WO2013067740A1 - 基于s-pin二极管的可重构波导混合缝隙天线 - Google Patents

基于s-pin二极管的可重构波导混合缝隙天线 Download PDF

Info

Publication number
WO2013067740A1
WO2013067740A1 PCT/CN2011/084854 CN2011084854W WO2013067740A1 WO 2013067740 A1 WO2013067740 A1 WO 2013067740A1 CN 2011084854 W CN2011084854 W CN 2011084854W WO 2013067740 A1 WO2013067740 A1 WO 2013067740A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
metal contact
pin diode
gap
slot antenna
Prior art date
Application number
PCT/CN2011/084854
Other languages
English (en)
French (fr)
Inventor
胡斌杰
张家乐
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2013067740A1 publication Critical patent/WO2013067740A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/22Longitudinal slot in boundary wall of waveguide or transmission line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching

Definitions

  • the present invention relates to solid state plasma technology and waveguide slot antenna technology, and more particularly to a waveguide hybrid slot antenna that utilizes solid state plasma to achieve a reconfigurable pattern.
  • the waveguide slot antenna is formed by slitting on a metal waveguide, and the slit form generally has a waveguide wide wall longitudinal slit, a waveguide wide wall inclined slit, a waveguide narrow wall inclined slit, and the like as needed.
  • the slot antenna has the advantages of high radiation efficiency, less energy loss, high caliber surface utilization, compact structure, convenient installation, high strength, strong wind resistance, etc. It occupies an important position in the modern electronics industry and is widely used on the ground and onboard. , airborne, navigation and other fields, and waveguide slot antennas have become the preferred form of airborne radar antennas.
  • Plasma antennas are a major breakthrough in the field of antennas. They are extensions and updates to traditional antennas, which extend the range of applications for plasma applications.
  • the unique physical properties of plasma have great potential for solving antenna stealth and mutual coupling, and have become a research hotspot.
  • most of the current research is limited to gaseous plasma antennas, and the research on solid-state plasma antennas is almost blank. This is because the solid-state plasma is not easily excited in a large area and at a high concentration, and it is difficult to directly function as an antenna radiator like a gaseous plasma.
  • Solid-state plasmas are generally found in physical semiconductor devices, and do not need to be wrapped with a dielectric tube like a gaseous plasma, so that they have better safety and stability, and can be converted and utilized.
  • the object of the present invention is to provide a reconfigurable waveguide hybrid slot antenna based on S-PIN diode, which realizes dynamic change of antenna structure by using solid state plasma, has fast adjustable radiation characteristics, and can perform omnidirectional scanning waveguide hybrid slot antenna.
  • the reconfigurable waveguide hybrid slot antenna of the diode is a rectangular waveguide, one end of the rectangular waveguide is used for feeding, and the other end is provided with a reflecting plate; and the rectangular waveguide waveguide wide wall and the narrow wall of the waveguide are cut 8- 32 a slot and an S-PIN diode for controlling the slot equivalent opening or equivalent closing in each slot; the control slot equivalent opening or equivalent closing by controlling the S-PIN
  • the bias voltage of the diode is realized; the gap on the wide wall of the waveguide is parallel to the long edge of the rectangular waveguide, and the gap is distributed on both sides of the center line of the wide wall of the waveguide; the gap on the narrow wall of the waveguide is obliquely cut and cut into the wide wall of the waveguide, but not cut into
  • the position of the slit on the wide wall of the waveguide is such that the cutting direction is at an angle to the vertical direction of the long edge.
  • the invention passes The S-PIN diode control slot is equivalent
  • the mounted S-PIN diode includes an inner metal contact, an outer metal contact, a borophosphosilicate glass, a P-type semiconductor block, an N-type semiconductor block, an intrinsic layer, a buried oxide layer, and a silicon substrate; an inner metal contact and an outer metal contact
  • the metal contacts are placed on the surface of the slit, on the same plane, and the inner metal contacts are located inside the outer metal contact piece, and there is a gap between the inner metal contact piece and the outer metal contact piece, and the gap is filled with borophosphosilicate glass;
