WO2013065469A1 - Circuitry stabilizing system and circuitry stabilizing method - Google Patents

Circuitry stabilizing system and circuitry stabilizing method Download PDF

Info

Publication number
WO2013065469A1
WO2013065469A1 PCT/JP2012/076378 JP2012076378W WO2013065469A1 WO 2013065469 A1 WO2013065469 A1 WO 2013065469A1 JP 2012076378 W JP2012076378 W JP 2012076378W WO 2013065469 A1 WO2013065469 A1 WO 2013065469A1
Authority
WO
WIPO (PCT)
Prior art keywords
facility
stabilization
malfunctioning
information
power
Prior art date
Application number
PCT/JP2012/076378
Other languages
French (fr)
Japanese (ja)
Inventor
英佑 黒田
佐藤 康生
渡辺 雅浩
大一郎 河原
弘一 原
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Publication of WO2013065469A1 publication Critical patent/WO2013065469A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00036Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers
    • H02J13/0004Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers involved in a protection system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • H02J3/0012Contingency detection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/14The load or loads being home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/221General power management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances

Definitions

  • the present invention relates to a system stabilization system and a system stabilization method.
  • Stable power supply is required for power systems for supplying power generated by power plants to various consumers such as general households and commercial facilities. Therefore, in the system that controls the power system, a list of assumed accidents and system stabilization control methods that stabilize the assumed accidents is created in advance, and when an assumed accident actually occurs, The system stabilization control prepared in advance is executed. Therefore, even when an assumed accident occurs, the system can be quickly stabilized and power supply can be continued.
  • the power system is divided into a plurality of areas in advance, and terminal stations are arranged in the respective areas.
  • Each terminal station monitors whether an accident has occurred based on system data such as voltage and frequency, and if an accident has been detected, performs an operation to stabilize the system and outputs a control command (Patent Document) 1).
  • the power system can be stabilized quickly by executing the system stabilization control.
  • the system stabilization control prepared in advance.
  • a failure may occur for some reason in other equipment belonging to the same system as the work target equipment
  • the prepared system stabilization control may not be able to cope with the failure. In other words, in a situation where the resistance to an assumed accident is reduced due to a disaster or work, when an assumed accident occurs, it may be difficult to respond to the assumed accident.
  • a system configuration capable of handling an assumed accident is called a healthy system.
  • a system configuration that cannot cope with an assumed accident is referred to as an unhealthy system in this specification.
  • the system stabilization system provides information for acquiring observation information in the power system, a plurality of predetermined accident lists and disaster information determined in advance as predetermined information related to the power system.
  • a malfunctioning facility determination unit for determining a malfunctioning facility that is predicted not to operate normally
  • a stability determination unit that determines whether or not a predetermined stabilization measure prepared in advance for stabilizing the system is involved, and if it is determined that a malfunctioning facility is related to a stabilization measure
  • a power system based on a determination result by a divided region determination unit and a divided region determination unit that determines a divided region for dividing a system into an unsound system including a malfunctioning facility and a healthy system that does not include a malfunctioning facility
  • a control command transmission unit for transmitting a predetermined device contained in the power system control instructions for dividing into a sound system and unhealthy lineages.
  • the stability determination unit can determine whether the malfunctioning facility is related to a predetermined stabilization measure and is stable with respect to a preset accident.
  • the control command transmission unit further includes a determination result presentation unit for presenting the determination result by the divided region determination unit to the user, and after confirming the user's selection with respect to the determination result presented by the determination result presentation unit, Can also be transmitted to a predetermined device.
  • the present invention stops the influence of the unforeseen accident in the unhealthy system, and the failure in the unhealthy system spreads to other healthy systems, resulting in a wide range of failures. Can be prevented in advance.
  • An example of disaster prediction information is shown. It is the schematic of a system
  • FIG. 1 is an explanatory diagram showing an overall outline of the present embodiment.
  • FIG. 1 is prepared to help understanding and implementation of the present invention, and the scope of the present invention is not limited to the configuration example shown in FIG.
  • the grid stabilization system 1 is a system for stabilizing the power grid 2.
  • the power system 2 includes a plurality of facilities N1 to N4 such as a transformer, a track, a generator, and a customer facility. Further, as described in the embodiments described later, the power system 2 includes a plurality of sensor devices 170, a plurality of switches 180, a plurality of communication devices 190, and the like.
  • the system stabilization system 1 can be configured from a single computer, or can be configured by linking a plurality of computers.
  • the system stabilization system 1 has, as its functions, for example, an information acquisition unit 1A, a malfunctioning equipment determination unit 1B, a stability determination unit 1C, a divided region determination unit 1D, a determination result presentation unit 1E, and a control command transmission. Part 1F is provided.
  • the information acquisition unit 1A is a function for acquiring predetermined information related to the power system 2.
  • the predetermined information includes sensor information (for example, track power flow data) from the sensor device 170, information indicating the configuration change of the facility, and information for predicting the occurrence of a disaster, as will be apparent from examples described later.
  • the information acquisition unit 1A may acquire all of these pieces of information as predetermined information, or may acquire at least one of the pieces of information.
  • the malfunctioning facility determination unit 1B is a function that is predicted to possibly not operate normally among the plurality of facilities N1 to N4 included in the power system 2 based on the predetermined information acquired by the information acquisition unit 1A. This is a function for determining the defective facility N2. In FIG. 1, for convenience of explanation, it is assumed that the facility N2 is a malfunctioning facility.
  • the other facilities N1 to N3 are sound facilities that have no problem.
  • a malfunctioning facility is a facility that has been determined not to operate normally or to have a higher possibility of normal operation than a predetermined value due to a disaster or maintenance inspection. For example, if a signal from a sensor device installed near a certain facility is interrupted or shows an abnormal value, that facility may be affected or possibly affected. Can think. Even if the facility is actually operating normally, if the possibility that the facility will not operate normally exceeds a certain value, it is determined as a malfunctioning facility. This is to maintain the ability to deal with contingencies that may occur at the next moment.
  • the stability determination unit 1 ⁇ / b> C is a function that determines whether the malfunctioning facility N ⁇ b> 2 is related to a predetermined stabilization measure prepared in advance to stabilize the power system 2.
  • the stabilization measure is a method for stabilizing the power system based on a predetermined safety standard such as the so-called “N-1 standard”.
  • the N-1 standard is a safety standard in which even if one of the N facilities breaks down, the power supply is maintained by the remaining N-1 facilities. Measures for stabilizing the power system 2 are prepared for each of the assumed accidents. Equipment that can be used for stabilization measures is referred to herein as stabilization equipment.
  • the stability determination unit 1C is a function for determining whether a malfunctioning facility corresponds to a stabilization facility. When it is determined that the malfunctioning facility is the stabilization facility, the system configuration including the malfunctioning facility can be considered to have low stability (unstable). This is because, when a certain accident occurs, there is a possibility that the stabilization measure corresponding to the assumption accident cannot be executed.
  • the division area determination unit 1D is a function for dividing the power system 2 into a plurality of areas (system configurations).
  • the divided area determination unit 1D includes the power system 2 including the unhealthy system including the malfunctioning facility and the malfunctioning facility. The division area for dividing into no healthy system is determined.
  • the cut C1 and the cut C2 shown on the upper side of FIG. 1 indicate boundary lines for dividing into an unhealthy area that is one divided area and a healthy area that is the other divided area.
  • the unhealthy system includes the malfunctioning facility N2 and the normal facility N3, and the healthy system includes the other normal facilities N1 and N4.
  • the normal facility N3 is an important facility such as a hospital or a fire department. Therefore, it is not preferable to include the normal equipment N3 in the unhealthy system. This is because when an assumed accident occurs, normal supply of power may not be possible in an unhealthy system. Therefore, the divided region determination unit 1D can separate the unhealthy system and the healthy system so that the important facility N3 is not included in the unhealthy system. That is, in the present embodiment, as a constraint condition, “pre-set important equipment N3 belongs to a healthy system” is set.
  • the determination result presentation unit 1E is a function for presenting the determination result by the divided region determination unit 1D to the user.
  • the user is, for example, a system operator who operates the power system 2.
  • the determination result presented to the user includes the configuration after the division of the power system 2 and the like.
  • the determination result presentation unit 1E presents the determination result to the user by displaying the determination result on the display device 11 (described later in FIG. 2) or the like.
  • the user can confirm the determination result and give a predetermined instruction to the system stabilization system 1.
  • the predetermined instruction includes, for example, selection for dividing the power system, correction instruction for dividing the power system, approval for dividing the power system, and the like.
  • the control command transmission unit 1F creates a control command for dividing the power system 2 into a healthy system and an unhealthy system based on the determination result by the divided region determination unit 1D, and the control command is included in the power system 2 This is a function for transmitting to a predetermined device.
  • a predetermined device is a switch 180 (described later in FIG. 2).
  • the unhealthy system can be automatically disconnected from the power system 2 by remotely operating the predetermined switch 180.
  • predetermined information related to the power system 2 is collected, it is determined whether there is a malfunctioning facility based on the information, and stability is determined when a malfunctioning facility is found.
  • the predetermined information can include observation information in the power system, a plurality of presumed accident lists and disaster information determined in advance. Furthermore, in this embodiment, when it determines with it being a malfunctioning installation, before the assumption accident relevant to the malfunctioning installation generate
  • a control command is transmitted to the predetermined
  • the system configuration (unhealthy system) whose feasibility of implementing a predetermined stabilization measure has been reduced due to a disaster or maintenance work, etc. is separated from other healthy system configurations in advance, so that Sex can be maintained.
  • this embodiment will be described in more detail.
  • the system stabilization system 10 corresponds to the system stabilization system 1 of FIG. 1
  • the power system 100 corresponds to the power system 2 of FIG. 1.
  • steps S1 and S2 correspond to the information acquisition unit 1A of FIG.
  • Step S3 corresponds to the malfunctioning facility determination unit 1B in FIG. 1
  • step S5 corresponds to the stability determination unit 1C in FIG. 1
  • steps S6 and S7 correspond to the divided region determination unit 1D in FIG.
  • step S8 corresponds to the determination result presentation unit 1E in FIG. 1
  • step S9 corresponds to the control command transmission unit 1F in FIG.
  • the power system 100 and the system stabilization system 10 are communicably connected via a communication network 300.
  • the configuration of the power system 100 will be described.
  • the power system 100 includes a plurality of divided systems 110 and 111. In FIG. 2, two divided systems 110 and 111 are shown, but the power system 100 may have three or more divided systems.
  • the divided systems 110 and 111 are connected via a connection configuration 112.
  • Each of the divided systems 100 and 111 includes, for example, a node (bus) 150, a power source 120, a load 140, a transformer 130, a line 160, a sensor 170, a switch 180, and a communication device 190. Yes.
  • FIG. 2 The configuration shown in FIG. 2 is an example for explanation, and actually, a plurality of power supplies 120, loads 140, and the like can be provided in each of the divided systems 110 and 111. Further, it is only necessary that at least one sensor 170 and one switch 180 are provided on the line 160.
  • the power source 120 is configured, for example, as a solar power generation device, a solar thermal power generation device, a geothermal power generation device, a wind power generation device, a thermal power plant, a hydropower plant, etc., and supplies power to the node 150.
  • the transformer 130 is provided between the node 150 and the node 150 and adjusts the voltage and the like.
  • the load 140 using the electric power supplied from the node 150 is, for example, each consumer such as a general household, a commercial facility, a factory, a hospital, a police station, a fire department, a public office, and the like.
  • Line 160 connects the nodes.
  • the sensor 170 as the “sensor device” measures the value of the current flowing through the line 160, the voltage value, and the like, and transmits these measured values to the system stabilization system 10 as sensor information.
  • the switch 180 as a “predetermined device” connects and disconnects the nodes 150 by opening and closing the line 160.
  • the communication device 190 is provided between the sensor 170 and the switch 180 and the communication network 300.
  • the sensor 170 and the switch 180 are connected to the communication network 300 via the communication device 190, and communicate with the system stabilization system 10 via the communication network 300.
  • connection configuration 112 electrically connects the divided systems 110 and 111 through one or a plurality of paths.
  • Each path can include, for example, a line 160, a sensor 170, a switch 180, and a communication device 190.
  • the node 150 of the one divided system 110 and the node 150 of the other divided system 111 are connected via one or more paths of the connection configuration 112.
  • the communication device 190 in the divided system (110, 111) is connected to the communication interface (I / F in the figure) 15 of the system stabilization system 10 via the communication network 300.
  • sensor information 310A and control information 310B which will be described later, are transmitted and received between the sensor 170 and switch 180 in each of the divided systems 110 and 111 and the system stabilization system 10.
  • FIG. 4 shows a schematic configuration example of sensor information 310 ⁇ / b> A and control information 310 ⁇ / b> B transmitted and received between the sensor 170 and switch 180 and the system stabilization system 10.
  • the sensor information 310 ⁇ / b> A is transmitted from the sensor 170 of the power system 100 to the system stabilization system 10.
  • the sensor information 310A includes, for example, a track current P 311, a unique number (ID in the figure) 312 for identifying the sensor 170, and a time stamp 313.
  • the track current P included in the sensor information 310 ⁇ / b> A is a current for each time section flowing through the track 160 connecting the nodes 150.
  • the track current is measured by the sensor 170.
  • the system stabilization system 10 transmits the control information 310 ⁇ / b> B toward the switch 180 on the line 160.
  • the control information 310B includes, for example, a control command 314, unique information 315 for identifying the switch 180, and a time stamp 316.
  • a unique number is set in advance in the switch 180, and the system stabilization system 10 knows in advance the unique number of each switch 180 on each line 160.
  • the sensors 170 and the system stabilization system 10 are connected to a time server (not shown) via the communication network 300. Therefore, the internal time of each sensor 170 and the time in the system stabilization system 10 are synchronized.
  • the system stabilization system 10 includes, for example, a display device 11, an input device 12, a microprocessor 13, a memory 14, a communication interface 15, various databases (an equipment database 21, a system database 22, a divided area database 23, a divided area).
  • a result database 24 and a program database 25) are provided, which are connected to the bus line 41.
  • the display device 11 is configured as a display device, for example. Instead of the display device or together with the display device, a configuration using a printer device, an audio output device, or the like may be used.
  • the input device 12 may be configured to include at least one of a keyboard switch, a pointing device such as a mouse, a touch panel, and a voice instruction device.
  • the microprocessor (CPU: Central Processing Unit) 13 reads a predetermined computer program from the program database 25 and executes it.
  • the microprocessor 13 may be configured as one or a plurality of semiconductor chips, or may be configured as a computer device such as a calculation server.
  • the memory 14 is configured as a RAM (Random Access Memory), for example, and stores a computer program read from the program database 25, and stores calculation result data and image data necessary for each process.
  • the screen data stored in the memory 14 is sent to the display device 11 and displayed. An example of the displayed screen will be described later.
  • the communication interface 15 includes a circuit and a communication protocol for connecting to the communication network 300.
  • the system stabilization system 10 can include, for example, an equipment database 21, a system database 22, a divided region database 23, a division result database 24, a program database 25, and the like. Details of these databases will be described later.
  • the contents stored in the program database 25 will be described with reference to FIG.
  • the program database 25 stores, for example, a malfunctioning facility determination program CP11, an assumed accident stability determination program CP12, and a divided area calculation program CP13.
  • the microprocessor 13 executes each computer program to find a malfunctioning facility, evaluate the stability of the malfunctioning facility, analyze an optimal divided area, and present the analysis result to the user. To do.
  • the system stabilization system 10 is provided with four databases (an equipment database 21, a system database 22, a divided region database 23, and a division result database 24).
  • an equipment database 21 for example, a system configuration (not shown), an assumed accident countermeasure list 21T1 (see FIG. 22), and a restricted equipment list 21T2 (see FIG. 26) are stored as equipment data D1.
  • the system configuration, the assumed accident countermeasure list 21T1 and the restricted equipment list 21T2 are transmitted from the system management server 320 to the system stabilization system 10 via the communication network 300.
  • the system configuration is information indicating the configuration of the power system 100.
  • the arrangement and connection configuration of the power source 120, the transformer 130, the load 140, the node 150, the line 160, the sensor 170, the switch 180, and the communication device 190 are stored. .
  • the anti-accident countermeasure list 21T1 stores stabilization countermeasures for the probable accident.
  • the operator of the electric power system 100 sets in advance an accident that may occur and measures to maintain a stable power supply when the accident occurs.
  • the stabilization measure is control that disconnects equipment in which an accident such as a ground fault or a short circuit has occurred, or disconnects the power supply 120 or the load 140 from the node 150. That is, the stabilization measure is a series of control processes for responding to an accident using the equipment included in the power system 100. Equipment used for stabilization measures is called stabilization equipment.
  • the restricted equipment list 21T2 for example, a list of important loads such as hospitals, communication base equipment, fire departments, city halls, substations, and / or hubs on power transmission is stored.
  • sensor information tables 22T1 and 22T1A (refer to FIG. 8; unless specifically distinguished between the tables 22T1 and 22T1A, they are referred to as the sensor information table 22T1) and a line capacity table 22T2 ( 13) and facility configuration change information 22T3 (see FIG. 15) are stored.
  • the sensor information 310A is transmitted from the sensor 170 to the system stabilization system 10 via the communication device 190 and the communication network 300 as described in FIG.
  • the sensor information table 22T1 stores the received sensor information 310A.
  • the line capacity table 22T2 and the equipment configuration change information 22T3 are transmitted from the system management server 320 to the system stabilization system 10 via the communication network 300.
  • the line capacity information 22T2 stores capacity information for each line 160.
  • the equipment configuration change information 22T3 stores information related to a change in the equipment configuration of the power system 100.
  • the system operator arranges and connects the power supply 120, transformer 130, load 140, node 150, line 160, sensor 170, switch 180, and communication device 190 in the power system 100 via the system management server 320. Can be set for each time section.
  • the divided area database 23 includes, for example, a malfunction facility list (not shown), an assumed accident stability determination list 23T1 (see FIG. 23), a divided area list (not shown), and a switch as the divided area data D3.
  • An action list (not shown) can be stored.
  • the malfunction facility list is created by the malfunction facility determination program CP11.
  • the malfunctioning facility determination program CP11 determines whether or not there is a malfunctioning facility based on the system data, and registers the facility determined to be a malfunctioning facility in the malfunctioning facility list.
  • the divided area list is created by the divided area calculation program CP13.
  • the divided area calculation program CP13 calculates all the cuts to be divided based on the system configuration, the malfunctioning facility list, and the assumed accident stability determination list 23T1, and registers the calculated cuts in the divided area list.
  • the assumed accident stability determination list 23T1 is created by the assumed accident stability determination program CP12.
  • the assumed accident stability determination list 23T1 stores whether or not the accident is stable when an assumed accident occurs in an electric power system (unhealthy system) including a malfunctioning facility. The system operator can determine what types of accidents can occur.
  • the switch operation list stores the operations of the switch 180 for dividing the power system 100. That is, information indicating how to control the switching state of which switch 180 in order to divide the power system 100 along the calculated cut is stored in the switch operation list.
  • the division result database 24 as the division result database 24, for example, data indicating the supply and demand balance of each divided area (see FIG. 31) and data indicating changes in the assumed accident countermeasure list before and after the division (see FIG. 32) Is remembered.
  • the supply and demand balance of the divided area is obtained as a calculation result of the divided area calculation program CP13.
  • the data indicating the balance between supply and demand in each divided area stores data indicating the balance change between the power generation amount and the load amount in each divided area. For example, when the power generation amount and the load amount are unbalanced in a divided area, the frequency varies in the divided area. Therefore, the data indicating the supply and demand balance of the divided areas includes data indicating the time change of the frequency.
  • the list of anticipated accident countermeasures stores a list of stabilization measures for the presumed accident before the split and a list of stabilization measures for the postulated accident.
  • the flowchart in FIG. 5 shows the entire system stabilization process performed by the system stabilization system 10.
  • the system stabilization system 10 receives and stores the facility data D1 (S1), and then receives and stores the system data D2 (S2).
  • the system stabilization system 10 determines a malfunctioning facility by processing the system data D2 by the malfunctioning facility determination program CP11 (S3). Further, the system stabilization system 10 creates and stores a malfunctioning equipment list, and displays the malfunctioning equipment list on the display device 11 (S3).
  • the system stabilization system 10 repeatedly performs the following step S5 and step S6 for all assumed accidents (S4).
  • the system stabilization system 10 determines whether the malfunctioning facility is stable against the assumed accident by the assumed accident stability determination program CP12 (S5).
  • a malfunctioning facility is stable with respect to an assumed accident is a case where a stable power supply can be maintained even if an assumption accident related to the malfunctioning facility occurs.
  • the malfunctioning facility is unstable when there is a possibility that stable power supply cannot be performed when an assumed accident related to the malfunctioning facility occurs.
  • the system stabilization system 10 calculates and stores the divided area by the divided area calculation program CP13 (S6).
  • the system stabilization system 10 calculates the optimum divided area by the divided area calculation program CP13 and stores the calculation result (S7).
  • the system stabilization system 10 creates a screen (to be described later with reference to FIG. 30) relating to the optimum divided area and presents it to the system operator.
  • the system stabilization system 10 After confirming the approval, selection or instruction of the system operator, the system stabilization system 10 creates a control command (control information 310B) for generating an optimal divided area and transmits it to a predetermined switch 180. (S8).
  • the predetermined switch 180 is a switch necessary for disconnecting the unhealthy system from the power system 100 along the selected cut.
  • step S1 the equipment data D1 is acquired and stored in the equipment database 21.
  • the system stabilization system 10 receives the system configuration of the power system 100, the assumed accident countermeasure list (FIG. 22), and the restricted equipment list (FIG. 26) from, for example, the system management server 320 and writes them to the memory 14, and the equipment database 21 To remember.
  • FIG. 22 shows an example of the assumed accident countermeasure list 21T1.
  • This list 21T1 manages safety measures for responding to an assumed accident.
  • the assumed accident countermeasure list 21T1 manages, for example, an assumed accident number 21T1C1, an assumed accident content 21T1C2, and a stabilization countermeasure content 21T1C3.
  • the content of the assumed accident 21T1C2 stores the place where the assumed accident occurred and the aspect of the assumed accident.
  • the content 21T1C3 of the stabilization measure stores information for specifying the stabilization facility for coping with the assumed accident and the operation of the stabilization facility.
  • 3 ⁇ 4LG three-phase four-wire ground fault
  • the line 160 can be stabilized by opening and removing.
  • FIG. 26 shows an example of the restricted equipment list 21T2.
  • the constrained equipment list 21T2 manages constraining conditions that are taken into account when determining the divided areas. For example, the node 150 having an important facility needs to be included in a healthy system.
  • the restricted equipment list 21T2 manages, for example, the equipment number 21T2C1, the restricted equipment name 21T2C2, the node 21T2C3 to which the restricted equipment is connected, and the restricted equipment position (installation location) 21T2C4. .
  • Constraint equipment is important equipment that should continue to supply power even in the event of a disaster or failure, such as a hospital, fire department, substation, or communication base station.
  • step S2 system data D2 is acquired.
  • the system stabilization system 10 receives sensor information 22T1 (FIGS. 8 and 11), facility configuration change information 22T3 (FIG. 15), and line capacity information 22T2 (FIG. 13) from each sensor 190 and the system management server 320. And stored in the system database 22.
  • FIG. 8 shows an example of the sensor information table 22T1.
  • the sensor information table 22T1 manages the sensor information collected from the sensor 170.
  • the sensor information table 22T1 manages, for example, the time 22T1C1, the line power flow P 22T1C2, the data reception status 22T1C3, and the information 22T1C4 related to the loss.
  • the line power flow P 22T1C2 manages the identification number for identifying the line, the value of the power flow at the start node of the line, and the value of the power flow at the terminal node of the line in association with each other.
  • the data reception status 22T1C3 the state of the line power flow P received from the sensor 170 (whether or not it has been received) is recorded.
  • the missing information 22T1C4 a determination value indicating whether or not equipment loss has occurred is recorded based on the value of the reception status 22T1C3.
  • FIG. 11 shows another example 22T1A of the sensor information table.
  • the sensor information table 22T1A includes abnormality information 22T1C5 indicating abnormality of the sensor information, instead of the missing information 22T1C4 of the table 22T1 illustrated in FIG.
  • the data reception status 22T1C3 stores a value indicating whether or not an abnormality has been found in the value of the line power flow P as the state of the line power flow P received from the sensor 170.
  • the abnormality information 22T1C5 a determination value indicating whether an abnormality has occurred in the facility is recorded based on the value of the reception state 22T1C3.
  • the sensor information table 22T1 in FIG. 8 is used to determine that equipment has been lost when sensor information has not been continuously acquired for a predetermined time or more.
  • the sensor information table 22T1A in FIG. 11 is used to determine that an abnormality has occurred in the facility when an abnormality has occurred in the sensor information for a predetermined time or longer.
  • a case where both the table 22T1 shown in FIG. 8 and the table 22T1A shown in FIG. 11 are provided will be described, but a configuration including only one of them may be used.
  • FIG. 15 shows an example of the equipment configuration change information 22T3.
  • the facility configuration change information 22T3 manages the state of each facility in the power system 100.
  • the equipment configuration change information 22T3 manages the equipment state (22T3C2) every predetermined time (22T3C1). In the example shown in FIG. 15, it is recorded in the first row that the line 160 is stopped from 14:30:30.
  • the malfunctioning facility determination program CP11 determines whether or not there is a malfunctioning facility, stores the result, and displays the result. There are a plurality of methods for determining a malfunctioning facility as described below. Therefore, with reference to FIG. 6, FIG. 10, FIG. 14, and FIG. A configuration including all of the following determination methods, or a configuration including any one or more determination methods among them may be employed. Any configuration is included in the scope of the present invention.
  • the first malfunctioning equipment determination method determines the presence of a malfunctioning facility based on the lack of sensor information.
  • the malfunctioning facility determination program CP11 receives sensor information (line power flow P) from the sensor 170 and stores it in the system database 22 (S10).
  • the determination program CP11 determines whether data loss continues for a predetermined time or more (S20). When the data loss continues (S20: YES), the determination program CP11 specifies and stores the position of the sensor 170 where the data loss occurs (S30). The determination program CP11 specifies equipment near the sensor 170 in which data loss occurs (S40), determines that the specified equipment is a malfunctioning equipment, and stores it in the divided region database 23 (S50). ). Information regarding the malfunctioning equipment stored in step S50 can also be output on the screen.
  • a relay device 340 may be used as shown in FIG.
  • the relay device 340 can receive sensor information from the plurality of sensors 170, aggregate the sensor information, and transmit the collected sensor information to the system stabilization system 10.
  • step S20 for example, if sensor information cannot be received for 5 minutes or more in a measurement period of 30 seconds, it is determined that data loss has occurred.
  • the reason why the determination threshold (predetermined time) is set to 5 minutes is that if the predetermined time is set short, for example, 30 seconds, a normal communication error may be erroneously determined as data loss.
  • the determination program CP11 determines that a malfunctioning facility has occurred.
  • FIG. 9 shows an example where a data loss 200 occurs on the line 160.
  • FIG. 9 shows that the sensor information from the sensor 170 provided on one of the plurality of lines 160 and 161 connecting the first divided system 110 and the second divided system 111 exceeds a predetermined time. The state which does not reach the system stabilization system 10 is shown. The position 200 of the sensor 170 that cannot receive the sensor information (data of the line power flow P) is indicated by X in FIG.
  • the third divided system 113 is connected to the second divided system 111 via the second connection configuration 114. Further, the configuration of FIG. 9 will be described. From the node 152 of the second divided system 111 to the node 150 of the first divided system 110, the power of the line tidal current P0 flows through the line 160. From the node 153 of the second divided system 111 toward the node 151 of the first divided system 110, the power of the line power flow P1 flows through the line 161. From the node 156 of the third divided system 113 to the node 154 of the second divided system 111, the power of the line power flow P2 flows through the line 162. From the node 155 of the second divided system 111 to the node 157 of the third divided system 113, the power of the line power P3 flows through the line 163.
  • the second malfunctioning equipment determination method determines that a malfunctioning facility has occurred when the sensor information from the sensor 170 indicates an abnormal value for a predetermined time or more.
  • the determination program CP11 receives the sensor information (track current P) from the sensor 170, stores it in the system database 22 (S11), and determines whether the abnormal value continues in the sensor information data (S21).
  • the determination program CP11 specifies and stores the position of the sensor 170 outputting the abnormal value (S31).
  • the determination program CP11 specifies equipment in the vicinity of the sensor 170 indicating an abnormal value (S41), determines that the equipment is a malfunctioning equipment, and stores it in the divided region database 23 (S51). As described with reference to FIG. 6, information on equipment determined to be malfunctioning equipment can be output to the screen and presented to the user.
  • Whether or not the value of the line power flow P included in the sensor information is abnormal is determined by comparing with the value of the line capacity table 22T2 shown in FIG. When the value of the line power flow P included in the sensor information exceeds the value of the line capacity defined in the table 22T2, it is determined that the data is an abnormal value.
  • the predetermined time for determining whether or not the data abnormal value continues is set to a value of about 2 minutes when the measurement cycle is 30 seconds, for example. For example, it is considered that it is not necessary to execute control for stabilizing the power system when abnormality occurs in the data for a short time of about 30 seconds.
  • FIG. 12 shows an example in which an abnormal data value occurs on the line 160 due to a certain equipment 210.
  • the third malfunctioning equipment determination method will be described.
  • the equipment configuration is changed due to maintenance work or the like, the equipment to be changed is determined to be a malfunctioning equipment.
  • the determination program CP11 receives the equipment configuration change information from the system management server 320 and stores it in the system database 22 (S12).
  • the determination program CP11 identifies the facility to be changed based on the facility configuration change information (S22), determines that the facility to be changed is a malfunctioning facility, and stores it in the divided region database 23 (S32). Information regarding equipment determined to be malfunctioning equipment can also be presented to the user via a screen.
  • FIG. 16 shows an example when a stop 201 occurs on the line 160.
  • a fourth malfunctioning equipment determination method will be described.
  • a malfunctioning facility is determined based on information for predicting the occurrence of a disaster.
  • the system stabilization system 10 can receive disaster prediction information from the disaster prediction server 330 via the communication network 300.
  • the disaster prediction server 330 predicts when and where a disaster such as a typhoon or an earthquake occurs, and transmits the prediction result to the system stabilization system 10.
  • the determination program CP11 receives the disaster prediction information from the disaster prediction server 330 and stores it in the system database 22 (S13). The determination program CP11 determines whether the facilities of the power system 100 exist within the geographical range where the occurrence of a disaster is predicted (S23). The determination program CP11 identifies the facility in the area where the occurrence of the disaster is predicted, determines that the facility is a malfunctioning facility, and stores it in the divided region database 23 (S33). Similarly to the above, information regarding equipment determined to be malfunctioning equipment can be output to the screen.
  • FIG. 19 shows an example of the disaster prediction information 330T1.
  • the disaster prediction information 330T1 manages, for example, information 330T1C1 related to facilities that may be damaged and information 330T1C2 related to disasters that are predicted to occur.
  • the information 330T1C1 related to the facilities that may be damaged includes, for example, information for identifying the track, information for identifying the start and end nodes of the track, and location information for the facility.
  • the disaster-related information 330T1C2 can include, for example, location information of an area where a disaster is predicted and an occurrence probability within a predetermined time from the current time.
  • the information 330T1C2 may include the type of disaster and the degree of damage caused by the disaster. In FIG. 19, as shown in the first row, it is recorded that a disaster occurs with a probability of 50% within a predetermined time (for example, 1 hour) from now on the line 160.
  • FIG. 20 is an example in the case where a disaster is predicted near the track 160.
  • a circle indicated by a dotted line indicates an area 202 where a disaster is predicted to occur.
  • the assumed accident stability determination program CP12 determines the stability (whether stable) for each assumed accident described in the assumed accident countermeasure list 21T1 of the equipment database 21 for the malfunctioning equipment detected by the malfunctioning equipment judgment program CP11. To do.
  • the assumed accident stability determination program CP12 determines whether the assumed accident countermeasures described in the assumed accident countermeasure list 21T1 are stable for the malfunctioning equipment (S5). If stable, the process returns to step S4. If unstable, the process proceeds to step S6.
  • step S5 in FIG. 5 is a flowchart of processing for determining stability (whether stable or not) against an assumed accident.
  • the assumed accident stability determination program CP12 reads the stabilization equipment for dealing with the assumed accident described in the assumed accident countermeasure list 21T1 (S100).
  • the assumed accident stability determination program CP12 compares the stabilization equipment read in step S100 with the malfunctioning equipment determined in step S3 (S200).
  • the assumed accident stability determination program CP12 determines whether or not the accident is stable based on the comparison result, and stores the determination result (S300).
  • FIG. 23 is an example of an assumed accident stability determination list 23T1 that stores a result of determining whether or not the accident is stable.
  • the assumed accident stability determination list 23T1 includes, for example, an assumed accident number 23T1C1, an assumed accident content 23T1C2, a stabilization measure content 23T1C3, information 23T1C4 for identifying a malfunctioning facility, a malfunctioning facility and a stabilization facility, And a match flag 23T1C5 for judging whether or not match.
  • the content of the assumed accident 23T1C2 stores the location of the assumed accident and the aspect (situation) of the assumed accident.
  • Stabilization countermeasure content 21T1C stores information for identifying a stabilization facility to be used for stabilizing a system in response to an assumed accident, and the operation of the stabilization facility.
  • the malfunctioning equipment matches any stabilization equipment, the malfunctioning equipment is determined to be unstable with respect to the assumed accident. On the other hand, when the malfunctioning facility does not match any of the stabilization facilities, it is determined that the malfunctioning facility is stable against the assumed accident.
  • step S6 The divided area calculation program CP13 calculates and stores the divided areas. Details of step S6 will be described with reference to the flowchart of FIG.
  • the divided area calculation program CP13 reads malfunctioning equipment, normal equipment, and line power flow P from the memory 14 (S200), and detects all cuts that can divide the malfunctioning equipment and normal equipment (S210).
  • a cut is a boundary between regions for dividing a system configuration including a malfunctioning facility and a system configuration including only normal facilities. That is, in step S210, all the division patterns for separating the unhealthy system from the power system are extracted.
  • the divided area calculation program CP13 extracts a cut including the restricted equipment from the detected cuts (S220).
  • the divided area calculation program CP13 calculates the fence current ( ⁇ P) for each cut, determines the cut that minimizes the fence current, and stores it in the memory 14 (S230).
  • Three lines 160, 161, 162 are provided between the divided system 110 and the divided system 111.
  • the line flow of the line 160 is P1
  • the line flow of the line 161 is P2
  • the line flow of the line 162 is P3.
  • the direction of the tidal current for example, the direction from the divided system 110 to the divided system 111 can be positive, and the reverse tidal current can be treated as negative.
  • the line tide P1 can be defined as a positive tide
  • the line tide P2 and the line tide P3 can each be defined as a negative tide.
  • the fence power flow ⁇ P is obtained as the sum of P1, ( ⁇ P2), and ( ⁇ P3).
  • FIG. 28 another example of calculating the fence tide will be described.
  • FIG. 29 a description will be given of how to extract a cut for dividing an unhealthy system including a malfunctioning facility from an electric power system.
  • the node N2 is a malfunctioning facility
  • the node N3 is a restriction facility
  • the nodes N1 and N4 are normal facilities.
  • the divided area calculation program CP13 extracts all the cuts C1 to C4 that divide the malfunctioning facility N2 and the normal facilities N1, N3, and N4.
  • the first cut C1 separates the system configuration (unhealthy system) including only the malfunctioning facility N2 from the system configuration (sound system) including the normal facilities N1, N3, and N4.
  • the second cut C2 separates the unhealthy system including the malfunctioning facility N2 and the normal facility N3 from the healthy system including the normal facilities N1 and N4.
  • the third cut C3 separates the unhealthy system including the malfunctioning facility N2 and the normal facility N1 from the healthy system including the normal facilities N3 and N4.
  • the fourth cut C4 separates the unhealthy system including the malfunctioning facility N2 and the normal facilities N1 and N3 from the healthy system including only the normal facility N4.
  • the second cut C2 and the fourth cut C4 include the restricted facility N3 that should be preferentially supplied with power even in the case of an assumed accident. ing. Since the unsound system has a reduced ability to cope with an assumed accident, it is not preferable in terms of stable power supply that the restricted facility N3 is included in the unsound system. Therefore, among the four cuts C1 to C4, only the cuts C1 and C3 in which the constraint facility N3 is included in the healthy system are selection candidates.
  • step S7 the divided area calculated in step S6 is read from the memory 14, and one optimum divided area is calculated and stored by the divided area calculation program CP13.
  • the process for calculating the optimum divided area will be described with reference to the flowchart of FIG.
  • the divided area calculation program CP13 acquires a cut that minimizes the fence tide ⁇ P (S300), and determines a cut that minimizes the fence tide ⁇ P as a divided area list in the divided area database 23. (S310).
  • the system stabilization system 10 creates various data (image data, numerical data, etc.) about the plan for dividing the unhealthy system and the healthy system, and displays the data on the display device 11.
  • FIG. 30 shows a screen G10 showing the division result (division schedule).
  • the screen G10 includes, for example, a first display area G110 that displays the system status, a second display area G120 that displays the supply and demand balance, the line tide, the stability, and the fence tide, and a third display that schematically shows the system configuration. Region G130.
  • the status (the line where the sensor information is missing and the time when it is determined to be missing), the control method implemented for improvement (the command for dividing the line 161, and the division Time).
  • the power generation amount ⁇ G [MW], the load amount ⁇ L [MW], and the power flow P [p. u. ], Frequency f [Hz] as an index of stability, and fence current flow are displayed for each divided region.
  • the system configuration is schematically displayed.
  • the system stabilization system 10 may transmit and display the screen G10 to a terminal existing outside the system stabilization system 10.
  • the screen can be displayed on a console terminal configured separately from the system stabilization system 10 or a mobile phone.
  • FIG. 31 is a screen G121 showing a time-series change in system status and frequency deviation.
  • the system status the status (the line where the sensor information is missing and the time when the sensor information is determined to be missing) and the control method implemented for improvement (the division command for the line 161) , The time of division).
  • the time series change of the frequency deviation is displayed in the lower part of the screen G121. If such a display screen G121 is presented to the user, the user can intuitively understand the state of the power system, and usability is improved.
  • the system stabilizing system 10 Based on the divided area list obtained by the divided area calculation program CP13, the system stabilizing system 10 creates a control command for operating each predetermined switch 180. The system stabilization system 10 transmits a control command to each predetermined switch 180 to operate.
  • FIG. 32 shows a screen G20 showing a comparison between the state G210 before dividing the power system and the state G220 after dividing the power system.
  • This embodiment configured as described above has the following effects.
  • a malfunctioning facility when a malfunctioning facility is detected (when determined), an unhealthy system including the malfunctioning facility can be separated from the power system 100.
  • produces in an unhealthy system after that, it can prevent beforehand that the malfunction which arises in an unhealthy system spreads to a healthy system, and a failure spreads.
  • the unhealthy system which is a part of the power system, is separated from the power system before the occurrence of the assumed accident, thereby maintaining the ability to cope with the assumed accident for many remaining system configurations. And the reliability of the power system can be improved.
  • the system configuration having the equipment determined to be malfunctioning is disconnected from the power system 100 even if the power is currently supplied normally.
  • a distributed power source such as a photovoltaic power generator or a gas turbine generator
  • the unsound system can continue as an independent system. That is, the distributed power supply in the unhealthy system is permitted to operate independently, and the power from the distributed power supply is supplied to the load in the unhealthy system.
  • the power supply stability (frequency change) in each divided region is calculated and displayed on the screens of FIGS. 30 and 31. Thereby, the user can select the optimal cut (optimum division
  • the second embodiment will be described with reference to FIGS.
  • This embodiment corresponds to a modification of the first embodiment. Therefore, the difference from the first embodiment will be mainly described.
  • the facility is stable or unstable by comparing the malfunctioning facility with the stabilization facility described in the assumed accident countermeasure list.
  • the degree of stability against an assumed accident of a system configuration having a malfunctioning facility is calculated using the system online information, and it is determined whether it is stable or unstable.
  • the system state that changes from moment to moment is ignored, and the malfunctioning facility and the stabilization facility (the stabilization facility described in the assumed accident countermeasure list for the most severe system state assumed) are used. A stability determination was made only by comparison.
  • the system state that changes from moment to moment is monitored online, and when a malfunctioning facility occurs, it is determined each time whether or not a countermeasure for the assumed accident calculated in the current system state is necessary.
  • a countermeasure for the assumed accident calculated in the current system state is necessary.
  • the loss refers to a social economic loss caused by a power outage by a customer, which can occur, for example, as a countermeasure against an assumed accident.
  • FIG. 33 shows the overall configuration of this embodiment.
  • the system stabilization system 10A of the present embodiment further includes a stability calculation database 26, a measurement database 27, and a calculation result database 28, as compared with the system stabilization system 10 shown in FIG.
  • the program database 25A of the present embodiment further includes a state estimation program CP14, a power flow calculation program CP15, and a stability calculation program CP16.
  • the program database 25A of the present embodiment does not include the assumed accident stability determination program CP12.
  • the stability calculation database 26 stores a tidal current calculation value, a line constant Z necessary for state estimation, and a sensor error as the stability calculation data D5.
  • the database 26 stores a generator model and constants necessary for the stability calculation, a control system model and constants, and an assumed accident condition.
  • the measurement database 27 as the measurement data D6, the node voltage V for each time section of the power system 100, the current I of the line, the active power P, the reactive power Q, the active power P such as a load and power generation, the reactive power Q, etc. Information is stored.
  • the calculation result database 28 stores a state estimation result, a tidal current calculation result, and a stability calculation result as calculation result data D7.
  • the online information of the power system 100 is stored in the measurement database 27 at a constant cycle (for example, at a cycle of 30 seconds).
  • the online information is transmitted from the power system 100 via the communication network 300 through the communication interface 15.
  • the system stabilization system 10A determines the malfunctioning facility by calculating the system data D2 by the malfunctioning facility determination program CP11 (S3), creates and stores the malfunctioning facility list, and stores the malfunctioning facility list. It is displayed on the display device 11 (S3).
  • the system stabilization system 10A receives the measurement data D6 and executes the state estimation program CP14 to obtain the node voltage V and the line current for each time section of the power system 100.
  • Information such as I, active power P, reactive power Q, active power P such as load and power generation, and reactive power Q is stored in the stability calculation database 26.
  • the state estimation calculation is a calculation for determining a plausible system state in a specific time section by determining and removing the presence or absence of abnormal data based on the measurement data D6, the facility data D1, and the system data D2.
  • the abnormal data is, for example, data that is clearly separated from neighboring data due to a communication failure or the like.
  • the system stabilization system 10A inputs the state estimation result of the calculation result data D7, the facility data D1, and the system data D2, and calculates the power flow state of the system using the power flow calculation program CP15, and each transmission line of the system. And the voltage and phase angle of each bus are stored in the calculation result database 28 as a tidal current calculation result (S3A).
  • the system stabilization system 10A receives the power flow calculation result of the calculation result data D7, the facility data D1, the system data D2, and the stability calculation data D5, obtains the stability of the system using the stability calculation program CP16, and makes each assumption Whether or not the accident is stable is stored in the calculation result database 28 (S5A).
  • the stability calculation is a method for calculating the stability against a power system accident, for example, one or more of voltage stability calculation, frequency stability calculation, and transient stability calculation. .
  • the stability calculation method is performed according to various stability calculation methods described in PRABHA KUNDUR, The EPRI Power System Engineering Series, Power System Stability and Control, EPRI, (1994).
  • the stability calculation (S5A) corresponds to the stability determination S5 for the assumed accident in the system stabilization process shown in FIG. If the stability is determined to be unstable, a divided region for system stabilization processing is calculated (S6). For all assumed accidents, the stability calculation corresponding to the following step S5 and step S6 are repeatedly executed (S4). The subsequent steps are the same as in the first embodiment. As described above, by calculating the stability based on the online information, it is possible to perform the optimum stability determination in accordance with the state of the system.
  • this invention is not limited to the Example mentioned above.
  • a person skilled in the art can make various additions and changes within the scope of the present invention. For example, if the unhealthy system disconnected from the power system is continuously monitored and it can be determined that the malfunctioning equipment has returned to normal equipment, a control command is output to a predetermined switch, and the system configuration that was unhealthy Can be reconnected to the power grid. For example, when the sensor information can be received normally, when the abnormal value of the sensor information disappears, when the maintenance work is completed and the state of the equipment is restored normally, the predicted disaster does not occur In such a case, the unhealthy system may be returned to the power system.

