WO2013065695A1 - Small-diameter drill - Google Patents

Small-diameter drill Download PDF

Info

Publication number
WO2013065695A1
WO2013065695A1 PCT/JP2012/078063 JP2012078063W WO2013065695A1 WO 2013065695 A1 WO2013065695 A1 WO 2013065695A1 JP 2012078063 W JP2012078063 W JP 2012078063W WO 2013065695 A1 WO2013065695 A1 WO 2013065695A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer peripheral
grooves
diameter drill
small
groove
Prior art date
Application number
PCT/JP2012/078063
Other languages
French (fr)
Japanese (ja)
Inventor
崇 香月
恵 大峯
英児 池上
進一 堀川
Original Assignee
株式会社タンガロイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タンガロイ filed Critical 株式会社タンガロイ
Priority to CN201280053771.6A priority Critical patent/CN103889623A/en
Publication of WO2013065695A1 publication Critical patent/WO2013065695A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/40Flutes, i.e. chip conveying grooves
    • B23B2251/406Flutes, i.e. chip conveying grooves of special form not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/011Micro drills
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0008Apparatus or processes for manufacturing printed circuits for aligning or positioning of tools relative to the circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes

Definitions

  • the present invention relates to a small-diameter drill, and particularly to a small-diameter drill that can be suitably used for making a hole in a printed wiring board.
  • the small diameter drill 1 generally has a shank having a diameter of 3.175 mm (1/8 inch). Therefore, the tool diameter is generally 3.175 mm or less.
  • Patent document 1 discloses the drill used for the use including the drilling of a printed wiring board.
  • the drill includes a cutting edge disposed at the tip and two grooves. The two grooves merge on the way to the rear end to form one groove. Two margins defining the outer peripheral surface of the drill are formed.
  • the purpose of the drill of Patent Document 1 is to increase the rigidity and to improve the position accuracy of a hole to be processed (hereinafter referred to as hole position accuracy).
  • Patent Document 2 discloses a drill used for applications including drilling of printed wiring boards.
  • the drill includes a cutting edge disposed at the tip and two grooves. The two grooves merge on the way to the rear end to form one groove.
  • the purpose of the drill of Patent Document 2 is also to increase the rigidity and improve the hole position accuracy.
  • the drills of Patent Documents 1 and 2 have higher tool rigidity because the volume removed by the grooves is small compared to a drill in which the two grooves do not merge. For this reason, the hole position accuracy is improved to some extent.
  • chips flowing toward the outside of the processing hole through the two grooves are concentrated at the junction of the two grooves. As a result of the concentration of chips at the junction, the chips may become clogged near the junction and damage the inner wall of the machined hole, and the drill is likely to break. Therefore, the drills of Patent Documents 1 and 2 need to keep the feed rate during cutting low.
  • An object of the present invention is to improve chip flow in the vicinity of a merging point in a small diameter drill that merges a plurality of grooves.
  • the present invention includes at least two grooves, a cutting edge disposed at the tip, at least two margins defining a part of the outer peripheral surface of the small-diameter drill, and at least two outer peripheral recesses extending in contact with the margin.
  • the at least two grooves have a confluence point, and of the at least two outer periphery recesses, at least one of the outer periphery recesses is on the tip side of the at least two grooves. It is a small diameter drill characterized by having a communication part for making mutually communicate.
  • FIG. 1 is an enlarged view of a portion A of a right side view of a small diameter drill in the first embodiment.
  • FIG. 2 is a right side view of the small diameter drill of FIG.
  • FIG. 3 is an enlarged view of the front view of the small diameter drill of FIG.
  • FIG. 4 is a front view of the small diameter drill of FIG.
  • FIG. 5 is an enlarged view of the left side view of the small diameter drill of FIG.
  • FIG. 6 is an enlarged view of a plan view of the small diameter drill of FIG.
  • FIG. 7 is an enlarged view of the bottom view of the small diameter drill of FIG.
  • FIG. 8 is an enlarged view of a perspective view of the small diameter drill of FIG.
  • FIG. 9 is an enlarged view of a perspective view of the small-diameter drill of FIG.
  • FIG. 10 is an explanatory diagram of the cross-sectional position of the XI-XI cross section in the small diameter drill of FIG.
  • FIG. 11 is an enlarged cross-sectional view of the small diameter drill of FIG.
  • FIG. 12 is an enlarged view of a right side view of the small-diameter drill according to the second embodiment.
  • FIG. 13 is an enlarged view of the front view of the small diameter drill of FIG. 14 is an enlarged view of the left side view of the small diameter drill of FIG.
  • FIG. 15 is an enlarged view of the right side view of the small diameter drill of the comparative product 1.
  • FIG. 16 is an enlarged view of the front view of the small diameter drill of FIG. FIG.
  • FIG. 17 is an enlarged view of the left side view of the small diameter drill of FIG.
  • FIG. 18 is an enlarged view of the right side view of the small diameter drill of the comparative product 2.
  • FIG. 19 is an enlarged view of a front view of the small diameter drill of FIG. 20 is an enlarged view of the left side view of the small diameter drill of FIG.
  • FIG. 21 shows the first experimental result regarding the small diameter drill.
  • FIG. 22 shows the second experimental result regarding the small diameter drill.
  • the small-diameter drill 1 of the first embodiment includes two spiral grooves 2.
  • the two grooves 2 are a first groove 2a that extends while twisting from the front end 3 side toward the rear end 8 side, and a second groove 2b that merges with the first groove 2a in the middle of the length of the small-diameter drill 1. including.
  • the two grooves 2 are right-handed.
  • the length of the first groove 2 a is appropriately adjusted according to the tool diameter (diameter) ⁇ Dmm corresponding to the hole diameter processed by the small diameter drill 1.
  • the length of the first groove 2a in the direction from the front end 3 to the rear end 8 of the small diameter drill 1 is about 3.5 mm.
  • the second groove 2b passes through the junction 5 shown in FIG. 7 and terminates at a position that is substantially integrated with the first groove 2a. That is, the length of the second groove 2b is a length from the tip 3 to the end after passing the junction 5.
  • the second groove 2b is adjusted so that the rear end 8 side extends in parallel with the first groove 2a and functions in the same manner as the single groove 2 after passing the junction 5.
  • the twist angle of the first groove 2a and the twist angle of the second groove 2b are set to the same angle on the rear end 8 side from the merging point 5.
  • the “merging point” is a point where two grooves 2 merge and function as if they were one groove on the rear end 8 side from that point.
  • the length Ld from the front end 3 to the joining point 5 in the direction from the front end 3 to the rear end 8 is appropriately adjusted so that the tool rigidity is increased and the chip discharging property is increased.
  • the two grooves 2 are merged as a result of giving a difference in their torsion angles, and the length Ld from the tip 3 to the merge point 5 is designated by the length and conforms to it.
  • the twist angle is not determined to be. However, in order not to reduce the tool rigidity, the length Ld may be specified, and the twist angle of each groove 2 may be adjusted so as to match it.
  • the tip 3 is provided with two cutting edges 4.
  • the cutting edge 4 is two main cutting edges, and is an intersecting ridge line between a rake face formed on the inner surface of the groove 2 and a main flank face formed on the end face of the tip 3.
  • Two margins 11 are provided adjacent to the two grooves 2.
  • the margin 11 defines a part of the outer peripheral surface of the small diameter drill 1 over its entire length.
  • the “cutting edge” in the present embodiment also includes a secondary cutting edge that is a cross ridge line between the secondary flank and the rake face of the outer peripheral surface that is the margin 11.
  • a chisel edge 10 is formed on the end surface of the tip 3.
  • the chisel edge 10 is not called a cutting edge.
  • the chisel edge 10 has a function of generating chips such as small powder like a cutting edge.
  • a columnar or cylindrical shank 9 is formed on the rear end 8 side of the small diameter drill 1.
  • the tool diameter ⁇ Dmm is about ⁇ 0.250 mm.
  • the tool diameter can be arbitrarily set according to the size of the hole to be machined.
  • the shank diameter (diameter) of the shank 9 is approximately ⁇ 3.175 mm.
  • the twist angle of the groove 2 is not particularly limited.
  • the twist angle of the first groove 2a of the small-diameter drill 1 of the present invention is preferably 20 ° or more and 70 ° or less.
  • the twist angle of the first groove 2a from the tip 3 to the junction 5 is more preferably 30 ° or more and 55 ° or less.
  • the twist angle of the first groove 2a is about 45 °.
  • the twist angle of the second groove 2b is preferably the same as the twist angle of the first groove 2a in the vicinity of the tip 3 of the small diameter drill 1. If the twist angles of the first groove 2a and the second groove 2b are made the same in the vicinity of the tip 3, the cutting edge shape can be easily made the same surface shape, so that the balance during cutting is good. Furthermore, when the tip surface of the small diameter drill 1 is reground, the shape of the cutting edge 4 can be kept constant.
  • the twist angle of the second groove 2 b can be made different from the twist angle in the vicinity of the tip 3 at an arbitrary position.
  • the twist angle of the second groove 2b is changed at the position of the length Lc shown in FIG.
  • the twist angle of the second groove 2b for joining the grooves 2 is preferably 30 ° or more and 80 ° or less, and more preferably 40 ° or more and 70 ° or less.
  • the twist angle of the second groove 2b from the change point (position of the length Lc) where the twist angle changes to the point of joining is about 60 °.
  • the twist angle of the second groove 2 b is preferably larger than the twist angle of the first groove 2 a in the range of 10 ° to 30 °. If this angular difference is too small, a large axial length is required for the two grooves 2 to merge, and the tool rigidity is reduced. On the contrary, if this angle difference is too large, chips collide at the confluence 5 and a chip discharge is prevented.
  • the length Lc to the change point of the twist angle of the second groove 2b is preferably in the following range with respect to the tool diameter ⁇ D.
  • the length Lc is preferably in the range of 0.1D ⁇ Lc ⁇ 4D.
  • the preferable range of the length Lc is slightly different depending on the tool diameter ⁇ D.
  • ⁇ D is less than 0.1 mm
  • a range of 1.5D ⁇ Lc ⁇ 4D is preferable.
  • ⁇ D is 0.1 mm or more and less than 0.6 mm
  • a range of 0.5D ⁇ Lc ⁇ 3D is preferable.
  • ⁇ D is 0.6 or more and less than 1.0 mm
  • a range of 0.3D ⁇ Lc ⁇ 2D is preferable.
  • the two grooves 2 are merged by making the twist angle of the second groove 2b larger than that of the first groove 2a.
  • the method for merging is not limited to this.
  • the two grooves 2 can be merged by making the twist angle of the second groove 2b smaller than that of the first groove 2a.
  • the twist angle of the groove 2 toward the rear end 8 after merging is the same angle as the twist angle of the first groove 2a, but is not limited thereto.
  • the twist angle of the groove 2 toward the rear end 8 after merging may be matched with the twist angle of the second groove 2b having a larger angle than the first groove 2a.
  • This angle can be appropriately adjusted so that chips are smoothly discharged after the grooves 2 have joined.
  • the excellent chip evacuation property can be obtained by matching the twist angle of the groove 2 toward the rear end 8 after merging with the twist angle of the first groove 2a.
  • the small diameter drill 1 having a tool diameter ⁇ Dmm of ⁇ 1.500 mm or more there is almost no problem with the hole position accuracy. That is, since the small diameter drill 1 having a tool diameter ⁇ Dmm of ⁇ 1.500 mm or more has a sufficiently high rigidity, the problem of the hole position accuracy is small.
  • the present invention is particularly effective in improving hole position accuracy in the case of the small diameter drill 1 having a tool diameter ⁇ Dmm of less than ⁇ 1.500 mm. Especially, when the tool diameter ⁇ Dmm is ⁇ 0.500 mm or less, the effect of improving the hole position accuracy is remarkable.
  • the improvement in the hole position accuracy here means that the position accuracy at the hole entrance (positional deviation between the machine command position and the machined hole) is improved, and that the bending of the hole is improved and the hole exit is improved. This includes improving the positional accuracy.
  • the small diameter drill 1 has two outer peripheral recesses 6. Each outer peripheral recess 6 is parallel to each of the margins 11 and is adjacent to each of the two grooves 2. Each outer peripheral recess 6 extends in the direction toward the end 8 starting from the vicinity of the main cutting edge 4.
  • the two outer peripheral recesses 6 include a first outer peripheral recess 6a and a second outer peripheral recess 6b.
  • the first outer peripheral recess 6a is provided adjacent to the first groove 2a
  • the second outer peripheral recess 6b is provided adjacent to the second groove 2b.
  • Each outer peripheral recess 6 is connected to the groove 2 at one end in the width direction and to the margin 11 at the other end.
  • At least one outer peripheral recess 6 (that is, the first recess 6) is located on the tip 3 side of the junction 5 (shown in FIG. 7) of the two grooves 2.
