WO2013066064A1 - Carbon heater and method of manufacturing same - Google Patents

Carbon heater and method of manufacturing same Download PDF

Info

Publication number
WO2013066064A1
WO2013066064A1 PCT/KR2012/009106 KR2012009106W WO2013066064A1 WO 2013066064 A1 WO2013066064 A1 WO 2013066064A1 KR 2012009106 W KR2012009106 W KR 2012009106W WO 2013066064 A1 WO2013066064 A1 WO 2013066064A1
Authority
WO
WIPO (PCT)
Prior art keywords
main shaft
heating element
carbon
polymer
focusing body
Prior art date
Application number
PCT/KR2012/009106
Other languages
French (fr)
Korean (ko)
Inventor
이호재
Original Assignee
제이씨텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이씨텍 주식회사 filed Critical 제이씨텍 주식회사
Publication of WO2013066064A1 publication Critical patent/WO2013066064A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs

Definitions

  • the present invention relates to a carbon heating element and a method for manufacturing the same, and more particularly to a carbon heating element and a method for manufacturing the carbon heating element used in the heating element of the electric heater and carbon fiber yarn forming process of the carbon heating element production in large quantities It is about.
  • carbon is not available as a heating element because it is known as a conductor having a low electrical resistance, but recently, it has a high level of resistance when carbonized with natural fibers to form carbon fibers with micro bubbles. It turned out to be used as a heating element.
  • the carbon heating element has been limited in the manufacture of the carbon heating element because it is intended to increase the radiant heat efficiency by simply adjusting the length or changing the thickness within the limited power consumption by using the resistivity of carbon.
  • the present invention provides a method for producing a carbon heating element and a carbon heating element for the stable production of the carbon heating element in the process of mass production, including the improvement of moldability, the improvement of production yield, the simplification of the manufacturing process and the reduction of manufacturing cost.
  • Carbon heating element manufacturing method for achieving the above object, the step of fixing the carbon fiber yarn twisted or woven body of the carbon fiber yarn to have a certain type of shape based on the main axis and ; Immersing the focusing body including the main shaft in a polymer; A plasticity step of removing the polymer from the polymer and heating the concentrator including the main shaft in a high pressure furnace of a reduced pressure atmosphere or an inert atmosphere; Separating the focusing body that has undergone the plasticization step from the main shaft; And carbonizing the separated focus body in a high-temperature furnace having any one of an environmental condition selected from a predetermined reduced pressure atmosphere, a hydrocarbon gas atmosphere, an inert gas atmosphere, and a mixed gas atmosphere of an inert gas and a hydrocarbon gas. Characterized in that performed.
  • the fixing of the focusing body on the surface of the main shaft, the carbon fiber yarn 3 to 24 patterns arranged in one direction, twisting or weaving the focusing body immersed in the polymer at least 1 Characterized in that it is made after performing more than once.
  • the plasticity temperature of the high temperature furnace of the plasticity step is to be made in the range of 400 ⁇ 900 °C
  • the firing temperature of the high temperature furnace of the main firing step is preferably to be made in the range of 1000 ⁇ 2500 °C.
  • the carbon heating element according to the invention is characterized in that it is produced by the method for producing the carbon heating element.
  • a carbon heating element from the converging body made of carbon fiber yarns to manufacturing the carbon heating element, not only extends the service life of the manufacturing parts including the main shaft, but also the advantages of simplifying the manufacturing process and reducing the time and accordingly It has the effect of reducing the manufacturing cost, and the improvement of formability through the plasticity step makes the pitch interval of the carbon heating element uniform by the deformation of the main shaft, and thus the heating distribution is uniform.
  • a uniform and stable carbon film layer has the advantage of improving the stabilization and manufacturing yield of the product.
  • FIG. 1 is a flowchart illustrating a process of manufacturing a carbon heating element according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a process of manufacturing a carbon heating element according to another embodiment of the present invention.
  • the detailed description of the present invention relates to the raw material properties of PAN (polyacrylonitrile) -based carbon fiber yarn, pitch-based carbon fiber yarn and viscose-based carbon fiber yarn and the processing characteristics up to forming into a converging body such as twisting or weaving. The description will be made based on what is formed as a focusing body without.
  • PAN polyacrylonitrile
  • the invention of manufacturing a carbon heating element according to the present invention includes a pretreatment process before forming into a focusing body including material properties of each series of carbon fiber yarns as raw materials of the carbon heating element or processing characteristics up to formation of the focusing body.
  • twisted carbon fiber yarns or woven body of a carbon fiber yarn woven form based on the main shaft Fixing to have a step (ST100), the step of immersing the focusing body including the main shaft in the polymer (ST110), the focusing body including the main shaft undergoing the drying process (ST120) taken out of the polymer to a high-temperature atmosphere of a reduced pressure or inert atmosphere
  • the plasticizing step (ST130) for heating in the step, the step of separating the focusing body undergoing the plasticizing step from the main shaft (ST140) and the separated focusing body a predetermined reduced pressure atmosphere, hydrocarbon gas atmosphere, mixed gas atmosphere of inert gas and hydrocarbon gas
  • the process including the main firing step (ST150) to be carbonized in a high temperature furnace having any one environment selected from among .
  • the main shaft is selected from those of heat-resistant materials such as quartz, silica, ceramics, graphite, etc., which have a smooth surface and can withstand shape deformation at temperatures of about 900 ° C. or higher, and use round or tubular ones.
  • heat-resistant materials such as quartz, silica, ceramics, graphite, etc.
  • the fixing of the focusing body made of carbon fiber yarns with respect to the main shaft is wound in a spiral shape along the longitudinal surface of the main shaft when the focusing body has a straight shape having a predetermined width and thickness or a string having a predetermined thickness. Both ends of the sieve may be fixed to maintain the shape and position of the focusing body with a clip or the like provided at both ends of the main shaft.
  • the focusing body when it has a cylindrical shape, it may be inserted into the tubular main shaft so as to be fixed by a conventional method using a jig or the like so that the shape and position of the focusing body do not change.
  • the shape of the focusing body based on the main axis is independent of the shape of the focusing body unless the external physical force is applied even when the main shaft is separated and then put into the main firing process after the plasticity process in the next step. It is intended to have tolerance that can be maintained within. In addition, this resistance allows the shape to be maintained within a certain range even after the firing process.
  • the focusing body fixed to the main shaft to have a certain form and shape is polymerized on the surface of each carbon fiber yarn constituting the focusing body by immersing the main shaft with a polymer containing a large amount of carbon such as a phenol solution and a benzene compound. Is to be applied.
  • the drying process for this may be made by natural drying at room temperature, or may be made through a rapid drying process in an oven having a temperature condition of less than 350 °C.
  • the drying temperature of the polymer with respect to the focusing body is limited to less than 350 ° C, which is a reason for preventing the problem of oxidizing even the polymer and carbon fiber yarn.
  • the application of polymers to such a concentrator increases the distribution of carbon due to the thermal decomposition of the polymer in contact with or adjacent to each surface of carbon fiber yarns due to the high temperature atmosphere of the firing process, thereby increasing the possibility of vapor deposition of carbon molecules. It is for forming a carbon film layer.
  • the effect of the carbon heating element can be obtained by repeating the above-described series of steps 1-5 times, followed by the immersion process and the drying process. .
  • the focusing body after the immersion and drying process of the polymer is put into a high-temperature furnace of a predetermined pressure-reducing atmosphere or an inert atmosphere in a state fixed to the main shaft to perform a plasticity process.
  • the above-described plasticity process is carried out in the temperature range of 400 ⁇ 900 °C, this temperature range is for fixing the shape of the focusing body wound in the spiral shape on the main axis of the polymer in a state that the polymer is almost no pyrolysis.
  • plasticity in the temperature range of 400 to 900 ° C is the shape of the focusing body wound around the main shaft compared to the case of drying the polymer in the natural state of the prior art and the example of oven drying below 350 ° C in an air atmosphere such as air Hardening more stably has the effect of reducing the moldability defect rate.
  • the polymer is thermally decomposed, and when the separation from the main shaft occurs, the spiral shape of the main body as well as the main body wound around the main shaft is not stable and loosened. .
  • the temperature range of the above-described plasticity process is lower than the first heat treatment temperature of the prior art, and it is not difficult to select a heat-resistant spindle material without shape deformation or physical property change such as bending or twisting in this temperature range. It can be adopted as the main spindle of the main shaft, and even if a high level of heat-resistant material is selected, it can be expected to extend the service life of the main shaft.
  • the focusing body undergoes a plasticity process has the ability to maintain the shape based on the main axis along with the ability to maintain the shape as the polymer is dried.
  • the focusing body is separated from the cooled spindle, and the separated focusing body is any one selected from a predetermined pressure reducing atmosphere, a hydrocarbon gas atmosphere, an inert gas atmosphere, and a mixed gas atmosphere of an inert gas and a hydrocarbon gas.
  • the firing process is carried out by putting in a high temperature furnace having an environment of.
  • the temperature of the firing process described above is in the range of 1,000 to 2,500 ° C., and this temperature range not only carbonizes the carbon fiber yarns constituting the concentrator, but also thermally decomposes the polymer coated on these surfaces, causing impurities to evaporate, Carbon molecules induce vapor deposition on the surface of each carbon fiber yarn of the focusing body to form a carbon film layer.
  • the focusing body that has undergone the above process is made of a carbon heating element having a carbon coating layer, and then connecting the terminals of the carbon heating element to the both ends of the carbon heating element and putting the inside of the quartz tube.
  • the carbon heater is completed by sealing after treating with a predetermined vacuum pressure.
  • the carbon heating element manufacturing method through the immersion process (ST200) and drying process (ST210) for the polymer, the main body made of carbon fiber yarns Winding in a spiral shape (ST220), a plasticizing step (ST230) for heating the focusing body including the main shaft in a high-temperature furnace in a reduced pressure atmosphere or an inert atmosphere, and separating the focusing body undergoing the plasticizing step from the main shaft ( ST240) and the separated firing body is carbonized in a high temperature furnace having any one selected from a predetermined reduced pressure atmosphere, a hydrocarbon gas atmosphere, a mixed gas atmosphere of an inert gas and a hydrocarbon gas (ST250) This is done sequentially.
  • a feature of another embodiment which is distinguished from one embodiment of the present invention is that the process of fixing the focusing body based on the main shaft is performed after immersing the focusing body in a polymer and then drying to a certain level. have.
  • the process of immersing the above-described polymer and drying to a certain level is not at the limiting condition that proceeds after fixing to the main shaft, but at the same time in the process before cutting the length of the focusing body to the desired length. It has the advantage that it can be implemented in turn.
  • the process of immersing the polymer in the focusing body is supplied continuously through an automated facility, and the process of immersing the polymer just before the focusing body is wound around the main shaft during the winding on the main shaft, and drying the polymer after winding up the main shaft after immersion. It is not necessary to make enough.