Abstract

An information acquiring unit (1A) acquires predetermined information relating to an electric power circuitry (2). A function-defective equipment determining unit (1B) determines function-defective equipment on the basis of the predetermined information. A stability determining unit (1C) determines whether the function-defective equipment is related to a stabilization measure. A division area determining unit (1D) determines division areas for dividing the electric power circuitry into a bad-condition circuitry including the function-defective equipment and a good-condition circuitry not including the function-defective equipment. A control command transmitting unit (1F) transmits, to a predetermined apparatus included in the electric power circuitry, a control command for dividing the electric power circuitry into the good-condition circuitry and the bad-condition circuitry. According to these arrangements, if any trouble occurs in equipment within the electric power circuitry, a circuitry structure including the equipment in which the trouble has occurred can be isolated before occurrence of any one of expected accidents, thereby maintaining the reliability of the electric power circuitry.

Description

系統安定化システム及び系統安定化方法System stabilization system and system stabilization method
 本発明は、系統安定化システム及び系統安定化方法に関する。 The present invention relates to a system stabilization system and a system stabilization method.
 発電所で発電した電力を一般家庭及び商業施設等の各種需要家に供給するための電力系統では、安定した電力供給が求められている。そのため、電力系統を制御するシステムでは、想定される事故と想定される事故を安定化する系統安定化制御方法との一覧を予め作成しており、想定された事故が実際に発生した場合は、予め用意された系統安定化制御を実行する。従って、想定された事故が発生した場合でも、速やかに系統を安定化することができ、電力供給を継続できる。 Stable power supply is required for power systems for supplying power generated by power plants to various consumers such as general households and commercial facilities. Therefore, in the system that controls the power system, a list of assumed accidents and system stabilization control methods that stabilize the assumed accidents is created in advance, and when an assumed accident actually occurs, The system stabilization control prepared in advance is executed. Therefore, even when an assumed accident occurs, the system can be quickly stabilized and power supply can be continued.
 従来技術では、電力系統を予め複数の領域に区分しておき、それら区分にそれぞれ端末局を配置する。各端末局は、電圧及び周波数等の系統データに基づいて事故が発生したかを監視し、事故発生を検出した場合は系統を安定化させるための演算を行い、制御指令を出力する(特許文献1)。 In the conventional technology, the power system is divided into a plurality of areas in advance, and terminal stations are arranged in the respective areas. Each terminal station monitors whether an accident has occurred based on system data such as voltage and frequency, and if an accident has been detected, performs an operation to stabilize the system and outputs a control command (Patent Document) 1).
特開平02-188133号公報Japanese Patent Laid-Open No. 02-188133
 従来技術では、想定された事故が一つ生じた場合でも、系統安定化制御を実行することで、速やかに電力系統を安定化させることができる。しかし、例えば、複数の事故が短い間隔で発生したような場合は、予め用意された系統安定化制御だけでは電力系統を安定化させることができない可能性がある。また、例えば、変圧器等の各種設備の保守点検作業または設備の入れ替え作業等が行われている状況において、その作業対象設備と同一系統に属する他の設備に何らかの原因で障害が発生した場合も、用意された系統安定化制御ではその障害に対処することができない恐れがある。つまり、災害または作業等で想定事故への耐性が低下している状況では、想定された事故が生じた場合、その想定事故に対応するのが難しくなることがある。 In the conventional technology, even if one assumed accident occurs, the power system can be stabilized quickly by executing the system stabilization control. However, for example, when a plurality of accidents occur at short intervals, there is a possibility that the power system cannot be stabilized only by the system stabilization control prepared in advance. Also, for example, in the situation where maintenance / inspection work of various equipment such as transformers or equipment replacement work etc. is performed, a failure may occur for some reason in other equipment belonging to the same system as the work target equipment The prepared system stabilization control may not be able to cope with the failure. In other words, in a situation where the resistance to an assumed accident is reduced due to a disaster or work, when an assumed accident occurs, it may be difficult to respond to the assumed accident.
 ここで、本明細書では、想定事故に対応可能な系統構成を健全系統と呼ぶ。想定事故に対応できない系統構成を、本明細書では不健全系統と呼ぶ。 Here, in this specification, a system configuration capable of handling an assumed accident is called a healthy system. A system configuration that cannot cope with an assumed accident is referred to as an unhealthy system in this specification.
 本発明の目的は、想定事故が生じるよりも前に、想定事故に対応できない可能性のある不健全系統と健全系統とを分割し、電力系統の信頼性を維持できるようにした系統安定化システム及び系統安定化方法を提供することにある。本発明の他の目的は、電力系統の想定事故に対する信頼性が低下した場合に、不健全系統を電力系統から切り離すことについての情報をユーザに提示し、ユーザの選択を確認した後に不健全系統と健全系統とを分割できるようにした系統安定化システム及び系統安定化方法を提供することにある。 It is an object of the present invention to divide an unhealthy system and a healthy system that may not be able to cope with an anticipated accident before the assumed accident occurs, and to maintain the reliability of the power system. And providing a system stabilization method. Another object of the present invention is to provide information to the user about disconnecting an unhealthy system from the power system when reliability of the power system against an assumed accident is reduced, and after confirming the user's selection, the unhealthy system It is to provide a system stabilization system and a system stabilization method that can divide a system and a healthy system.
 上記課題を解決すべく、本発明に係る系統安定化システムは、電力系統に関する所定の情報として、電力系統内の観測情報と事前に定めた複数の想定事故リスト及び災害情報を取得するための情報取得部と、所定の情報に基づいて、電力系統に含まれる複数の設備のうち、正常動作しないと予測される機能不良設備を判定するための機能不良設備判定部と、機能不良設備が、電力系統を安定化するために予め用意される所定の安定化対策に関連しているか否かを判定する安定判定部と、機能不良設備が安定化対策に関連していると判定された場合、電力系統を、機能不良設備を含む不健全系統と、機能不良設備を含まない健全系統とに分割するための分割領域を判定する分割領域判定部と、分割領域判定部による判定結果に基づいて電力系統を健全系統と不健全系統とに分割するための制御指令を電力系統に含まれる所定の装置に送信するための制御指令送信部と、を備える。 In order to solve the above-mentioned problems, the system stabilization system according to the present invention provides information for acquiring observation information in the power system, a plurality of predetermined accident lists and disaster information determined in advance as predetermined information related to the power system. Based on the acquisition unit and predetermined information, among the plurality of facilities included in the power system, a malfunctioning facility determination unit for determining a malfunctioning facility that is predicted not to operate normally, A stability determination unit that determines whether or not a predetermined stabilization measure prepared in advance for stabilizing the system is involved, and if it is determined that a malfunctioning facility is related to a stabilization measure, A power system based on a determination result by a divided region determination unit and a divided region determination unit that determines a divided region for dividing a system into an unsound system including a malfunctioning facility and a healthy system that does not include a malfunctioning facility And a control command transmission unit for transmitting a predetermined device contained in the power system control instructions for dividing into a sound system and unhealthy lineages.
 安定判定部は、機能不良設備が所定の安定化対策に関連しており、かつ、予め設定される想定事故に対して安定であるか否かを判定することができる。 The stability determination unit can determine whether the malfunctioning facility is related to a predetermined stabilization measure and is stable with respect to a preset accident.
 分割領域判定部による判定結果をユーザに提示するための判定結果提示部をさらに備え、判定結果提示部により提示される判定結果に対するユーザの選択を確認した後で、制御指令送信部は、制御指令を所定の装置に送信することもできる。 The control command transmission unit further includes a determination result presentation unit for presenting the determination result by the divided region determination unit to the user, and after confirming the user's selection with respect to the determination result presented by the determination result presentation unit, Can also be transmitted to a predetermined device.
 本発明により、不健全系統に想定事故が発生した場合でも、想定事故による影響を不健全系統内に止め、不健全系統での不具合が健全な他の系統に波及して、障害が広範囲に生じるのを未然に防止できる。 Even if an unforeseen accident occurs in the unhealthy system, the present invention stops the influence of the unforeseen accident in the unhealthy system, and the failure in the unhealthy system spreads to other healthy systems, resulting in a wide range of failures. Can be prevented in advance.
本実施形態の全体概要を示す説明図である。It is explanatory drawing which shows the whole outline | summary of this embodiment. 電力系統と系統安定化システムの全体構成を示す。The overall configuration of the power system and system stabilization system is shown. プログラムデータの内容を示す説明図である。It is explanatory drawing which shows the content of program data. 系統安定化システムと電力系統の間で送受信される情報の概略構成を示す。The schematic structure of the information transmitted / received between a system stabilization system and an electric power grid | system is shown. 系統安定化処理の全体を示すフローチャートである。It is a flowchart which shows the whole system stabilization process. データ受信の欠損に基づいて機能不良設備を判定する処理を示すフローチャートである。It is a flowchart which shows the process which determines a malfunctioning installation based on the defect | deletion of data reception. 中継装置を介して情報を送受信する場合の構成図である。It is a block diagram in the case of transmitting / receiving information via a relay apparatus. データ(センサ情報)が欠損している場合のセンサ情報を管理するテーブルの例である。It is an example of the table which manages sensor information when data (sensor information) is missing. センサ情報が欠損する場合の系統構成の概略図である。It is the schematic of a system | strain structure in case sensor information is missing. データ異常に基づいて機能不良設備を判定する処理を示すフローチャートである。It is a flowchart which shows the process which determines a malfunctioning installation based on data abnormality. データ異常時のセンサ情報管理テーブルの例である。It is an example of the sensor information management table at the time of data abnormality. センサ情報に異常が生じる場合の系統構成の概略図である。It is the schematic of a system | strain structure in case abnormality arises in sensor information. 線路容量を管理するテーブルの例である。It is an example of the table which manages track | line capacity. 設備構成の変更に基づいて機能不良設備を判定する処理を示すフローチャートである。It is a flowchart which shows the process which determines a malfunctioning installation based on the change of an equipment structure. 設備構成の変更を示す情報の例である。It is an example of the information which shows the change of an equipment structure. 設備構成が変更される場合の系統構成の概略図である。It is the schematic of a system | strain structure in case an installation structure is changed. 災害予測情報に基づいて機能不良設備を判定する処理を示すフローチャートである。It is a flowchart which shows the process which determines a malfunctioning installation based on disaster prediction information. 災害の発生を予測するサーバを備える全体構成図である。It is a whole block diagram provided with the server which estimates the occurrence of a disaster. 災害予測情報の例を示す。An example of disaster prediction information is shown. 災害発生が予測される場合の系統構成の概略図である。It is the schematic of a system | strain structure in case a disaster occurrence is estimated. 想定事故に対する安定性を判定するための処理を示すフローチャートである。It is a flowchart which shows the process for determining the stability with respect to an assumption accident. 想定事故への対策を示すリストの例である。It is an example of the list | wrist which shows the countermeasure to an assumed accident. 想定事故に対する安定性の判定結果を示すリストの例である。It is an example of the list | wrist which shows the determination result of stability with respect to an assumption accident. 分割領域を算出する処理を示すフローチャートである。It is a flowchart which shows the process which calculates a division area. 最適な分割領域を算出するための処理を示すフローチャートである。It is a flowchart which shows the process for calculating an optimal division area. 制約設備のリストの例である。It is an example of a list of restricted equipment. 2つの分割領域間でのフェンス潮流の算出方法を示す説明図である。It is explanatory drawing which shows the calculation method of the fence tidal current between two division areas. 3つの分割領域間でのフェンス潮流の算出方法を示す説明図である。It is explanatory drawing which shows the calculation method of the fence tidal current between three division areas. 電力系統を不健全系統と健全系統とに分割する方法を示す説明図である。It is explanatory drawing which shows the method of dividing | segmenting an electric power system into an unsound system and a healthy system. 分割結果を表示する画面の例である。It is an example of the screen which displays a division result. 分割領域の需給バランスを表示する画面の例である。It is an example of the screen which displays the demand-and-supply balance of a division area. 電力系統を分割する前と分割した後とにおける、想定事故安定対策リストの例である。It is an example of the assumption accident stabilization countermeasure list before and after dividing the power system. 第2実施例に係る系統安定化システムの構成を示す。The structure of the system | strain stabilization system which concerns on 2nd Example is shown. プログラムデータの内容を示す説明図である。It is explanatory drawing which shows the content of program data. 系統を安定化させる処理のフローチャートである。It is a flowchart of the process which stabilizes a system | strain.
 以下、図面に基づいて、本発明の実施の形態を説明する。本実施形態では、以下に詳述するように、想定事故に対する信頼性の低下した領域を、想定事故が発生するよりも前に電力系統から切り離すことで、残された多くの領域における想定事故に対する信頼性を維持できるようにしている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In this embodiment, as will be described in detail below, by separating the area where the reliability of the assumed accident has decreased from the power system before the assumed accident occurs, We are trying to maintain reliability.
 図1は、本実施形態の全体概要を示す説明図である。図1は、本発明の理解及び実施に役立つように作成されたもので、本発明の範囲は図1に示す構成例に限定されない。 FIG. 1 is an explanatory diagram showing an overall outline of the present embodiment. FIG. 1 is prepared to help understanding and implementation of the present invention, and the scope of the present invention is not limited to the configuration example shown in FIG.
 系統安定化システム1は、電力系統2を安定化するためのシステムである。電力系統2には、例えば、変圧器、線路、発電機、需要家設備等の、複数の設備N1~N4が含まれている。また、後述の実施例に記載のように、電力系統2には、複数のセンサ装置170と複数の開閉器180及び複数の通信装置190等も含まれている。 The grid stabilization system 1 is a system for stabilizing the power grid 2. The power system 2 includes a plurality of facilities N1 to N4 such as a transformer, a track, a generator, and a customer facility. Further, as described in the embodiments described later, the power system 2 includes a plurality of sensor devices 170, a plurality of switches 180, a plurality of communication devices 190, and the like.
 系統安定化システム1は、一つのコンピュータから構成することもできるし、または、複数のコンピュータを連携させて構成することもできる。系統安定化システム1は、その機能として、例えば、情報取得部1Aと、機能不良設備判定部1Bと、安定判定部1Cと、分割領域判定部1Dと、判定結果提示部1Eと、制御指令送信部1Fを備える。 The system stabilization system 1 can be configured from a single computer, or can be configured by linking a plurality of computers. The system stabilization system 1 has, as its functions, for example, an information acquisition unit 1A, a malfunctioning equipment determination unit 1B, a stability determination unit 1C, a divided region determination unit 1D, a determination result presentation unit 1E, and a control command transmission. Part 1F is provided.
 情報取得部1Aは、電力系統2に関する所定の情報を取得するための機能である。所定の情報としては、後述の実施例で明らかになるように、センサ装置170からのセンサ情報(例えば、線路潮流データ)、設備の構成変更を示す情報、災害の発生を予測する情報がある。情報取得部1Aは、それら各情報の全てを所定の情報として取得してもよいし、それら各情報のうち少なくともいずれか一つの情報を取得してもよい。 The information acquisition unit 1A is a function for acquiring predetermined information related to the power system 2. The predetermined information includes sensor information (for example, track power flow data) from the sensor device 170, information indicating the configuration change of the facility, and information for predicting the occurrence of a disaster, as will be apparent from examples described later. The information acquisition unit 1A may acquire all of these pieces of information as predetermined information, or may acquire at least one of the pieces of information.
 機能不良設備判定部1Bは、情報取得部1Aにより取得された所定の情報に基づいて、電力系統2に含まれる複数の設備N1~N4のうち、正常動作しない可能性があると予測される機能不良設備N2を判定するための機能である。図1では、説明の便宜上、設備N2が機能不良設備であるとする。他の設備N1~N3は、何も問題が生じていない健全な設備である。 The malfunctioning facility determination unit 1B is a function that is predicted to possibly not operate normally among the plurality of facilities N1 to N4 included in the power system 2 based on the predetermined information acquired by the information acquisition unit 1A. This is a function for determining the defective facility N2. In FIG. 1, for convenience of explanation, it is assumed that the facility N2 is a malfunctioning facility. The other facilities N1 to N3 are sound facilities that have no problem.
 機能不良設備とは、災害または保守点検等により、正常に動作しないか、正常に動作する可能性が所定値よりも高いと判定された設備である。例えば、或る設備の近くに設置されたセンサ装置からの信号が途絶えたり、異常値を示しているような場合は、その設備にも何らかの影響が及んでいる、または及ぶ可能性がある、と考えることができる。その設備がたとえ今実際に正常動作していても、正常動作しなくなる可能性が一定値以上あれば、機能不良設備と判定される。次の瞬間に生じるかも知れない想定事故に対処できる能力を維持するためである。 A malfunctioning facility is a facility that has been determined not to operate normally or to have a higher possibility of normal operation than a predetermined value due to a disaster or maintenance inspection. For example, if a signal from a sensor device installed near a certain facility is interrupted or shows an abnormal value, that facility may be affected or possibly affected. Can think. Even if the facility is actually operating normally, if the possibility that the facility will not operate normally exceeds a certain value, it is determined as a malfunctioning facility. This is to maintain the ability to deal with contingencies that may occur at the next moment.
 安定判定部1Cは、機能不良設備N2が、電力系統2を安定化するために予め用意される所定の安定化対策に関連しているか否かを判定する機能である。安定化対策とは、例えば、いわゆる「N-1基準」等のような所定の安全基準に基づいて、電力系統を安定化させるための方法である。 The stability determination unit 1 </ b> C is a function that determines whether the malfunctioning facility N <b> 2 is related to a predetermined stabilization measure prepared in advance to stabilize the power system 2. The stabilization measure is a method for stabilizing the power system based on a predetermined safety standard such as the so-called “N-1 standard”.
 N-1基準とは、N個の設備のうち1個の設備が故障した場合でも、残るN-1個の設備により電力供給が維持される、という安全基準である。想定事故のそれぞれについて、電力系統2を安定化するための対策が用意されている。安定化対策のために使用されうる設備を、本明細書では、安定化設備と呼ぶ。 The N-1 standard is a safety standard in which even if one of the N facilities breaks down, the power supply is maintained by the remaining N-1 facilities. Measures for stabilizing the power system 2 are prepared for each of the assumed accidents. Equipment that can be used for stabilization measures is referred to herein as stabilization equipment.
 安定判定部1Cは、機能不良設備が安定化設備に該当するかを判定する機能である。機能不良設備が安定化設備であると判定された場合、その機能不良設備を含む系統構成は、安定性が低い(不安定である)と考えることができる。或る想定事故が生じた場合に、その想定事故に対応する安定化対策を実行できない可能性があるためである。 The stability determination unit 1C is a function for determining whether a malfunctioning facility corresponds to a stabilization facility. When it is determined that the malfunctioning facility is the stabilization facility, the system configuration including the malfunctioning facility can be considered to have low stability (unstable). This is because, when a certain accident occurs, there is a possibility that the stabilization measure corresponding to the assumption accident cannot be executed.
 分割領域判定部1Dは、電力系統2を複数の領域(系統構成)に分割するための機能である。分割領域判定部1Dは、安定判定部1Cにより機能不良設備が安定化対策に関連していると判定された場合、電力系統2を、機能不良設備を含む不健全系統と、機能不良設備を含まない健全系統とに分割するための分割領域を判定する。 The division area determination unit 1D is a function for dividing the power system 2 into a plurality of areas (system configurations). When the stability determination unit 1C determines that the malfunctioning facility is related to the stabilization measure, the divided area determination unit 1D includes the power system 2 including the unhealthy system including the malfunctioning facility and the malfunctioning facility. The division area for dividing into no healthy system is determined.
 図1の上側に示すカットC1、カットC2は、一方の分割領域である不健全領域と他方の分割領域である健全領域とに分割するための境界線を示す。例えば、カットC1に沿って電力系統2を分割する場合、不健全系統には機能不良設備N2のみが含まれ、健全系統には正常設備N1、N3、N4が含まれる。また、例えば、カットC2に沿って電力系統2を分割する場合、不健全系統には機能不良設備N2及び正常設備N3が含まれ、健全系統には他の正常設備N1及びN4が含まれる。 The cut C1 and the cut C2 shown on the upper side of FIG. 1 indicate boundary lines for dividing into an unhealthy area that is one divided area and a healthy area that is the other divided area. For example, when the power system 2 is divided along the cut C1, only the malfunctioning facility N2 is included in the unhealthy system, and normal facilities N1, N3, and N4 are included in the healthy system. Further, for example, when the power system 2 is divided along the cut C2, the unhealthy system includes the malfunctioning facility N2 and the normal facility N3, and the healthy system includes the other normal facilities N1 and N4.
