WO2013065364A1 - Charge and discharge control device - Google Patents

Charge and discharge control device Download PDF

Info

Publication number
WO2013065364A1
WO2013065364A1 PCT/JP2012/068502 JP2012068502W WO2013065364A1 WO 2013065364 A1 WO2013065364 A1 WO 2013065364A1 JP 2012068502 W JP2012068502 W JP 2012068502W WO 2013065364 A1 WO2013065364 A1 WO 2013065364A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
voltage
battery cells
battery cell
voltage difference
Prior art date
Application number
PCT/JP2012/068502
Other languages
French (fr)
Japanese (ja)
Inventor
正彰 鈴木
守 倉石
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2013065364A1 publication Critical patent/WO2013065364A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a charge / discharge control device for controlling charge / discharge of a secondary battery cell.
  • quick charging aimed at eliminating the complexity of setting the reference value for switching the charging current for each battery type and model number and reducing variation in charging characteristics when the reference value is fixed
  • a quick charging circuit a power source that generates a current for charging the secondary battery and a current switching unit that switches the current from the power source to a current pulse of a predetermined cycle and supplies the current to the secondary battery are provided.
  • a first timing immediately after the current pulse is turned off and a second timing that is during the current pulse off period and is later than the first timing are set, and the voltage of the secondary battery at each set timing is measured. .
  • a charging device that performs appropriate charging without causing overcharging or insufficient charging is known regardless of the history of the charged secondary battery.
  • the charging device the difference voltage between the voltage during the energization period of the pulse current and the voltage during the non-energization period is obtained, and the state of the battery is determined based on whether or not the difference voltage is larger than the allowable maximum difference voltage. Thereafter, the current value and the duty ratio of the charging current are changed so as to increase the discharge capacity without significantly increasing the battery temperature in accordance with the battery state and the differential voltage that are the determination results.
  • Patent Document 2 and the like are examples of Patent Document 2 and the like.
  • a control device that controls switching of a switching device of a battery charging equalizer module connected to a pair of batteries connected in series is known. According to this control device, when the voltage difference between the two batteries becomes small, the level of the charging current is lowered.
  • Patent Document 3 and the like.
  • a potential difference between the battery voltage of the battery to be charged and the input voltage for charging is obtained, and the charging input voltage is pulse-energized to the battery to be charged so as to satisfy a charging duty corresponding to the potential difference.
  • the charged battery is charged with an arbitrary charging current by variably adjusting the energization pulse.
  • Patent Document 4 and the like are examples of Patent Document 4 and the like.
  • a charging method in which pulse charging is performed using a charging pulse having a constant pulse width.
  • the charging method each time a charging pulse occurs, the voltage change rate of the charging voltage during the period of charging by the charging pulse is measured, and the charging pulse is kept until the voltage changing rate exceeds a set value. After being generated in the reference cycle and the voltage change rate is equal to or higher than the set value, the charging is performed by changing to a predetermined cycle.
  • Patent Document 5 and the like.
  • the present invention uses a pulse having a constant width according to the maximum current within a range that can be supplied to the secondary battery cell, and charges each secondary battery cell until a predetermined potential difference is reached. And it aims at providing the charging / discharging control apparatus which shortens equalization processing time.
  • the charge / discharge control apparatus which is one aspect of the present invention includes one or more circuits, a voltage measurement unit, and a control unit that equalize adjacent secondary battery cells.
  • adjacent secondary battery cells connected in series and switch elements connected in series are connected in parallel.
  • the voltage of the said adjacent secondary battery cell is equalized using the inductor connected between the said secondary battery cells connected in series and between the said switch elements connected in series. To do.
  • a voltage measurement part measures the voltage of each said secondary battery cell.
  • the control unit obtains a first voltage difference between the maximum value and the minimum value of the measured voltage of the secondary battery cell, and determines whether or not the voltage of each of the secondary battery cells is equal. Compare with the threshold value. When the first voltage difference is equal to or greater than a first threshold value, a second voltage difference is obtained for each of the adjacent secondary battery cells, and the second voltage difference equal to or greater than the first threshold value is obtained. Corresponding adjacent secondary battery cells are detected. Thereafter, for each of the detected adjacent secondary battery cells, a constant pulse width that can supply the maximum current that can be allowed by the secondary battery cell determined by the second voltage difference is used at regular intervals. The switch elements are alternately switched on and off, and the detected voltages of the adjacent secondary battery cells are made equal.
