WO2013065994A1 - 다중 반응 바이오센서 - Google Patents

다중 반응 바이오센서 Download PDF

Info

Publication number
WO2013065994A1
WO2013065994A1 PCT/KR2012/008786 KR2012008786W WO2013065994A1 WO 2013065994 A1 WO2013065994 A1 WO 2013065994A1 KR 2012008786 W KR2012008786 W KR 2012008786W WO 2013065994 A1 WO2013065994 A1 WO 2013065994A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
reactor plate
biosensor
reactor
base substrate
Prior art date
Application number
PCT/KR2012/008786
Other languages
English (en)
French (fr)
Inventor
이진우
최재규
Original Assignee
주식회사 세라젬메디시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세라젬메디시스 filed Critical 주식회사 세라젬메디시스
Priority to CN201280053061.3A priority Critical patent/CN103959051A/zh
Priority to US14/355,131 priority patent/US20140303042A1/en
Priority to EP12846288.4A priority patent/EP2778668A4/en
Publication of WO2013065994A1 publication Critical patent/WO2013065994A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/54Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving glucose or galactose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/60Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving cholesterol
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/4915Blood using flow cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/492Determining multiple analytes

Definitions

  • the present invention relates to a multi-reaction biosensor, and more particularly, to a multi-reaction biosensor capable of generating various kinds of reaction signals with a single sample introduction.
  • Biosensor refers to a means of investigating the properties of a substance by using a function of a living organism. Since a biomaterial such as blood sugar or ketone is used as a detection device, it has excellent sensitivity and reaction specificity. Biosensors are classified into enzymatic and immunoassay methods according to analytical methods, and are classified into optical biosensors and electrochemical biosensors according to methods for quantitative analysis of analytes. The biosensor is used for various self-tests and rapid disease diagnosis such as blood glucose measurement, pregnancy diagnosis and urine test.
  • an electrical signal is generated by an electrochemical reaction generated when a sample such as blood is introduced into the biosensor, and an electrical signal is generated and transmitted to a measuring device connected to or connected to the biosensor.
  • biosensors capable of measuring various biomaterials on a single substrate have also been developed.
  • multiple reaction sites are implemented on a single substrate, and are sequentially configured according to the direction of a sample in which multiple reaction sites flow in one sample introduction path.
  • the conventional biosensor has a problem in that the biomaterials are reacted in the order of the time when the injected sample flows on the substrate and reaches the electrodes of the respective reaction sites, so that different biomaterials cannot be simultaneously reacted with one biosensor. .
  • each reaction site is configured in order according to the sample introduction direction on a single substrate, there is a problem that the biomaterial reaction of the previous reaction site affects the biomaterial reaction of the subsequent reaction site on the sample introduction direction. That is, there is a problem that the accuracy, reproducibility, etc. are not guaranteed because the biological material measurement values of the reaction sites configured later in the sample introduction direction are affected.
  • the object of the present invention devised in view of the above point is to provide a multi-reaction biosensor capable of generating a plurality of reaction signals by one sample introduction.
  • Another object of the present invention is to provide a multi-response biosensor capable of simultaneously measuring a plurality of same biomaterials or various different biomaterials with one biosensor.
  • Still another object of the present invention is to provide a multi-response biosensor capable of measuring a plurality of same biomaterials or various different biomaterials by only introducing a sample once.
  • Still another object of the present invention is to provide a multi-response biosensor capable of measuring a plurality of identical biomaterials or various different biomaterials with a simple structure of forming a reactor plate on each surface constituting a passage through which a sample passes.
  • a multi-reaction biosensor for achieving the object of the present invention as described above comprises a biosensor having a capillary flow path into which a sample is introduced, and forms at least two wall surfaces of a plurality of walls forming the capillary flow path, Reactor plate for generating and transmitting a reaction signal according to the reaction of; And a base substrate coupled to the reactor plate so that the capillary flow path has a polygonal cross-sectional shape and forming a wall other than the wall formed by the reactor plate.
  • the reactor plate is composed of at least one upper reactor plate forming an upper wall surface and a lower reactor plate forming at least one lower wall surface opposite to the upper wall surface.
  • both sides are fixed to the base substrate so as to form a predetermined interval between each of the reactor plates forming the upper wall and the lower wall, generating and transmitting a reaction signal according to the reaction with the sample introduced
  • An intermediate reactor plate is further included.
  • the reactor plate is composed of at least one upper reactor plate forming an upper wall surface and at least one side reactor plate forming a side wall surface in contact with the upper wall surface.
  • the capillary flow passage forms a cross-sectional shape of any one of a triangle, a square, a pentagon, and a hexagon.
  • the base substrate is provided with at least one guide member to which the reactor plate is coupled.
  • the base substrate is provided with an insertion rail recessed to a predetermined depth so that the reactor plate can be coupled.
  • At least one of the base substrate and the reactor plate is provided with a through-air discharge portion so that the air in the capillary flow path can be discharged.
  • the reactor plate the electrode unit for generating a reaction signal by reacting with the target biomaterial; And a signal transfer unit configured to transfer the reaction signal to a measurement device, wherein the electrode unit includes a reaction electrode and a reference electrode for generating a reaction signal.
  • the multi-reaction biosensor for achieving the object of the present invention is a biosensor having a capillary flow path into which a sample is introduced, comprising at least one wall surface among a plurality of wall surfaces forming the capillary flow path, At least two reactor plates for generating and transmitting a reaction signal according to the reaction of the; And a base substrate coupled to the reactor plate such that the capillary flow path has a polygonal cross-sectional shape and forming a wall other than the wall formed by the at least two reactor plates, wherein the reactor plate reacts with a target biomaterial to generate a reaction signal.
  • An electrode unit to generate; And a signal transmission unit for transmitting the reaction signal to a measurement device.
  • the multi-reaction bioprocessor according to the present invention can simultaneously react different biomaterials with one biosensor, and can measure a plurality of same biomaterials or various different biomaterials, thereby improving workability. have.
  • the present invention can react a plurality of biomaterials at the same time only by introducing the sample only once, and can simultaneously detect a plurality of different biomaterials with the same sample amount without increasing the amount of the sample.
  • the present invention can easily correct the biomaterial reaction signal by changing the configuration and loading of each reagent (enzyme) on the plurality of reactor plate can improve the performance, such as accuracy of the measurement value, reproducibility.
  • the simultaneous reaction does not affect the reaction of the biomaterial on the reaction plate to increase the performance, such as accuracy of the measurement value, reproducibility.
  • FIG. 1 is a perspective view showing a multi-reaction biosensor that is a first preferred embodiment of the present invention
  • FIG. 2 is an exploded perspective view illustrating the multi-reaction biosensor shown in FIG. 1;
  • FIG. 3 is a cross-sectional view showing the multiple reaction biosensor shown in FIG.
  • FIG. 4 is a cross-sectional view showing a multi-reaction biosensor as a second preferred embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a multi-reaction biosensor as a third preferred embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a multi-reaction biosensor as a fourth preferred embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a multi-reaction biosensor as a fifth preferred embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a multi-reaction biosensor as a sixth preferred embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a multi-reaction biosensor which is a seventh preferred embodiment of the present invention.
  • 10a and 10b is a plan view showing the structure of a reactor plate according to embodiments of the present invention.
  • 11a to 11c is a state diagram showing the coupling form of the reactor plate according to the embodiments of the present invention.
  • FIG. 1 is a perspective view illustrating a multiple reaction biosensor as a first preferred embodiment of the present invention
  • FIG. 2 is an exploded perspective view illustrating the multiple reaction biosensor shown in FIG. 1
  • FIG. 3 is a multiple view shown in FIG. 1.
  • the multi-reaction biosensor 10 is formed in a tubular shape made of a hexahedron and has a capillary flow path 11 penetrating along a central portion thereof.