 ここで、正常設備N3は、例えば、病院または消防署等の重要施設であるとする。従って、正常設備N3を不健全系統に含めるのは、好ましくない。想定事故が発生した場合、不健全系統では電力の正常供給を行うことができない可能性があるためである。そこで、分割領域判定部1Dは、重要な設備N3が不健全系統に含まれないように、不健全系統と健全系統とを分けることができる。つまり、本実施形態では、制約条件として、「予め設定される重要な設備N3が健全系統に属すること」と設定されている。 Here, it is assumed that the normal facility N3 is an important facility such as a hospital or a fire department. Therefore, it is not preferable to include the normal equipment N3 in the unhealthy system. This is because when an assumed accident occurs, normal supply of power may not be possible in an unhealthy system. Therefore, the divided region determination unit 1D can separate the unhealthy system and the healthy system so that the important facility N3 is not included in the unhealthy system. That is, in the present embodiment, as a constraint condition, “pre-set important equipment N3 belongs to a healthy system” is set.
 判定結果提示部1Eは、分割領域判定部1Dによる判定結果をユーザに提示するための機能である。ユーザとは、例えば、電力系統2を運用する系統運用者である。ユーザに提示される判定結果には、電力系統2の分割後の構成等が含まれている。 The determination result presentation unit 1E is a function for presenting the determination result by the divided region determination unit 1D to the user. The user is, for example, a system operator who operates the power system 2. The determination result presented to the user includes the configuration after the division of the power system 2 and the like.
 判定結果提示部1Eは、判定結果を表示装置11(図2で後述)等に表示することで、ユーザに提示する。ユーザは、その判定結果を確認し、系統安定化システム1に対して所定の指示を与えることができる。所定の指示としては、例えば、電力系統の分割についての選択、または、電力系統の分割についての修正指示、電力系統の分割についての承認などがある。 The determination result presentation unit 1E presents the determination result to the user by displaying the determination result on the display device 11 (described later in FIG. 2) or the like. The user can confirm the determination result and give a predetermined instruction to the system stabilization system 1. The predetermined instruction includes, for example, selection for dividing the power system, correction instruction for dividing the power system, approval for dividing the power system, and the like.
 制御指令送信部1Fは、分割領域判定部1Dによる判定結果に基づいて電力系統2を健全系統と不健全系統とに分割するための制御指令を作成し、その制御指令を電力系統2に含まれる所定の装置に送信するための機能である。所定の装置としては、例えば、開閉器180(図2で後述)が該当する。所定の開閉器180を遠隔操作することで、不健全系統を電力系統2から自動的に切り離すことができる。 The control command transmission unit 1F creates a control command for dividing the power system 2 into a healthy system and an unhealthy system based on the determination result by the divided region determination unit 1D, and the control command is included in the power system 2 This is a function for transmitting to a predetermined device. An example of the predetermined device is a switch 180 (described later in FIG. 2). The unhealthy system can be automatically disconnected from the power system 2 by remotely operating the predetermined switch 180.
 上述のように本実施形態では、電力系統2に関する所定の情報を収集し、その情報に基づいて機能不良設備が存在するかを判定し、機能不良設備を発見した場合は安定性を判定する。所定の情報は、電力系統内の観測情報と、事前に定めた複数の想定事故リスト及び災害情報を含むことができる。さらに、本実施形態では、機能不良設備であると判定した場合、その機能不良設備に関連する想定事故が発生するよりも前に、機能不良設備を含む系統構成(不健全系統)を電力系統2から切り離すための分割領域を判定する。 As described above, in the present embodiment, predetermined information related to the power system 2 is collected, it is determined whether there is a malfunctioning facility based on the information, and stability is determined when a malfunctioning facility is found. The predetermined information can include observation information in the power system, a plurality of presumed accident lists and disaster information determined in advance. Furthermore, in this embodiment, when it determines with it being a malfunctioning installation, before the assumption accident relevant to the malfunctioning installation generate | occur | produces, the system configuration (unhealthy system) containing a malfunctioning installation is made into the electric power grid | system 2 A divided area to be separated from the image is determined.
 そして、本実施形態では、判定された分割領域についてユーザの確認を得た後、電力系統2内の所定の装置(開閉器)に制御指令を送信し、電力系統2を不健全系統と健全系統とに分割する。 And in this embodiment, after obtaining a user's confirmation about the determined division | segmentation area | region, a control command is transmitted to the predetermined | prescribed apparatus (switch) in the electric power system 2, and the electric power system 2 is made into an unhealthy system and a healthy system. And split into
 従って、本実施形態では、想定事故に対する安定化対策で使用される設備(安定化設備)に異常等が生じて機能不良設備であると判定された場合は、想定事故が発生する前に、その機能不良設備を含む不健全系統を、電力系統2から切り離しておく。これにより、本実施形態では、その後、不健全系統に想定事故が発生した場合でも、想定事故による影響を不健全系統内に止め、不健全系統での不具合が健全な他の系統に波及して、障害が広範囲に生じるのを未然に防止できる。 Therefore, in this embodiment, when an abnormality or the like occurs in the equipment used for stabilization measures against an assumed accident (stabilization equipment) and it is determined that the equipment is malfunctioning, before that accident occurs, Unhealthy systems including malfunctioning facilities are separated from the power system 2. As a result, in this embodiment, even if an unexpected accident occurs in the unhealthy system thereafter, the influence of the assumed accident is stopped in the unhealthy system, and the malfunction in the unhealthy system has spread to other healthy systems. , It is possible to prevent a wide range of failures from occurring.
 本実施形態では、災害または保守作業等により所定の安定化対策の実施可能性が低下した系統構成(不健全系統)を、他の健全な系統構成から事前に切り離すことで、電力系統全体の信頼性を維持することができる。以下、本実施形態をより詳細に説明する。 In this embodiment, the system configuration (unhealthy system) whose feasibility of implementing a predetermined stabilization measure has been reduced due to a disaster or maintenance work, etc. is separated from other healthy system configurations in advance, so that Sex can be maintained. Hereinafter, this embodiment will be described in more detail.
 図2~図32を参照して第1実施例を説明する。図1との対応関係を先に述べると、系統安定化システム10は図1の系統安定化システム1に、電力系統100は図1の電力系統2に、対応する。 The first embodiment will be described with reference to FIGS. When the correspondence relationship with FIG. 1 is described first, the system stabilization system 10 corresponds to the system stabilization system 1 of FIG. 1, and the power system 100 corresponds to the power system 2 of FIG. 1.
 系統安定化システム10の全体処理の流れは、図5で後述する。図5に示すステップのうち、ステップS1及びS2は、図1の情報取得部1Aに対応する。ステップS3は、図1の機能不良設備判定部1Bに、ステップS5は、図1の安定判定部1Cに、ステップS6及びS7は、図1の分割領域判定部1Dに、対応する。ステップS8は、図1の判定結果提示部1Eに、ステップS9は、図1の制御指令送信部1Fに、対応する。 The overall processing flow of the system stabilization system 10 will be described later with reference to FIG. Of the steps shown in FIG. 5, steps S1 and S2 correspond to the information acquisition unit 1A of FIG. Step S3 corresponds to the malfunctioning facility determination unit 1B in FIG. 1, step S5 corresponds to the stability determination unit 1C in FIG. 1, and steps S6 and S7 correspond to the divided region determination unit 1D in FIG. Step S8 corresponds to the determination result presentation unit 1E in FIG. 1, and step S9 corresponds to the control command transmission unit 1F in FIG.
 図2を参照し、電力系統100及び系統安定化システム10の全体構成を説明する。電力系統100と系統安定化システム10とは、通信ネットワーク300を介して通信可能に接続されている。 Referring to FIG. 2, the overall configuration of the power system 100 and the system stabilization system 10 will be described. The power system 100 and the system stabilization system 10 are communicably connected via a communication network 300.
 電力系統100の構成を説明する。電力系統100は、複数の分割系統110、111を備える。図2では、2つの分割系統110、111を示すが、電力系統100は、3つ以上の分割系統を有することもできる。各分割系統110、111は、接続構成112を介して、接続されている。 The configuration of the power system 100 will be described. The power system 100 includes a plurality of divided systems 110 and 111. In FIG. 2, two divided systems 110 and 111 are shown, but the power system 100 may have three or more divided systems. The divided systems 110 and 111 are connected via a connection configuration 112.
 各分割系統100、111は、例えば、ノード(母線)150と、電源120と、負荷140と、変圧器130と、線路160と、センサ170と、開閉器180と、通信装置190とを備えている。 Each of the divided systems 100 and 111 includes, for example, a node (bus) 150, a power source 120, a load 140, a transformer 130, a line 160, a sensor 170, a switch 180, and a communication device 190. Yes.
 図2に示す構成は、説明のための例であって、実際には、各分割系統110、111内に複数の電源120及び負荷140等を設けることができる。また、線路160上には、少なくとも一つずつセンサ170及び開閉器180が設けられていればよい。 The configuration shown in FIG. 2 is an example for explanation, and actually, a plurality of power supplies 120, loads 140, and the like can be provided in each of the divided systems 110 and 111. Further, it is only necessary that at least one sensor 170 and one switch 180 are provided on the line 160.
 電源120は、例えば、太陽光発電装置、太陽熱発電装置、地熱発電装置、風力発電装置、火力発電所、水力発電所等のように構成され、ノード150に電力を供給する。変圧器130は、ノード150とノード150の間に設けられ、電圧等を調整する。ノード150から供給される電力を使用する負荷140は、例えば、一般家庭、商業施設、工場、病院、警察署、消防署、官公庁等の各需要家である。 The power source 120 is configured, for example, as a solar power generation device, a solar thermal power generation device, a geothermal power generation device, a wind power generation device, a thermal power plant, a hydropower plant, etc., and supplies power to the node 150. The transformer 130 is provided between the node 150 and the node 150 and adjusts the voltage and the like. The load 140 using the electric power supplied from the node 150 is, for example, each consumer such as a general household, a commercial facility, a factory, a hospital, a police station, a fire department, a public office, and the like.
 線路160は、ノード間を接続する。「センサ装置」としてのセンサ170は、線路160を流れる電流の値及び電圧値などを計測し、それらの計測値をセンサ情報として、系統安定化システム10に送信する。「所定の装置」としての開閉器180は、線路160を開閉することで、ノード150同士を接続したり、遮断したりする。 Line 160 connects the nodes. The sensor 170 as the “sensor device” measures the value of the current flowing through the line 160, the voltage value, and the like, and transmits these measured values to the system stabilization system 10 as sensor information. The switch 180 as a “predetermined device” connects and disconnects the nodes 150 by opening and closing the line 160.
 通信装置190は、センサ170及び開閉器180と通信ネットワーク300との間に設けられる。センサ170及び開閉器180は、通信装置190を介して通信ネットワーク300に接続されており、通信ネットワーク300を介して系統安定化システム10と通信する。 The communication device 190 is provided between the sensor 170 and the switch 180 and the communication network 300. The sensor 170 and the switch 180 are connected to the communication network 300 via the communication device 190, and communicate with the system stabilization system 10 via the communication network 300.
 接続構成112は、各分割系統110、111を一つまたは複数の経路で、電気的に接続する。各経路は、例えば、線路160と、センサ170と、開閉器180と、通信装置190を備えることができる。このように、一方の分割系統110のノード150と他方の分割系統111のノード150とは、接続構成112の有する一つ以上の経路を介して接続される。 The connection configuration 112 electrically connects the divided systems 110 and 111 through one or a plurality of paths. Each path can include, for example, a line 160, a sensor 170, a switch 180, and a communication device 190. As described above, the node 150 of the one divided system 110 and the node 150 of the other divided system 111 are connected via one or more paths of the connection configuration 112.
 電力系統100と系統安定化システム10の間の通信について説明する。分割系統(110、111)内の通信装置190は、通信ネットワーク300を介して、系統安定化システム10の通信インターフェース(図中I/F)15と接続されている。これにより、各分割系統110、111内のセンサ170及び開閉器180と系統安定化システム10の間で、後述のセンサ情報310A、制御情報310Bが送受信される。 Communication between the power system 100 and the system stabilization system 10 will be described. The communication device 190 in the divided system (110, 111) is connected to the communication interface (I / F in the figure) 15 of the system stabilization system 10 via the communication network 300. Thereby, sensor information 310A and control information 310B, which will be described later, are transmitted and received between the sensor 170 and switch 180 in each of the divided systems 110 and 111 and the system stabilization system 10.
 ここで、図4を参照する。図4は、センサ170及び開閉器180と系統安定化システム10の間で送受信されるセンサ情報310A、制御情報310Bの概略構成例を示す。 Referring now to FIG. FIG. 4 shows a schematic configuration example of sensor information 310 </ b> A and control information 310 </ b> B transmitted and received between the sensor 170 and switch 180 and the system stabilization system 10.
 電力系統100のセンサ170から系統安定化システム10には、センサ情報310Aが送信される。センサ情報310Aは、例えば、線路潮流P 311と、センサ170を識別するための固有番号(図中ID)312と、タイムスタンプ313を含む。 The sensor information 310 </ b> A is transmitted from the sensor 170 of the power system 100 to the system stabilization system 10. The sensor information 310A includes, for example, a track current P 311, a unique number (ID in the figure) 312 for identifying the sensor 170, and a time stamp 313.
 センサ情報310Aに含まれる線路潮流Pとは、ノード150間を接続する線路160を流れる、時間断面毎の潮流である。線路潮流は、センサ170により計測される。 The track current P included in the sensor information 310 </ b> A is a current for each time section flowing through the track 160 connecting the nodes 150. The track current is measured by the sensor 170.
 系統安定化システム10は、線路160上の開閉器180に向けて、制御情報310Bを送信する。制御情報310Bは、例えば、制御指令314と、開閉器180を識別するための固有情報315と、タイムスタンプ316とを含む。開閉器180には、事前に固有番号が設定されており、系統安定化システム10は、各線路160上の各開閉器180の固有番号を予め把握している。 The system stabilization system 10 transmits the control information 310 </ b> B toward the switch 180 on the line 160. The control information 310B includes, for example, a control command 314, unique information 315 for identifying the switch 180, and a time stamp 316. A unique number is set in advance in the switch 180, and the system stabilization system 10 knows in advance the unique number of each switch 180 on each line 160.
 なお、通信ネットワーク300を介して、各センサ170及び系統安定化システム10は、図外のタイムサーバに接続されている。従って、各センサ170の内部時刻と系統安定化システム10内の時刻とは同期している。 The sensors 170 and the system stabilization system 10 are connected to a time server (not shown) via the communication network 300. Therefore, the internal time of each sensor 170 and the time in the system stabilization system 10 are synchronized.
 図2に戻り、系統安定化システム10の構成について説明する。系統安定化システム10は、例えば、表示装置11と、入力装置12と、マイクロプロセッサ13と、メモリ14と、通信インターフェース15と、各種データベース(設備データベース21、系統データベース22、分割領域データベース23、分割結果データベース24、プログラムデータベース25)を備えており、それらはバス線41に接続されている。 Referring back to FIG. 2, the configuration of the system stabilization system 10 will be described. The system stabilization system 10 includes, for example, a display device 11, an input device 12, a microprocessor 13, a memory 14, a communication interface 15, various databases (an equipment database 21, a system database 22, a divided area database 23, a divided area). A result database 24 and a program database 25) are provided, which are connected to the bus line 41.
 表示装置11は、例えば、ディスプレイ装置として構成される。ディスプレイ装置に代えて、またはディスプレイ装置と共に、プリンタ装置または音声出力装置等を用いる構成でもよい。入力装置12は、例えば、キーボードスイッチ、マウス等のポインティング装置、タッチパネル、音声指示装置等の少なくともいずれか一つを備えて構成できる。 The display device 11 is configured as a display device, for example. Instead of the display device or together with the display device, a configuration using a printer device, an audio output device, or the like may be used. For example, the input device 12 may be configured to include at least one of a keyboard switch, a pointing device such as a mouse, a touch panel, and a voice instruction device.
 マイクロプロセッサ(図中CPU:Central Processing Unit)13は、プログラムデータベース25から所定のコンピュータプログラムを読み込んで実行する。マイクロプロセッサ13は、一つまたは複数の半導体チップとして構成してもよいし、または、計算サーバのようなコンピュータ装置として構成してもよい。 The microprocessor (CPU: Central Processing Unit) 13 reads a predetermined computer program from the program database 25 and executes it. The microprocessor 13 may be configured as one or a plurality of semiconductor chips, or may be configured as a computer device such as a calculation server.
 メモリ14は、例えば、RAM(Random Access Memory)として構成され、プログラムデータベース25から読み出されたコンピュータプログラムを記憶したり、各処理に必要な計算結果データ及び画像データ等を記憶したりする。メモリ14に格納された画面データは、表示装置11に送られて表示される。表示される画面の例は後述する。 The memory 14 is configured as a RAM (Random Access Memory), for example, and stores a computer program read from the program database 25, and stores calculation result data and image data necessary for each process. The screen data stored in the memory 14 is sent to the display device 11 and displayed. An example of the displayed screen will be described later.
 通信インターフェース15は、通信ネットワーク300に接続するための回路及び通信プロトコルを備える。 The communication interface 15 includes a circuit and a communication protocol for connecting to the communication network 300.
 系統安定化システム10は、例えば、設備データベース21、系統データベース22、分割領域データベース23、分割結果データベース24、プログラムデータベース25等を備えることができる。それら各データベースの詳細は後述する。 The system stabilization system 10 can include, for example, an equipment database 21, a system database 22, a divided region database 23, a division result database 24, a program database 25, and the like. Details of these databases will be described later.
 図3を参照して、プログラムデータベース25の記憶内容を説明する。プログラムデータベース25には、例えば、機能不良設備判定プログラムCP11と、想定事故安定判定プログラムCP12と、分割領域計算プログラムCP13とが格納されている。マイクロプロセッサ13は、各コンピュータプログラムを実行することで、機能不良設備を発見したり、機能不良設備の安定度を評価したり、最適な分割領域を解析したり、解析結果をユーザに提示したりする。 The contents stored in the program database 25 will be described with reference to FIG. The program database 25 stores, for example, a malfunctioning facility determination program CP11, an assumed accident stability determination program CP12, and a divided area calculation program CP13. The microprocessor 13 executes each computer program to find a malfunctioning facility, evaluate the stability of the malfunctioning facility, analyze an optimal divided area, and present the analysis result to the user. To do.
 図2に戻る。系統安定化システム10には、プログラムデータベース25以外に、4つのデータベース(設備データベース21、系統データベース22、分割領域データベース23、分割結果データベース24)が設けられている。設備データベース21には、設備データD1として、例えば、系統構成(図示せず)と、想定事故対策リスト21T1(図22参照)と、制約設備リスト21T2(図26参照)と、が記憶されている。それら系統構成、想定事故対策リスト21T1及び制約設備リスト21T2は、系統管理サーバ320から通信ネットワーク300を介して、系統安定化システム10に送信される。 Return to Figure 2. In addition to the program database 25, the system stabilization system 10 is provided with four databases (an equipment database 21, a system database 22, a divided region database 23, and a division result database 24). In the equipment database 21, for example, a system configuration (not shown), an assumed accident countermeasure list 21T1 (see FIG. 22), and a restricted equipment list 21T2 (see FIG. 26) are stored as equipment data D1. . The system configuration, the assumed accident countermeasure list 21T1 and the restricted equipment list 21T2 are transmitted from the system management server 320 to the system stabilization system 10 via the communication network 300.
 系統構成とは、電力系統100の構成を示す情報である。系統構成には、例えば、電源120と、変圧器130と、負荷140と、ノード150と、線路160と、センサ170と、開閉器180及び通信装置190の、配置及び接続構成が記憶されている。 The system configuration is information indicating the configuration of the power system 100. In the system configuration, for example, the arrangement and connection configuration of the power source 120, the transformer 130, the load 140, the node 150, the line 160, the sensor 170, the switch 180, and the communication device 190 are stored. .
 想定事故対策リスト21T1には、想定事故に対する安定化対策が記憶される。電力系統100の運用者が、発生しうる事故と、その事故が生じた場合に安定した電力供給を維持するための対策とを、事前に設定している。 The anti-accident countermeasure list 21T1 stores stabilization countermeasures for the probable accident. The operator of the electric power system 100 sets in advance an accident that may occur and measures to maintain a stable power supply when the accident occurs.
 なお、安定化対策とは、地絡または短絡等の事故が生じた設備を切り離したり、電源120または負荷140をノード150から切り離したりする制御である。つまり、安定化対策とは、電力系統100に含まれる設備を用いて、事故に対応するための一連の制御処理である。安定化対策のために使用される設備を、安定化設備と呼ぶ。 Note that the stabilization measure is control that disconnects equipment in which an accident such as a ground fault or a short circuit has occurred, or disconnects the power supply 120 or the load 140 from the node 150. That is, the stabilization measure is a series of control processes for responding to an accident using the equipment included in the power system 100. Equipment used for stabilization measures is called stabilization equipment.
 制約設備リスト21T2には、例えば、病院、通信拠点設備、消防署、市役所、変電所等の重要な負荷、及び/または、送電上のハブの、リストが記憶される。 In the restricted equipment list 21T2, for example, a list of important loads such as hospitals, communication base equipment, fire departments, city halls, substations, and / or hubs on power transmission is stored.
 系統データベース22には、系統データD2として、例えば、センサ情報テーブル22T1、22T1A(図8参照。テーブル22T1とテーブル22T1Aを特に区別しない場合は、センサ情報テーブル22T1と呼ぶ)と、線路容量テーブル22T2(図13参照)と、設備構成変更情報22T3(図15参照)が記憶されている。 In the system database 22, as the system data D2, for example, sensor information tables 22T1 and 22T1A (refer to FIG. 8; unless specifically distinguished between the tables 22T1 and 22T1A, they are referred to as the sensor information table 22T1) and a line capacity table 22T2 ( 13) and facility configuration change information 22T3 (see FIG. 15) are stored.
