greater than the maximum transmission power, and then continue to be reduced according to the above method.
  • the transmission power of the channel and/or signal of the second lowest channel/signal priority, and so on, until the sum of the transmission powers of all the uplink channels and the uplink signals (referred to as SRS) after the power reduction is satisfied is less than or equal to the maximum transmission power.
  • the channel/signal priority provided in the embodiment of the present invention may be pre-configured or agreed as follows: PUCCH>PUSCH carrying UCI>PUSCH>SRS not carrying UCI; or
  • PUCCH>PRACH> PUSCH carrying UCI> PUSCH SRS not carrying UCI.
  • the foregoing SRS includes a periodic SRS and an aperiodic SRS, where the periodic SRS and the aperiodic SRS have the same priority, or the aperiodic SRS has a higher priority than the periodic SRS.
  • Method 4 Based on the channel/signal priority, perform equal power reduction on the transmit power of the channel and/or signal having the same channel/signal priority in the SRS and the uplink channel in the same frequency band;
  • the SRS of the frequency band and the transmission power of the channel and/or signal having the same channel/signal priority in the frequency band on the symbol are reduced according to the power reduction ratio coefficient corresponding to the frequency band to meet all the uplinks after the power reduction.
  • the sum of the transmission powers of the channel and the uplink signal (referred to as SRS) is less than or equal to the preset maximum transmission power.
  • the user equipment sequentially reduces the transmission power of the channel and/or signal in each channel/signal priority level according to the channel/signal priority from low to high, and has multiple channels/signal priorities in the same frequency band.
  • the channel and/or the signal are proportionally reduced in power, and the channels and/or signals having the same channel/signal priority in different frequency bands are reduced in power according to the power reduction proportional coefficient corresponding to the frequency band, so as to satisfy all the uplinks after the power reduction
  • the sum of the transmit power of the channel and the uplink signal (referred to as SRS) is less than or equal to the maximum transmit power.
  • the transmission power of the channel and/or signal with the lowest channel/signal priority if there are multiple channels and/or signals with the lowest channel/signal priority at the same time, then they are in the channel and/or signal
  • the channels and/or signals of the same frequency band are equally proportionally reduced in power, and the channels and/or signals in different frequency bands are reduced in power according to the power reduction ratio coefficient of the frequency band in which the lowest channel/signal priority is present and/or Or when the transmit power of the signal decreases to 0, and the sum of the transmit powers of the remaining priority channels and signals is still greater than the maximum transmit power, then the transmission of the channel and/or signal with the second lowest channel/signal priority is continued according to the above method. Power, and so on, until the sum of the transmit power of all upstream channels and uplink signals (referred to as SRS) after the power reduction is satisfied is less than or equal to the maximum transmit power.
  • SRS sum of the transmit power of all upstream channels and uplink signals
  • the channel/signal priority may be pre-configured or agreed as follows:
  • PUCCH>PUSCH carrying UCI>PUSCH SRS not carrying UCI;
  • PUCCH>PRACH>PUSCH carrying UCI>PUSCH>SRS not carrying UCI, or PUCCH>PRACH>PUSCH carrying UCI>PUSCH SRS not carrying UCI.
  • the foregoing SRS includes a periodic SRS and an aperiodic SRS, where the periodic SRS and the aperiodic SRS have the same priority, or the aperiodic SRS has a higher priority than the periodic SRS.
  • the power reduction ratio coefficient corresponding to each frequency band may be previously agreed by the user equipment and the base station, or may be notified by using high layer signaling or PDCCH signaling, where the high layer signaling may be RRC (Radio Resource Control, Radio resource control) signaling or MAC (Medium Access Control) signaling.
  • RRC Radio Resource Control, Radio resource control
  • MAC Medium Access Control
  • the maximum transmit power may be the maximum transmit power allowed by the UE, and/or the maximum transmit power allowed for each band.
  • the UE when there are multiple SRSs and uplink channels in different carriers in one subframe, when different SC-FDMA symbols collide, the UE needs to separately perform SC-FDMA in each collision.
  • the symbol determines whether the sum of the transmit power of the simultaneously transmitted SRS and the transmit power of the uplink channel on the SC-FDMA symbol is greater than the maximum transmit power, and for the collision symbol greater than the maximum transmit power, the power reduction is performed by the following method:
  • Method A The user equipment performs power reduction on the transmit power of the SRS and the transmit power of the uplink channel on the symbol according to the foregoing method 1, method 2, method 3 or method 4 in different collision symbols.
  • Method B The user equipment selects one SRS with the highest transmit power from the multiple SRSs, and the transmit power and the uplink channel of the SRS according to the foregoing method 1, method 2, method 3 or method 4 in the symbol of the SRS colliding with the uplink channel
  • the transmit power on the symbol is reduced in power, and the transmit power of the uplink channel on the symbol after the power is reduced in the symbol is used as the transmit power of all symbols after the uplink channel power is reduced, and the remaining SRS and uplink are used.
  • the transmit power of the SRS in the power is reduced by equal power or the power is reduced based on the power reduction proportional coefficient corresponding to the frequency band.
  • the two SC-FDMA symbols may be the same one
  • the two symbols of the uplink channel in the current subframe may also be the last symbol and the first symbol of the uplink channel in two adjacent subframes respectively, and the UE needs to separately determine the UEs in the two SC-FDMA symbols. Whether the total transmit power exceeds the maximum transmit power.
  • the transmit power and the uplink channel of the SRS are The transmit power on the symbol is reduced in power to satisfy the sum of the transmit power after the power reduction does not exceed the maximum transmit power. If the sum of the transmit power of the SRS and the transmit power of the uplink channel on the SC-FDMA symbol is greater than the maximum transmit power in the two SC-FDMA symbols, respectively, in the two SC-FDMA symbols, according to the above method 1.
  • the method 2, method 3 or method 4 performs power reduction on the transmit power of the SRS and the transmit power of the uplink channel on the symbol, and uses the minimum SRS transmit power value after the power reduction as the transmit power of the SRS symbol; or Selecting the SC-FDMA symbol with the largest sum of the transmission powers of one of the transmitted uplink channels, based on the uplink channel transmission power in the symbol, according to the above method 1, method 2, method 3 Or method 4, the transmit power of the SRS and the transmit power of the uplink channel on the symbol are reduced in power, so that the sum of the transmit power after the power reduction does not exceed the maximum transmit power; or, when the two SC-FDAM symbols are in When one carrier belongs to the same channel, two SC-FDAM symbols can be equivalent to one symbol for processing, that is, only one of the SC-FDAM symbols, according to the above method 1, method 2, method 3 or method 4 for SRS The transmit power and the transmit power of the uplink channel on the symbol are reduced in power, and the SRS transmit power value after the power reduction is used as the transmit power
  • the transmit power of all SC-FDMA symbols in the subframe is simultaneously reduced, or only the transmit power of the SC-FDMA symbol colliding with the SRS in the subframe. Make a reduction.
  • the user equipment When the sum of the transmit powers of the SRS and the uplink channel is less than or equal to the preset maximum transmit power, the user equipment simultaneously transmits the SRS and the uplink channel data in the current uplink subframe. That is, no power reduction is required.
  • the power reduction ratio coefficient may be pre-configured based on characteristics of different frequency bands, such as frequency position, bandwidth, channel status, configured transmission information type, service, and the like.
  • the power reduction ratio coefficients of different frequency bands may be the same or different; when the power reduction ratio coefficients of different frequency bands are the same, the power reduction ratio coefficient may not be configured;
  • the above various methods are equally applicable to intra-band and inter-band CA systems.
  • the above various methods are equally applicable to FDD systems and TDD systems.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the UE aggregates 5 carriers for uplink transmission.
  • the transmission situation is shown in Figure 2. Since the TA is different, the uplink transmission time of the carrier (CC) 4 and the carrier 5 is one SC-FDMA symbol ahead of the carrier 1 ⁇ 3. Therefore, the carrier The SRS sent by the last symbol on 4 and 5 collides with the PUCCH on carrier 1 ⁇ 3 or the second to last SC-FDMA symbol of PUSCH.
  • the specific behavior of the UE is as follows:
  • the first method the power is reduced proportionally for all channels and signals, that is, according to the following formula (1), the transmission is performed according to the transmission power of each channel and signal after the power is reduced, where C is the carrier number and i is the subframe. Numbering;
  • the second method according to the channel/signal priority, performing equal power reduction on multiple SRSs with the lowest channel/signal priority, as shown in the following formula (2), if there is non-zero w(i), And maintaining the original transmit power of the PUCCH and the PUSCH for transmission, and transmitting the SRS according to the power reduced by the power; if the sum of the transmit powers of the remaining uplink channels is greater than the maximum transmit power allowed by the UE when the SRS power is reduced to 0, the unsupported The PUSCH of the UCI reduces the power, as shown in the following formula (3), where c is the carrier number, i is the number of the subframe, j is the number of the PUSCH carrying the UCI, and so on, until the maximum transmit power is satisfied;
  • the UE When determining that the transmit power of all channels and signals on all carriers is less than or equal to the maximum transmit power allowed by the UE, 5 CMAX, the UE directly performs data transmission according to the transmit power calculated by the power control formula on each of the above carriers.
  • the maximum transmit power allowed by the UE in the foregoing Embodiment 1 is replaced by the maximum transmit power allowed in the frequency band, that is, when the above five carriers are in the same frequency band, the maximum allowed based on the frequency band may also be adopted according to the foregoing scheme.
  • the power is reduced by the transmit power to ensure that the sum of the transmit power of each channel and the signal after the power reduction is less than or equal to the maximum transmit power allowed by the frequency band; if the UE also works on carriers in other frequency bands, each frequency band can be used separately.
  • the above method performs power reduction based on the maximum transmit power allowed by the frequency band.
  • the PUCCH is replaced with a PUSCH or a PRACH or a specific uplink channel
  • the PUSCH is replaced with a PUCCH or a PRACH or a specific The same applies to the upstream channel.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the UE aggregates 4 carriers for uplink transmission.
  • the transmission situation is shown in Figure 3. Since the TA is different, the uplink transmission time of carrier 3 is one SC-FDMA symbol earlier than carrier 1, and the uplink transmission time of carrier 4 is earlier than carrier 1. SC-FDMA symbols, so the symbol of the SRS transmitted by the last symbol on carrier 3 colliding with PUCCH or PUSCH is the last 2nd SC-FDMA symbol on carrier 1 and carrier 2, and the last symbol on carrier 4 is transmitted.
  • the symbol of the collision of the SRS with the PUCCH or the PUSCH is the third last SC-FDMA symbol on the carrier 1 and the carrier 2, and the specific behavior of the UE is as follows:
  • the UE first calculates the transmit power of the PUCCH on the carrier 1 according to the relevant formula of the background technology section.
  • the UE Since the SRS collides with the PUCCH or the PUSCH in the two SC-FDMA symbols respectively, the UE needs to determine, at each collision symbol, whether the transmission power of all channels and signals on all carriers on the symbol is greater than the maximum transmission power allowed by the UE ⁇ CMAX, when it is judged that the sum of the transmission powers of the respective signal sum signals in the two SC-FDMA symbols is greater than the maximum transmission power allowed by the UE, that is, P P > PcMAX is satisfied, and 2 + ⁇ ⁇ ⁇ power reduction is performed by the following method: Method ⁇ : performing power reduction for each collision symbol greater than the maximum power, and the reduction method can be compared with the first embodiment. The first method is the same as the second method;
  • Method A1 In each collision symbol, the power is reduced proportionally for all channels and signals, that is, in the second to last SC-FDMA symbols on carriers 1 and 2, the formula (1) is equivalent to the following formula (four ), obtain the PUCCH transmit power after power reduction ⁇ ". 1 , PUSCH transmit power ⁇ ". 2 , SRS transmit power ⁇ . 3 ; in the third last SC-FDMA symbol on carriers 1 and 2, formula (a Equivalent to the following formula (5), the PUCCH transmit power after power reduction, PUSCH transmit power ⁇ , SRS transmit power ⁇ 4 ;
  • Method A2 In each collision symbol, the proportional power reduction of the SRS with the lowest channel/signal priority is performed according to the channel/signal priority, that is, in the second last SC-FDMA symbol on carriers 1 and 2. According to formula (2), the power of the SRS on the carrier 3 is reduced. Since the w(i) value of non-zero satisfies the formula, the transmission power after the SRS power is reduced is obtained (0 ⁇ (0 ⁇ (0, PUCCH) Transmit power remains unchanged
  • the size of ⁇ ⁇ takes a smaller value as the final transmit power of the PUCCH, and transmits all SC-FDMA symbols of the PUCCH in the subframe according to this power; compares the PUSCH of the two collision symbols respectively for power reduction
  • the size of the transmit power ⁇ ". 2 and ⁇ ". 2 takes a smaller value as the final transmit power of the PUSCH, and all SC-FDMA symbols of the PUSCH in the subframe are transmitted according to this power; SRS transmission power after power reduction in the symbol ⁇ and ⁇ 4 send SRS;
  • Method B selecting multiple SRSs with the highest transmit power among the collision symbols greater than the maximum power, for example, SRS on carrier 4, and performing power reduction on the symbol where the SRS is located, and the reduction method may use the first one in the first embodiment.
  • Method and second method selecting multiple SRSs with the highest transmit power among the collision symbols greater than the maximum power, for example, SRS on carrier 4, and performing power reduction on the symbol where the SRS is located, and the reduction method may use the first one in the first embodiment.
  • Method B 1 In the collision symbol in which the selected SRS is located, the power is reduced proportionally for all channels and signals, that is, in the third last SC-FDMA symbol on carriers 1 and 2, equation (1) is equivalent to Equation (5), obtain the PUCCH transmit power after power reduction ⁇ , PUSCH transmit power ⁇ , SRS transmit power ⁇ 4 ;
  • Method B2 Perform equal-scale power reduction on the SRS with the lowest channel/signal priority according to the channel/signal priority in the collision symbol where the selected SRS is located, and the third SC- on the carriers 1 and 2
  • the remaining collision symbols based on the PUCCH and the PUSCH transmit power after the power reduction, further determining whether the total transmit power in the remaining collision symbols is greater than the maximum transmit power allowed by the UE, and performing equal power on the SRS in the larger collision symbol. Decrease, that is, in the second last SC-FDMA symbol on carriers 1 and 2, when determining
  • the transmit power after the power reduction is ⁇ 1 . 1 and, all SC-FDMA symbols of the PUCCH and PUSCH in the subframe are transmitted according to this power, and respectively according to each collision symbol SRS transmit power P and PsRS ' transmit SRS after medium power reduction; when ⁇ ⁇ ⁇ ' + P ⁇ C ⁇ ' + PS ⁇ ⁇ ⁇ H is determined, there is no need to reduce the power of the SRS in the collision symbol, directly according to the original
  • SRS transmission power transmission, PUCCH and PUSCH transmission are the same as above;
  • the SRS transmission power is transmitted according to the original calculation power, and the transmission power of the channels such as PUCCH and PUSCH is according to the power in other collision symbols.
  • the reduced transmit power is used for each SC-FDMA symbol; when, for each collision symbol, the sum of the transmit power of each channel and the signal is determined to be less than or equal to the maximum transmit power allowed by the UE, The transmission power calculated by the power control formula on each carrier is directly transmitted.
  • the maximum transmit power allowed by the UE is replaced by the maximum transmit power allowed by the frequency band, that is, when the above four
  • the power reduction may be performed according to the maximum transmission power allowed by the frequency band according to the foregoing solution, so as to ensure that the sum of the transmission powers of the channels and the signals after the power reduction is less than or equal to the maximum transmission power allowed by the frequency band;
  • Carriers operating in other frequency bands simultaneously, Bands can be carried out using the above-described power reduction method based on a maximum transmit power allowed by each band along;
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the UE aggregates 5 carriers for uplink transmission, carrier 1 and carrier 2 are in frequency band 1, and carriers 3 to 5 are in frequency band 2, and the transmission situation is as shown in FIG. 4, and the uplink transmission time of carriers 3, 4, and 5 is different due to different TAs.