  • the inner metal There is a circle of the P-type semiconductor block under the edge of the contact for providing holes; a ring of N-type semiconductor blocks under the outer metal contact for supplying electrons; and P-type and N-type semiconductor blocks except for the top surface All of which are surrounded by the intrinsic layer; a thin layer of the buried oxide layer is next to the intrinsic layer; the buried silicon layer is next to the silicon substrate, and the silicon substrate is at the bottom of the gap;
  • Type semiconductor will generate holes, and holes can move freely; electrons and holes When entering the intrinsic layer, when the concentration is large enough, a thin layer similar to metal will be formed, which is equivalent to the gap closure; when no bias voltage is applied, the S-PIN diode is not conductive, which is equivalent to only the gap. Filled with insulating medium, equivalent to gap opening; arrays of all open gaps work in standing wave form; at the time of scanning, the radiation of the antenna is all generated by the gap array on one of the walls, and the gaps on the remaining walls are all closed. To make the beam have obvious directivity, sequentially open the gap between the wide wall and the narrow wall of the adjacent waveguide, and continuously circulate to form a scanning beam; when omnidirectional radiation, all the gaps are opened.
  • Reconfigurable waveguide hybrid slot antenna based on S-PIN diode
  • the angle between the cutting direction of each slit on the narrow wall of the waveguide and the vertical direction of the long edge of the rectangular waveguide is 4°-15°, and the angles of the angles are different from each other.
  • the material of the inner metal contact piece and the outer metal contact piece is a metal having good electrical conductivity and a thickness of 0.8 - 1.5 ⁇ m.
  • the inner metal contact has a width of 200 ⁇ m and a length of 14-15cm. .
  • the gap between the inner metal contact and the outer metal contact is 50-100 ⁇ m, and the bias voltage between the inner and outer metal contacts is DC voltage regulation, and the voltage value is 2.5-3V.
  • the material of the intrinsic layer is pure silicon, and the thickness is 70-90 ⁇ m.
  • the material of the buried oxide layer is silicon dioxide and has a thickness of 2-3 ⁇ m.
  • the material of the silicon substrate is pure silicon and has a thickness of 300-500 ⁇ m.
  • borophosphosilicate glass which is a boron-doped silica glass having a thickness of 1 ⁇ m. It protects the intrinsic layer and prevents the device from getting wet.
  • the present invention utilizes a direct current voltage to excite a P-type semiconductor to release a large number of holes, and the N-type semiconductor releases a large amount of electrons which are injected into the intrinsic layer to form a thin layer of plasma.
  • the plasma thin layer it is necessary to have a sufficiently high carrier concentration. It has been shown that when the carrier concentration reaches the order of 10 8 cm -3 , the S-PIN diode has good metal conductivity so that the gap is in a fully closed equivalent state when the S-PIN diode is turned on.
  • the present invention utilizes a SOI (Silicon-On-Insulator) structure in which a buried oxide layer is added between the silicon substrate and the intrinsic layer, which is compatible with the existing silicon process and can reduce the process by 13-20%.
  • SOI Silicon-On-Insulator
  • the buried oxide layer is added, and the distance between the buried oxide layer and the contact is 2-3 times of the skin depth, so that carriers cannot be diffused into the silicon substrate and move only in the thin intrinsic layer.
  • the concentration index is easily satisfied, and the concentration distribution is uniform, and the dissipation during microwave propagation is reduced.
  • the gap width between the inner and outer contacts is set to a maximum value, that is, the diffusion length of the carrier, so that the width of the slot is maximized to widen the frequency band of the antenna.
  • the present invention has the following advantages and benefits:
  • the present invention slits the four waveguide walls of the waveguide and installs the S-PIN diode, and the pattern can be reconstructed without changing the feeding mode. characteristic.
  • the present invention can realize the dynamic change of the beam by only one waveguide, does not require a complicated feeding network, reduces the volume, reduces the cost, and extends the beam scanning angle to 360°.