 センサ情報310Aは、図4で説明した通り、センサ170から通信装置190及び通信ネットワーク300を介して、系統安定化システム10に送信される。センサ情報テーブル22T1は、受信されたセンサ情報310Aを記憶する。線路容量テーブル22T2及び設備構成変更情報22T3は、系統管理サーバ320から通信ネットワーク300を介して、系統安定化システム10に送信される。 The sensor information 310A is transmitted from the sensor 170 to the system stabilization system 10 via the communication device 190 and the communication network 300 as described in FIG. The sensor information table 22T1 stores the received sensor information 310A. The line capacity table 22T2 and the equipment configuration change information 22T3 are transmitted from the system management server 320 to the system stabilization system 10 via the communication network 300.
 線路容量情報22T2は、線路160毎の容量情報を記憶する。設備構成変更情報22T3は、電力系統100の設備構成の変更に関する情報を記憶する。系統運用者は、系統管理サーバ320を介して、電力系統100内の電源120と変圧器130と負荷140とノード150と線路160とセンサ170と開閉器180と通信装置190の、配置及び接続構成の変更点を時間断面毎に設定することができる。 The line capacity information 22T2 stores capacity information for each line 160. The equipment configuration change information 22T3 stores information related to a change in the equipment configuration of the power system 100. The system operator arranges and connects the power supply 120, transformer 130, load 140, node 150, line 160, sensor 170, switch 180, and communication device 190 in the power system 100 via the system management server 320. Can be set for each time section.
 分割領域データベース23は、分割領域データD3として、例えば、機能不良設備リスト(図示せず)と、想定事故安定判定リスト23T1(図23参照)と、分割領域リスト(図示せず)と、開閉器動作リスト(図示せず)とを記憶することができる。 The divided area database 23 includes, for example, a malfunction facility list (not shown), an assumed accident stability determination list 23T1 (see FIG. 23), a divided area list (not shown), and a switch as the divided area data D3. An action list (not shown) can be stored.
 機能不良設備リストは、機能不良設備判定プログラムCP11により作成される。機能不良設備判定プログラムCP11は、系統データに基づいて機能不良設備の有無を判定し、機能不良設備であると判定された設備を機能不良設備リストに登録する。 The malfunction facility list is created by the malfunction facility determination program CP11. The malfunctioning facility determination program CP11 determines whether or not there is a malfunctioning facility based on the system data, and registers the facility determined to be a malfunctioning facility in the malfunctioning facility list.
 分割領域リストは、分割領域計算プログラムCP13により作成される。分割領域計算プログラムCP13は、系統構成と機能不良設備リストと想定事故安定判定リスト23T1とに基づいて、分割すべきカットを全て算出し、それら算出されたカットを分割領域リストに登録する。 The divided area list is created by the divided area calculation program CP13. The divided area calculation program CP13 calculates all the cuts to be divided based on the system configuration, the malfunctioning facility list, and the assumed accident stability determination list 23T1, and registers the calculated cuts in the divided area list.
 想定事故安定判定リスト23T1は、想定事故安定判定プログラムCP12により作成される。想定事故安定判定リスト23T1には、機能不良設備を含んだ電力系統(不健全系統)内で想定事故が発生した場合に安定か否かが記憶される。どのような想定事故が生じ得るかは、系統運用者が決定することができる。 The assumed accident stability determination list 23T1 is created by the assumed accident stability determination program CP12. The assumed accident stability determination list 23T1 stores whether or not the accident is stable when an assumed accident occurs in an electric power system (unhealthy system) including a malfunctioning facility. The system operator can determine what types of accidents can occur.
 開閉器動作リストは、電力系統100を分割するための、開閉器180の動作を記憶している。即ち、算出されたカットに沿って電力系統100を分割するために、どの開閉器180の開閉状態をどのように制御すべきかを示す情報が、開閉器動作リストに記憶されている。 The switch operation list stores the operations of the switch 180 for dividing the power system 100. That is, information indicating how to control the switching state of which switch 180 in order to divide the power system 100 along the calculated cut is stored in the switch operation list.
 分割結果データベース24には、分割結果データD4として、例えば、各分割領域の需給バランスを示すデータ(図31参照)と、分割の前後における想定事故対策リストの変化を示すデータ(図32参照)とが記憶されている。 In the division result database 24, as the division result data D4, for example, data indicating the supply and demand balance of each divided area (see FIG. 31) and data indicating changes in the assumed accident countermeasure list before and after the division (see FIG. 32) Is remembered.
 分割領域の需給バランスは、分割領域計算プログラムCP13の計算結果として求められる。各分割領域の需給バランスを示すデータには、各分割領域における発電量と負荷量のバランス変化を示すデータが記憶されている。例えば、分割領域において、発電量と負荷量がアンバランスの場合、その分割領域では周波数が変動する。そこで、分割領域の需給バランスを示すデータには、周波数の時間変化を示すデータを含めている。 The supply and demand balance of the divided area is obtained as a calculation result of the divided area calculation program CP13. The data indicating the balance between supply and demand in each divided area stores data indicating the balance change between the power generation amount and the load amount in each divided area. For example, when the power generation amount and the load amount are unbalanced in a divided area, the frequency varies in the divided area. Therefore, the data indicating the supply and demand balance of the divided areas includes data indicating the time change of the frequency.
 想定事故対策リストには、分割前の想定事故に対する安定化対策のリストと、分割後の想定事故に対する安定化対策のリストとが記憶されている。 The list of anticipated accident countermeasures stores a list of stabilization measures for the presumed accident before the split and a list of stabilization measures for the postulated accident.
 図5のフローチャートは、系統安定化システム10で実施される系統安定化処理の全体を示す。最初に、系統安定化システム10は、設備データD1を受信して記憶し(S1)、続いて、系統データD2を受信して記憶する(S2)。 The flowchart in FIG. 5 shows the entire system stabilization process performed by the system stabilization system 10. First, the system stabilization system 10 receives and stores the facility data D1 (S1), and then receives and stores the system data D2 (S2).
 系統安定化システム10は、機能不良設備判定プログラムCP11により系統データD2を演算処理することで、機能不良設備を判定する(S3)。さらに、系統安定化システム10は、機能不良設備リストを作成して記憶し、機能不良設備リストを表示装置11に表示させる(S3)。 The system stabilization system 10 determines a malfunctioning facility by processing the system data D2 by the malfunctioning facility determination program CP11 (S3). Further, the system stabilization system 10 creates and stores a malfunctioning equipment list, and displays the malfunctioning equipment list on the display device 11 (S3).
 系統安定化システム10は、全ての想定事故について、以下のステップS5及びステップS6を繰り返し実行する(S4)。 The system stabilization system 10 repeatedly performs the following step S5 and step S6 for all assumed accidents (S4).
 系統安定化システム10は、想定事故安定判定プログラムCP12により、機能不良設備が想定事故に対して安定であるかを判定する(S5)。機能不良設備が想定事故に対して安定であるとは、機能不良設備に関連する想定事故が生じても、安定した電力供給を維持できる場合である。これに対し、機能不良設備が不安定であるとは、機能不良設備に関連する想定事故が生じると、安定した電力供給を行うことができない可能性がある場合である。 The system stabilization system 10 determines whether the malfunctioning facility is stable against the assumed accident by the assumed accident stability determination program CP12 (S5). A malfunctioning facility is stable with respect to an assumed accident is a case where a stable power supply can be maintained even if an assumption accident related to the malfunctioning facility occurs. On the other hand, the malfunctioning facility is unstable when there is a possibility that stable power supply cannot be performed when an assumed accident related to the malfunctioning facility occurs.
 系統安定化システム10は、機能不良設備が想定事故に対して不安定であると判定された場合(S5:不安定)、分割領域計算プログラムCP13により分割領域を算出して記憶する(S6)。 When it is determined that the malfunctioning facility is unstable with respect to the assumed accident (S5: unstable), the system stabilization system 10 calculates and stores the divided area by the divided area calculation program CP13 (S6).
 系統安定化システム10は、分割領域計算プログラムCP13により最適分割領域を計算し、その算出結果を記憶する(S7)。系統安定化システム10は、最適な分割領域に関する画面(図30で後述)を作成し、系統運用者に提示する。 The system stabilization system 10 calculates the optimum divided area by the divided area calculation program CP13 and stores the calculation result (S7). The system stabilization system 10 creates a screen (to be described later with reference to FIG. 30) relating to the optimum divided area and presents it to the system operator.
 系統安定化システム10は、系統運用者の承認、選択または指示を確認した後、最適な分割領域を生成するための制御指令(制御情報310B)を作成して、所定の開閉器180に送信する(S8)。所定の開閉器180とは、選択されたカットに沿って不健全系統を電力系統100から切り離すために必要な開閉器である。以下、図5に示す各ステップについて詳細に説明する。 After confirming the approval, selection or instruction of the system operator, the system stabilization system 10 creates a control command (control information 310B) for generating an optimal divided area and transmits it to a predetermined switch 180. (S8). The predetermined switch 180 is a switch necessary for disconnecting the unhealthy system from the power system 100 along the selected cut. Hereinafter, each step shown in FIG. 5 will be described in detail.
 ステップS1では、設備データD1を取得し、設備データベース21に記憶する。系統安定化システム10は、電力系統100の系統構成と想定事故対策リスト(図22)と制約設備リスト(図26)を、例えば、系統管理サーバ320から受信してメモリ14に書き出し、設備データベース21に記憶する。 In step S1, the equipment data D1 is acquired and stored in the equipment database 21. The system stabilization system 10 receives the system configuration of the power system 100, the assumed accident countermeasure list (FIG. 22), and the restricted equipment list (FIG. 26) from, for example, the system management server 320 and writes them to the memory 14, and the equipment database 21 To remember.
 図22を参照する。図22は、想定事故対策リスト21T1の一例を示している。このリスト21T1は、想定事故に対応するための安全対策を管理する。想定事故対策リスト21T1は、例えば、想定事故の番号21T1C1と、想定事故の内容21T1C2と、安定化対策の内容21T1C3とを管理する。 Refer to FIG. FIG. 22 shows an example of the assumed accident countermeasure list 21T1. This list 21T1 manages safety measures for responding to an assumed accident. The assumed accident countermeasure list 21T1 manages, for example, an assumed accident number 21T1C1, an assumed accident content 21T1C2, and a stabilization countermeasure content 21T1C3.
 想定事故の内容21T1C2は、想定事故の発生箇所と、想定事故の様相とが記憶されている。安定化対策の内容21T1C3は、想定事故に対処するための安定化設備を特定する情報と、安定化設備の動作とを記憶する。 The content of the assumed accident 21T1C2 stores the place where the assumed accident occurred and the aspect of the assumed accident. The content 21T1C3 of the stabilization measure stores information for specifying the stabilization facility for coping with the assumed accident and the operation of the stabilization facility.
 例えば、リスト21T1の1行目には、線路160で3φ4LG(三相四線地絡事故)が発生した場合、線路160を開放除去することで安定化することができることが記憶されている。なお、3φ4LGは、線路が二回線ある場合に発生しうる事故である。一回線=三相なので、二回線の場合は合計6相となる。線路160及び線路161は、それぞれ二回線以上存在する。 For example, it is stored in the first row of the list 21T1 that when 3φ4LG (three-phase four-wire ground fault) occurs on the line 160, the line 160 can be stabilized by opening and removing. Note that 3φ4LG is an accident that may occur when there are two lines. Since one line = three phases, there are a total of six phases in the case of two lines. There are two or more lines 160 and 161, respectively.
 図26は、制約設備リスト21T2の一例を示している。制約設備リスト21T2は、分割領域の判定に際して考慮される制約条件を管理する。例えば、重要施設を有するノード150は、健全系統に含まれている必要がある。 FIG. 26 shows an example of the restricted equipment list 21T2. The constrained equipment list 21T2 manages constraining conditions that are taken into account when determining the divided areas. For example, the node 150 having an important facility needs to be included in a healthy system.
 制約設備リスト21T2は、例えば、設備番号21T2C1と、制約された設備の名称21T2C2と、制約された設備が接続されているノード21T2C3と、制約された設備の位置(設置箇所)21T2C4とを管理する。 The restricted equipment list 21T2 manages, for example, the equipment number 21T2C1, the restricted equipment name 21T2C2, the node 21T2C3 to which the restricted equipment is connected, and the restricted equipment position (installation location) 21T2C4. .
 制約設備とは、例えば、病院、消防署、変電所、通信基地局等の、災害または障害発生時においても電力供給を継続すべき重要な設備である。 Constraint equipment is important equipment that should continue to supply power even in the event of a disaster or failure, such as a hospital, fire department, substation, or communication base station.
 図5に戻る。ステップS2では、系統データD2を取得する。系統安定化システム10は、センサ情報22T1(図8、図11)と、設備構成変更情報22T3(図15)と、線路容量情報22T2(図13)を、各センサ190及び系統管理サーバ320から受信して、系統データベース22に記憶する。 Return to FIG. In step S2, system data D2 is acquired. The system stabilization system 10 receives sensor information 22T1 (FIGS. 8 and 11), facility configuration change information 22T3 (FIG. 15), and line capacity information 22T2 (FIG. 13) from each sensor 190 and the system management server 320. And stored in the system database 22.
 図8を参照する。図8は、センサ情報テーブル22T1の一例を示している。センサ情報テーブル22T1は、センサ170から収集したセンサ情報を管理する。センサ情報テーブル22T1は、例えば、時刻22T1C1と、線路潮流P 22T1C2と、データ受信状況22T1C3と、欠損に関する情報22T1C4とを管理する。 Refer to FIG. FIG. 8 shows an example of the sensor information table 22T1. The sensor information table 22T1 manages the sensor information collected from the sensor 170. The sensor information table 22T1 manages, for example, the time 22T1C1, the line power flow P 22T1C2, the data reception status 22T1C3, and the information 22T1C4 related to the loss.
 線路潮流P 22T1C2では、線路を識別するための識別番号と、線路の始端ノードにおける潮流の値と、線路の終端ノードにおける潮流の値とを対応付けて管理する。データ受信状況22T1C3では、センサ170から受信する線路潮流Pの状態(受信できたか否か)を記録する。欠損情報22T1C4には、受信状況22T1C3の値に基づいて、設備欠損が生じたか否かを示す判定値が記録される。 The line power flow P 22T1C2 manages the identification number for identifying the line, the value of the power flow at the start node of the line, and the value of the power flow at the terminal node of the line in association with each other. In the data reception status 22T1C3, the state of the line power flow P received from the sensor 170 (whether or not it has been received) is recorded. In the missing information 22T1C4, a determination value indicating whether or not equipment loss has occurred is recorded based on the value of the reception status 22T1C3.
 図11を参照する。図11は、センサ情報テーブルの他の例22T1Aを示す。センサ情報テーブル22T1Aは、図8に示すテーブル22T1の欠損情報22T1C4に代えて、センサ情報の異常を示す異常情報22T1C5を備えている。図11のテーブル22T1Aにおいて、データ受信状況22T1C3には、センサ170から受信する線路潮流Pの状態として、線路潮流Pの値に異常が発見されたか否かを示す値が記憶される。異常情報22T1C5には、受信状況22T1C3の値に基づいて、設備に異常が生じたか否かを示す判定値が記録される。 Refer to FIG. FIG. 11 shows another example 22T1A of the sensor information table. The sensor information table 22T1A includes abnormality information 22T1C5 indicating abnormality of the sensor information, instead of the missing information 22T1C4 of the table 22T1 illustrated in FIG. In the table 22T1A of FIG. 11, the data reception status 22T1C3 stores a value indicating whether or not an abnormality has been found in the value of the line power flow P as the state of the line power flow P received from the sensor 170. In the abnormality information 22T1C5, a determination value indicating whether an abnormality has occurred in the facility is recorded based on the value of the reception state 22T1C3.
 図8のセンサ情報テーブル22T1は、センサ情報を所定時間以上継続して取得できなかった場合に、設備が欠損したことを判定するために用いられる。図11のセンサ情報テーブル22T1Aは、センサ情報に所定時間以上の異常が発生した場合に、設備に異常が生じたことを判定するために用いられる。本実施例では、図8に示すテーブル22T1と、図11に示すテーブル22T1Aの両方を備える場合を説明するが、いずれか一方のみを備える構成でもよい。 The sensor information table 22T1 in FIG. 8 is used to determine that equipment has been lost when sensor information has not been continuously acquired for a predetermined time or more. The sensor information table 22T1A in FIG. 11 is used to determine that an abnormality has occurred in the facility when an abnormality has occurred in the sensor information for a predetermined time or longer. In the present embodiment, a case where both the table 22T1 shown in FIG. 8 and the table 22T1A shown in FIG. 11 are provided will be described, but a configuration including only one of them may be used.
 図15を参照する。図15は、設備構成変更情報22T3の一例を示す。設備構成変更情報22T3は、電力系統100内の各設備の状態を管理する。設備構成変更情報22T3は、所定時間毎に(22T3C1)、設備の状態(22T3C2)を管理する。図15に示す例では、第1行目に、線路160が14時30分30秒から停止されることが記録されている。 Refer to FIG. FIG. 15 shows an example of the equipment configuration change information 22T3. The facility configuration change information 22T3 manages the state of each facility in the power system 100. The equipment configuration change information 22T3 manages the equipment state (22T3C2) every predetermined time (22T3C1). In the example shown in FIG. 15, it is recorded in the first row that the line 160 is stopped from 14:30:30.
 図5のステップS3に戻る。機能不良設備判定プログラムCP11は、機能不良設備の有無を判定し、その結果を記憶し、かつ、その結果を表示する。機能不良設備を判定する方法には、以下に述べるように複数ある。そこで、図6、図10、図14、図17を参照して、機能不良設備の判定方法を説明する。以下の各判定方法の全てを備える構成でもよし、それらのうちいずれか一つ以上の判定方法を備える構成でもよい。いずれの構成も本発明の範囲に含まれる。 Return to step S3 in FIG. The malfunctioning facility determination program CP11 determines whether or not there is a malfunctioning facility, stores the result, and displays the result. There are a plurality of methods for determining a malfunctioning facility as described below. Therefore, with reference to FIG. 6, FIG. 10, FIG. 14, and FIG. A configuration including all of the following determination methods, or a configuration including any one or more determination methods among them may be employed. Any configuration is included in the scope of the present invention.
 まず最初に図6を参照して、第1の機能不良設備判定方法を説明する。図6に示す第1の判定方法は、センサ情報の欠損に基づいて、機能不良設備の存在を判定する。 First, referring to FIG. 6, the first malfunctioning equipment determination method will be described. The first determination method illustrated in FIG. 6 determines the presence of a malfunctioning facility based on the lack of sensor information.
 機能不良設備判定プログラムCP11(以下、判定プログラムCP11と略記する場合がある)は、センサ170からセンサ情報(線路潮流P)を受信して系統データベース22に記憶する(S10)。 The malfunctioning facility determination program CP11 (hereinafter sometimes abbreviated as the determination program CP11) receives sensor information (line power flow P) from the sensor 170 and stores it in the system database 22 (S10).
 判定プログラムCP11は、データ欠損が所定時間以上継続しているか判定する(S20)。データ欠損が継続している場合(S20:YES)、判定プログラムCP11は、データ欠損の生じているセンサ170の位置を特定して記憶する(S30)。判定プログラムCP11は、データ欠損の生じているセンサ170の近傍に有る設備を特定し(S40)、その特定された設備を機能不良設備であると判定して、分割領域データベース23に記憶する(S50)。ステップS50で記憶された機能不良設備に関する情報は、画面に出力することもできる。 The determination program CP11 determines whether data loss continues for a predetermined time or more (S20). When the data loss continues (S20: YES), the determination program CP11 specifies and stores the position of the sensor 170 where the data loss occurs (S30). The determination program CP11 specifies equipment near the sensor 170 in which data loss occurs (S40), determines that the specified equipment is a malfunctioning equipment, and stores it in the divided region database 23 (S50). ). Information regarding the malfunctioning equipment stored in step S50 can also be output on the screen.
 ステップS10において、センサ170の線路潮流Pを通信ネットワーク300を介して系統安定化システム10に送信する場合、図7に示すように、中継装置340を用いてもよい。中継装置340は、複数のセンサ170からのセンサ情報を受信し、それらセンサ情報を集約して系統安定化システム10に送信することができる。 In step S10, when the line flow P of the sensor 170 is transmitted to the grid stabilization system 10 via the communication network 300, a relay device 340 may be used as shown in FIG. The relay device 340 can receive sensor information from the plurality of sensors 170, aggregate the sensor information, and transmit the collected sensor information to the system stabilization system 10.
 ステップS20では、図8に示すように、例えば、30秒間の計測周期において、5分間以上センサ情報を受信できなかった場合、データ欠損が発生したと判定する。判定の閾値(所定時間)を5分間に設定するのは、例えば30秒間のように所定時間を短く設定すると、通常の通信エラーをデータ欠損として誤判定する可能性があるためである。図6の例では、データ欠損が継続して検出された場合(S20:YES)、判定プログラムCP11は、機能不良設備が発生したと判定する。 In step S20, as shown in FIG. 8, for example, if sensor information cannot be received for 5 minutes or more in a measurement period of 30 seconds, it is determined that data loss has occurred. The reason why the determination threshold (predetermined time) is set to 5 minutes is that if the predetermined time is set short, for example, 30 seconds, a normal communication error may be erroneously determined as data loss. In the example of FIG. 6, when data loss is continuously detected (S20: YES), the determination program CP11 determines that a malfunctioning facility has occurred.
 なお、以下の説明においても同様であるが、上述の5分間または30秒間等の具体的な数値は、実施例の理解のために用意された値であり、本発明の範囲は上記具体的数値に限定されない。 Although the same applies to the following description, the specific numerical values such as the above-mentioned 5 minutes or 30 seconds are values prepared for understanding the examples, and the scope of the present invention is within the above specific numerical values. It is not limited to.