  • the two grooves 2 communicate with each other by one outer peripheral recess 6a). That is, the first outer peripheral recess 6 a is provided with a communication portion 7 that communicates between the two grooves 2 at the end on the rear end 8 side.
  • the opposite side of the small diameter drill 1 is shown in FIGS. 5 and 9 in order to show the second outer peripheral recess 6b not provided with the communication portion 7.
  • the conventional general outer peripheral recess is provided in parallel with the first groove 2a and the margin 11 while being connected to the first groove 2a and the margin 11.
  • the end portion on the rear end 8 side does not reach the second groove 2b, and therefore the two grooves 2 do not communicate with each other.
  • the outer peripheral recess 6 is provided with the communication portion 7 only in one, ie, the first outer peripheral recess 6a, so that the two grooves 2 communicate with each other, and the other, ie, the second outer peripheral recess. In 6b, the two grooves 2 are not communicated with each other.
  • the communication portion 7 When the communication portion 7 is viewed from the XI-XI cross-sectional position in FIG. 10 toward the rear end 8 side of the small-diameter drill 1, the communication portion 7 has an overall width direction that is larger than the outer peripheral surface as shown in FIG. Retreating inward, it provides a space for the chips to move between the two grooves 2.
  • the depth of the communication portion 7 (that is, the distance from the outer peripheral surface) is substantially the same as the depth of the outer peripheral recess 6 and is smaller than the groove 2.
  • the depth of the communication portion 7 is smaller than the groove 2, the small powdery chips that have passed through the communication portion 7 dig into the bottom of the large chips and play a role like a lubricant. It is thought that litter tends to rise. That is, it is considered that if a large chip rises even a little, the floating is further promoted on a small powdery chip. For this reason, the collision between the chips in the vicinity of the merging point 5 is alleviated, and the merging of the chips becomes smoother.
  • the position at which the two grooves 2 are communicated with each other by the outer peripheral recess 6 is important, and the distance from the tip 3 to the communication portion 7 and the distance from the tip 3 to the junction 5 need to be adjusted appropriately. Even when two or more outer peripheral recesses 6 are provided, the length from the tip 3 of each outer peripheral recess 6 is appropriately adjusted. As a result, the two or more outer peripheral recesses 6 are formed so that the lengths from the tip 3 are different from each other.
  • the second outer peripheral recess 6b is longer than the first outer peripheral recess 6a in the direction from the front end 3 to the rear end 8.
  • generation place differs mutually from a small powdery chip and a big chip.
  • Small powder chips are considered to be generated mainly at the chisel edge 10.
  • Small powdery chips are guided from the chisel edge 10 to the groove 2 through the gap formed by the main flank.
  • Most of the large chips are considered to be generated by the cutting edge 4 which is the main cutting edge. That is, when a large chip is generated by the cutting edge 4 of the tip 3 of the small diameter drill 1, there is no room for the small chip to enter under the large chip.
  • the two grooves 2 are connected so that the small chip can enter freely from under the large chip as in this embodiment. It is effective to do.
  • “communication” means that the two recesses 2 are connected by the outer peripheral recess 6.
  • the communication part 7 means a part in the outer peripheral recess 6 where the two grooves 2 communicate with each other.
  • the margin 11 adjacent to the outer peripheral recess 6 is guided by the inner wall surface of the drilled hole and functions as a guide for maintaining the straightness of drilling.
  • the outer peripheral recess 6 not only allows the groove 2 to communicate but also has a function of appropriately adjusting the width of the margin 11. By appropriately adjusting the width of the margin 11, the contact area is suppressed, the cutting resistance (rotational resistance and rotational axial thrust resistance) of the small diameter drill 1 is reduced, and the sharpness is improved.
  • the “length” of the outer circumferential recess 6 is the length in the direction from the front end 3 toward the rear end 8 as shown in FIGS. 1 and 5.
  • the length Laa of the first outer peripheral recess 6a is shown in FIG. In this embodiment, the length Laa of the first outer peripheral recess 6a is 0.83 mm.
  • the length Lba of the second outer peripheral recess 6b is shown in FIG. In this embodiment, the length Lba of the second outer peripheral recess 6b is 0.85 mm. If it is set as such length, the two outer periphery recessed parts 6 can be processed by the mutually similar grinding process.
  • the NC program for grinding can be shared, it is easy to create and it is easy to form the outer peripheral recesses 6 having different lengths. Since the length Lba (FIG. 5) of the second outer peripheral recess 6b is longer than the length Laa (FIG. 1) of the first outer peripheral recess 6a, The cross-sectional area of the chip flow path constituted by the second groove 2b and the second outer peripheral recess 6b is expanded. For this reason, the chip
  • the twist angle of the outer peripheral recess 6 is preferably the same as the twist angle of the first groove 2a. As described above, when the twist angle of the second groove 2b is the same as the twist angle of the first groove 2a in the vicinity of the tip 3 of the small diameter drill 1, the margin 11 adjacent to the two grooves 2 The width is constant near the tip 3.
  • the twist angle of the outer peripheral recess 6 may be the same angle over the entire length of the outer peripheral recess 6. Such a shape is easy to process. Therefore, it is easy to adjust the length of each outer periphery recessed part 6 appropriately. However, the twist angle of the outer periphery recessed part 6 is not limited to this.
  • the shape of the outer peripheral recess 6 is not limited to a shape parallel to the margin 11 in which the width of the margin 11 is constant. Any shape may be used as long as the width of the margin 11 can be appropriately adjusted and the two grooves 2 are communicated with each other.
  • the small diameter drill 1 has an undercut portion 12 (see FIG. 1) having a smaller outer diameter compared to the tool diameter ⁇ Dmm, which is the outer diameter at the tip 3.
  • the undercut portion 12 generally has a function of reducing the frictional resistance with the machining hole and reducing the cutting resistance.
  • the undercut portion 12 of the small-diameter drill 1 of the present invention enhances the effect of improving chip outflow near the junction 5 of the two grooves 2 in addition to the effect of reducing the cutting resistance.
  • the degree of freedom in which chips can move is further expanded by the undercut portion 12.
  • the undercut portion 12 suppresses the formation of chips in the vicinity of the junction 5 of the groove 2, and promotes the discharge of chips out of the processed hole along the groove 2.
  • the lengths of the two outer peripheral recesses 6 may be formed to be longer than the end 3 side end of the undercut portion 12. As a result of this arrangement, the synergistic effect between the outer peripheral recessed portion 6 and the undercut portion 12 is enhanced, and the movement of fine chips closer to the tip 3 side than the junction 5 is performed more smoothly. It is preferable that the at least one outer peripheral recess 6 is formed to have a length that does not exceed the joining point 5, and the two grooves 2 are communicated with each other by the outer peripheral recess 6.
  • the tool rigidity of the small diameter drill 1 After exceeding the merging point 5, it is preferable to increase the tool rigidity of the small diameter drill 1 by reducing the outer circumferential recess 6 from a short length.
  • the tool diameter is the same as the outer diameter at the margin 11.
  • a step portion is formed at the end portion of the undercut portion 12 on the front end 3 side.
  • the vicinity of the tip 3 and the undercut portion 12 may be connected by a smooth curved surface, and the diameter of the follower heading toward the rear end 8 is reduced instead of or in addition to the undercut portion 12.
  • a back taper portion may be provided.
  • the small-diameter drill 1 described above is detachably mounted on a machine tool dedicated to drilling, such as a printed wiring board, and is subjected to cutting (drilling) by giving a relative motion to the workpiece.
  • a machine tool dedicated to drilling such as a printed wiring board
  • cutting cutting
  • a machining center may be used for the machine tool.
  • the small diameter drill 101 of the second embodiment increases the length of the outer circumferential recess 6 as compared with the small diameter drill 1 of the first embodiment. That is, in FIG. 12, the length Lab of the first outer peripheral recess 6a is 0.93 mm. This length Lab is 0.10 mm longer than the length Laa (see FIG. 1) of the first outer peripheral recess 6a of the small-diameter drill 1 of the first embodiment. Thereby, the space for communicating between the two grooves 2 formed by the communication portion 7 becomes larger.
  • the length Lbb of the second outer peripheral recess 6b is 1.10 mm.
  • the first outer peripheral recess 6a allows the two grooves 2a and 2b to communicate with each other closer to the tip 3 side than the junction 5.
  • the communication part 7 is provided. For this reason, chips move between the two grooves 2a, 2b through the communication portion 7, and the collision between the chips near the junction 5 is alleviated.
  • the length Lba (FIG. 5) of the second outer peripheral recess 6b is longer than the length Laa (FIG. 1) of the first outer peripheral recess 6a, so that the first outer peripheral recess 6a is provided.
  • the cross-sectional area of the flow path constituted by the second groove 2b and the second outer peripheral recess 6b is expanded. For this reason, the chip
  • the circles in FIG. 21 indicate feed rates that can ensure good chip dischargeability.
  • the crosses in the figure indicate feed rates at which small-diameter drills break and stable drilling is not possible.
  • the ⁇ mark in the figure indicates a feed speed that can be used without breaking, but has a slight problem in the quality of the hole to be machined due to the occurrence of flash or the like.
  • the experimental conditions are as follows.
  • the processed substrate was processed by stacking two FR-4s (a four-layer plate having a thickness of 1.6 mm). An aluminum plate was used as a backing plate.
  • the spindle rotation speed was 160,000 min ⁇ 1 (rotation per minute).
  • the comparative product 1 in the figure is a small diameter drill 201 as shown in FIGS. 15 to 17. That is, although the two grooves are merged in the same manner as in the first embodiment of the present invention, the outer peripheral recess is a small diameter drill that does not communicate the two grooves.
  • the length Lac of the outer peripheral recess shown in FIG. 15 and the length Lbc of the outer peripheral recess shown in FIG. 17 were both set to 0.75 mm.
  • the comparative product 2 is a small-diameter drill 301 as shown in FIGS. 18 to 20 in which the length of the outer peripheral recess is further longer than that of the second embodiment.
  • the length Lbd of the outer circumferential recess shown in FIG. 20 was 1.54 mm, which was 0.44 mm longer than that of the second embodiment of the present invention.
  • the length Lad of the outer periphery recessed part shown by FIG. 18 shall be 0.93 mm, and is the same as that of the 2nd Embodiment of this invention. That is, it was set as the length to the junction of two grooves.
  • the small-diameter drills 1 and 101 of the first and second embodiments are compared with the comparative product 1 in which the grooves 2 are joined and the outer peripheral recess is provided.
  • the feed speed at which good chip dischargeability can be secured can be improved by about 33% from 3.6 m / min to 4.8 m / min. Moreover, the feed rate which can be used without breaking can be improved from 4.4 m / min to 5.2 m / min. Furthermore, as shown in FIG. 22, the small diameter drill 1 of the first embodiment has the same hole position accuracy at a feed rate of 3.6 m / min or less as compared with the comparative product 1, and the feed rate 4 Excellent at 0.0 m / min or more. Although the small diameter drill 101 of the second embodiment is slightly inferior to the small diameter drill 1 of the first embodiment, the hole position accuracy is superior to the comparative product 1 at a feed rate of 4.0 m / min or more. Yes.
  • the length of the outer peripheral recess is preferably as short as possible while communicating the two grooves. It is desirable that the length of at least one outer peripheral recess is formed so as not to exceed the junction 5.
  • the numerical value of the hole position accuracy is a so-called average value + 3 ⁇ .
  • the hole position accuracy of a printed wiring board is generally determined using a hole analyzer (hole position coordinate measuring machine) to determine how much the position is deviated from the original commanded position.
  • a plurality of communication portions may be provided for a single outer peripheral recess.
  • the communication portion may be provided in a plurality of outer peripheral recesses, or may be provided in all outer peripheral recesses.
  • the outer circumferential recess does not need to extend continuously from the tip to the end, and may be intermittent.
  • Three or more grooves, outer peripheral recesses, and margins may be provided.
  • the margin may extend on both sides of a single outer peripheral recess so as to constitute a so-called double margin.
  • the communication portion is particularly formed so as to cross the two margins. Is preferred.
  • the present invention can be applied not only to a printed wiring board but also to other uses, for example, a drill for drilling metal.

