WO2013065897A1 - Double-sided superhydrophobic gas diffusion layer for a polymer electrolyte membrane fuel cell, method for preparing same, and polymer electrolyte membrane fuel cell including same - Google Patents

Double-sided superhydrophobic gas diffusion layer for a polymer electrolyte membrane fuel cell, method for preparing same, and polymer electrolyte membrane fuel cell including same Download PDF

Info

Publication number
WO2013065897A1
WO2013065897A1 PCT/KR2011/009697 KR2011009697W WO2013065897A1 WO 2013065897 A1 WO2013065897 A1 WO 2013065897A1 KR 2011009697 W KR2011009697 W KR 2011009697W WO 2013065897 A1 WO2013065897 A1 WO 2013065897A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas diffusion
diffusion layer
fuel cell
polymer electrolyte
sided
Prior art date
Application number
PCT/KR2011/009697
Other languages
French (fr)
Korean (ko)
Inventor
엄성현
이재영
김영독
서현욱
김광대
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Publication of WO2013065897A1 publication Critical patent/WO2013065897A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell, a manufacturing method thereof, and a polymer electrolyte fuel cell including the same.
  • a fuel cell is a power generation device that directly converts chemical energy of fuel into electrical energy by an electrochemical reaction. It is an integrated technology including a fuel cell stack, a fuel converter, a BOP, and a control technology. As demand for portable power is rapidly increasing, it has been spotlighted as a means to sufficiently replace energy systems such as gasoline engines and secondary batteries.
  • the fuel cell produces water as a product in the process of obtaining electrical energy from the fuel.
  • the fuel cell stack becomes larger and the smooth drainage and efficient reuse of the generated water become important variables in the system design.
  • studies have been conducted to optimize the water drainage characteristics by adding hydrophobic materials in order to properly control the hydrophobicity of the cathode components in which the oxygen reduction reaction occurs, and to supply air and drain the generated water without losing electrical conductivity. Finding the conditions under which is well maintained has been a technically important issue.
  • Korean Unexamined Patent Publication No. 2010-0132250 discloses a gas diffusion layer carbon substrate having a double structure of a polymer fuel cell membrane electrode assembly and a method of manufacturing the same. Water generated during the power generation process of the battery is introduced into the pore distribution region, and the cohesive force is weakened by the capillary phenomenon so that smooth water repellency is achieved.
  • Korean Unexamined Patent Publication No. 2010-0109733 discloses a fuel cell electrode, a manufacturing method thereof, and a fuel cell having the same, and specifically, a gas diffusion layer; Catalyst layer; And a water-repellent material positioned at an interface between the gas diffusion layer and the catalyst layer and having a continuous concentration gradient in the thickness direction and a discontinuous concentration gradient in the plane direction, wherein the water-repellent material includes PTFE, FEP or PFA. Water-repellent polymer such as is used.
  • the above-described inventions require complicated manufacturing processes, such as undergoing separate pore forming operations or varying concentration gradients of water-repellent materials.
  • the above-described inventions overlook the fact that in order to achieve optimal fuel cell performance, the generated water should be maintained in the low current region, even if the generated water is discharged in the high current region. In other words, in order to preserve the ion conducting performance of the fuel cell, the generated water should not be released, but rather maintained. If the water diffusion treatment is performed only on one surface of the gas diffusion layer or the corresponding water repellent layer, as in the related arts, Moisture retention in the current region is not possible.
  • Korean Patent Laid-Open Publication No. 2009-0038747 discloses a cathode electrode for a fuel cell having two types of water repellency, a method of manufacturing the same, and a membrane electrode assembly and a fuel cell including the same, and specifically contacting a separator having a flow path formed therein.
  • a cathode electrode for a fuel cell comprising a gas diffusion layer and a catalyst layer interposed between the gas diffusion layer and an electrolyte membrane, the cathode electrode for a fuel cell having a catalyst layer comprising two parts having different water repellency, the electrode not facing the flow path in the catalyst layer.
  • Disclosed is a cathode electrode for a fuel cell, the portion of which is higher in water repellency than the portion facing the flow path.
  • the above-described technology also has a problem in that the manufacturing process is complicated because two parts having different water repellency are formed, and the catalyst efficiency may be adversely affected because the water repellent treatment is performed on the catalyst layer instead of the gas diffusion layer.
  • the technical problem to be solved by the present invention is stable and durable without loss of electrical conductivity, while exhibiting stable performance in a high current region in which water is generated and maintaining an appropriate level of water content in a low current region, thereby maintaining ion conductivity. It is to provide a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell that can preserve the, can be produced by an economical and simple manufacturing process, a method of manufacturing the same and a polymer electrolyte fuel cell comprising the same.
  • the present invention to achieve the first technical problem
  • a superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell characterized in that a super water-repellent layer comprising silicon oxide and carbon is deposited on both sides of the gas diffusion layer.
  • the thickness of the super water-repellent layer may be 1nm to 100nm.
  • the gas diffusion layer may be a porous carbon paper, porous carbon fiber or porous carbon felt.
  • the gas diffusion layer may further include a carbon powder layer.
  • the contact angle of the gas diffusion layer with water may be 150 ° or more.
  • the present invention to achieve the second technical problem
  • It provides a method for producing a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell comprising the step of simultaneously depositing the silicon precursor and the carbon on both sides of the gas diffusion layer by heating the polymer precursor and the gas diffusion layer together in a heating chamber.
  • the heating step may be performed for 30 minutes to 1 hour at a temperature of 100 °C to 400 °C.
  • the heating step may be performed for 30 minutes to 1 hour at a temperature of 150 °C to 250 °C.
  • the polymer precursor may be one or more polymers selected from the group consisting of polydiorganosiloxane, organohydrogen polysiloxane and organopolysiloxane.
  • the gas diffusion layer may be porous carbon paper, porous carbon fiber or porous carbon felt.
  • the gas diffusion layer may further include a carbon powder layer.
  • the present invention to achieve the third technical problem
  • a polymer electrolyte fuel cell comprising a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell according to the present invention.
  • the present invention while maintaining stability and durability without loss of electrical conductivity, due to double-sided super water repellency, it exhibits stable performance in a high current region in which moisture is generated and maintains an appropriate level of water content in a low current region, thereby improving ion conductivity performance. It is possible to provide a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell that can be preserved and manufactured by an economical and simple manufacturing process, a method of manufacturing the same, and a polymer electrolyte fuel cell including the same.
  • FIG. 1 is a view schematically showing how the double-sided water-repellent gas diffusion layer according to the present invention acts in a high current region and a low current region.
  • FIG. 2 is a schematic view of a process of heating a polymer precursor and a gas diffusion layer together in a heating chamber in the method of manufacturing a gas diffusion layer for a polymer electrolyte fuel cell according to the present invention.
  • FIG. 3a and 3c are electron micrographs for measuring the contact angle with respect to water of the conventional gas diffusion layer (3a: surface without the carbon powder layer; 3c: surface with the carbon powder layer),
  • Figures 3b and 3d are The superhydrophobic gas diffusion layer (3b: surface without carbon powder layer; 3d: surface with carbon powder layer) is an electron micrograph for measuring the contact angle to water.
  • Figure 4 is a graph showing the measurement of the magnitude of the voltage and power according to the change in current density for the conventional membrane-electrode assembly and the membrane-electrode assembly according to the present invention (membrane-electrode assembly according to the present invention: a square display , Membrane-electrode assembly according to a comparative example: marked with a red circle).
  • Figure 5 is a graph showing the results of performing the performance evaluation while adjusting the flow rate of the additional air to the membrane-electrode assembly according to the present invention.
  • FIG. 6A and 6B are graphs showing SIMS spectra for a gas diffusion layer (FIG. 6A) according to the present invention and a gas diffusion layer (FIG. 6B) according to the prior art.
  • FIG. 7A and 7B are graphs showing Raman shifts for a gas diffusion layer (FIG. 7A) according to the present invention and a gas diffusion layer (FIG. 7B) according to the prior art.
  • the present invention provides a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell, as a gas diffusion layer for a polymer electrolyte fuel cell, wherein a superhydrophobic layer containing silicon oxide and carbon is deposited on both surfaces of the gas diffusion layer.