 図9は、線路160でデータ欠損200が生じた場合の例である。図9は、第1の分割系統110と第2の分割系統111との間を接続する複数の線路160、161のうち、一方の線路160に設けられたセンサ170からのセンサ情報が所定時間以上、系統安定化システム10に届かない状態を示す。センサ情報(線路潮流Pのデータ)を受信できないセンサ170の位置200を、図9ではX印で示している。 FIG. 9 shows an example where a data loss 200 occurs on the line 160. FIG. 9 shows that the sensor information from the sensor 170 provided on one of the plurality of lines 160 and 161 connecting the first divided system 110 and the second divided system 111 exceeds a predetermined time. The state which does not reach the system stabilization system 10 is shown. The position 200 of the sensor 170 that cannot receive the sensor information (data of the line power flow P) is indicated by X in FIG.
 なお、図9では、第2の分割系統111に、第2の接続構成114を介して、第3の分割系統113が接続されている。さらに、図9の構成を説明する。第2の分割系統111のノード152から第1の分割系統110のノード150に向けて、線路160には線路潮流P0の電力が流れている。第2の分割系統111のノード153から第1の分割系統110のノード151に向けて、線路161には線路潮流P1の電力が流れている。第3の分割系統113のノード156から第2の分割系統111のノード154に向けて、線路162には線路潮流P2の電力が流れている。第2の分割系統111のノード155から第3の分割系統113のノード157に向けて、線路163には線路潮流P3の電力が流れている。 In FIG. 9, the third divided system 113 is connected to the second divided system 111 via the second connection configuration 114. Further, the configuration of FIG. 9 will be described. From the node 152 of the second divided system 111 to the node 150 of the first divided system 110, the power of the line tidal current P0 flows through the line 160. From the node 153 of the second divided system 111 toward the node 151 of the first divided system 110, the power of the line power flow P1 flows through the line 161. From the node 156 of the third divided system 113 to the node 154 of the second divided system 111, the power of the line power flow P2 flows through the line 162. From the node 155 of the second divided system 111 to the node 157 of the third divided system 113, the power of the line power P3 flows through the line 163.
 図10を参照して、第2の機能不良設備判定方法を説明する。図10に示す第2の判定方法は、センサ170からのセンサ情報が所定時間以上異常値を示す場合に、機能不良設備が発生したと判定する。 Referring to FIG. 10, the second malfunctioning equipment determination method will be described. The second determination method illustrated in FIG. 10 determines that a malfunctioning facility has occurred when the sensor information from the sensor 170 indicates an abnormal value for a predetermined time or more.
 判定プログラムCP11は、センサ170からセンサ情報(線路潮流P)を受信して系統データベース22に記憶し(S11)、センサ情報のデータに異常値が継続しているかを判定する(S21)。 The determination program CP11 receives the sensor information (track current P) from the sensor 170, stores it in the system database 22 (S11), and determines whether the abnormal value continues in the sensor information data (S21).
 データ異常値が継続している場合(S21:YES)、判定プログラムCP11は、異常値を出力しているセンサ170の位置を特定して記憶する(S31)。判定プログラムCP11は、異常値を示すセンサ170の近傍の設備を特定し(S41)、その設備を機能不良設備であると判定して、分割領域データベース23に記憶する(S51)。図6で述べたと同様に、機能不良設備であると判定された設備等の情報を、画面に出力してユーザに提示することもできる。 If the data abnormal value continues (S21: YES), the determination program CP11 specifies and stores the position of the sensor 170 outputting the abnormal value (S31). The determination program CP11 specifies equipment in the vicinity of the sensor 170 indicating an abnormal value (S41), determines that the equipment is a malfunctioning equipment, and stores it in the divided region database 23 (S51). As described with reference to FIG. 6, information on equipment determined to be malfunctioning equipment can be output to the screen and presented to the user.
 センサ情報に含まれる線路潮流Pの値が異常であるか否かは、図13に示す線路容量テーブル22T2の値と比較することで判断される。センサ情報に含まれている線路潮流Pの値が、テーブル22T2に規定されている線路容量の値を越えた場合は、データ異常値であると判定される。 Whether or not the value of the line power flow P included in the sensor information is abnormal is determined by comparing with the value of the line capacity table 22T2 shown in FIG. When the value of the line power flow P included in the sensor information exceeds the value of the line capacity defined in the table 22T2, it is determined that the data is an abnormal value.
 データ異常値が継続しているか否かを判定するための所定時間は、例えば、計測周期が30秒の場合、2分間程度の値に設定される。例えば、30秒程度の短い時間だけ、データに異常が生じた場合は、電力系統を安定化させるための制御を実行する必要がないと考えられるためである。 The predetermined time for determining whether or not the data abnormal value continues is set to a value of about 2 minutes when the measurement cycle is 30 seconds, for example. For example, it is considered that it is not necessary to execute control for stabilizing the power system when abnormality occurs in the data for a short time of about 30 seconds.
 図12は、或る設備210が原因となって、線路160でデータ異常値が生じた場合の例を示している。 FIG. 12 shows an example in which an abnormal data value occurs on the line 160 due to a certain equipment 210.
 図14を参照して第3の機能不良設備判定方法を説明する。図14に示す第3の判定方法では、保守作業等により設備構成が変更される場合に、その変更対象の設備を機能不良設備であると判定する。 Referring to FIG. 14, the third malfunctioning equipment determination method will be described. In the third determination method illustrated in FIG. 14, when the equipment configuration is changed due to maintenance work or the like, the equipment to be changed is determined to be a malfunctioning equipment.
 判定プログラムCP11は、系統管理サーバ320から設備構成変更情報を受信し、系統データベース22に記憶する(S12)。判定プログラムCP11は、設備構成変更情報に基づいて、変更対象の設備を特定し(S22)、変更対象設備を機能不良設備であると判定して、分割領域データベース23に記憶する(S32)。機能不良設備であると判定された設備に関する情報は、画面を介してユーザに提示することもできる。 The determination program CP11 receives the equipment configuration change information from the system management server 320 and stores it in the system database 22 (S12). The determination program CP11 identifies the facility to be changed based on the facility configuration change information (S22), determines that the facility to be changed is a malfunctioning facility, and stores it in the divided region database 23 (S32). Information regarding equipment determined to be malfunctioning equipment can also be presented to the user via a screen.
 図15の設備構成変更情報22T3の1行目に示すように、例えば、線路160が2011/06/28の14:30:30から停止される場合、その線路160は正常に使用できない機能不良設備であると判定することができる。 As shown in the first row of the equipment configuration change information 22T3 in FIG. 15, for example, when the line 160 is stopped from 14:30:30 on 2011/06/28, the line 160 cannot function normally. It can be determined that
 図16は、線路160で停止201が生じた場合の例を示している。 FIG. 16 shows an example when a stop 201 occurs on the line 160.
 図17を参照して第4の機能不良設備判定方法を説明する。図17に示す第4の判定方法では、災害の発生を予測する情報に基づいて、機能不良設備を判定する。 Referring to FIG. 17, a fourth malfunctioning equipment determination method will be described. In the fourth determination method illustrated in FIG. 17, a malfunctioning facility is determined based on information for predicting the occurrence of a disaster.
 図18の全体構成図に示すように、系統安定化システム10は、通信ネットワーク300を介して、災害予測サーバ330からの災害予測情報を受信できる。災害予測サーバ330は、例えば、台風または地震のような災害がいつ頃どこで起きるかを予測し、その予測結果を系統安定化システム10に送信する。 18, the system stabilization system 10 can receive disaster prediction information from the disaster prediction server 330 via the communication network 300. The disaster prediction server 330 predicts when and where a disaster such as a typhoon or an earthquake occurs, and transmits the prediction result to the system stabilization system 10.
 判定プログラムCP11は、災害予測サーバ330から災害予測情報を受信して、系統データベース22に記憶する(S13)。判定プログラムCP11は、災害発生が予測される地理的範囲内に電力系統100の設備が存在するかを判定する(S23)。判定プログラムCP11は、災害の発生が予測された地域内の設備を特定し、その設備を機能不良設備であると判定して、分割領域データベース23に記憶する(S33)。上記同様に、機能不良設備であると判定された設備に関する情報は、画面に出力することができる。 The determination program CP11 receives the disaster prediction information from the disaster prediction server 330 and stores it in the system database 22 (S13). The determination program CP11 determines whether the facilities of the power system 100 exist within the geographical range where the occurrence of a disaster is predicted (S23). The determination program CP11 identifies the facility in the area where the occurrence of the disaster is predicted, determines that the facility is a malfunctioning facility, and stores it in the divided region database 23 (S33). Similarly to the above, information regarding equipment determined to be malfunctioning equipment can be output to the screen.
 図19は、災害予測情報330T1の一例を示す。災害予測情報330T1は、例えば、被災する可能性のある設備に関する情報330T1C1と、発生が予測される災害に関する情報330T1C2とを管理する。 FIG. 19 shows an example of the disaster prediction information 330T1. The disaster prediction information 330T1 manages, for example, information 330T1C1 related to facilities that may be damaged and information 330T1C2 related to disasters that are predicted to occur.
 被災可能性のある設備に関する情報330T1C1は、例えば、線路を特定する情報と、線路の始端ノード及び終端ノードをそれぞれ特定する情報と、設備の位置情報とを備えている。災害に関する情報330T1C2は、例えば、災害発生が予測される地域の位置情報と、現時点から所定時間内の発生確率とを備えることができる。さらに、災害の種類、災害による被害の程度等を情報330T1C2に含めてもよい。図19では、その1行目に示すように、線路160において、今から所定時間(例えば1時間)以内に、50%の確率で災害が生じることが記録されている。 The information 330T1C1 related to the facilities that may be damaged includes, for example, information for identifying the track, information for identifying the start and end nodes of the track, and location information for the facility. The disaster-related information 330T1C2 can include, for example, location information of an area where a disaster is predicted and an occurrence probability within a predetermined time from the current time. Furthermore, the information 330T1C2 may include the type of disaster and the degree of damage caused by the disaster. In FIG. 19, as shown in the first row, it is recorded that a disaster occurs with a probability of 50% within a predetermined time (for example, 1 hour) from now on the line 160.
 図20は、線路160の近くで災害の発生が予測された場合の例である。図20に、点線で示す円は、災害の発生が予測される地域202を示す。 FIG. 20 is an example in the case where a disaster is predicted near the track 160. In FIG. 20, a circle indicated by a dotted line indicates an area 202 where a disaster is predicted to occur.
 図5のステップS4に戻る。想定事故安定判定プログラムCP12は、機能不良設備判定プログラムCP11により検出された機能不良設備について、設備データベース21の想定事故対策リスト21T1に記載の各想定事故に対する安定性(安定か否か)をそれぞれ判定する。 Return to step S4 in FIG. The assumed accident stability determination program CP12 determines the stability (whether stable) for each assumed accident described in the assumed accident countermeasure list 21T1 of the equipment database 21 for the malfunctioning equipment detected by the malfunctioning equipment judgment program CP11. To do.
 想定事故安定判定プログラムCP12は、機能不良設備について、想定事故対策リスト21T1に記載された想定事故対策が安定か判定する(S5)。安定な場合はステップS4に戻り、不安定な場合はステップS6に移る。 The assumed accident stability determination program CP12 determines whether the assumed accident countermeasures described in the assumed accident countermeasure list 21T1 are stable for the malfunctioning equipment (S5). If stable, the process returns to step S4. If unstable, the process proceeds to step S6.
 図5のステップS5の詳細を、図21のフローチャートを参照して説明する。図18は、想定事故に対する安定性(安定か否か)を判定する処理のフローチャートである。 The details of step S5 in FIG. 5 will be described with reference to the flowchart in FIG. FIG. 18 is a flowchart of processing for determining stability (whether stable or not) against an assumed accident.
 想定事故安定判定プログラムCP12は、想定事故対策リスト21T1に記載の、想定事故に対処するための安定化設備を読み込む(S100)。想定事故安定判定プログラムCP12は、ステップS100で読み込んだ安定化設備とステップS3で判定された機能不良設備とを比較する(S200)。想定事故安定判定プログラムCP12は、その比較結果に基づいて安定であるか否かを判定し、その判定結果を記憶する(S300)。 The assumed accident stability determination program CP12 reads the stabilization equipment for dealing with the assumed accident described in the assumed accident countermeasure list 21T1 (S100). The assumed accident stability determination program CP12 compares the stabilization equipment read in step S100 with the malfunctioning equipment determined in step S3 (S200). The assumed accident stability determination program CP12 determines whether or not the accident is stable based on the comparison result, and stores the determination result (S300).
 図23は、想定事故に対して安定であるか否かを判定した結果を記憶する想定事故安定判定リスト23T1の一例である。想定事故安定判定リスト23T1は、例えば、想定事故の番号23T1C1と、想定事故の内容23T1C2と、安定化対策の内容23T1C3と、機能不良設備を特定する情報23T1C4と、機能不良設備と安定化設備とが一致するか判定する一致フラグ23T1C5とを管理する。 FIG. 23 is an example of an assumed accident stability determination list 23T1 that stores a result of determining whether or not the accident is stable. The assumed accident stability determination list 23T1 includes, for example, an assumed accident number 23T1C1, an assumed accident content 23T1C2, a stabilization measure content 23T1C3, information 23T1C4 for identifying a malfunctioning facility, a malfunctioning facility and a stabilization facility, And a match flag 23T1C5 for judging whether or not match.
 想定事故の内容23T1C2には、想定事故の発生箇所と、想定事故の様相(状況)が記憶される。安定化対策の内容21T1Cは、想定事故に対処して系統の安定化のために使用する安定化設備を特定する情報と、その安定化設備の動作を記憶する。 The content of the assumed accident 23T1C2 stores the location of the assumed accident and the aspect (situation) of the assumed accident. Stabilization countermeasure content 21T1C stores information for identifying a stabilization facility to be used for stabilizing a system in response to an assumed accident, and the operation of the stabilization facility.
 機能不良設備がいずれかの安定化設備と一致する場合、その機能不良設備は、想定事故に対して不安定であると判定される。これに対し、機能不良設備がいずれの安定化設備にも一致しない場合、その機能不良設備は、想定事故に対して安定であると判定される。 場合 If the malfunctioning equipment matches any stabilization equipment, the malfunctioning equipment is determined to be unstable with respect to the assumed accident. On the other hand, when the malfunctioning facility does not match any of the stabilization facilities, it is determined that the malfunctioning facility is stable against the assumed accident.
 図23の想定事故安定判定リスト23T1では、線路160が機能不良設備であると判定された場合を示す。この場合、機能不良設備である線路160は、1番目の安定化対策における安定化設備と一致するため、一致フラグ23T1C5に黒丸が設定される。不一致の場合、一致フラグには“-”が設定される。 23 shows a case where it is determined that the line 160 is a malfunctioning facility in the assumed accident stability determination list 23T1. In this case, since the line 160 which is a malfunctioning facility coincides with the stabilization facility in the first stabilization measure, a black circle is set in the coincidence flag 23T1C5. If they do not match, “−” is set in the match flag.
 図5のステップS6に戻る。分割領域計算プログラムCP13は、分割領域を算出して記憶する。ステップS6の詳細を、図24のフローチャートを用いて説明する。 Return to step S6 in FIG. The divided area calculation program CP13 calculates and stores the divided areas. Details of step S6 will be described with reference to the flowchart of FIG.
 分割領域計算プログラムCP13は、機能不良設備と正常設備と線路潮流Pをそれぞれメモリ14から読み込み(S200)、機能不良設備と正常設備とを分割しうる全てのカットを検出する(S210)。カットとは、機能不良設備を含む系統構成と、正常設備のみを含む系統構成とを分割するための領域間の境界である。つまり、ステップS210では、不健全系統を電力系統から切り離すための分割パターンを全て抽出する。 The divided area calculation program CP13 reads malfunctioning equipment, normal equipment, and line power flow P from the memory 14 (S200), and detects all cuts that can divide the malfunctioning equipment and normal equipment (S210). A cut is a boundary between regions for dividing a system configuration including a malfunctioning facility and a system configuration including only normal facilities. That is, in step S210, all the division patterns for separating the unhealthy system from the power system are extracted.
 分割領域計算プログラムCP13は、検出された各カットのうち、制約設備が含まれるカットを抽出する(S220)。分割領域計算プログラムCP13は、各カットのフェンス潮流(ΣP)をそれぞれ算出し、フェンス潮流が最小となるカットを判定して、メモリ14に記憶する(S230)。 The divided area calculation program CP13 extracts a cut including the restricted equipment from the detected cuts (S220). The divided area calculation program CP13 calculates the fence current (ΣP) for each cut, determines the cut that minimizes the fence current, and stores it in the memory 14 (S230).
 図27を参照して、フェンス潮流の算出例を説明する。分割系統110と分割系統111の間には、3つの線路160、161、162が設けられている。線路160の線路潮流をP1、線路161の線路潮流をP2、線路162の線路潮流をP3とする。 Referring to FIG. 27, an example of calculating the fence tide will be described. Three lines 160, 161, 162 are provided between the divided system 110 and the divided system 111. The line flow of the line 160 is P1, the line flow of the line 161 is P2, and the line flow of the line 162 is P3.
 図27の場合、分割系統110と分割系統111の間のフェンス潮流ΣPは、各潮流P1、P2、P3の合計値として求めることができる(ΣP=P1+P2+P3)。潮流の向きは、例えば、分割系統110から分割系統111に向かう方向を正とし、逆向きの潮流を負として扱うことができる。この場合、線路潮流P1は正の潮流、線路潮流P2と線路潮流P3はそれぞれ負の潮流であると定義することができる。フェンス潮流ΣPは、P1と(-P2)と(-P3)の和として求められる。 In the case of FIG. 27, the fence tide ΣP between the divided system 110 and the divided system 111 can be obtained as the total value of the tides P1, P2, and P3 (ΣP = P1 + P2 + P3). As for the direction of the tidal current, for example, the direction from the divided system 110 to the divided system 111 can be positive, and the reverse tidal current can be treated as negative. In this case, the line tide P1 can be defined as a positive tide, and the line tide P2 and the line tide P3 can each be defined as a negative tide. The fence power flow ΣP is obtained as the sum of P1, (−P2), and (−P3).
 図28を参照して、フェンス潮流の他の算出例を説明する。図28の例では、3つの分割系統110、111、113が存在しており、機能不良設備を含む分割系統110を他の2つの分割系統111、113から切り離す場合のフェンス潮流を算出する。 Referring to FIG. 28, another example of calculating the fence tide will be described. In the example of FIG. 28, there are three divided systems 110, 111, and 113, and the fence current when the divided system 110 including the malfunctioning facility is separated from the other two divided systems 111 and 113 is calculated.
 分割系統110と他の分割系統111、113との間のフェンス潮流ΣPは、分割系統110と分割系統111の間の線路潮流の和と、分割系統110と分割系統111の間の線路潮流の和とを合算して求める(ΣP=P1+P2+P3+P4+P5)。 The fence current ΣP between the divided system 110 and the other divided systems 111 and 113 is the sum of the line current between the divided system 110 and the divided system 111 and the sum of the line current between the divided system 110 and the divided system 111. (ΣP = P1 + P2 + P3 + P4 + P5).
 図29を参照して、機能不良設備を含む不健全系統を電力系統から分割するためのカットを抽出する様子を説明する。図29の例では、4個のノードN1~N4が電力系統に含まれており、ノードN2が機能不良設備であり、ノードN3が制約設備であり、ノードN1及びN4が正常設備である。 Referring to FIG. 29, a description will be given of how to extract a cut for dividing an unhealthy system including a malfunctioning facility from an electric power system. In the example of FIG. 29, four nodes N1 to N4 are included in the power system, the node N2 is a malfunctioning facility, the node N3 is a restriction facility, and the nodes N1 and N4 are normal facilities.
 各ノード間の線路潮流には、理解のために具体的な数値を設定している。ノードN2からノードN1に向かう線路潮流の値は、4である(P=4)。ノードN3からノードN2に向かう線路潮流の値は、3である(P=3)。ノードN3からノードN1に向かう線路潮流の値も、3である(P=3)。ノードN1からノードN4に向かう線路潮流の値は、1である(P=1)。ノードN3からノードN4に向かう線路潮流の値は、5である(P=5)。 ¡Specific numerical values are set for the line flow between nodes for understanding. The value of the line power flow from the node N2 toward the node N1 is 4 (P = 4). The value of the line power flow from the node N3 toward the node N2 is 3 (P = 3). The value of the line power flow from the node N3 to the node N1 is also 3 (P = 3). The value of the line power flow from the node N1 to the node N4 is 1 (P = 1). The value of the line power flow from the node N3 to the node N4 is 5 (P = 5).
 以下、ノードN1~N4を設備N1~N4と呼び変えて説明する。分割領域計算プログラムCP13は、機能不良設備N2と正常設備N1、N3、N4とを分割する全てのカットC1~C4を抽出する。 Hereinafter, description will be made by referring to the nodes N1 to N4 as equipment N1 to N4. The divided area calculation program CP13 extracts all the cuts C1 to C4 that divide the malfunctioning facility N2 and the normal facilities N1, N3, and N4.
 第1のカットC1は、機能不良設備N2のみを含む系統構成(不健全系統)を、正常設備N1、N3、N4を含む系統構成(健全系統)から分離する。第2のカットC2は、機能不良設備N2と正常設備N3を含む不健全系統を、正常設備N1、N4を含む健全系統から分離する。第3のカットC3は、機能不良設備N2と正常設備N1を含む不健全系統を、正常設備N3、N4を含む健全系統から分離する。第4のカットC4は、機能不良設備N2と正常設備N1、N3を含む不健全系統を、正常設備N4のみを含む健全系統から分離する。 The first cut C1 separates the system configuration (unhealthy system) including only the malfunctioning facility N2 from the system configuration (sound system) including the normal facilities N1, N3, and N4. The second cut C2 separates the unhealthy system including the malfunctioning facility N2 and the normal facility N3 from the healthy system including the normal facilities N1 and N4. The third cut C3 separates the unhealthy system including the malfunctioning facility N2 and the normal facility N1 from the healthy system including the normal facilities N3 and N4. The fourth cut C4 separates the unhealthy system including the malfunctioning facility N2 and the normal facilities N1 and N3 from the healthy system including only the normal facility N4.
 上記4つのカットC1~C4のうち、第2のカットC2と第4のカットC4とでは、想定事故が発生した場合でも優先して電力を供給すべき制約設備N3が、不健全系統に含まれている。不健全系統は、想定事故への対応能力が低下しているため、制約設備N3が不健全系統に含まれるのは、電力の安定供給の面で好ましくない。従って、上記4つのカットC1~C4のうち、制約設備N3が健全系統に含まれるカットC1及びC3のみが、選択候補となる。 Of the above four cuts C1 to C4, the second cut C2 and the fourth cut C4 include the restricted facility N3 that should be preferentially supplied with power even in the case of an assumed accident. ing. Since the unsound system has a reduced ability to cope with an assumed accident, it is not preferable in terms of stable power supply that the restricted facility N3 is included in the unsound system. Therefore, among the four cuts C1 to C4, only the cuts C1 and C3 in which the constraint facility N3 is included in the healthy system are selection candidates.