  • the cross-sectional shape of the capillary flow path 11 has been described by taking a rectangular cross-sectional shape as an example, but may be composed of various polygonal cross-sectional shapes according to the user's purpose, such as triangular, pentagonal hexagon, etc., in the present invention,
  • the capillary flow path 11 of polygonal cross-sectional shape is included.
  • the upper wall and the lower wall of the biosensor 10 are made of a reactor plate 20, the side wall is made of a base substrate (30).
  • the upper wall surface is composed of the upper reactor plate 21, and the lower wall surface opposite to the upper wall surface is composed of the lower reactor plate 22.
  • the base substrate 30 forms a side wall that maintains a constant distance.
  • Each base substrate 30 is connected to each other by an intermediate member and combined with the reactor plate 20 to form a capillary flow path 11, one end is composed of an opening and the other end is combined with the reactor plate 20 It is made of a blocked structure.
  • an air discharge part 33 penetrating the outside is formed so that air inside the capillary flow path 11 can be discharged.
  • the air discharge part 33 is preferably formed in a structure which is recessed to the inner surface of the base substrate 30 to a predetermined depth and extends to the end along the top and bottom.
  • the air discharge part 33 is not limited to the shape shown in the figure, and any shape such as an intermediate part of the base substrate 30 or an edge of the reactor plate 20 may be used as long as it is a hole shape capable of communicating with the capillary flow path 11. It may be formed at a location.
  • the reactor board 20 may be formed of a printed circuit board (PCB) board or a flexible PCB (FPCB) board, and an electrode unit 20a may generate a reaction signal by reacting with a target biomaterial on one surface of the reactor board 20. And a signal transmission unit 20b for transmitting the reaction signal to the measuring device.
  • the electrode unit 20a includes an operation electrode and a reference electrode
  • the signal transmission unit 20b includes an operation signal transmission electrode electrically connected to the operation electrode and a reference signal transmission electrode electrically connected to the reference electrode.
  • 10A and 10B illustrate the structure of the reactor plate 10. Referring to this, the reactor plate 20 has a working electrode 40a and a reference electrode 50a formed on one surface thereof, as shown in FIG. 10A.
  • an operation signal transmission electrode 40b electrically connected to the operation electrode 40a and a reference signal transmission electrode 50b electrically connected to the reference electrode 50a may be formed.
  • the working electrode 40a may have a rectangular shape
  • the reference electrode 50a may have a hollow rectangular shape that surrounds the working electrode 40a having a rectangular shape.
  • the working electrode 40a, the working signal transmission electrode 50a, the reference electrode 50b, and the reference signal transmission electrode 50b may be electrically connected through a via hole 60 penetrating through the reactor plate 20.
  • the reactor plate 20 may include an operation electrode 40a and a reference electrode 50a, an operation signal transmission electrode 40b and the reference electrode electrically connected to the operation electrode 40a.
  • the reference signal transmission electrodes 50b electrically connected to 50a may be formed on the same surface.
  • the shapes of the electrodes 40a, 40b, 50a, and 50b may be variously modified at a level that does not inhibit the chemical reaction (or electrochemical reaction) and the reaction signal transmission in the corresponding region.
  • the reagent 20c is applied to the upper surface of the electrode portion 20a. At least one working electrode and at least one reference electrode are formed on each of the surfaces of the reactor plate 20 facing each other, and a face electrode structure for forming a signal transmission unit 20b made of conductive wires. A portion of the electrode 20a is loaded with a reagent 20c which causes a predetermined electrochemical reaction with the biological material to be measured. At least one different reagent 20c may be loaded for each electrode unit 20a. The reagent 20c causes a chemical reaction such as a redox reaction with the biological material to be measured and is immobilized by a drying method after being coated on the reaction electrode.
  • a plurality of pairs of the electrode portion 20a and the signal transmission portion 20b in addition to the structure formed of a pair of electrode portions 20a and the signal transmission portion 20b on the inner surface of each reactor plate 20. It may be formed to form. Alternatively, at least two reactor plates 20 may be provided on the upper or lower portion of the base substrate 30.
  • 11A to 11C are views illustrating a coupling form of a reactor plate according to an embodiment of the present invention. Referring to this, as shown in FIG. 11A, only two reactor plates 20 are coupled to an upper portion of the base substrate 30. Can be. Alternatively, as illustrated in FIG.
  • one reactor plate 20 may be coupled to the upper portion of the base substrate 30, and two reactor plates 20 may be coupled to the lower portion of the base substrate 30.
  • a plurality of reactor plates 20 may be coupled to the upper and lower portions of the base substrate 30, respectively.
  • various coupling forms of the plurality of reactor plates 20 may be possible at a level that does not inhibit the basic skeleton, and are not limited to the contents shown in FIGS. 11A to 11C.
  • the base substrate 30 can be manufactured integrally by a processing method such as injection molding as a synthetic resin material, it can have various structures. In addition, the manufacturing process can be simplified since a separate spacer, that is, a blood supply layer is not required.
  • the base substrate 30 or the reactor board 20 may further include a means for detecting sample introduction or a means for providing sensor identification information.
  • the reaction chamber space of the base substrate 30 can be adjusted. That is, the height between the reactor plates 20 can be adjusted.
  • the reaction electrode area may be adjusted in consideration of signal amplification intensity.
  • the base substrate 30 and the reactor plate 20 are combined to form a sample introduction port and a reaction chamber.
  • the reaction chamber is a space in which a predetermined electrochemical reaction takes place with respect to the biological material (blood sugar, ketone, etc.) to be measured, and an opening of the space becomes a sample introduction port, and a sample (blood, saliva, urine, etc.) Upon contact, the sample is quickly sucked into the reaction chamber by capillary action.
  • the reagents 20c immobilized on the upper and lower electrode portions 20a in the reaction chamber each meet the corresponding biological material of the sample by sample suction to generate an electrochemical reaction to generate a reaction signal.
  • the reaction signal is transmitted to the measuring instrument via a signal transmission unit 20b connected to each reaction electrode, and the measuring instrument calculates a measured value based on the transmitted reaction signal.
  • the multi-reaction biosensor of the present invention can simultaneously detect a plurality of different biomaterial reaction signals with the same sample amount without increasing the sample amount.
  • a single sample blood
  • biomaterials such as blood sugar, total cholesterol, LDL cholesterol, HDL cholesterol, TG (Triglyoerides), hemoglobin, ketones, uric acid, and glycated hemoglobin (HbA1c).
  • the measured value of the biomaterial can be obtained.
  • the blood glucose measurement reagent applied to the electrode portion 20a of the lower reactor plate 22 reacts with the blood glucose of the blood and is applied to the electrode portion 20a of the upper reactor plate 21.
  • the ketone measurement reagent reacts with ketones in the blood, and thus can react with two biomaterials to measure this value.
  • the biomaterial may be a biomaterial that can be measured together for clinical diagnosis, correction of biomaterial measurement values, and the like. Structural structural expansion and modification are easy and various embodiments are possible.
  • a specific substrate enzyme is placed on one reactor plate 20, and another substrate enzyme is placed on another reactor plate 20, and a living body detected by another reactor plate 20 is a signal value detected by one reactor plate 20. By correcting the material response signal, it is possible to improve performance such as accuracy and reproducibility of biological material measurement values.
  • a reagent containing a specific substrate enzyme is placed on a freezing reactor plate 20, and a reagent is not placed on another reactor plate 20, so that the back-ground signal detected by the reactor plate 20 without reagent is used. Noise and interference in the biosensor 10 may be removed.
  • Samples introduced into a single sample introduction port flow through the reaction chamber space in different sample introduction directions, that is, in the directions of the upper reactor plate 21 and the lower reactor plate 22, respectively.
  • the biosensor in the conventional biomaterial reaction of the previous reaction site affects the biomaterial reaction of the reaction site
  • the biosensor of the present invention is different from the biomaterial reaction on any one reaction plate 20 By not affecting the biomaterial reaction on the substrate 20, the performance of accuracy, reproducibility, etc. of measured values may be improved.
  • the upper reactor plate 21 which is coupled to the upper portion of the base substrate 30, reacts with blood sugar (for measuring blood glucose) (Buffer, Polymer, Surfactant , Mediator, Stabilizer, Glucose Oxidase (GDH, GOD)), and the lower reactor plate 22 coupled to the lower surface of the base substrate 30 is loaded with a reagent (for measuring cholesterol) that reacts with cholesterol.