  • the gas diffusion layer for a polymer electrolyte fuel cell according to the present invention can be produced by a simple manufacturing process, while maintaining a stable performance in a high current region with high moisture generation, while maintaining ion conductivity Excellent performance can be maintained even in low current areas where moisture is required.
  • FIG. 1 schematically illustrates a mechanism of operation of the double-sided water-repellent gas diffusion layer according to the present invention by which mechanism can exhibit stable and excellent performance in the high current region and the low current region, respectively.
  • the double-sided superhydrophobic gas diffusion layer according to the present invention performs a self-humidifying function by back diffusion of water toward the catalyst layer and the polymer electrolyte membrane in a low current region. In the high current region, self-discharging is achieved by discharging water forward in the opposite direction. As a result, such self-moisture and self-discharge functions enable the proper amount of water management, which is essential for smooth performance of the fuel cell.
  • the thickness of the super water-repellent layer is preferably 1nm to 100nm, which may have a problem that the super water-repellent properties are not well implemented when the thickness of the super water-repellent layer is less than 1nm, when the thickness exceeds 100nm This is because there is a problem that the conductivity is lowered, which is not preferable.
  • a conventional gas diffusion layer for a polymer electrolyte fuel cell may be used without limitation, and in particular, in order to maximize the super water repellency, the surface already has some roughness characteristics.
  • a gas diffusion layer of a porous structure having a large specific surface area for example, a gas diffusion layer such as porous carbon paper, porous carbon fiber or porous carbon felt may be used.
  • the gas diffusion layer according to the present invention exhibits excellent water repellent properties, so that the contact angle of the gas diffusion layer with water has a minimum value required for superhydrophobic expression, that is, a value of 150 ° or more.
  • a carbon powder layer may be further laminated on the surface of the gas diffusion layer in order to implement more excellent super water repellency.
  • the present invention comprises the steps of preparing a gas diffusion layer for a polymer precursor and a polymer electrolyte fuel cell comprising a silicon atom and a carbon atom in order to achieve the second technical problem; And simultaneously depositing silicon oxide and carbon on both sides of the gas diffusion layer by heating the polymer precursor and the gas diffusion layer together in a heating chamber to provide a method for manufacturing a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell. .
  • any polymer that includes silicon (Si) atoms and carbon (C) atoms as constituent atoms constituting the polymer may be used without limitation, but is not limited thereto, and polydiorganosiloxanes such as polydimethylsiloxane And one or more polymers selected from the group consisting of organohydrogen polysiloxanes and organopolysiloxanes.
  • the manufacturing method according to the present invention is applicable to various gas diffusion layers such as porous carbon paper, porous carbon fiber or porous carbon felt, such as porous carbon paper, carbon powder to further improve super water repellency Layers may be further stacked.
  • Figure 2 shows a schematic diagram of a process of heating a polymer precursor and a gas diffusion layer together in a heating chamber in the manufacturing method according to the present invention.
  • the present invention by simply putting together the polymer precursor and the gas diffusion layer in the heating chamber, the super water-repellent surface characteristics can be imparted to both sides of the gas diffusion layer.
  • the polymer precursor placed in the chamber is vaporized by an appropriate heating temperature, and vaporized precursor particles are deposited on the surface of the target gas diffusion layer.
  • silicon oxide and carbon are deposited on the surface of the gas diffusion layer to realize super water repellency.
  • the heating temperature for the deposition of the silicon oxide and carbon is very important, preferably, the heating step is 30 at a temperature of 100 °C to 400 °C, more preferably from 150 °C to 250 °C May be performed for minutes to 1 hour.
  • the temperature of the heating step is less than 100 °C or the heating time is less than 30 minutes there is a problem that it is difficult to deposit silicon oxide and carbon in the gas diffusion layer to be deposited because the precursor is not vaporized
  • the temperature of the heating step is 400 It is not preferable when the temperature exceeds 1 ° C or the heating time exceeds 1 hour, since the surface structure of silicon oxide and carbon formed on the gas diffusion layer may change and superhydrophobic function may be lost.
  • the present invention provides a polymer electrolyte fuel cell comprising a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell according to the present invention in order to achieve the third technical problem.
  • the polymer electrolyte fuel cell according to the present invention includes a membrane-electrode assembly composed of a conventional conventional cathode-polymer electrolyte membrane-oxide electrode, in addition to the surface of the cathode that is not in contact with the polymer electrolyte membrane. It has a structure in which a double-sided superhydrophobic gas diffusion layer is laminated on the surface (superhydrophobic gas diffusion layer-reducing electrode-polymer electrolyte membrane-oxide electrode).
  • polydimethylsiloxane was used as a polymer precursor containing silicon and carbon atoms in a heating chamber to which a power supply was attached, and a commercial carbon paper (SGL Technologies, Germany) was used as a gas diffusion layer. Heating for deposition was performed using a hot wire located within the chamber. Heating was initially continued for 5 minutes at 100V using a voltage controller, and then transformed to 150V to raise the temperature to 200 ° C. The temperature in the chamber was measured in real time through a temperature meter, and the temperature was maintained for 30 minutes so that the polydimethylsiloxane vaporized and deposited on the surface of the carbon paper when the temperature reached 200 ° C.
  • the contact angle with respect to water of the super water-repellent carbon paper prepared by the above example was measured (Phoenix 300 Touch, Futus, Korea), and the measured results are shown in FIG. 3B.
  • a surface having a contact angle with water of 150 ° or more is referred to as a super water-repellent surface.
  • the contact angle with respect to water of the super water-repellent carbon paper surface prepared by the above embodiment was 150.3 °, and thus It can be seen that it has super water repellent properties.
  • FIG. 3A shows the contact angle of water with respect to the conventional carbon paper before the superwater repellent treatment according to the above-described embodiment, and the measured contact angle with respect to the water is 134.7 °. It can be seen that it does not have. Therefore, it can be seen that the silicon oxide and carbon deposited on the surface of the carbon paper by the present invention contribute to the increase in the super water repellency of the carbon paper.
  • 3C and 3D show the gas before the super water repellent treatment (FIG. 3C) and after the super water repellent treatment (FIG. 3D) when the carbon powder layer is additionally laminated on the surface of the gas diffusion layer. It is an electron microscope photograph for measuring the contact angle of the diffusion layer with respect to water. 3C and 3D, the superhydrophobic treatment according to the present invention caused a slight superhydrophobic increase even when including a carbon powder layer for further superhydrophobicity improvement (from 150.6 ° of FIG. 3C, FIG. 3d increased to 150.9 °), the increase in superhydrophobicity is less than in the absence of additional carbon powder layer.
  • a metal catalyst layer was formed by supporting a platinum supported catalyst on a carbon paper in a content of about 0.5 mg / cm 2 using a spray method (ionomer: 30% of the supported catalyst amount). Subsequently, the prepared cathode, polymer electrolyte membrane (Nafion membrane, Dupont) and an anode (platinum supported catalyst: 0.3 mg / cm 2 , ionomer: 30% of the amount of supported catalyst) were laminated, and at a temperature of 140 ° C. , Under pressure of 10 MPa, for 5 minutes to prepare a membrane-electrode assembly.
  • a membrane-electrode assembly was manufactured by the same method as the comparative example, except that the prepared superhydrophobic gas diffusion layer was further stacked on the surface not in contact with the polymer electrolyte membrane of the cathode.
  • the magnitude of voltage and power according to the change of the current density for each membrane-electrode assembly was measured. Voltage measurements were performed at a temperature of 70 ° C., 100% relative humidity, and under conditions of supplying hydrogen fuel and air. 4 shows the measured voltage (membrane-electrode assembly according to the present invention: a square display, a membrane-electrode assembly according to a comparative example: a red circle), and referring to FIG. 4, a membrane-electrode assembly according to the present invention. It can be seen that shows a stable performance in the high current region with the most water generation, and excellent performance compared to the membrane-electrode assembly according to the comparative example even in a low current region that requires some moisture for ion conductivity.
  • lambda 1.0 means the amount of oxygen theoretically required to generate a constant current, and it is possible to produce a stable current at a surplus oxygen, that is, a lambda value of 2.5 or more.
  • the membrane-electrode assembly according to the present invention is capable of producing a stable current even under a lambda value of 1.5 or 2.0, which shows that the membrane-electrode assembly according to the present invention exhibits stable performance even at 60% of a conventional flow rate.
  • the performance evaluation condition is 100% relative humidity, it can be seen that the effect of stability is very large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