 そこで、カットC1のフェンス潮流を算出すると、その値は1となる(ΣP=4-3=1)。カットC3のフェンス潮流を算出すると、その値は-6となる(ΣP=1-3-4=-6)。フェンス潮流ΣPを絶対値で比較すると、フェンス潮流ΣPが最小となるカットは、カットC3である。そこで図24のステップS230では、カットC3が選択される。 Therefore, when the fence tide of cut C1 is calculated, the value is 1 (ΣP = 4-3 = 1). When the fence current of cut C3 is calculated, the value is −6 (ΣP = 1−3−4 = −6). When the fence tide ΣP is compared with an absolute value, the cut that minimizes the fence tide ΣP is the cut C3. Therefore, in step S230 in FIG. 24, the cut C3 is selected.
 図5のステップS7に戻る。ステップS7では、ステップS6で算出された分割領域をメモリ14から読み出し、分割領域計算プログラムCP13によって、最適な分割領域を一つ算出して記憶する。最適な分割領域を算出する処理について、図25のフローチャートを用いて説明する。 Return to step S7 in FIG. In step S7, the divided area calculated in step S6 is read from the memory 14, and one optimum divided area is calculated and stored by the divided area calculation program CP13. The process for calculating the optimum divided area will be described with reference to the flowchart of FIG.
 図25に示す最低分割領域算出処理では、分割領域計算プログラムCP13は、フェンス潮流ΣPが最小となるカットを取得し(S300)、フェンス潮流ΣPが最小となるカットを分割領域データベース23の分割領域リストに記憶する(S310)。 In the minimum divided area calculation process shown in FIG. 25, the divided area calculation program CP13 acquires a cut that minimizes the fence tide ΣP (S300), and determines a cut that minimizes the fence tide ΣP as a divided area list in the divided area database 23. (S310).
 図5のステップS9に戻る。系統安定化システム10は、不健全系統と健全系統とを分割する計画についての各種データ(画像データ、数値データ等)を作成して、表示装置11に表示させる。 Return to step S9 in FIG. The system stabilization system 10 creates various data (image data, numerical data, etc.) about the plan for dividing the unhealthy system and the healthy system, and displays the data on the display device 11.
 図30は、分割結果(分割予定)を示す画面G10を示す。画面G10は、例えば、系統状況を表示する第1表示領域G110と、需給バランスと線路潮流と安定度とフェンス潮流とを表示する第2表示領域G120と、系統構成を模式図として示す第3表示領域G130とを含む。 FIG. 30 shows a screen G10 showing the division result (division schedule). The screen G10 includes, for example, a first display area G110 that displays the system status, a second display area G120 that displays the supply and demand balance, the line tide, the stability, and the fence tide, and a third display that schematically shows the system configuration. Region G130.
 系統状況を示す第1表示領域G110では、ステータス(センサ情報が欠損した線路と、欠損であると判定された時刻)と、改善のために実施する制御方法(線路161を分割する指令と、分割する時刻)とを表示する。 In the first display area G110 indicating the system status, the status (the line where the sensor information is missing and the time when it is determined to be missing), the control method implemented for improvement (the command for dividing the line 161, and the division Time).
 第2表示領域G120では、発電量ΣG[MW]と、負荷量ΣL[MW]と、線路に流れる潮流P[p.u.]と、安定度の指標としての周波数f[Hz]と、フェンス潮流との、各時系列変化を、分割領域毎に表示する。 In the second display area G120, the power generation amount ΣG [MW], the load amount ΣL [MW], and the power flow P [p. u. ], Frequency f [Hz] as an index of stability, and fence current flow are displayed for each divided region.
 第3表示領域G130では、系統構成を模式的に表示する。図30に示すようなディスプレイ画面G10を作成してユーザに提示することで、ユーザは、電力系統の分割が適切であるかを直感的に理解でき、ユーザの使い勝手が向上する。なお、系統安定化システム10は、系統安定化システム10の外部に存在する端末に画面G10を送信して表示させてもよい。例えば、系統安定化システム10と別に構成されたコンソール端末、または、携帯電話等に画面を表示させることもできる。 In the third display area G130, the system configuration is schematically displayed. By creating a display screen G10 as shown in FIG. 30 and presenting it to the user, the user can intuitively understand whether or not the power system is properly divided, and the usability of the user is improved. Note that the system stabilization system 10 may transmit and display the screen G10 to a terminal existing outside the system stabilization system 10. For example, the screen can be displayed on a console terminal configured separately from the system stabilization system 10 or a mobile phone.
 図31は、系統状況と周波数偏差の、時系列変化を示す画面G121である。このディスプレイ画面G121の上段には、系統状況として、ステータス(センサ情報が欠損した線路と、欠損であると判定された時刻)と、改善のために実施される制御方法(線路161の分割指令と、分割する時刻)とを表示する。 FIG. 31 is a screen G121 showing a time-series change in system status and frequency deviation. In the upper part of the display screen G121, as the system status, the status (the line where the sensor information is missing and the time when the sensor information is determined to be missing) and the control method implemented for improvement (the division command for the line 161) , The time of division).
 画面G121の下段には、周波数偏差の時系列変化を表示する。このようなディスプレイ画面G121をユーザに提示すれば、ユーザは、電力系統の状態を直感的に理解することができ、使い勝手が向上する。 * The time series change of the frequency deviation is displayed in the lower part of the screen G121. If such a display screen G121 is presented to the user, the user can intuitively understand the state of the power system, and usability is improved.
 図5のステップS8に戻る。分割領域計算プログラムCP13によって得られた分割領域リストに基づいて、系統安定化システム10は、所定の各開閉器180を作動させるための制御指令を作成する。系統安定化システム10は、所定の各開閉器180に、制御指令を送信して動作させる。 Return to step S8 in FIG. Based on the divided area list obtained by the divided area calculation program CP13, the system stabilizing system 10 creates a control command for operating each predetermined switch 180. The system stabilization system 10 transmits a control command to each predetermined switch 180 to operate.
 図32には、電力系統を分割する前の状態G210と、電力系統を分割した後の状態G220とを対比して示す画面G20である。 FIG. 32 shows a screen G20 showing a comparison between the state G210 before dividing the power system and the state G220 after dividing the power system.
 このように構成される本実施例では、以下の効果を奏する。本実施例では、機能不良設備が検出された場合(判定された場合)、その機能不良設備を含む不健全系統を、電力系統100から分離させることができる。これにより、本実施例では、その後、不健全系統に想定事故が発生した場合でも、不健全系統で生じる不具合が健全系統に波及して障害が広がるのを未然に防止できる。 This embodiment configured as described above has the following effects. In this embodiment, when a malfunctioning facility is detected (when determined), an unhealthy system including the malfunctioning facility can be separated from the power system 100. Thereby, in a present Example, even when an assumption accident generate | occur | produces in an unhealthy system after that, it can prevent beforehand that the malfunction which arises in an unhealthy system spreads to a healthy system, and a failure spreads.
 そして、本実施例では、電力系統の一部である不健全系統を、想定事故の発生前に電力系統から切り離すことで、残された多くの系統構成について想定事故への対応能力を維持することができ、電力系統に対する信頼性を向上できる。 In this embodiment, the unhealthy system, which is a part of the power system, is separated from the power system before the occurrence of the assumed accident, thereby maintaining the ability to cope with the assumed accident for many remaining system configurations. And the reliability of the power system can be improved.
 このように本実施例では、機能不良であると判定された設備を有する系統構成は、たとえ今現在電力が正常に供給されていても、電力系統100から切り離す。切り離された不健全系統内に、太陽光発電装置またはガスタービン型発電機等の分散電源が十分に設けられている場合、不健全系統は独立した系統として存続可能である。つまり、不健全系統内の分散電源は、独立運転が許可され、分散電源からの電力が不健全系統内の負荷に供給される。 Thus, in this embodiment, the system configuration having the equipment determined to be malfunctioning is disconnected from the power system 100 even if the power is currently supplied normally. When a distributed power source such as a photovoltaic power generator or a gas turbine generator is sufficiently provided in the disconnected unsound system, the unsound system can continue as an independent system. That is, the distributed power supply in the unhealthy system is permitted to operate independently, and the power from the distributed power supply is supplied to the load in the unhealthy system.
 不健全系統を電力系統から切り離す場合の影響をできるだけ少なくするために、制約設備が不健全系統に含まれないように制御する。このような判定指標に加えて、さらに、不健全系統内の発電量と消費量との需給バランスに着目することもできる。そこで、本実施例では、図30及び図31の画面にて、各分割領域における電力供給の安定性(周波数変化)を算出して表示する。これにより、ユーザは、電力需給ができるだけバランスするように、不健全系統を電力系統から切り離すための最適なカット(最適分割領域)を選択することができる。 ∙ In order to minimize the impact when the unhealthy system is disconnected from the power system, control is performed so that the constraint equipment is not included in the unhealthy system. In addition to such a determination index, it is also possible to focus on the supply and demand balance between the power generation amount and the consumption amount in the unhealthy system. Therefore, in this embodiment, the power supply stability (frequency change) in each divided region is calculated and displayed on the screens of FIGS. 30 and 31. Thereby, the user can select the optimal cut (optimum division | segmentation area | region) for isolate | separating an unhealthy system from an electric power system so that electric power supply and demand may balance as much as possible.
 図33~図35を参照して、第2実施例を説明する。本実施例は、第1実施例の変形例に相当する。従って、第1実施例との相違を中心に説明する。 The second embodiment will be described with reference to FIGS. This embodiment corresponds to a modification of the first embodiment. Therefore, the difference from the first embodiment will be mainly described.
 第1実施例では、図21で述べたように、機能不良設備と想定事故対策リストに記載の安定化設備とを比較することで、安定であるか不安定であるかを判定した。これに対し、本実施例では、系統のオンライン情報を用いて、機能不良設備を備えた系統構成の、想定事故に対する安定度を算出し、安定であるか不安定であるかを判定する。 In the first embodiment, as described with reference to FIG. 21, it is determined whether the facility is stable or unstable by comparing the malfunctioning facility with the stabilization facility described in the assumed accident countermeasure list. On the other hand, in the present embodiment, the degree of stability against an assumed accident of a system configuration having a malfunctioning facility is calculated using the system online information, and it is determined whether it is stable or unstable.
つまり、第1実施例では、時々刻々と変化する系統状態を無視して、機能不良設備と安定化設備(想定された最過酷の系統状態に対する想定事故対策リストに記載の安定化設備)とを比較するだけで安定判別を行った。 In other words, in the first embodiment, the system state that changes from moment to moment is ignored, and the malfunctioning facility and the stabilization facility (the stabilization facility described in the assumed accident countermeasure list for the most severe system state assumed) are used. A stability determination was made only by comparison.
これに対し、本実施例では、時々刻々と変化する系統状態をオンラインで監視し、機能不良設備が発生した場合に、現在の系統状態で計算した想定事故対策が必要かどうかその都度判別する。これにより、本実施例では、より正確な安定判別が可能となる。従って、第1実施例の想定事故対策よりも本実施例の想定事故対策の方が対策によって発生する損失を小さくできるという効果を期待できる。ここで、損失とは、例えば想定事故対策によって生じうる、需要家の停電による社会的経済損失のことである。 On the other hand, in the present embodiment, the system state that changes from moment to moment is monitored online, and when a malfunctioning facility occurs, it is determined each time whether or not a countermeasure for the assumed accident calculated in the current system state is necessary. Thereby, in this embodiment, more accurate stability determination is possible. Therefore, it is possible to expect an effect that the loss caused by the countermeasure can be reduced by the anticipation accident countermeasure of the present embodiment than the anticipation accident countermeasure of the first embodiment. Here, the loss refers to a social economic loss caused by a power outage by a customer, which can occur, for example, as a countermeasure against an assumed accident.
図33は、本実施例の全体構成を示す。本実施例の系統安定化システム10Aは、図2に示す系統安定化システム10に比べて、さらに、安定度計算データベース26と、計測データベース27と、計算結果データベース28とを備える。さらに、本実施例のプログラムデータベース25Aは、図34に示すように、状態推定プログラムCP14と、潮流計算プログラムCP15と、安定度計算プログラムCP16とをさらに備える。本実施例のプログラムデータベース25Aは、想定事故安定判定プログラムCP12を備えていない。 FIG. 33 shows the overall configuration of this embodiment. The system stabilization system 10A of the present embodiment further includes a stability calculation database 26, a measurement database 27, and a calculation result database 28, as compared with the system stabilization system 10 shown in FIG. Furthermore, as shown in FIG. 34, the program database 25A of the present embodiment further includes a state estimation program CP14, a power flow calculation program CP15, and a stability calculation program CP16. The program database 25A of the present embodiment does not include the assumed accident stability determination program CP12.
なお,安定度計算データベース26には、安定度計算データD5として、潮流計算値と、状態推定に必要な線路定数Zと、センサ誤差とが記憶されている。そして、データベース26には、安定度計算に必要な発電機モデル及び定数と、制御系モデル及び定数と、想定事故条件とが記憶されている。計測データベース27には、計測データD6として、電力系統100の時間断面毎のノード電圧V、線路の電流I、有効電力P、無効電力Q、負荷や発電などの有効電力P、無効電力Qなどの情報が記憶される。計算結果データベース28には、計算結果データD7として、状態推定結果と、潮流計算結果と、安定度計算結果とが記憶されている。 The stability calculation database 26 stores a tidal current calculation value, a line constant Z necessary for state estimation, and a sensor error as the stability calculation data D5. The database 26 stores a generator model and constants necessary for the stability calculation, a control system model and constants, and an assumed accident condition. In the measurement database 27, as the measurement data D6, the node voltage V for each time section of the power system 100, the current I of the line, the active power P, the reactive power Q, the active power P such as a load and power generation, the reactive power Q, etc. Information is stored. The calculation result database 28 stores a state estimation result, a tidal current calculation result, and a stability calculation result as calculation result data D7.
 本実施例では、まず一定の周期で(例えば30秒周期で)電力系統100のオンライン情報を計測データベース27に格納する。前記オンライン情報は、電力系統100から通信ネットワーク300を介して通信インターフェース15で伝送される。 In this embodiment, first, the online information of the power system 100 is stored in the measurement database 27 at a constant cycle (for example, at a cycle of 30 seconds). The online information is transmitted from the power system 100 via the communication network 300 through the communication interface 15.
次に系統安定化システム10Aの計算処理内容について説明する。基本的な計算処理内容は第1実施例と同じであるが、図35の系統安定化処理のフローチャートを用いて相違点を説明する。図35のフローチャートは図5のフローチャートに対応する。 Next, the calculation processing contents of the system stabilization system 10A will be described. Although the basic calculation process is the same as that of the first embodiment, the difference will be described with reference to the flowchart of the system stabilization process of FIG. The flowchart in FIG. 35 corresponds to the flowchart in FIG.
系統安定化システム10Aは、機能不良設備判定プログラムCP11により系統データD2を演算処理することで、機能不良設備を判定し(S3)、機能不良設備リストを作成して記憶し、機能不良設備リストを表示装置11に表示させる(S3)。 The system stabilization system 10A determines the malfunctioning facility by calculating the system data D2 by the malfunctioning facility determination program CP11 (S3), creates and stores the malfunctioning facility list, and stores the malfunctioning facility list. It is displayed on the display device 11 (S3).
続いて第1実施例とは異なり、系統安定化システム10Aは、計測データD6を入力にして、状態推定プログラムCP14を実行して得た電力系統100の時間断面毎のノード電圧V、線路の電流I、有効電力P、無効電力Q、負荷や発電などの有効電力P、無効電力Qなどの情報を安定度計算データベース26に格納する。 Subsequently, unlike the first embodiment, the system stabilization system 10A receives the measurement data D6 and executes the state estimation program CP14 to obtain the node voltage V and the line current for each time section of the power system 100. Information such as I, active power P, reactive power Q, active power P such as load and power generation, and reactive power Q is stored in the stability calculation database 26.
状態推定計算とは、計測データD6と設備データD1と系統データD2を基に、異常データの有無の判定と除去を行い、特定の時間断面におけるもっともらしい系統状態を推定する計算のことである。上記異常データとは、例えば、通信障害などにより近傍のデータと明らかに離れた量になったデータのことである。 The state estimation calculation is a calculation for determining a plausible system state in a specific time section by determining and removing the presence or absence of abnormal data based on the measurement data D6, the facility data D1, and the system data D2. The abnormal data is, for example, data that is clearly separated from neighboring data due to a communication failure or the like.
状態推定計算の方法は、Lars Holten、 Anders Gjelsvlk、 Sverre Adam、 F. F. Wu、 and Wen-Hs I ung E. Liu、 Comparison of Defferent Methods for State Estimation. IEEE Trans. Power Syst.、 3(1988)、 1798-1806 に記載の方法などに即して行う。 State estimation calculation methods are Lars Holten, Anders Gjelsvlk, Sverre Adam, F. F. Wu, and Wen-Hs I ung E. Liu, Comparison of Defferent Methods for State Estimation. IEEE Trans. Power Syst. ), According to the method described in 1798-1806.
次に、系統安定化システム10Aは、計算結果データD7の状態推定結果と設備データD1と系統データD2とを入力にして、潮流計算プログラムCP15で系統の潮流状態を計算し、系統の各送電線に流れる潮流と各母線の電圧及び位相角を計算結果データベース28に潮流計算結果として格納する(S3A)。 Next, the system stabilization system 10A inputs the state estimation result of the calculation result data D7, the facility data D1, and the system data D2, and calculates the power flow state of the system using the power flow calculation program CP15, and each transmission line of the system. And the voltage and phase angle of each bus are stored in the calculation result database 28 as a tidal current calculation result (S3A).
系統安定化システム10Aは、計算結果データD7の潮流計算結果と設備データD1と系統データD2と安定度計算データD5とを入力にして、安定度計算プログラムCP16で系統の安定性を求め、各想定事故に対して安定か否かを計算結果データベース28に格納する(S5A)。 The system stabilization system 10A receives the power flow calculation result of the calculation result data D7, the facility data D1, the system data D2, and the stability calculation data D5, obtains the stability of the system using the stability calculation program CP16, and makes each assumption Whether or not the accident is stable is stored in the calculation result database 28 (S5A).
上記安定度計算とは、電力系統の事故に対する安定性を計算する手法であり、例えば、電圧安定度計算と周波数安定度計算と過渡安定度計算のいずれか一つ又は複数の計算のことである。安定度計算の方法は、PRABHA KUNDUR,The EPRI Power System Engineering Series,Power System Stability and Control,EPRI,(1994)に記載の各種安定度計算方法などに即して行う。 The stability calculation is a method for calculating the stability against a power system accident, for example, one or more of voltage stability calculation, frequency stability calculation, and transient stability calculation. . The stability calculation method is performed according to various stability calculation methods described in PRABHA KUNDUR, The EPRI Power System Engineering Series, Power System Stability and Control, EPRI, (1994).
上記安定度計算(S5A)は、図5に示す系統安定化処理における、想定事故についての安定判別S5に相当する。安定度計算によって、不安定と判別された場合には,系統安定化処理の分割領域を算出する(S6)。全ての想定事故について、以下のステップS5に相当する安定度計算及びステップS6を繰り返し実行する(S4)。以降のステップは、第1実施例と同様である。このように、オンライン情報に基づいて安定度を計算することで、系統の状態に合わせた最適な安定判定を実施できる。 The stability calculation (S5A) corresponds to the stability determination S5 for the assumed accident in the system stabilization process shown in FIG. If the stability is determined to be unstable, a divided region for system stabilization processing is calculated (S6). For all assumed accidents, the stability calculation corresponding to the following step S5 and step S6 are repeatedly executed (S4). The subsequent steps are the same as in the first embodiment. As described above, by calculating the stability based on the online information, it is possible to perform the optimum stability determination in accordance with the state of the system.
 なお、本発明は、上述した実施例に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。例えば、電力系統から切り離された不健全系統について監視を続け、機能不良設備が正常設備に復帰したと判定できる場合は、所定の開閉器に制御指令を出力し、不健全系統であった系統構成を電力系統に再接続することもできる。例えば、センサ情報を正常に受信できるようになった場合、センサ情報の異常値が無くなった場合、保守作業等が終了して設備の状態が正常に回復した場合、予測された災害が発生しなかった場合等に、不健全系統を電力系統に復帰させてもよい。 In addition, this invention is not limited to the Example mentioned above. A person skilled in the art can make various additions and changes within the scope of the present invention. For example, if the unhealthy system disconnected from the power system is continuously monitored and it can be determined that the malfunctioning equipment has returned to normal equipment, a control command is output to a predetermined switch, and the system configuration that was unhealthy Can be reconnected to the power grid. For example, when the sensor information can be received normally, when the abnormal value of the sensor information disappears, when the maintenance work is completed and the state of the equipment is restored normally, the predicted disaster does not occur In such a case, the unhealthy system may be returned to the power system.
 1、10 系統安定化システム
 2、100 電力系統
 21 設備データベース
 22 系統データベース
 23 分割領域データベース
 24 分割結果データベース
 25 プログラムデータベース
 110、111、113 分割系統
 112、114 接続構成
 300 通信ネットワーク
 310A センサ情報
 310B 制御情報
 320 系統管理サーバ
 330 災害予測サーバ
 340 中継装置
1, 10 System stabilization system 2, 100 Power system 21 Equipment database 22 System database 23 Division area database 24 Division result database 25 Program database 110, 111, 113 Division system 112, 114 Connection configuration 300 Communication network 310A Sensor information 310B Control information 320 System management server 330 Disaster prediction server 340 Relay device