  • the upper reaction plate 21 detects a blood sugar response signal
  • the lower reaction plate 22 detects a cholesterol reaction signal.
  • the blood glucose response signal and the cholesterol response signal are transmitted to the measuring device through the signal transmitting unit 20b of each reactor plate 20, and the measuring device obtains the measured value based on the corresponding biomaterial response signal.
  • the reagent for measuring blood glucose is raised in the upper reactor plate 21 coupled to the upper portion of the base substrate 30, and the hemoglobin in the lower reactor plate 22 coupled to the lower portion of the base substrate 30. Raise reagents for measurement (Buffer, Polymer, Surfactant, Hemolytic, Mediator, Stabilizer).
  • the blood glucose response signal is detected by the upper reaction substrate 21, and the hemoglobin reaction signal is detected by the lower reaction substrate 22.
  • the blood glucose response signal and the hemoglobin reaction signal are transmitted to the measuring device via the signal transmission unit 20b of each reactor plate 20, and the upper reaction plate 21 is the hemoglobin reaction signal detected by the lower reaction substrate 22.
  • the biosensor 10 has a hemoglobin reaction of the lower reactor plate 22, a hemoglobin reaction of the lower reactor plate 22, and a blood glucose response of the upper reactor plate 21. It has no effect. That is, since the electrode portion 20a of the upper reactor plate 21 and the electrode portion 20a of the lower reactor plate 22 have a structure separated from each other, hematocrit correction can be accurately performed.
  • the multi-reaction biosensor according to the second preferred embodiment of the present invention is inserted into the inner surface of the base substrate 30 in contact with the capillary flow passage 11 at a predetermined depth and extends in the longitudinal direction as shown in FIG. 4.
  • Rail 32 is formed. Insertion rail 32 is formed in a pair on the inner side facing the base substrate 30, it is preferably formed on the upper end and the lower end. Both sides of the upper reaction board 21 and the lower reaction board 22 are inserted into and fixed to the insertion rail 32. At this time, as described above, the space between the upper and lower insertion rails 32 may be adjusted to adjust the internal space of the capillary flow path 11.
  • a plurality of insertion rails 32 are formed at equal intervals so that the interval between the upper reaction substrate 21 and the lower reaction substrate 22 may be adjusted according to the type of work to be measured.
  • the electrode portion 20a and the signal transmission portion 20b is a plurality of pairs It may be formed.
  • two reactor plates 20 may be provided at at least one of the upper end and the lower end of the base substrate 30.
  • the structure and measurement process other than the structure in which the insertion rail 32 is formed on the base substrate 30 to fix the upper reaction substrate 21 and the lower reaction substrate 22 are the same as in the first preferred embodiment of the present invention.
  • the multi-reaction biosensor according to the third preferred embodiment of the present invention is a guide which protrudes at a predetermined height and extends along a longitudinal direction on an inner surface of the base substrate 30 in contact with the capillary flow path 11 as shown in FIG. 5.
  • the member 31 is provided.
  • the guide member 31 is formed to be paired with the inner surface of the base substrate 30 facing each other.
  • the width of the guide member 31 may be adjusted to adjust the size of the inner space of the capillary flow path 11.
  • a plurality of guide members 31 may be formed at a plurality of equal intervals to adjust the distance between the upper reaction substrate 21 and the lower reaction substrate 22 according to the type of work to be measured.
  • a pair of electrode portions 20a and a signal transmitting portion 20b may be formed in a plurality of pairs on the inner surface of each of the reactor plates 20.
  • the structure measurement process other than the structure in which the guide member 31 is formed on the base substrate 30 to fix the upper reaction substrate 21 and the lower reaction substrate 22 is the same as the first preferred embodiment of the present invention.
  • the multi-reaction biosensor according to the fourth preferred embodiment of the present invention has an intermediate reaction at a predetermined interval between the upper reactor plate 21 forming the upper wall and the lower reactor plate 22 forming the lower wall, as shown in FIG. 6.
  • the substrate 25 is mounted. Both sides of the intermediate reactor plate 25 are fixed to the inner surface of the base substrate 30.
  • the electrode part 20a and the signal transmission part 20b are formed on one side or both side surfaces of the intermediate reactor plate 25.
  • the intermediate reaction substrate 25 may be equipped with a plurality of. At this time, the interval of each intermediate reaction substrate 25 can be adjusted according to the type of work to be measured.
  • a plurality of pairs of the electrode portion 20a and the signal transmission portion 20b are formed on the inner surface of each of the reactor plates 20 in addition to the structure formed by the pair of electrode portions 20a and the signal transmission portion 20b. It can be formed.
  • a single reaction chamber space can be formed as multiple reaction chamber spaces.
  • the intermediate reaction substrate 25 which horizontally blocks the reaction chamber space formed by the upper reactor plate 21 and the lower reactor plate 22 on the sample introduction port side of the base substrate 30 horizontally up and down is constituted. It flows from the sample introduction port to the upper space of the intermediate reaction substrate 25 in the reaction chamber space to be introduced between the upper reaction substrate 21 and the intermediate reaction substrate 25.
  • the sample inlet flows into the lower space of the intermediate reaction substrate 25 in the reaction chamber space so as to be introduced between the lower reaction substrate 22 and the intermediate reaction substrate 25.
  • the height of the intermediate reaction substrate 25 is adjusted to make the upper reaction substrate 21 side reaction chamber space size and the lower reaction substrate 22 side reaction chamber space size the same.
  • the reaction chamber space of either reaction chamber space may be enlarged for a case where a larger amount of sample is required in one of the reaction chamber spaces of both reaction chamber spaces.
  • only a few axes are formed on the entire horizontal axis of the intermediate reaction substrate 25 in the case where the biomaterial reaction of the upper reaction chamber space and the lower reaction chamber space are to be affected by the sample, and the remaining portions are opened.
  • the reaction chamber space in which the upper reaction chamber space and the lower reaction chamber space are formed by the intermediate reaction substrate 25 so that the amount of sample required in each reactor plate 20 (upper reaction substrate, lower reaction substrate, intermediate reaction substrate) is increased. Can be adjusted.
  • the structure and measurement process are the same as in the first preferred embodiment of the present invention.
  • the multi-reaction biosensor according to the fifth exemplary embodiment of the present invention includes an upper reactor plate 21 forming an upper wall, a side reactor plate 23 forming a side wall in contact with the upper wall, and a side as shown in FIG. 7. It consists of a base board 30 which forms a side wall surface and a lower wall surface facing the side wall surface in which the reactor board 23 was formed.
  • the side reactor plate 23 includes an electrode portion 20a and a signal transmission portion 20b.
  • the electrode portion 20a and the signal transmission portion 20b may be configured on the other side wall and the lower wall.
  • a plurality of pairs of the electrode portion 20a and the signal transmission portion 20b are formed on the inner surface of each of the reactor plates 20 in addition to the structure formed by the pair of electrode portions 20a and the signal transmission portion 20b. It can be formed.
  • the capillary flow path 11 has a triangular cross-sectional shape as shown in FIG. 8. It consists of a reactor board 20 mounted on at least two sides to form a triangular cross-sectional shape, and a base substrate 30 forming the remaining side. The electrode plate 20a and the signal transmission unit 20b are formed in the reactor plate 20.
  • the capillary flow path 11 forms a pentagonal cross-sectional shape.
  • It consists of a reactor board 20 mounted on at least two sides to form a pentagonal cross-sectional shape, and a base substrate 30 constituting the other side.
  • the electrode plate 20a and the signal transmission unit 20b are formed in the reactor plate 20.
  • it may be formed to form a plurality of polygons other than hexagons in addition to the triangle, square, and pentagon described above.
  • the multi-reaction biosensor according to the sixth and seventh exemplary embodiments of the present invention has a structure and operation other than the structure in which the reactor plate 20 and the base substrate 30 are configured such that the cross-sectional shape of the capillary flow path 11 forms a triangle and a pentagon.
  • the procedure is the same as in the first preferred embodiment of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Ecology (AREA)
  • Emergency Medicine (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은 한 번의 시료도입으로 다양한 종류의 반응 신호를 생성할 수 있는 다중 반응 바이오센서를 개시한다. 본 발명은 시료가 도입되는 모세관 유로가 구비된 바이오센서에 있어서, 상기 모세관 유로를 이루는 다수개의 벽면 중에서 적어도 두 개의 벽면을 이루며, 도입되는 시료와의 반응에 따른 반응신호를 생성하여 전달하는 반응기판; 및 상기 모세관 유로가 다각형 단면형상을 갖도록 상기 반응기판과 결합되고 상기 반응기판이 이루는 벽면 이외의 벽면을 이루는 베이스기판으로 구성됨으로써, 한 번의 시료도입으로 다양한 종류의 반응 신호를 생성할 수 있다.