Landscapes

  • Inorganic Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a carbon heater that is used as a heating element of an electric heater, and a method of manufacturing same that enables the mass production of a carbon fiber yarn. By performing polymer immersion and drying a plurality of times, the shape of a bundle body separated from a main shaft can be stably maintained even when a pre-sintering temperature is lowered, and a carbon coating layer of a uniform and stable thickness is formed through a polymer deposition process, so that product stabilization and manufacturing yield are improved.

Description

탄소발열체 및 그 제조방법Carbon heating element and its manufacturing method
본 발명은 탄소발열체 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 전기 히터의 발열체로 사용되는 탄소발열체 및 탄소발열체 제조과정의 탄소섬유사 성형을 대량으로 생산할 수 있도록 하는 탄소발열체 및 그 제조방법에 관한 것이다.The present invention relates to a carbon heating element and a method for manufacturing the same, and more particularly to a carbon heating element and a method for manufacturing the carbon heating element used in the heating element of the electric heater and carbon fiber yarn forming process of the carbon heating element production in large quantities It is about.
최근의 전기히터에는 종래에 많이 사용된 니켈 크롬 합금으로 이루어진 발열체(일명 '니크롬선')에 비교하여 복사열 효율이 상대적으로 높은 것으로 입증된 탄소발열체의 사용이 늘고 있다.In recent years, the use of a carbon heating element, which has been proven to have a relatively high radiant heat efficiency, compared to a heating element made of nickel chromium alloy (known as 'nickel wire'), which is widely used in recent years, is increasing.
과거에는 탄소가 전기 저항이 작은 전도체로 알려져 있어 발열체로서 이용할 수 없다고 여겨 왔으나, 최근에는 천연계 섬유를 진공온소로 탄화시켜 마이크로 단위의 기포를 갖는 탄소섬유로 형성할 경우 높은 수준의 저항값을 갖는 것으로 밝혀지면서 발열체로써 사용되기 시작했다.In the past, it has been considered that carbon is not available as a heating element because it is known as a conductor having a low electrical resistance, but recently, it has a high level of resistance when carbonized with natural fibers to form carbon fibers with micro bubbles. It turned out to be used as a heating element.
지금까지의 탄소발열체는 탄소의 고유 저항을 이용하여 제한된 소비전력 내에서 단순히 길이 조정이나 굵기를 변화시키는 방법으로 복사열 효율을 높이고자 하였기에 탄소 발열체의 제조에 제약이 많았다.Until now, the carbon heating element has been limited in the manufacture of the carbon heating element because it is intended to increase the radiant heat efficiency by simply adjusting the length or changing the thickness within the limited power consumption by using the resistivity of carbon.
이로부터 당 업계에서는 탄소발열체의 발열 효율 향상과 안정성 확보 및 생산성 향상을 위한 많은 연구와 노력이 계속되어 왔으며, 본 발명자 또한 당 기술분야에서 현재에까지 많은 연구와 노력 및 생산에 직접적으로 관여하면서 대한민국 공개특허 제10-2009-122779호, 대한민국 특허등록 제1006159호, 대한민국 특허등록 제923417호, 대한민국 특허등록 제909881호, 대한민국 특허등록 제983972호 등 많은 연구 결과를 발표하여 왔다.As a result, many studies and efforts have been conducted in the art for improving the exothermic efficiency of the carbon heating element, securing stability, and improving the productivity, and the present inventors have been directly involved in many researches, efforts, and productions in the art field to the present. Many research results have been published, including Patent No. 10-2009-122779, Republic of Korea Patent No. 1006159, Republic of Korea Patent No. 923417, Republic of Korea Patent No.909881, and Republic of Korea Patent No. 983972.
본 발명은, 탄소발열체를 대량 생산하는 과정에서 더욱 성형성 향상을 포함한 안정적인 제품화, 생산 수율 향상, 제조공정의 단순화 및 제조원가를 절감토록 하는 탄소발열체 및 탄소발열체 제조방법을 제공함에 있다.The present invention provides a method for producing a carbon heating element and a carbon heating element for the stable production of the carbon heating element in the process of mass production, including the improvement of moldability, the improvement of production yield, the simplification of the manufacturing process and the reduction of manufacturing cost.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 탄소발열체 제조방법은, 탄소섬유사들을 꼬거나 탄소섬유사들을 직조한 집속체를 주축을 기반으로 하여 일정 형식의 형상을 갖도록 고정하는 단계와; 상기 주축을 포함한 상기 집속체를 폴리머에 침지하는 단계와; 상기 폴리머에서 꺼내어 건조과정을 거친 상기 주축을 포함한 상기 집속체를 감압 분위기 또는 불활성 분위기의 고온로에서 가열하는 가소성 단계와; 상기 가소성 단계를 거친 상기 집속체를 상기 주축으로부터 분리하는 단계; 및 상기 분리한 집속체를 소정의 감압 분위기, 탄화수소가스 분위기, 불활성가스 분위기, 불활성가스와 탄화수소가스의 혼합가스 분위기 중에서 선택되는 어느 하나 환경 조건의 분위기를 갖는 고온로에서 탄화시키는 본소성 단계를 순차적으로 수행하는 것을 특징으로 한다.Carbon heating element manufacturing method according to an embodiment of the present invention for achieving the above object, the step of fixing the carbon fiber yarn twisted or woven body of the carbon fiber yarn to have a certain type of shape based on the main axis and ; Immersing the focusing body including the main shaft in a polymer; A plasticity step of removing the polymer from the polymer and heating the concentrator including the main shaft in a high pressure furnace of a reduced pressure atmosphere or an inert atmosphere; Separating the focusing body that has undergone the plasticization step from the main shaft; And carbonizing the separated focus body in a high-temperature furnace having any one of an environmental condition selected from a predetermined reduced pressure atmosphere, a hydrocarbon gas atmosphere, an inert gas atmosphere, and a mixed gas atmosphere of an inert gas and a hydrocarbon gas. Characterized in that performed.