Claims (12)

  1.  電力系統を安定化するための系統安定化システムであって、
     前記電力系統内の観測情報と事前に定めた複数の想定事故リスト及び災害情報を取得するための情報取得部と、
     前記所定の情報に基づいて、前記電力系統に含まれる複数の設備のうち、正常動作しない可能性があると予測される機能不良設備を判定するための機能不良設備判定部と、
     前記機能不良設備が、前記電力系統を安定化するために予め用意される所定の安定化対策に関連しているか否かを判定する安定判定部と、
     前記機能不良設備が前記安定化対策に関連していると判定された場合、前記電力系統を、前記機能不良設備を含む不健全系統と、前記機能不良設備を含まない健全系統とに分割するための分割領域を判定する分割領域判定部と、
     前記分割領域判定部による判定結果に基づいて前記電力系統を前記健全系統と前記不健全系統とに分割するための制御指令を前記電力系統に含まれる所定の装置に送信するための制御指令送信部と、
    を備える系統安定化システム。
    A system stabilization system for stabilizing an electric power system,
    An information acquisition unit for acquiring observation information in the power system and a plurality of predetermined accident lists and disaster information determined in advance;
    Based on the predetermined information, among a plurality of facilities included in the power system, a malfunctioning facility determination unit for determining a malfunctioning facility that is predicted to possibly not operate normally,
    A stability determination unit that determines whether the malfunctioning facility is related to a predetermined stabilization measure prepared in advance to stabilize the power system;
    When it is determined that the malfunctioning facility is related to the stabilization measure, the power system is divided into an unhealthy system including the malfunctioning facility and a healthy system not including the malfunctioning facility. A divided region determination unit that determines a divided region of
    A control command transmission unit for transmitting a control command for dividing the power system into the healthy system and the unhealthy system based on a determination result by the divided region determination unit to a predetermined device included in the power system When,
    System stabilization system with
  2.  前記安定判定部は、前記機能不良設備が前記所定の安定化対策に関連しており、かつ、予め設定される想定事故に対して安定であるか否かを判定する、
    請求項1に記載の系統安定化システム。
    The stability determination unit determines whether the malfunctioning facility is related to the predetermined stabilization measure and is stable with respect to a preset accident.
    The system stabilization system according to claim 1.
  3.  前記分割領域判定部による判定結果をユーザに提示するための判定結果提示部をさらに備え、
     前記判定結果提示部により提示される前記判定結果に対するユーザの選択を確認した後で、前記制御指令送信部は、前記制御指令を前記所定の装置に送信する、
    請求項2に記載の系統安定化システム。
    A determination result presentation unit for presenting a determination result by the divided region determination unit to a user;
    After confirming the user's selection for the determination result presented by the determination result presentation unit, the control command transmission unit transmits the control command to the predetermined device.
    The system stabilization system according to claim 2.
  4.  前記分割領域判定部は、予め設定される制約条件を満たすように、前記分割領域を判定する、
    請求項3に記載の系統安定化システム。
    The divided region determination unit determines the divided region so as to satisfy a preset constraint condition.
    The system stabilization system according to claim 3.
  5.  前記情報取得部は、前記所定の情報として、前記電力系統の線路潮流を示す線路潮流データを前記電力系統に設けられるセンサ装置から取得し、
     前記設備判定部は、前記センサ装置から前記線路潮流データを所定期間以上取得できなかった場合、前記電力系統に含まれる複数の設備のうち前記センサ装置に対応する設備を前記機能不良設備として判定する、
    請求項4に記載の系統安定化システム。
    The information acquisition unit acquires, as the predetermined information, line tide data indicating a line tide of the power system from a sensor device provided in the power system,
    The facility determination unit determines a facility corresponding to the sensor device among the plurality of facilities included in the power system as the malfunctioning facility when the line power flow data cannot be acquired from the sensor device for a predetermined period or more. ,
    The system stabilization system according to claim 4.
  6.  前記情報取得部は、前記センサ装置から取得する前記線路潮流データが予め設定される所定範囲内に収まらない異常値を示す場合、前記電力系統に含まれる前記複数の設備のうち前記センサ装置に対応する設備を前記機能不良設備として判定する、
    請求項5に記載の系統安定化システム。
    The information acquisition unit corresponds to the sensor device among the plurality of facilities included in the power system when the line power flow data acquired from the sensor device indicates an abnormal value that does not fall within a predetermined range set in advance. The equipment to be determined as the malfunctioning equipment,
    The system stabilization system according to claim 5.
  7.  前記情報取得部は、前記電力系統の構成変更を示す開閉器の開閉状態と設備構成変更情報を取得し、
     前記設備判定部は、前記設備構成変更情報に含まれる変更対象の設備を前記機能不良設備として判定する、
    請求項6に記載の系統安定化システム。
    The information acquisition unit acquires the switching state and facility configuration change information of the switch indicating the configuration change of the power system,
    The equipment determination unit determines the equipment to be changed included in the equipment configuration change information as the malfunctioning equipment.
    The system stabilization system according to claim 6.
  8.  前記情報取得部は、前記電力系統に関連する地域での災害発生を予測する災害予測情報を取得し、
     前記設備判定部は、前記電力系統に含まれる前記複数の設備のうち、前記災害予測情報に示される災害予測範囲内に存在する設備を前記機能不良設備として判定する、
    請求項7に記載の系統安定化システム。
    The information acquisition unit acquires disaster prediction information for predicting a disaster occurrence in a region related to the power system,
    The facility determination unit determines, as the malfunctioning facility, a facility that exists within the disaster prediction range indicated in the disaster prediction information among the plurality of facilities included in the power system.
    The system stabilization system according to claim 7.
  9.  前記安定判定部は、前記機能不良設備が、所定の事故に対する前記所定の安定化対策で使用される安定化設備に該当するか否かを判定し、
     前記機能不良設備が前記安定化設備に該当する場合、前記分割領域判定部は、前記電力系統を、前記不健全系統と前記健全系統とに分割するための分割領域を判定する、
    請求項8に記載の系統安定化システム。
    The stability determination unit determines whether the malfunctioning facility corresponds to a stabilization facility used in the predetermined stabilization measure for a predetermined accident,
    When the malfunctioning facility corresponds to the stabilization facility, the divided region determination unit determines a divided region for dividing the power system into the unhealthy system and the healthy system.
    The system stabilization system according to claim 8.
  10.  前記所定の装置とは、前記電力系統に含まれる複数の開閉器のうち、前記不健全系統と前記健全系統とを分離するために使用される所定の開閉器であり、
     前記制御指令は、前記所定の開閉器を作動させるための信号またはデータとして構成される、
    請求項9に記載の系統安定化システム。
    The predetermined device is a predetermined switch used to separate the unhealthy system and the healthy system among a plurality of switches included in the power system,
    The control command is configured as a signal or data for operating the predetermined switch.
    The system stabilization system according to claim 9.
  11.  電力系統を安定化するための系統安定化方法であって、
     前記電力系統に関する所定の情報を取得する情報取得ステップと、
     前記所定の情報に基づいて、前記電力系統に含まれる複数の設備のうち、正常動作しない可能性があると予測される機能不良設備を判定するための機能不良設備判定ステップと、
     前記機能不良設備が、前記電力系統を安定化するために予め用意される所定の安定化対策に関連しているか否かを判定する安定判定ステップと、
     前記機能不良設備が前記安定化対策に関連していると判定された場合、前記電力系統を、前記機能不良設備を含む不健全系統と、前記機能不良設備を含まない健全系統とに分割するための分割領域を判定する分割領域判定ステップと、
     前記分割領域判定部による判定結果に基づいて前記電力系統を前記健全系統と前記不健全系統とに分割するための制御指令を前記電力系統に含まれる所定の装置に送信するための制御指令送信ステップと、
    をそれぞれコンピュータに実行させるための系統安定化方法。
    A system stabilization method for stabilizing an electric power system,
    An information acquisition step of acquiring predetermined information about the power system;
    Based on the predetermined information, out of a plurality of facilities included in the power system, a malfunctioning facility determination step for determining a malfunctioning facility that is predicted to possibly not operate normally,
    A stability determination step for determining whether the malfunctioning facility is related to a predetermined stabilization measure prepared in advance to stabilize the power system;
    When it is determined that the malfunctioning facility is related to the stabilization measure, the power system is divided into an unhealthy system including the malfunctioning facility and a healthy system not including the malfunctioning facility. A divided region determination step for determining a divided region of
    A control command transmission step for transmitting a control command for dividing the power system into the healthy system and the unhealthy system based on a determination result by the divided region determination unit to a predetermined device included in the power system. When,
    System stabilization method for each computer to execute.
  12.  前記分割領域判定ステップによる判定結果をユーザに提示するための判定結果提示ステップをさらに備え、
     前記制御指令送信ステップは、前記判定結果提示ステップにより提示される前記判定結果に対するユーザの選択を確認した後で、前記制御指令を前記所定の装置に送信する、
    請求項11に記載の系統安定化方法。
    A determination result presentation step for presenting the determination result of the divided region determination step to the user;
    The control command transmission step transmits the control command to the predetermined device after confirming a user's selection for the determination result presented by the determination result presentation step.
    The system stabilization method according to claim 11.
PCT/JP2012/076378 2011-10-31 2012-10-12 Circuitry stabilizing system and circuitry stabilizing method WO2013065469A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011238407A JP5616311B2 (en) 2011-10-31 2011-10-31 System stabilization system and system stabilization method
JP2011-238407 2011-10-31