Description

다중 반응 바이오센서
본 발명은 다중 반응 바이오센서에 관한 것으로서, 보다 상세하게는 한 번의 시료도입으로 다양한 종류의 반응 신호를 생성할 수 있는 다중 반응 바이오센서에 관한 것이다.
바이오센서(Biosensor)는 생물이 가지고 있는 기능을 이용하여 물질의 성질 등을 조사하는 수단을 말하며, 혈당이나 케톤 등과 같은 생체물질을 탐지소자로 사용하므로 감도와 반응 특이성이 우수하다. 바이오센서는 분석 방식에 따라 효소 분석법과 면역 분석법으로 구분되고, 생체 시료 내 분석 대상 물질을 정량 분석하는 방법에 따라 광학적 바이오센서와 전기화학적 바이오센서로 구분된다. 이러한 바이오센서는 혈당 측정, 임신 진단, 소변 검사 등 다양한 자가 테스트 및 빠른 질병 진단에 사용된다.
혈당 측정에 주로 이용되는 전기화학적 바이오센서의 경우, 바이오센서에 혈액과 같은 시료를 도입했을 때 일어나는 전기화학 반응에 의해, 전기신호가 생성되어 바이오센서와 연결 혹은 체결된 측정기에 전달된다.
한편, 다양한 생체물질을 하나의 기판 상에서 측정할 수 있는 바이오센서도 개발되어 있다. 종래기술에 따른 다양한 생체물질을 측정하는 바이오센서는 하나의 기판 위에 다중 반응개소가 구현되어 있는데, 하나의 시료 도입로에 여러 개의 반응개소가 흐르는 시료의 방향에 따라 순차적으로 구성되어 있다.
이러한 종래 구조의 바이오센서는 주입된 시료가 기판 상에서 흘러서 각 반응개소의 전극에 도달한 시간 순서대로 생체물질 반응이 이루어지기 때문에 서로 다른 생체물질을 하나의 바이오센서로 동시에 반응시킬 수 없는 문제점이 있다.
또한, 각 반응개소에서 반응시킬 시료를 해당 반응개소에 각각 도입해야 되기 때문에 시료를 여러번에 걸쳐서 도입시켜야 하고, 다수의 생체물질을 측정하기 위해서는 시료 양을 급격히 증가시켜야 되는 문제점이 있다.
또한, 각각의 반응개소가 단일 기판 위에서 시료 도입 방향에 따라 순서대로 구성되어 있기 때문에 시료 도입 방향 상에서 앞의 반응개소의 생체물질 반응이 뒤의 반응개소의 생체 물질 반응에 영향을 주는 문제점이 있다. 즉, 이는 시료 도입 방향 상에서 뒤에 구성된 반응개소의 생체물질 측정값이 영향을 받아 정확성, 재현성 등이 보장되지 못하는 문제점이 있다.
상기와 같은 점을 감안하여 안출한 본 발명의 목적은 한 번의 시료도입에 의해 다수의 반응 신호를 생성할 수 있는 다중 반응 바이오센서를 제공함에 있다.
본 발명의 다른 목적은 다수의 동일한 생체물질 또는 서로 다른 다양한 생체물질을 하나의 바이오센서로 동시에 측정할 수 있는 다중 반응 바이오센서를 제공함에 있다.
본 발명의 또 다른 목적은 시료를 한번 만 도입하는 것만으로 다수의 동일한 생체물질 또는 서로 다른 다양한 생체물질을 측정할 수 있는 다중 반응 바이오센서를 제공함에 있다.
본 발명의 또 다른 목적은 시료가 통과되는 통로를 구성하는 각면에 반응기판을 형성하는 간단한 구조로 다수의 동일한 생체물질 또는 서로 다른 다양한 생체물질을 측정할 수 있는 다중 반응 바이오센서를 제공함에 있다.
상기와 같은 본 발명의 목적을 달성하기 위한 다중 반응 바이오센서는 시료가 도입되는 모세관 유로가 구비된 바이오센서에 있어서, 상기 모세관 유로를 이루는 다수개의 벽면 중에서 적어도 두개의 벽면을 이루며, 도입되는 시료와의 반응에 따른 반응신호를 생성하여 전달하는 반응기판; 및 상기 모세관 유로가 다각형 단면형상을 갖도록 상기 반응기판과 결합되고 상기 반응기판이 이루는 벽면 이외의 벽면을 이루는 베이스기판을 포함한다.
또한, 보다 바람직하게는, 상기 반응기판은, 상부 벽면을 이루는 적어도 하나의 상부 반응기판과, 상기 상부 벽면에 대향되는 적어도 하나의 하부 벽면을 이루는 하부 반응기판으로 구성된다.
또한, 보다 바람직하게는, 상기 상부 벽면과 상기 하부 벽면을 이루는 각각의 반응기판 사이에 일정 간격을 이루도록 상기 베이스기판에 양측면이 고정되고, 도입되는 시료와의 반응에 따른 반응신호를 생성하여 전달하는 중간 반응기판이 더 포함된다.
또한, 보다 바람직하게는, 상기 반응기판은, 상부 벽면을 이루는 적어도 하나의 상부 반응기판과, 상기 상부 벽면에 접하는 측부 벽면을 이루는 적어도 하나의 측부 반응기판으로 구성된다.
또한, 보다 바람직하게는, 상기 모세관 유로는 삼각형, 사각형, 오각형, 육각형 중 어느 하나의 단면형상을 이룬다.
또한, 보다 바람직하게는, 상기 베이스기판에는 상기 반응기판이 결합되는 적어도 하나의 가이드부재가 구비된다.
또한, 보다 바람직하게는, 상기 베이스기판에는 상기 반응기판이 결합될 수 있도록 소정의 깊이로 함몰된 삽입레일이 구비된다.
또한, 보다 바람직하게는, 상기 베이스기판과 상기 반응기판 중 적어도 하나에는 상기 모세관 유로 내부의 공기가 배출될 수 있도록 관통된 공기배출부가 구비된다.
또한, 보다 바람직하게는, 상기 반응기판은, 타겟 생체물질과 반응하여 반응신호를 생성하는 전극부; 및 상기 반응신호를 측정장치에 전달하는 신호전달부;를 포함하고, 상기 전극부는 반응신호 생성을 위한 반응전극과 기준전극으로 구성된다.
상기와 같은 본 발명의 목적을 달성하기 위한 다중 반응 바이오센서는 시료가 도입되는 모세관 유로가 구비된 바이오센서에 있어서, 상기 모세관 유로를 이루는 다수개의 벽면 중에서 적어도 하나의 벽면을 이루며, 도입되는 시료와의 반응에 따른 반응신호를 생성하여 전달하는 적어도 두 개의 반응기판; 및 상기 모세관 유로가 다각형 단면형상을 갖도록 상기 반응기판과 결합되고 적어도 두 개의 상기 반응기판이 이루는 벽면 이외의 벽면을 이루는 베이스기판;을 포함하되, 상기 반응기판은 타겟 생체물질과 반응하여 반응신호를 생성하는 전극부; 및 상기 반응신호를 측정장치에 전달하는 신호전달부;로 이루어진다.
이와 같이 본 발명에 의한 다중 반응 바이오세서는 서로 다른 생체물질을 하나의 바이오센서로 동시에 반응시킬 수 있으며, 다수의 동일한 생체물질 또는 서로 다른 다양한 생체물질을 측정할 수 있어 작업성이 향상되는 효과가 있다.
또한 본 발명은 시료를 한 번만 도입하는 것만으로 다수의 생체물질을 동시에 반응시킬 수 있으며, 시료양의 증가 없이 동일한 시료 양으로 서로 다른 다수의 생체물질을 동시에 검출할 수 있다.
또한 본 발명은 다수의 반응기판 상의 각 시약(효소) 구성 및 탑재 여부를 다르게 하여 생체물질 반응신호 보정을 쉽게 할 수 있어 측정값의 정확성, 재현성 등의 성능을 향상시킬 수 있다. 또한 동시 반응을 통해 반응기판 상의 생체물질 반응이 반응에 어떠한 영향도 주지 않아 측정값의 정확성, 재현성 등의 성능을 올릴 수 있다.
도 1은 본 발명의 바람직한 제1 실시예인 다중 반응 바이오센서를 도시한 사시도,
도 2는 도 1에 도시된 다중 반응 바이오센서를 분해하여 도시한 사시도,
도 3은 도 1에 도시된 다중 반응 바이오센서를 도시한 단면도,
도 4는 본 발명의 바람직한 제2 실시예인 다중 반응 바이오센서를 도시한 단면도,
도 5는 본 발명의 바람직한 제3 실시예인 다중 반응 바이오센서를 도시한 단면도,
도 6은 본 발명의 바람직한 제4 실시예인 다중 반응 바이오센서를 도시한 단면도,
도 7은 본 발명의 바람직한 제5 실시예인 다중 반응 바이오센서를 도시한 단면도,
도 8은 본 발명의 바람직한 제6 실시예인 다중 반응 바이오센서를 도시한 단면도,
도 9는 본 발명의 바람직한 제7 실시예인 다중 반응 바이오센서를 도시한 단면도,
도 10a 및 10b는 본 발명의 실시예들에 따른 반응기판의 구조를 나타낸 평면도,
도 11a 내지 도 11c는 본 발명의 실시예들에 따른 반응기판의 결합형태를 나타낸 상태도.
이하, 본 발명의 바람직한 실시예인 다중 반응 바이오센서를 첨부된 도면을 참조하여 보다 상세히 설명하면 다음과 같다.
도 1은 본 발명의 바람직한 제1 실시예인 다중 반응 바이오센서를 도시한 사시도이고, 도 2는 도 1에 도시된 다중 반응 바이오센서를 분해하여 도시한 사시도이고, 도 3은 도 1에 도시된 다중 반응 바이오센서를 도시한 단면도이다.
도 1내지 도 3에 도시된 바와 같이 본 발명의 바람직한 제1 실시예인 다중 반응 바이오센서(10)는 육면체로 이루어진 관 형상으로 이루어지고 중심부를 따라 관통된 모세관 유로(11)가 형성된다. 모세관 유로(11)의 단면 형상은 사각 단면 형상을 일예로 들어 설명하고 있으나, 사각 단면 형상 뿐만 아니라, 삼각, 오각 육각 등 사용자의 목적에 따라 다양한 다각형 단면 형상으로 구성될 수 있고, 본 발명에서는 이러한 다각형 단면 형상의 모세관 유로(11)를 모두 포함한다.
바이오센서(10)의 상부 벽면과 하부 벽면은 반응기판(20)으로 이루어지고, 측부 벽면은 베이스기판(30)으로 이루어진다. 상부 벽면은 상부 반응기판(21)으로 구성되고, 상부 벽면과 대향되는 하부 벽면은 하부 반응기판(22)으로 구성된다.