  • Carrier 1 advances by one SC-FDMA symbol, so the SRS transmitted by the last symbol on carriers 3 and 5 collides with the PUCCH on carrier 1, 2, 4 or the second to last SC-FDMA symbol of PUSCH.
  • the specific behavior of the UE is as follows:
  • the UE first calculates the transmit power of the PUCCH on the carrier 1 according to the relevant formula in the background art.
  • the transmit power calculated by the formula is transmitted; when the judgment is greater, the power reduction is performed as follows:
  • the first method reducing the power of the SRS and the PUCCH or the PUSCH in the same frequency band, and the SRS and PUCCH in different frequency bands or
  • the PUSCH performs power reduction according to the power reduction ratio low coefficient corresponding to the frequency band, that is, as shown in the following formula (6), the power reduction ratio coefficient corresponding to the frequency band 1 is used for the PUCCH and the SRS on the carrier 1 2 3 of the frequency band 1 w i , the power reduction ratio coefficient 1 ⁇ corresponding to the frequency band 2 is used for the PUSCH and the SRS on the carrier 4 of the frequency band 2, and the formula (6) is equivalent to "+" ⁇ ⁇ for the power drop ⁇ ( ⁇ , and Transmitting according to the transmission power of each channel and signal after the power is reduced;
  • the ⁇ two-way preferentially lowers the transmission power of the lowest channel/signal priority SRS, reduces the power proportionally to the SRS in the same frequency band, and the power corresponding to the SRS frequency band in different frequency bands.
  • the power factor is reduced by reducing the proportional coefficient, as shown in the following formula (7), that is, the power reduction ratio coefficient w i corresponding to the frequency band 1 is used for the SRSs on the carriers 2 and 3 of the frequency band 1, for the carrier 5 in the frequency band 2
  • the SRS uses the power reduction ratio factor corresponding to Band 2, and the equation (7) is equivalent to W l ® ⁇ ('') + (0) + W 2 for power reduction, if there are non-zero 1's and 1 ⁇ satisfies the above formula, may be sent in accordance with the power of the SRS power reduction, the PUCCH and PUSCH is not necessary to lower the power, the transmission power can be calculated according to the original; if SRS power is reduced to 0, i.e., ⁇ 1 and w 2 are 0, If the sum of the transmit powers of the remaining channels is still greater than the maximum transmit power allowed by the UE, the power is further reduced according to the following formula (8) for the PUSCH that does not carry the UCI,
  • the UE needs to ensure that the sum of the transmission powers of the channels and signals in each frequency band is less than or equal to the maximum transmission power allowed in the frequency band, and each of the multiple frequency bands is guaranteed.
  • the total transmit power of the channel and signal is less than or equal to the maximum transmit power allowed by the UE.
  • the UE first determines whether the sum of the transmit powers of all the SRSs and the uplink channels is greater than the maximum transmit power allowed by the UE. If not, further determines, for each frequency band, whether the sum of the SRS and the uplink channel transmit power in the frequency band is greater than the allowable frequency band.
  • the maximum transmit power if not greater than, is to transmit each channel and signal in the frequency band according to the original calculated power. If it is greater than, the following method is used:
  • Method (1) According to the following formula (9), the power is reduced in proportion to the SRS and the uplink channel in the frequency band to meet the maximum transmit power allowed to be less than or equal to the frequency band 3 ⁇ 4 , b is the frequency band number; Send this Intra-band channel; (0) ⁇ (0 (9)
  • Method 2 According to the following formula (10), according to the channel/signal priority, the SRS with low channel/signal priority in the frequency band is proportionally reduced in power to meet the maximum transmit power allowed to be less than or equal to the frequency band 3 ⁇ 4 , b is the band number; if there is a non-zero W(i), the power in the band is transmitted according to the power, and the PUCCH or PUSCH power in the band is unchanged; if there is no non-zero w(i) And then, according to the following formula (11), further equalize power reduction for the second-lowest priority unsubscribed USCH PUSCH, where j is the number of the PUSCH carrying the UCI, and so on, until the maximum transmit power is satisfied. ;
  • the UE performs a proportional conversion on the total transmit power of each frequency band or a power reduction based on the power reduction ratio coefficient corresponding to the frequency band, so as to satisfy the power reduction, the sum of the total transmit power of each frequency band is less than or equal to the UE allowed.
  • the total transmit power of each frequency band may be the maximum transmit power allowed for the frequency band, or the sum of the initial transmit power of the SRS and the upstream channel in the frequency band, or for the channel and signal within the frequency band a frequency band in which the sum of the transmission powers is greater than the maximum transmission power allowed by the frequency band, the maximum transmission power allowed for the frequency band, and the frequency band for which the sum of the transmission powers of the channels and signals in the frequency band is not greater than the maximum transmission power allowed by the frequency band, is the frequency band The sum of the initial transmit power of the intermediate SRS and the upstream channel.
  • the UE reuses the above method (1) and method (2) based on the total transmit power of each frequency band after the power reduction, and replaces 6 in the formula (9) or the formula (10) or the formula (11) with the power.
  • the total transmission power of each frequency band after the reduction is performed, the power is reduced, and each channel and signal are transmitted according to the power after the power reduction.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the UE aggregates 4 carriers for uplink transmission.
  • the transmission situation is shown in Figure 5. Since the TAs are different, the uplink transmission time of carriers (CC) 3 and 4 is one SC-FDMA symbol behind carriers 1 and 2. Therefore, carrier 1
  • the SRS transmitted with the last symbol on 2 collides with the penultimate SC-FDMA symbol of the PUSCH on carriers 3 and 4, and the specific behavior of the UE is as follows:
  • the UE first calculates the transmit power of the PUCCH and the SRS on the carrier 1 according to the relevant formula of the background technology part.
  • PSRS 'unsupported PUSCH UCI of transmit power PPUSCH 2, carrier 3' 3, not carrying the UCI PUSCH transmit power PPUSCH '4 on a carrier 4; and according to the formula 1 03 ⁇ 4 / 1 ° determine the linear domain values, wherein X represents an upstream channel or uplink signal, for example
  • the UE first determines whether the transmit power of the uplink channel on all carriers is greater than the maximum transmit power allowed by the UE.
  • PCMAX When UCCH ⁇ + USCH , 2 + m + USCH A ⁇ M AX pair is determined, power control of the uplink channel is not required, and the UE performs power control on the SRS based on the original transmit power of each uplink channel, that is:
  • the first method proportionally reduce the power for all upstream channels, as shown in the following formula (13), according to:
  • the upper SRS performs a proportional power reduction to satisfy the power reduction, and the sum of the SRS transmission powers on carriers 1 and 2 does not exceed the maximum transmission power allowed by the UE minus the uplink channel power-controlled transmission power overlapping with the SRS ( That is, the transmission power after PUSCH power control on carriers 3 and 4, as shown in the following formula (16
  • the power transmission is replaced by the maximum transmit power allowed in the frequency band. That is, when the above four carriers are in the same frequency band, the power reduction can be performed based on the maximum transmit power allowed by the frequency band according to the above scheme, so as to ensure the channels and signals after the power reduction.
  • the sum of the transmit powers is less than or equal to the maximum transmit power allowed by the frequency band; if the UEs also operate on carriers in other frequency bands, each frequency band can respectively perform power reduction based on the maximum transmit power allowed by the frequency band according to the above method.
  • P puc CH Q
  • P PUSCH Q
  • an uplink control power control apparatus provided by an embodiment of the present invention includes:
  • the transmit power determining unit 1 1 is configured to determine a target transmit power required for the sounding of the sounding reference signal SRS, and a target transmit power required for uplink channel transmission, where the SRS and the partial single carrier frequency division of the uplink channel are Addressing is transmitted on the SC-FDMA symbol simultaneously, and the SRS and the uplink channel are transmitted on different uplink carriers;
  • the processing unit 13 is configured to perform power control on the SRS and the target transmit power of the uplink channel when determining that the sum of the SRS and the target transmit power of the uplink channel meets a preset power control condition.
  • the determining unit 12 may perform a determination that the sum of the SRS and the target transmit power of the uplink channel meets a preset power control condition.
  • the device further includes a determining unit. And determining whether the sum of the SRS determined by the transmit power determining unit 1 1 and the target transmit power of the uplink channel meets a preset power control condition.
  • the transmit power determining unit 1 1 is specifically configured to determine a target transmit power required for the uplink channel transmission according to the following manner:
  • Determining a target transmit power required for the uplink channel transmission is a power-controlled transmit power of an original transmit power of each uplink channel calculated based on a power control parameter of each carrier and an uplink channel on the carrier.
  • the target transmit power required by the transmit power determining unit 1 1 to determine the uplink channel transmission is an original of each uplink channel calculated based on a power control parameter of each carrier and an uplink channel on the carrier.
  • the processing unit 13 is further configured to: perform power control on the uplink channel, where the transmit power is received by the power control.
  • the power control method includes:
  • the power is reduced in proportion, and the uplink channels in different frequency bands are reduced in power according to the power reduction ratio coefficient corresponding to the frequency band;
  • the power of the uplink channel having the same priority is proportionally reduced according to the order in which the channel/signal priority is from low to high;
  • the uplink channel in the same frequency band is proportionally reduced in power, and the uplink channel in different frequency bands is reduced in accordance with the power reduction ratio coefficient corresponding to the frequency band. Reduce power.
  • the transmit power determining unit 1 1 determines that the target transmit power of the uplink channel is the power control after the power control
  • the determining unit 12 determines that the sum of the target transmit powers meets a preset power.
  • the control unit 13 performs power control on the SRS and the target transmit power of the uplink channel, where the control unit 13 includes:
  • the sum of the target transmit power of the SRS and the uplink channel is greater than a preset maximum transmit power, performing equal power reduction on the target transmit power of the SRS, or SRS in the same frequency band in the SRS
  • the target transmit power is reduced in equal power, and the SRSs in different frequency bands are reduced in power according to the power reduction ratio coefficient corresponding to the frequency band, and after the power reduction is performed, the sum of the transmit powers of the SRS is less than or equal to the preset maximum
  • the transmit power is subtracted from the target transmit power of the upstream channel.
  • the determining unit 12 is specifically configured to:
  • the processing unit 13 is specifically configured to:
  • the determining unit 12 determines that the sum of the target transmit power of the SRS and the uplink channel is greater than a preset maximum transmit power, the target transmit power of the SRS and the uplink channel are equally or non-equalized. The power is reduced to meet the power reduction, and the sum of the transmit power of the SRS and the uplink channel is less than or equal to the preset The maximum transmit power set.
  • the determining unit 12 is further configured to:
  • the judging step can be performed by the processing unit 13.
  • the processing unit 13 is further configured to: determine, by the determining unit 12, the SC-FDMA symbol exceeding the preset maximum transmit power, and perform power reduction by using the following method:
  • the target transmit power of the uplink channel is subjected to equal or non-equal power reduction based on channel/signal priority to satisfy the SRS and the uplink channel simultaneously transmitted on the SC-FDMA symbol after power reduction
  • the sum of the transmit powers is less than or equal to the preset maximum transmit power; or
  • the target transmit power of the channel is equal or non-equal power reduction, or the target transmit power simultaneously transmitted on the SC-FDMA symbol and the target transmit power of the uplink channel are equal based on channel/signal priority Or a non-equal power reduction, after the power reduction is performed, the sum of the transmit power of the SRS and the uplink channel simultaneously transmitted on the SC-FDMA symbol is less than or equal to a preset maximum transmit power, and then based on the Transmitting the power of the uplink channel after the power is reduced on the SC-FDMA symbol, and further determining the SRS in the remaining SC-FDMA symbols in the remaining SC-FDMA symbols of the uplink channel simultaneously transmitted with the SRS Whether the sum of the target transmission power and the transmission power after the uplink channel power is reduced exceeds the preset maximum transmission power, when judging
  • the multiple SC-FDMA symbols are part of an uplink channel transmitted in the same uplink subframe as the SRS.
  • An SC-FDMA symbol, or a partial SC-FDMA symbol of an uplink channel transmitted in the same uplink subframe as the SRS, and a portion of an uplink channel transmitted in a neighboring uplink subframe of an uplink subframe in which the SRS is located is further configured to:
  • the target transmit power of the uplink channel transmitted at the same time is equal or non-equal power reduction, or the target transmit power of the uplink channel to the SRS and the SRS simultaneously transmitted on the SC-FDMA symbol Performing a proportional or non-equal power reduction based on channel/signal priority, after the power reduction is performed, the sum of the transmit power of the SRS and the uplink channel in each SC-FDMA symbol is less than or equal to a preset maximum transmit power, and the minimum SRS transmit power value after the power is reduced is used as the transmit power of the SRS; or
  • the processing unit 13 performs equal power reduction on the SRS of the same frequency band and the target transmit power of the uplink channel, and the target transmit power of the SRS and the uplink channel in different frequency bands.
  • the power reduction is performed according to the power reduction proportional coefficient corresponding to the frequency band in which it is located.
  • the processing unit 13 is specifically configured to:
  • the determining unit 12 determines that the sum of the target transmit power of the SRS and the uplink channel is greater than a preset maximum transmit power, performing channel/signal priority on the SRS and the target transmit power of the uplink channel.
  • the equal or non-equal power is reduced to meet the power reduction, and the sum of the transmit power of the SRS and the uplink channel is less than or equal to a preset maximum transmit power.
  • the processing unit 13 performs a proportional or non-equal power reduction based on the channel/signal priority for the SRS and the target transmit power of the uplink channel, specifically for:
  • the power of the target transmit power of the SRS and/or the uplink channel having the same channel/signal priority is proportionally reduced in accordance with the order of channel/signal priority from low to high.
  • the processing unit 13 performs a proportional or non-equal power reduction based on the channel/signal priority for the SRS and the target transmit power of the uplink channel, specifically for:
  • the target transmission power of the SRS and/or the uplink channel in the same frequency band is performed, etc.
  • the power of the ratio is reduced, and the target transmission power of the SRS and/or the uplink channel in different frequency bands is reduced according to the power reduction ratio coefficient corresponding to the frequency band in which the frequency band is located.
  • the uplink channel/signal priority is specifically:
  • PUCCH> PRACH> PUSCH carrying UCI> PUSCH SRS not carrying UCI.
  • the processing unit 13 is specifically configured to:
  • the target transmit power of all SC-FDMA symbols in the current subframe of the uplink channel is simultaneously decreased, when the uplink channel has multiple SC-FDMA symbols in the current subframe.
  • the minimum value of the power reduction after the power reduction in the plurality of SC-FDMA symbols is selected as the current subframe of the uplink channel after the power reduction Transmit power of all SC-FDMA symbols in;
  • the target transmit power of the SC-FDMA symbol simultaneously transmitted with the SRS in the current subframe of the uplink channel is reduced only.
  • the preset maximum transmit power specifically includes: a maximum transmit power allowed by the user equipment, and/or a maximum transmit power allowed for each frequency band corresponding to the user equipment.
  • the SRS and the uplink when there is simultaneous SRS and uplink channel transmission on different carriers in one subframe, when the sum of the transmit powers of the SRS and the uplink channel is greater than the maximum transmit power, the SRS and the uplink are performed.