The present invention relates to a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte membrane fuel cell, to a method for preparing same, and to a polymer electrolyte membrane fuel cell including same. More particularly, the present invention relates to a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte membrane fuel cell, which not only has stability and durability without any loss in electrical conductivity but also has stable performance in a high-current region in which much moisture is produced due to double-sided superhydrophobicity, and which can maintain ionic conductivity by controlling moisture content to a suitable level in a low-current region, and which can be manufactured economically through a simple process; the present invention also relates to a method for preparing the double-sided superhydrophobic gas diffusion layer and to a polymer electrolyte membrane fuel cell including the double-sided superhydrophobic gas diffusion layer.

Description

고분자 전해질 연료전지용 양면 초발수성 기체확산층, 그 제조방법 및 이를 포함하는 고분자 전해질 연료전지Double-sided superhydrophobic gas diffusion layer for polymer electrolyte fuel cell, manufacturing method thereof and polymer electrolyte fuel cell comprising same
본 발명은 고분자 전해질 연료전지용 양면 초발수성 기체확산층, 그 제조방법 및 이를 포함하는 고분자 전해질 연료전지에 관한 것이다.The present invention relates to a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell, a manufacturing method thereof, and a polymer electrolyte fuel cell including the same.
연료전지란 연료의 화학에너지를 전기화학반응에 의해 전기에너지로 직접 변환하는 발전장치로서, 연료전지 스택, 연료변환장치, BOP 및 제어기술을 포함하는 통합기술이며, 환경친화적일 뿐 아니라, 최근 고출력 휴대용 전원의 수요가 급증하고 있는 상황에서 기존의 가솔린 엔진, 이차전지 등의 에너지 시스템을 충분히 대체할 수 있는 수단으로 각광받고 있다.A fuel cell is a power generation device that directly converts chemical energy of fuel into electrical energy by an electrochemical reaction. It is an integrated technology including a fuel cell stack, a fuel converter, a BOP, and a control technology. As demand for portable power is rapidly increasing, it has been spotlighted as a means to sufficiently replace energy systems such as gasoline engines and secondary batteries.
연료전지는 연료로부터 전기에너지를 얻는 과정에서 생성물로서 물을 생산하게 되는데, 출력밀도가 커짐에 따라 연료전지 스택이 대형화되고 이에 따라 생성되는 물의 원활한 배수와 효율적 재이용이 시스템 설계에 있어서 중요한 변수가 된다. 특히, 산소환원반응이 발생하는 환원전극 구성품들의 소수성을 적절히 조절하기 위하여 추가적으로 소수성 물질을 첨가하여 물배수 특성을 최적화하는 연구들이 진행되어 왔으며, 전기전도성을 상실하지 않고 공기의 공급과 생성된 물의 배수가 원활히 유지되는 조건을 찾는 것이 기술적으로 중요한 이슈가 되어왔다.The fuel cell produces water as a product in the process of obtaining electrical energy from the fuel. As the power density increases, the fuel cell stack becomes larger and the smooth drainage and efficient reuse of the generated water become important variables in the system design. . In particular, studies have been conducted to optimize the water drainage characteristics by adding hydrophobic materials in order to properly control the hydrophobicity of the cathode components in which the oxygen reduction reaction occurs, and to supply air and drain the generated water without losing electrical conductivity. Finding the conditions under which is well maintained has been a technically important issue.
대한민국 공개특허공보 제2010-0132250호는 고분자형 연료전지 막 전극 접합체의 이중 구조를 갖는 기체확산층 탄소기재와 그 제조방법을 개시하고 있으며, 구체적으로는 기체확산층에 다양한 세공 분포영역을 가짐으로써, 연료전지의 발전과정에 발생되어 상기 세공 분포영역으로 유입된 수분이 모세관 현상에 의해 응집력이 약화되어 원활한 발수가 이루어지도록 하고 있다.Korean Unexamined Patent Publication No. 2010-0132250 discloses a gas diffusion layer carbon substrate having a double structure of a polymer fuel cell membrane electrode assembly and a method of manufacturing the same. Water generated during the power generation process of the battery is introduced into the pore distribution region, and the cohesive force is weakened by the capillary phenomenon so that smooth water repellency is achieved.
또한, 대한민국 공개특허공보 제2010-0109733호는 연료전지용 전극, 이의 제조방법 및 이를 구비한 연료전지를 개시하고 있으며, 구체적으로는 기체확산층; 촉매층; 및 상기 기체확산층과 촉매층의 계면에 위치하고, 두께 방향으로 연속적인 농도 구배를 갖고 면방향으로 비연속적인 농도 구배를 갖는 발수성 재료를 포함하는 연료전지용 전극으로서, 상기 발수성 재료로는 PTFE, FEP 또는 PFA와 같은 발수성 폴리머를 사용하고 있다.In addition, Korean Unexamined Patent Publication No. 2010-0109733 discloses a fuel cell electrode, a manufacturing method thereof, and a fuel cell having the same, and specifically, a gas diffusion layer; Catalyst layer; And a water-repellent material positioned at an interface between the gas diffusion layer and the catalyst layer and having a continuous concentration gradient in the thickness direction and a discontinuous concentration gradient in the plane direction, wherein the water-repellent material includes PTFE, FEP or PFA. Water-repellent polymer such as is used.
그러나, 전술한 발명들은 별도의 세공형성 작업을 거치거나, 발수성 재료의 농도 구배를 달리하여야 하는 등의 복잡한 제조공정이 요구된다. 또한, 전술한 발명들은 최적의 연료전지 성능을 발휘하기 위해서는 고전류 영역에서는 생성된 물을 방출한다 하더라도, 반대로 저전류 영역에서는 오히려 생성된 물을 유지하여야 한다는 점을 간과하고 있다. 즉, 연료전지의 이온전도 성능을 보존하기 위해서는 생성된 물을 방출하지 않고, 오히려 유지하여야 하는데, 상기 종래기술들과 같이 기체확산층 또는 이에 상당하는 발수층의 일면에만 발수처리가 되어 있는 경우에는 저전류 영역에서의 수분 유지가 불가능하다.However, the above-described inventions require complicated manufacturing processes, such as undergoing separate pore forming operations or varying concentration gradients of water-repellent materials. In addition, the above-described inventions overlook the fact that in order to achieve optimal fuel cell performance, the generated water should be maintained in the low current region, even if the generated water is discharged in the high current region. In other words, in order to preserve the ion conducting performance of the fuel cell, the generated water should not be released, but rather maintained. If the water diffusion treatment is performed only on one surface of the gas diffusion layer or the corresponding water repellent layer, as in the related arts, Moisture retention in the current region is not possible.
한편, 대한민국 공개특허공보 제2009-0038747호는 두 종류의 발수성을 갖는 연료전지용 캐소드 전극 및 그 제조방법과 이를 포함하는 막전극 접합체 및 연료전지를 개시하고 있으며, 구체적으로는 유로가 형성된 세퍼레이터에 접하는 기체확산층 및 상기 기체확산층과 전해질막 사이에 개재되는 촉매층을 포함하는 연료전지용 캐소드 전극에 있어서, 발수성이 서로 다른 두 부분을 포함하는 촉매층을 갖는 연료전지용 캐소드 전극으로서, 상기 촉매층에서 유로에 대향하지 않는 부분이 유로에 대향하는 부분보다 발수성이 높은 연료전지용 캐소드 전극을 개시하고 있다.On the other hand, Korean Patent Laid-Open Publication No. 2009-0038747 discloses a cathode electrode for a fuel cell having two types of water repellency, a method of manufacturing the same, and a membrane electrode assembly and a fuel cell including the same, and specifically contacting a separator having a flow path formed therein. A cathode electrode for a fuel cell comprising a gas diffusion layer and a catalyst layer interposed between the gas diffusion layer and an electrolyte membrane, the cathode electrode for a fuel cell having a catalyst layer comprising two parts having different water repellency, the electrode not facing the flow path in the catalyst layer. Disclosed is a cathode electrode for a fuel cell, the portion of which is higher in water repellency than the portion facing the flow path.
그러나, 상기 기술 역시 서로 다른 발수성을 갖는 두 부분을 형성하여야 하는 관계로 제조 공정이 복잡하고, 기체확산층이 아닌 촉매층에 발수 처리를 하기 때문에 촉매 효율에 악영향을 끼칠 수도 있다는 문제점이 있다.However, the above-described technology also has a problem in that the manufacturing process is complicated because two parts having different water repellency are formed, and the catalyst efficiency may be adversely affected because the water repellent treatment is performed on the catalyst layer instead of the gas diffusion layer.
따라서, 본 발명이 해결하고자 하는 기술적 과제는 전기전도성의 손실 없이 안정성과 내구성을 지니면서도, 수분 생성이 많은 고전류 영역에서는 안정된 성능을 발휘하고 저전류 영역에서는 적정 수준의 수분함량을 유지하여 이온전도 성능을 보존할 수 있고, 경제적이고 간단한 제조공정에 의해서 제조될 수 있는 고분자 전해질 연료전지용 양면 초발수성 기체확산층, 그 제조방법 및 이를 포함하는 고분자 전해질 연료전지를 제공하는 것이다.Accordingly, the technical problem to be solved by the present invention is stable and durable without loss of electrical conductivity, while exhibiting stable performance in a high current region in which water is generated and maintaining an appropriate level of water content in a low current region, thereby maintaining ion conductivity. It is to provide a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell that can preserve the, can be produced by an economical and simple manufacturing process, a method of manufacturing the same and a polymer electrolyte fuel cell comprising the same.
본 발명은 상기 첫 번째 기술적 과제를 달성하기 위해서,The present invention to achieve the first technical problem,
고분자 전해질 연료전지용 기체확산층으로서, 상기 기체확산층의 양면 상에 실리콘 산화물 및 탄소를 포함하는 초발수층이 증착된 것을 특징으로 하는 고분자 전해질 연료전지용 양면 초발수성 기체확산층을 제공한다.Provided as a gas diffusion layer for a polymer electrolyte fuel cell, a superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell, characterized in that a super water-repellent layer comprising silicon oxide and carbon is deposited on both sides of the gas diffusion layer.