Abstract

The objective of the present invention is to improve the flow of chips near the convergence point in a small-diameter drill for which grooves are made to converge, thereby improving the precision of the hole position, increasing the quality of the inner walls of the hole that is formed, and accommodating high-efficiency processing. This small-diameter drill is equipped with two or more grooves, a cutting edge arranged at the tip, at least two margins defining the outer circumferential surface of the small-diameter drill, and two or more outer-circumferential recesses that extend so as to make contact with the margins. In addition, this small-diameter drill has a point where two or more grooves converge. At least one of the two or more outer circumferential recesses has a connecting point for interconnecting the two or more grooves at a location closer to the tip than the convergence point.

Description

小径ドリルSmall diameter drill
 本発明は、小径ドリルに関し、特にプリント配線板に穴をあけるのに好適に使用できることがある小径ドリルに関する。 The present invention relates to a small-diameter drill, and particularly to a small-diameter drill that can be suitably used for making a hole in a printed wiring board.
 小径ドリル1は、一般に直径3.175mm(1/8インチ)のシャンクを有する。したがって、3.175mm以下の工具径とされることが一般的である。特許文献1は、プリント配線板の穴あけを含む用途に用いるドリルを開示する。このドリルは、先端に配置された切れ刃と、2つの溝とを備える。2つの溝は、後端に向かう途中で合流して、1つの溝となる。ドリルの外周面を画定する2つのマージンが形成される。特許文献1のドリルの目的は、剛性を高めること、および加工される穴の位置精度(以後、穴位置精度とよぶ)を向上することである。 The small diameter drill 1 generally has a shank having a diameter of 3.175 mm (1/8 inch). Therefore, the tool diameter is generally 3.175 mm or less. Patent document 1 discloses the drill used for the use including the drilling of a printed wiring board. The drill includes a cutting edge disposed at the tip and two grooves. The two grooves merge on the way to the rear end to form one groove. Two margins defining the outer peripheral surface of the drill are formed. The purpose of the drill of Patent Document 1 is to increase the rigidity and to improve the position accuracy of a hole to be processed (hereinafter referred to as hole position accuracy).
 特許文献2は、プリント配線板の穴あけを含む用途に用いるドリルを開示する。このドリルは、先端に配置された切れ刃と、2つの溝とを備える。2つの溝は、後端に向かう途中で合流して、1つの溝となる。特許文献2のドリルの目的も、剛性を高めること、および穴位置精度を向上することである。 Patent Document 2 discloses a drill used for applications including drilling of printed wiring boards. The drill includes a cutting edge disposed at the tip and two grooves. The two grooves merge on the way to the rear end to form one groove. The purpose of the drill of Patent Document 2 is also to increase the rigidity and improve the hole position accuracy.
国際公開WO2011/116540号パンフレットInternational publication WO2011 / 116540 pamphlet 特開2007-307642号公報JP 2007-307642 A
 特許文献1および2のドリルは、2つの溝が合流しないドリルと比較すると、溝によって除去される体積が少ないため、工具の剛性がより高い。このため、穴位置精度はある程度向上する。しかし、2つの溝を通じて加工穴の外に向けて流れる切りくずが、2つの溝の合流点に集中する。合流点への切りくずの集中の結果として、切りくずが合流点付近で詰まり、加工穴の内壁を傷つけることがあり、さらに、ドリルが折損しやすい。したがって、特許文献1および2のドリルは、切削時の送り速度を低く抑える必要がある。 The drills of Patent Documents 1 and 2 have higher tool rigidity because the volume removed by the grooves is small compared to a drill in which the two grooves do not merge. For this reason, the hole position accuracy is improved to some extent. However, chips flowing toward the outside of the processing hole through the two grooves are concentrated at the junction of the two grooves. As a result of the concentration of chips at the junction, the chips may become clogged near the junction and damage the inner wall of the machined hole, and the drill is likely to break. Therefore, the drills of Patent Documents 1 and 2 need to keep the feed rate during cutting low.
 本発明の目的は、複数の溝を合流させる小径ドリルにおいて、合流点付近での切りくずの流れを改善することにある。 An object of the present invention is to improve chip flow in the vicinity of a merging point in a small diameter drill that merges a plurality of grooves.
 本発明は、少なくとも2つの溝と、先端に配置された切れ刃と、小径ドリルの外周面の一部を画定する少なくとも2つのマージンと、前記マージンに接して延在する少なくとも2つの外周凹部と、を備え、前記少なくとも2つの溝が合流点を有する小径ドリルであって、前記少なくとも2つの外周凹部のうち、少なくとも1つの外周凹部は、前記合流点よりも先端側に、前記少なくとも2つの溝を互いに連通させるための連通部を有することを特徴とする小径ドリルである。 The present invention includes at least two grooves, a cutting edge disposed at the tip, at least two margins defining a part of the outer peripheral surface of the small-diameter drill, and at least two outer peripheral recesses extending in contact with the margin. The at least two grooves have a confluence point, and of the at least two outer periphery recesses, at least one of the outer periphery recesses is on the tip side of the at least two grooves. It is a small diameter drill characterized by having a communication part for making mutually communicate.
図1は第1の実施形態における小径ドリルの右側面図のA部拡大図である。FIG. 1 is an enlarged view of a portion A of a right side view of a small diameter drill in the first embodiment. 図2は図1の小径ドリルの右側面図である。FIG. 2 is a right side view of the small diameter drill of FIG. 図3は図1の小径ドリルの正面図の拡大図である。FIG. 3 is an enlarged view of the front view of the small diameter drill of FIG. 図4は図1の小径ドリルの正面図である。FIG. 4 is a front view of the small diameter drill of FIG. 図5は図1の小径ドリルの左側面図の拡大図である。FIG. 5 is an enlarged view of the left side view of the small diameter drill of FIG. 図6は図1の小径ドリルの平面図の拡大図である。FIG. 6 is an enlarged view of a plan view of the small diameter drill of FIG. 図7は図1の小径ドリルの下面図の拡大図である。FIG. 7 is an enlarged view of the bottom view of the small diameter drill of FIG. 図8は図1の小径ドリルの斜視図の拡大図である。FIG. 8 is an enlarged view of a perspective view of the small diameter drill of FIG. 図9は図1の小径ドリルの別方向からみた斜視図の拡大図である。FIG. 9 is an enlarged view of a perspective view of the small-diameter drill of FIG. 1 viewed from another direction. 図10は図1の小径ドリルにおけるXI-XI断面の断面位置の説明図である。FIG. 10 is an explanatory diagram of the cross-sectional position of the XI-XI cross section in the small diameter drill of FIG. 図11は図10の小径ドリルのXI-XI断面における拡大断面図である。FIG. 11 is an enlarged cross-sectional view of the small diameter drill of FIG. 図12は第2の実施形態における小径ドリルの右側面図の拡大図である。FIG. 12 is an enlarged view of a right side view of the small-diameter drill according to the second embodiment. 図13は図12の小径ドリルの正面図の拡大図である。FIG. 13 is an enlarged view of the front view of the small diameter drill of FIG. 図14は図12の小径ドリルの左側面図の拡大図である。14 is an enlarged view of the left side view of the small diameter drill of FIG. 図15は比較品1の小径ドリルの右側面図の拡大図である。FIG. 15 is an enlarged view of the right side view of the small diameter drill of the comparative product 1. 図16は図15の小径ドリルの正面図の拡大図である。FIG. 16 is an enlarged view of the front view of the small diameter drill of FIG. 図17は図15の小径ドリルの左側面図の拡大図である。FIG. 17 is an enlarged view of the left side view of the small diameter drill of FIG. 図18は比較品2の小径ドリルの右側面図の拡大図である。FIG. 18 is an enlarged view of the right side view of the small diameter drill of the comparative product 2. 図19は図18の小径ドリルの正面図の拡大図である。FIG. 19 is an enlarged view of a front view of the small diameter drill of FIG. 図20は図18の小径ドリルの左側面図の拡大図である。20 is an enlarged view of the left side view of the small diameter drill of FIG. 図21は小径ドリルに関する第1の実験結果である。FIG. 21 shows the first experimental result regarding the small diameter drill. 図22は小径ドリルに関する第2の実験結果である。FIG. 22 shows the second experimental result regarding the small diameter drill.
 本発明の実施形態について、図面を参照しながら説明する。 Embodiments of the present invention will be described with reference to the drawings.
 図1から図9に示されるように、第1の実施形態の小径ドリル1は、概ねらせん形の2つの溝2を備える。2つの溝2は、先端3側から後端8側に向かってねじれながら延びる第1の溝2aと、小径ドリル1の長さの途中で第1の溝2aと合流する第2の溝2bとを含む。2つの溝2は、右ねじれとされる。 As shown in FIGS. 1 to 9, the small-diameter drill 1 of the first embodiment includes two spiral grooves 2. The two grooves 2 are a first groove 2a that extends while twisting from the front end 3 side toward the rear end 8 side, and a second groove 2b that merges with the first groove 2a in the middle of the length of the small-diameter drill 1. including. The two grooves 2 are right-handed.
 第1の溝2aの長さは、小径ドリル1により加工される穴径に対応する工具径(直径)φDmmに応じて適宜調整される。この実施形態では、小径ドリル1の先端3から後端8に向かう方向の第1の溝2aの長さは、約3.5mmとされる。第2の溝2bは、図7に示される合流点5を過ぎて、第1の溝2aとほぼ一体になる位置で終端する。すなわち、第2の溝2bの長さは、先端3から合流点5を過ぎて終端するまでの長さとされる。別構成としては、第2の溝2bは、合流点5を過ぎてから後端8側が、第1の溝2aと並行して延び、単一の溝2と同じように機能するように調整される。具体的には、合流点5よりも後端8側において、第1の溝2aのねじれ角と、第2の溝2bのねじれ角とが同一角度とされる。ここで「合流点」とは、図7に示すように、2つの溝2が合流し、その点よりも後端8側では、あたかも1つの溝のように機能する点のこととする。 The length of the first groove 2 a is appropriately adjusted according to the tool diameter (diameter) φDmm corresponding to the hole diameter processed by the small diameter drill 1. In this embodiment, the length of the first groove 2a in the direction from the front end 3 to the rear end 8 of the small diameter drill 1 is about 3.5 mm. The second groove 2b passes through the junction 5 shown in FIG. 7 and terminates at a position that is substantially integrated with the first groove 2a. That is, the length of the second groove 2b is a length from the tip 3 to the end after passing the junction 5. As another configuration, the second groove 2b is adjusted so that the rear end 8 side extends in parallel with the first groove 2a and functions in the same manner as the single groove 2 after passing the junction 5. The Specifically, the twist angle of the first groove 2a and the twist angle of the second groove 2b are set to the same angle on the rear end 8 side from the merging point 5. Here, as shown in FIG. 7, the “merging point” is a point where two grooves 2 merge and function as if they were one groove on the rear end 8 side from that point.
 先端3から後端8に向かう方向の、先端3から合流点5までの長さLdは、工具剛性が高まりかつ切りくず排出性が高まるように、適宜調整される。この実施形態では、2つの溝2を、それらのねじれ角に差を付与した結果として合流させたものであり、先端3から合流点5までの長さLdは、長さを指定してそれに適合するようにねじれ角を決めたものではない。しかし、工具剛性を低下させないために、長さLdを指定して、それに適合するようにそれぞれの溝2のねじれ角を調整してもよい。 The length Ld from the front end 3 to the joining point 5 in the direction from the front end 3 to the rear end 8 is appropriately adjusted so that the tool rigidity is increased and the chip discharging property is increased. In this embodiment, the two grooves 2 are merged as a result of giving a difference in their torsion angles, and the length Ld from the tip 3 to the merge point 5 is designated by the length and conforms to it. The twist angle is not determined to be. However, in order not to reduce the tool rigidity, the length Ld may be specified, and the twist angle of each groove 2 may be adjusted so as to match it.
 先端3は、2つの切れ刃4を備える。切れ刃4は、2つの主切れ刃であって、溝2の内面に形成されるすくい面と、先端3の端面に形成される主逃げ面との交差稜線である。2つの溝2に隣接して、2つのマージン11が設けられる。マージン11は、その全長に亘って、小径ドリル1の外周面の一部を画定する。本実施形態における「切れ刃」は、マージン11である外周面の副逃げ面とすくい面との交差稜線である副切れ刃をも含む。先端3の端面には、チゼルエッジ10が形成される。一般に、チゼルエッジ10は切れ刃とは呼ばれない。しかし、チゼルエッジ10には、切れ刃のように、小さな粉のような切りくずを生成する機能がある。 The tip 3 is provided with two cutting edges 4. The cutting edge 4 is two main cutting edges, and is an intersecting ridge line between a rake face formed on the inner surface of the groove 2 and a main flank face formed on the end face of the tip 3. Two margins 11 are provided adjacent to the two grooves 2. The margin 11 defines a part of the outer peripheral surface of the small diameter drill 1 over its entire length. The “cutting edge” in the present embodiment also includes a secondary cutting edge that is a cross ridge line between the secondary flank and the rake face of the outer peripheral surface that is the margin 11. A chisel edge 10 is formed on the end surface of the tip 3. In general, the chisel edge 10 is not called a cutting edge. However, the chisel edge 10 has a function of generating chips such as small powder like a cutting edge.
