WO2013067908A1 - 太阳能集热装置 - Google Patents

太阳能集热装置 Download PDF

Info

Publication number
WO2013067908A1
WO2013067908A1 PCT/CN2012/084124 CN2012084124W WO2013067908A1 WO 2013067908 A1 WO2013067908 A1 WO 2013067908A1 CN 2012084124 W CN2012084124 W CN 2012084124W WO 2013067908 A1 WO2013067908 A1 WO 2013067908A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat collecting
hollow container
outlet
sensor
temperature
Prior art date
Application number
PCT/CN2012/084124
Other languages
English (en)
French (fr)
Inventor
孙海翔
朱亮
Original Assignee
Sun Haixiang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Haixiang filed Critical Sun Haixiang
Publication of WO2013067908A1 publication Critical patent/WO2013067908A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/80Arrangements for controlling solar heat collectors for controlling collection or absorption of solar radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/40Arrangements for controlling solar heat collectors responsive to temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the invention belongs to the technical field of energy and electric power, and particularly relates to a heat collecting device used in a solar power plant.
  • the heat collecting device used to collect solar energy is a very important component in the solar energy utilization process.
  • the main purpose is to use the liquid heat-absorbing working medium to absorb the heat of the solar energy to a certain temperature and then vaporize it, and use the heat carried by the steam to generate electricity, and the steam is turned into a liquid state after being generated, so that it is recycled.
  • Tower solar power plants are one of the solar power plants and are widely used.
  • a large number of heliostats are arranged on the ground of the power station to form a heliostat field, and a heat collecting tower is built at an appropriate position in the heliostat field, and a heat collecting device is arranged at the top of the collecting tower.
  • Each heliostat causes the sunlight to gather in a point shape and concentrates on the heat collecting device.
  • the heat absorbing medium in the heat collecting device reaches a high temperature and conducts a steam generator on the ground through the pipeline, high temperature steam is generated, which is driven by steam.
  • the generator set generates electricity. In this process, the heat absorption efficiency of the heat collecting device has a great influence on the power generation efficiency of the tower solar power station.
  • US20100242949 discloses a collector structure applied to a tower solar power plant. Due to its use of an overall large-area heat absorbing arm, the following problems exist: Due to the uneven energy density of the solar energy, and the high energy density position on the heat absorption arm changes rapidly, it is easy to cause local overheating and affect the power generation efficiency; (2) The whole large area heat absorbing arm is used for manufacturing, transportation and installation. Difficulties, and high cost; (3) The use of the overall large-area heat-absorbing arm, the entire heat-collecting equipment needs to stop working during maintenance, affecting power generation efficiency.
  • CN 201852307U discloses a solar vacuum tube matrix heat collecting system, comprising a water inlet manifold and a water outlet manifold for working medium circulation; W parallel solar energy vacuum tube units, wherein each solar vacuum tube unit is respectively disposed at the same Between the inlet water main pipe and the water main pipe, comprising N series connected solar vacuum tube sets, a working medium transfer pump, and in each solar vacuum tube unit, along the working medium flow direction, in the Nth solar vacuum tube a water temperature sensor is disposed on the water discharge main pipe of the pipe group, and a driving pump speed adjuster connected to the temperature sensor is disposed on the heat carrying medium driving pump, and the driving pump speed adjuster receives the temperature sensor The data signal is sent, and the data signal is converted into data information, and the driving pump speed regulator controls the heat carrier working pump to perform speed adjustment according to the data information.
  • Each of the solar vacuum tube sets is provided with a solar vacuum tube in which M internal U-shaped metal tubes are connected in parallel, and is connected to the adjacent solar vacuum tube group through the inlet water main pipe and the water discharge main pipe.
  • the solar vacuum tube matrix heat collecting system according to the above technical solution can obtain heat energy cheaply and efficiently, and is suitable for industrial production and urban heating. Thermal power generation and other fields. However, it has the following problems:
  • each solar vacuum tube unit is composed of N series solar energy vacuum tubes, and a temperature sensor is disposed on the water discharge main pipe of the Nth solar vacuum tube tube group along the flow direction of the working medium to measure the temperature value of the water main pipe and then transmitted.
  • Driving a pump speed regulator the drive pump speed regulator receiving a data signal sent by the temperature sensor, and converting the data signal into data information, wherein the driving pump speed regulator controls the data according to the data information
  • the heat carrier fluid drives the pump for speed regulation.
  • the speed is also likely to not meet the requirements of the temperature value of the effluent main pipe in the current state.
  • the whole control process is equivalent to using the signal sent by the temperature sensor as a feedback adjustment signal, and there is a certain degree of lag.
  • the scheme is used in thermal power generation, which will cause loss of thermal energy due to the existence of hysteresis, affecting power generation efficiency. Summary of the invention
  • the technical problem to be solved by the present invention is:
  • the heat intensity of the heat collecting device is unevenly changed due to frequent and intense changes in the light intensity of the heat collecting device, and the heat is not uniformly disposed on the working medium.
  • the temperature value measured by the temperature sensor of the outflow port serves as a basis for controlling the rotational speed of the driving pump, and there is a loss of thermal energy loss due to the control signal, thereby causing a decrease in power generation efficiency.
  • the present invention provides a solar heat collecting device, comprising: at least one heat collecting module 11 disposed between an inlet main pipe and an outlet main pipe, each of the heat collecting modules 11 including a hollow having an inlet and an outlet a container, a plurality of the hollow containers are provided with a pipeline suitable for the flow of the heat-absorbing working medium, and a flow controller is disposed between the hollow container and the inlet main pipe and/or the outlet main pipe;
  • At least one drive pump for driving a heat absorbing medium into the hollow container
  • control system that controls the flow controller to vary the flow rate and/or flow rate of the heat absorbing medium flowing into the hollow container;
  • Each of the heat collecting modules 11 further comprises at least one temperature sensor 4 and/or a light intensity sensor 3 for measuring the temperature and/or the intensity of the illuminated light of the hollow container, the temperature sensor 4 and/or light a communication connection between the strong sensor 3 and the control system;
  • the control system includes a feedforward adjustment unit, and the feedforward adjustment unit performs an analysis operation on a temperature and/or a light intensity value of each of the hollow containers to generate a feedforward adjustment signal for controlling each of the flow controllers. And the control system adjusts the corresponding flow controller according to the feedforward adjustment signal of each flow controller to change the flow rate and/or flow rate of the heat absorption medium flowing into the corresponding hollow container.
  • the control system further includes an arithmetic unit;
  • the operation unit generates an adjustment unit according to a feedforward adjustment signal output by the feedforward adjustment unit and a preset temperature value ⁇ or / and a preset pressure value 3 ⁇ 4 at the outlet of the heat collection module 11 stored in the control unit.
  • the regulation signal of the flow controller
  • the control system adjusts the corresponding flow controller based on the adjustment signal of each flow controller to vary the flow rate and/or flow rate of the heat absorbing medium flowing into the respective hollow container.
  • An outlet temperature sensor and/or a pressure sensor for measuring a temperature and/or a pressure value at the outlet of the hollow container, the outlet temperature sensor and/or the pressure sensor and the control system are disposed at the outlet of the hollow container
  • the communication system further includes a main feedback adjusting unit, and performing an analysis operation according to the temperature and/or pressure value at the outlet of the hollow container to form a main feedback adjustment signal;
  • the operation unit is configured according to a feedforward adjustment signal output by the feedforward adjustment unit, a main feedback adjustment signal output by the main feedback adjustment unit, and a preset temperature value at the outlet of the hollow container stored in the control system, or/and a pre- The pressure value P 0 is set, and the adjustment signal for adjusting the flow controller is obtained.
  • a flow sensor is disposed at the valve, and a flow rate of the working medium at the valve is measured, and a communication connection between the flow sensor and the control system is performed;
  • the control system further includes a sub feedback adjustment unit, and the sub feedback adjustment unit obtains a sub feedback feedback signal according to the working fluid flow analysis processing at the valve;
  • the operation unit is configured according to a feedforward adjustment signal output by the feedforward adjustment unit, a main feedback adjustment signal output by the main feedback adjustment unit, a sub feedback feedback signal output by the sub feedback adjustment unit, and a hollow stored in the control system.