  • FIG. 1 is a diagram illustrating an embodiment of a charge / discharge control device.
  • FIG. 2 is a flowchart illustrating an example of the operation of the charge / discharge control apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a data structure of voltage measurement information, maximum value / minimum value information, adjacent cell information, pulse width information, and adjacent cell control information stored in the storage unit 2.
  • FIG. 4 is a flowchart illustrating an example of the operation of the charge / discharge control apparatus according to the second embodiment.
  • FIG. 1 is a diagram illustrating an embodiment of a charge / discharge control device.
  • the charge / discharge control device of this embodiment may be mounted on a vehicle such as a plug-in hybrid vehicle, an electric vehicle, or a forklift. However, it is not limited to the said vehicle.
  • control unit 1 includes a control unit 1, a storage unit 2, secondary battery cells 3 (3a to 3d), a voltage measurement unit 4, inductors L1 to L3, switch elements SW1 to SW6, and SW11 to SW18. Yes.
  • Control unit 1 controls each part of the charge / discharge control device.
  • the control unit 1 may be, for example, a battery Electronic Control Unit (ECU) mounted on a vehicle.
  • ECU Battery Electronic Control Unit
  • the control unit 1 may use a Central Processing Unit (CPU) or a programmable device (Field Programmable Gate Array (FPGA), Programmable Logic Device (PLD), or the like).
  • CPU Central Processing Unit
  • FPGA Field Programmable Gate Array
  • PLD Programmable Logic Device
  • the storage unit 2 stores data such as programs executed by the control unit 1 and various tables.
  • the storage unit 2 may be a memory such as a Read Only Memory (ROM) or a Random Access Memory (RAM), a hard disk, or the like. Data such as parameter values and variable values may be recorded in the storage unit 2 or may be used as a work area at the time of execution. Details of the control unit 1 will be described later.
  • the voltage measuring unit 4 measures the voltage of each of the secondary battery cells 3 (3a to 3d).
  • the secondary battery block in which the secondary battery cells 3a to 3d are connected in series is connected to a load (not shown) at the time of discharging, and is connected to a charger (not shown) at the time of charging.
  • a load for example, a drive motor for a vehicle can be considered.
  • a charger for example, a charger that charges the secondary battery cells 3a to 3d using AC100V or AC200V can be considered.
  • the inductors L1 to L3 are used to make the adjacent secondary battery cells 3a to 3d uniform.
  • the switch elements SW1 to SW6 and the switch elements SW11 to SW18 are used in a circuit that performs voltage equalization processing.
  • the switch elements SW1 to SW6 and SW11 to SW18 are composed of, for example, MetalMetaOxide Semiconductor field Effect Transistor (MOSFET) and are turned on / off by a control signal output from the control unit 1 (the broken line in FIG. 1 is a control wiring).
  • MOSFET MetalMetaOxide Semiconductor field Effect Transistor
  • the switch element is not limited to a MOSFET, and any relay element may be used as long as it has a switch function.
  • One terminal of the switch element SW1, the positive terminal of the secondary battery cell 3a, and one terminal of the switch element SW11 are connected.
  • the other terminal of the switch element SW1, the one terminal of the switch element SW2, and the one terminal of the inductor L1 are connected.
  • the other terminal of the inductor L2, the other terminal of the switch element SW3, and one terminal of the switch element SW4 are connected.
  • the other terminal of the switch element SW5, one terminal of the switch element SW6, and one terminal of the inductor L3 are connected.
  • the other terminal of the switch element SW6, one terminal of the switch element SW18, and the negative terminal of the secondary battery cell 3d are connected.
  • the other terminal of the switch element SW11, the other terminal of the switch element SW13, the other terminal of the switch element SW15, the other terminal of the switch element SW17, and one terminal of the voltage measuring unit 4 are connected.
  • the other terminal of the switch element SW12, the other terminal of the switch element SW14, the other terminal of the switch element SW16, the other terminal of the switch element SW18, and the other terminal of the voltage measuring unit 4 are connected.
  • the control unit 1 will be described.