 小径ドリル1の後端8側には、円柱状または円筒状のシャンク9が形成される。この実施形態では、工具径φDmmは、約φ0.250mmとされる。工具径は加工すべき穴の寸法に合わせて、任意に設定できる。シャンク9のシャンク径(直径)は、約φ3.175mmとされる。 A columnar or cylindrical shank 9 is formed on the rear end 8 side of the small diameter drill 1. In this embodiment, the tool diameter φDmm is about φ0.250 mm. The tool diameter can be arbitrarily set according to the size of the hole to be machined. The shank diameter (diameter) of the shank 9 is approximately φ3.175 mm.
 溝2のねじれ角は、特に限定されない。プリント配線板用の小径ドリルの場合、本発明の小径ドリル1の第1の溝2aのねじれ角は、20°以上、かつ70°以下が好ましい。特に、先端3から合流点5までの第1の溝2aのねじれ角は、30°以上、かつ55°以下がより好ましい。図示しないが、この実施形態で、第1の溝2aのねじれ角は約45°とされる。 The twist angle of the groove 2 is not particularly limited. In the case of a small-diameter drill for a printed wiring board, the twist angle of the first groove 2a of the small-diameter drill 1 of the present invention is preferably 20 ° or more and 70 ° or less. In particular, the twist angle of the first groove 2a from the tip 3 to the junction 5 is more preferably 30 ° or more and 55 ° or less. Although not shown, in this embodiment, the twist angle of the first groove 2a is about 45 °.
 第2の溝2bのねじれ角は、小径ドリル1の先端3付近では、第1の溝2aのねじれ角と同じ角度とされるのが好適である。先端3付近で第1の溝2aと第2の溝2bとのねじれ角を同じにすると、切れ刃形状やすくい面形状を同一にできるため、切削時のバランスがよい。さらに、小径ドリル1の先端面が再研削されるときに、切れ刃4の形状を一定に保てる。 The twist angle of the second groove 2b is preferably the same as the twist angle of the first groove 2a in the vicinity of the tip 3 of the small diameter drill 1. If the twist angles of the first groove 2a and the second groove 2b are made the same in the vicinity of the tip 3, the cutting edge shape can be easily made the same surface shape, so that the balance during cutting is good. Furthermore, when the tip surface of the small diameter drill 1 is reground, the shape of the cutting edge 4 can be kept constant.
 2つの溝2を合流させるために、任意の位置で第2の溝2bのねじれ角を、先端3付近におけるねじれ角から異ならせることができる。この実施形態では、図1に示す長さLcの位置で、第2の溝2bのねじれ角を変化させる。溝2を合流させるための第2の溝2bのねじれ角は、30°以上、かつ80°以下が好ましく、40°以上、かつ70°以下がより好ましい。図示しないが、この実施形態では、ねじれ角が変化する変化点(長さLcの位置)から合流するまでの第2の溝2bのねじれ角は、約60°とされる。換言すれば、2つの溝2を合流させるには、第1の溝2aのねじれ角よりも、第2の溝2bのねじれ角を10°以上30°以下の範囲で大きくするとよい。この角度差が小さすぎると、2つの溝2が合流するために大きな軸方向長さを要し、工具剛性が減少させられる。反対に、この角度差が大き過ぎると、合流点5で切りくず同士の衝突が急激に起こり、切りくず流出が妨げられる。 In order to join the two grooves 2, the twist angle of the second groove 2 b can be made different from the twist angle in the vicinity of the tip 3 at an arbitrary position. In this embodiment, the twist angle of the second groove 2b is changed at the position of the length Lc shown in FIG. The twist angle of the second groove 2b for joining the grooves 2 is preferably 30 ° or more and 80 ° or less, and more preferably 40 ° or more and 70 ° or less. Although not shown, in this embodiment, the twist angle of the second groove 2b from the change point (position of the length Lc) where the twist angle changes to the point of joining is about 60 °. In other words, in order to join the two grooves 2, the twist angle of the second groove 2 b is preferably larger than the twist angle of the first groove 2 a in the range of 10 ° to 30 °. If this angular difference is too small, a large axial length is required for the two grooves 2 to merge, and the tool rigidity is reduced. On the contrary, if this angle difference is too large, chips collide at the confluence 5 and a chip discharge is prevented.
 第2の溝2bのねじれ角の変化点までの長さLcは、工具径φDに対して次の範囲が好ましい。長さLcは0.1D≦Lc≦4Dの範囲が好ましい。ただし、長さLcの好ましい範囲は、工具径φDによって若干異なる。φDが0.1mm未満のときは、1.5D≦Lc≦4Dの範囲が好ましい。φDが0.1mm以上かつ0.6mm未満のときは、0.5D≦Lc≦3Dの範囲が好ましい。φDが0.6以上かつ1.0mm未満のときは、0.3D≦Lc≦2Dの範囲が好ましい。φDが1.0mm以上のときは、0.1D≦Lc≦Dの範囲が好ましい。なお、この実施形態では、第1の溝2aよりも第2の溝2bのねじれ角を大きくすることにより、2つの溝2を合流させたが、合流させるための方法は、これに限定されない。例えば、第1の溝2aよりも第2の溝2bのねじれ角を小さくして、2つの溝2を合流させることもできる。 The length Lc to the change point of the twist angle of the second groove 2b is preferably in the following range with respect to the tool diameter φD. The length Lc is preferably in the range of 0.1D ≦ Lc ≦ 4D. However, the preferable range of the length Lc is slightly different depending on the tool diameter φD. When φD is less than 0.1 mm, a range of 1.5D ≦ Lc ≦ 4D is preferable. When φD is 0.1 mm or more and less than 0.6 mm, a range of 0.5D ≦ Lc ≦ 3D is preferable. When φD is 0.6 or more and less than 1.0 mm, a range of 0.3D ≦ Lc ≦ 2D is preferable. When φD is 1.0 mm or more, a range of 0.1D ≦ Lc ≦ D is preferable. In this embodiment, the two grooves 2 are merged by making the twist angle of the second groove 2b larger than that of the first groove 2a. However, the method for merging is not limited to this. For example, the two grooves 2 can be merged by making the twist angle of the second groove 2b smaller than that of the first groove 2a.
 この実施形態では、合流してから後端8に向かう溝2のねじれ角は、第1の溝2aのねじれ角と同一角度とされるが、これに限定されない。合流してから後端8に向かう溝2のねじれ角は、第1の溝2aよりも角度の大きな第2の溝2bのねじれ角に合わせてもよい。また、第1の溝2aや第2の溝2bのねじれ角と合わせずに、中間の角度あるいは他の角度に設定されてもよい。この角度は、溝2が合流した後にスムーズに切りくずが排出するように、適宜調整されることができる。この実施形態では、合流してから後端8に向かう溝2のねじれ角を、第1の溝2aのねじれ角に合わせたことで、優れた切りくずの排出性が得られる。 In this embodiment, the twist angle of the groove 2 toward the rear end 8 after merging is the same angle as the twist angle of the first groove 2a, but is not limited thereto. The twist angle of the groove 2 toward the rear end 8 after merging may be matched with the twist angle of the second groove 2b having a larger angle than the first groove 2a. Moreover, you may set to an intermediate | middle angle or another angle, without matching with the twist angle of the 1st groove | channel 2a or the 2nd groove | channel 2b. This angle can be appropriately adjusted so that chips are smoothly discharged after the grooves 2 have joined. In this embodiment, the excellent chip evacuation property can be obtained by matching the twist angle of the groove 2 toward the rear end 8 after merging with the twist angle of the first groove 2a.
 なお一般に、工具径φDmmがφ1.500mm以上の小径ドリル1の場合は、穴位置精度の問題が発生することはほとんどない。すなわち、工具径φDmmがφ1.500mm以上の小径ドリル1は、剛性が十分に高いため、穴位置精度の問題は小さい。本発明は、工具径φDmmが、φ1.500mm未満の小径ドリル1の場合に、特に穴位置精度向上の効果が高い。中でも、工具径φDmmが、φ0.500mm以下の場合に、穴位置精度向上の効果が顕著である。なお、ここでいう穴位置精度の向上は、穴の入り口における位置精度(機械指令位置と加工された穴との位置ずれ)が向上すること、および、穴の曲がりが改善されて穴の出口における位置精度が向上することを含む。 In general, in the case of the small diameter drill 1 having a tool diameter φDmm of φ1.500 mm or more, there is almost no problem with the hole position accuracy. That is, since the small diameter drill 1 having a tool diameter φDmm of φ1.500 mm or more has a sufficiently high rigidity, the problem of the hole position accuracy is small. The present invention is particularly effective in improving hole position accuracy in the case of the small diameter drill 1 having a tool diameter φDmm of less than φ1.500 mm. Especially, when the tool diameter φDmm is φ0.500 mm or less, the effect of improving the hole position accuracy is remarkable. The improvement in the hole position accuracy here means that the position accuracy at the hole entrance (positional deviation between the machine command position and the machined hole) is improved, and that the bending of the hole is improved and the hole exit is improved. This includes improving the positional accuracy.
 小径ドリル1は、2つの外周凹部6を有する。各外周凹部6は、マージン11のそれぞれに並行し、かつ2つの溝2のそれぞれに隣接している。各外周凹部6は、主切れ刃4の近傍を始端として、終端8に向かう方向に延びる。2つの外周凹部6は、第1の外周凹部6aおよび第2の外周凹部6bを含む。第1の外周凹部6aは、第1の溝2aに隣接して設けられ、第2の外周凹部6bは第2の溝2bに隣接して設けられている。それぞれの外周凹部6は、その幅方向の一端において溝2に、また他端においてマージン11に接続する。 The small diameter drill 1 has two outer peripheral recesses 6. Each outer peripheral recess 6 is parallel to each of the margins 11 and is adjacent to each of the two grooves 2. Each outer peripheral recess 6 extends in the direction toward the end 8 starting from the vicinity of the main cutting edge 4. The two outer peripheral recesses 6 include a first outer peripheral recess 6a and a second outer peripheral recess 6b. The first outer peripheral recess 6a is provided adjacent to the first groove 2a, and the second outer peripheral recess 6b is provided adjacent to the second groove 2b. Each outer peripheral recess 6 is connected to the groove 2 at one end in the width direction and to the margin 11 at the other end.
 本実施形態では、図1および図8に示されるように、2つの溝2の合流点5(図7に図示されている)よりも先端3側で、少なくとも1つの外周凹部6(すなわち、第1の外周凹部6a)により、2つの溝2が連通する。すなわち、第1の外周凹部6aには、その後端8側の端部に、2つの溝2の間を連通する連通部7が設けられる。参考として、連通部7を設けていない第2の外周凹部6bを示すために、小径ドリル1の反対側が図5および図9に示される。従来の一般的な外周凹部は、この第2の外周凹部6bと同様に、第1の溝2aおよびマージン11と接続しながら、これら第1の溝2aおよびマージン11と略並行して設けられるが、その後端8側の端部は第2の溝2bに届いておらず、したがって2つの溝2を互いに連通しない。これとは対照的に、この実施形態では、外周凹部6は、その一方すなわち第1の外周凹部6aのみに連通部7を設けて2つの溝2を互いに連通させ、他方すなわち第2の外周凹部6bでは2つの溝2を互いに連通させていない。 In the present embodiment, as shown in FIGS. 1 and 8, at least one outer peripheral recess 6 (that is, the first recess 6) is located on the tip 3 side of the junction 5 (shown in FIG. 7) of the two grooves 2. The two grooves 2 communicate with each other by one outer peripheral recess 6a). That is, the first outer peripheral recess 6 a is provided with a communication portion 7 that communicates between the two grooves 2 at the end on the rear end 8 side. For reference, the opposite side of the small diameter drill 1 is shown in FIGS. 5 and 9 in order to show the second outer peripheral recess 6b not provided with the communication portion 7. FIG. Similar to the second outer peripheral recess 6b, the conventional general outer peripheral recess is provided in parallel with the first groove 2a and the margin 11 while being connected to the first groove 2a and the margin 11. The end portion on the rear end 8 side does not reach the second groove 2b, and therefore the two grooves 2 do not communicate with each other. In contrast to this, in this embodiment, the outer peripheral recess 6 is provided with the communication portion 7 only in one, ie, the first outer peripheral recess 6a, so that the two grooves 2 communicate with each other, and the other, ie, the second outer peripheral recess. In 6b, the two grooves 2 are not communicated with each other.