  • the preset temperature value ⁇ or / and the preset pressure value 3 ⁇ 4 at the outlet of the container are analyzed to obtain an adjustment signal for adjusting the flow controller.
  • the control system further includes:
  • a data storage unit configured to store a pressure threshold at the outlet of the hollow container, a working temperature threshold, the threshold includes an upper threshold and a lower threshold; a preset temperature value at the outlet of the hollow container ⁇ or / and a preset The measurement result of each sensor of the pressure value; the correspondence between each sensor and the heat collecting module 11;
  • Data communication unit Data communication with each sensor
  • a data comparison unit comparing information obtained by the data communication unit with a corresponding threshold stored by the data storage module;
  • the adjusting unit according to the comparison result of the data comparing unit and the corresponding relationship between each sensor and the heat collecting module (11), generating an adjustment signal for adjusting the flow controller, adjusting a corresponding flow controller to change the inflow corresponding Place
  • the control system controls the opening of the valve to change the flow rate and/or flow rate of the heat absorbing medium flowing into the hollow container;
  • the control system controls the rotational speed of the flow driven pump to vary the flow rate and/or flow rate of the heat absorbing medium flowing into the hollow vessel.
  • the control system adjusts the rotational speed of the at least one drive pump based on the flow rate and/or flow rate value of the heat absorbing medium flowing into all of the hollow containers.
  • the heat collecting module 11 further includes a fixing plate 1, and the hollow container and the temperature sensor 4 and/or the light intensity sensor 3 are fixedly disposed on the fixing plate 1.
  • the fixing plate 1 is provided with at least two fasteners for fixing the hollow container to the solar energy collecting tower.
  • the fastener has at least one degree of freedom.
  • the hollow container receives sunlight reflected by the fixed mirror field and the two adjacent heat collecting modules 11 overlapping.
  • the hollow container is a coil 2 fixedly disposed on a surface of the fixing plate 1, and an outlet and an inlet of the coil 2 are disposed on the same side of the heat collecting module 11.
  • the temperature sensor 4 and/or the light intensity sensor 3 are disposed on the surface of the fixed plate 1 on the same side as the coil 2.
  • the temperature sensor 4 and/or the light intensity sensor 3 are disposed at the gap of the coil 2.
  • the temperature sensor 4 is disposed on a surface of the fixing plate 1 on the side opposite to the coil 2.
  • the heat collecting module 11 includes the light intensity sensor 3
  • the light intensity sensor 3 is disposed on a surface of the fixing plate 1 opposite to the coil 2, and the fixing plate 1 and the light
  • the corresponding position of the strong sensor 3 is provided with a light passing hole.
  • the inner wall of the coil 2 is provided with threads or corrugations.
  • the hollow container is filled with a filament for conducting heat.
  • the heat collecting device used in the present invention comprises a plurality of heat collecting modules, each of which is provided with a flow controller, and a temperature sensor and/or a light intensity sensor are provided for each heat collecting module for measuring
  • the control system provided by the invention comprises a feedforward adjusting unit, and the feedforward adjusting unit performs an analysis operation according to the temperature and/or the light intensity value of each hollow container, and generates Controlling a feedforward adjustment signal of each flow controller, and the control system adjusts a corresponding flow controller according to a feedforward adjustment signal of each flow controller to change a heat sink flowing into the corresponding hollow container
  • the mass flow rate and/or flow rate can ensure that the temperature and pressure value of the heat-absorbing working fluid at the outlet of each heat collecting module are close to the preset value, thereby effectively solving the heat collector heat caused by frequent and intense changes in light intensity. The problem of both.
  • the present invention uses a temperature sensor and/or a light intensity sensor disposed on the heat collecting module to measure the temperature and/or the intensity of the light collecting module itself, and the temperature of each hollow container is determined by the feedforward adjusting unit. After the analysis and operation of the light intensity value, a feedforward adjustment signal for controlling each flow controller is generated, and the control system adjusts the corresponding flow controller according to the feedforward adjustment signal of each flow controller to change the flow into the corresponding
  • the flow rate and/or flow rate of the heat absorbing medium of the hollow container overcomes the problem of control signal lag caused by feedback adjustment in the prior art, reduces the power generation efficiency, eliminates the hysteresis of the control signal, and improves the power generation efficiency. .
  • the present invention is further provided with a pressure sensor or a working temperature sensor at the outlet of the heat collecting module, and the pressure value and the working temperature value at the outlet of the heat collecting module are adjusted by the feedback adjusting unit to form a feedback control signal, and the feedforward The control signals are combined to adjust the corresponding flow controller, and the combination of feedforward regulation and feedback control can make the power generation efficiency higher.
  • the heat collecting device described in the present invention is composed of a plurality of heat collecting modules. Since the volume of each heat collecting module is small, the energy density on each heat collecting module is hooked and passed through each set.
  • the flow controllers of the thermal modules are respectively controlled so that the temperature and pressure values of the working fluids of each heat collecting module can reach the preset values, the equipment is light and flexible, easy to manufacture, install and transport, and when a module is flat damaged, It is only necessary to replace the damaged module, and the entire heat collecting device does not need to be stopped, thereby improving the power generation efficiency.
  • the heat collecting module is fixed by using a fixing plate, and the heat collecting module is disposed on the solar heat collecting tower by using at least two fasteners on the fixing plate, in order to prevent deformation of the heat collecting module due to thermal expansion and contraction, A fastener having at least one degree of freedom secures the heat collecting module.
  • FIG. 1 is a schematic structural view of an outer surface of a heat collecting module according to the present invention.
  • FIG. 2 is a schematic view showing the inner surface of the heat collecting module of the present invention.
  • FIG. 3 is a schematic structural view of a heat collecting device according to the present invention.
  • FIG. 4 is a schematic structural view of a heat collecting device according to the present invention.
  • Figure 5 is a partial schematic view showing a portion of the heat collecting module according to the present invention.
  • FIG. 6 is a schematic block diagram of a control flow according to the present invention.
  • the reference numerals are: 1-fixed plate, 2-coil tube, 3-light intensity sensor, 4-temperature sensor, 5a-fastener one, 5b-fastener two, 6-inlet valve, 7-outlet valve , 8- working fluid import, 9-working fluid export, 10-communication cable, 11-heat collecting module, 12-export sensor.
  • the embodiment provides a solar collector device, including:
  • At least one heat collecting module (11) is disposed between the inlet main pipe and the outlet main pipe, and each of the heat collecting modules (11) includes a hollow container having an inlet and an outlet, and the plurality of the hollow containers are provided to be sucked a pipeline of hot working fluid, a flow controller is disposed between the hollow vessel and the inlet main pipe and/or the outlet main pipe;
  • At least one drive pump for driving a heat absorbing medium into the hollow container
  • control system that controls the flow controller to vary the flow rate and/or flow rate of the heat absorbing medium flowing into the hollow container;
  • At least one heat collecting module 11 is assembled to form a polyhedral structure disposed at the top of the solar heat collecting tower, and sunlight reflected by the heliostat field is incident from the bottom of the polyhedron to the hollow container in the heat collecting device.
  • the heat absorbing medium in the hollow container absorbs heat of sunlight;
  • Figure 4 shows a preferred structure for the assembly of the heat collecting module, the structure is a cube, the bottom of the cube is provided with an opening suitable for the incidence of light, and in order to prevent the nighttime or the temperature is too low, the light intensity is too low, in the heat collecting device There is a loss of heat, and a baffle can be provided, which can block the opening of the light incident at the bottom of the cube. Therefore, when the temperature is suitable and the light intensity is strong, the baffle is opened, and the heat collecting device absorbs the heat of the sunlight. When the temperature is too low and the sunlight intensity is too low, the baffle is closed to prevent heat in the heat collecting device. Loss
  • Each of the heat collecting modules 11 further comprises at least one temperature sensor 4 and/or a light intensity sensor 3 for measuring the temperature and/or the intensity of the illuminated light of the hollow container, the temperature sensor 4 and/or light a communication connection between the strong sensor 3 and the control system;