  • the antenna works in the omnidirectional antenna mode; when the radar is used for monitoring, tracking the target or path navigation, the antenna works in the directional antenna mode; when the radar is used for reconnaissance and search for the target When switching to the omnidirectional scanning mode.
  • FIG. 1 is a schematic structural view of a reconfigurable waveguide hybrid slot antenna based on an S-PIN diode in an embodiment.
  • Figure 2 is a plan view of a slit in which an S-PIN diode is mounted.
  • Figure 3 is a cross-sectional view of the middle of the slit.
  • the reconfigurable waveguide hybrid slot antenna cuts 16 slots 1 on each of the two waveguide wide walls and the two waveguide narrow walls.
  • the slit of the wide wall of the waveguide is parallel to the long edge of the rectangular waveguide, and the longitudinal distance between the slits is ⁇ g /2, where ⁇ g is the wavelength of the waveguide.
  • the cutting direction of the narrow wall of the waveguide has an angle with the vertical direction of the long edge (the angle of each angle is different, the range is 4-15°), the distance between the centers of the slit is also ⁇ g /2, and the waveguide width is cut at a certain depth. wall.
  • One end of the waveguide is used for feeding, and the other end is provided with a reflecting plate 2, and the opened slot array operates in a standing wave form.
  • the gap 1 includes an inner metal contact piece 3, an outer metal contact piece 4, and a gap between the inner and outer metal contact pieces is 100 ⁇ m.
  • the inner metal contact has a width of 200 ⁇ m, which makes the equivalent gap width reach 400 ⁇ m. To meet bandwidth requirements.
  • the voltage between the inner and outer metal contacts is supplied by a DC stabilized power supply 5, and the voltage is continuously adjustable from 0 to 5V.
  • the gap between the inner and outer metal contacts is filled with borophosphosilicate glass 6 and has a thickness of 1 ⁇ m. .
  • the intrinsic layer 9 is pure silicon which is not doped with impurities and is surrounded by P-type and N-type semiconductors.
  • a buried oxide layer 10 which can be made of silicon dioxide to prevent carriers from diffusing downward and to maintain carrier concentration.
  • silicon substrate 11 which can be regarded as a layer of insulating dielectric and serves as a support.
  • the weak free electrons of the N-type semiconductor block 8 will separate and generate electrons from the atoms, and the P-type semiconductor block 7 generates freely transportable holes at the position where the electrons are removed. Due to the limitation of the buried oxide layer 10, electrons and holes can only be injected into the intrinsic layer 9.
  • the carrier concentration reaches 10 8 cm -3
  • the plasma has sufficient conductivity to form a thin layer similar to metal covering the surface of the gap, equivalent to the gap 1 being closed.
  • the DC stabilized power supply 5 is turned off, the plasma disappears immediately. Since the inner metal contact piece 3 has a certain interval from the outer metal contact piece 4, and the thickness of the inner metal contact piece 3 is thin, the influence on the gap 1 is negligible. , equivalent to the opening of the gap 1.
  • the 16 slots 1 of the same waveguide wall can be simultaneously turned on or off by using the DC stabilized power supply 5, and the pattern is dynamically adjusted.
  • the slits 1 of the four waveguide walls are all turned on. At this time, the slits 1 of the four waveguide walls are excited by the current of the waveguide surface to generate radiation, resulting in a flat circular pattern with better roundness.
  • the antenna When the antenna operates in the directional antenna mode, only one slot 1 of the waveguide wall is opened, and the slits 1 of the remaining three waveguide walls are temporarily closed due to the plasma of the device surface. At this time, a flat fan beam is generated in one direction, and the radiation pattern has obvious directivity and has a high gain and front-to-back ratio.
  • the on/off of the DC stabilized power supply 5 is controlled according to the required scanning frequency. First, opening a slit 1 of the waveguide wall, and then closing the slit 1 of the waveguide wall, and simultaneously opening the slit 1 of the adjacent waveguide wall, and so on, can realize 360° omnidirectional scanning of the cross section of the waveguide.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