  • the channel performs a proportional/non-equal power reduction, or performs a proportional/non-equal power reduction based on channel/signal priority to satisfy a sum of SRS and uplink channel transmit power after the power reduction is less than or equal to the maximum transmit power. , to ensure that the system can work properly.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention is in the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) in which computer usable program code is embodied.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种上行传输的功率控制方法及装置,用以实现不同载波上的SRS与上行信道同时传输时的功率控制。本发明提供的一种上行传输的功率控制方法包括:确定探测参考信号SRS传输所需的目标发射功率,以及上行信道传输所需的目标发射功率,其中,所述SRS与所述上行信道的部分单载波频分多址接入SC-FDMA符号同时传输,所述SRS与所述上行信道在不同的上行载波传输;判断所述SRS与所述上行信道的目标发射功率之和是否满足预设的功率控制条件;当判断所述目标发射功率之和满足预设的功率控制条件时,对所述SRS和所述上行信道的目标发射功率进行功率控制。

Description

一种上行传输的功率控制方法及装置 本申请要求在 2011年 11月 07日提交中国专利局、 申请号为 201110349132.1、 发明名称为 "一种上行传输的功率控制方法及装置"的中国专利申请、 在 2011年 12月 22日提交中国专利局、 申请号为 201110434875.9、 发明名称为"一种上行传输的功率控制方法及装置"的中国专利申 请, 以及在 2012年 01月 05日提交中国专利局、 申请号为 201210001889.6、 发明名称为"一种 上行传输的功率控制方法及装置"的中国专利申请的优先权, 其全部内容通过引用结合在本申 请中。 技术领域 本发明涉及通信技术领域, 尤其涉及一种上行传输的功率控制方法及装置。 背景技术 在长期演进增强( Long Term Evolution- Advanced, LTE-A )技术的版本 ( Release, Rel ) -11中, 不同载波可能使用不同的定时提前量(Time Advance, TA ) , 因此, 不同载波的 上行发送时间可能不对齐, 此时探测参考信号 ( Sounding Reference Signal, SRS ) 与上行 信道不一定总是在最后一个符号碰撞, 由于 SRS与上行信道在一个符号碰撞时, 若该符号 上存在上行信道符号则丢弃 SRS, 从而导致更多的 SRS丢弃。 因此, 1^1-11的1^£- 技术需 要支持处于不同载波的 SRS与上行信道同时传输, 然而现有技术中还没有给出相应的功率 控制方法。
PUCCH ( Physical Uplink Control Channel, 物理上行控制信道)功率控制介绍如下: 在 LTE-A Rel- 10中, 用户设备 ( User Equipment , UE )在主载波传输 PUCCH所使用的 发射功率 ^PUCCH由如下的公式计算:
Figure imgf000003_0001
其巾:
PcMAXe ('')是配置给载波 C的载波允许最大发射功率。
P°-PUCCH为 PUCCH期望功率目标值, 由高层信令配置。
P^是 UE测量的载波 c的路径损耗, 高层信令配置 UE釆用 SIB ( System Information Block, 系统信息块) -2信息中通知的配对载波(又称 SIB-2 linkage载波)或者主载波进行 测量。
CQ1, "HARQ, ) 为与 PUCCH承载的比特数目相关的功率偏移量, 其中 为承载的 CSI ( Channel State Information , 信道状态信息 ) 比特数, 为承载的 ACK ( ACKnowledgment, 肯定确认)/ NACK ( Non-ACKnowledgment, 否定确认)比特数, nsR 为承载的 SR ( Scheduling Request, 调度请求) 比特数。
参数 AF PUCCH( 由高层配置, 表示对应于不同的 PUCCH format (格式)相对于 PUCCH format la的功率偏移量。
Δτ^( 7')表示发射分集功率偏移量, 如果 UE被配置在 2个天线的端口上传输, 则
Δτ^^')由高层信令对不同 PUCCH format进行配置, 取值集合为 {0, -2}dB ; 否则,
A ) =o
M- 1
g(') = g(' - ^) + ^ PUCCH (' ~ ) s
g(i)为功率控制命令累积值, 。 , 其中 ^PUCCH是 UE专属的修正 值, 也称 TPC ( Transmit Power Control, 发射功率控制)命令, 表示为在子帧 i-km中获得的, 对于 TDD ( Time Division Duplex, 时分双工) 系统, km为需要在当前子帧 中进行上行信息反馈的下行子帧集合中的下行子帧的索引, M为该下行子帧集合中下行子 帧的个数, 对于 FDD ( Frequency Division Duplex, 频分双工) 系统, km=4 , M=l
PUSCH ( Physical Uplink Shared Channel, 物理上行共享信道)功率控制介绍如下: 在 LTE-A Rel-10中,如果 UE在子帧 i中不存在 PUCCH传输,则 UE在载波 c上传输 PUSCH 的发射功率 PpuscH^'')根据以下公式计算:
„ ,■、
尸 PUSCH c (') =
'
Figure imgf000004_0001
[dBm] 其巾:
MpuscHc ('')是载波 c上 PUSCH的资源大小, 以 RB ( Resource Block , 资源块)表示。
_PUSC¾e( ')是载波 c上 PUSCH期望功率目标值, 由高层信令配置。
是载波 c的路径损耗补偿因子, 为小区专属参数, 由高层信令配置。
Ρ^是 UE测量的载波 c的路径损耗, 高层信令配置 UE釆用 SIB-2信息中通知的配对载 波或者主载波进行测量。
^ = 1.25时 , ArF ( ) = 101Og l。((2 1) ) , 此时 ATF 表示不同 的 MCS
( Modulation and Coding Scheme , 调制编码方式)对应不同的功率偏移量; = 0时, Δ^') = 0 , 此时 ^(7)表示关闭随 MCS进行功率调整的功能, 其中, 是 UE专属参数, 由高层信令指示。 BPRE ( Bit Per Resource Element, 每资源单元比特数)表示 PUSCH中每 oPUSCH
资源单元对应的比特数, Poffset 表示 PUSCH中承载的上行控制信息的编码速率相对于 PUSCH上的上行数据的编码速率之间的偏移量, 由高层信令预先配置。
(z)为 PUSCH功率控制调整量, 有累积值和当前绝对值两种方式。
在 LTE-A Rel-10中, 如果 UE在子帧 i中存在 PUCCH传输, 则 UE在载波 c上传输 PUSCH 的发射功率 PpuscH^('')根据以下公式计算: [dBm]
Figure imgf000005_0001
^PUCCH )为上述 PUCCH发射功率 pPUCCH«的线性域值。
5 SRS功率控制介绍如下:
在 LTE-A Rel-10中, UE在载波 c上传输 SRS所需要的发射功率 P 由以下公式定义: (') PCMAX, c (0, O) + 1。 log10( SRS)C ) + P 0') + «c(i)■ PLc + fc (') } [dBm] 其巾:
¾RS_OFFSET, (m)为载波 c上不同天线端口配置下 SRS相对于 PUSCH的功率偏移量, m=00 对应周期 SRS , m=l对应非周期 SRS
MsRSc是载波 c上的 SRS传输带宽, 以 RB数表示。
其余参数同该载波上的 PUSCH的功率控制参数。
PRACH ( Physical Random Access Channel , 物理随机接入信道)功率控制介绍如下 在 LTE-A Rel-10中, UE在主载波上传输 PRACH的发射功率由如下公式计算得到:5 PRACH= min{ CMA c (/) , PREAMBLE— RECEIVED— TARGET— POWER + PLC ) [dBm] 其巾,
PREAMBLE_RECEIVED_TARGET_POWER由 UE的 MAC ( Media Access Control, 媒 体接入控制)层计算得到, 为 PRACH目标功率。
功率降低 ( power scaling ) 方案介绍如下:
0 在 LTE-A Rel-10中,如果 UE在当前子帧 i的总发射功率超过了 UE允许的最大发射功率, 则在进行功率降低时, UE应优先保证 PUCCH的发射功率, 等比例降低每个载波 c上的 PUSCH发射功率以满足 UE最大发射功率: 其中 Ρ H,c (i)为 usc¾c ( 的线性域值, 为每个载波上的功率降低因子,5 0≤w«≤l。 如果当前子帧 i中没有 puccH传输, 则 >UCCH('')=0
如果 UE在当前子帧 i中,同时存在承载 UCI ( Uplink Control Information,上行控制信息 ) 的 PUSCH传输以及没有承载 UCI的 PUSCH传输, 且 UE的总发射功率超过了最大允许发射 功率, 则 UE应优先保证 PUCCH的发射功率不降低, 其次保证承载 UCI的 PUSCH的发射功 率不降低 , 并等比例降低每个载波上的 PUSCH发射功率以满足 UE最大发射功率:
( ( )
Q ^1) ~ mm puscHj 口 C≠J 当所有没有承载 UCI的 PUSCH功率都降低为 0时, UE的总发射功率还是超过最大允许 发射功率, 则进一步对承载 UCI的 PUSCH降低功率。 如果当前子帧 i中没有 PUCCH传输, 则 ¾JCCH('') =0。
对于在同一个子帧中多个载波上同时传输的 SRS , 如果 UE的总发射功率超过了最大允 许发射功率, 则对每个载波上的 SRS进行等比例功率降低以满足 UE最大发射功率:
w( - -PSRS,c( ≤-P (
其中 为 ( 的线性域值 , w«为每个载波 c上的 SRS功率降低因子, 0≤ w(/)≤ 1。 关于 CA ( Carrier Aggregation, 载波聚合)技术介绍 ¾口下:
考虑到功率受限, LTE-A Rel-10不支持处于相同或者不同载波的 PUCCH、 PUSCH, PRACH和 SRS在一个子帧中同时传输。如果 SRS与 PUCCH发生碰撞, 当 PUCCH为 shortened PUCCH format (截短 PUCCH格式, 即最后一个符号空出不映射数据,预留给 SRS )时, SRS 在该子帧中的最后一个符号传输, 否则丢弃 SRS传输。 如果 SRS与 PUSCH发生碰撞, 当 PUSCH最后一个符号基于 SRS进行速率匹配 (即最后一个符号空出不映射数据, 预留给 SRS ) 时, SRS在该子帧中的最后一个符号传输, 否则丢弃 SRS传输。 由于 Rel-10中上行仅 支持频带内 (Intra-band ) 的 CA ( Carrier Aggregation, 载波聚合) , 多个载波的上行发送 时间对齐, 基站可以通过对多个载波配置相同的 SRS发送周期和子帧偏移来避免丢弃 SRS 传输。
在 LTE-A Rel-11中, 可以支持上行不同频带 (inter-band ) 的 CA, 以及宏基站(Macro e B )和远程无线头(RRH, Remote Radio Head )混合的 CA部署方案。 由于不同频带的无 线信号传播特性不同, 并且宏基站和 RRH所经过的传播路径不同, 会导致不同载波发送的 信号到达基站的时间出现差异。 因此, Rel-11中, 不同载波的 TA可能不同, 多个载波的上 行发送时间不一定对齐, 因此, 一个载波上的 SRS与其他载波上的 PUCCH或 PUSCH不一定 在 PUCCH或 PUSCH的最后一个符号碰撞, 为了避免过多的丢弃 SRS传输, 需要支持处于不 同载波的 SRS和 PUCCH、 PUSCH, PRACH等上行信道同时传输, 但目前还没有给出明确 的功率控制方法。
综上所述, 现有技术在同一个子帧中同时传输处于不同载波的 SRS所在的上行信道和 其他上行信道时, 还没有给出明确的功率控制方法。 发明内容 本发明实施例提供了一种上行传输的功率控制方法及系统, 用以实现不同载波上的 SRS与上行信道同时传输时的功率控制, 从而保证 UE在一个子帧中的总发射功率小于或等 于 UE最大发射功率, 保证系统可以正常工作。
本发明实施例提供的一种上行传输的功率控制方法包括: 确定探测参考信号 SRS传输所需的目标发射功率, 以及上行信道传输所需的目标发射 功率, 其中, 所述 SRS与所述上行信道在所述上行信道的部分单载波频分多址接入 SC-FDMA符号上同时传输, 所述 SRS与所述上行信道在不同的上行载波传输;
当判断所述 SRS与所述上行信道的目标发射功率之和满足预设的功率控制条件时, 对 所述 SRS和所述上行信道的目标发射功率进行功率控制。
本发明实施例提供的一种上行传输的功率控制装置包括:
发射功率确定单元, 用于确定探测参考信号 SRS传输所需的目标发射功率, 以及上行 信道传输所需的目标发射功率, 其中, 所述 SRS与所述上行信道在所述上行信道的部分单 载波频分多址接入 SC-FDMA符号上同时传输,所述 SRS与所述上行信道在不同的上行载波 传输;
处理单元, 用于当判断所述 SRS与所述上行信道的目标发射功率之和满足预设的功率 控制条件时, 对所述 SRS和所述上行信道的目标发射功率进行功率控制。
本发明实施例中, 确定探测参考信号 SRS传输所需的目标发射功率, 以及上行信道传 输所需的目标发射功率, 其中, 所述 SRS与所述上行信道在所述上行信道的部分单载波频 分多址接入 SC-FDMA符号上同时传输, 所述 SRS与所述上行信道在不同的上行载波传输; 判断所述 SRS与所述上行信道的目标发射功率之和是否满足预设的功率控制条件; 当判断 所述目标发射功率之和满足预设的功率控制条件时, 对所述 SRS和所述上行信道的目标发 射功率进行功率控制, 从而实现了不同载波上的 SRS与上行信道同时传输时的功率控制, 从而保证 UE在一个子帧中的总发射功率小于或等于 UE最大发射功率, 保证系统可以正常 工作。 附图说明 图 1为本发明实施例提供的一种上行传输的功率控制方法的流程示意图;
图 2为本发明实施例一的上行传输示意图;
图 3为本发明实施例二的上行传输示意图;
图 4为本发明实施例三的上行传输示意图;
图 5为本发明实施例四的上行传输示意图;
图 6a为本发明实施例提供的一种上行传输的功率控制装置的结构示意图;
图 6b为本发明实施例提供的另一种上行传输的功率控制装置的结构示意图。 具体实施方式 本发明实施例提供了一种上行传输的功率控制方法及装置, 用以实现不同载波上的 SRS与上行信道同时传输时的功率控制, 从而保证 UE在一个子帧中的总发射功率小于或等 于 UE最大发射功率, 保证系统可以正常工作。
参见图 1 , 本发明实施例提供的一种上行传输的功率控制方法, 总体包括步骤:
5101、 确定探测参考信号 SRS传输所需的目标发射功率, 以及上行信道传输所需的目 标发射功率, 其中, 所述 SRS与所述上行信道的部分 SC-FDMA (单载波频分多址接入)符 号上同时传输, 所述 SRS与所述上行信道在不同的上行载波传输; 上述上行信道可以是与 SRS在同一个子帧中的上行信道, 也可以是与 SRS在相邻子帧中的上行信道, 例如 SRS传输 所在子帧的后一个子帧中的上行信道。
5102、 当判断所述 SRS与所述上行信道的目标发射功率之和满足预设的功率控制条件 时, 对所述 SRS和所述上行信道的目标发射功率进行功率控制。
本发明实施例中所述的上行信道, 包括但不限于: PUCCH、 PUSCH和 PRACH等上行 信道。
较佳地, 所述上行信道传输所需的目标发射功率, 具体为:
基于每个载波和该载波上的上行信道的功率控制参数计算得到的每个上行信道的原 始发射功率 (即根据背景介绍中 PUCCH、 PUSCH, PRACH在每个载波上的发射功率计算 公式计算得到的功率) ; 或者,