  • the control system includes a feedforward adjustment unit, and the feedforward adjustment unit performs an analysis operation on a temperature and/or a light intensity value of each of the hollow containers to generate a feedforward adjustment signal for controlling each of the flow controllers. And the control system adjusts the corresponding flow controller according to the feedforward adjustment signal of each flow controller to change the flow rate and/or flow rate of the heat absorption medium flowing into the corresponding hollow container.
  • the control operation process is adjusted according to the flow rate and/or the flow rate of the heat absorbing medium flowing into the corresponding hollow container to an appropriate value.
  • the flow controller's feedforward adjustment signal the control system controls the flow controller according to the feedforward adjustment signal, thereby adjusting the flow rate and/or the flow rate of the heat absorption medium flowing into the hollow container, so that the temperature or/and the pressure at the outlet of the heat collection module are maintained. On the preferred value.
  • the temperature of the heat collecting module itself is measured by using a temperature sensor and/or a light intensity sensor disposed on the heat collecting module.
  • the degree and/or the intensity of the received light, and the feedforward adjustment unit performs the analysis operation to obtain the feedforward adjustment signal of the control flow controller, and the control system adjusts the flow controller according to the feedforward adjustment signal, which overcomes the prior art well.
  • the problem of delay in control signal caused by feedback adjustment and reduction of power generation efficiency eliminates the hysteresis of the control signal and improves the power generation efficiency.
  • control system further includes an operation unit
  • the operation unit generates an adjustment unit according to a feedforward adjustment signal output by the feedforward adjustment unit and a preset temperature value ⁇ or / and a preset pressure value 3 ⁇ 4 at the outlet of the heat collection module 11 stored in the control unit.
  • the regulation signal of the flow controller
  • the control system adjusts the corresponding flow controller based on the adjustment signal of each flow controller to vary the flow rate and/or flow rate of the heat absorbing medium flowing into the respective hollow container.
  • An outlet temperature sensor and/or a pressure sensor for measuring a temperature and/or a pressure value at the outlet of the hollow container, the outlet temperature sensor and/or the pressure sensor and the control system are disposed at the outlet of the hollow container
  • the communication system further includes a main feedback adjusting unit, and performing an analysis operation according to the temperature and/or pressure value at the outlet of the hollow container to form a main feedback adjustment signal;
  • the operation unit is configured according to a feedforward adjustment signal output by the feedforward adjustment unit, a main feedback adjustment signal output by the main feedback adjustment unit, and a preset temperature value at the outlet of the hollow container stored in the control system, or/and a pre- The pressure value P 0 is set, and the adjustment signal for adjusting the flow controller is obtained.
  • a flow sensor is disposed at the valve, and a flow rate of the working medium at the valve is measured, and a communication connection between the flow sensor and the control system is performed;
  • the control system further includes a sub feedback adjustment unit, and the sub feedback adjustment unit obtains a sub feedback feedback signal according to the working fluid flow analysis processing at the valve;
  • the operation unit is configured according to a feedforward adjustment signal output by the feedforward adjustment unit, a main feedback adjustment signal output by the main feedback adjustment unit, a sub feedback feedback signal output by the sub feedback adjustment unit, and a hollow stored in the control system.
  • the preset temperature value ⁇ or / and the preset pressure value 3 ⁇ 4 at the outlet of the container are analyzed to obtain an adjustment signal for adjusting the flow controller.
  • the control system adjusts the rotational speed of the at least one drive pump based on the flow rate and/or flow rate value of the heat absorbing medium flowing into all of the hollow containers.
  • FIG. 6 is a schematic block diagram showing the control flow when the valve opening degree is controlled according to the embodiment.
  • the embodiment is further provided with the feedback adjusting unit for measuring the outlet of the hollow container which affects the outlet pressure and temperature.
  • the temperature and/or pressure value and the flow rate of the working fluid at the outlet are obtained by adjusting the flow rate and/or the flow rate of the heat-absorbing working medium flowing into the corresponding hollow container to a suitable value.
  • the control system adjusts the signal according to the feedforward
  • the feedback adjustment signal adjusts the flow controller to change the flow rate and/or the flow rate of the heat absorbing medium flowing into the corresponding hollow container, thereby adjusting the flow rate of the heat absorbing medium flowing into the hollow container, so that the valve outlet temperature or/and The pressure is maintained at a preferred value.
  • the flow regulator is selected as a valve and/or a flow driven pump; when the flow regulator is a valve, the control system controls the opening of the valve. To change the flow rate and/or flow rate of the heat absorbing medium flowing into the hollow container;
  • the control system controls the rotational speed of the flow driven pump to vary the flow rate and/or flow rate of the heat absorbing medium flowing into the hollow vessel.
  • each of the heat collecting modules may be respectively provided with an inlet valve 6 and an outlet valve 7, and when the temperature and pressure value of the heat absorbing working fluid of the outlet valve of a heat collecting module increase, the control system The inlet valve and the outlet valve are controlled to increase the opening degree, and the speed of absorbing heat is accelerated, so that the working temperature in the heat collecting module is close to the set value, and the pressure and temperature of the outlet valve of the heat collecting module are close to the set value.
  • the control system controls the inlet valve and the outlet valve to increase the opening degree, accelerates the speed of absorbing heat, and causes the suction in the heat collecting module.
  • the temperature of the hot working fluid is close to the set value, and the pressure and temperature of the outlet valve of the heat collecting module are close to the set value.
  • the control system controls the inlet valve and the outlet valve to reduce the opening degree, slow down the speed of absorbing heat, and make the temperature of the heat absorbing working medium in the heat collecting module close to the set value. And the collector valve pressure and temperature of the collector module are close to the set value.
  • the control system controls the inlet valve and the outlet valve to reduce the opening degree, slow down the heat absorption speed, and enable the heat sink in the heat absorbing module.
  • the temperature is close to the set value, and the pressure and temperature of the outlet valve of the collector module are close to the set value.
  • the outlet inlet valve When the pressure and temperature of the outlet valve of a heat collecting module are lower than a certain lower threshold, the outlet inlet valve is closed; when the pressure and temperature of the outlet valve of a heat collecting module are higher than the upper threshold, the outlet safety valve is opened, and the inlet valve is closed.
  • the upper temperature threshold when the heat absorbing medium is water is: 350 ° C ; the lower temperature threshold is: 680 ° C ;
  • the upper temperature threshold when the heat absorbing medium is air is: 350 ° C ; the lower temperature threshold is: U00 ° C ;
  • the upper temperature threshold when the heat absorbing medium is a molten salt is: 250 ° C ; the lower temperature threshold is 800 ° C.
  • the heat collecting module 11 further includes a fixing plate 1, the hollow container and the temperature sensor 4 and / Or the light intensity sensor 3 is fixedly disposed on the fixing plate 1.
  • the fixing plate 1 is provided with at least two fasteners for fixing the hollow container to the solar heat collecting tower.
  • the fastener has at least one degree of freedom. In the fastener shown in 2, the degree of freedom of the fastener 5a is zero, and the degree of freedom of the fastener 2 is greater than or equal to one.
  • Example 4 When the heat collecting module 11 is fixedly disposed on the solar heat collecting tower by the fixing plate 1, a structure diagram of the heat collecting device shown in FIG. 3 or FIG. 4 is formed, in order to prevent light from being irradiated on the hollow container. The appearance of the situation, as shown in FIG. 5, the hollow container receives sunlight reflected by the field of heliostats and the two adjacent heat collecting modules 11 partially overlap.
  • Example 4
  • the hollow container is selected as a coil 2 fixedly disposed on the surface of the fixing plate 1.
  • the coil 2 is The outlet and the inlet are disposed on the same side of the heat collecting module 11.
  • the temperature sensor 4 and/or the light intensity sensor 3 are disposed on the surface of the fixing plate 1 on the same side as the coil 2.
  • the temperature sensor 4 and/or the light intensity sensor 3 are disposed at the gap of the coil 2.
  • the heat collecting module 11 includes the temperature sensor 4
  • the temperature sensor 4 is disposed on a surface of the fixing plate 1 on the side opposite to the coil 2.
  • the heat collecting module 11 includes the light intensity sensor 3
  • the light intensity sensor 3 is disposed on a surface of the fixing plate 1 opposite to the coil 2, and the light intensity sensor 3 can be ensured. A light intensity value is detected, and a light-passing hole is formed in a position corresponding to the light intensity sensor 3 on the fixing plate 1.
  • the inner wall of the coil 2 is provided with threads or corrugations. It is also possible to fill the inside of the hollow container with a filament for conducting heat.