한편, 상기 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 탄소발열체 제조방법은, 탄소섬유사들을 꼬거나 탄소섬유사들을 직조한 집속체를 폴리머에 침지하는 단계와; 상기 집속체를 주축을 기반으로 하여 일정 형식의 형상을 갖도록 고정하는 단계와; 상기 주축을 포함한 상기 집속체를 감압 분위기 또는 불활성 분위기의 고온로에서 가열하는 가소성 단계와; 상기 집속체를 상기 주축으로부터 분리하는 단계; 및 상기 분리한 집속체를 소정의 감압 분위기, 탄화수소가스 분위기, 불활성가스 분위기, 불활성가스와 탄화수소가스의 혼합가스 분위기 중에서 선택되는 어느 하나 환경 조건의 분위기를 갖는 고온로에서 탄화시키는 본소성 단계가 순차적으로 이루어지는 것을 특징으로 한다.On the other hand, the carbon heating element manufacturing method according to another embodiment of the present invention for achieving the above object comprises the steps of twisting the carbon fiber yarns or immersed in the polymer lumps of carbon fiber yarns; Fixing the focusing body to have a predetermined shape based on a main axis; A plasticizing step of heating the focusing body including the main shaft in a high temperature furnace in a reduced pressure atmosphere or an inert atmosphere; Separating the focusing body from the main shaft; And the main firing step of carbonizing the separated focus body in a high temperature furnace having any one of an environmental condition selected from a predetermined reduced pressure atmosphere, a hydrocarbon gas atmosphere, an inert gas atmosphere, and a mixed gas atmosphere of an inert gas and a hydrocarbon gas. Characterized in that consists of.
또한, 상기 주축의 표면에 상기 집속체를 고정하는 단계는, 탄소섬유사 3~24 본을 일 방향으로 배열한 후 이들을 꼬거나 직조한 집속체를 폴리머에 침지 과정과 건조과정을 순차적으로 적어도 1회 이상 수행한 후 이루어짐을 특징으로 한다.In addition, the fixing of the focusing body on the surface of the main shaft, the carbon fiber yarn 3 to 24 patterns arranged in one direction, twisting or weaving the focusing body immersed in the polymer at least 1 Characterized in that it is made after performing more than once.
더불어, 상기 가소성 단계의 상기 고온로의 가소성 온도는 400~900℃ 범위에서 이루어지도록 하고, 상기 본소성 단계의 상기 고온로의 본소성 온도는 1000~2500℃ 범위에서 이루어지도록 함이 바람직하다.In addition, the plasticity temperature of the high temperature furnace of the plasticity step is to be made in the range of 400 ~ 900 ℃, the firing temperature of the high temperature furnace of the main firing step is preferably to be made in the range of 1000 ~ 2500 ℃.
한편, 본 발명에 따른 탄소발열체는 상기 탄소발열체의 제조방법에 의하여 제조되는 것을 특징으로 한다.On the other hand, the carbon heating element according to the invention is characterized in that it is produced by the method for producing the carbon heating element.
본 발명에 따른 탄소발열체 제조방법에 의하면, 탄소섬유사들로 이루어진 집속체에서 탄소발열체로 제조하기까지 주축을 포함한 제조 부품의 사용 연한을 연장할 뿐 아니라 제조과정의 단순화와 시간 단축의 이점 및 그에 따른 제조원가의 절감 효과를 가지며, 가소성 단계를 통한 성형성 향상은 주축의 변형이 방지됨에 의해 탄소발열체의 감긴 피치간격이 균일해 지고, 이에 따른 발열분포 또한 균일하게 이루어지는 효과를 가지며, 안정적인 폴리머의 증착 과정을 통해 균일하고 안정적인 두께의 탄소 피막 층이 형성되어 제품의 안정화와 제조 수율이 향상되는 이점을 갖는다.According to the method of manufacturing a carbon heating element according to the present invention, from the converging body made of carbon fiber yarns to manufacturing the carbon heating element, not only extends the service life of the manufacturing parts including the main shaft, but also the advantages of simplifying the manufacturing process and reducing the time and accordingly It has the effect of reducing the manufacturing cost, and the improvement of formability through the plasticity step makes the pitch interval of the carbon heating element uniform by the deformation of the main shaft, and thus the heating distribution is uniform. Through the formation of a uniform and stable carbon film layer has the advantage of improving the stabilization and manufacturing yield of the product.
도 1은 본 발명의 일 실시예에 따른 탄소발열체 제조방법 과정을 설명하기 위한 순서도이다.1 is a flowchart illustrating a process of manufacturing a carbon heating element according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 탄소발열체 제조방법 과정을 설명하기 위한 순서도이다.2 is a flowchart illustrating a process of manufacturing a carbon heating element according to another embodiment of the present invention.
본 명세서 및 청구범위에 사용하는 용어는, 통상적이거나 사전적인 의미로 한정해서 해석될 수 없는 것이며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms used in the present specification and claims are not to be interpreted in a conventional or dictionary sense, and the inventors may appropriately define the concept of terms in order to describe their own invention in the best way. Based on the principle, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
따라서, 본 명세서에 기재된 실시 예와 도면에 도시하는 구성은, 본 발명의 바람직한 일 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해해야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only exemplary embodiments of the present invention, and do not represent all of the technical idea of the present invention, which can be replaced at the time of the present application It should be understood that there may be various equivalents and variations.