 図10のXI-XI断面位置から、小径ドリル1の後端8側に向かって連通部7をみると、連通部7は図11に示されるように、その幅方向の全体が外周面よりも内側に後退して、切りくずが2つの溝2の間を移動するための空間を提供している。連通部7の深さ(すなわち外周面からの距離)は、外周凹部6の深さとほぼ同一であり、かつ、溝2よりも小さい。合流点5より先端3側で2つの溝2を連通させると、小さな粉状の切りくずが、2つの溝2の間で連通部7を通じて移動する。このため、2つの溝2を流れる切りくず同士が、合流点5よりも先端3側の領域で混ざり合うようになる。また、連通部7の深さが溝2よりも小さいので、連通部7を通過した小さな粉状の切りくずが、大きな切りくずの下にもぐりこんで、潤滑剤のような役割を果たし、大きな切りくずが浮き上がりやすくなるものと考えられる。すなわち、大きな切りくずが少しでも浮き上がれば、小さな粉状の切りくずにのって、浮き上がりが更に促進されるものと考えられる。このため、合流点5付近での切りくず同士の衝突が緩和され、切りくずの合流がよりスムーズになる。 When the communication portion 7 is viewed from the XI-XI cross-sectional position in FIG. 10 toward the rear end 8 side of the small-diameter drill 1, the communication portion 7 has an overall width direction that is larger than the outer peripheral surface as shown in FIG. Retreating inward, it provides a space for the chips to move between the two grooves 2. The depth of the communication portion 7 (that is, the distance from the outer peripheral surface) is substantially the same as the depth of the outer peripheral recess 6 and is smaller than the groove 2. When the two grooves 2 communicate with each other on the tip 3 side from the junction point 5, small powdery chips move between the two grooves 2 through the communication portion 7. For this reason, the chips flowing through the two grooves 2 are mixed in the region closer to the tip 3 than the junction 5. In addition, since the depth of the communication portion 7 is smaller than the groove 2, the small powdery chips that have passed through the communication portion 7 dig into the bottom of the large chips and play a role like a lubricant. It is thought that litter tends to rise. That is, it is considered that if a large chip rises even a little, the floating is further promoted on a small powdery chip. For this reason, the collision between the chips in the vicinity of the merging point 5 is alleviated, and the merging of the chips becomes smoother.
 したがって、外周凹部6により2つの溝2を連通させる位置が重要であり、先端3から連通部7までの距離、および先端3から合流点5までの距離を適切に調整する必要がある。外周凹部6を2つ以上設ける場合においても、それぞれの外周凹部6の先端3からの長さが、それぞれ適切に調整される。結果的に、2つ以上の外周凹部6は、先端3からの長さが互いに異なるように形成される。本実施形態では、先端3から後端8へ向かう方向において、第2の外周凹部6bは第1の外周凹部6aよりも長い。 Therefore, the position at which the two grooves 2 are communicated with each other by the outer peripheral recess 6 is important, and the distance from the tip 3 to the communication portion 7 and the distance from the tip 3 to the junction 5 need to be adjusted appropriately. Even when two or more outer peripheral recesses 6 are provided, the length from the tip 3 of each outer peripheral recess 6 is appropriately adjusted. As a result, the two or more outer peripheral recesses 6 are formed so that the lengths from the tip 3 are different from each other. In the present embodiment, the second outer peripheral recess 6b is longer than the first outer peripheral recess 6a in the direction from the front end 3 to the rear end 8.
 なお、小さな粉状の切りくずと、大きな切りくずとは、生成場所が互いに異なると考えられる。小さな粉状の切りくずは、主にチゼルエッジ10で生成されると考えられる。小さな粉状の切りくずは、チゼルエッジ10から、主逃げ面によって形成された隙間を通り、溝2へ誘導される。大きな切りくずのうちの大部分は、主切れ刃である切れ刃4で生成されると考えられる。すなわち、小径ドリル1の先端3の切れ刃4で、大きな切りくずが生成されるとき、大きな切りくずの下には、小さな切りくずが入り込む余地はない。大きな切りくずを、小さな粉状の切りくずによって浮き上がらせるためには、本実施形態のように、大きな切りくずの下から小さな粉状の切りくずが自由に入り込めるように、2つの溝2を連通することが有効である。なお、この実施形態において「連通」とは、2つの溝2の間を、外周凹部6でつなぐことを意味する。また、連通部7とは、外周凹部6の中で、2つの溝2の間が連通している部分を意味する。 In addition, it is thought that a production | generation place differs mutually from a small powdery chip and a big chip. Small powder chips are considered to be generated mainly at the chisel edge 10. Small powdery chips are guided from the chisel edge 10 to the groove 2 through the gap formed by the main flank. Most of the large chips are considered to be generated by the cutting edge 4 which is the main cutting edge. That is, when a large chip is generated by the cutting edge 4 of the tip 3 of the small diameter drill 1, there is no room for the small chip to enter under the large chip. In order to lift a large chip by a small powdery chip, the two grooves 2 are connected so that the small chip can enter freely from under the large chip as in this embodiment. It is effective to do. In this embodiment, “communication” means that the two recesses 2 are connected by the outer peripheral recess 6. The communication part 7 means a part in the outer peripheral recess 6 where the two grooves 2 communicate with each other.
 外周凹部6に隣接するマージン11は、加工穴の内壁面に案内されて、穴加工の直進性を保つためのガイドとして機能する。外周凹部6は、溝2を連通させるだけでなく、マージン11の幅を適切に調整する機能をも備えている。マージン11の幅を適切に調整することによって、接触面積が抑制され、小径ドリル1の切削抵抗(回転抵抗および回転軸方向スラスト抵抗)が低減し、切れ味が向上する。 The margin 11 adjacent to the outer peripheral recess 6 is guided by the inner wall surface of the drilled hole and functions as a guide for maintaining the straightness of drilling. The outer peripheral recess 6 not only allows the groove 2 to communicate but also has a function of appropriately adjusting the width of the margin 11. By appropriately adjusting the width of the margin 11, the contact area is suppressed, the cutting resistance (rotational resistance and rotational axial thrust resistance) of the small diameter drill 1 is reduced, and the sharpness is improved.
 外周凹部6の「長さ」とは、図1および図5に示されるように、先端3から後端8に向かう方向の長さとする。第1の外周凹部6aの長さLaaは、図1に示される。この実施形態で、第1の外周凹部6aの長さLaaは、0.83mmとされる。第2の外周凹部6bの長さLbaは、図5に示される。この実施形態で、第2の外周凹部6bの長さLbaは、0.85mmとされる。このような長さとされると、2つの外周凹部6を互いに同様な研削加工で加工できる。すなわち、研削加工用NCプログラムが共用できるため、作成が容易であり、なおかつ、長さの異なる外周凹部6を形成しやすい。第1の外周凹部6aの長さLaa(図1)よりも、第2の外周凹部6bの長さLba(図5)の方が長いことにより、連通部7よりも下流側の領域において、第2の溝2bと第2の外周凹部6bとから構成される切りくずの流路の断面積が拡張される。このため、第1の溝2aから第2の溝2bに連通部7を通じて移動した切りくずを受け入れることができ、切りくず排出性を高めることができる。 The “length” of the outer circumferential recess 6 is the length in the direction from the front end 3 toward the rear end 8 as shown in FIGS. 1 and 5. The length Laa of the first outer peripheral recess 6a is shown in FIG. In this embodiment, the length Laa of the first outer peripheral recess 6a is 0.83 mm. The length Lba of the second outer peripheral recess 6b is shown in FIG. In this embodiment, the length Lba of the second outer peripheral recess 6b is 0.85 mm. If it is set as such length, the two outer periphery recessed parts 6 can be processed by the mutually similar grinding process. That is, since the NC program for grinding can be shared, it is easy to create and it is easy to form the outer peripheral recesses 6 having different lengths. Since the length Lba (FIG. 5) of the second outer peripheral recess 6b is longer than the length Laa (FIG. 1) of the first outer peripheral recess 6a, The cross-sectional area of the chip flow path constituted by the second groove 2b and the second outer peripheral recess 6b is expanded. For this reason, the chip | tip moved from the 1st groove | channel 2a to the 2nd groove | channel 2b through the communication part 7 can be received, and chip | tip discharge property can be improved.
 外周凹部6のねじれ角は、第1の溝2aのねじれ角と同じ角度とされるとよい。前述のように、第2の溝2bのねじれ角が、小径ドリル1の先端3付近で、第1の溝2aのねじれ角と同じ角度とされるとき、2つの溝2に隣接するマージン11の幅が、先端3付近で一定になる。外周凹部6のねじれ角は、外周凹部6の全長にわたって、同じ角度にされるとよい。そのような形状は加工が容易である。そのため、それぞれの外周凹部6の長さを適切に調整しやすい。しかし、外周凹部6のねじれ角は、これに限定されない。もちろん、外周凹部6の形状も、マージン11の幅を一定にする、マージン11と並行する形状に限定されない。マージン11の幅を適切に調整でき、2つの溝2を連通させる形状であれば、どのような形状でも構わない。 The twist angle of the outer peripheral recess 6 is preferably the same as the twist angle of the first groove 2a. As described above, when the twist angle of the second groove 2b is the same as the twist angle of the first groove 2a in the vicinity of the tip 3 of the small diameter drill 1, the margin 11 adjacent to the two grooves 2 The width is constant near the tip 3. The twist angle of the outer peripheral recess 6 may be the same angle over the entire length of the outer peripheral recess 6. Such a shape is easy to process. Therefore, it is easy to adjust the length of each outer periphery recessed part 6 appropriately. However, the twist angle of the outer periphery recessed part 6 is not limited to this. Of course, the shape of the outer peripheral recess 6 is not limited to a shape parallel to the margin 11 in which the width of the margin 11 is constant. Any shape may be used as long as the width of the margin 11 can be appropriately adjusted and the two grooves 2 are communicated with each other.
 好適には、小径ドリル1は、先端3での外周直径である工具径φDmmと比較して外周直径が小さいアンダーカット部12(図1参照)を有する。アンダーカット部12は、一般的に、加工穴との摩擦抵抗を軽減し、切削抵抗を低減する機能を有する。本発明の小径ドリル1のアンダーカット部12は、切削抵抗の低減効果に加えて、2つの溝2の合流点5付近での、切りくず流出を改善する効果を増強する。アンダーカット部12により、切りくずが移動できる自由度がさらに広がる。アンダーカット部12によって、溝2の合流点5付近で切りくずが塊になることが抑制され、溝2に沿った加工穴の外への切りくずの排出が促進される。小径ドリル1の先端3から後端8へ向かう方向に関して、2つの外周凹部6の長さは、2つともアンダーカット部12の先端3側端部を越える長さに形成されるとよい。この配置の結果、外周凹部6とアンダーカット部12との相乗効果が高まり、合流点5よりも先端3側での細かな切りくずの往来が、よりスムーズに行なわれる。少なくとも1つの外周凹部6は、合流点5を越えない長さに形成され、且つ外周凹部6により2つの溝2を連通させるのが好適である。合流点5を越えた後は、外周凹部6を短い長さでなくし、小径ドリル1の工具剛性を高めるのが好適である。なお、工具径は、マージン11での外周直径と同じである。アンダーカット部12の前端3側の端部には、段部が形成される。しかし、先端3の近傍とアンダーカット部12とは滑らかな曲面で接続されていてもよく、またアンダーカット部12に代えてあるいはアンダーカット部12に加えて、後端8に向かう従い直径が減少するバックテーパ部を設けても良い。 Preferably, the small diameter drill 1 has an undercut portion 12 (see FIG. 1) having a smaller outer diameter compared to the tool diameter φDmm, which is the outer diameter at the tip 3. The undercut portion 12 generally has a function of reducing the frictional resistance with the machining hole and reducing the cutting resistance. The undercut portion 12 of the small-diameter drill 1 of the present invention enhances the effect of improving chip outflow near the junction 5 of the two grooves 2 in addition to the effect of reducing the cutting resistance. The degree of freedom in which chips can move is further expanded by the undercut portion 12. The undercut portion 12 suppresses the formation of chips in the vicinity of the junction 5 of the groove 2, and promotes the discharge of chips out of the processed hole along the groove 2. Regarding the direction from the front end 3 to the rear end 8 of the small-diameter drill 1, the lengths of the two outer peripheral recesses 6 may be formed to be longer than the end 3 side end of the undercut portion 12. As a result of this arrangement, the synergistic effect between the outer peripheral recessed portion 6 and the undercut portion 12 is enhanced, and the movement of fine chips closer to the tip 3 side than the junction 5 is performed more smoothly. It is preferable that the at least one outer peripheral recess 6 is formed to have a length that does not exceed the joining point 5, and the two grooves 2 are communicated with each other by the outer peripheral recess 6. After exceeding the merging point 5, it is preferable to increase the tool rigidity of the small diameter drill 1 by reducing the outer circumferential recess 6 from a short length. The tool diameter is the same as the outer diameter at the margin 11. A step portion is formed at the end portion of the undercut portion 12 on the front end 3 side. However, the vicinity of the tip 3 and the undercut portion 12 may be connected by a smooth curved surface, and the diameter of the follower heading toward the rear end 8 is reduced instead of or in addition to the undercut portion 12. A back taper portion may be provided.
 以上に説明した小径ドリル1は、プリント配線板などの穴あけ専用の工作機械などに着脱自在に装着されて、被加工物に対して相対運動を与えられて、切削加工(穴あけ)を行なう。工作機械には、ボール盤やマシニングセンタなどが用いられても良い。 The small-diameter drill 1 described above is detachably mounted on a machine tool dedicated to drilling, such as a printed wiring board, and is subjected to cutting (drilling) by giving a relative motion to the workpiece. For the machine tool, a drilling machine or a machining center may be used.