Abstract

一种太阳能集热装置,包括至少一个集热模块(11),每个集热模块(11)包括具有进口和出口的中空容器(2),中空容器(2)与进口主管和/或出口主管之间设置有流量控制器;每个集热模块(11)还包括至少一个温度传感器(4)和/或光强传感器(3)且与控制系统之间通讯连接,测量中空容器(2)的温度和/或受照光强值;控制系统包括前馈调节单元,根据每个中空容器(2)的温度和/或光强值进行分析运算后,产生调节每个流量控制器的前馈调节信号,以改变流入相应的中空容器(2)的吸热工质的流量和/或流速,使每一集热模块(11)出口处吸热工质均能达到预设的压力值和温度值。该太阳能集热装置保证每一集热模块(11)出口处的吸热工质压力和温度均匀,消除了控制信号的滞后。

Description

说 明 书 太阳能集热装置
技术领域
本发明属于能源、 电力技术领域, 具体涉及一种用于太阳能电厂中的集热装置。
背景技术
随着全球的能源危机日益凸显, 开发新能源成为全人类共同的需要。 太阳能发电技术是 实现大规模开发和利用太阳能的一种新途径, 是解决全球能源危机的有效途径之一, 而用于 收集太阳能的集热装置是太阳能利用过程中非常重要的部件。 其主要是利用液态吸热工质吸 收太阳能的热量到一定温度后汽化, 利用蒸汽的携带的热量发电, 发电后蒸汽又变为液态, 如此循环使用。
塔式太阳能发电站是太阳能发电站中的一种, 应用非常广泛。 在发电站地面上布置大量 的定日镜形成定日镜场, 在定日镜场中的适当位置处建立一座集热塔, 集热塔顶端设置有集 热装置。 各定日镜均使太阳光聚集呈点状, 集中射到集热装置上, 当集热装置内吸热工质达 到高温并通过管道传导地面上的蒸汽发生器, 产生高温蒸汽, 由蒸汽驱动发电机组发电。 在 这一过程中, 集热装置的吸热效率对于塔式太阳能发电站的发电效率有很大影响。
现有技术中已经公开了多种形式的太阳能集热装置, 例如 US20100242949公开了一种应 用于塔式太阳能电站的集热器结构, 由于其采用整体大面积吸热臂, 存在如下问题: (1 ) 由 于太阳能能量密度的不均勾,且吸热臂上的能量密度高点位置变化很快,容易造成局部过热, 影响发电效率; (2) 采用整体大面积吸热臂, 制造、 运输及安装困难, 且成本较高; (3 ) 采 用整体大面积吸热臂, 维修时整个集热设备需停止工作, 影响发电效率。
另有文献 CN 201852307U公开了一种太阳能真空管矩阵集热系统,包括用于工质流通的 进水总管和出水总管; W个并联连接的太阳能真空管单元, 所述每个太阳能真空管单元分别 设置在所述进水总管和所述出水总管之间, 包括 N个串联连接的太阳能真空管组, 工质输送 泵, 以及在每个太阳能真空管单元中, 沿工质流动方向, 在所述第 N个太阳能真空管管组的 出水主管上连接设置有温度传感器, 在所述载热工质驱动泵上设置有与所述温度传感器相连 接的驱动泵转速调节器, 所述驱动泵转速调节器接收所述温度传感器发来的数据信号, 并将 所述数据信号转换为数据信息, 所述驱动泵转速调节器根据上述数据信息控制所述载热工质 驱动泵进行转速调节。所述每个太阳能真空管组内设置有 M个内部 U形金属管并联连接的太 阳能真空管, 并通过进水主管与出水主管与相邻的太阳能真空管组相连接。 采用上述技术方 案所述的太阳能真空管矩阵集热系统可廉价高效的获取热能, 适用于工业生产, 城市供热, 热力发电等领域。 但是其存在以下问题:
上述技术方案中, 每一太阳能真空管单元由 N个串联的太阳能真空管组成, 在沿工质流 动方向的第 N个太阳能真空管管组的出水主管上设置有温度传感器测量出水主管处的温度值 后传输给驱动泵转速调节器, 所述驱动泵转速调节器接收所述温度传感器发来的数据信号, 并将所述数据信号转换为数据信息, 所述驱动泵转速调节器根据上述数据信息控制所述载热 工质驱动泵进行转速调节。 明显地, 在驱动泵调节器输出转速控制信号时, 在出水主管处的 工质温度极有可能已经不是驱动泵调节器接收到的出水主管处的温度值了, 因此驱动泵调节 器驱动泵的转速也极有可能不符合当前状态下的出水主管处的温度值对应的需求了, 整个控 制过程相当于利用温度传感器发送的信号作为反馈调节的信号, 存在一定程度上的滞后, 如 果采用上述技术方案用在热力发电中, 会由于滞后的存在导致热能的损失, 影响发电效率。 发明内容
本发明所要解决的技术问题为: 现有技术中的太阳能集热设备中, 由于照射在集热设备 上的光强度频繁剧烈变化而引起集热装置受热不均勾及由于单纯依靠设置于工质流出口的温 度传感器测得的温度值作为控制驱动泵转速的依据, 存在控制信号滞后热能损失从而引起发 电效率降低。
为解决上述技术问题, 本发明提供一种太阳能集热装置, 包括: 至少一个集热模块 11, 设置于进口主管和出口主管之间, 每个所述集热模块 11包括具有进口和出口的中空容器, 多 个所述中空容器间设有适于吸热工质流动的管路, 所述中空容器与所述进口主管和 /或出口主 管之间设置有流量控制器;
至少一个驱动泵, 用于驱动吸热工质流入所述中空容器;
还包括控制系统, 控制所述流量控制器以改变流入所述中空容器的吸热工质的流量和 /或 流速;
每个所述集热模块 11还包括至少一个温度传感器 4和 /或光强传感器 3,用于测量所述中 空容器的温度和 /或受照光强值,所述温度传感器 4和 /或光强传感器 3与所述控制系统之间通 讯连接;
所述控制系统包括前馈调节单元, 所述前馈调节单元根据每个所述中空容器的温度和 /或 光强值进行分析运算后, 产生控制每个所述流量控制器的前馈调节信号, 所述控制系统根据 每个流量控制器的前馈调节信号调节对应的流量控制器, 以改变流入相应的所述中空容器的 吸热工质的流量和 /或流速。
所述控制系统还包括运算单元; 所述运算单元根据所述前馈调节单元输出的前馈调节信号并结合所述控制单元内存储的 集热模块 11出口处的预设温度值 ^或 /和预设压力值 ¾, 产生调节所述流量控制器的调节信 号;
所述控制系统根据每个流量控制器的调节信号调节对应的流量控制器, 以改变流入相应 的所述中空容器的吸热工质的流量和 /或流速。
所述中空容器出口处设置有出口温度传感器和 /或压力传感器, 用于测量所述中空容器出 口处的温度和 /或压力值,所述出口温度传感器和 /或压力传感器与所述控制系统之间通讯连接; 所述控制系统还包括主反馈调节单元, 根据所述中空容器出口处的温度和 /或压力值进行 分析运算形成主反馈调节信号;
所述运算单元根据所述前馈调节单元输出的前馈调节信号、 所述主反馈调节单元输出的 主反馈调节信号及控制系统内存储的中空容器出口处的预设温度值 ^或 /和预设压力值 P0, 分析得到调节所述流量控制器的调节信号。
所述阀门处设置有流量传感器, 测量所述阀门处的工质流量, 所述流量传感器与所述控 制系统之间通讯连接;
所述控制系统还包括副反馈调节单元, 所述副反馈调节单元根据所述阀门处的工质流量 分析处理获得副反馈调节信号;
所述运算单元根据所述前馈调节单元输出的前馈调节信号、 所述主反馈调节单元输出的 主反馈调节信号、 所述副反馈调节单元输出的副反馈调节信号及控制系统内存储的中空容器 出口处的预设温度值 ^或 /和预设压力值 ¾, 分析得到调节所述流量控制器的调节信号。