베이스기판(30)은 일정 간격을 유지하는 측부 벽면을 이룬다. 각각의 베이스기판(30)은 중간부재에 의해 서로 연결되고 반응기판(20)과 결합되어 모세관 유로(11)를 형성하고, 일측 끝단은 개구부로 구성되고 타측 끝단은 반응기판(20)과 결합되어 막힌 구조로 이루어진다. 베이스기판(30)과 반응기판(20)이 결합된 바이오센서(10)에는 모세관 유로(11) 내부의 공기가 배출될 수 있도록 외부와 관통되는 공기배출부(33)가 형성된다. 공기배출부(33)는 도시된 바와 같이 베이스기판(30)의 내측면에 소정의 깊이로 함몰되고 상하를 따라 끝단 까지 연장된 구조로 형성되는 것이 바람직하다. 그러나 공기배출부(33)는 도시된 형상으로만 한정되지 않고, 모세관 유로(11)와 외부를 연통시킬 수 있는 홀 형상이라면 베이스기판(30)의 중간부나 반응기판(20)의 테두리부 등 어느 위치에 형성되어도 무관하다.
반응기판(20)은 PCB(Printed Circuit Board)기판, 혹은 FPCB(Flexible PCB)기판로 이루어질 수 있으며, 반응기판(20)의 일면에는 타겟 생체물질과 반응하여 반응신호를 생성하는 전극부(20a)와, 반응신호를 측정장치에 전달하는 신호전달부(20b)가 구성된다. 전극부(20a)는 세부적으로 작동전극과 기준전극으로 구성되고, 신호전달부(20b)는 작동전극과 전기적으로 연결된 작동신호전달전극 및 기준전극과 전기적으로 연결된 기준신호전달전극으로 구성된다. 도 10a 및 10b는 반응기판(10)의 구조를 나타낸 도면으로서 이를 참조하면, 반응기판(20)은 도 10a에 도시된 바와 같이, 일면에 작동전극(40a) 및 기준전극(50a)이 형성되고, 타면에 작동전극(40a)과 전기적으로 연결된 작동신호전달전극(40b) 및 상기 기준전극(50a)과 전기적으로 연결된 기준신호전달전극(50b)이 형성될 수 있다. 이때, 작동전극(40a)은 사각형 형상을 가질 수 있으며 기준전극(50a)은 사각형 형상을 가지는 작동전극(40a)을 둘러싸는 형상인 중공의 사각형 형상을 가질 수 있다. 작동전극(40a)과 작동신호전달전극(50a), 기준전극(50b)과 기준신호전달전극(50b)은 반응기판(20)을 관통하는 경유구멍(Via Hole, 60)을 통해 전기적으로 연결될 수 있다. 혹은 반응기판(20)은, 도 10b에 도시된 바와 같이, 작동전극(40a) 및 기준전극(50a), 상기 작동전극(40a)과 전기적으로 연결된 작동신호전달전극(40b) 및 상기 기준전극(50a)과 전기적으로 연결된 기준신호전달전극(50b)이 모두 동일한 일면에 형성될 수 있다. 전극들(40a, 40b, 50a, 50b)의 형상은 해당 영역에서의 화학반응(혹은 전기화학반응) 및 반응신호 전달을 저해하지 않는 수준에서 다양한 변형이 가능하다.
전극부(20a) 상면에는 시약(20c)이 도포된다. 반응기판(20)의 서로 마주보는 면 각각에 적어도 하나의 작동전극과 적어도 하나의 기준전극을 형성하고, 도선으로 이루어진 신호전달부(20b)를 형성하는 대면전극 구조이다. 전극부(20a) 상의 일부분에는 측정 대상이 되는 생체물질과 예정된 전기 화학반응을 일으키는 시약(20c)이 올려진다. 전극부(20a) 마다 적어도 하나의 서로 다른 시약(20c)이 올려질 수 있다. 시약(20c)은 측정대상 생체물질과 산화환원 반응과 같은 화학반응을 일으키는 것으로서, 반응전극 상에 도포된 후 건조방식 등으로 고정화된다. 또한 도시되진 않았지만, 각 반응기판(20)의 내측면에는 한쌍의 전극부(20a)와 신호전달부(20b)로 형성되는 구조 이외에 전극부(20a) 및 신호전달부(20b)가 다수개의 쌍을 이루어 형성될 수도 있다. 혹은 베이스기판(30)의 상부 또는 하부에 적어도 두 개의 반응기판(20)이 구비될 수 있다. 도 11a 내지 11c는 본 발명의 실시예에 따른 반응기판의 결합형태를 나타낸 도면으로서 이를 참조하면, 도 11a에 도시된 바와 같이, 베이스기판(30)의 상부에만 두 개의 반응기판(20)이 결합될 수 있다. 또는 도 11b에 도시된 바와 같이, 베이스기판(30)의 상부에는 하나의 반응기판(20)이 결합되고, 하부에는 두 개의 반응기판(20)이 결합될 수 있다. 또는 도 11c에 도시된 바와 같이, 베이스기판(30)의 상부 및 하부 각각에 다수개의 반응기판(20)이 결합될 수 있다. 이와 같이 기본적인 골격을 저해하지 않는 수준에서 다수개의 반응기판(20)의 다양한 결합형태가 가능하며, 도 11a 내지 11c에 도시된 내용에 한정되지 않는다.
베이스기판(30)은 합성수지재질로서 사출성형 등의 가공방법으로 일체형으로 제작할 수 있기 때문에 다양한 구조를 가질 수 있다. 또한 별도의 스페이서 즉, 혈액공급층을 필요로 하지 않기 때문에 제조공정이 단순해질 수 있다.
도시되진 않았지만, 베이스기판(30)이나 반응기판(20)에는 시료도입 감지를 위한 수단 또는 센서 식별정보 제공을 위한 수단 등이 더 구비될 수 있다.
어떤 생체물질 반응은 아주 적은 양의 시료(20c)가 필요하고, 또 어떤 생체물질 반응은 비교적 많은 양의 시료(20c)가 필요한 경우가 있다. 이를 위해 베이스기판(30)의 반응챔버 공간을 조정할 수 있다. 즉 반응기판(20) 사이의 높이를 조절할 수 있다. 또한 어떤 생체물질 반응신호 증폭을 위해 비교적 큰 면적의 반응 전극이 필요한 경우가 있는데, 이를 위해 신호 증폭 세기 등을 고려하여 해당 반응전극 면적을 조정할 수도 있다.
상기와 같이 구성된 본 발명의 바람직한 다중 반응 바이오센서는 베이스기판(30)과 반응기판(20)이 결합되어 시료도입구와 반응챔버를 형성한다. 반응챔버는 측정 대상 생체물질(혈당, 케톤 등)에 대해 예정된 전기화학적 반응이 일어나는 공간으로서, 이 공간의 개구부가 시료도입구가 되고, 이 시료도입구에 시료(혈액, 타액, 소변 등)가 닿으면 모세관 현상에 의해 시료가 반응챔버에 빠르게 흡입된다. 반응챔버에서 상하부 전극부(20a) 위에 각각 고정화된 시약(20c)은 시료흡입에 의해 각각 시료의 해당 측정대상 생체물질과 만나 전기화학적 반응을 일으켜 반응신호를 생성한다. 이 반응신호는 각 반응전극에 연결된 신호전달부(20b)를 거쳐 측정기에 전달되고, 측정기는 전달된 반응신호를 기반으로 측정값을 연산한다.
본 발명의 다중 반응 바이오센서는 시료 양의 증가없이 동일한 시료 양으로 서로 다른 다수의 생체물질 반응신호를 동시에 검출할 수 있다. 예를 들어 하나의 시료(혈액)를 한번 도입하는 것만으로 혈당, 총 콜레스테롤, LDL 콜레스테롤, HDL 콜레스테롤, TG(Triglyoerides), 헤모글로빈, 케톤, 요산, 당화혈색소(HbA1c) 등과 같은 생체물질을 동시에 반응시켜 해당 생체물질의 측정값을 구할 수 있다. 예컨대 단순히 소량의 혈액이 도입되더라도, 하부 반응기판(22)의 전극부(20a)에 도포된 혈당측정용 시약은 혈액의 혈당과 반응하고, 상부 반응기판(21)의 전극부(20a)에 도포된 케톤측정용 시약은 혈액의 케톤과 반응하므로, 동시에 두 가지 생체물질과 반응하여 이 값을 측정하도록 할 수 있다. 여기서 생체물질은 임상학적 진단, 생체물질 측정값 보정 등을 위해 함께 측정되면 좋은 생체물질일 수 있다. 구조상 구조적 확장 및 변경이 용이하여 다양한 실시형태가 가능하다. 예컨대 어느 반응기판(20)에는 특정 기질 효소를 올리고 다른 반응기판(20)에는 다른 기질 효소를 올려, 어느 하나의 반응기판(20)에서 검출한 신호값으로 다른 반응기판(20)에서 검출한 생체물질 반응신호를 보정하여 생체물질 측정값의 정확성, 재현성 등의 성능을 향상시킬 수 있다. 다른 예로서 어는 반응기판(20)에는 특정 기질 효소를 포함하는 시약을 올리고 다른 반응기판(20)에는 시약을 올리지 않게 구성하여 시약이 없는 반응기판(20)에서 검출한 Back-ground 신호를 이용하여 바이오센서(10)에서의 노이즈(Noise), 간섭(interference)을 제거할 수 있다.
단일 시료 도입구에 도입된 시료가 반응챔버 공간을 통해 서로 다른 시료 도입 방향 즉, 상부 반응기판(21) 및 하부 반응기판(22)의 방향으로 각각 흐른다. 이는 종래에 바이오센서가 앞의 반응개소의 생체물질 반응이 뒤의 반응개소의 생체물질 반응에 영향을 주는데 반하여, 본 발명의 바이오세서는 어느 하나의 반응기판(20) 상의 생체물질 반응이 다른 반응기판(20) 상의 생체물질 반응에 어떠한 영향도 주지 않아 측정값의 정확성, 재현성 등의 성능을 향상시킬 수 있는 것이다.
반응기판(20)에 설치되는 시약을 일예를 들어 설명하면, 베이스기판(30)의 상부에 결합되는 상부 반응기판(21)에는 혈당과 반응하는(혈당 측정을 위한) 시약(Buffer, Polymer, Surfactant, Mediator, Stabilizer, 글루코스산화효소(GDH, GOD))을 올리고, 베이스기판(30)의 하부면에 결합되는 하부 반응기판(22)에는 콜레스테롤과 반응하는(콜레스테롤 측정을 위한) 시약을 올린다. 상부 반응기판(21)에서 혈당 반응신호를 검출하고, 하부 반응기판(22)에서 콜레스테롤 반응신호를 검출한다. 이 혈당 반응신호 및 콜레스테롤 반응신호는 각 반응기판(20)의 신호전달부(20b)를 거쳐 측정기에 전달되며, 측정기가 해당 생체물질 반응신호를 토대로 측정값을 구한다.