또한, 본 발명의 상세한 설명은 PAN(폴리아크릴로니트릴)계 탄소섬유사, 피치계 탄소섬유사 및 비스코스계 탄소섬유사의 원료적 특성 및 꼬거나 직조하는 등 집속체로 형성하기까지의 가공적 특성에 관계없이 집속체로 형성된 것을 기초하여 설명할 것이다.In addition, the detailed description of the present invention relates to the raw material properties of PAN (polyacrylonitrile) -based carbon fiber yarn, pitch-based carbon fiber yarn and viscose-based carbon fiber yarn and the processing characteristics up to forming into a converging body such as twisting or weaving. The description will be made based on what is formed as a focusing body without.
즉, 본 발명에 따른 탄소발열체 제조발명은, 탄소발열체의 원료인 각 계열의 탄소섬유사들이 갖는 물질적 특성이나 집속체로 형성하기까지의 가공적 특성을 포함하여 집속체로 형성하기 이전의 전처리과정을 포함하는 것이다.That is, the invention of manufacturing a carbon heating element according to the present invention includes a pretreatment process before forming into a focusing body including material properties of each series of carbon fiber yarns as raw materials of the carbon heating element or processing characteristics up to formation of the focusing body. will be.
이로부터 본 발명의 일 실시예에 따른 탄소발열체의 제조과정을 살펴보면, 도 1에 도시한 바와 같이, 탄소섬유사들을 꼬거나 탄소섬유사들을 직조한 집속체를 주축을 기반으로 하여 일정 형식의 형상을 갖도록 고정하는 단계(ST100)와, 주축을 포함한 집속체를 폴리머에 침지하는 단계(ST110)와, 폴리머에서 꺼내어 건조과정(ST120)을 거친 주축을 포함한 집속체를 감압 분위기 또는 불활성 분위기의 고온로에서 가열하는 가소성 단계(ST130)와, 가소성 단계를 거친 상기 집속체를 주축으로부터 분리하는 단계(ST140) 및 분리한 집속체를 소정의 감압 분위기, 탄화수소가스 분위기, 불활성가스와 탄화수소가스의 혼합가스 분위기 중에서 선택되는 어느 하나의 환경을 갖는 고온로에서 탄화시키는 본소성 단계(ST150)를 포함한 과정이 순차적으로 진행되어 이루어진다.Looking at the manufacturing process of the carbon heating element according to an embodiment of the present invention from this, as shown in Figure 1, twisted carbon fiber yarns or woven body of a carbon fiber yarn woven form based on the main shaft Fixing to have a step (ST100), the step of immersing the focusing body including the main shaft in the polymer (ST110), the focusing body including the main shaft undergoing the drying process (ST120) taken out of the polymer to a high-temperature atmosphere of a reduced pressure or inert atmosphere The plasticizing step (ST130) for heating in the step, the step of separating the focusing body undergoing the plasticizing step from the main shaft (ST140) and the separated focusing body a predetermined reduced pressure atmosphere, hydrocarbon gas atmosphere, mixed gas atmosphere of inert gas and hydrocarbon gas The process including the main firing step (ST150) to be carbonized in a high temperature furnace having any one environment selected from among .
여기서, 주축은 표면이 매끈하고 약 900℃ 이상의 온도에서 형상 변형 없이 견딜 수 있는 석영, 실리카, 세라믹, 흑연 등의 내열성 재질의 것으로 선택되고, 환봉 형상 또는 관 형상의 것을 사용한다.Here, the main shaft is selected from those of heat-resistant materials such as quartz, silica, ceramics, graphite, etc., which have a smooth surface and can withstand shape deformation at temperatures of about 900 ° C. or higher, and use round or tubular ones.
또한, 주축에 대하여 탄소섬유사들로 이루어진 집속체를 고정하는 것은, 집속체가 일정 폭과 굵기를 갖는 일자 형상 또는 이에 준하는 소정 굵기의 끈 형상인 경우 주축의 길이 방향 표면을 따라 나선 형상으로 감고, 집속체의 양단을 주축의 양단 부위에 마련된 클립 등으로 집속체의 형상 및 위치가 유지될 수 있도록 고정하는 것으로 이루어질 수 있다.In addition, the fixing of the focusing body made of carbon fiber yarns with respect to the main shaft is wound in a spiral shape along the longitudinal surface of the main shaft when the focusing body has a straight shape having a predetermined width and thickness or a string having a predetermined thickness. Both ends of the sieve may be fixed to maintain the shape and position of the focusing body with a clip or the like provided at both ends of the main shaft.
또 다른 형식으로는, 집속체가 원통 형상일 경우 관 형상의 주축 내부에 끼우는 형식으로 집속체의 형상 및 위치 등이 변동이 없도록 지그 등을 이용하여 통상의 방법으로 고정하는 것으로 이루어질 수도 있다.In another form, when the focusing body has a cylindrical shape, it may be inserted into the tubular main shaft so as to be fixed by a conventional method using a jig or the like so that the shape and position of the focusing body do not change.
이렇게 주축을 기반으로 한 집속체의 형상 고정은, 다음 단계 중 가소성 과정 이후 주축을 분리한 후 본소성 과정에 투입할 때도 외부의 물리적인 힘이 가해지지 않는 한 집속체의 형상이 독립적으로 일정 범위 내에서 유지될 수 있는 내성을 갖게 하기 위한 것이다. 더불어 이러한 내성은 본소성 과정 이후에도 일정 범위 내에서 그 형상이 유지되게 한다.In this way, the shape of the focusing body based on the main axis is independent of the shape of the focusing body unless the external physical force is applied even when the main shaft is separated and then put into the main firing process after the plasticity process in the next step. It is intended to have tolerance that can be maintained within. In addition, this resistance allows the shape to be maintained within a certain range even after the firing process.
상술한 바와 같이, 주축에 일정 형식 및 형상을 갖도록 고정한 집속체는, 주축과 함께 페놀 용액, 벤젠화합물 등 다량의 탄소를 포함하는 폴리머에 침지시켜 집속체를 구성하는 각 탄소섬유사들의 표면에 폴리머가 도포되게 하는 것이다.As described above, the focusing body fixed to the main shaft to have a certain form and shape is polymerized on the surface of each carbon fiber yarn constituting the focusing body by immersing the main shaft with a polymer containing a large amount of carbon such as a phenol solution and a benzene compound. Is to be applied.