所述控制系统还包括:
数据存储单元: 用于存储所述中空容器出口处的压力阈值, 工质温度阈值, 所述阈值均 包括上限阈值和下限阈值; 所述中空容器出口处的预设温度值 ^或 /和预设压力值 各传 感器的测量结果; 各传感器与集热模块 11之间的对应关系;
数据通讯单元: 与各个传感器实现数据通讯;
数据比较单元: 将所述数据通讯单元获得的信息与所述数据存储模块存储的相应阈值进 行比较;
调节单元: 根据所述数据比较单元的比较结果及各个传感器与集热模块 (11 ) 间的对应 关系, 产生调节所述流量控制器的调节信号, 调节对应的流量控制器, 以改变流入相应的所 所述流量调节器为阀门时, 所述控制系统控制所述阀门的开度以改变流入所述中空容器 的吸热工质的流量和 /或流速;
所述流量调节器为流量驱动泵时, 所述控制系统控制所述流量驱动泵的转速以改变流入 所述中空容器的吸热工质的流量和 /或流速。
所述控制系统根据流入所有中空容器的吸热工质的流量和 /或流速值调整所述至少一个 驱动泵的转速。
所述集热模块 11还包括一固定板 1,所述中空容器和所述温度传感器 4和 /或光强传感器 3固定设置于所述固定板 1上。
所述固定板 1上设置有至少两个紧固件, 所述紧固件用于将所述中空容器固定设置于太 阳能集热塔上。
所述紧固件具有至少一个自由度。
所述集热模块 11通过所述固定板 1固定设置于所述太阳能集热塔上时,所述中空容器接 收定日镜场反射的太阳光且相邻的两个所述集热模块 11部分重叠。
所述中空容器为固定设置于所述固定板 1表面的盘管 2, 所述盘管 2的出口和入口设置 在所述集热模块 11的同一侧。
所述温度传感器 4和 /或光强传感器 3设置于所述固定板 1上与所述盘管 2相同一侧的表 面上。
所述温度传感器 4和 /或光强传感器 3设置于所述盘管 2的间隙处。
所述集热模块 11包括温度传感器 4时,所述温度传感器 4设置于所述固定板 1上与所述 盘管 2相对一侧的表面上。
所述集热模块 11包括光强传感器 3时, 所述光强传感器 3设置于所述固定板 1上与所述 盘管 2相对一侧的表面上,所述固定板 1上与所述光强传感器 3相对应的位置开设有通光孔。
所述盘管 2内壁设置有螺纹或波纹。
所述中空容器内部填充有用于传导热量的丝状物。
本发明相对于现有技术来说具有以下有益效果:
( 1 ) 本发明采用的集热装置, 包括多个集热模块, 每个集热模块均设置有流量控制器, 并且为每个集热模块设置温度传感器和 /或光强传感器,用于测量吸热工质的温度和 /或受照光 强值, 本发明提供的控制系统包括前馈调节单元, 前馈调节单元根据每个中空容器的温度和 / 或光强值进行分析运算后, 产生控制每个流量控制器的前馈调节信号, 控制系统根据每个流 量控制器的前馈调节信号调节对应的流量控制器, 以改变流入相应的所述中空容器的吸热工 质的流量和 /或流速, 可以保证每个集热模块出口处吸热工质的温度、 压力值都接近预设值, 从而有效地解决了由于光强频繁剧烈变化造成的集热器受热不均的问题。
(2) 本发明采用设置于集热模块上的温度传感器和 /或光强传感器测量集热模块本身的 温度和 /或受照光强值,并由前馈调节单元根据每个中空容器的温度和 /或光强值进行分析运算 后, 产生控制每个流量控制器的前馈调节信号, 控制系统根据每个流量控制器的前馈调节信 号调节对应的流量控制器, 以改变流入相应的所述中空容器的吸热工质的流量和 /或流速, 很 好的克服了现有技术中采用反馈调节造成的控制信号滞后、 降低发电效率的问题, 消除了控 制信号的滞后, 提高了发电效率。
(3 )本发明还在集热模块出口处设置有压力传感器或者工质温度传感器, 并且集热模块 出口处的压力值和工质温度值经反馈调整单元调节后形成反馈控制信号, 与前馈控制信号相 结合, 调节对应的流量控制器, 采用前馈调节和反馈控制结合的手段可以使发电效率更高。
(4)本发明中所述的集热装置由多个集热模块组成, 由于每个集热模块的体积较小, 因 此每个集热模块上的能量密度均勾, 并且通过对每个集热模块的流量控制器分别控制使得每 个集热模块输出工质的温度和压力值均能达到预先设定值, 设备轻巧灵活容易制造、 安装和 运输, 而且在某个模块发生平破损时, 只需要更换破损的模块即可, 不需要整个集热设备停 止工作, 提高了发电效率。
(5 )本发明中采用固定板固定集热模块, 固定板上采用至少两个紧固件将集热模块设置 在太阳能集热塔上, 为了防止集热模块因热胀冷缩发生形变, 选择具有至少一个自由度的紧 固件对集热模块进行固定。
(6)本发明中集热模块固定于太阳能集热塔上时, 相邻的集热模块部分重叠, 由此可以 有效地避免光线没有照射在中空容器上这一情况的出现, 进一步提高发电效率。
附图说明
图 1为本发明所述集热模块外表面结构示意图;
图 2为本发明所述集热模块内表面示意图;
图 3为本发明所述集热装置的一种结构示意图;
图 4为本发明所述集热装置的优选结构示意图;
图 5为本发明部分所述集热模块部分重叠示意图;
图 6为本发明所述控制流程示意框图;
其中附图标记为: 1-固定板, 2-盘管, 3-光强传感器, 4-温度传感器, 5a-紧固件一, 5b- 紧固件二, 6-进口阀门, 7-出口阀门, 8-工质进口, 9-工质出口, 10-通信电缆, 11-集热模块, 12-出口传感器。
具体实 式
实施例 1
本实施例提供一种太阳能集热装置, 包括:
至少一个集热模块 (11 ), 设置于进口主管和出口主管之间, 每个所述集热模块 (11 )包 括具有进口和出口的中空容器, 多个所述中空容器间设有适于吸热工质流动的管路, 所述中 空容器与所述进口主管和 /或出口主管之间设置有流量控制器;
至少一个驱动泵, 用于驱动吸热工质流入所述中空容器;
还包括控制系统, 控制所述流量控制器以改变流入所述中空容器的吸热工质的流量和 /或 流速;
如图 3所示, 至少一个集热模块 11组装后形成多面体结构, 该多面体结构设置于太阳能 集热塔顶部, 定日镜场反射的太阳光从该多面体底部入射到集热装置中的中空容器上, 中空 容器内的吸热工质吸收太阳光的热量;
图 4给出了集热模块组装时的优选结构, 该结构为一立方体, 立方体底部设置有适于光 线入射的开口, 并且为了防止夜晚时或者温度过低光照强度过低时, 集热装置中的热量会有 损失, 可设置一挡板, 利用该挡板可以挡住立方体底部设置的光线入射的开口。 由此, 当温 度适合、 且光照强度较强时, 打开挡板, 集热装置吸收太阳光的热量, 当温度过低, 太阳光 光照强度过低时, 关闭挡板防止集热装置内热量的损失;
每个所述集热模块 11还包括至少一个温度传感器 4和 /或光强传感器 3,用于测量所述中 空容器的温度和 /或受照光强值,所述温度传感器 4和 /或光强传感器 3与所述控制系统之间通 讯连接;
所述控制系统包括前馈调节单元, 所述前馈调节单元根据每个所述中空容器的温度和 /或 光强值进行分析运算后, 产生控制每个所述流量控制器的前馈调节信号, 所述控制系统根据 每个流量控制器的前馈调节信号调节对应的流量控制器, 以改变流入相应的所述中空容器的 吸热工质的流量和 /或流速。