基于每个载波和该载波上的上行信道的功率控制参数计算得到的每个上行信道的原 始发射功率经过功率控制后的发射功率。
较佳地, 当所述上行信道传输所需的目标发射功率为基于每个载波和该载波上的上行 信道的功率控制参数计算得到的每个上行信道的原始发射功率经过功率控制后的发射功 率时, 终端装置首选需对上行信道的原始发送功率进行功率控制, 其功率控制过程具体包 括:
判断同时传输的上行信道(可以是处于同一上行子帧的上行信道, 也可以是处于相邻 上行子帧的上行信道)的原始发射功率之和是否超过预先设置的最大发射功率, 当超过时, 对上行信道进行功率控制, 以满足功率控制后上行信道的发射功率之和不超过所述预先设 置的最大发射功率, 并将功率控制后的每个上行信道的发射功率作为其目标发射功率; 当 不超过时, 将每个上行信道的原始发射功率作为其目标发射功率;
其中, 功率控制的具体方法包括:
对所有上行信道等比例降低功率; 或者,
对处于相同频带的上行信道等比例降低功率, 对处于不同频带的上行信道按照所处频 带对应的功率降低比例系数降低功率; 或者,
按照信道 /信号优先级从低到高的顺序, 对具有同一优先级的上行信道等比例降低功 率; 或者, 按照信道 /信号优先级从低到高的顺序, 对具有同一优先级的上行信道中, 处于相同频 带的上行信道等比例降低功率, 处于不同频带的上行信道按照所处频带对应的功率降低比 例系数降低功率。
较佳地, 如果所述上行信道的目标发射功率为经过功率控制后的发射功率, 当判断所 述目标发射功率之和满足预设的功率控制条件时, 对所述 SRS和所述上行信道的目标发射 功率进行功率控制, 具体包括:
当所述 SRS与所述上行信道的目标发射功率之和大于预先设置的最大发射功率时, 对 所述 SRS的目标发射功率进行等比例功率降低,或者对所述 SRS中处于相同频带的 SRS的目 标发射功率进行等比例功率降低, 对处于不同频带的 SRS根据所处频带对应的功率降低比 例系数进行功率降低, 以满足功率降低后, 所述 SRS的发射功率之和小于或等于预先设置 的最大发射功率减去所述上行信道的目标发射功率。
较佳地, 当判断所述 SRS与所述上行信道的目标发射功率之和满足预设的功率控制条 件时, 对所述 SRS和所述上行信道的目标发射功率进行功率控制, 包括:
当所述 SRS与所述上行信道的目标发射功率之和大于预先设置的最大发射功率时, 对 所述 SRS和所述上行信道的目标发射功率进行等比例或非等比例的功率降低, 以满足功率 降低后, 所述 SRS和所述上行信道的发射功率之和小于或等于预先设置的最大发射功率。
较佳地, 当存在多个所述 SRS与所述上行信道在所述上行信道的不同 SC-FDMA符号中 同时传输时, 该方法还包括:
分别在所述上行信道的每个与 SRS同时传输的 SC-FDMA符号内,判断与所述上行信道 的该 SC-FDMA符号同时传输的所述 SRS和所述上行信道的目标发射功率之和是否超过所 述预先设置的最大发射功率, 当超过时, 对在 SC-FDMA该符号上同时传输的所述 SRS和所 述上行信道的目标发射功率进行等比例或者非等比例的功率降低, 或者对在该 SC-FDMA 符号上同时传输的所述 SRS和所述上行信道的目标发射功率进行基于信道 /信号优先级的 等比例或者非等比例的功率降低, 以满足功率降低后,该 SC-FDMA符号上同时传输的所述 SRS和所述上行信道的发射功率之和小于或等于预先设置的最大发射功率; 或者,
首先在与所述多个 SRS中目标发射功率最高的 SRS同时传输的上行信道的 SC-FDMA 符号中, 判断所述 SRS和所述上行信道的目标发射功率之和是否超过所述预先设置的最大 发射功率, 当超过时, 对在该 SC-FDMA符号上同时传输的 SRS和上行信道的目标发射功率 进行等比例或者非等比例的功率降低 ,或者对在该 SC-FDMA符号上同时传输的 SRS和上行 信道的目标发射功率进行基于信道 /信号优先级的等比例或者非等比例的功率降低,以满足 功率降低后,该 SC-FDMA符号上同时传输的所述 SRS和所述上行信道的发射功率之和小于 或等于预先设置的最大发射功率,然后基于在该 SC-FDMA符号上功率降低后的上行信道的 发射功率, 在其余的与 SRS同时传输的上行信道的 SC-FDMA符号中, 进一步判断所述其余 SC-FDMA符号中的 SRS的目标发射功率和上行信道功率降低后的发射功率之和是否超过 所述预先设置的最大发射功率, 当超过时, 对所述其余 SC-FDMA符号中的 SRS的目标发射 功率进行等比例或者非等比例的功率降低, 以满足功率降低后 ,所述其余 SC-FDMA符号中 SRS的发射功率之和不超过所述预先设置的最大发射功率与所述上行信道功率降低后的发 射功率之差。
较佳地, 当所述 SRS与所述上行信道的多个 SC-FDMA符号同时传输时 (一种情况为 SRS与当前子帧中的上行信道的相邻的 2个 SC-FDMA符号分别部分重叠的情况, 另一种情 况为 SRS与当前子帧中的上行信道的最后 1个 SC-FDMA符号以及当前子帧的后一个相邻子 帧中的上行信道的第 1个 SC-FDMA符号分别部分重叠的情况, 因此, 多个 SC-FDMA符号为 与所述 SRS在同一个上行子帧中传输的上行信道的部分 SC-FDMA符号, 或者为与所述 SRS 在同一个上行子帧中传输的上行信道的部分 SC-FDMA符号以及与所述 SRS所在上行子帧 的相邻上行子帧中传输的上行信道的部分 SC-FDMA符号) , 还包括:
分别在所述多个 SC-FDMA符号中的每个 SC-FDMA符号中,判断所述 SRS和与所述 SRS 在所述 SC-FDMA符号上同时传输的上行信道的目标发射功率之和是否超过所述预先设置 的最大发射功率, 当超过时, 对所述 SRS和与所述 SRS在该 SC-FDMA符号上同时传输的所 述上行信道的目标发射功率进行等比例或者非等比例的功率降低, 或者对所述 SRS和与所 述 SRS在该 SC-FDMA符号上同时传输的所述上行信道的目标发射功率进行基于信道 /信号 优先级的等比例或者非等比例的功率降低, 以满足功率降低后,所述每个 SC-FDMA符号中 的所述 SRS和所述上行信道的发射功率之和小于或等于预先设置的最大发射功率, 并将功 率降低后的最小的 SRS发射功率值作为所述 SRS的发射功率; 或者,
在所述多个 SC-FDMA符号中,选择一个其上传输的各载波上的上行信道的目标发射功 率之和最大的 SC-FDMA符号,判断所述 SRS和与所述 SRS在所述 SC-FDMA符号上同时传输 的上行信道的目标发射功率之和是否超过所述预先设置的最大发射功率, 当超过时, 对所 述 SRS和在该 SC-FDMA符号上传输的所述上行信道的目标发射功率进行等比例或者非等 比例的功率降低,或者对所述 SRS和在该 SC-FDMA符号上传输的所述上行信道的目标发射 功率进行基于信道 /信号优先级的等比例或者非等比例的功率降低, 以满足功率降低后 , 所 述 SRS和在该 SC-FDMA符号上传输的所述上行信道的发射功率之和小于或等于预先设置 的最大发射功率。
较佳地, 对所述 SRS和所述上行信道的目标发射功率进行非等比例的功率降低, 具体 包括:
对处于相同频带的所述 SRS和所述上行信道的目标发射功率进行等比例功率降低, 对 处于不同频带的所述 SRS和所述上行信道的目标发射功率根据所处频带对应的功率降低比 例系数进行功率降低。 较佳地, 当判断所述发射功率之和满足预设的功率控制条件时, 对所述 SRS和所述上 行信道的发射功率进行功率控制, 包括:
当所述 SRS与所述上行信道的目标发射功率之和大于预先设置的最大发射功率时, 对 所述 SRS和所述上行信道的目标发射功率进行基于信道 /信号 (即上行信道、 或信号、 或上 行信道和信号)优先级的等比例或非等比例的功率降低, 以满足功率降低后, 所述 SRS和 所述上行信道的发射功率之和小于或等于预先设置的最大发射功率。
较佳地, 对所述 SRS和所述上行信道的目标发射功率进行基于信道 /信号优先级的等比 例的功率降低, 具体包括:
按照信道 /信号优先级从低到高的顺序, 对具有同一信道 /信号优先级的 SRS和 /或上行 信道的目标发射功率进行等比例的功率降低。
较佳地, 对所述 SRS和所述上行信道的目标发射功率进行基于信道 /信号优先级的非等 比例的功率降低, 具体包括:
按照信道 /信号优先级从低到高的顺序, 对具有同一信道 /信号优先级的所述 SRS和 /或 所述上行信道中, 处于相同频带的 SRS和 /或所述上行信道的目标发射功率进行等比例的功 率降低, 处于不同频带的 SRS和 /或上行信道的目标发射功率根据所处频带对应的功率降低 比例系数进行功率降低。
较佳地, 对所述上行信道进行功率降低时, 对所述上行信道当前子帧中的所有 SC-FDMA符号的目标发射功率同时降低, 当所述上行信道在当前子帧中存在多个 SC-FDMA符号与 SRS同时传输且分别在所述每个 SC-FDMA符号中进行功率降低操作时, 选取多个 SC-FDMA符号中进行功率降低后的发射功率的最小值作为功率降低后所述上行 信道当前子帧中的所有 SC-FDMA符号的发射功率; 或者,
仅对所述上行信道当前子帧中与所述 SRS同时传输的 SC-FDMA符号的目标发射功率 进行降低。
较佳地, 所述预先设置的最大发射功率, 具体包括: 用户设备允许的最大发射功率, 和 /或, 用户设备对应的每个频带允许的最大发射功率。
本发明实施例提出的一种不同载波上的 SRS与上行信道同时传输时的功率控制方法, 对于一个子帧中同时存在不同载波上的 SRS和上行信道传输的情况, 当 SRS和上行信道的 发射功率之和大于最大发射功率时, 对 SRS和上行信道进行等比例或者非等比例的功率降 低, 或者, 进行基于信道 /信号优先级的等比例或者非等比例的功率降低, 以满足功率降低 后的 SRS所在的上行信道和特定上行信道发射功率之和小于或等于最大发射功率。
具体地, 本发明实施例在用户设备侧的操作包括如下步骤:
用户设备判断当前上行子帧中 SRS与上行信道同时传输的 SC-FDMA ( Single Carrier- Frequency Division Multiple Access, 单载波-频分多址接入 )符号中, SRS的发射功率和上 行信道的发射功率之和是否大于预先设置的最大发射功率, 所述 SRS所在的上行信道和上 行信道位于不同的上行载波;
所述特定上行信道包括但不限于 PUCCH、 PUSCH、 PRACH;
当 SRS的发射功率和上行信道的发射功率之和大于预先设置的最大发射功率时, 用户 设备在 SC-FDAM符号中,对 SRS的发射功率和上行信道在该符号上的发射功率进行功率降 低控制, 以满足该 SC-FDMA符号中, 功率降低后的 SRS的发射功率和上行信道在该符号上 的发射功率之和小于或等于最大发射功率。
具体的功率降低控制方法有如下几种:
方法一: 对 SRS的发射功率和上行信道在该符号上的发射功率进行等比例功率降低 , 以满足在该 SC-FDMA符号中,功率降低后的 SRS和上行信道的发射功率之和小于或等于预 先设置的最大发射功率;
方法二: 对处于相同频带的 SRS和上行信道在该符号上的发射功率进行等比例功率降 低; 对处于不同频带的 SRS和上行信道在该符号上的发射功率, 根据所处频带对应的功率 降低比例低系数进行功率降低, 以满足该 SC-FDMA符号中, 功率降低后的 SRS和上行信道 的发射功率之和小于或等于最大发射功率。
其中, 每个频带对应的功率降低比例系数为用户设备与基站预先约定的, 或者为通过 高层信令或 PDCCH ( Physical Downlink Control Channel, 物理下行控制信道)信令通知的, 所述高层信令可以为 RRC ( Radio Resource Control,无线资源控制)信令或 MAC ( Medium Access Control, 媒体接入控制)信令等。
方法三: 基于信道 /信号优先级,对 SRS和上行信道中具有同一信道 /信号优先级的上行 信道和 /或上行信号 (主要指 SRS ) , 在该符号上的发射功率进行等比例功率降低, 以满足 功率降低后的所有上行信道和上行信号 (指 SRS ) 的发射功率之和小于或等于最大发射功 率。
用户设备按照信道 /信号优先级从低到高的顺序依次降低每种信道 /信号优先级等级中 的信道和信号的发射功率, 对具有相同信道 /信号优先级的多个信道和 /或信号等比例降低 功率, 直到满足功率降低后的所有上行信道和上行信号 (指 SRS ) 的发射功率之和小于或 等于最大发射功率。 即: 优先降低具有最低信道 /信号优先级的信道和 /或信号的发射功率, 如果同时存在多个具有最低信道 /信号优先级的信道和 /或信号, 则对这些信道和 /或信号进 行等比例功率降低, 当具有最低信道 /信号优先级的所有信道和信号的发射功率降低为 0时, 剩余其他优先级信道和信号的发射功率之和还是大于最大发射功率, 则继续按照上述方法 降低具有次低信道 /信号优先级的信道和 /或信号的发射功率, 以此类推, 直到满足功率降 低后的所有上行信道和上行信号 (指 SRS )发射功率之和小于或等于最大发射功率。
本发明实施例中提供信道 /信号优先级可以预先配置或者约定为如下几种: PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH>SRS; 或者,
PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH=SRS; 或者,
如果存在 PRACH, 则:
PRACH>PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH>SRS; 或者,
PRACH>PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH=SRS; 或者,
PUCCH>PRACH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH>SRS; 或者,
PUCCH>PRACH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH=SRS。
需要说明的是, 上述 SRS包括周期 SRS和非周期 SRS , 其中周期 SRS和非周期 SRS的优 先级相同, 或者, 非周期 SRS的优先级高于周期 SRS。
方法四: 基于信道 /信号优先级, 对处于相同频带的 SRS和上行信道中具有同一信道 / 信号优先级的信道和 /或信号在该符号上的发射功率, 进行等比例功率降低; 对处于不同频 带的 SRS和上行信道中具有同一信道 /信号优先级的信道和 /或信号在该符号上的发射功率, 按照所处频带对应的功率降低比例系数进行功率降低 , 以满足功率降低后的所有上行信道 和上行信号 (指 SRS ) 的发射功率之和小于或等于预先设置的最大发射功率。
用户设备按照信道 /信号优先级从低到高的顺序依次降低每种信道 /信号优先级等级中 的信道和 /或信号的发射功率, 对处于同一频带的具有相同信道 /信号优先级的多个信道和 / 或信号等比例降低功率, 对处于不同频带的具有相同信道 /信号优先级的信道和 /或信号根 据所处频带对应的功率降低比例系数进行功率降低 , 以满足功率降低后的所有上行信道和 上行信号 (指 SRS ) 的发射功率之和小于或等于最大发射功率。 即: 优先降低具有最低信 道 /信号优先级的信道和 /或信号的发射功率, 如果同时存在多个具有最低信道 /信号优先级 的信道和 /或信号, 则对这些信道和 /或信号中处于同一频带的信道和 /或信号进行等比例功 率降低,处于不同频带的信道和 /或信号,根据所处频带的功率降低比例系数进行功率降低, 当具有最低信道 /信号优先级的所有信道和 /或信号的发射功率降低为 0时, 剩余其他优先级 信道和信号的发射功率之和还是大于最大发射功率, 则继续按照上述方法降低具有次低信 道 /信号优先级的信道和 /或信号的发射功率, 以此类推, 直到满足功率降低后的所有上行 信道和上行信号 (指 SRS )发射功率之和小于或等于最大发射功率。
其中, 所述信道 /信号优先级可以预先配置或者约定如下:
PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH>SRS , 或者,
PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH=SRS;
如果存在 PRACH, 则:
PRACH>PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH>SRS , 或者,
PRACH>PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH=SRS , 或者,