基于S-PIN二极管的可重构波导混合缝隙天线。天线的主体矩形波导的波导宽壁和波导窄壁上均切割有8-32个缝隙(1),并在每个缝隙(1)中安装一个S-PIN二极管;天线工作时,对不需产生辐射的三个波导壁的S-PIN二极管进行正向偏置,形成类似金属的薄层,使该波导壁上的缝隙(1)全部关闭。天线的辐射由另外一个波导壁上的缝隙阵列产生,能在需要的方向上产生较强辐射。通过控制S-PIN二极管的偏置电压,使天线实现全向扫描。当所有二极管的偏置电压全部撤消,则能实现全向辐射。天线实现了方向图的可重构,并且能在全向辐射、定向辐射、全向扫描等工作模式中自由切换。

Description

基于 S-PIN 二极管的可重构波导混合缝隙天线
技术领域
本发明涉及固态等离子体技术和波导缝隙天线技术,特别是涉及利用固态等离子体实现方向图可重构的波导混合缝隙天线。
背景技术
波导缝隙天线是通过在金属波导上开缝制成,开缝形式根据需要一般有波导宽壁纵缝、波导宽壁倾斜缝隙、波导窄壁倾斜缝隙等。缝隙天线具有辐射效率高、能量漏失少、口径面利用率高、结构紧凑、安装方便、强度较高、抗风力强等优点,在现代电子工业中占据重要位置,被广泛应用于地面、舰载、机载、导航等各个领域,而且波导缝隙天线已经成为机载雷达天线的优选形式。
近年来,为了丰富雷达工作方式,提高雷达的性能,使它能得到更广泛的应用,在更多新型雷达如三坐标雷达、目标指示雷达、气象雷达、预警雷达以及机场监视雷达中发挥良好性能,有些学者开始了波导缝隙天线阵列波束赋形的研究。但由于波导缝隙天线缺少相位控制手段,不利于赋形波束的实现。而且现时的波束赋形需要多个波导并排放置,增大了天线体积和成本。如何只用一个波导实现方向图的动态改变,成为一个不好解决的难题。
等离子体天线是天线领域的一个重大突破,是对传统天线的延伸和更新,它拓展了等离子体的工程应用范围。等离子体独特的物理性质,在解决天线隐身与互耦方面具有很大的发展潜力,已成为研究的热点。但目前绝大多数的研究只限于气态等离子体天线,而对固态等离子体天线的研究几乎还是空白。这是由于固态等离子体不容易大面积、高浓度地激发,很难像气态等离子体那样直接用作天线辐射体。固态等离子体一般存在于物理半导体器件中,无需像气态等离子那样用介质管包裹,因而有更好的安全性和稳定性,可以转换思想加以利用。
发明内容
本发明的目的在于提供基于S-PIN二极管的可重构波导混合缝隙天线,利用固态等离子体实现天线结构动态改变,辐射特性快速可调,并且可以进行全向扫描的波导混合缝隙天线。
本发明的目的通过如下技术方案实现:
基于 S-PIN 二极管的可重构波导混合缝隙天线,天线的主体是矩形波导,矩形波导的一端用于馈电,另一端设有反射板;在所述矩形波导波导宽壁和波导窄壁上均切割 8-32 个缝隙,并在每个缝隙中安装一个用于控制缝隙等效开启或等效关闭的 S-PIN 二极管;所述控制缝隙等效开启或等效关闭通过控制 S-PIN 二极管的偏置电压实现;波导宽壁上的缝隙平行于矩形波导的长棱,间隔分布在波导宽壁中线两边;波导窄壁上的缝隙为倾斜切割,并切入波导宽壁,但不切至波导宽壁上的缝隙所在位置,切割方向与长棱的垂直方向有夹角。本发明通过 S-PIN 二极管控制缝隙等效开启或关闭,实现天线方向图全向扫描和全向辐射。
安装的S-PIN二极管包括内金属触片、外金属触片、硼磷硅玻璃、P型半导体块、N型半导体块、本征层、埋氧层和硅衬底;内金属触片和外金属触片覆在缝隙表面,位于同一平面上,且内金属触片位于外金属触片里面,内金属触片和外金属触片之间有间隙,间隙中填充了硼磷硅玻璃;内金属触片边缘的下方有一圈所述P型半导体块,用于提供空穴;外金属触片的下方有一圈所述N型半导体块,用于提供电子;P型和N型半导体块除顶面以外都被所述本征层包裹着;本征层下面紧贴着一层很薄的所述埋氧层;埋氧层下面紧贴着所述硅衬底,硅衬底处于缝隙的底部;当在内金属触片与外金属触片之间加上正向偏置电压后,S-PIN二极管导通,N型半导体中的弱自由电子将会从原子中分离,形成自由负电荷,P型半导体将产生空穴,而且空穴可以自由迁移;电子与空穴注入到本征层中,当达到浓度足够大时,将会形成类似金属的薄层,等效为缝隙关闭;当不加偏置电压时,S-PIN二极管不导通,相当于缝隙中只填充了绝缘介质,等效为缝隙开启;所有开启的缝隙组成的阵列工作在驻波形式;在扫描的时刻天线的辐射全部由其中一个壁上的缝隙阵列产生,而其余壁上的缝隙全部关闭,使波束具有明显的指向性,依次开启相邻波导宽壁与窄壁上的缝隙,不断循环便可形成扫描波束;在全向辐射时,则将所有的缝隙开启。
上述基于S-PIN二极管的可重构波导混合缝隙天线 中,波导窄壁上的各缝隙切割方向与矩形波导长棱的垂直方向的夹角为4°-15°,且夹角大小互不相同。
上述基于S-PIN二极管的可重构波导混合缝隙天线 中, 内金属触片与外金属触片的材料为导电性能良好的金属,厚度为0.8 -1.5μm 。 内金属触片宽度为200μm ,长度为14-15cm 。内金属触片与外金属触片之间的间隙为50-100μm ,加在内外金属触片之间的偏置电压为直流稳压,电压值为2.5-3V。