利用前馈调节单元测量影响出口压力和温度的光照强度和中空容器外界温度, 按使流入 相应的所述中空容器的吸热工质的流量和 /或流速调整到合适值的控制运算过程获得调节流 量控制器的前馈调节信号, 控制系统按照前馈调节信号控制流量控制器, 从而调整流入中空 容器内吸热工质的流量和 /或流速, 使得集热模块出口处温度或 /和压力维持在优选值上。
本实施例采用设置于集热模块上的温度传感器和 /或光强传感器测量集热模块本身的温 度和 /或受照光强值, 并由前馈调节单元进行分析运算获得控制流量控制器的前馈调节信号, 控制系统根据前馈调节信号调整流量控制器, 很好的克服了现有技术中采用反馈调节造成的 控制信号滞后、 降低发电效率的问题, 消除了控制信号的滞后, 提高了发电效率。
实施例 2
本实施例中, 所述控制系统还包括运算单元;
所述运算单元根据所述前馈调节单元输出的前馈调节信号并结合所述控制单元内存储的 集热模块 11出口处的预设温度值 ^或 /和预设压力值 ¾, 产生调节所述流量控制器的调节信 号;
所述控制系统根据每个流量控制器的调节信号调节对应的流量控制器, 以改变流入相应 的所述中空容器的吸热工质的流量和 /或流速。
所述中空容器出口处设置有出口温度传感器和 /或压力传感器, 用于测量所述中空容器出 口处的温度和 /或压力值,所述出口温度传感器和 /或压力传感器与所述控制系统之间通讯连接; 所述控制系统还包括主反馈调节单元, 根据所述中空容器出口处的温度和 /或压力值进行 分析运算形成主反馈调节信号;
所述运算单元根据所述前馈调节单元输出的前馈调节信号、 所述主反馈调节单元输出的 主反馈调节信号及控制系统内存储的中空容器出口处的预设温度值 ^或 /和预设压力值 P0, 分析得到调节所述流量控制器的调节信号。
所述阀门处设置有流量传感器, 测量所述阀门处的工质流量, 所述流量传感器与所述控 制系统之间通讯连接;
所述控制系统还包括副反馈调节单元, 所述副反馈调节单元根据所述阀门处的工质流量 分析处理获得副反馈调节信号;
所述运算单元根据所述前馈调节单元输出的前馈调节信号、 所述主反馈调节单元输出的 主反馈调节信号、 所述副反馈调节单元输出的副反馈调节信号及控制系统内存储的中空容器 出口处的预设温度值 ^或 /和预设压力值 ¾, 分析得到调节所述流量控制器的调节信号。
所述控制系统根据流入所有中空容器的吸热工质的流量和 /或流速值调整所述至少一个 驱动泵的转速。
图 6给出了本实施例所述控制阀门开度时的控制流程示意框图, 本实施例与实施例 1相 比, 附加了利用反馈调节单元测量影响出口压力和温度的所述中空容器出口处的温度和 /或压 力值及出口处的工质流量, 按使流入相应的所述中空容器的吸热工质的流量和 /或流速调整到 合适值的控制运算过程获得调节流量控制器的反馈调节信号, 控制系统按照前馈调节信号结 合反馈调节信号调节流量控制器, 改变流入相应的所述中空容器的吸热工质的流量和 /或流速, 从而调整流入中空容器内吸热工质的流量大小, 使得阀门出口温度或 /和压力维持在优选值上。
实施例 3
本实施例在实施例 1或实施例 2的基础上,选择所述流量调节器为阀门和 /或流量驱动泵; 所述流量调节器为阀门时, 所述控制系统控制所述阀门的开度以改变流入所述中空容器 的吸热工质的流量和 /或流速;
所述流量调节器为流量驱动泵时, 所述控制系统控制所述流量驱动泵的转速以改变流入 所述中空容器的吸热工质的流量和 /或流速。
作为本实施例的可变实施方式, 每个集热模块可分别设置有进口阀门 6和出口阀门 7, 当某一集热模块出口阀门的吸热工质温度、 压力值升高时, 控制系统控制进口阀门、 出口阀 门增大开度, 加快吸收热量的速度, 使集热模块中的工质温度接近设定值, 且集热模块出口 阀门压力、 温度接近设定值。
当某一集热模块上所述温度传感器 4和 /或光强传感器 3读数升高时, 控制系统控制进口 阀门、出口阀门增大开度,加快吸收热量的速度,使集热模块中的吸热工质温度接近设定值, 且集热模块出口阀门压力、 温度接近设定值。
当某一集热模块出口阀门压力、 温度降低时, 控制系统控制进口阀门、 出口阀门减小开 度, 减慢吸收热量的速度, 使集热模块中的吸热工质温度接近设定值, 且集热模块出口阀门 压力、 温度接近设定值。
当某一集热模块上所述温度和 /或受照光强值降低时, 控制系统控制进口阀门、 出口阀门 减小开度, 减慢吸收热量的速度, 使吸热模块中的吸热工质温度接近设定值, 且集热模块出 口阀门压力、 温度接近设定值。
当某一集热模块出口阀门压力、 温度低于某一个下限阈值时, 关闭出口进口阀门; 当某 一集热模块出口阀门压力、 温度高于上限阈值时, 开启出口安全阀门, 关闭进口阀门。
所述吸热介质为水时的温度上限阈值为: 350°C; 温度下限阈值为: 680°C;
所述吸热介质为空气时的温度上限阈值为: 350°C; 温度下限阈值为: U00°C;
所述吸热介质为熔盐时的温度上限阈值为: 250°C; 温度下限阈值为: 800°C 。
实施例 4
本实施例在实施例 1至实施例 3任一实施例的基础上, 如图 1所示, 所述集热模块 11还 包括一固定板 1, 所述中空容器和所述温度传感器 4和 /或光强传感器 3固定设置于所述固定 板 1上。 如图 2所示, 所述固定板 1上设置有至少两个紧固件, 所述紧固件用于将所述中空容器 固定设置于太阳能集热塔上。 所述紧固件具有至少一个自由度。 如 2所示的紧固件中, 紧固 件一 5a的自由度为零, 紧固件二的自由度大于等于一,
所述集热模块 11通过所述固定板 1固定设置于所述太阳能集热塔上时, 形成图 3或图 4 所示的集热装置的结构图, 为了防止有光线没有照射在中空容器上的情况的出现, 如图 5所 示, 所述中空容器接收定日镜场反射的太阳光且相邻的两个所述集热模块 11部分重叠。 实施例 4
本实施例在实施例 1或实施例 2或实施例 3的基础上, 选择所述中空容器为固定设置于 所述固定板 1表面的盘管 2, 如图 2所示, 所述盘管 2的出口和入口设置在所述集热模块 11 的同一侧。所述温度传感器 4和 /或光强传感器 3设置于所述固定板 1上与所述盘管 2相同一 侧的表面上。 所述温度传感器 4和 /或光强传感器 3设置于所述盘管 2的间隙处。 所述集热模 块 11包括温度传感器 4时,所述温度传感器 4设置于所述固定板 1上与所述盘管 2相对一侧 的表面上。所述集热模块 11包括光强传感器 3时, 所述光强传感器 3设置于所述固定板 1上 与所述盘管 2相对一侧的表面上, 而为了保证所述光强传感器 3可以检测到光强值, 所述固 定板 1上与所述光强传感器 3相对应的位置开设有通光孔。
为了增加能够吸热的表面积, 所述盘管 2内壁设置有螺纹或波纹。 还可以在所述中空容 器内部填充有用于传导热量的丝状物。
显然, 上述实施例仅仅是为清楚地说明所作的举例, 而并非对实施方式的限定。 对于所 属领域的普通技术人员来说, 在上述说明的基础上还可以做出其它不同形式的变化或变动。 这里无需也无法对所有的实施方式予以穷举。 而由此所引伸出的显而易见的变化或变动仍处 于本发明创造的保护范围之中。