Publications (1)

Publication Number Publication Date
WO2013065469A1 true WO2013065469A1 (en) 2013-05-10

Family

ID=48191826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076378 WO2013065469A1 (en) 2011-10-31 2012-10-12 Circuitry stabilizing system and circuitry stabilizing method

Country Status (2)

Country Link
JP (1) JP5616311B2 (en)
WO (1) WO2013065469A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116760190A (en) * 2023-08-11 2023-09-15 深圳市银河通信科技有限公司 Intelligent control system for multi-line mutual protection

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6199629B2 (en) * 2013-06-28 2017-09-20 株式会社東芝 System stabilization device
KR20160122016A (en) 2015-04-13 2016-10-21 엘에스산전 주식회사 An apparatus and method for establishing a dynamic security assessment
JP6457635B2 (en) * 2015-05-12 2019-01-23 株式会社東芝 LFC management apparatus, LFC system, method and program
GB201601472D0 (en) * 2016-01-26 2016-03-09 Alstom Grid Uk Ltd Oscillations in electrical power networks
JP7159940B2 (en) * 2019-03-27 2022-10-25 株式会社デンソー repeater
KR102632411B1 (en) * 2019-05-28 2024-02-01 한국전기연구원 Safety peformance forecasting method of power system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233314A (en) * 2009-03-26 2010-10-14 Chubu Electric Power Co Inc Apparatus and method for system stabilization
JP2011041354A (en) * 2009-08-07 2011-02-24 Hitachi Ltd Device and method for stabilizing system
JP2011115003A (en) * 2009-11-30 2011-06-09 Toshiba Corp System stabilization apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233314A (en) * 2009-03-26 2010-10-14 Chubu Electric Power Co Inc Apparatus and method for system stabilization
JP2011041354A (en) * 2009-08-07 2011-02-24 Hitachi Ltd Device and method for stabilizing system
JP2011115003A (en) * 2009-11-30 2011-06-09 Toshiba Corp System stabilization apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116760190A (en) * 2023-08-11 2023-09-15 深圳市银河通信科技有限公司 Intelligent control system for multi-line mutual protection
CN116760190B (en) * 2023-08-11 2023-12-29 深圳市银河通信科技有限公司 Intelligent control system for multi-line mutual protection

Also Published As

Publication number Publication date
JP2013099065A (en) 2013-05-20
JP5616311B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5616311B2 (en) System stabilization system and system stabilization method
Li et al. Networked microgrids for enhancing the power system resilience
Chen et al. Toward a MILP modeling framework for distribution system restoration
JP5452613B2 (en) Power grid supply interruption and failure status management
KR101285065B1 (en) System and method for managing a distribution system
AU2015275290B2 (en) Method and apparatus for control of a commodity distribution system
Panteli et al. Assessing the effect of failures in the information and communication infrastructure on power system reliability
JP5833530B2 (en) EMS power outage management apparatus and method
US11209474B2 (en) Method for locating phase faults in a microgrid
KR101979231B1 (en) An emergency generator remote control device for securing reserve power
Gautam et al. Development and integration of momentary event models in active distribution system reliability assessment
Pinceti et al. Design criteria for a power management system for microgrids with renewable sources
Lee et al. Generic microgrid controller with self-healing capabilities
JP2017034745A (en) Supervisory control system
JP5235544B2 (en) Accident recovery support system
Vasenev et al. A hazus-based method for assessing robustness of electricity supply to critical smart grid consumers during flood events
Sykes et al. IEEE/PES PSRC report on design and testing of selected system integrity protection schemes
Mishra et al. Proposing a framework for resilient active distribution systems using withstand, respond, adapt, and prevent element
WO2019008856A1 (en) System operation support device and method in power system, and wide-area monitoring protection control system
Lamberti et al. FLISR with field devices and distribution management system
Cheng et al. Low Voltage Network Protection Utility Workshop (Summary and Next Steps)
KR20210043856A (en) TROUBLE DIAGNOSING and PROCESSING METHOD OF POWER NETWORK
Judah Power systems modelling of a community energy project
Jiao et al. Transmission lines availability online assessment during power system restoration using the information from protection systems
Kim et al. Substation reliability evaluation considering the failure events

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12845187

Country of ref document: EP

Kind code of ref document: A1