PUCCH>PRACH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH>SRS , 或者, PUCCH>PRACH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH=SRS。
需要说明的是, 上述 SRS包括周期 SRS和非周期 SRS, 其中周期 SRS和非周期 SRS的优 先级相同, 或者, 非周期 SRS的优先级高于周期 SRS。
其中, 每个频带对应的功率降低比例系数, 可以是用户设备与基站预先约定的, 或者 也可以是通过高层信令或 PDCCH信令通知的, 所述高层信令可以是 RRC ( Radio Resource Control, 无线资源控制)信令或 MAC ( Medium Access Control, 媒体接入控制)信令等。
所述最大发射功率可以为 UE允许的最大发射功率, 和 /或, 每个频带允许的最大发射 功率。
较优的, 上述四种方法中, 当在一个子帧中同时存在处于不同载波的多个 SRS与上行 信道, 在不同的 SC-FDMA符号碰撞时, UE需要分别在每个碰撞的 SC-FDMA符号内判断同 时传输的 SRS的发射功率和上行信道在该 SC-FDMA符号上的发射功率之和是否大于最大 发射功率, 对于大于最大发射功率的碰撞符号釆用以下方法进行功率降低:
方法 A: 用户设备分别在不同的碰撞符号中, 按照上述方法一、 方法二、 方法三或方 法四对 SRS的发射功率和上行信道在该符号上的发射功率进行功率降低。
方法 B: 用户设备从多个 SRS中选择一个发射功率最高的 SRS, 在该 SRS与上行信道碰 撞的符号中, 按照上述方法一、 方法二、 方法三或方法四对 SRS的发射功率和上行信道在 该符号上的发射功率进行功率降低, 将该符号中功率降低后的上行信道在该符号上的发射 功率, 作为该上行信道功率降低后的所有符号的发射功率, 并在其余的 SRS与上行信道碰 撞的符号中, 基于功率降低后的上行信道在该符号上的发射功率, 进一步判断该符号中的 各上行信道和 SRS的发射功率之和是否大于最大发射功率, 当大于时, 对该符号中的 SRS 的发射功率进行等比例功率降低或者基于频带对应的功率降低比例系数进行功率降低。
较优的, 上述方法 A和方法 B中, 如果在当前子帧中, 存在一个 SRS符号与其他载波上 的上行信道的 2个 SC-FDMA符号碰撞(这 2个 SC-FDMA符号可能为同一个上行信道在当前 子帧中的 2个符号, 也可能分别为两个相邻子帧中的上行信道的最后一个符号和第一个符 号) , UE需要分别判断这 2个 SC-FDMA符号中 UE总发射功率是否超过最大发射功率, 如 果只有 1个 SC-FDMA符号内的总发射功率超过最大发射功率,则按照上述方法一、方法二、 方法三或方法四对 SRS的发射功率和上行信道在该符号上的发射功率进行功率降低, 以满 足功率降低后的发射功率之和不超过最大发射功率即可。如果这 2个 SC-FDMA符号中, SRS 的发射功率和上行信道在该 SC-FDMA符号上的发射功率之和都大于最大发射功率,则分别 在这 2个 SC-FDMA符号中, 按照上述方法一、 方法二、 方法三或方法四对 SRS的发射功率 和上行信道在该符号上的发射功率进行功率降低, 并将功率降低后的最小的 SRS发射功率 值作为该 SRS符号的发射功率; 或者, 选择其中一个传输的上行信道的发射功率之和最大 的 SC-FDMA符号, 基于该符号中的上行信道发射功率, 按照上述方法一、 方法二、 方法三 或方法四对 SRS的发射功率和上行信道在该符号上的发射功率进行功率降低, 以满足功率 降低后的发射功率之和不超过最大发射功率; 或者, 当所述 2个 SC-FDAM符号在一个载波 上属于同一个信道时, 2个 SC-FDAM符号可等效为一个符号进行处理, 即仅对其中一个 SC-FDAM符号, 按照上述方法一、 方法二、 方法三或方法四对 SRS的发射功率和上行信道 在该符号上的发射功率进行功率降低, 并将功率降低后的 SRS发射功率值作为该 SRS符号 的发射功率, 将功率降低后上行信道的发射功率作为上行信道在这 2个 SC-FDAM符号上的 发射功率。
上述各种方法中, UE对上行信道进行功率降低时, 对该子帧中的所有 SC-FDMA符号 的发射功率同时降低, 或者仅对该子帧中与 SRS碰撞的 SC-FDMA符号的发射功率进行降 低。
当 SRS和上行信道的发射功率之和小于或等于预先设置的最大发射功率时, 用户设备 在当前上行子帧中同时发送 SRS和上行信道数据。 即不需要进行功率降低。
较优的, 上述功率降低比例系数可以基于不同频带的特性预先配置, 所述不同频带的 特性, 例如频点位置、 带宽、 信道状态、 配置的传输信息类型、 业务等。
较优的, 不同频带的功率降低比例系数可以相同, 也可以不同; 当不同频带 (band ) 的功率降低比例系数相同时, 可以不配置功率降低比例系数;
较优的, 上述各种方法同样适用于频带内 (intra-band )和频带间 (inter-band ) 的 CA 系统。
较优的, 上述各种方法同样适用于 FDD系统和 TDD系统。
以下给出几个具体实施例进行详细说明。
实施例一:
UE聚合了 5个载波进行上行传输, 传输情况如图 2所示, 由于 TA不同, 载波(CC ) 4 和载波 5的上行发送时间较载波 1~3提前 1个 SC-FDMA符号, 因此, 载波 4和 5上最后一个符 号发送的 SRS与载波 1 ~3上的 PUCCH或 PUSCH的倒数第二个 SC-FDMA符号碰撞, UE具体 行为如下:
UE首先根据背景技术部分的相关公式分别计算得到载波 1上 PUCCH的发射功率 PPUCC 1、 载波 2上承载 UCI的 PUSCH的发射功率 PpuscH'2、 载波 3上未承载 UCI的 PUSCH的发 射功率 PPUSC 3、 载波 4上 SRS的发射功率 PsRS'4、 载波 5上 SRS的发射功率 PsRS'5 ; 并根据公式 = 10^°确定其线性域值, 其中 x表示某一上行信道或上行信号, 例如对于 PUCCH , ― I
PUCCH ~ L KJ .
第一种方法: 对所有信道和信号等比例降低功率, 即如下面的公式(一)所示, 按照 功率降低后各信道和信号的发射功率进行发送, 其中 C为载波编号, i为子帧编号;
') · (Σ PpUCCH (0 + Σ PpUSCH (0 + Σ (0)≤ (0 (一 ) 第二种方法: 按照信道 /信号优先级,对具有最低信道 /信号优先级的多个 SRS进行等比 例功率降低, 如下面的公式 (二)所示, 如果存在非 0的 w(i) , 则保持 PUCCH和 PUSCH原 始发射功率进行发送, 并按照功率降低后的功率发送 SRS; 如果 SRS功率降低为 0时剩余上 行信道的发射功率之和还是大于 UE允许的最大发射功率,则进一步对未承载 UCI的 PUSCH 降低功率, 如下面的公式 (三) 所示, 其中 c为载波编号, i为子帧的编号, j为承载 UCI的 PUSCH的编号, 以此类推, 直到满足最大发射功率为止;
Σ ') · PsRS (0≤ (PcMAX (0 - Σ PpUCCH (0 - Σ PpUSCH (0) (二)
Σ W ) · PpUSCH (0≤ (PcM4X (0 - Σ PpUCCH (0 - Σ PpUSCH (0) (三 )
UE当确定所有载波上的所有信道和信号的发射功率小于或等于 UE允许的最大发射功 率 5 CMAX时, 直接按照上述每个载波上的功率控制公式计算得到的发射功率进行数据发送。
需要说明的是,将上述实施例一中 UE允许的最大发射功率替换为频带允许的最大发射 功率同样适用, 即当上述 5个载波处于同一频带时, 同样可根据上述方案, 基于频带允许 的最大发射功率进行功率降低 , 以保证功率降低后的各信道和信号的发射功率之和小于或 等于频带允许的最大发射功率; 如果 UE还同时工作在其他频带中的载波,每个频带都可分 别沿用上述方法基于频带允许的最大发射功率进行功率降低。
另夕卜,上述 PUCCH不存在时, =Q ,上述 PUSCH不存在时, =Q , 同样适用; 上述 PUCCH替换为 PUSCH或 PRACH或特定上行信道时, 同样适用, 上述 PUSCH替换为 PUCCH或 PRACH或特定上行信道时, 同样适用。
实施例二:
UE聚合了 4个载波进行上行传输, 传输情况如图 3所示, 由于 TA不同, 载波 3的上行发 送时间较载波 1提前 1个 SC-FDMA符号, 载波 4的上行发送时间较载波 1提前 2个 SC-FDMA 符号,因此载波 3上最后 1个符号发送的 SRS与 PUCCH或 PUSCH碰撞的符号为载波 1和载波 2 上的倒数第 2个 SC-FDMA符号,载波 4上最后 1个符号发送的 SRS与 PUCCH或 PUSCH碰撞的 符号为载波 1和载波 2上的倒数第 3个 SC-FDMA符号, UE具体行为如下:
UE首先根据背景技术部分的相关公式分别计算得到载波 1上 PUCCH的发射功率
PPUCC 1、 载波 2上 PUSCH的发射功率 PpuscH'2、 载波 3上 SRS的发射功率 PsRS'3、 载波 4上 SRS 的发射功率 C; 并根据 = 10¾/1°确定其线性域值;
由于 SRS与 PUCCH或 PUSCH在 2个 SC-FDMA符号中分别碰撞, UE需要在每个碰撞符 号分别判断该符号上的所有载波上的所有信道和信号的发射功率是否大于 UE允许的最大 发射功率 ^CMAX , 当判断 2个 SC-FDMA符号中各信 和信号 发射功 之和 大于 UE允许 的 最 大 发 射 功 率 时 , 即 满 足 PP > PcMAX , 且 2 + ^Α 釆用如下方法进行功率降低' 具体包括: 方法 Α: 对每个大于最大功率的碰撞符号分别进行功率降低, 降低方法可与实施例一 中的第一种方法和第二种方法相同;
方法 A1 : 在每个碰撞符号中, 对所有信道和信号等比例降低功率, 即在载波 1和 2上的 倒数第 2个 SC-FDMA符号中,公式(一)等效为下面的公式(四),得到功率降低后的 PUCCH 发射功率 ^".1 , PUSCH发射功率 ^".2 , SRS发射功率 ^.3 ; 在载波 1和 2上的倒数第 3个 SC-FDMA符号中, 公式 (一) 等效为下面的公式(五) , 得到功率降低后的 PUCCH发射 功率 , PUSCH发射功率^ , SRS发射功率^^ 4
W( (0 + (0)≤ 4丽 (0 (四 )
W( (0 + (0)≤ (0 (五 )
方法 A2: 在每个碰撞符号中, 按照信道 /信号优先级, 对具有最低信道 /信号优先级的 SRS进行等比例功率降低,即在载波 1和 2上的倒数第 2个 SC-FDMA符号中,根据公式(二), 对载波 3上的 SRS进行功率降低, 由于存在非 0的 w(i)值满足公式, 因此得到 SRS功率降低后 的发射功率 (0 ~ (0 ~ (0 , PUCCH的发射功率保持不变
PUSCH的发射功率保持不变 ^".2 ; 在载波 1和 2上的倒数第 3个 SC-FDMA符号中, 根据公式(二) , 当 w(i)=0时, 即载波 4上的 SRS功率降低为 0时, 剩余信道的发射功率之 和还是大于 UE允许的最大发射功率, 则进一步对 PUSCH降低功率, 根据公式 (三) , 得 到功率降低后 PUSCH的发射功率 = P ® " (0 , PUCCH的发射功率保持不变 = , SRS的发射功率 =0;
^ ^ 的大小, 取较小的值作为 PUCCH最终的发射功率, 并将该子帧中 PUCCH的所有 SC-FDMA符号都按照此功率发送; 比较两个碰撞符号中分别进行功率降低后的 PUSCH的 发射功率 ^".2和 ^".2的大小, 取较小的值作为 PUSCH最终的发射功率, 并将该子帧中 PUSCH的所有 SC-FDMA符号都按照此功率发送; 分别按照每个碰撞符号中功率降低后的 SRS发射功率 ^和 ^4发送 SRS;
方法 B: 选择多个大于最大功率的碰撞符号中的具有最高发射功率的 SRS , 例如载波 4 上的 SRS , 在该 SRS所在符号进行功率降低, 降低方法可釆用实施例一中的第一种方法和 第二种方法;
方法 B 1 : 在选出的 SRS所在的碰撞符号中, 对所有信道和信号等比例降低功率, 即在 载波 1和 2上的倒数第 3个 SC-FDMA符号中, 公式(一)等效为公式(五) , 得到功率降低 后的 PUCCH发射功率^ , PUSCH发射功率^ , SRS发射功率^^ 4
方法 B2: 在选出的 SRS所在的碰撞符号中, 按照信道 /信号优先级, 对具有最低信道 / 信号优先级的 SRS进行等比例功率降低, 在载波 1和 2上的倒数第 3个 SC-FDMA符号中, 根 据公式 (二) , 当 w(i)=0时, 即载波 4上的 SRS功率降低为 0时, 剩余信道的发射功率之和 还是大于 UE允许的最大发射功率, 则进一步对 PUSCH降低功率, 根据公式(三), 得到 功率降低后 PUSCH的发射功率 ^".2 (J) - , PUCCH的发射功率保持不变 = , SRS的发射功率 =0;
进一步, 其余碰撞符号中, 基于上述功率降低后的 PUCCH和 PUSCH发射功率, 进一 步判断其余碰撞符号中的总发射功率是否大于 UE允许的最大发射功率,对大于的碰撞符号 中的 SRS进行等比例功率降低, 即在载波 1和 2上的倒数第 2个 SC-FDMA符号中, 当确定
+ P > 时, 根据公式 (二) , 得到功率降低后 SRS的发射功率
P Pp ;对 PUCCH和 PUSCH ,分别才 居功率降低后的发射功率 ^^.1和 , 将该子帧中 PUCCH和 PUSCH的所有 SC-FDMA符号都按照此功率发送, 并分别按 照每个碰撞符号中功率降低后的 SRS发射功率 P 和 PsRS' 发送 SRS; 当确定 Ρ^Ι' + P^C^' + PS^ ^ H , 不需要对该碰撞符号中的 SRS进行功率降低, 直接按照原
SRS发射功率发送, PUCCH和 PUSCH的发送同上;
对于各信道和信号的发射功率之和小于或等于 UE允许的最大发射功率的碰撞符号的 情况, 其中的 SRS发送功率按照原始计算功率发送, PUCCH和 PUSCH等信道的发射功率按 照其他碰撞符号中功率降低后的发射功率, 在每个 SC-FDMA符号都使用该功率发送; 当对每个碰撞符号,都判断其中的各信道和信号的发射功率之和小于或等于 UE允许的 最大发射功率时, 直接按照每个载波上的功率控制公式计算得到的发射功率进行发送; 需要说明的是,上述实施例中将 UE允许的最大发射功率替换为频带允许的最大发射功 率同样适用, 即当上述 4个载波处于同一频带时, 同样可根据上述方案基于频带允许的最 大发射功率进行功率降低, 以保证功率降低后的各信道和信号的发射功率之和小于或等于 频带允许的最大发射功率; 如果 UE还同时工作在其他频带中的载波,每个频带都可分别沿 用上述方法基于频带允许的最大发射功率进行功率降低;
另夕卜,上述 PUCCH不存在时, PpucCH =Q,上述 PUSCH不存在时, PPUSCH =Q, 同样适用; 上述 PUCCH替换为 PUSCH或 PRACH或特定上行信道时同样适用; 上述 PUSCH替换为
PUCCH或 PRACH或特定上行信道时同样适用。
实施例三:
UE聚合了 5个载波进行上行传输, 载波 1和载波 2处于频带 1 , 载波 3~5处于频带 2, 传输 情况如图 4所示, 由于 TA不同, 载波 3、 4和 5的上行发送时间较载波 1提前 1个 SC-FDMA符 号, 因此载波 3和 5上最后一个符号发送的 SRS与载波 1、 2、 4上的 PUCCH或 PUSCH的倒数 第二个 SC-FDMA符号碰撞, UE具体行为如下:
UE首先根据背景技术中的相关公式分别计算得到载波 1上 PUCCH的发射功率
PPUCC U、 载波 2上 SRS的发射功率 PsR 1、 载波 3上 SRS的发射功率 PsRS 、 载波 4上 PUSCH 的发射功率 PpuscHA2、 载波 5上 SRS的发射功率 PsRS'5'2; 并根据 = 1 Q/ 1°确定其线性域值, 其中, 第 1个数字脚标表示载波编号, 第 2个数字脚标表示频带编号; 当不存在频带允许的最大发射功率时: UE判断所有载波上的 SRS和上行信道的发射功 率是否大于 UE允许的最大发射功率 ^ , 当判断小于或等于时, 直接按照每个载波上的 功率控制公式计算得到的发射功率进行发送; 当判断大于时,按照如下方法进行功率降低: 第一种方法: 对处于相同频带的 SRS和 PUCCH或 PUSCH等比例降低功率,对处于不同 频带的 SRS和 PUCCH或 PUSCH根据所处频带对应的功率降比例低系数进行功率降低,即如 下面的公式 (六)所示, 对处于频带 1的载波 1 2 3上的 PUCCH和 SRS使用频带 1对应的 功率降低比例系数 wi , 对处于频带 2的载波 4 5上的 PUSCH和 SRS使用频带 2对应的功率降 低 比 例 系 数 1 ^ , 将 公 式 ( 六 ) 等 效 为 》 + 》≤ , 以进行功率降^ (氐, 并按照 功率降低后各信道和信号的发射功率进行发送;