본 발명의 일 실시예에 따르면, 상기 초발수층의 두께는 1nm 내지 100nm일 수 있다.According to one embodiment of the invention, the thickness of the super water-repellent layer may be 1nm to 100nm.
본 발명의 다른 실시예에 따르면, 상기 기체확산층은 다공성 탄소 종이, 다공성 탄소섬유 또는 다공성 탄소펠트일 수 있다.According to another embodiment of the present invention, the gas diffusion layer may be a porous carbon paper, porous carbon fiber or porous carbon felt.
본 발명의 또 다른 실시예에 따르면, 상기 기체확산층 표면 상에 탄소분말층을 더 포함할 수도 있다.According to another embodiment of the present invention, the gas diffusion layer may further include a carbon powder layer.
본 발명의 또 다른 실시예에 따르면, 상기 기체확산층의 물과의 접촉각은 150°이상일 수 있다.According to another embodiment of the present invention, the contact angle of the gas diffusion layer with water may be 150 ° or more.
본 발명은 상기 두 번째 기술적 과제를 달성하기 위해서,The present invention to achieve the second technical problem,
실리콘 원자와 탄소 원자를 포함하는 폴리머 전구체 및 고분자 전해질 연료전지용 기체확산층을 준비하는 단계; 및Preparing a gas diffusion layer for a polymer precursor and a polymer electrolyte fuel cell including silicon atoms and carbon atoms; And
상기 폴리머 전구체 및 상기 기체확산층을 가열 챔버 내에서 함께 넣고 가열함으로써 실리콘 산화물 및 탄소를 상기 기체확산층의 양면에 동시 증착시키는 단계를 포함하는 고분자 전해질 연료전지용 양면 초발수성 기체확산층의 제조방법을 제공한다.It provides a method for producing a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell comprising the step of simultaneously depositing the silicon precursor and the carbon on both sides of the gas diffusion layer by heating the polymer precursor and the gas diffusion layer together in a heating chamber.
본 발명의 일 실시예에 따르면, 상기 가열 단계는 100℃ 내지 400℃의 온도에서 30분 내지 1시간 동안 수행될 수 있다.According to one embodiment of the invention, the heating step may be performed for 30 minutes to 1 hour at a temperature of 100 ℃ to 400 ℃.
본 발명의 다른 실시예에 따르면, 상기 가열 단계는 150℃ 내지 250℃의 온도에서 30분 내지 1시간 동안 수행될 수 있다.According to another embodiment of the present invention, the heating step may be performed for 30 minutes to 1 hour at a temperature of 150 ℃ to 250 ℃.
본 발명의 또 다른 실시예에 따르면, 상기 폴리머 전구체는 폴리디오가노실록산, 오가노히드로겐 폴리실록산 및 오가노폴리실록산으로 이루어진 군으로부터 선택된 하나 이상의 폴리머일 수 있다.According to another embodiment of the present invention, the polymer precursor may be one or more polymers selected from the group consisting of polydiorganosiloxane, organohydrogen polysiloxane and organopolysiloxane.
본 발명의 또 다른 실시예에 따르면, 상기 기체확산층은 다공성 탄소 종이, 다공성 탄소섬유 또는 다공성 탄소펠트일 수 있다.According to another embodiment of the present invention, the gas diffusion layer may be porous carbon paper, porous carbon fiber or porous carbon felt.
본 발명의 또 다른 실시예에 따르면, 상기 기체확산층 표면 상에 탄소분말층을 더 포함할 수도 있다.According to another embodiment of the present invention, the gas diffusion layer may further include a carbon powder layer.
본 발명은 상기 세 번째 기술적 과제를 달성하기 위해서,The present invention to achieve the third technical problem,
본 발명에 따른 고분자 전해질 연료전지용 양면 초발수성 기체확산층을 포함하는 고분자 전해질 연료전지를 제공한다.Provided is a polymer electrolyte fuel cell comprising a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell according to the present invention.
본 발명에 따르면, 전기전도성의 손실 없이 안정성과 내구성을 지니면서도, 양면 초발수성으로 인해서 수분 생성이 많은 고전류 영역에서는 안정된 성능을 발휘하고 저전류 영역에서는 적정 수준의 수분함량을 유지하여 이온전도 성능을 보존할 수 있고, 경제적이고 간단한 제조공정에 의해서 제조될 수 있는 고분자 전해질 연료전지용 양면 초발수성 기체확산층, 그 제조방법 및 이를 포함하는 고분자 전해질 연료전지를 제공할 수 있다.According to the present invention, while maintaining stability and durability without loss of electrical conductivity, due to double-sided super water repellency, it exhibits stable performance in a high current region in which moisture is generated and maintains an appropriate level of water content in a low current region, thereby improving ion conductivity performance. It is possible to provide a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell that can be preserved and manufactured by an economical and simple manufacturing process, a method of manufacturing the same, and a polymer electrolyte fuel cell including the same.
도 1은 본 발명에 따른 양면 초발수성 기체확산층이 고전류 영역 및 저전류 영역에서 어떠한 기작에 의해서 작용하는가를 개략적으로 도시한 도면이다.1 is a view schematically showing how the double-sided water-repellent gas diffusion layer according to the present invention acts in a high current region and a low current region.
도 2는 본 발명에 따른 고분자 전해질 연료전지용 기체확산층의 제조방법에 있어서, 폴리머 전구체 및 기체확산층을 가열 챔버 내에 함께 넣고 가열하는 과정에 대한 개략도를 도시한 도면이다.2 is a schematic view of a process of heating a polymer precursor and a gas diffusion layer together in a heating chamber in the method of manufacturing a gas diffusion layer for a polymer electrolyte fuel cell according to the present invention.
도 3a 및 3c는 종래의 기체확산층 (3a: 탄소분말층이 없는 면; 3c: 탄소분말층이 있는 면)의 물에 대한 접촉각을 측정하기 위한 전자현미경 사진이고, 도 3b 및 3d는 본 발명에 따른 초발수성 기체확산층 (3b: 탄소분말층이 없는 면; 3d: 탄소분말층이 있는 면)의 물에 대한 접촉각을 측정하기 위한 전자현미경 사진이다.3a and 3c are electron micrographs for measuring the contact angle with respect to water of the conventional gas diffusion layer (3a: surface without the carbon powder layer; 3c: surface with the carbon powder layer), Figures 3b and 3d are The superhydrophobic gas diffusion layer (3b: surface without carbon powder layer; 3d: surface with carbon powder layer) is an electron micrograph for measuring the contact angle to water.
도 4는 종래의 막-전극 접합체 및 본 발명에 따른 막-전극 접합체에 대한 전류 밀도의 변화에 따른 전압 및 전력의 크기를 측정하여 도시한 그래프이다 (본 발명에 따른 막-전극 접합체: 네모 표시, 비교예에 따른 막-전극 접합체: 적색 동그라미 표시).Figure 4 is a graph showing the measurement of the magnitude of the voltage and power according to the change in current density for the conventional membrane-electrode assembly and the membrane-electrode assembly according to the present invention (membrane-electrode assembly according to the present invention: a square display , Membrane-electrode assembly according to a comparative example: marked with a red circle).
도 5는 본 발명에 따른 막-전극 접합체에 대해서 추가적으로 투입하는 공기의 유량을 조절하며 성능평가를 수행한 결과를 도시한 그래프이다.Figure 5 is a graph showing the results of performing the performance evaluation while adjusting the flow rate of the additional air to the membrane-electrode assembly according to the present invention.
도 6a 및 6b는 본 발명에 따른 기체확산층 (도 6a)과 종래기술에 따른 기체확산층 (도 6b)에 대한 SIMS 스펙트럼을 도시한 그래프이다.6A and 6B are graphs showing SIMS spectra for a gas diffusion layer (FIG. 6A) according to the present invention and a gas diffusion layer (FIG. 6B) according to the prior art.
도 7a 및 7b는 본 발명에 따른 기체확산층 (도 7a)과 종래기술에 따른 기체확산층 (도 7b)에 대한 라만 시프트를 도시한 그래프이다.7A and 7B are graphs showing Raman shifts for a gas diffusion layer (FIG. 7A) according to the present invention and a gas diffusion layer (FIG. 7B) according to the prior art.
본 발명에서는, 고분자 전해질 연료전지용 기체확산층으로서, 상기 기체확산층의 양면 상에 실리콘 산화물 및 탄소를 포함하는 초발수층이 증착된 것을 특징으로 하는 고분자 전해질 연료전지용 양면 초발수성 기체확산층을 제공한다.The present invention provides a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell, as a gas diffusion layer for a polymer electrolyte fuel cell, wherein a superhydrophobic layer containing silicon oxide and carbon is deposited on both surfaces of the gas diffusion layer.
하기 실시예에서 더욱 상세하게 설명하는 바와 같이, 본 발명에 따른 고분자 전해질 연료전지용 기체확산층은 간단한 제조공정에 의해서 제조될 수 있으면서도, 수분 생성이 많은 고전류 영역에서 안정된 성능을 발휘하면서도, 이온전도성의 유지를 위해 수분이 필요한 저전류 영역에서도 우수한 성능을 유지할 수 있다. 도 1에는 본 발명에 따른 양면 초발수성 기체확산층이 각각 고전류 영역과 저전류 영역에서 어떠한 기작에 의해서 안정적이고 우수한 성능을 발휘할 수 있는가에 대한 작용기작을 개략적으로 도시하였다. 도 1을 참조하면, 본 발명에 따른 양면 초발수성 기체확산층은 저전류 영역에서는 촉매층 및 고분자 전해질막 쪽을 향하여 수분을 후방 확산시킴으로써 (back diffusion) 자가보습 (self-humidifying) 기능을 수행함에 반해서, 고전류 영역에서는 반대 방향을 향하여 수분을 전방 방출시킴으로써 (discharge without flooding) 자가방출 (self-discharging) 기능을 수행하게 된다. 결과적으로, 이러한 자가보습 및 자가방출 기능은 연료전지의 원활한 성능 발휘를 위해서 필수적인 적정량의 물 관리를 가능하게 한다.As will be described in more detail in the following examples, the gas diffusion layer for a polymer electrolyte fuel cell according to the present invention can be produced by a simple manufacturing process, while maintaining a stable performance in a high current region with high moisture generation, while maintaining ion conductivity Excellent performance can be maintained even in low current areas where moisture is required. FIG. 1 schematically illustrates a mechanism of operation of the double-sided water-repellent gas diffusion layer according to the present invention by which mechanism can exhibit stable and excellent performance in the high current region and the low current region, respectively. Referring to FIG. 1, the double-sided superhydrophobic gas diffusion layer according to the present invention performs a self-humidifying function by back diffusion of water toward the catalyst layer and the polymer electrolyte membrane in a low current region. In the high current region, self-discharging is achieved by discharging water forward in the opposite direction. As a result, such self-moisture and self-discharge functions enable the proper amount of water management, which is essential for smooth performance of the fuel cell.