上述基于S-PIN二极管的可重构波导混合缝隙天线 中, 本征层的材料为纯硅,厚度为70-90μm 。埋氧层的材料是二氧化硅,厚度为2-3μm 。 硅衬底的材料为纯硅,厚度为300-500μm 。
上述内外金属触片之间的间隙填充有硼磷硅玻璃,这是一种掺硼的二氧化硅玻璃,厚度为1μm ,可以保护本征层并防止器件受潮。
本发明利用直流电压激发P型半导体释放大量空穴,N型半导体释放大量电子,这些载流子注入到本征层中,形成等离子体薄层。但要使等离子体薄层具有良好的金属特性,必须有足够高的载流子浓度。已证明,当载流子浓度达到108cm-3数量级时,S-PIN二极管就具有良好的金属导电性能,这样才能使S-PIN二极管导通时缝隙处于完全关闭的等效状态。为此,本发明利用了SOI(Silicon-On-Insulator)结构,在硅衬底和本征层之间加入了埋氧层,这与现有硅工艺兼容,可减少13-20%的工序。加入了埋氧层,且埋氧层与触片之间的距离为趋肤深度的2-3倍,使载流子无法扩散到硅衬底中,只在很薄的本征层中运动,使得浓度指标容易满足,并保证浓度分布均匀,减少微波传播时的耗散。为了兼顾波导缝隙天线的性能,将内外触片之间的间隙宽度设定为最大值,即载流子的扩散长度,使得缝隙的宽度达到最大,以展宽天线的频带。
与现有的技术相比,本发明具有以下优点和有益效果:
(1)相对于传统的只在一个波导壁开缝的波导缝隙天线,本发明在波导四个波导壁开缝并安装S-PIN二极管,无需改变馈电方式即可实现方向图可重构的特性。
(2)相对于波导缝隙天线阵列,本发明只需一个波导即可实现波束的动态变化,无需复杂的馈电网络,并减少了体积、降低了成本,并且将波束扫描角度扩展到360°。
(3)为新型多功能雷达的天线设计提供了新思路:根据不同的应用场合切换天线的工作方式。例如当雷达用于预警,防止被敌方锁定时,天线工作于全向天线方式;当雷达用于监视、追踪目标或路径导航时,天线工作于定向天线方式;当雷达用于侦察、搜索目标时,切换成全向扫描方式。
附图说明
图1为实施方式中基于S-PIN二极管的可重构波导混合缝隙天线的结构示意图。
图2为安装了S-PIN二极管的缝隙俯视图。
图3为缝隙中部的剖面图。
具体实施方式
下面结合附图对本发明做进一步详细说明,但本发明的实施方式不限于此。
如图1所示,可重构波导混合缝隙天线在两个波导宽壁和两个波导窄壁上均各切割16个缝隙1。波导宽壁的缝隙平行于矩形波导的长棱,缝隙之间的纵向距离为λg/2,其中λg 为波导波长。波导窄壁的切割方向与长棱的垂直方向有夹角(各夹角大小不同,范围为4-15°),缝隙中心之间的距离也为λg/2 ,并以一定深度切入波导宽壁。波导的一端用于馈电,另一端加有反射板2,开启的缝隙阵列工作在驻波形式。
如图2、图3所示,缝隙1中包括内金属触片3,外金属触片4,内外金属触片之间的间隙为100μm ,内金属触片的宽度为200μm ,使等效的缝隙宽度达到400μm ,以满足带宽要求。内外金属触片之间的电压由直流稳压电源5提供,电压从0-5V连续可调。内外金属触片的间隙由硼磷硅玻璃6填充,厚度为1μm 。在内金属触片边缘的下方有一圈P型半导体块7,宽度为20μm ,在外金属触片的下方有一圈N型半导体块8 ,宽度为20μm 。本征层9是没有掺杂杂质的纯硅,包裹着P型和N型半导体。本征层下方是埋氧层10,可用二氧化硅制成,用于防止载流子向下方扩散,维持载流子的浓度。埋氧层下方是硅衬底11,可以看作是一层绝缘的电介质,并起支撑作用。
当直流稳压电源5开启后,N型半导体块8的弱自由电子将会从原子中分离产生电子, P型半导体块7在电子被移去的位置产生可自由迁移的空穴。由于埋氧层10的限制,电子与空穴只能注入到本征层9中。当载流子浓度达到108cm-3 ,等离子体具有足够的导电率,形成类似金属的薄层,覆盖在缝隙表层,等效为缝隙1关闭。当直流稳压电源5关闭后,等离子体马上消失,由于内金属触片3与外金属触片4有一定的间隔,而且内金属触片3的厚度很薄,对缝隙1的影响可忽略不计,相当于缝隙1开启。可根据实际的应用场合,利用直流稳压电源5对同一波导壁的16个缝隙1同时开启或关闭,动态调整方向图。
当天线工作于全向天线方式,四个波导壁的缝隙1全部开启。此时四个波导壁的缝隙1均受到波导表面电流的激励而产生辐射,产生扁平的圆形的方向图,有较好的不圆度。
当天线工作于定向天线方式,只开启一个波导壁的缝隙1,其余三个波导壁的缝隙1由于器件表面的等离子体的作用暂时关闭。此时在一个方向产生扁平的扇形波束,辐射方向图具有明显的指向性,并具有较高的增益和前后比。
当天线用于全向扫描时,根据需要的扫描频率控制直流稳压电源5的通断。先打开一个波导壁的缝隙1,再关闭此波导壁的缝隙1,同时打开相邻波导壁的缝隙1,如此类推,便能实现方向图在波导横切面进行360°全向扫描。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步的详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并非用以限定本发明的范围。任何本领域的技术人员,在不脱离本发明的构思和原则的前提下所做出的等同变化与修改,均属于本发明保护的范围。