Σ Wb (0 · (Σ PpUCCH ,b (0 + Σ PpUSCH .t (0 + Σ PsRS .t (0)≤ 4 (0 (六)
λ二种方 按照信道 /信¥优先级,优先^低最低信道 /信号优先级的 SRS的发射功率, 对处于相同频带的 SRS等比例降低功率, 对处于不同频带的 SRS釆用频带对应的功率降低 比例系数进行功率降低, 如下面的公式 (七)所示, 即对处于频带 1的载波 2和 3上的 SRS 使用频带 1对应的功率降低比例系数 wi , 对处于频带 2的载波 5上的 SRS使用频带 2对应的功 率降低比例系数 , 将公式(七)等效为 Wl ® · ('') + (0) + W2 , 以进 行功率降低, 如果存在非 0的11 ^满足上述公式, 则可按照功率降低后的功率发送 SRS, PUCCH和 PUSCH的功率不需要降低,按照原始计算功率发送即可; 如果 SRS功率降低为 0, 即1^和 w 2都为 0时, 剩余信道的发射功率之和还是大于 UE允许的最大发射功率, 则进一步 按照上述原则, 根据下面的公式(八)对未承载 UCI的 PUSCH降低功率, 其中如上面的公 式(三)所示, 其中 j为承载 UCI的 PUSCH的编号, 以此类推, 直到满足最大发射功率为止;
Σ (0 · (Σ PsRS (0)≤ PcM4X (0 - Σ PpUCCH (0 - Σ PpUSCH (0 (七)
Σ (0 · ( Σ PpUSCH (0)≤ iPcMAX (0 - Σ PpUCCH (0 - Σ PPUSCHJfi (0) (八) 其中, b为频带编号。
当每个频带存在一个频带允许的最大发射功率时: UE需要保证每个频带内的各信道和 信号的发射功率之和小于或等于该频带允许的最大发射功率, 并且保证多个频带中的各信 道和信号的总发射功率小于或等于 UE允许的最大发射功率。
UE首先判断所有 SRS和上行信道的发射功率之和是否大于 UE允许的最大发射功率,如 果未大于, 则进一步对每个频带判断该频带内的 SRS和上行信道发射功率之和是否大于该 频带允许的最大发射功率, 如果未大于, 则按照原始计算功率发送该频带内的各信道和信 号, 如果大于, 则釆用如下方法:
方法(一): 根据下面的公式(九) , 对该频带内的 SRS和上行信道等比例降低功率, 以满足小于或等于频带允许的最大发射功率 ¾ , b为频带编号; 按照功率将后功率发送该 频带内信道;
Figure imgf000020_0001
(0)≤ (0 (九)
方法 二): 根据下 ¾的公式(十) 基于信道 /信号优先级, 对该频带内的具有 低 信道 /信号优先级的 SRS等比例降低功率, 以满足小于或等于频带允许的最大发射功率 ¾ , b为频带编号; 如果存在非 0的 W(i) , 则按照功率将后的功率发送该频带内的 SRS , 该频带内 的 PUCCH或 PUSCH功率不变; 如果不存在非 0的 w(i) , 则根据下面的公式 (十一) , 进一 步对次低优先级的未承载 UCI的 PUSCH进行等比例功率降低,其中 j为承载 UCI的 PUSCH的 编号, 以此类推, 直到满足最大发射功率为止;
(十)
(十一)
Figure imgf000020_0002
的最大发射功率时: UE对 每个频带的总发射功率进行等比例或者基于频带对应的功率降低比例系数的功率降低 , 以 满足功率降低后每个频带的总发射功率之和小于或等于 UE允许的最大发射功率;其中每个 频带的总发射功率可以为该频带允许的最大发射功率, 或者, 为频带中 SRS与上行信道的 初始发射功率之和, 或者, 对于该频带内的信道和信号的发射功率之和大于频带允许的最 大发射功率的频带, 为该频带允许的最大发射功率, 对于该频带内的信道和信号的发射功 率之和未大于频带允许的最大发射功率的频带, 为该频带中 SRS与上行信道的初始发射功 率之和。
进一步,UE基于功率降低后的每个频带的总发射功率,重用上述方法(一)和方法(二), 将公式 (九)或者公式 (十)或者公式(十一)中的 6替换为功率降低后的每个频带的 总发射功率, 进行功率降低, 并按照功率降低^后的功率发送各信道和信号。 ^
需要说明的是, 上述 PUCCH不存在时, PpucCH = 上述 PUSCH不存在时, PPUSCH 同样适用; 上述 PUCCH替换为 PUSCH或 PRACH或特定上行信道时同样适用, 上述 PUSCH 替换为 PUCCH或 PRACH或特定上行信道时同样适用。
实施例四:
UE聚合了 4个载波进行上行传输, 传输情况如图 5所示, 由于 TA不同, 载波(CC ) 3 和 4的上行发送时间较载波 1和 2落后 1个 SC-FDMA符号, 因此,载波 1和 2上最后一个符号发 送的 SRS与载波 3和 4上的 PUSCH的倒数第二个 SC-FDMA符号碰撞, UE具体行为如下:
UE首先根据背景技术部分的相关公式分别计算得到载波 1上 PUCCH和 SRS的发射功率
Figure imgf000020_0003
PsRS'2、 载波 3上未 承载 UCI的 PUSCH的发射功率 PpuscH'3、 载波 4上未承载 UCI的 PUSCH的发射功率 PpuscH'4; 并根据公式 = 10¾/1°确定其线性域值 , 其中 X表示某一上行信道或上行信号, 例如对于
― 1
PUCCH, PUCCH ; UE首先判断所有载波上的上行信道的发射功率是否大于 UE允许的最大发射功率
PCMAX ' 当确 UCCH Λ + USCH ,2 + m + USCH A≤ MAX对, 不需要对上行信道进行功率 控制, UE基于各上行信道的原始发射功率, 对 SRS进行功率控制, 即:
判断 SRS和与之存在重叠的上行信道的发射功率之和是否超过 UE允许的最大发射功 率 3 CMAX, 当礁 , 不需要降低功率, 按照 SRS和 各上行信道的原始发射功率进行发送; 当确定 +PSRS +PPUSCH^ + HA >PCMAX时' 对载波 1和 2上的 SRS进行等比例功率降低 以满足功率降低后载波 1和 2上的 SRS发射功率 之和不超过 UE允许的最大发射功率减去与 SRS存在重叠的上行信道的发射功率 (即载波 3 和 4上的 PUSCH的原始发射功率) , 如下面公式(十二)所示, 其中 k表示与 SRS存在重叠 的上行信道所在的载波编号, 即满足 w® + ('·))≤ (^ (0-^^0/,3(0-^^0/,4(0) ,得到 每个 SRS的发射功率 111^)'7^'1P^ =w i PsRs ^ 对每个上行信道, 按照原始发 射功率进行发送, 对每个 SRS, 按照功率降低后的发射功率进行发送;
H-C · (∑PSRS,C ('■)) < (Pc ('■) -∑PFUccH,k ('■) -∑PFUScH,k ('■)) (十二)
当确
Figure imgf000021_0001
+PPUSCH + +PpUSCHA > PCMAX时, 需要对上行信道进行功率控 制, 得到功率控制后每个上行信道的发射功率, 具体方法如下:
第一种方法: 对所有上行信道等比例降低功率, 即如下面的公式(十三)所示, 按照 :
Figure imgf000021_0002
^() - PPUCCH^C ( +∑ PPUSCH^C (0)≤ PCMAX (0 (十三)
第二种方法: 按照信 ¾信号优先级,对具有最低信道 /信号优先级的多个上行信道(即 未承载 UCI的 PUSCH )进行等比例功率降低, 如下面的公式 (十四) 所示, 如果存在非 0 的 w(i) , 则保持 PUCCH和承载 UCI的 PUSCH的原始发射功率不变, 等比例降低载波 3和 4上 未承载 UCI的 PUSCH的发射功率;如果未承载 UCI的 PUSCH功率降低为 0时剩余上行信道的 发射功率之和还是大于 UE允许的最大发射功率, 则进一步对承载 UCI的 PUSCH降低功率, 如下面的公式(十五)所示, 其中 c为载波编号, i为子帧的编号, j为承载 UCI的 PUSCH的 编号, 以此类推, 直到满足最大发射功率为止; 得到: ^PUCCHJ =PPUCC 1 ^PUSC¾2 =^PUSCH,2 ? ^PUSCH,3 = W) · ^PUSCH,3 ^PUSCH,4 = W( · ^PUSCH,4. (十四)
Figure imgf000021_0003
对 SRS进行功率控制, 即: 判断 SRS的发射功率和与之存在重叠的上行信道经过上述功率控制后的发射功率之和是否 超过 UE允许的最大发射功率 ΜΑΧ, 礁 Η H , 不 需要降低功率, 按照 SRS的原始发射功率发送 SRS , 各上行信道按照上述功率控制后的发 射功率进行发送; 当确定 ^ +hRS,2 + ; + PPUSCHA > Ρ ΜΛΧ时, 对载波 1和 2上的 SRS 进行等比例功率降低 , 以满足功率降低后载波 1和 2上的 SRS发射功率之和不超过 UE允许的 最大发射功率减去与 SRS存在重叠的上行信道经过功率控制后的发射功率 (即载波 3和 4上 的 PUSCH功率控制后的发射功率 ) , 如下面公式 ( 十六 ) 所示, 即满足 ('·) + (Α ('·) + ('·) _Λ>™ /,3 ('■) - 醫 ('■》 , 得 到 每 个 SRS 的 发 射 功 率
^SRSJ =H - PSRS^ ^SRS,2 =^( - ^2 5 对每个上行信道, 按照功率控制后的发射功率进行 发送, 对每个 SRS , 按照功率降低后的发射功率进行发送。
(0) (十二)
Figure imgf000022_0001
功率替换为频带允许的最大发射 功率同样适用, 即当上述 4个载波处于同一频带时, 同样可根据上述方案, 基于频带允许 的最大发射功率进行功率降低 , 以保证功率降低后的各信道和信号的发射功率之和小于或 等于频带允许的最大发射功率; 如果 UE还同时工作在其他频带中的载波,每个频带都可分 别沿用上述方法基于频带允许的最大发射功率进行功率降低。
另夕卜,上述 PUCCH不存在时, PpucCH =Q ,上述 PUSCH不存在时, PPUSCH =Q , 同样适用; 上述 PUCCH替换为 PUSCH或 PRACH或特定上行信道时, 同样适用, 上述 PUSCH替换为 PUCCH或 PRACH或特定上行信道时, 同样适用。
参见图 6a, 本发明实施例提供的一种上行传输的功率控制装置, 包括:
发射功率确定单元 1 1 , 用于确定探测参考信号 SRS传输所需的目标发射功率, 以及上 行信道传输所需的目标发射功率, 其中, 所述 SRS与所述上行信道的部分单载波频分多址 接入 SC-FDMA符号上同时传输, 所述 SRS与所述上行信道在不同的上行载波传输;
处理单元 13 , 用于当判断所述 SRS与所述上行信道的目标发射功率之和满足预设的功 率控制条件时, 对所述 SRS和所述上行信道的目标发射功率进行功率控制。
较佳地, 如图 6b所示, 可以由判断单元 12进行所述 SRS与所述上行信道的目标发射功 率之和满足预设的功率控制条件的判断, 具体的, 该装置中还包括判断单元 12 , 用于判断 所述发射功率确定单元 1 1所确定的所述 SRS和所述上行信道的目标发射功率之和是否满足 预设的功率控制条件。
较佳地, 所述发射功率确定单元 1 1 , 具体用于按照下述方式确定所述上行信道传输所 需的目标发射功率:
确定所述上行信道传输所需的目标发射功率为基于每个载波和该载波上的上行信道 的功率控制参数计算得到的每个上行信道的原始发射功率; 或者,
确定所述上行信道传输所需的目标发射功率为基于每个载波和该载波上的上行信道 的功率控制参数计算得到的每个上行信道的原始发射功率经过功率控制后的发射功率。 较佳地, 在所述发射功率确定单元 1 1确定所述上行信道传输所需的目标发射功率为基 于每个载波和该载波上的上行信道的功率控制参数计算得到的每个上行信道的原始发射 功率经过功率控制后的发射功率之前, 所述处理单元 13还用于, 对所述上行信道进行功率 控制, 具体包括:
判断同时传输的上行信道的原始发射功率之和是否超过预先设置的最大发射功率, 当 超过时, 对上行信道进行功率控制, 以满足功率控制后上行信道的发射功率之和不超过所 述预先设置的最大发射功率, 并将功率控制后的每个上行信道的发射功率作为其目标发射 功率; 当不超过时, 将每个上行信道的原始发射功率作为其目标发射功率;
其中, 功率控制方法包括:
对所有上行信道等比例降低功率; 或者,
对处于相同频带的上行信道等比例降低功率, 对处于不同频带的上行信道按照所处频 带对应的功率降低比例系数降低功率; 或者,
按照信道 /信号优先级从低到高的顺序, 对具有同一优先级的上行信道等比例降低功 率; 或者,
按照信道 /信号优先级从低到高的顺序, 对具有同一优先级的上行信道中, 处于相同频 带的上行信道等比例降低功率, 处于不同频带的上行信道按照所处频带对应的功率降低比 例系数降低功率。
较佳地, 如果所述发射功率确定单元 1 1确定所述上行信道的目标发射功率为经过功率 控制后的发射功率, 当所述判断单元 12判断所述目标发射功率之和满足预设的功率控制条 件时, 所述处理单元 13对所述 SRS和所述上行信道的目标发射功率进行功率控制, 具体包 括:
当所述 SRS与所述上行信道的目标发射功率之和大于预先设置的最大发射功率时, 对 所述 SRS的目标发射功率进行等比例功率降低,或者对所述 SRS中处于相同频带的 SRS的目 标发射功率进行等比例功率降低, 对处于不同频带的 SRS根据所处频带对应的功率降低比 例系数进行功率降低, 以满足功率降低后, 所述 SRS的发射功率之和小于或等于预先设置 的最大发射功率减去所述上行信道的目标发射功率。
较佳地, 所述判断单元 12 , 具体用于:
判断所述 SRS和所述上行信道的目标发射功率之和是否大于预先设置的最大发射功 率。
较佳地, 所述处理单元 13 , 具体用于:
当所述判断单元 12判断所述 SRS和所述上行信道的目标发射功率之和大于预先设置的 最大发射功率时, 对所述 SRS和所述上行信道的目标发射功率进行等比例或非等比例的功 率降低, 以满足功率降低后, 所述 SRS和所述上行信道的发射功率之和小于或等于预先设 置的最大发射功率。
较佳地, 当存在多个所述 SRS与所述上行信道在所述上行信道的不同单载波频分多址 接入 SC-FDMA符号中同时传输时, 所述判断单元 12还用于:
分别在所述上行信道的每个与 SRS同时传输的 SC-FDMA符号内,判断与所述上行信道 的该 SC-FDMA符号同时传输的 SRS和所述上行信道的目标发射功率之和是否超过所述预 先设置的最大发射功率;
当该装置中不包括判断单元 12时, 该判断步骤可以由处理单元 13执行。
所述处理单元 13还用于, 对所述判断单元 12判断超过了所述预先设置的最大发射功率 的 SC-FDMA符号釆用以下方法进行功率降低:
对在该 SC-FDMA符号上同时传输的所述 SRS和所述上行信道的目标发射功率进行等 比例或者非等比例的功率降低,或者对在该 SC-FDMA符号上同时传输的所述 SRS和所述上 行信道的目标发射功率进行基于信道 /信号优先级的等比例或者非等比例的功率降低,以满 足功率降低后 ,该 SC-FDMA符号上同时传输的所述 SRS和所述上行信道的发射功率之和小 于或等于预先设置的最大发射功率; 或者,
首先在与所述多个 SRS中目标发射功率最高的 SRS同时传输的所述上行信道的所述
SC-FDMA符号中,判断所述 SRS和所述上行信道的目标发射功率之和超过所述预先设置的 最大发射功率时,对在该 SC-FDMA符号上同时传输的所述 SRS和所述上行信道的目标发射 功率进行等比例或者非等比例的功率降低, 或者对在该 SC-FDMA符号上同时传输的所述 SRS和所述上行信道的目标发射功率进行基于信道 /信号优先级的等比例或者非等比例的 功率降低, 以满足功率降低后, 该 SC-FDMA符号上同时传输的所述 SRS和所述上行信道的 发射功率之和小于或等于预先设置的最大发射功率,然后基于在该 SC-FDMA符号上功率降 低后的上行信道的发射功率,在其余的与所述 SRS同时传输的所述上行信道的 SC-FDMA符 号中,进一步判断所述其余 SC-FDMA符号中的所述 SRS的目标发射功率和所述上行信道功 率降低后的发射功率之和是否超过所述预先设置的最大发射功率, 当判断超过时, 对所述 其余 SC-FDMA符号中的所述 SRS的目标发射功率进行等比例或者非等比例的功率降低, 以 满足功率降低后 ,所述其余 SC-FDMA符号中 SRS的发射功率之和不超过所述预先设置的最 大发射功率与所述上行信道功率降低后的发射功率之差。