 図12から図14には、第2の実施形態の小径ドリル101が示される。図12から図14において、第1の実施形態の小径ドリル1と同じ部分には、同じ参照番号をつける。第2の実施形態の小径ドリル101は、第1の実施形態の小径ドリル1と比較して、外周凹部6の長さを長くする。すなわち、図12において、第1の外周凹部6aの長さLabは、0.93mmとされる。この長さLabは、第1の実施形態の小径ドリル1の第1の外周凹部6aの長さLaa(図1参照)よりも0.10mm長い。このことにより、連通部7によって形成される2つの溝2の間を連通するための空間は、より大きくなる。第2の外周凹部6bの長さLbbは、1.10mmとされる。 12 to 14 show a small diameter drill 101 of the second embodiment. 12 to 14, the same reference numerals are assigned to the same parts as those of the small diameter drill 1 of the first embodiment. The small diameter drill 101 of the second embodiment increases the length of the outer circumferential recess 6 as compared with the small diameter drill 1 of the first embodiment. That is, in FIG. 12, the length Lab of the first outer peripheral recess 6a is 0.93 mm. This length Lab is 0.10 mm longer than the length Laa (see FIG. 1) of the first outer peripheral recess 6a of the small-diameter drill 1 of the first embodiment. Thereby, the space for communicating between the two grooves 2 formed by the communication portion 7 becomes larger. The length Lbb of the second outer peripheral recess 6b is 1.10 mm.
 以上詳述したとおり、第1および第2実施形態の小径ドリル1,101では、第1の外周凹部6aが、合流点5よりも先端3側に、2つの溝2a,2bを互いに連通させるための連通部7を有する。このため、切りくずが2つの溝2a,2bの間で連通部7を通じて移動して、合流点5付近での切りくず同士の衝突が緩和される。 As described in detail above, in the small- diameter drills 1 and 101 of the first and second embodiments, the first outer peripheral recess 6a allows the two grooves 2a and 2b to communicate with each other closer to the tip 3 side than the junction 5. The communication part 7 is provided. For this reason, chips move between the two grooves 2a, 2b through the communication portion 7, and the collision between the chips near the junction 5 is alleviated.
 また、第1の外周凹部6aの長さLaa(図1)よりも、第2の外周凹部6bの長さLba(図5)の方が長いことにより、第1の外周凹部6aに設けられた連通部7よりも下流側の領域において、第2の溝2bと第2の外周凹部6bとから構成される流路の断面積が拡張される。このため、第1の溝2aから第2の溝2bに連通部7を通じて移動した切りくずを受け入れることができ、切りくず排出性を高めることができる。 Further, the length Lba (FIG. 5) of the second outer peripheral recess 6b is longer than the length Laa (FIG. 1) of the first outer peripheral recess 6a, so that the first outer peripheral recess 6a is provided. In a region downstream of the communication portion 7, the cross-sectional area of the flow path constituted by the second groove 2b and the second outer peripheral recess 6b is expanded. For this reason, the chip | tip moved from the 1st groove | channel 2a to the 2nd groove | channel 2b through the communication part 7 can be received, and chip | tip discharge property can be improved.
 図21および図22には、本発明の第1および第2の実施形態を含む、小径ドリルの実験結果が示される。図21の○印は、良好な切りくず排出性を確保できる送り速度を示す。図中の×印は、小径ドリルの折損が発生し、安定的な穴加工ができない送り速度を示す。図中の△印は、折損せずに使用可能であるが、ばりなどが発生し、加工される穴の品位に若干の問題がある送り速度を示す。実験条件は、次の通りである。加工基板は、FR-4(厚さ1.6mmの4層板)を2枚重ねにて加工した。当て板として、アルミ板を使用した。主軸回転数は、160,000min-1(回転毎分)とした。送り速度を、低い方から徐々に高めて小径ドリルが折損するまで実験を行なった。図中の比較品1は、図15から図17に示されるような小径ドリル201である。すなわち、2つの溝を本発明の第1実施形態と同様に合流させているが、外周凹部が2つの溝を連通しない小径ドリルである。図15に示す外周凹部の長さLac、および図17に示す外周凹部の長さLbcは、ともに0.75mmとされた。比較品2は、図18から図20に示すような、外周凹部の長さを第2の実施形態よりもさらに長くした小径ドリル301である。図20に示される外周凹部の長さLbdは、1.54mmとされ、本発明の第2の実施形態より0.44mm長くされた。ただし、図18に示される外周凹部の長さLadは、0.93mmとされ、本発明の第2の実施形態と同じである。すなわち、2つの溝の合流点までの長さとされた。実験の結果として、図21に示されるように、第1および第2の実施形態の小径ドリル1,101は、溝2が合流し、外周凹部が設けられただけの比較品1と比較して、良好な切りくず排出性を確保できる送り速度を、3.6m/minから4.8m/minまで、約33%向上できる。また、折損せずに使用可能な送り速度は、4.4m/minから5.2m/minまで向上できる。なおかつ、図22に示されるように、第1の実施形態の小径ドリル1は、比較品1と比較して、穴位置精度が、送り速度3.6m/min以下では同等であり、送り速度4.0m/min以上では優れている。第2の実施形態の小径ドリル101は、第1の実施形態の小径ドリル1よりは若干劣るが、比較品1と比較して、穴位置精度が、送り速度4.0m/min以上で優れている。しかし、比較品2のように外周凹部の長さを長くすると、図21に示される切りくず排出性は良好であるが、図22に示される穴位置精度が悪化する。これは、外周凹部が長過ぎるため、工具剛性が低下するためと考えられる。 21 and 22 show the experimental results of a small diameter drill including the first and second embodiments of the present invention. The circles in FIG. 21 indicate feed rates that can ensure good chip dischargeability. The crosses in the figure indicate feed rates at which small-diameter drills break and stable drilling is not possible. The Δ mark in the figure indicates a feed speed that can be used without breaking, but has a slight problem in the quality of the hole to be machined due to the occurrence of flash or the like. The experimental conditions are as follows. The processed substrate was processed by stacking two FR-4s (a four-layer plate having a thickness of 1.6 mm). An aluminum plate was used as a backing plate. The spindle rotation speed was 160,000 min −1 (rotation per minute). The experiment was continued until the feed rate was gradually increased from the lower side and the small diameter drill broke. The comparative product 1 in the figure is a small diameter drill 201 as shown in FIGS. 15 to 17. That is, although the two grooves are merged in the same manner as in the first embodiment of the present invention, the outer peripheral recess is a small diameter drill that does not communicate the two grooves. The length Lac of the outer peripheral recess shown in FIG. 15 and the length Lbc of the outer peripheral recess shown in FIG. 17 were both set to 0.75 mm. The comparative product 2 is a small-diameter drill 301 as shown in FIGS. 18 to 20 in which the length of the outer peripheral recess is further longer than that of the second embodiment. The length Lbd of the outer circumferential recess shown in FIG. 20 was 1.54 mm, which was 0.44 mm longer than that of the second embodiment of the present invention. However, the length Lad of the outer periphery recessed part shown by FIG. 18 shall be 0.93 mm, and is the same as that of the 2nd Embodiment of this invention. That is, it was set as the length to the junction of two grooves. As a result of the experiment, as shown in FIG. 21, the small- diameter drills 1 and 101 of the first and second embodiments are compared with the comparative product 1 in which the grooves 2 are joined and the outer peripheral recess is provided. The feed speed at which good chip dischargeability can be secured can be improved by about 33% from 3.6 m / min to 4.8 m / min. Moreover, the feed rate which can be used without breaking can be improved from 4.4 m / min to 5.2 m / min. Furthermore, as shown in FIG. 22, the small diameter drill 1 of the first embodiment has the same hole position accuracy at a feed rate of 3.6 m / min or less as compared with the comparative product 1, and the feed rate 4 Excellent at 0.0 m / min or more. Although the small diameter drill 101 of the second embodiment is slightly inferior to the small diameter drill 1 of the first embodiment, the hole position accuracy is superior to the comparative product 1 at a feed rate of 4.0 m / min or more. Yes. However, when the length of the outer peripheral concave portion is increased as in the comparative product 2, the chip discharging property shown in FIG. 21 is good, but the hole position accuracy shown in FIG. 22 is deteriorated. This is thought to be because the outer circumferential recess is too long and the tool rigidity is reduced.
 実験結果をまとめると、次の通りである。外周凹部が2つの溝を連通すると、切りくず排出性が向上し、送り速度を向上できる。しかし、外周凹部の長さが長過ぎると、工具剛性が低下して、穴位置精度が悪化する。したがって、外周凹部の長さは、2つの溝を連通し、なおかつできる限り短い長さが好ましい。少なくとも1つの外周凹部の長さは、合流点5を越えない長さに形成されることが望ましい。なお、この穴位置精度の数値は、いわゆる、平均値+3σの数値である。プリント配線板の穴位置精度の判定は、一般に、ホールアナライザ(穴位置座標測定機)を用い、本来の指令された位置からどれだけずれているかを、的の中心座標から測定した穴の中心座標値の分布として表わされる。穴位置精度は、中心からの最大値で表す方法と、ばらつきの平均値に標準偏差σの3倍を足した値(平均値+3σ)で表す方法と、2通りの評価方法が一般的である。ただし、最大値で評価する方法は、例えば表面の傷などの突発的な問題の影響を受けることがある。ここでは、穴位置精度を、平均値+3σの数値で評価する方法を選択した。 The results of the experiment are summarized as follows. When the outer peripheral recess communicates with the two grooves, the chip discharging property is improved and the feeding speed can be improved. However, if the length of the outer peripheral recess is too long, the tool rigidity is lowered and the hole position accuracy is deteriorated. Therefore, the length of the outer peripheral recess is preferably as short as possible while communicating the two grooves. It is desirable that the length of at least one outer peripheral recess is formed so as not to exceed the junction 5. The numerical value of the hole position accuracy is a so-called average value + 3σ. The hole position accuracy of a printed wiring board is generally determined using a hole analyzer (hole position coordinate measuring machine) to determine how much the position is deviated from the original commanded position. Expressed as a distribution of values. For the hole position accuracy, there are two general methods: a method of representing the maximum value from the center, a method of representing the average value of dispersion plus a value obtained by adding three times the standard deviation σ (average value + 3σ), and two evaluation methods. . However, the method of evaluating with the maximum value may be affected by sudden problems such as surface scratches. Here, a method of evaluating the hole position accuracy with a numerical value of average value + 3σ was selected.
 本発明は、以上に説明した実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で、適宜、構成の変更、追加および削除が可能であることはいうまでもない。例えば、連通部は単一の外周凹部について複数設けてもよい。連通部は複数の外周凹部に設けてもよく、全ての外周凹部に設けてもよい。外周凹部は先端から末端まで連続して延在する必要はなく、断続的であってもよい。溝、外周凹部およびマージンはそれぞれ3つ以上設けてもよい。マージンは、いわゆるダブルマージンを構成するように、単一の外周凹部を挟む両側に延在していてもよく、この場合には連通部は、当該2つのマージンを横切るように形成するのが特に好適である。本発明は、プリント配線板用だけではなく、他の用途、例えば金属の穴あけ加工用のドリルにも適用可能である。 The present invention is not limited to the embodiment described above, and it goes without saying that the configuration can be changed, added and deleted as appropriate without departing from the gist of the invention. For example, a plurality of communication portions may be provided for a single outer peripheral recess. The communication portion may be provided in a plurality of outer peripheral recesses, or may be provided in all outer peripheral recesses. The outer circumferential recess does not need to extend continuously from the tip to the end, and may be intermittent. Three or more grooves, outer peripheral recesses, and margins may be provided. The margin may extend on both sides of a single outer peripheral recess so as to constitute a so-called double margin. In this case, the communication portion is particularly formed so as to cross the two margins. Is preferred. The present invention can be applied not only to a printed wiring board but also to other uses, for example, a drill for drilling metal.
1 小径ドリル
2 溝
2a 第1の溝
2b 第2の溝
3 先端
4 切れ刃
5 合流点
6 外周凹部
6a 第1の外周凹部
6b 第2の外周凹部
7 連通部
8 後端
9 シャンク
10 チゼルエッジ
11 マージン
12 アンダーカット部
DESCRIPTION OF SYMBOLS 1 Small diameter drill 2 Groove | channel 2a 1st groove | channel 2b 2nd groove | channel 3 Tip 4 Cutting edge 5 Joining point 6 Outer periphery recessed part 6a First outer periphery recessed part 6b Second outer periphery recessed part 7 Communication part 8 Rear end 9 Shank 10 Chisel edge 11 Margin 12 Undercut section