본 발명에 있어서, 상기 초발수층의 두께는 1nm 내지 100nm인 것이 바람직한데, 이는 초발수층의 두께가 1nm 미만인 경우 초발수 특성이 잘 구현되지 않는다는 문제점이 있을 수 있고, 100nm를 초과하는 경우 전기전도성이 저하된다는 문제점이 있어서 바람직하지 않기 때문이다.In the present invention, the thickness of the super water-repellent layer is preferably 1nm to 100nm, which may have a problem that the super water-repellent properties are not well implemented when the thickness of the super water-repellent layer is less than 1nm, when the thickness exceeds 100nm This is because there is a problem that the conductivity is lowered, which is not preferable.
본 발명에 있어서, 초발수층이 형성되는 기체확산층으로는 종래 통상적인 고분자 전해질 연료전지용 기체확산층이 제한없이 사용될 수 있으며, 특히, 초발수능을 극대화하기 위해서 이미 표면에 어느 정도의 거칠기 특성을 보유하고 큰 비표면적을 갖는 다공성 구조의 기체확산층, 예를 들어 다공성 탄소 종이, 다공성 탄소섬유 또는 다공성 탄소펠트 등의 기체확산층이 사용될 수도 있다.In the present invention, as the gas diffusion layer in which the super water repellent layer is formed, a conventional gas diffusion layer for a polymer electrolyte fuel cell may be used without limitation, and in particular, in order to maximize the super water repellency, the surface already has some roughness characteristics. A gas diffusion layer of a porous structure having a large specific surface area, for example, a gas diffusion layer such as porous carbon paper, porous carbon fiber or porous carbon felt may be used.
하기 실시예에서도 서술된 바와 같이, 본 발명에 따른 기체확산층은 우수한 발수 특성을 나타내며, 따라서 상기 기체확산층의 물에 대한 접촉각은 초발수성 발현을 위해서 요구되는 최소한의 값, 즉 150°이상의 값을 갖는다. 한편, 경우에 따라서는 더욱 우수한 초발수성 구현을 위해서 상기 기체확산층 표면 상에 탄소분말층을 더 적층시킬 수도 있다.As described in the following examples, the gas diffusion layer according to the present invention exhibits excellent water repellent properties, so that the contact angle of the gas diffusion layer with water has a minimum value required for superhydrophobic expression, that is, a value of 150 ° or more. . Meanwhile, in some cases, a carbon powder layer may be further laminated on the surface of the gas diffusion layer in order to implement more excellent super water repellency.
본 발명은 상기 두 번째 기술적 과제를 달성하기 위해서, 실리콘 원자와 탄소 원자를 포함하는 폴리머 전구체 및 고분자 전해질 연료전지용 기체확산층을 준비하는 단계; 및 상기 폴리머 전구체 및 상기 기체확산층을 가열 챔버 내에서 함께 넣고 가열함으로써 실리콘 산화물 및 탄소를 상기 기체확산층의 양면에 동시 증착시키는 단계를 포함하는 고분자 전해질 연료전지용 양면 초발수성 기체확산층의 제조방법을 제공한다.The present invention comprises the steps of preparing a gas diffusion layer for a polymer precursor and a polymer electrolyte fuel cell comprising a silicon atom and a carbon atom in order to achieve the second technical problem; And simultaneously depositing silicon oxide and carbon on both sides of the gas diffusion layer by heating the polymer precursor and the gas diffusion layer together in a heating chamber to provide a method for manufacturing a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell. .
상기 폴리머 전구체로는 폴리머를 구성하는 구성 원자로서 실리콘 (Si) 원자 및 탄소 (C) 원자를 함께 포함하는 폴리머라면 제한 없이 사용될 수 있으며, 이에 제한되는 것은 아니지만, 폴리디메틸실록산과 같은 폴리디오가노실록산, 오가노히드로겐 폴리실록산 및 오가노폴리실록산으로 이루어진 군으로부터 선택된 하나 이상의 폴리머일 수 있다.As the polymer precursor, any polymer that includes silicon (Si) atoms and carbon (C) atoms as constituent atoms constituting the polymer may be used without limitation, but is not limited thereto, and polydiorganosiloxanes such as polydimethylsiloxane And one or more polymers selected from the group consisting of organohydrogen polysiloxanes and organopolysiloxanes.
또한, 전술한 바와 같이, 본 발명에 따른 제조방법은 다양한 기체확산층, 예를 들어 다공성 탄소 종이, 다공성 탄소섬유 또는 다공성 탄소펠트 등의 기체확산층에 적용가능하며, 초발수성을 더욱 향상시키기 위해서 탄소 분말층이 더 적층될 수도 있다.In addition, as described above, the manufacturing method according to the present invention is applicable to various gas diffusion layers such as porous carbon paper, porous carbon fiber or porous carbon felt, such as porous carbon paper, carbon powder to further improve super water repellency Layers may be further stacked.
도 2에는 본 발명에 따른 제조방법에 있어서, 폴리머 전구체 및 기체확산층을 가열 챔버 내에 함께 넣고 가열하는 과정에 대한 개략도를 도시하였다. 도 2에서 볼 수 있는 바와 같이, 본 발명에서는 단순히 가열 챔버 내에 폴리머 전구체와 기체확산층을 함께 넣고 가열함으로써 기체확산층의 양면에 초발수성 표면 특성을 부여할 수 있다. 이때, 챔버 내에 놓여진 폴리머 전구체는 적절한 가열 온도에 의해서 기화되고, 기화된 전구체 입자들이 대상 기체확산층의 표면에 증착된다. 이러한 과정을 거치게 되면 기체확산층의 표면에는 초발수성 구현을 위한 실리콘 산화물 및 탄소가 증착되게 된다.Figure 2 shows a schematic diagram of a process of heating a polymer precursor and a gas diffusion layer together in a heating chamber in the manufacturing method according to the present invention. As can be seen in Figure 2, in the present invention, by simply putting together the polymer precursor and the gas diffusion layer in the heating chamber, the super water-repellent surface characteristics can be imparted to both sides of the gas diffusion layer. At this time, the polymer precursor placed in the chamber is vaporized by an appropriate heating temperature, and vaporized precursor particles are deposited on the surface of the target gas diffusion layer. Through this process, silicon oxide and carbon are deposited on the surface of the gas diffusion layer to realize super water repellency.
특히, 본 발명에 있어서 상기 실리콘 산화물 및 탄소의 증착을 위한 가열 온도는 매우 중요한데, 바람직하게는, 상기 가열 단계는 100℃ 내지 400℃의 온도, 더욱 바람직하게는 150℃ 내지 250℃의 온도에서 30분 내지 1시간 동안 수행될 수 있다. 상기 가열 단계의 온도가 100℃ 미만이거나 가열 시간이 30분 미만인 경우에는 전구체가 증기화되지 않기 때문에 증착 대상이 되는 기체확산층에 실리콘 산화물 및 탄소가 증착되기 어렵다는 문제점이 있고, 가열 단계의 온도가 400℃를 초과하거나 가열 시간이 1시간을 초과할 경우에는 기체확산층 상에 형성된 실리콘 산화물 및 탄소의 표면 구조가 변화하여 초발수성 기능이 상실될 수도 있기 때문에 바람직하지 않다.In particular, in the present invention, the heating temperature for the deposition of the silicon oxide and carbon is very important, preferably, the heating step is 30 at a temperature of 100 ℃ to 400 ℃, more preferably from 150 ℃ to 250 ℃ May be performed for minutes to 1 hour. When the temperature of the heating step is less than 100 ℃ or the heating time is less than 30 minutes there is a problem that it is difficult to deposit silicon oxide and carbon in the gas diffusion layer to be deposited because the precursor is not vaporized, the temperature of the heating step is 400 It is not preferable when the temperature exceeds 1 ° C or the heating time exceeds 1 hour, since the surface structure of silicon oxide and carbon formed on the gas diffusion layer may change and superhydrophobic function may be lost.
마지막으로, 본 발명은 상기 세 번째 기술적 과제를 달성하기 위해서, 본 발명에 따른 고분자 전해질 연료전지용 양면 초발수성 기체확산층을 포함하는 고분자 전해질 연료전지를 제공한다.Finally, the present invention provides a polymer electrolyte fuel cell comprising a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell according to the present invention in order to achieve the third technical problem.
본 발명에 따른 고분자 전해질 연료전지는, 종래의 통상적인 환원전극-고분자 전해질막-산화전극으로 구성되는 막-전극 접합체를 포함하며, 여기에 더하여 상기 환원전극의 고분자 전해질막과 접하지 않는 면 상에 양면 초발수성 기체확산층이 적층된 구조를 갖는다 (초발수성 기체확산층-환원전극-고분자 전해질막-산화전극).The polymer electrolyte fuel cell according to the present invention includes a membrane-electrode assembly composed of a conventional conventional cathode-polymer electrolyte membrane-oxide electrode, in addition to the surface of the cathode that is not in contact with the polymer electrolyte membrane. It has a structure in which a double-sided superhydrophobic gas diffusion layer is laminated on the surface (superhydrophobic gas diffusion layer-reducing electrode-polymer electrolyte membrane-oxide electrode).
이하, 본 발명을 실시예를 통하여 더욱 상세하게 설명하기로 하되, 하기 실시예는 본 발명의 범위를 제한하기 위한 것은 아니며, 본 발명의 이해를 돕기 위한 것으로 서술된 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are not intended to limit the scope of the present invention, but are described as to help understanding of the present invention.
<초발수성 기체확산층의 제조><Production of Super Water Repellent Gas Diffusion Layer>
도 2에 도시된 바와 같이, 전원공급장치가 부착된 가열 챔버 내에 실리콘 및 탄소 원자를 함유하는 폴리머 전구체로서 폴리디메틸실록산을, 기체확산층으로서 상용 탄소 종이 (독일 SGL Technologies사)를 넣었다. 챔버 내에 위치한 열선을 이용하여 증착을 위한 가열을 수행하였다. 가열은 전압 제어기를 이용하여 초기에 100V로 5분 동안 지속시키고, 이어서 150V로 변압하여 200℃까지 온도를 올려 주었다. 온도 측정기를 통하여 챔버 내 온도를 실시간으로 측정하였으며, 챔버 내 온도가 200℃에 이르면 폴리디메틸실록산이 증기화되어 탄소 종이 표면에 증착될 수 있도록 30분 동안 온도를 유지하였다.As shown in Fig. 2, polydimethylsiloxane was used as a polymer precursor containing silicon and carbon atoms in a heating chamber to which a power supply was attached, and a commercial carbon paper (SGL Technologies, Germany) was used as a gas diffusion layer. Heating for deposition was performed using a hot wire located within the chamber. Heating was initially continued for 5 minutes at 100V using a voltage controller, and then transformed to 150V to raise the temperature to 200 ° C. The temperature in the chamber was measured in real time through a temperature meter, and the temperature was maintained for 30 minutes so that the polydimethylsiloxane vaporized and deposited on the surface of the carbon paper when the temperature reached 200 ° C.