Claims

权 利 要 求 书
1. 一种太阳能集热装置, 包括:
至少一个集热模块 (11 ), 设置于进口主管和出口主管之间, 每个所述集热模块 (11 )包 括具有进口和出口的中空容器, 多个所述中空容器间设有适于吸热工质流动的管路, 所述中 空容器与所述进口主管和 /或出口主管之间设置有流量控制器;
至少一个驱动泵, 用于驱动吸热工质流入所述中空容器;
还包括控制系统, 控制所述流量控制器以改变流入所述中空容器的吸热工质的流量和 /或 流速;
其特征在于:
每个所述集热模块 (11 ) 还包括至少一个温度传感器 (4) 和 /或光强传感器 (3 ), 用于 测量所述中空容器的温度和 /或受照光强值, 所述温度传感器(4)和 /或光强传感器(3 )与所 述控制系统之间通讯连接;
所述控制系统包括前馈调节单元, 所述前馈调节单元根据每个所述中空容器的温度和 /或 光强值进行分析运算后, 产生控制每个所述流量控制器的前馈调节信号, 所述控制系统根据 每个流量控制器的前馈调节信号调节对应的流量控制器, 以改变流入相应的所述中空容器的 吸热工质的流量和 /或流速。
2. 根据权利要求 1所述的太阳能集热装置, 其特征在于:
所述控制系统还包括运算单元;
所述运算单元根据所述前馈调节单元输出的前馈调节信号并结合所述控制单元内存储的 集热模块 (11 ) 出口处的预设温度值 ^或 /和预设压力值 ¾, 产生调节所述流量控制器的调 节信号;
所述控制系统根据每个流量控制器的调节信号调节对应的流量控制器, 以改变流入相应 的所述中空容器的吸热工质的流量和 /或流速。
3. 根据权利要求 2所述的太阳能集热装置, 其特征在于:
所述中空容器出口处设置有出口温度传感器和 /或压力传感器, 用于测量所述中空容器出 口处的温度和 /或压力值,所述出口温度传感器和 /或压力传感器与所述控制系统之间通讯连接; 所述控制系统还包括主反馈调节单元, 根据所述中空容器出口处的温度和 /或压力值进行 分析运算形成主反馈调节信号;
所述运算单元根据所述前馈调节单元输出的前馈调节信号、 所述主反馈调节单元输出的 主反馈调节信号及控制系统内存储的中空容器出口处的预设温度值 ^或 /和预设压力值 P0, 分析得到调节所述流量控制器的调节信号。
4. 根据权利要求 3所述的太阳能集热装置, 其特征在于:
所述阀门处设置有流量传感器, 测量所述阀门处的工质流量, 所述流量传感器与所述控 制系统之间通讯连接;
所述控制系统还包括副反馈调节单元, 所述副反馈调节单元根据所述阀门处的工质流量 分析处理获得副反馈调节信号;
所述运算单元根据所述前馈调节单元输出的前馈调节信号、 所述主反馈调节单元输出的 主反馈调节信号、 所述副反馈调节单元输出的副反馈调节信号及控制系统内存储的中空容器 出口处的预设温度值 ^或 /和预设压力值 ¾, 分析得到调节所述流量控制器的调节信号。
5. 根据权利要求 1-4任一所述的太阳能集热装置, 其特征在于:
所述控制系统还包括:
数据存储单元: 用于存储所述中空容器出口处的压力阈值, 工质温度阈值, 所述阈值均 包括上限阈值和下限阈值; 所述中空容器出口处的预设温度值 ^或 /和预设压力值 各传 感器的测量结果; 各传感器与集热模块 (11 ) 之间的对应关系;
数据通讯单元: 与各个传感器实现数据通讯;
数据比较单元: 将所述数据通讯单元获得的信息与所述数据存储模块存储的相应阈值进 行比较;
调节单元: 根据所述数据比较单元的比较结果及各个传感器与集热模块 (11 ) 间的对应 关系, 产生调节所述流量控制器的调节信号, 调节对应的流量控制器, 以改变流入相应的所 述中空容器的吸热工质的流量和 /或流速。
6. 根据权利要求 1-5任一所述的太阳能集热装置, 其特征在于:
所述流量调节器为阀门和 /或流量驱动泵;
所述流量调节器为阀门时, 所述控制系统控制所述阀门的开度以改变流入所述中空容器 的吸热工质的流量和 /或流速;
所述流量调节器为流量驱动泵时, 所述控制系统控制所述流量驱动泵的转速以改变流入 所述中空容器的吸热工质的流量和 /或流速。
7. 根据权利要求 1-6任一所述的太阳能集热装置, 其特征在于:
所述控制系统根据流入所有中空容器的吸热工质的流量和 /或流速值调整所述至少一个 驱动泵的转速。
8. 根据权利要求 1-7任一所述的太阳能集热装置, 其特征在于:
所述集热模块 (11 ) 还包括一固定板 (1 ), 所述中空容器和所述温度传感器 (4) 和 /或 光强传感器 (3) 固定设置于所述固定板 (1) 上。
9. 根据权利要求 8所述的太阳能集热装置, 其特征在于:
所述固定板(1)上设置有至少两个紧固件, 所述紧固件用于将所述中空容器固定设置于 太阳能集热塔上。
10. 根据权利要求 9所述的太阳能集热装置, 其特征在于:
所述紧固件具有至少一个自由度。
11. 根据权利要求 8-10任一所述的太阳能集热装置, 其特征在于:
所述集热模块(11)通过所述固定板(1) 固定设置于所述太阳能集热塔上时, 所述中空 容器接收定日镜场反射的太阳光且相邻的两个所述集热模块 (11) 部分重叠。
12.根据权利要求 11所述的太阳能集热装置, 其特征在于:
所述中空容器为固定设置于所述固定板 (1) 表面的盘管 (2), 所述盘管 (2) 的出口和 入口设置在所述集热模块 (11) 的同一侧。
13. 根据权利要求 12所述的太阳能集热装置, 其特征在于:
所述温度传感器 (4) 和 /或光强传感器 (3) 设置于所述固定板 (1) 上与所述盘管 (2) 相同一侧的表面上。
14. 根据权利要求 13所述的太阳能集热装置, 其特征在于:
所述温度传感器 (4) 和 /或光强传感器 (3) 设置于所述盘管 (2) 的间隙处。
15. 根据权利要求 13所述的太阳能集热装置, 其特征在于:
所述集热模块 (11) 包括温度传感器 (4) 时, 所述温度传感器 (4) 设置于所述固定板 (1) 上与所述盘管 (2) 相对一侧的表面上。
16. 根据权利要求 13所述的太阳能集热装置, 其特征在于:
所述集热模块 (11) 包括光强传感器 (3) 时, 所述光强传感器 (3) 设置于所述固定板 (1) 上与所述盘管 (2) 相对一侧的表面上, 所述固定板 (1) 上与所述光强传感器 (3) 相 对应的位置开设有通光孔。
17. 根据权利要求 12-16任一所述的太阳能集热装置, 其特征在于:
所述盘管 (2) 内壁设置有螺纹或波纹。
18. 根据权利要求 17所述的太阳能集热装置, 其特征在于:
所述中空容器内部填充有用于传导热量的丝状物。
PCT/CN2012/084124 2011-11-07 2012-11-06 太阳能集热装置 WO2013067908A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011103478670A CN102425865B (zh) 2011-11-07 2011-11-07 太阳能集热装置
CN201110347867.0 2011-11-07