Claims (7)

  1.  少なくとも2つの溝(2)と、
     先端(3)に配置された切れ刃(4)と、
     小径ドリル(1)の外周面の一部を画定する少なくとも2つのマージン(11)と、
     前記マージン(11)に接して延在する少なくとも2つの外周凹部(6)と、
     を備え、前記少なくとも2つの溝(2)が合流点(5)を有する小径ドリル(1)であって、
     前記少なくとも2つの外周凹部(6)のうち、少なくとも1つの外周凹部(6)は、前記合流点(5)よりも先端(3)側に、前記少なくとも2つの溝(2)を互いに連通させるための連通部(7)を有する小径ドリル(1)。
    At least two grooves (2);
    A cutting edge (4) arranged at the tip (3);
    At least two margins (11) defining a part of the outer peripheral surface of the small diameter drill (1);
    At least two peripheral recesses (6) extending in contact with the margin (11);
    A small diameter drill (1) wherein the at least two grooves (2) have a confluence (5),
    Of the at least two outer peripheral recesses (6), at least one outer peripheral recess (6) communicates the at least two grooves (2) with each other closer to the tip (3) side than the junction (5). A small diameter drill (1) having a communicating part (7).
  2.  前記少なくとも2つの外周凹部(6)は、第1の外周凹部(6a)と第2の外周凹部(6b)とを含み、
     前記先端(3)から後端(8)へ向かう方向において、第2の外周凹部(6b)は第1の外周凹部(6a)よりも長く、
     前記第1の外周凹部(6a)は前記連通部(7)を有する請求項1に記載の小径ドリル(1)。
    The at least two outer peripheral recesses (6) include a first outer peripheral recess (6a) and a second outer peripheral recess (6b),
    In the direction from the front end (3) to the rear end (8), the second outer peripheral recess (6b) is longer than the first outer peripheral recess (6a),
    The small-diameter drill (1) according to claim 1, wherein the first outer peripheral recess (6a) has the communication portion (7).
  3.  前記第1の外周凹部(6a)は、前記合流点(5)を越えない長さを有する請求項2に記載の小径ドリル(1)。 The small diameter drill (1) according to claim 2, wherein the first outer peripheral recess (6a) has a length not exceeding the confluence (5).
  4.  前記先端(3)での直径に比して直径が小さいアンダーカット部(12)を有する請求項1から3のいずれかに記載の小径ドリル(1)。 The small diameter drill (1) according to any one of claims 1 to 3, further comprising an undercut portion (12) having a diameter smaller than a diameter at the tip (3).
  5.  前記少なくとも2つの前記外周凹部(6)の全ては、前記先端(3)から前記後端(8)へ向かう方向において、前記アンダーカット部(12)の先端(3)側の端部を越える長さを有する請求項4に記載の小径ドリル。 All of the at least two outer peripheral recesses (6) are longer than the end of the undercut portion (12) on the front end (3) side in the direction from the front end (3) to the rear end (8). The small diameter drill according to claim 4 having a thickness.
  6.  少なくとも2つの前記溝(2)のうち、第1の溝(2a)のねじれ角は、先端(3)付近が20°以上60°以下であり、
     第2の溝(2b)のねじれ角は、先端(3)付近が20°以上60°以下であり、途中から30°以上80°以下へ変化する請求項1から5のいずれかに記載の小径ドリル(1)。
    Of the at least two grooves (2), the twist angle of the first groove (2a) is 20 ° or more and 60 ° or less near the tip (3),
    The small diameter according to any one of claims 1 to 5, wherein the twist angle of the second groove (2b) is 20 ° or more and 60 ° or less near the tip (3), and changes from 30 ° to 80 ° from the middle. Drill (1).
  7.  少なくとも2つの前記溝(2)は、前記合流点(5)よりも後端(8)側の領域で、ねじれ角が20°以上80°以下である請求項6に記載の小径ドリル(1)。 The small-diameter drill (1) according to claim 6, wherein at least two of the grooves (2) have a twist angle of 20 ° or more and 80 ° or less in a region closer to the rear end (8) than the junction (5). .
PCT/JP2012/078063 2011-10-31 2012-10-30 Small-diameter drill WO2013065695A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280053771.6A CN103889623A (en) 2011-10-31 2012-10-30 Small-diameter drill