<물에 대한 접촉각 분석>Contact angle analysis for water
상기 실시예에 의해서 제조된 초발수성 탄소 종이의 물에 대한 접촉각을 측정하였으며 (Phoenix 300 Touch, Futus, Korea), 측정된 결과를 도 3b에 도시하였다. 일반적으로, 물과의 접촉각이 150°이상인 표면을 초발수성 표면이라고 하는데, 도 3b에 도시된 바와 같이, 상기 실시예에 의해서 제조된 초발수성 탄소 종이 표면의 물에 대한 접촉각은 150.3°였으며, 따라서 초발수성 특성을 갖는다는 것을 알 수 있다. 비교를 위하여 도 3a에는 상기 서술된 실시예에 따른 초발수 처리를 하기 전, 종래의 탄소 종이에 대한 물에 대한 접촉각을 함께 도시하였으며, 측정된 물에 대한 접촉각은 134.7°로서, 초발수 특성을 갖지 않는다는 것을 알 수 있다. 따라서, 본 발명에 의해서 탄소 종이 표면에 증착된 실리콘 산화물과 탄소는 탄소 종이의 초발수성 증가에 기여함을 알 수 있다.The contact angle with respect to water of the super water-repellent carbon paper prepared by the above example was measured (Phoenix 300 Touch, Futus, Korea), and the measured results are shown in FIG. 3B. Generally, a surface having a contact angle with water of 150 ° or more is referred to as a super water-repellent surface. As shown in FIG. 3B, the contact angle with respect to water of the super water-repellent carbon paper surface prepared by the above embodiment was 150.3 °, and thus It can be seen that it has super water repellent properties. For comparison, FIG. 3A shows the contact angle of water with respect to the conventional carbon paper before the superwater repellent treatment according to the above-described embodiment, and the measured contact angle with respect to the water is 134.7 °. It can be seen that it does not have. Therefore, it can be seen that the silicon oxide and carbon deposited on the surface of the carbon paper by the present invention contribute to the increase in the super water repellency of the carbon paper.
도 3c 및 도 3d는 탄소분말층이 추가적으로 기체확산층 표면에 적층된 경우에, 상기 서술된 실시예에 따른 초발수 처리를 하기 전 (도 3c) 및 초발수 처리를 한 후 (도 3d)의 기체확산층의 물에 대한 접촉각을 측정하기 위한 전자현미경 사진이다. 도 3c 및 도 3d를 참조하면, 본 발명에 따른 초발수 처리는 부가적인 초발수성의 향상을 위한 탄소분말층을 포함하는 경우에도 약간의 초발수성 증가를 유발하였으나 (도 3c의 150.6°로부터, 도 3d의 150.9°로 증가), 초발수성 증가는 부가적인 탄소분말층이 존재하지 않는 경우에 비해서 그 정도가 덜하다는 사실을 알 수 있다.3C and 3D show the gas before the super water repellent treatment (FIG. 3C) and after the super water repellent treatment (FIG. 3D) when the carbon powder layer is additionally laminated on the surface of the gas diffusion layer. It is an electron microscope photograph for measuring the contact angle of the diffusion layer with respect to water. 3C and 3D, the superhydrophobic treatment according to the present invention caused a slight superhydrophobic increase even when including a carbon powder layer for further superhydrophobicity improvement (from 150.6 ° of FIG. 3C, FIG. 3d increased to 150.9 °), the increase in superhydrophobicity is less than in the absence of additional carbon powder layer.
한편, 상기 실시예에 따른 기체확산층이 그 표면에 실리콘 산화물을 함유하고 있다는 사실을 확인하기 위해서, 본 발명에 따른 기체확산층 (도 6a)과 종래기술에 따른 기체확산층 (도 6b)에 대한 SIMS 스펙트럼을 측정하였으며, 또한 본 발명에 따른 초발수 처리를 한 이후에도 전기전도성의 손실은 최소화되었다는 사실을 확인하기 위해서, 본 발명에 따른 기체확산층 (도 7a)과 종래기술에 따른 기체확산층 (도 7b)에 대한 라만 시프트를 측정하였다. 도 6a 및 6b, 또한, 도 7a 및 7b의 결과로부터 알 수 있는 바와 같이, 상기 실시예에 따른 초발수 처리에 의해서 기체확산층의 표면에 실리콘 산화물이 증착되었으며, 증착 이후에도 전기전도성의 손실은 거의 발생하지 않는다는 사실을 알 수 있다.On the other hand, in order to confirm that the gas diffusion layer according to the embodiment contains silicon oxide on the surface, SIMS spectrum for the gas diffusion layer (Fig. 6a) according to the present invention and the gas diffusion layer according to the prior art (Fig. 6b) In order to confirm that the loss of electrical conductivity was minimized even after the superhydrophobic treatment according to the present invention, the gas diffusion layer according to the present invention (FIG. 7A) and the gas diffusion layer according to the prior art (FIG. 7B). Raman shift for was measured. As can be seen from the results of FIGS. 6A and 6B and also FIGS. 7A and 7B, silicon oxide was deposited on the surface of the gas diffusion layer by the superhydrophobic treatment according to the above embodiment, and almost no loss of electrical conductivity occurred after the deposition. You can see that it does not.
<막-전극 접합체의 제조><Production of membrane-electrode assembly>
비교예. 종래기술에 따른 막-전극 접합체의 제조Comparative example. Preparation of membrane-electrode assembly according to the prior art
환원전극을 제조하기 위해서, 탄소 종이 위에 백금 담지 촉매를 스프레이법을 사용하여 약 0.5 mg/cm2의 함량으로 담지시킴으로써 금속 촉매층을 형성하였다 (이오노머: 담지 촉매량 대비 30% 사용). 이어서, 제조된 환원전극, 고분자 전해질막 (나피온막, Dupont사) 및 산화전극 (백금 담지 촉매: 0.3 mg/cm2, 이오노머: 담지 촉매량 대비 30%)을 적층시킨 후, 140℃의 온도에서, 10 MPa의 압력 하에, 5분 동안 압착하여 막-전극 접합체를 제조하였다.In order to produce a cathode, a metal catalyst layer was formed by supporting a platinum supported catalyst on a carbon paper in a content of about 0.5 mg / cm 2 using a spray method (ionomer: 30% of the supported catalyst amount). Subsequently, the prepared cathode, polymer electrolyte membrane (Nafion membrane, Dupont) and an anode (platinum supported catalyst: 0.3 mg / cm 2 , ionomer: 30% of the amount of supported catalyst) were laminated, and at a temperature of 140 ° C. , Under pressure of 10 MPa, for 5 minutes to prepare a membrane-electrode assembly.
실시예. 본 발명에 따른 막-전극 접합체의 제조Example. Preparation of the membrane-electrode assembly according to the present invention
환원전극의 고분자 전해질막과 접하지 않는 면 상에 상기 제조된 초발수성 기체 확산층을 더 적층한 것을 제외하고는, 상기 비교예와 동일한 방법에 의해서 막-전극 접합체를 제조하였다.A membrane-electrode assembly was manufactured by the same method as the comparative example, except that the prepared superhydrophobic gas diffusion layer was further stacked on the surface not in contact with the polymer electrolyte membrane of the cathode.
<성능평가><Performance evaluation>
상기 비교예에 따른 막-전극 접합체 및 본 발명에 따른 막-전극 접합체의 성능을 비교하기 위해서, 각각의 막-전극 접합체에 대한 전류 밀도의 변화에 따른 전압 및 전력의 크기를 측정하였다. 전압 측정은 70℃의 온도, 상대습도 100%에서, 수소 연료 및 공기를 공급하는 조건에서 수행되었다. 도 4에는 측정된 전압을 도시하였는데 (본 발명에 따른 막-전극 접합체: 네모 표시, 비교예에 따른 막-전극 접합체: 적색 동그라미 표시), 도 4를 참조하면, 본 발명에 따른 막-전극 접합체는 수분 생성이 가장 많은 고전류 영역에서 안정된 성능을 나타내며, 이온전도성을 위해서 수분이 다소 필요한 저전류 영역에서도 비교예에 따른 막-전극 접합체에 비해서 우수한 성능을 갖는다는 것을 알 수 있다.In order to compare the performance of the membrane-electrode assembly according to the comparative example and the membrane-electrode assembly according to the present invention, the magnitude of voltage and power according to the change of the current density for each membrane-electrode assembly was measured. Voltage measurements were performed at a temperature of 70 ° C., 100% relative humidity, and under conditions of supplying hydrogen fuel and air. 4 shows the measured voltage (membrane-electrode assembly according to the present invention: a square display, a membrane-electrode assembly according to a comparative example: a red circle), and referring to FIG. 4, a membrane-electrode assembly according to the present invention. It can be seen that shows a stable performance in the high current region with the most water generation, and excellent performance compared to the membrane-electrode assembly according to the comparative example even in a low current region that requires some moisture for ion conductivity.
또한, 적절한 물 배수에 따른 성능의 안정성을 평가하기 위해서 추가적으로 투입하는 공기의 유량을 조절하며 성능평가를 수행하였으며, 그 결과를 도 5에 도시하였다. 도 5의 내용 중, 람다 1.0이란, 일정 전류를 발생시키기 위해서 이론적으로 필요로 하는 산소의 양을 의미하며, 통상적으로 잉여의 산소, 즉 2.5 이상의 람다값에서 안정적인 전류의 생산이 가능하다.In addition, in order to evaluate the stability of the performance according to the proper water drainage performance evaluation was performed by adjusting the flow rate of the additional air, the results are shown in FIG. In the description of FIG. 5, lambda 1.0 means the amount of oxygen theoretically required to generate a constant current, and it is possible to produce a stable current at a surplus oxygen, that is, a lambda value of 2.5 or more.
도 5를 참조하면, 본 발명에 따른 막-전극 접합체는 1.5 또는 2.0의 람다값 하에서도 안정적인 전류 생산이 가능한 바, 이는 본 발명에 따른 막-전극 접합체가 기존 유량의 60%만으로도 안정된 성능을 발휘하며, 특히 성능평가 조건이 상대습도 100%임을 감안하면 안정성 증가의 효과는 매우 크다는 것을 알 수 있다. Referring to FIG. 5, the membrane-electrode assembly according to the present invention is capable of producing a stable current even under a lambda value of 1.5 or 2.0, which shows that the membrane-electrode assembly according to the present invention exhibits stable performance even at 60% of a conventional flow rate. In particular, considering that the performance evaluation condition is 100% relative humidity, it can be seen that the effect of stability is very large.