또 다른 예를 들어 설명하면, 베이스기판(30)의 상부에 결합되는 상부 반응기판(21)에는 혈당 측정을 위한 시약을 올리고, 베이스기판(30) 하부에 결합되는 하부 반응기판(22)에 헤모글로빈 측정을 위한 시약(Buffer, Polymer, Surfactant, 용혈제, Mediator, Stabilizer)을 올린다. 상부반응기판(21)에서 혈당 반응신호를 검출하고, 하부반응기판(22)에서 헤모글로빈 반응신호를 검출한다. 이 혈당 반응신호 및 헤모글로빈 반응신호는 각 반응기판(20)의 신호 전달부(20b)를 거쳐 측정기에 전달되며, 측정기가 하부반응기판(22)에 의해 검출한 헤모글로빈 반응신호로 상부 반응기판(21)에서 검출한 혈당 반응신호를 보정하여 헤마토크릿(HCT:Hematocrit) 영향을 제거한 올바른 혈당 측정값을 구한다.
이와 같이 바이오센서(10)는 상부 반응기판(21)의 혈당 반응이 하부 반응기판(22)의 헤모글로빈 반응, 마찬가지로 하부 반응기판(22)의 헤모글로빈 반응이 상부 반응기판(21)의 혈액 반응에 어떠한 영향도 주지 않는다. 즉, 상부 반응기판(21)의 전극부(20a)와 하부 반응기판(22)의 전극부(20a)가 서로 분리된 구조를 가지므로 헤마토크릿 보정을 정확하게 할 수 있다.
마찬가지로 본 발명의 바람직한 제2 실시예인 다중 반응 바이오센서는 도 4에 도시된 바와 같이 모세관 유로(11)에 접하는 베이스기판(30)의 내측면에는 소정의 깊이로 함몰되고 길이방향을 따라 연장된 삽입레일(32)이 형성된다. 삽입레일(32)은 베이스기판(30)의 마주보는 내측면에 짝을 이루어 형성되는데, 상단부와 하단부에 형성되는 것이 바람직하다. 삽입레일(32)에는 상부반응기판(21)과 하부반응기판(22)의 양측면이 삽입되어 고정된다. 이때, 앞서 설명한 바와 같이 삽입레일(32) 상하 간의 간격을 조절하여 모세관 유로(11)의 내부 공간 크기를 조절할 수 있다. 도시되진 않았지만, 삽입레일(32)이 등간격으로 다수개 형성되어 측정하고자 하는 작업의 종류에 따라 상부반응기판(21)과 하부반응기판(22)의 간격을 조절할 수도 있다. 또한 도시되진 않았지만, 반응기판(20)의 내측면에는 한쌍의 전극부(20a)와 신호전달부(20b)로 형성되는 구조 이외에 전극부(20a) 및 신호전달부(20b)가 다수개의 쌍을 이루어 형성될 수도 있다. 또한 전술한 바와 같이 베이스기판(30)의 상단부와 하단 부 중 적어도 하나에 두 개의 반응기판(20)이 구비될 수 있다.
베이스기판(30)에 삽입레일(32)이 형성되어 상부반응기판(21)과 하부반응기판(22)이 고정되는 구조 이외의 구조 및 측정과정은 본 발명의 바람직한 제1 실시예와 동일하다.
마찬가지로 본 발명의 바람직한 제3 실시예인 다중 반응 바이오센서는 도 5에 도시된 바와 같이 모세관 유로(11)에 접하는 베이스기판(30)의 내측면에는 소정의 높이로 돌출되고 길이방향을 따라 연장되는 가이드부재(31)가 구비된다. 가이드부재(31)는 베이스기판(30)의 마주보는 내측면에 짝을 이루어 형성된다. 이때, 앞서 설명한 바와 같이 가이드부재(31)의 폭을 조절하여 모세관 유로(11)의 내부 공간 크기를 조절할 수 있다. 도시되진 않았지만, 다수개의 가이드부재(31)가 등간격으로 다수개 형성되어 측정하고자 하는 작업의 종류에 따라 상부반응기판(21)과 하부반응기판(22)의 간격을 조절할 수도 있다. 또한 도시되진 않았지만, 각 반응기판(20)의 내측면에는 한쌍의 전극부(20a) 및 신호전달부(20b)가 다수개의 쌍을 이루어 형성될 수도 있다.
베이스기판(30)에 가이드부재(31)가 형성되어 상부반응기판(21)과 하부반응기판(22)이 고정되는 구조 이외의 구조 측정과정은 본 발명의 바람직한 제1 실시예와 동일하다.
마찬가지로 본 발명의 바람직한 제4 실시예인 다중 반응 바이오센서는 도 6에 도시된 바와 같이 상부 벽면을 이루는 상부 반응기판(21)과 하부 벽면을 이루는 하부 반응기판(22) 사이에 일정 간격을 두고 중간 반응기판(25)이 장착된다. 중간 반응기판(25)은 양 측면이 베이스기판(30)의 내측면에 고정된다. 중간 반응기판(25)의 일측면 또는 양측면에는 전극부(20a) 및 신호전달부(20b)가 형성된다. 중간반응기판(25)은 다수개가 장착될 수도 있다. 이때, 각 중간반응기판(25)의 간격을 측정하고자 하는 작업의 종류에 따라 조절할 수 있다. 또한 도시되진 않았지만 각 반응기판(20)의 내측면에는 한쌍의 전극부(20a)와 신호전달부(20b)로 형성되는 구조 이외에 전극부(20a) 및 신호전달부(20b)가 다수개의 쌍을 이루어 형성될 수 있다.
즉, 단일 반응챔버 공간을 다중 반응 챔버 공간으로 형성할 수 있다. 베이스기판(30)의 시료 도입구 측 상부 반응기판(21) 및 하부 반응기판(22)에 의해 형성되는 반응챔버 공간을, 위 아래로 수평하게 차단하는 중간반응기판(25)을 구성한다. 시료 도입구로부터 반응챔버 공간의 중간반응기판(25) 상단측 공간으로 흘러서 상부반응기판(21)과 중간반응기판(25) 사이로 도입되도록 한다. 또한 시료 도입구로부터 반응챔버 공간의 중간반응기판(25) 하단측 공간으로 흘러서 하부반응기판(22)과 중간반응기판(25) 사이로 도입되도록 한다.
상기와 같이 다중 반응챔버공간을 갖는 바이오센서에서는 중간반응기판(25) 형성 높이를 조절하여, 상부반응기판(21) 측 반응챔버공간 크기와 하부반응기판(22) 측 반응챔버공간 크기를 서로 동일하게 하거나, 양측 반응챔버공간 중 어느 하나의 반응챔버공간이 더 많은 양의 시료가 필요한 경우를 위해 양측 반응챔버공간 중 어느 하나의 반응챔버공간을 크게 할 수 있다. 또한, 상측 반응챔버공간과 하측 반응챔버공간의 생체물질 반응이 시료에 의해 영향을 받아야 되는 경우를 위해 중간반응기판(25)의 수평 방향 전체 축에서 일부 축만이 형성되고 나머지 부분을 오픈된 구조로 하여 상측 반응챔버공간과 하측 반응챔버공간이 중간반응기판(25)에 의해 형성되는 반응챔버공간을 조정하여 각 반응기판(20)(상부반응기판, 하부반응기판, 중간반응기판)에서 필요한 시료 양을 조절할 수 있다.
베이스기판(30)에 중간반응기판(25)이 장착되는 구조 이외에 구조 및 측정과정은 본 발명의 바람직한 제1 실시예와 동일하다.
마찬가지로 본 발명의 바람직한 제5 실시예인 다중 반응 바이오센서는 도 7에 도시된 바와 같이 상부 벽면을 이루는 상부 반응기판(21)과, 상부 벽면에 접하는 측부 벽면을 이루는 측부 반응기판(23)과, 측부 반응기판(23)이 형성된 측부 벽면에 대향되는 측부 벽면과 하부 벽면을 이루는 베이스기판(30)으로 구성된다.
상부 반응기판(21)과 마찬가지로 측부 반응기판(23)에도 전극부(20a)와 신호전달부(20b)가 구성된다. 또한 또 다른 측부 벽면과 하부 벽면에도 전극부(20a)와 신호전달부(20b)를 구성할 수도 있다. 또한 도시되진 않았지만 각 반응기판(20)의 내측면에는 한쌍의 전극부(20a)와 신호전달부(20b)로 형성되는 구조 이외에 전극부(20a) 및 신호전달부(20b)가 다수개의 쌍을 이루어 형성될 수 있다.
상부 반응기판(21)에 접하는 측부 반응기판(23)이 장착되는 구조 이외에 구성 및 측정과정은 본 발명의 바람직한 제1 실시예와 동일하다.
마찬가지로 본 발명의 바람직한 제6 실시예인 다중 반응 바이오센서는 도 8에 도시된 바와 같이 모세관 유로(11)가 삼각형 단면형상을 이룬다. 삼각형 단면형상을 이루도록 적어도 두 측면에 장착되는 반응기판(20)과, 나머지 측면을 이루는 베이스기판(30)으로 구성된다. 반응기판(20)에는 전극부(20a)와 신호전달부(20b)가 형성된다. 또한 마찬가지로 본 발명의 바람직한 제7 실시예인 다중 반응 바이오센서는 도 9에 도시된 바와 같이 모세관 유로(11)가 오각형 단면형상을 이룬다. 오각형 단면형상을 이루도록 적어도 두 측면에 장착되는 반응기판(20)과, 나머지 측면을 이루는 베이스기판(30)으로 구성된다. 반응기판(20)에는 전극부(20a)와 신호전달부(20b)가 형성된다. 또한 도시되진 않았지만, 앞서 설명한 삼각, 사각, 오각형 이외에 육각형 이외 다수의 다각형을 이루도록 형성될 수 있다.
본 발명의 바람직한 제6 및 제7 실시예인 다중 반응 바이오센서는 모세관 유로(11)의 단면형상이 삼각형 및 오각형을 이루도록 반응기판(20)과 베이스기판(30)이 구성되는 구조 이외의 구조 및 작동과정은 본 발명의 바람직한 제1 실시와 동일하다.
본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위내에 있게 된다.