Claims (1)

1. 基于 S-PIN 二极管的可重构波导混合缝隙天线,天线的主体是矩形波导,矩形波导的一端用于馈电,另一端设有反射板;其特征是在所述矩形波导波导宽壁和波导窄壁上均切割 8-32 个缝隙,并在每个缝隙中安装一个用于控制缝隙等效开启或等效关闭的 S-PIN 二极管;所述控制缝隙等效开启或等效关闭通过控制 S-PIN 二极管的偏置电压实现;波导宽壁上的缝隙平行于矩形波导的长棱,间隔分布在波导宽壁中线两边;波导窄壁上的缝隙为倾斜切割,并切入波导宽壁,但不切至波导宽壁上的缝隙所在位置,切割方向与长棱的垂直方向有夹角,通过 S-PIN 二极管控制缝隙等效开启或关闭,实现天线方向图全向扫描和全向辐射。
2. 根据权利要求 1 所述的基于 S-PIN 二极管的可重构波导混合缝隙天线,其特征在于安装的 S-PIN 二极管包括内金属触片、外金属触片、硼磷硅玻璃、 P 型半导体块、 N 型半导体块、本征层、埋氧层和硅衬底;内金属触片和外金属触片覆在缝隙表面,位于同一平面上,且内金属触片位于外金属触片里面,内金属触片和外金属触片之间有间隙,间隙中填充了硼磷硅玻璃;内金属触片边缘的下方有一圈所述 P 型半导体块,用于提供空穴;外金属触片的下方有一圈所述 N 型半导体块,用于提供电子; P 型和 N 型半导体块除顶面以外都被所述本征层包裹着;本征层下面紧贴着一层很薄的所述埋氧层;埋氧层下面紧贴着所述硅衬底,硅衬底处于缝隙的底部;当在内金属触片与外金属触片之间加上正向偏置电压后, S-PIN 二极管导通, N 型半导体中的弱自由电子将会从原子中分离,形成自由负电荷, P 型半导体将产生空穴,而且空穴可以自由迁移;电子与空穴注入到本征层中,当达到浓度足够大时,将会形成类似金属的薄层,等效为缝隙关闭;当不加偏置电压时, S-PIN 二极管不导通,相当于缝隙中只填充了绝缘介质,等效为缝隙开启;所有开启的缝隙组成的阵列工作在驻波形式;在扫描的时刻天线的辐射全部由其中一个壁上的缝隙阵列产生,而其余壁上的缝隙全部关闭,使波束具有明显的指向性,依次开启相邻波导宽壁与窄壁上的缝隙,不断循环便可形成扫描波束;在全向辐射时,则将所有的缝隙开启。
3. 根据权利要求 1 所述的基于 S-PIN 二极管的可重构波导混合缝隙天线,其特征在于波导窄壁上的各缝隙切割方向与矩形波导长棱的垂直方向的夹角为 4 ° -15 °,且夹角大小互不相同。
4. 根据权利要求2所述的基于S-PIN二极管的可重构波导混合缝隙天线,其特征在于:内金属触片与外金属触片的材料为导电金属,厚度为0.8μm -1.5μm 。
5. 根据权利要求4所述的基于S-PIN二极管的可重构波导混合缝隙天线,其特征在于:内金属触片宽度为200μm ,长度为14-15cm 。
6. 根据权利要求2所述的基于S-PIN二极管的可重构波导混合缝隙天线,其特征在于:内金属触片与外金属触片之间的间隙为50μm -100μm 。
7. 根据权利要求2所述的基于S-PIN二极管的可重构波导混合缝隙天线,其特征在于:加在内外金属触片之间的偏置电压为直流稳压,电压值为2.5V -3V。
8. 根据权利要求2所述的基于S-PIN二极管的可重构波导混合缝隙天线,其特征在于:本征层的材料为纯硅,厚度为70μm -90μm 。
9. 根据权利要求2所述的基于S-PIN二极管的可重构波导混合缝隙天线,其特征在于:埋氧层的材料是二氧化硅,厚度为2-3μm 。
10. 根据权利要求2所述的基于S-PIN二极管的可重构波导混合缝隙天线,其特征在于:硅衬底的材料为纯硅,厚度为300-500μm 。
PCT/CN2011/084854 2011-11-09 2011-12-28 基于s-pin二极管的可重构波导混合缝隙天线 WO2013067740A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110352012.7A CN102403573B (zh) 2011-11-09 2011-11-09 基于s-pin二极管的可重构波导混合缝隙天线
CN201110352012.7 2011-11-09