Claims (12)

  1. 고분자 전해질 연료전지용 기체확산층으로서, 상기 기체확산층의 양면 상에 실리콘 산화물 및 탄소를 포함하는 초발수층이 증착된 것을 특징으로 하는 고분자 전해질 연료전지용 양면 초발수성 기체확산층.A gas diffusion layer for a polymer electrolyte fuel cell, wherein a super water-repellent layer including silicon oxide and carbon is deposited on both surfaces of the gas diffusion layer.
  2. 제1항에 있어서, 상기 초발수층의 두께는 1nm 내지 100nm인 것을 특징으로 하는 고분자 전해질 연료전지용 양면 초발수성 기체확산층.The double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell according to claim 1, wherein the superhydrophobic layer has a thickness of 1 nm to 100 nm.
  3. 제1항에 있어서, 상기 기체확산층은 다공성 탄소 종이, 다공성 탄소섬유 또는 다공성 탄소펠트인 것을 특징으로 하는 고분자 전해질 연료전지용 양면 초발수성 기체확산층.The double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell according to claim 1, wherein the gas diffusion layer is a porous carbon paper, a porous carbon fiber or a porous carbon felt.
  4. 제1항에 있어서, 상기 기체확산층 표면 상에 탄소분말층을 더 포함하는 것을 특징으로 하는 고분자 전해질 연료전지용 양면 초발수성 기체확산층.The double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell according to claim 1, further comprising a carbon powder layer on a surface of the gas diffusion layer.
  5. 제1항에 있어서, 상기 기체확산층의 물과의 접촉각은 150°이상인 것을 특징으로 하는 고분자 전해질 연료전지용 양면 초발수성 기체확산층.The double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell according to claim 1, wherein a contact angle with water of the gas diffusion layer is 150 ° or more.
  6. 실리콘 원자와 탄소 원자를 포함하는 폴리머 전구체 및 고분자 전해질 연료전지용 기체확산층을 준비하는 단계; 및Preparing a gas diffusion layer for a polymer precursor and a polymer electrolyte fuel cell including silicon atoms and carbon atoms; And
    상기 폴리머 전구체 및 상기 기체확산층을 가열 챔버 내에서 함께 넣고 가열함으로써 실리콘 산화물 및 탄소를 상기 기체확산층의 양면에 동시 증착시키는 단계를 포함하는 고분자 전해질 연료전지용 양면 초발수성 기체확산층의 제조방법.And simultaneously depositing silicon oxide and carbon on both sides of the gas diffusion layer by heating the polymer precursor and the gas diffusion layer together in a heating chamber.
  7. 제6항에 있어서, 상기 가열 단계는 100℃ 내지 400℃의 온도에서 30분 내지 1시간 동안 수행되는 것을 특징으로 하는 고분자 전해질 연료전지용 양면 초발수성 기체확산층의 제조방법.The method of claim 6, wherein the heating is performed for 30 minutes to 1 hour at a temperature of 100 ° C. to 400 ° C. 7.
  8. 제6항에 있어서, 상기 가열 단계는 150℃ 내지 250℃의 온도에서 30분 내지 1시간 동안 수행되는 것을 특징으로 하는 고분자 전해질 연료전지용 양면 초발수성 기체확산층의 제조방법.The method of claim 6, wherein the heating is performed at a temperature of 150 ° C. to 250 ° C. for 30 minutes to 1 hour.
  9. 제6항에 있어서, 상기 폴리머 전구체는 폴리디오가노실록산, 오가노히드로겐 폴리실록산 및 오가노폴리실록산으로 이루어진 군으로부터 선택된 하나 이상의 폴리머인 것을 특징으로 하는 고분자 전해질 연료전지용 양면 초발수성 기체확산층의 제조방법.The method of claim 6, wherein the polymer precursor is at least one polymer selected from the group consisting of polydiorganosiloxane, organohydrogen polysiloxane, and organopolysiloxane.
  10. 제6항에 있어서, 상기 기체확산층은 다공성 탄소 종이, 다공성 탄소섬유 또는 다공성 탄소펠트인 것을 특징으로 하는 고분자 전해질 연료전지용 양면 초발수성 기체확산층의 제조방법.The method of claim 6, wherein the gas diffusion layer is a porous carbon paper, a porous carbon fiber, or a porous carbon felt.
  11. 제6항에 있어서, 상기 기체확산층 표면 상에 탄소분말층을 더 포함하는 것을 특징으로 하는 고분자 전해질 연료전지용 양면 초발수성 기체확산층의 제조방법.The method of manufacturing a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell according to claim 6, further comprising a carbon powder layer on the surface of the gas diffusion layer.
  12. 제1항 내지 제5항 중 어느 한 항에 따른 고분자 전해질 연료전지용 양면 초발수성 기체확산층을 포함하는 고분자 전해질 연료전지.A polymer electrolyte fuel cell comprising a double-sided superhydrophobic gas diffusion layer for a polymer electrolyte fuel cell according to any one of claims 1 to 5.
PCT/KR2011/009697 2011-11-01 2011-12-16 Double-sided superhydrophobic gas diffusion layer for a polymer electrolyte membrane fuel cell, method for preparing same, and polymer electrolyte membrane fuel cell including same WO2013065897A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110112884A KR101324025B1 (en) 2011-11-01 2011-11-01 Gas diffusion layer having super-hydrophobic layers on both sides for polymer electrolyte membrane fuel cells, method for preparing the same, and polymer electrolyte membrane fuel cell including the same
KR10-2011-0112884 2011-11-01