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-238861 2011-10-31
JP2011238861 2011-10-31

Publications (1)

Publication Number Publication Date
WO2013065695A1 true WO2013065695A1 (en) 2013-05-10

Family

ID=48192041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078063 WO2013065695A1 (en) 2011-10-31 2012-10-30 Small-diameter drill

Country Status (4)

Country Link
JP (1) JPWO2013065695A1 (en)
CN (1) CN103889623A (en)
TW (1) TW201338896A (en)
WO (1) WO2013065695A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029963A1 (en) * 2013-08-26 2015-03-05 京セラ株式会社 Drill and method for manufacturing cut product using same
JP2017505241A (en) * 2013-12-31 2017-02-16 深▲せん▼市金洲精工科技股▲ふん▼有限公司 Miniature drill and processing method thereof
US11123809B2 (en) 2018-06-14 2021-09-21 Black & Decker Inc. Drill bit
WO2022101060A1 (en) * 2020-11-10 2022-05-19 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Tool

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI554348B (en) 2014-04-16 2016-10-21 創國興業有限公司 Drill bit structure
CN114178591A (en) * 2021-12-16 2022-03-15 铣立(上海)切削技术有限公司 High-efficiency universal drill bit for finish machining

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318208A (en) * 1987-06-17 1988-12-27 Mitsubishi Metal Corp Twist drill
JP2007307642A (en) * 2006-05-17 2007-11-29 Sumitomo Electric Hardmetal Corp Drill
JP2009113177A (en) * 2007-11-08 2009-05-28 Union Tool Co Drilling tool
JP2010099790A (en) * 2008-10-24 2010-05-06 Union Tool Co Drilling tool
WO2011116540A1 (en) * 2010-03-22 2011-09-29 深圳市金洲精工科技股份有限公司 Miniature drill and method for processing the miniature drill

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5636948A (en) * 1995-05-04 1997-06-10 Fullerton Tool Company, Inc. Drill for synthetic fiber filled plastic and like materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318208A (en) * 1987-06-17 1988-12-27 Mitsubishi Metal Corp Twist drill
JP2007307642A (en) * 2006-05-17 2007-11-29 Sumitomo Electric Hardmetal Corp Drill
JP2009113177A (en) * 2007-11-08 2009-05-28 Union Tool Co Drilling tool
JP2010099790A (en) * 2008-10-24 2010-05-06 Union Tool Co Drilling tool
WO2011116540A1 (en) * 2010-03-22 2011-09-29 深圳市金洲精工科技股份有限公司 Miniature drill and method for processing the miniature drill

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029963A1 (en) * 2013-08-26 2015-03-05 京セラ株式会社 Drill and method for manufacturing cut product using same
CN105451918A (en) * 2013-08-26 2016-03-30 京瓷株式会社 Drill and method for manufacturing cut product using same
US20160207120A1 (en) * 2013-08-26 2016-07-21 Kyocera Corporation Drill and method for manufacturing cut product using same
JPWO2015029963A1 (en) * 2013-08-26 2017-03-02 京セラ株式会社 Drill and method of manufacturing cut product using the same
US9969012B2 (en) * 2013-08-26 2018-05-15 Kyocera Corporation Drill and method for manufacturing cut product using same
CN105451918B (en) * 2013-08-26 2018-08-14 京瓷株式会社 Drill bit and used the drill bit machined object manufacturing method
JP2017505241A (en) * 2013-12-31 2017-02-16 深▲せん▼市金洲精工科技股▲ふん▼有限公司 Miniature drill and processing method thereof
US11123809B2 (en) 2018-06-14 2021-09-21 Black & Decker Inc. Drill bit
WO2022101060A1 (en) * 2020-11-10 2022-05-19 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Tool

Also Published As

Publication number Publication date
TW201338896A (en) 2013-10-01
CN103889623A (en) 2014-06-25
JPWO2013065695A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
WO2013065695A1 (en) Small-diameter drill
JP6086173B2 (en) drill
KR102548552B1 (en) turning insert
EP2444185A1 (en) Drill with coolant holes
JP6108264B2 (en) 2-flute double margin drill
JP2012161912A (en) Drill
US11311947B2 (en) Rotary tool
JP7141385B2 (en) stepped drill
US20120087753A1 (en) Drill and cutting method using same
JP2006239829A (en) Drill
WO2012070640A1 (en) Small-diameter drill
JP4326301B2 (en) End mill
JP4807521B2 (en) Twist drill
JP2006231430A (en) Centering drill and machining method using the same
CN110449638B (en) Multi-edge twist drill
JP2002205212A (en) Drill
JP4527103B2 (en) Drill
JP6057010B1 (en) Drilling tool
JP6447566B2 (en) Drilling tool
CN212793208U (en) Rapid forming center drill bit
WO2023210572A1 (en) Drill
CN220426925U (en) Countersink and cutter blade thereof
JP2014091178A (en) Cutting insert and cutting tool as well as manufacturing method of machined product using the same
KR20150121645A (en) A Asymmetrical Drill
CN218656969U (en) Drilling tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541790

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12845980

Country of ref document: EP

Kind code of ref document: A1