Publications (1)

Publication Number Publication Date
WO2013067740A1 true WO2013067740A1 (zh) 2013-05-16

Family

ID=45885528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084854 WO2013067740A1 (zh) 2011-11-09 2011-12-28 基于s-pin二极管的可重构波导混合缝隙天线

Country Status (2)

Country Link
CN (1) CN102403573B (zh)
WO (1) WO2013067740A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10439275B2 (en) 2016-06-24 2019-10-08 Ford Global Technologies, Llc Multiple orientation antenna for vehicle communication
CN112736480A (zh) * 2020-12-23 2021-04-30 西华大学 基于射频开关的单辐射体方向图与极化重构装置及方法
CN113314835A (zh) * 2021-05-26 2021-08-27 北京京东方技术开发有限公司 固态等离体子天线及其制备方法
CN114843787A (zh) * 2022-04-24 2022-08-02 西安交通大学 一种用于微波烧结湿陷性黄土的圆波导缝隙天线及方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780092B (zh) * 2012-07-31 2014-06-04 电子科技大学 一种基片集成波导频率可调缝隙天线
CN104716420B (zh) * 2015-04-08 2017-10-17 南开大学 基于双横向pin二极管的频率可重构波导缝隙天线
CN106941212B (zh) * 2017-03-01 2019-09-20 青岛海信移动通信技术股份有限公司 天线装置及电子设备
CN107026327B (zh) * 2017-03-13 2020-01-10 北京航空航天大学 一种半模基片集成波导漏波天线
CN108711671B (zh) * 2018-04-25 2020-07-28 南京航空航天大学 一种共口径频率可重构片上缝隙阵列天线及使用方法
CN109687104B (zh) * 2018-12-20 2024-03-01 中国科学院上海微系统与信息技术研究所 一种宽水平角窄俯仰角单狭缝天线及其制作方法
CN110518360B (zh) * 2019-08-14 2020-11-03 南京航空航天大学 采用双s-pin固态等离子体结构的缝隙天线
CN110544823B (zh) * 2019-08-14 2021-04-16 南京航空航天大学 频率和极化可重构的固态等离子体天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229745A (en) * 1979-04-30 1980-10-21 International Telephone And Telegraph Corporation Edge slotted waveguide antenna array with selectable radiation direction
SU1171887A1 (ru) * 1983-05-03 1985-08-07 Московский Ордена Ленина И Ордена Октябрьской Революции Авиационный Институт Им.Серго Орджоникидзе Волноводно-щелева антенна
US4575727A (en) * 1983-06-20 1986-03-11 The United States Of America As Represented By The Secretary Of The Army Monolithic millimeter-wave electronic scan antenna using Schottky barrier control and method for making same
DE3802662A1 (de) * 1988-01-29 1989-08-03 Licentia Gmbh Phasengesteuerte antenne
JPH0563409A (ja) * 1991-08-29 1993-03-12 Nissan Motor Co Ltd 導波管