이후 집속체는 액상의 폴리머를 건조시키는 과정을 거치게 되며, 이를 위한 건조 과정은 상온에서 자연 건조로 이루어질 수 있고, 또는 350℃ 미만의 온도 조건을 갖는 오븐에서 급속히 건조시키는 과정을 통해 이루어질 수도 있다.The focus is then subjected to a process of drying the liquid polymer, the drying process for this may be made by natural drying at room temperature, or may be made through a rapid drying process in an oven having a temperature condition of less than 350 ℃.
이때 집속체에 대한 폴리머의 건조 온도가 350℃ 미만으로 제한하는 것은, 그 이상일 경우 폴리머 및 탄소섬유사까지도 산화하는 문제를 방지하기 위한 이유이다.At this time, the drying temperature of the polymer with respect to the focusing body is limited to less than 350 ° C, which is a reason for preventing the problem of oxidizing even the polymer and carbon fiber yarn.
이러한 집속체에 폴리머를 도포시키는 것은 본소성 과정의 고온 분위기에 의해 탄소섬유사들 각 표면에 접하거나 인접한 부위에서 폴리머의 열분해에 따른 탄소의 분포도를 높여 탄소 분자의 기상증착 가능성을 높여 소망하는 수준의 탄소피막층을 형성토록 하기 위한 것이다.The application of polymers to such a concentrator increases the distribution of carbon due to the thermal decomposition of the polymer in contact with or adjacent to each surface of carbon fiber yarns due to the high temperature atmosphere of the firing process, thereby increasing the possibility of vapor deposition of carbon molecules. It is for forming a carbon film layer.
따라서, 이후의 탄소발열체의 특성상 탄소피막층의 두께를 통한 전기 저항값 조절을 위해서는, 상술한 폴리머의 침지 과정과 건조과정으로 이어지는 일련의 과정을 1~5회 반복 실시하는 것으로 효과를 얻어낼 수 있다.Therefore, in order to control the electric resistance value through the thickness of the carbon film layer, the effect of the carbon heating element can be obtained by repeating the above-described series of steps 1-5 times, followed by the immersion process and the drying process. .
그리고, 상술한 폴리머의 침지 과정과 건조과정을 5회 이상 실시할 경우는 탄소섬유사들의 표면에 대한 폴리머의 증착 두께는 향상되겠으나 결과적으로 탄소피막의 두께 및 그에 따른 소망하는 저항값 이하로 저하되는 문제와 더불어 제조기간 및 제조단가를 가중시키는 등 비경제적인 문제를 갖는다.When the immersion process and the drying process of the polymer are performed five times or more, the deposition thickness of the polymer on the surface of the carbon fiber yarns will be improved, but as a result, the thickness of the carbon film and the corresponding resistance value are lowered. In addition to the problems that occur, there is an uneconomical problem such as increasing the manufacturing period and manufacturing cost.
또한, 집속체에 폴리머를 도포시키는 다른 이유는, 후술하겠으나 본소성 과정 이전에 폴리머가 열분해되지 않는 재차 건조되는 정도의 가소성 단계 이후에 주축을 기반으로 한 집속체의 형상이 주축으로부터 분리한 상태에서도 유지될 수 있도록 한다.In addition, another reason for applying the polymer to the focusing body, which will be described later, even after the plasticity step of the degree of drying again the polymer is not pyrolyzed before the main firing process, even if the shape of the focusing body based on the main shaft is separated from the main shaft To be maintained.
이렇게 폴리머의 침지과정과 건조과정을 거친 집속체는, 주축에 고정된 상태로 소정의 감압 분위기 또는 불활성 분위기의 고온로에 투입하여 가소성 과정을 수행하게 된다.In this way, the focusing body after the immersion and drying process of the polymer is put into a high-temperature furnace of a predetermined pressure-reducing atmosphere or an inert atmosphere in a state fixed to the main shaft to perform a plasticity process.
상술한 가소성 과정은 400~900℃ 온도 범위에서 실시되며, 이러한 온도 범위는 폴리머의 열분해가 거의 이루어지지 않는 상태로 폴리머로 하여금 주축에 나선 형상으로 감긴 집속체의 형상을 고착시키기 위한 것이다.The above-described plasticity process is carried out in the temperature range of 400 ~ 900 ℃, this temperature range is for fixing the shape of the focusing body wound in the spiral shape on the main axis of the polymer in a state that the polymer is almost no pyrolysis.
이와 같이 400~900℃ 온도 범위에서의 가소성은, 종래의 기술 중 자연상태에서 폴리머를 건조시키는 예와 대기와 같은 공기 분위기에서 350℃ 이하로 오븐건조하는 예에 비교하여 주축에 감긴 집속체의 형상을 더욱 안정적으로 굳혀 성형성 불량률을 줄이는 효과가 있다.Thus, plasticity in the temperature range of 400 to 900 ° C is the shape of the focusing body wound around the main shaft compared to the case of drying the polymer in the natural state of the prior art and the example of oven drying below 350 ° C in an air atmosphere such as air Hardening more stably has the effect of reducing the moldability defect rate.
더불어 가소성 과정에서 900℃ 이상 온도를 상승시킬 경우에는 폴리머의 열분해가 이루어져 주축으로부터 집속체를 분리할 때 주축은 물론 주축에 감긴 집속체의 나선 형상이 안정적으로 유지되지 못하고 풀어지는 등 불량이 발생한다.In addition, if the temperature rises above 900 ℃ during the plasticity process, the polymer is thermally decomposed, and when the separation from the main shaft occurs, the spiral shape of the main body as well as the main body wound around the main shaft is not stable and loosened. .
그리고, 상술한 가소성 과정의 온도 범위는, 종래 기술의 1차 열처리 온도보다 낮은 수준이며, 이 온도 범위에서 휘거나 뒤틀리는 등의 형상 변형 및 물성 변화가 없는 내열성 주축 소재를 선택하기에는 무리가 없어 저렴한 소재의 주축으로 채택할 수 있으며, 높은 수준의 내열성 소재를 선택할 경우에도 주축의 사용 수명이 연장될 수 있는 효과를 기대할 수 있다.In addition, the temperature range of the above-described plasticity process is lower than the first heat treatment temperature of the prior art, and it is not difficult to select a heat-resistant spindle material without shape deformation or physical property change such as bending or twisting in this temperature range. It can be adopted as the main spindle of the main shaft, and even if a high level of heat-resistant material is selected, it can be expected to extend the service life of the main shaft.