较佳地, 当所述 SRS与所述上行信道的多个 SC-FDMA符号同时传输时, 所述多个 SC-FDMA符号为与所述 SRS在同一个上行子帧中传输的上行信道的部分 SC-FDMA符号, 或者为与所述 SRS在同一个上行子帧中传输的上行信道的部分 SC-FDMA符号以及与所述 SRS所在上行子帧的相邻上行子帧中传输的上行信道的部分 SC-FDMA符号,所述处理单元 13还用于:
分别在所述多个 SC-FDMA符号中的每个 SC-FDMA符号中,判断所述 SRS和与所述 SRS 在所述 SC-FDMA符号上同时传输的上行信道的目标发射功率之和是否超过所述预先设置 的最大发射功率, 当超过时, 对所述 SRS和与所述 SRS在该 SC-FDMA符号上同时传输的所 述上行信道的目标发射功率进行等比例或者非等比例的功率降低, 或者对所述 SRS和与所 述 SRS在该 SC-FDMA符号上同时传输的所述上行信道的目标发射功率进行基于信道 /信号 优先级的等比例或者非等比例的功率降低, 以满足功率降低后,所述每个 SC-FDMA符号中 的所述 SRS和所述上行信道的发射功率之和小于或等于预先设置的最大发射功率, 并将功 率降低后的最小的 SRS发射功率值作为所述 SRS的发射功率; 或者,
在所述多个 SC-FDMA符号中,选择一个其上传输的各载波上的上行信道的目标发射功 率之和最大的 SC-FDMA符号,判断所述 SRS和与所述 SRS在所述 SC-FDMA符号上同时传输 的上行信道的目标发射功率之和是否超过所述预先设置的最大发射功率, 当超过时, 对所 述 SRS和在该 SC-FDMA符号上传输的所述上行信道的目标发射功率进行等比例或者非等 比例的功率降低,或者对所述 SRS和在该 SC-FDMA符号上传输的所述上行信道的目标发射 功率进行基于信道 /信号优先级的等比例或者非等比例的功率降低, 以满足功率降低后 , 所 述 SRS和在该 SC-FDMA符号上传输的所述上行信道的发射功率之和小于或等于预先设置 的最大发射功率。
较佳地, 所述处理单元 13 , 对处于相同频带的所述 SRS和所述上行信道的目标发射功 率进行等比例功率降低, 对处于不同频带的所述 SRS和所述上行信道的目标发射功率根据 所处频带对应的功率降低比例系数进行功率降低。
较佳地, 所述处理单元 13 , 具体用于:
当所述判断单元 12判断所述 SRS和所述上行信道的目标发射功率之和大于预先设置的 最大发射功率时, 对所述 SRS和所述上行信道的目标发射功率进行基于信道 /信号优先级的 等比例或非等比例的功率降低 , 以满足功率降低后 , 所述 SRS和所述上行信道的发射功率 之和小于或等于预先设置的最大发射功率。
较佳地, 所述处理单元 13对所述 SRS和所述上行信道的目标发射功率进行基于信道 /信 号优先级的等比例或非等比例的功率降低, 具体用于:
按照信道 /信号优先级从低到高的顺序, 对具有同一信道 /信号优先级的 SRS和 /或上行 信道的目标发射功率进行等比例的功率降低。
较佳地, 所述处理单元 13对所述 SRS和所述上行信道的目标发射功率进行基于信道 /信 号优先级的等比例或非等比例的功率降低, 具体用于:
按照信道 /信号优先级从低到高的顺序, 对具有同一信道 /信号优先级的所述 SRS和 /或 所述上行信道中, 处于相同频带的 SRS和 /或上行信道的目标发射功率进行等比例的功率降 低, 对处于不同频带的 SRS和 /或上行信道的目标发射功率根据所处频带对应的功率降低比 例系数进行功率降低。 较佳地, 所述上行信道 /信号优先级具体为:
PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH>SRS; 或者,
PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH=SRS; 或者,
如果存在 PRACH, 则:
PRACH>PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH>SRS; 或者,
PRACH>PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH=SRS; 或者,
PUCCH>PRACH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH>SRS; 或者,
PUCCH> PRACH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH=SRS。
较佳地, 所述处理单元 13 , 具体用于:
对所述上行信道进行功率降低时,对所述上行信道当前子帧中的所有 SC-FDMA符号的 目标发射功率同时降低, 当所述上行信道在当前子帧中存在多个 SC-FDMA符号与 SRS同时 传输且分别在所述每个 SC-FDMA符号中进行功率降低操作时, 选取多个 SC-FDMA符号中 进行功率降低后的发射功率的最小值作为功率降低后所述上行信道当前子帧中的所有 SC-FDMA符号的发射功率; 或者,
仅对所述上行信道当前子帧中与所述 SRS同时传输的 SC-FDMA符号的目标发射功率 进行降低。
较佳地, 所述预先设置的最大发射功率, 具体包括: 用户设备允许的最大发射功率, 和 /或 , 用户设备对应的每个频带允许的最大发射功率。
综上所述, 本发明实施例中, 对于一个子帧中同时存在不同载波上的 SRS和上行信道 传输的情况, 当 SRS和上行信道的发射功率之和大于最大发射功率时, 对 SRS和上行信道 进行等比例 /非等比例功率降低, 或者, 进行基于信道 /信号优先级的等比例 /非等比例功率 降低, 以满足功率降低后的 SRS和上行信道发射功率之和小于或等于最大发射功率, 保证 了系统可以正常工作。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介盾 (包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形 式。
本发明是参照根据本发明实施例的方法、 装置 (系统) 、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理装置的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理装置的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理装置以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理装置上, 使得在计算机 或其他可编程装置上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程装置上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种上行传输的功率控制方法, 其特征在于, 该方法包括:
确定探测参考信号 SRS传输所需的目标发射功率, 以及上行信道传输所需的目标发射 功率,其中,所述 SRS与所述上行信道的部分单载波频分多址接入 SC-FDMA符号同时传输, 所述 SRS与所述上行信道在不同的上行载波传输;
当判断所述 SRS与所述上行信道的目标发射功率之和满足预设的功率控制条件时, 对 所述 SRS和所述上行信道的目标发射功率进行功率控制。
2、根据权利要求 1所述的方法, 其特征在于, 所述上行信道传输所需的目标发射功率, 具体为:
基于每个载波和该载波上的上行信道的功率控制参数计算得到的每个上行信道的原 始发射功率; 或者,
基于每个载波和该载波上的上行信道的功率控制参数计算得到的每个上行信道的原 始发射功率经过功率控制后的发射功率。
3、 根据权利要求 2所述的方法, 其特征在于, 当所述上行信道传输所需的目标发射功 率为基于每个载波和该载波上的上行信道的功率控制参数计算得到的每个上行信道的原 始发射功率经过功率控制后的发射功率时, 所述上行信道的功率控制过程具体包括:
判断同时传输的上行信道的原始发射功率之和是否超过预先设置的最大发射功率, 当 超过时, 对上行信道进行功率控制, 直至功率控制后上行信道的发射功率之和不超过所述 预先设置的最大发射功率, 并将功率控制后的每个上行信道的发射功率作为其目标发射功 率; 当不超过时, 将每个上行信道的原始发射功率作为其目标发射功率;
其中, 功率控制方法包括:
对所有上行信道等比例降低功率; 或者,
对处于相同频带的上行信道等比例降低功率, 对处于不同频带的上行信道按照所处频 带对应的功率降低比例系数降低功率; 或者,
按照信道 /信号优先级从低到高的顺序, 对具有同一优先级的上行信道等比例降低功 率; 或者,
按照信道 /信号优先级从低到高的顺序, 对具有同一优先级的上行信道中, 处于相同频 带的上行信道等比例降低功率, 处于不同频带的上行信道按照所处频带对应的功率降低比 例系数降低功率。
4、 根据权利要求 2所述的方法, 其特征在于, 如果所述上行信道的目标发射功率为经 过功率控制后的发射功率, 当判断所述目标发射功率之和满足预设的功率控制条件时, 对 所述 SRS和所述上行信道的目标发射功率进行功率控制, 具体包括: 当所述 SRS与所述上行信道的目标发射功率之和大于预先设置的最大发射功率时, 对 所述 SRS的目标发射功率进行等比例功率降低,或者对所述 SRS中处于相同频带的 SRS的目 标发射功率进行等比例功率降低, 对处于不同频带的 SRS根据所处频带对应的功率降低比 例系数进行功率降低, 直至功率降低后 , 所述 SRS的发射功率之和小于或等于预先设置的 最大发射功率减去所述上行信道的目标发射功率。
5、 根据权利要求 2所述的方法, 其特征在于, 当判断所述目标发射功率之和满足预设 的功率控制条件时, 对所述 SRS和所述上行信道的目标发射功率进行功率控制, 包括: 当所述 SRS与所述上行信道的目标发射功率之和大于预先设置的最大发射功率时, 对 所述 SRS和所述上行信道的目标发射功率进行等比例或非等比例的功率降低, 或者对所述 SRS和所述上行信道的目标发射功率进行基于信道 /信号优先级的等比例或非等比例的功 率降低, 直至功率降低后, 所述 SRS和所述上行信道的发射功率之和小于或等于预先设置 的最大发射功率。
6、 根据权利要求 2所述的方法, 其特征在于, 当存在多个所述 SRS与所述上行信道在 所述上行信道的不同 SC-FDMA符号中同时传输时, 该方法还包括:
分别在所述上行信道的每个与 SRS同时传输的 SC-FDMA符号内,判断与所述上行信道 的该 SC-FDMA符号同时传输的所述 SRS和所述上行信道的目标发射功率之和是否超过所 述预先设置的最大发射功率, 当超过时, 对在该 SC-FDMA符号上同时传输的所述 SRS和所 述上行信道的目标发射功率进行等比例或者非等比例的功率降低, 或者对在该 SC-FDMA 符号上同时传输的所述 SRS和所述上行信道的目标发射功率进行基于信道 /信号优先级的 等比例或者非等比例的功率降低, 直至功率降低后, 该 SC-FDMA符号上同时传输的所述 SRS和所述上行信道的发射功率之和小于或等于预先设置的最大发射功率; 或者,
首先在与所述多个 SRS中目标发射功率最高的 SRS同时传输的上行信道的 SC-FDMA 符号中, 判断所述 SRS和所述上行信道的目标发射功率之和是否超过所述预先设置的最大 发射功率, 当超过时, 对在该 SC-FDMA符号上同时传输的 SRS和上行信道的目标发射功率 进行等比例或者非等比例的功率降低,或者对在该 SC-FDMA符号上同时传输的 SRS和上行 信道的目标发射功率进行基于信道 /信号优先级的等比例或者非等比例的功率降低,直至功 率降低后,该 SC-FDMA符号上同时传输的所述 SRS和所述上行信道的发射功率之和小于或 等于预先设置的最大发射功率,然后基于在该 SC-FDMA符号上功率降低后的上行信道的发 射功率, 在其余的与 SRS同时传输的上行信道的 SC-FDMA符号中, 进一步判断所述其余 SC-FDMA符号中的 SRS的目标发射功率和上行信道功率降低后的发射功率之和是否超过 所述预先设置的最大发射功率, 当超过时, 对所述其余 SC-FDMA符号中的 SRS的目标发射 功率进行等比例或者非等比例的功率降低, 直至功率降低后, 所述其余 SC-FDMA符号中
SRS的发射功率之和不超过所述预先设置的最大发射功率与所述上行信道功率降低后的发 射功率之差。
7、 根据权利要求 2所述的方法, 其特征在于, 当所述 SRS与所述上行信道的多个 SC-FDMA符号同时传输时, 所述多个 SC-FDMA符号为与所述 SRS在同一个上行子帧中传 输的上行信道的部分 SC-FDMA符号,或者为与所述 SRS在同一个上行子帧中传输的上行信 的部分 SC-FDMA符号, 还包括:
分别在所述多个 SC-FDMA符号中的每个 SC-FDMA符号中,判断所述 SRS和与所述 SRS 在所述 SC-FDMA符号上同时传输的上行信道的目标发射功率之和是否超过所述预先设置 的最大发射功率, 当超过时, 对所述 SRS和与所述 SRS在该 SC-FDMA符号上同时传输的所 述上行信道的目标发射功率进行等比例或者非等比例的功率降低, 或者对所述 SRS和与所 述 SRS在该 SC-FDMA符号上同时传输的所述上行信道的目标发射功率进行基于信道 /信号 优先级的等比例或者非等比例的功率降低,直至功率降低后 ,所述每个 SC-FDMA符号中的 所述 SRS和所述上行信道的发射功率之和小于或等于预先设置的最大发射功率, 并将功率 降低后的最小的 SRS发射功率值作为所述 SRS的发射功率; 或者,
在所述多个 SC-FDMA符号中,选择一个其上传输的各载波上的上行信道的目标发射功 率之和最大的 SC-FDMA符号,判断所述 SRS和与所述 SRS在所述 SC-FDMA符号上同时传输 的上行信道的目标发射功率之和是否超过所述预先设置的最大发射功率, 当超过时, 对所 述 SRS和在该 SC-FDMA符号上传输的所述上行信道的目标发射功率进行等比例或者非等 比例的功率降低,或者对所述 SRS和在该 SC-FDMA符号上传输的所述上行信道的目标发射 功率进行基于信道 /信号优先级的等比例或者非等比例的功率降低, 直至功率降低后, 所述 SRS和在该 SC-FDMA符号上传输的所述上行信道的发射功率之和小于或等于预先设置的 最大发射功率。
8、 根据权利要求 5至 7中任一项所述的方法, 其特征在于, 对所述 SRS和所述上行信道 的目标发射功率进行非等比例的功率降低, 具体包括:
对处于相同频带的所述 SRS和所述上行信道的目标发射功率进行等比例功率降低, 对 处于不同频带的所述 SRS和所述上行信道的目标发射功率根据所处频带对应的功率降低比 例系数进行功率降低;
或者,
对所述 SRS和所述上行信道的目标发射功率进行基于信道 /信号优先级的等比例或非 等比例的功率降低, 具体包括:
按照信道 /信号优先级从低到高的顺序, 对具有同一信道 /信号优先级的 SRS和 /或上行 信道的目标发射功率进行等比例的功率降低, 或者,
按照信道 /信号优先级从低到高的顺序, 对具有同一信道 /信号优先级的所述 SRS和 /或 所述上行信道中, 处于相同频带的 SRS和 /或上行信道的目标发射功率进行等比例的功率降 低, 处于不同频带的 SRS和 /或上行信道的目标发射功率根据所处频带对应的功率降低比例 系数进行功率降低。
9、 根据权利要求 8所述的方法, 其特征在于, 所述上行信道 /信号优先级具体为: 物理上行控制信道 PUCCH>承载上行控制信息 UCI的物理上行共享信道 PUSCH>不承 载 UCI的 PUSCH>SRS; 或者,
PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH=SRS; 或者,
如果存在物理随机接入信道 PRACH, 则:
PRACH>PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH>SRS; 或者,
PRACH>PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH=SRS; 或者,
PUCCH>PRACH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH>SRS; 或者,
PUCCH> PRACH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH=SRS。
10、 根据权利要求 8所述的方法, 其特征在于,
对所述上行信道进行功率降低时,对所述上行信道当前子帧中的所有 SC-FDMA符号的 目标发射功率同时降低, 当所述上行信道在当前子帧中存在多个 SC-FDMA符号与 SRS同时 传输且分别在所述每个 SC-FDMA符号中进行功率降低操作时, 选取多个 SC-FDMA符号中 进行功率降低后的发射功率的最小值作为功率降低后所述上行信道当前子帧中的所有 SC-FDMA符号的发射功率; 或者,