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2840456A1 (fr) * 2002-05-31 2003-12-05 Thomson Licensing Sa Perfectionnement aux antennes planaires de type fente
CN201397880Y (zh) * 2009-05-22 2010-02-03 中国电子科技集团公司第三十八研究所 频率选择性宽带波导缝隙天线阵
CN201655972U (zh) * 2010-03-23 2010-11-24 佛山市南海微波通讯设备有限公司 水平极化基站板型天线
CN202004155U (zh) * 2011-02-21 2011-10-05 中国科学院上海微系统与信息技术研究所 毫米波全息成像系统前端收发阵列天线与开关的集成结构
CN202308320U (zh) * 2011-11-09 2012-07-04 华南理工大学 基于s-pin二极管的可重构波导混合缝隙天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229745A (en) * 1979-04-30 1980-10-21 International Telephone And Telegraph Corporation Edge slotted waveguide antenna array with selectable radiation direction
SU1171887A1 (ru) * 1983-05-03 1985-08-07 Московский Ордена Ленина И Ордена Октябрьской Революции Авиационный Институт Им.Серго Орджоникидзе Волноводно-щелева антенна
US4575727A (en) * 1983-06-20 1986-03-11 The United States Of America As Represented By The Secretary Of The Army Monolithic millimeter-wave electronic scan antenna using Schottky barrier control and method for making same
DE3802662A1 (de) * 1988-01-29 1989-08-03 Licentia Gmbh Phasengesteuerte antenne
JPH0563409A (ja) * 1991-08-29 1993-03-12 Nissan Motor Co Ltd 導波管

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10439275B2 (en) 2016-06-24 2019-10-08 Ford Global Technologies, Llc Multiple orientation antenna for vehicle communication
CN112736480A (zh) * 2020-12-23 2021-04-30 西华大学 基于射频开关的单辐射体方向图与极化重构装置及方法
CN112736480B (zh) * 2020-12-23 2022-02-01 西华大学 基于射频开关的单辐射体方向图与极化重构装置及方法
CN113314835A (zh) * 2021-05-26 2021-08-27 北京京东方技术开发有限公司 固态等离体子天线及其制备方法
CN114843787A (zh) * 2022-04-24 2022-08-02 西安交通大学 一种用于微波烧结湿陷性黄土的圆波导缝隙天线及方法

Also Published As

Publication number Publication date
CN102403573B (zh) 2014-04-02
CN102403573A (zh) 2012-04-04

Similar Documents

Publication Publication Date Title
WO2013067740A1 (zh) 基于s-pin二极管的可重构波导混合缝隙天线
CN102956993B (zh) 基于s-pin二极管的方向图可重构圆盘型微带天线
US20240072419A1 (en) Antenna modules and communication devices
US10539656B2 (en) Antenna and radar system that include a polarization-rotating layer
US11456541B2 (en) Low-loss feeding network and high-efficiency antenna device
CN103490156B (zh) 与平面馈源一体化集成的毫米波折合式反射阵天线
Grzyb et al. A lens-coupled on-chip antenna for dual-polarization SiGe HBT THz direct detector
JPH10150320A (ja) 積層された誘電体ポストのフェイズドアレイアンテナ上の広帯域/二重帯域の積層されたディスク放射器
CN110190408A (zh) 一种圆极化电磁偶极子阵列天线
US20210320431A1 (en) Dual-polarized antenna
CN204424458U (zh) 双极化缝隙波导天线阵
CN107534221B (zh) 漏波天线
CN202308320U (zh) 基于s-pin二极管的可重构波导混合缝隙天线
CN106207462B (zh) 机电热一体化相控阵天线模块
CN109742515B (zh) 一种用于移动终端的毫米波圆极化天线
CN104716420A (zh) 基于双横向pin二极管的频率可重构波导缝隙天线
CN108281777A (zh) 八分之一模基片集成波导全向天线
CN104319462B (zh) 一种3.5GHz双极化无线局域网吸顶天线
Ray et al. Compact gap-coupled microstrip antennas for broadband and dual frequency operations
CN113013599A (zh) 一种用于星载海洋盐度探测的双极化空气腔体微带天线
Hua et al. A fan-beam millimeter-wave antenna based on modified luneburg cylindrical lens
WO2015172291A1 (zh) 一种天线及无线设备
Medhat et al. Comparative analysis of different techniques for controlling ratchet effect in a periodic array of asymmetric antidots
US20240030613A1 (en) Tokamak outer antenna
Elsadek Miniaturized tri‐band equilateral triangular microstrip antennas for wireless communication applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875324

Country of ref document: EP

Kind code of ref document: A1