또한, 가소성 과정을 거친 집속체는 폴리머의 건조에 따른 형상 유지 능력과 더불어 주축을 기반으로 하였던 형상을 유지하려는 내성을 가지게 된다.In addition, the focusing body undergoes a plasticity process has the ability to maintain the shape based on the main axis along with the ability to maintain the shape as the polymer is dried.
이후, 가소성 과정을 마치면, 냉각된 주축으로부터 집속체를 분리하고, 이어서 분리된 집속체를 소정의 감압 분위기, 탄화수소가스 분위기, 불활성가스 분위기, 불활성가스와 탄화수소가스의 혼합가스 분위기 중에서 선택되는 어느 하나의 환경을 갖는 고온로에 투입하여 본소성 과정을 수행한다.After the completion of the plasticity process, the focusing body is separated from the cooled spindle, and the separated focusing body is any one selected from a predetermined pressure reducing atmosphere, a hydrocarbon gas atmosphere, an inert gas atmosphere, and a mixed gas atmosphere of an inert gas and a hydrocarbon gas. The firing process is carried out by putting in a high temperature furnace having an environment of.
상술한 본소성 과정의 온도는, 1,000~2,500℃ 범위에 있도록 하며, 이러한 온도범위는 집속체를 구성하는 탄소섬유사들을 탄화시킬 뿐 아니라 이들 표면에 도포된 폴리머를 열분해시켜 불순물은 증발되게 하고, 탄소 분자들은 집속체의 각 탄소섬유사들 표면에 대한 기상증착을 유도하여 탄소피막층을 이루도록 한다.The temperature of the firing process described above is in the range of 1,000 to 2,500 ° C., and this temperature range not only carbonizes the carbon fiber yarns constituting the concentrator, but also thermally decomposes the polymer coated on these surfaces, causing impurities to evaporate, Carbon molecules induce vapor deposition on the surface of each carbon fiber yarn of the focusing body to form a carbon film layer.
이상의 과정을 거친 집속체는 탄소피막층을 갖는 탄소발열체로 제조되는 것이고, 이후 탄소발열체의 양단에 통전용 단자를 연결하여 석영관 내부에 투입한 후 양단의 통전용 단자와 전선 연결 및 석영관 내부를 소정의 진공압으로 처리한 후 밀봉하는 것으로 카본 히터로 완성된다.The focusing body that has undergone the above process is made of a carbon heating element having a carbon coating layer, and then connecting the terminals of the carbon heating element to the both ends of the carbon heating element and putting the inside of the quartz tube. The carbon heater is completed by sealing after treating with a predetermined vacuum pressure.
한편, 본 발명의 다른 실시예에 따른 탄소발열체 제조방법은, 도 2에 도시한 바와 같이, 폴리머에 대한 침지 과정(ST200)과 건조과정(ST210)을 거치고, 탄소섬유사들로 이루어진 집속체를 주축에 나선 형상으로 감아 고정하는 단계(ST220)와, 주축을 포함한 집속체를 감압 분위기 또는 불활성 분위기의 고온로에서 가열하는 가소성 단계(ST230)와, 가소성 단계를 거친 집속체를 주축으로부터 분리하는 단계(ST240) 및 분리한 집속체를 소정의 감압 분위기, 탄화수소가스 분위기, 불활성가스와 탄화수소가스의 혼합가스 분위기 중에서 선택되는 어느 하나의 환경을 갖는 고온로에서 탄화시키는 본소성 단계(ST250)를 포함한 과정이 순차적으로 진행되어 이루어진다.On the other hand, the carbon heating element manufacturing method according to another embodiment of the present invention, as shown in Figure 2, through the immersion process (ST200) and drying process (ST210) for the polymer, the main body made of carbon fiber yarns Winding in a spiral shape (ST220), a plasticizing step (ST230) for heating the focusing body including the main shaft in a high-temperature furnace in a reduced pressure atmosphere or an inert atmosphere, and separating the focusing body undergoing the plasticizing step from the main shaft ( ST240) and the separated firing body is carbonized in a high temperature furnace having any one selected from a predetermined reduced pressure atmosphere, a hydrocarbon gas atmosphere, a mixed gas atmosphere of an inert gas and a hydrocarbon gas (ST250) This is done sequentially.
이와 같이, 본 발명의 일 실시예와 비교하여 차별되는 다른 실시예의 특징은, 집속체를 폴리머에 침지시키고 이어서 일정 수준으로 건조하는 과정을 거친 후 주축을 기반으로 한 집속체의 고정과정이 진행된다는데 있다.As such, a feature of another embodiment which is distinguished from one embodiment of the present invention is that the process of fixing the focusing body based on the main shaft is performed after immersing the focusing body in a polymer and then drying to a certain level. have.
즉, 다른 실시예에 따르면, 상술한 폴리머에 침지하고 또 일정 수준으로 건조하는 과정이 주축에 고정한 후 진행하는 제한된 조건에서가 아니라 집속체의 길이를 소망하는 길이로 절단하기 이전의 과정에서 한꺼번에 복수 회차로 시행할 수 있는 이점을 갖는다.That is, according to another embodiment, the process of immersing the above-described polymer and drying to a certain level is not at the limiting condition that proceeds after fixing to the main shaft, but at the same time in the process before cutting the length of the focusing body to the desired length. It has the advantage that it can be implemented in turn.
더욱이 집속체에 대한 폴리머의 침지과정은 자동화 설비를 통해 연속적으로 공급하여 주축에 감는 과정에서 집속체가 주축에 감기기 바로 전에 폴리머에 대한 침지단계를 거치도록 하고, 침지 이후에서 주축에 감기기 전에 폴리머의 건조가 충분히 이루어지지 않아도 무방한 것이다.Furthermore, the process of immersing the polymer in the focusing body is supplied continuously through an automated facility, and the process of immersing the polymer just before the focusing body is wound around the main shaft during the winding on the main shaft, and drying the polymer after winding up the main shaft after immersion. It is not necessary to make enough.
이상에서 살펴본 내용은, 본 발명의 바람직한 실시 예로서 설명하였으나, 본 발명의 기술 사상 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의한 다양한 변형과 수정 가능한 범위는 본 발명의 청구범위에 속한다고 할 것이다.Although the above has been described as a preferred embodiment of the present invention, various modifications and modifications by those skilled in the art to which the present invention pertains within the technical scope of the present invention can be claimed. It is said to belong to the range.