Claims (10)

  1. 시료가 도입되는 모세관 유로(11)가 구비된 바이오센서(10)에 있어서,
    상기 모세관 유로(11)를 이루는 다수개의 벽면 중에서 적어도 두 개의 벽면을 이루며, 도입되는 시료와의 반응에 따른 반응신호를 생성하여 전달하는 반응기판(20); 및
    상기 모세관 유로(11)가 다각형 단면형상을 갖도록 상기 반응기판(20)과 결합되고 상기 반응기판(20)이 이루는 벽면 이외의 벽면을 이루는 베이스기판(30);을 포함하는 것을 특징으로 하는 다중 반응 바이오센서.
  2. 제 1항에 있어서, 상기 반응기판(20)은,
    상부 벽면을 이루는 적어도 하나의 상부 반응기판(21)과, 상기 상부 벽면에 대향되는 하부 벽면을 이루는 적어도 하나의 하부 반응기판(22)으로 구성되는 것을 특징으로 하는 다중 반응 바이오센서.
  3. 제 1항에 있어서, 상기 상부 벽면과 상기 하부 벽면을 이루는 각각의 반응기판(20) 사이에 일정 간격을 이루도록 상기 베이스기판(30)에 양측면이 고정되고, 도입되는 시료와의 반응에 따른 반응신호를 생성하여 전달하는 중간 반응기판(25)이 더 포함되는 것을 특징으로 하는 다중 반응 바이오센서.
  4. 제 1항에 있어서, 상기 반응기판(20)은,
    상부 벽면을 이루는 적어도 하나의 상부 반응기판(21)과, 상기 상부 벽면에 접하는 측부 벽면을 이루는 적어도 하나의 측부 반응기판(23)으로 구성되는 것을 특징으로 하는 다중 반응 바이오센서.
  5. 제 1항에 있어서, 상기 모세관 유로(11)는 삼각형, 사각형, 오각형, 육각형 중 어느 하나의 단면형상을 이루는 것을 특징으로 하는 다중 반응 바이오센서.
  6. 제 1항에 있어서, 상기 베이스기판(30)에는
    상기 반응기판(20)이 결합되는 적어도 하나의 가이드부재(31)가 구비되는 것을 특징으로 하는 다중 반응 바이오센서.
  7. 제 1항에 있어서, 상기 베이스기판(30)에는
    상기 반응기판(20)이 결합될 수 있도록 소정의 깊이로 함몰된 삽입레일(32)이 구비되는 것을 특징으로 하는 다중 반응 바이오센서.
  8. 제 1항 내지 제 7항 중 어느 한 항에 있어서, 상기 베이스기판(30)과 상기 반응기판(20) 중 적어도 하나에는 상기 모세관 유로(11) 내부의 공기가 배출될 수 있도록 관통된 공기배출부(33)가 구비되는 것을 특징으로 하는 다중 반응 바이오센서.
  9. 제 1항 제 7항 중 어느 한 항에 있어서, 상기 반응기판(20)은,
    타겟 생체물질과 반응하여 반응신호를 생성하는 전극부; 및
    상기 반응신호를 측정장치에 전달하는 신호전달부;를 포함하고, 상기 전극부는 반응신호 생성을 위한 반응전극과 기준전극으로 구성되는 것을 특징으로 하는 다중 반응 바이오센서.
  10. 시료가 도입되는 모세관 유로(11)가 구비된 바이오센서(10)에 있어서,
    상기 모세관 유로(11)를 이루는 다수개의 벽면 중에서 적어도 하나의 벽면을 이루며, 도입되는 시료와의 반응에 따른 반응신호를 생성하여 전달하는 적어도 두 개의 반응기판(20); 및
    상기 모세관 유로(11)가 다각형 단면형상을 갖도록 상기 반응기판(20)과 결합되고 적어도 두 개의 상기 반응기판(20)이 이루는 벽면 이외의 벽면을 이루는 베이스기판(30);을 포함하되,
    상기 반응기판(20)은 타겟 생체물질과 반응하여 반응신호를 생성하는 전극부; 및
    상기 반응신호를 측정장치에 전달하는 신호전달부;로 이루어지는 것을 특징으로 하는 다중 반응 바이오센서.
PCT/KR2012/008786 2011-10-31 2012-10-24 다중 반응 바이오센서 WO2013065994A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280053061.3A CN103959051A (zh) 2011-10-31 2012-10-24 多反应生物传感器
US14/355,131 US20140303042A1 (en) 2011-10-31 2012-10-24 Multi-Reaction Biosensor
EP12846288.4A EP2778668A4 (en) 2011-10-31 2012-10-24 MULTI-REACTION BIOSENSOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0111851 2011-10-31
KR1020110111851A KR101363020B1 (ko) 2011-10-31 2011-10-31 다중 반응 바이오센서