Publications (1)

Publication Number Publication Date
WO2013067908A1 true WO2013067908A1 (zh) 2013-05-16

Family

ID=45959876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084124 WO2013067908A1 (zh) 2011-11-07 2012-11-06 太阳能集热装置

Country Status (2)

Country Link
CN (1) CN102425865B (zh)
WO (1) WO2013067908A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425865B (zh) * 2011-11-07 2013-06-05 深圳市联讯创新工场科技开发有限公司 太阳能集热装置
CN103968567B (zh) * 2013-02-01 2016-10-05 深圳市联讯创新工场科技开发有限公司 一种太阳能集热系统及其控制方法
CN103335422B (zh) * 2013-06-25 2015-05-06 天威(成都)太阳能热发电开发有限公司 槽式聚光太阳热发电站光场稳定集热控制方法
CN106500370B (zh) * 2015-09-08 2018-12-07 北京兆阳光热技术有限公司 一种光热电站集热器的给水量控制方法及其系统
CN106500369B (zh) * 2015-09-08 2018-12-07 北京兆阳光热技术有限公司 光热电站集热器的换热介质供给量的控制方法及其系统
CN106705460B (zh) * 2015-11-16 2019-08-16 北京兆阳光热技术有限公司 一种光热电站集热器的换热介质供给量的控制方法
CN105605801B (zh) * 2016-03-08 2018-07-20 天津大学 一种应用于太阳能线聚焦集热器的腔式吸热器
CN106766271B (zh) * 2016-12-15 2019-05-24 常州龙腾光热科技股份有限公司 一种用于太阳能集热发电的集热场镜场出口温度控制方法
CN110286591A (zh) * 2019-06-21 2019-09-27 西安交通大学 一种前馈-反馈复合控制方法和基于该方法的测控方法
CN112728783A (zh) * 2021-01-28 2021-04-30 南京交想科技有限公司 一种基于物联网的智能太阳能供热系统
CN113091333B (zh) * 2021-03-26 2022-03-22 西安交通大学 一种塔式光热电站吸热器流量前馈-反馈控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474169A (en) * 1980-06-03 1984-10-02 Steutermann Edward M Solar heat collector control device
CN2684167Y (zh) * 2004-03-25 2005-03-09 寸晓鱼 流体流量计及智能型太阳能热水器自动上水控制器
CN1892147A (zh) * 2005-07-05 2007-01-10 新疆新能源股份有限公司 直流式太阳能热水系统及其水流控制方法
CN2864498Y (zh) * 2005-12-07 2007-01-31 戚荣生 平板太阳能源集热器
US20090320829A1 (en) * 2008-06-27 2009-12-31 Inform Energy Pty Ltd Monitoring apparatus
CN100580337C (zh) * 2006-09-27 2010-01-13 黑龙江大学 太阳能热水器的集热装置
CN102425865A (zh) * 2011-11-07 2012-04-25 深圳市联讯创新工场科技开发有限公司 太阳能集热装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2171821Y (zh) * 1993-09-25 1994-07-13 北京市西城区新开通用试验厂 一种梯级升温数控太阳能锅炉
CN2387477Y (zh) * 1999-07-24 2000-07-12 刘建国 一种电补充加热太阳能热水器的控制器
KR100420839B1 (ko) * 2001-07-25 2004-03-02 박종근 태양 추적장치
KR100807846B1 (ko) * 2006-12-20 2008-02-27 성인식 태양열 보일러의 반원통형 집열장치
AU2008274136A1 (en) * 2007-07-10 2009-01-15 Jose Javier Alejo Trevijano Solar energy concentrator and assembly method
KR100959369B1 (ko) * 2008-03-06 2010-05-26 김인용 태양열 스팀 발전기

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474169A (en) * 1980-06-03 1984-10-02 Steutermann Edward M Solar heat collector control device
CN2684167Y (zh) * 2004-03-25 2005-03-09 寸晓鱼 流体流量计及智能型太阳能热水器自动上水控制器
CN1892147A (zh) * 2005-07-05 2007-01-10 新疆新能源股份有限公司 直流式太阳能热水系统及其水流控制方法
CN2864498Y (zh) * 2005-12-07 2007-01-31 戚荣生 平板太阳能源集热器
CN100580337C (zh) * 2006-09-27 2010-01-13 黑龙江大学 太阳能热水器的集热装置
US20090320829A1 (en) * 2008-06-27 2009-12-31 Inform Energy Pty Ltd Monitoring apparatus
CN102425865A (zh) * 2011-11-07 2012-04-25 深圳市联讯创新工场科技开发有限公司 太阳能集热装置

Also Published As

Publication number Publication date
CN102425865A (zh) 2012-04-25
CN102425865B (zh) 2013-06-05

Similar Documents

Publication Publication Date Title
WO2013067908A1 (zh) 太阳能集热装置
CN209027121U (zh) 一种高效太阳能集热联合电能供热系统
CN102606430B (zh) 分体运行太阳能碟式聚光发电系统
CN102345576A (zh) 高效率太阳能光热塔式发电与海水淡化一体化系统
CN102635462A (zh) 一种太阳能碟式斯特林发动机用蓄热控温装置
CN102445010A (zh) 集热系统的温度控制方法及装置
CN106979546A (zh) 一种热管式聚光光伏光热供暖系统
CN105205562A (zh) 塔式太阳能电站接收器的运行优化方法
CN202170852U (zh) 一种高效率太阳能光热塔式发电与海水淡化一体化系统
CN108106025A (zh) 一种太阳能光伏光热与蓄热式电锅炉联合的供电供暖系统
CN201983475U (zh) 一种线性聚焦的太阳能聚热装置
CN206037450U (zh) 跨季节太阳能储能供热系统
CN115568165A (zh) 一种用于变流器的恒温控制装置及其安装结构
CN212619396U (zh) 一种相变储热的控温式太阳能烘箱
CN203116311U (zh) 一种太阳能光伏光热一体化装置
CN103363509A (zh) 一种光电混合动力太阳能蒸汽发生器
CN209569916U (zh) 光伏循环储热式智能太阳能热水器
CN209485661U (zh) 一种用于抛物槽式太阳能集热器效率测试的装置
CN103808029B (zh) 一种太阳能聚光系统
CN208253984U (zh) 蝶式太阳能系统
CN202927806U (zh) 一种太阳能快速升温装置
CN201935429U (zh) 自转式太阳能热水器
CN105577032A (zh) 单元式太阳能全光谱利用的光电-热电-热水复合系统
CN206412982U (zh) 一种智能化程度高的聚光光伏塔
CN104879284A (zh) 一种追日太阳能烟囱热气流系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/10/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12848338

Country of ref document: EP

Kind code of ref document: A1