Claims (6)

  1. 탄소섬유사들을 꼬거나 상기 탄소섬유사들을 직조한 집속체를 주축에 나선 형상으로 감아 고정하는 단계와;Twisting the carbon fiber yarns or winding the focusing body woven from the carbon fiber yarns in a spiral shape to fix them in a spiral shape;
    상기 주축을 포함한 상기 집속체를 폴리머에 침지하는 단계와;Immersing the focusing body including the main shaft in a polymer;
    상기 폴리머에서 꺼내어 건조과정을 거친 상기 주축을 포함한 상기 집속체를 감압 분위기 또는 불활성 분위기의 고온로에서 가열하는 가소성 단계와;A plasticity step of removing the polymer from the polymer and heating the concentrator including the main shaft in a high pressure furnace of a reduced pressure atmosphere or an inert atmosphere;
    상기 가소성 단계를 거친 상기 집속체를 상기 주축으로부터 분리하는 단계; 및Separating the focusing body that has undergone the plasticization step from the main shaft; And
    상기 분리한 집속체를 소정의 감압 분위기, 탄화수소가스 분위기, 불활성가스 분위기, 불활성가스와 탄화수소가스의 혼합가스 분위기 중에서 선택되는 어느 하나 환경 조건의 분위기를 갖는 고온로에서 탄화시키는 본소성 단계를 순차적으로 수행하는 것을 포함하여 이루어지는 것을 특징으로 하는 탄소발열체 제조방법.Carrying out the main firing step of carbonizing the separated focusing body in a high temperature furnace having any one of an environmental condition selected from a predetermined reduced pressure atmosphere, hydrocarbon gas atmosphere, inert gas atmosphere, mixed gas atmosphere of inert gas and hydrocarbon gas Method for producing a carbon heating element comprising the step of performing.
  2. 탄소섬유사들을 꼬거나 탄소섬유사들을 직조한 집속체를 폴리머에 침지하는 단계와;Twisting the carbon fiber yarns or immersing the lump of carbon fiber yarns in the polymer;
    상기 집속체를 주축에 나선 형상으로 감아 고정하는 단계와;Winding the focusing body in a spiral shape on a main shaft;
    상기 주축을 포함한 상기 집속체를 감압 분위기 또는 불활성 분위기의 고온로에서 가열하는 가소성 단계와;A plasticizing step of heating the focusing body including the main shaft in a high temperature furnace in a reduced pressure atmosphere or an inert atmosphere;
    상기 집속체를 상기 주축으로부터 분리하는 단계; 및Separating the focusing body from the main shaft; And
    상기 분리한 집속체를 소정의 감압 분위기, 탄화수소가스 분위기, 불활성가스 분위기, 불활성가스와 탄화수소가스의 혼합가스 분위기 중에서 선택되는 어느 하나 환경 조건의 분위기를 갖는 고온로에서 탄화시키는 본소성 단계를 순차적으로 수행하는 것을 특징으로 하는 탄소발열체 제조방법.Carrying out the main firing step of carbonizing the separated focusing body in a high temperature furnace having any one of an environmental condition selected from a predetermined reduced pressure atmosphere, hydrocarbon gas atmosphere, inert gas atmosphere, mixed gas atmosphere of inert gas and hydrocarbon gas Carbon heating element manufacturing method characterized in that performed.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 주축의 표면에 상기 집속체를 고정하는 단계는, 탄소섬유사 3~24 본을 일 방향으로 배열한 후 이들을 꼬거나 직조한 집속체를 폴리머에 침지하는 과정과 자연 건조하는 과정을 순차적으로 수행하는 일련의 과정을 적어도 1~5회 반복 수행한 후 이루어짐을 특징으로 하는 상기 탄소발열체 제조방법.The fixing of the concentrator on the surface of the main shaft is performed by sequentially arranging 3 to 24 carbon fiber yarns in one direction, immersing them in a polymer, or immersing them in a polymer and then sequentially drying them. The method of producing a carbon heating element, characterized in that made after performing a series of at least one to five times.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 가소성 단계의 상기 고온로의 가소성 온도는 400~900℃ 범위인 것을 특징으로 하는 상기 탄소발열체 제조방법.The plasticity temperature of the high temperature furnace of the plasticity step is the carbon heating element manufacturing method, characterized in that in the range of 400 ~ 900 ℃.
  5. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 본소성 단계의 상기 고온로의 본소성 온도는 1000~2500℃ 범위인 것을 특징으로 하는 상기 탄소발열체 제조방법.The firing temperature of the high temperature furnace of the firing step is characterized in that the carbon heating element manufacturing method characterized in that the range of 1000 ~ 2500 ℃.
  6. 제 4 항의 탄소발열체 제조방법에 의해 제조되는 탄소발열체.Carbon heating element produced by the carbon heating element manufacturing method of claim 4.
PCT/KR2012/009106 2011-11-03 2012-11-01 Carbon heater and method of manufacturing same WO2013066064A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110113983A KR101125480B1 (en) 2011-11-03 2011-11-03 Carbon heating element and manufacturing method of the same
KR10-2011-0113983 2011-11-03