Publications (1)

Publication Number Publication Date
WO2013065994A1 true WO2013065994A1 (ko) 2013-05-10

Family

ID=48192297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008786 WO2013065994A1 (ko) 2011-10-31 2012-10-24 다중 반응 바이오센서

Country Status (5)

Country Link
US (1) US20140303042A1 (ko)
EP (1) EP2778668A4 (ko)
KR (1) KR101363020B1 (ko)
CN (1) CN103959051A (ko)
WO (1) WO2013065994A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2867660A4 (en) * 2012-06-28 2015-12-23 Siemens Healthcare Diagnostics READING DEVICE AND METHOD FOR SIGNAL REINFORCEMENT
EP3167254A4 (en) * 2014-07-09 2017-08-02 Siemens Healthcare Diagnostics Inc. Low sample volume sensing device
WO2019054834A3 (ko) * 2017-09-15 2019-05-23 계명대학교 산학협력단 시료측정 스트립 센서

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3206030A1 (en) 2012-04-23 2017-08-16 Siemens Healthcare Diagnostics Inc. Rolled tube with sensor assembly
US10330742B2 (en) * 2016-12-23 2019-06-25 Biosense Webster (Israel) Ltd. Triple axis sensor on a single layer printed circuit
DE102017208461A1 (de) 2017-05-18 2018-11-22 Diabetes.Online Ag Multianalytmessung
JP6940846B2 (ja) * 2017-10-05 2021-09-29 新日本無線株式会社 バイオセンサ及びその製造方法
EP3710790A4 (en) * 2017-11-17 2021-01-20 Siemens Healthcare Diagnostics, Inc. SENSOR ARRANGEMENT AND METHOD OF USE THEREOF

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070099233A (ko) * 2006-04-04 2007-10-09 주식회사 올메디쿠스 무동력 혈액분리수단을 구비한 바이오센서 칩
US20080063566A1 (en) * 2004-09-03 2008-03-13 Mitsubishi Chemical Corporation Sensor Unit and Reaction Field Cell Unit and Analyzer
KR100834286B1 (ko) * 2007-01-23 2008-05-30 엘지전자 주식회사 생체 물질 측정용 다층 스트립 및 생체 물질 측정 장치
KR20080069365A (ko) * 2007-01-23 2008-07-28 엘지전자 주식회사 생체 물질 측정용 스틱 및 생체 물질 측정 시스템
US20090071824A1 (en) * 2004-10-14 2009-03-19 Hibbs Andrew D Integrated Sensing Array for Producing a BioFingerprint of an Analyte

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169394B1 (en) * 1998-09-18 2001-01-02 University Of The Utah Research Foundation Electrical detector for micro-analysis systems
US6787368B1 (en) * 1999-03-02 2004-09-07 Helix Biopharma Corporation Biosensor method for detecting analytes in a liquid
US6989234B2 (en) * 2002-09-24 2006-01-24 Duke University Method and apparatus for non-contact electrostatic actuation of droplets
CN1194223C (zh) * 2003-06-18 2005-03-23 清华大学 一种多功能血液检测芯片
CN1916616A (zh) * 2005-08-17 2007-02-21 李仁方 可多次使用的生物检测试片
CN2881624Y (zh) * 2006-01-04 2007-03-21 合世生医科技股份有限公司 具有同时检测多种人体生理信息的微信道生物传感器试片
JPWO2008044530A1 (ja) * 2006-10-05 2010-02-12 パナソニック株式会社 多項目成分分析センサおよび多項目成分の測定方法
ES2636676T3 (es) * 2007-09-24 2017-10-06 Ascensia Diabetes Care Holdings Ag Método de ensayo de múltiples electrodos
JP5405916B2 (ja) * 2008-06-24 2014-02-05 パナソニック株式会社 バイオセンサ、その製造方法、及びそれを備える検出システム
CN101762626A (zh) * 2008-12-23 2010-06-30 台达电子工业股份有限公司 用于电化学检测的测试片及电化学检测系统
US20110048972A1 (en) * 2009-08-31 2011-03-03 Lifescan Scotland Limited Multi-analyte test strip with shared counter/reference electrode and inline electrode configuration
KR101363157B1 (ko) * 2010-10-07 2014-02-26 주식회사 세라젬메디시스 입체적 구조의 바이오센서 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080063566A1 (en) * 2004-09-03 2008-03-13 Mitsubishi Chemical Corporation Sensor Unit and Reaction Field Cell Unit and Analyzer
US20090071824A1 (en) * 2004-10-14 2009-03-19 Hibbs Andrew D Integrated Sensing Array for Producing a BioFingerprint of an Analyte
KR20070099233A (ko) * 2006-04-04 2007-10-09 주식회사 올메디쿠스 무동력 혈액분리수단을 구비한 바이오센서 칩
KR100834286B1 (ko) * 2007-01-23 2008-05-30 엘지전자 주식회사 생체 물질 측정용 다층 스트립 및 생체 물질 측정 장치
KR20080069365A (ko) * 2007-01-23 2008-07-28 엘지전자 주식회사 생체 물질 측정용 스틱 및 생체 물질 측정 시스템

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2867660A4 (en) * 2012-06-28 2015-12-23 Siemens Healthcare Diagnostics READING DEVICE AND METHOD FOR SIGNAL REINFORCEMENT
US10330630B2 (en) 2012-06-28 2019-06-25 Siemens Healthcare Diagnostics Inc. Reader device and method of signal amplification
US10921280B2 (en) 2012-06-28 2021-02-16 Siemens Healthcare Diagnostics Inc. Reader device and method of signal amplification
EP3167254A4 (en) * 2014-07-09 2017-08-02 Siemens Healthcare Diagnostics Inc. Low sample volume sensing device
US10814322B2 (en) 2014-07-09 2020-10-27 Siemens Healthcare Diagnostics Inc. Low sample volume sensing device
US11850585B2 (en) 2014-07-09 2023-12-26 Siemens Healthcare Diagnostics Inc. Low sample volume sensing device
WO2019054834A3 (ko) * 2017-09-15 2019-05-23 계명대학교 산학협력단 시료측정 스트립 센서

Also Published As

Publication number Publication date
CN103959051A (zh) 2014-07-30
EP2778668A1 (en) 2014-09-17
US20140303042A1 (en) 2014-10-09
KR101363020B1 (ko) 2014-02-26
EP2778668A4 (en) 2015-08-05
KR20130047068A (ko) 2013-05-08

Similar Documents

Publication Publication Date Title
WO2013065994A1 (ko) 다중 반응 바이오센서
US9632080B2 (en) Diagnostic multi-layer dry phase test strip with integrated biosensors (“electrostrip”)
US20020100685A1 (en) Biosensor with multiple sampling ways
US9880128B2 (en) Electrode strip and sensor strip and manufacture method thereof and system thereof
WO2010008137A2 (ko) 바이오센서를 이용한 단백질 측정 장치
WO2009120049A2 (ko) 바이오센서용 다채널 스트립
WO2013042877A2 (ko) 바이오센서 및 그 측정장치
Mizukami et al. Electrochemical enzyme-based blood ATP and lactate sensor for a rapid and straightforward evaluation of illness severity
WO2010032911A1 (en) Detachable blood glucose meter
WO2015155665A1 (en) An electrochemical sensor array and apparatus
US20240060928A1 (en) Biosensor
WO2010120155A2 (ko) 신속한 혈구분리가 가능한 질병진단용 바이오센서
WO2010140773A2 (ko) 생체물질을 측정하는 바이오센서
US6258230B1 (en) Non-enzymatic disposable uric acid detecting electrode strip, method for producing the same and its use
WO2011002152A2 (ko) 검출기와 함께 사용되어 생체물질을 측정하는 센서 및 이를 이용하는 장치
WO2014046318A1 (ko) 시료를 인식하는 방법 및 이를 이용한 바이오센서
WO2010005172A1 (en) Bio-sensor
WO2014137145A1 (ko) 식별정보를 갖는 바이오 센서
WO2011027979A2 (en) Biosensor capable of automatically recognizing codes and code recognition method using the same
WO2010140772A2 (ko) 생체물질을 측정하는 장치 및 그 제조 방법
KR20220023577A (ko) 이온 농도 모니터링용 디바이스 및 이의 제조 방법
WO2024005493A1 (ko) 검체 측정을 위한 바이오 센서 스트립, 그 전극 구조 및 이를 이용한 검체 측정 방법
WO2013062322A1 (ko) 바이오센서 및 그 제조 방법
KR101101573B1 (ko) 검출기와 함께 사용되어 생체물질을 측정하는 센서 및 이를 이용하는 장치
KR20120102394A (ko) 엠보싱된 모세관 채널을 포함하는 바이오센서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846288

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538708

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14355131

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012846288

Country of ref document: EP