仅对所述上行信道当前子帧中与所述 SRS同时传输的 SC-FDMA符号的目标发射功率 进行降低。
1 1、 根据权利要求 3或 4或 5或 6或 7所述的方法, 其特征在于, 所述预先设置的最大发 射功率, 具体包括: 用户设备允许的最大发射功率, 和 /或, 用户设备对应的每个频带允许 的最大发射功率。
12、 一种上行传输的功率控制装置, 其特征在于, 该装置包括:
发射功率确定单元, 用于确定探测参考信号 SRS传输所需的目标发射功率, 以及上行 信道传输所需的目标发射功率, 其中, 所述 SRS与所述上行信道的部分单载波频分多址接 入 SC-FDMA符号上同时传输, 所述 SRS与所述上行信道在不同的上行载波传输;
处理单元, 用于当判断所述 SRS与所述上行信道的目标发射功率之和满足预设的功率 控制条件时, 对所述 SRS和所述上行信道的目标发射功率进行功率控制。
13、 根据权利要求 12所述的装置, 其特征在于, 所述发射功率确定单元, 具体用于按 照下述方式确定所述上行信道传输所需的目标发射功率:
确定所述上行信道传输所需的目标发射功率为基于每个载波和该载波上的上行信道 的功率控制参数计算得到的每个上行信道的原始发射功率; 或者, 确定所述上行信道传输所需的目标发射功率为基于每个载波和该载波上的上行信道 的功率控制参数计算得到的每个上行信道的原始发射功率经过功率控制后的发射功率。
14、 根据权利要求 13所述的装置, 其特征在于, 在所述发射功率确定单元确定所述上 行信道传输所需的目标发射功率为基于每个载波和该载波上的上行信道的功率控制参数 计算得到的每个上行信道的原始发射功率经过功率控制后的发射功率之前, 所述处理单元 还用于, 对所述上行信道进行功率控制, 具体包括:
判断同时传输的上行信道的原始发射功率之和是否超过预先设置的最大发射功率, 当 超过时, 对上行信道进行功率控制, 直至功率控制后上行信道的发射功率之和不超过所述 预先设置的最大发射功率, 并将功率控制后的每个上行信道的发射功率作为其目标发射功 率; 当不超过时, 将每个上行信道的原始发射功率作为其目标发射功率;
其中, 功率控制方法包括:
对所有上行信道等比例降低功率; 或者,
对处于相同频带的上行信道等比例降低功率, 对处于不同频带的上行信道按照所处频 带对应的功率降低比例系数降低功率; 或者,
按照信道 /信号优先级从低到高的顺序, 对具有同一优先级的上行信道等比例降低功 率; 或者,
按照信道 /信号优先级从低到高的顺序, 对具有同一优先级的上行信道中, 处于相同频 带的上行信道等比例降低功率, 处于不同频带的上行信道按照所处频带对应的功率降低比 例系数降低功率。
15、 根据权利要求 13所述的装置, 其特征在于, 如果所述发射功率确定单元确定所述 上行信道的目标发射功率为经过功率控制后的发射功率, 当判断所述 SRS与所述上行信道 的目标发射功率之和满足预设的功率控制条件时, 所述处理单元对所述 SRS和所述上行信 道的目标发射功率进行功率控制, 具体包括:
当所述 SRS与所述上行信道的目标发射功率之和大于预先设置的最大发射功率时, 对 所述 SRS的目标发射功率进行等比例功率降低,或者对所述 SRS中处于相同频带的 SRS的目 标发射功率进行等比例功率降低, 对处于不同频带的 SRS根据所处频带对应的功率降低比 例系数进行功率降低, 直至功率降低后 , 所述 SRS的发射功率之和小于或等于预先设置的 最大发射功率减去所述上行信道的目标发射功率。
16、 根据权利要求 13所述的装置, 其特征在于, 所述处理单元, 具体用于: 当判断所述 SRS和所述上行信道的目标发射功率之和大于预先设置的最大发射功率 时, 对所述 SRS和所述上行信道的目标发射功率进行等比例或非等比例的功率降低, 或者 对所述 SRS和所述上行信道的目标发射功率进行基于信道 /信号优先级的等比例或非等比 例的功率降低, 直至功率降低后, 所述 SRS和所述上行信道的发射功率之和小于或等于预 先设置的最大发射功率。
17、 根据权利要求 13所述的装置, 其特征在于, 当存在多个所述 SRS与所述上行信道 在所述上行信道的不同单载波频分多址接入 SC-FDMA符号中同时传输时,所述处理单元还 用于, 分别在所述上行信道的每个与 SRS同时传输的 SC-FDMA符号内, 判断与所述上行信 道的该 SC-FDMA符号同时传输的所述 SRS和所述上行信道的目标发射功率之和是否超过 所述预先设置的最大发射功率, 当超过时, 对在该 SC-FDMA符号上同时传输的所述 SRS和 所述上行信道的目标发射功率进行等比例或者非等比例的功率降低,或者对在该 SC-FDMA 符号上同时传输的所述 SRS和所述上行信道的目标发射功率进行基于信道 /信号优先级的 等比例或者非等比例的功率降低, 直至功率降低后, 该 SC-FDMA符号上同时传输的所述 SRS和所述上行信道的发射功率之和小于或等于预先设置的最大发射功率; 或者,
首先在与所述多个 SRS中目标发射功率最高的 SRS同时传输的上行信道的 SC-FDMA 符号中, 判断所述 SRS和所述上行信道的目标发射功率之和是否超过所述预先设置的最大 发射功率, 当超过时, 对在该 SC-FDMA符号上同时传输的 SRS和上行信道的目标发射功率 进行等比例或者非等比例的功率降低 ,或者对在该 SC-FDMA符号上同时传输的 SRS和上行 信道的目标发射功率进行基于信道 /信号优先级的等比例或者非等比例的功率降低,直至功 率降低后,该 SC-FDMA符号上同时传输的所述 SRS和所述上行信道的发射功率之和小于或 等于预先设置的最大发射功率,然后基于在该 SC-FDMA符号上功率降低后的上行信道的发 射功率, 在其余的与 SRS同时传输的上行信道的 SC-FDMA符号中, 进一步判断所述其余 SC-FDMA符号中的 SRS的目标发射功率和上行信道功率降低后的发射功率之和是否超过 所述预先设置的最大发射功率, 当超过时, 对所述其余 SC-FDMA符号中的 SRS的目标发射 功率进行等比例或者非等比例的功率降低, 直至功率降低后, 所述其余 SC-FDMA符号中 SRS的发射功率之和不超过所述预先设置的最大发射功率与所述上行信道功率降低后的发 射功率之差。
18、 根据权利要求 13所述的装置, 其特征在于, 当所述 SRS与所述上行信道的多个 SC-FDMA符号同时传输时, 所述多个 SC-FDMA符号为与所述 SRS在同一个上行子帧中传 输的上行信道的部分 SC-FDMA符号,或者为与所述 SRS在同一个上行子帧中传输的上行信 的部分 SC-FDMA符号, 所述处理单元还用于:
分别在所述多个 SC-FDMA符号中的每个 SC-FDMA符号中,判断所述 SRS和与所述 SRS 在所述 SC-FDMA符号上同时传输的上行信道的目标发射功率之和是否超过所述预先设置 的最大发射功率, 当超过时, 对所述 SRS和与所述 SRS在该 SC-FDMA符号上同时传输的所 述上行信道的目标发射功率进行等比例或者非等比例的功率降低, 或者对所述 SRS和与所 述 SRS在该 SC-FDMA符号上同时传输的所述上行信道的目标发射功率进行基于信道 /信号 优先级的等比例或者非等比例的功率降低,直至功率降低后 ,所述每个 SC-FDMA符号中的 所述 SRS和所述上行信道的发射功率之和小于或等于预先设置的最大发射功率, 并将功率 降低后的最小的 SRS发射功率值作为所述 SRS的发射功率; 或者,
在所述多个 SC-FDMA符号中,选择一个其上传输的各载波上的上行信道的目标发射功 率之和最大的 SC-FDMA符号,判断所述 SRS和与所述 SRS在所述 SC-FDMA符号上同时传输 的上行信道的目标发射功率之和是否超过所述预先设置的最大发射功率, 当超过时, 对所 述 SRS和在该 SC-FDMA符号上传输的所述上行信道的目标发射功率进行等比例或者非等 比例的功率降低,或者对所述 SRS和在该 SC-FDMA符号上传输的所述上行信道的目标发射 功率进行基于信道 /信号优先级的等比例或者非等比例的功率降低, 直至功率降低后, 所述 SRS和在该 SC-FDMA符号上传输的所述上行信道的发射功率之和小于或等于预先设置的 最大发射功率。
19、 根据权利要求 16至 18中任一项所述的装置, 其特征在于, 所述处理单元, 对处于 相同频带的所述 SRS和所述上行信道的目标发射功率进行等比例功率降低, 对处于不同频 带的所述 SRS和所述上行信道的目标发射功率根据所处频带对应的功率降低比例系数进行 功率降低;
或者,
所述处理单元对所述 SRS和所述上行信道的目标发射功率进行基于信道 /信号优先级 的等比例或非等比例的功率降低, 具体用于:
按照信道 /信号优先级从低到高的顺序, 对具有同一信道 /信号优先级的 SRS和 /或上行 信道的目标发射功率进行等比例的功率降低, 或者,
按照信道 /信号优先级从低到高的顺序, 对具有同一信道 /信号优先级的所述 SRS和 /或 所述上行信道中, 处于相同频带的 SRS和 /或上行信道的目标发射功率进行等比例的功率降 低, 处于不同频带的 SRS和 /或上行信道的目标发射功率根据所处频带对应的功率降低比例 系数进行功率降低。
20、 根据权利要求 19所述的装置, 其特征在于, 所述上行信道 /信号优先级具体为: 物理上行控制信道 PUCCH>承载上行控制信息 UCI的物理上行共享信道 PUSCH>不承 载 UCI的 PUSCH>SRS; 或者,
PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH=SRS; 或者,
如果存在物理随机接入信道 PRACH, 则:
PRACH>PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH>SRS; 或者,
PRACH>PUCCH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH=SRS; 或者,
PUCCH>PRACH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH>SRS; 或者,
PUCCH> PRACH>承载 UCI的 PUSCH>不承载 UCI的 PUSCH=SRS。
21、 根据权利要求 19所述的装置, 其特征在于, 所述处理单元, 具体用于: 对所述上行信道进行功率降低时,对所述上行信道当前子帧中的所有 SC-FDMA符号的 目标发射功率同时降低, 当所述上行信道在当前子帧中存在多个 SC-FDMA符号与 SRS同时 传输且分别在所述每个 SC-FDMA符号中进行功率降低操作时, 选取多个 SC-FDMA符号中 进行功率降低后的发射功率的最小值作为功率降低后所述上行信道当前子帧中的所有 SC-FDMA符号的发射功率; 或者,
仅对所述上行信道当前子帧中与所述 SRS同时传输的 SC-FDMA符号的目标发射功率 进行降低。
PCT/CN2012/086602 2011-11-07 2012-12-13 一种上行传输的功率控制方法及装置 WO2013067976A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201110349132.1 2011-11-07
CN201110349132 2011-11-07
CN201110434875 2011-12-22
CN201110434875.9 2011-12-22
CN201210001889.6 2012-01-05
CN201210001889.6A CN102869080B (zh) 2011-12-22 2012-01-05 一种上行传输的功率控制方法及装置

Publications (1)

Publication Number Publication Date
WO2013067976A1 true WO2013067976A1 (zh) 2013-05-16

Family

ID=48288546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086602 WO2013067976A1 (zh) 2011-11-07 2012-12-13 一种上行传输的功率控制方法及装置

Country Status (1)

Country Link
WO (1) WO2013067976A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131278A (zh) * 2010-01-13 2011-07-20 普天信息技术研究院有限公司 一种上行功率压缩的方法和用户设备
CN102149182A (zh) * 2011-04-22 2011-08-10 电信科学技术研究院 一种功率控制的方法和设备
CN102215581A (zh) * 2010-04-08 2011-10-12 宏达国际电子股份有限公司 处理探测参考信号及物理上行链路信道的方法及其通讯装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131278A (zh) * 2010-01-13 2011-07-20 普天信息技术研究院有限公司 一种上行功率压缩的方法和用户设备
CN102215581A (zh) * 2010-04-08 2011-10-12 宏达国际电子股份有限公司 处理探测参考信号及物理上行链路信道的方法及其通讯装置
CN102149182A (zh) * 2011-04-22 2011-08-10 电信科学技术研究院 一种功率控制的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS.: "Uplink Power Control in LTE-Advanced.", 3GPP TSG RAN WGL#59, 13 November 2009 (2009-11-13) *

Similar Documents

Publication Publication Date Title
CN102573030B (zh) 一种上行功率控制方法及装置
CN102348269B (zh) 一种上行功率控制的方法和设备
CN104349443B (zh) 一种上行功率控制方法和装置
CN103124428B (zh) 一种上行功率控制方法及装置
JP6668242B2 (ja) 無線通信システムにおける上りリンク電力を制御する方法及び装置
CN102869080B (zh) 一种上行传输的功率控制方法及装置
CN113055992B (zh) 用于功率控制处理的方法和装置
CN102378341A (zh) 一种上行功率控制方法及装置
CN102300305B (zh) 一种上行功率控制的方法及装置
EP2590447B1 (en) Uplink scheduling support in multi-carrier wireless communication systems
JP5331161B2 (ja) 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路
KR101184615B1 (ko) 시분할 복신 시스템중의 업링크 전송 전력 확정 방법,시스템 및 장치
WO2013010441A1 (zh) 一种调整发射功率的方法及装置
JP5779277B2 (ja) 物理上りリンク制御チャネルのパワー制御方法及び装置
TW201116107A (en) Apparatus and method for uplink power control for a wireless transmitter/receiver unit utilizing multiple carriers
WO2012016449A1 (zh) 一种lte系统上行功率控制的方法和系统
KR20150027176A (ko) 디바이스간(d2d) 크로스링크 전력 제어
WO2013016855A1 (zh) 一种功率控制方法和终端设备
WO2013104272A1 (zh) 一种传输和接收上行信息的方法、系统和设备
WO2012088953A1 (zh) 一种物理上行控制信道的功率控制方法及装置
CN101877905B (zh) 一种下行控制信道的功率控制方法及装置
JP6037963B2 (ja) 基地局装置、移動局装置、無線通信方法および集積回路
WO2013067976A1 (zh) 一种上行传输的功率控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12847234

Country of ref document: EP

Kind code of ref document: A1