Publications (1)

Publication Number Publication Date
WO2013066064A1 true WO2013066064A1 (en) 2013-05-10

Family

ID=46142092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009106 WO2013066064A1 (en) 2011-11-03 2012-11-01 Carbon heater and method of manufacturing same

Country Status (2)

Country Link
KR (1) KR101125480B1 (en)
WO (1) WO2013066064A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015084071A1 (en) * 2013-12-06 2015-06-11 김민휘 Watertight carbon fiber heating element and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101479645B1 (en) * 2012-04-27 2015-01-07 주식회사 모닝아트 A Carbon Heater and Method of Manufacturing for the Same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100686327B1 (en) * 2005-08-18 2007-02-22 (주)지스코 Lamp heater with pipe typed form of woven carbon fibers and method thereof
KR100793973B1 (en) * 2006-06-08 2008-01-16 쵸이 알렉산드르 Method for production of spiral-shaped carbon coated with nano-crystalline structred carbon layer and infrared emitter comprising spiral-shaped carbon
KR100909881B1 (en) * 2008-07-17 2009-07-30 제이씨텍(주) Carbon heating element and method of preparing the same
KR20090122779A (en) * 2008-05-26 2009-12-01 제이씨텍(주) Nano carbon heater and method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100639790B1 (en) * 2005-01-07 2006-10-31 요업기술원 Manufacturing method of the carbon material generating low temperature of which specific resistance is regulated

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100686327B1 (en) * 2005-08-18 2007-02-22 (주)지스코 Lamp heater with pipe typed form of woven carbon fibers and method thereof
KR100793973B1 (en) * 2006-06-08 2008-01-16 쵸이 알렉산드르 Method for production of spiral-shaped carbon coated with nano-crystalline structred carbon layer and infrared emitter comprising spiral-shaped carbon
KR20090122779A (en) * 2008-05-26 2009-12-01 제이씨텍(주) Nano carbon heater and method thereof
KR100909881B1 (en) * 2008-07-17 2009-07-30 제이씨텍(주) Carbon heating element and method of preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015084071A1 (en) * 2013-12-06 2015-06-11 김민휘 Watertight carbon fiber heating element and method for manufacturing same

Also Published As

Publication number Publication date
KR101125480B1 (en) 2012-03-20

Similar Documents

Publication Publication Date Title
JP5324472B2 (en) Flame-resistant fiber and carbon fiber manufacturing method
KR101943784B1 (en) Method of manufacturing carbon fiber
WO2010008216A2 (en) Carbon heating element and production method thereof
CN111910291A (en) PAN-based carbon fiber, preparation method thereof and carbon fiber prepared from PAN-based carbon fiber
JP4392432B2 (en) Method for producing carbonized fabric
WO2013066064A1 (en) Carbon heater and method of manufacturing same
JP2001332373A (en) Heater encapsulated with carbon wire exothermic body
JP2010242249A (en) Flame-proof fiber for high strength carbon fiber, and method for producing the same
JPS6238444B2 (en)
JP4392433B2 (en) Method for producing carbonized fabric
JP4392434B2 (en) Method for producing carbonized fabric
CN210657241U (en) Thermal stabilization device for carbon fiber production
RU2705971C1 (en) Method of producing carbon graphitized fibrous materials
KR101065185B1 (en) Cylindrical Carbon Heating Element
KR20200125211A (en) Method for preparing carbon fiber precusrors
JP4392435B2 (en) Method for producing carbonized fabric
JPS5930914A (en) Preparation of carbon fiber
RU2741012C1 (en) Method of producing carbon fiber and based materials
CN102704227A (en) Preparation method for polyacrylonitrile-based carbon cloth
CN103024953A (en) Insulating heat-resistant heating wire and preparation method
KR100983972B1 (en) Carbon heating element and the manufacturing method thereof
KR20030047072A (en) A rayon-type twisted carbon fiber and a method of preparing same
JP5612330B2 (en) Method for producing ceramic fiber and ceramic fiber obtained by the method
CN116876203A (en) Carbon fiber, preparation method thereof and composite material
JPS58214535A (en) Production of acrylic type carbon fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846571

Country of ref document: EP

Kind code of ref document: A1