Publications (1)

Publication Number Publication Date
WO2013065897A1 true WO2013065897A1 (en) 2013-05-10

Family

ID=48192225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009697 WO2013065897A1 (en) 2011-11-01 2011-12-16 Double-sided superhydrophobic gas diffusion layer for a polymer electrolyte membrane fuel cell, method for preparing same, and polymer electrolyte membrane fuel cell including same

Country Status (2)

Country Link
KR (1) KR101324025B1 (en)
WO (1) WO2013065897A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114068953A (en) * 2021-10-25 2022-02-18 上海远瞩新能源科技有限公司 Preparation method and application of locally-reinforced fuel cell gas diffusion layer
WO2022144736A1 (en) * 2020-12-30 2022-07-07 Aspen Aerogels, Inc. Fibrous carbon aerogels coated with nano-thin silicon as lithium battery anodes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240035095A (en) 2022-09-08 2024-03-15 한국과학기술연구원 Carbon dioxide reduction catalyst containing PTFE as binder, MEA containing the catalyst, carbon dioxide reduction system containing the MEA, and the manufacturing method of the electrode containing the catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767246B1 (en) * 2003-04-01 2007-10-17 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Method for enhancing deposition rate of chemical vapor deposition films
JP2010040464A (en) * 2008-08-08 2010-02-18 Noritake Co Ltd Water-repellent type gas diffusion electrode, its formation method, and membrane-electrode assembly
JP2011038032A (en) * 2009-08-17 2011-02-24 Noritake Co Ltd Conductive water repellent material and water repellent gas diffusion electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767246B1 (en) * 2003-04-01 2007-10-17 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Method for enhancing deposition rate of chemical vapor deposition films
JP2010040464A (en) * 2008-08-08 2010-02-18 Noritake Co Ltd Water-repellent type gas diffusion electrode, its formation method, and membrane-electrode assembly
JP2011038032A (en) * 2009-08-17 2011-02-24 Noritake Co Ltd Conductive water repellent material and water repellent gas diffusion electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022144736A1 (en) * 2020-12-30 2022-07-07 Aspen Aerogels, Inc. Fibrous carbon aerogels coated with nano-thin silicon as lithium battery anodes
CN114068953A (en) * 2021-10-25 2022-02-18 上海远瞩新能源科技有限公司 Preparation method and application of locally-reinforced fuel cell gas diffusion layer
CN114068953B (en) * 2021-10-25 2024-05-07 上海远瞩新能源科技有限公司 Preparation method and application of locally reinforced fuel cell gas diffusion layer

Also Published As

Publication number Publication date
KR101324025B1 (en) 2013-11-01
KR20130048008A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
Schweiss et al. Mitigation of water management in PEM fuel cell cathodes by hydrophilic wicking microporous layers
US8518607B2 (en) Method for preparing membrane electrode assembly using low-temperature transfer method, membrane electrode assembly prepared thereby, and fuel cell using the same
WO2000011741A1 (en) Fuel cell and method of menufacture thereof
KR20070027741A (en) Sub-micron solid oxide electrolyte membrane
KR101140094B1 (en) Gas diffusion electrode, fuel cell, and manufacturing method for the gas diffusion electrode
KR20070026859A (en) Method for making a sub-micron solid oxide electrolyte membrane
US7632590B2 (en) System and a method for manufacturing an electrolyte using electrodeposition
US8053035B2 (en) Electrode assembly and method of making same
JP2004031325A (en) Solid polymer fuel cell and method of manufacturing same
WO2013065897A1 (en) Double-sided superhydrophobic gas diffusion layer for a polymer electrolyte membrane fuel cell, method for preparing same, and polymer electrolyte membrane fuel cell including same
JP2008192490A (en) Membrane-electrode assembly and fuel cell equipped with it
WO2009145568A2 (en) Method for manufacturing a polymer electrolyte membrane for fuel cell, membrane electrode assembly, and polymer electrolyte membrane type fuel cell
JP2008234968A (en) Membrane-electrode assembly, its manufacturing method, and polymer electrolyte fuel cell
KR100917610B1 (en) Method for coating metallic interconnect of solid oxide fuel cell
KR101326190B1 (en) Membrane Electrode Assembly for fuel cell and fuel cell using the same
Yoon et al. Enhanced hydrophobicity of GDL by a novel coating process in PEM fuel cells
KR101229597B1 (en) Membrane electrode assembly for fuel cell and Method of preparing the same and Fuel cell comprising the same
CN101593840A (en) Proton exchange model fuel cell unit, mea and gaseous diffusion layer structure
CN103608954B (en) The catalyst material of fuel cell
TW201114096A (en) Fuel cell structure having porous metal plate
KR101534948B1 (en) Fuelcell
JP4882225B2 (en) Water-repellent electrode catalyst layer, catalyst layer transfer sheet and catalyst layer-electrolyte assembly for polymer electrolyte fuel cell
KR101112693B1 (en) Membrane-electrode assembly of fuel cell and preparing method thereof
Ko et al. Effect of multi micro porous layer in proton exchange membrane fuel cell
KR100761525B1 (en) Integrated type gas diffusion layer, electrode comprising the same, membrane electrode assembly comprising the same, and fuel cell comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875046

Country of ref document: EP

Kind code of ref document: A1