  • the voltages of the adjacent secondary battery cells 3 are sequentially equalized using the inductors L1 to L3 for charging and discharging the adjacent secondary battery cells 3a to 3d.
  • the voltage is equalized using the inductor L1, the switch element SW1, and the switch element SW2.
  • the voltage is equalized using the inductor L2, the switch element SW3, and the switch element SW4.
  • the inductor L3, the switch element SW5, and the switch element SW6 are used to equalize the voltage.
  • the switch elements SW1 and SW2 are alternately intermittently operated (switching between the conduction state and the cutoff state), and the secondary battery cell. Electric charges are transferred between the 3a and the secondary battery cell 3b through the inductor to equalize the voltage.
  • the other switch elements are in a cut-off state.
  • the control unit 1 outputs a pulse signal to the switch element SW1, and outputs an inverted pulse signal obtained by inverting the pulse signal to the switch element SW2.
  • the switch elements SW3 and SW4 are alternately intermittently operated (switching between the conductive state and the cut-off state), and the secondary battery cell The charge is moved between 3b and the secondary battery cell 3c to equalize the voltage.
  • the other switch elements are in a cut-off state.
  • the control unit 1 outputs a pulse signal to the switch element SW3 and outputs an inverted pulse signal obtained by inverting the pulse signal to the switch element SW4.
  • the switch elements SW5 and SW6 are alternately intermittently operated (switching between the conductive state and the cut-off state), and the secondary battery cell The charge is transferred between 3c and the secondary battery cell 3d to equalize the voltage.
  • the other switch elements are in a cut-off state.
  • the control unit 1 outputs a pulse signal to the switch element SW5 and outputs an inverted pulse signal obtained by inverting the pulse signal to the switch element SW6.
  • FIG. 2 is a flowchart showing an embodiment of the operation of the charge / discharge control device.
  • the control unit 1 measures the voltage value of each secondary battery cell 3. For example, in order to acquire the voltage value of the secondary battery cell 3a, the control unit 1 sets the switch elements SW11 and SW12 to the conductive state and acquires the voltage value from the voltage measurement unit 4. In order to acquire the voltage value of the secondary battery cell 3b, the control unit 1 sets the switch elements SW13 and SW14 to the conductive state and acquires the voltage value from the voltage measurement unit 4.
  • the control unit 1 sets the switch elements SW ⁇ b> 15 and SW ⁇ b> 16 in a conductive state and acquires the voltage value from the voltage measurement unit 4. In order to acquire the voltage value of the secondary battery cell 3d, the control unit 1 sets the switch elements SW17 and SW18 to the conductive state and acquires the voltage value from the voltage measurement unit 4.
  • FIG. 3 is a diagram illustrating an example of a data structure of voltage measurement information, maximum value / minimum value information, adjacent cell information, pulse width information, and adjacent cell control information stored in the storage unit 2.
  • the control unit 1 switches the switch elements SW11 to SW18 with reference to the voltage measurement information 31.
  • the voltage measurement information 31 includes information such as “cell number”, “switch”, and “voltage value”.
  • “cell No” stores “3a”, “3b”, “3c”, and “3d” indicating the secondary battery cells 3a to 3d shown in FIG.
  • the “switch” stores information indicating the switch elements SW11 to SW18 that are controlled to measure the voltages of the secondary battery cells 3a to 3d shown in FIG.
  • SW11, SW12 indicating the switch elements SW11, SW12 that are brought into a conductive state in order to measure the voltage of the secondary battery cell 3a in association with “3a” is stored.
  • SW13, SW14 indicating the switch elements SW13, SW14 to be turned on to measure each voltage of the secondary battery cell 3b is stored in association with “3b”.
  • SW15, SW16 indicating the switch elements SW15, SW16 to be turned on to measure each voltage of the secondary battery cell 3c is stored in association with “3c”.
  • SW17, SW18 indicating the switch elements SW17, SW18 to be turned on to measure each voltage of the secondary battery cell 3d is stored in association with “3d”.
  • each voltage of the secondary battery cells 3a to 3d measured by the voltage measuring unit 4 is stored.
  • the voltage value “V3a” of the secondary battery cell 3a is stored in association with “3a”.
  • the voltage value “V3b” of the secondary battery cell 3b is stored in association with “3b”.
  • the voltage value “V3c” of the secondary battery cell 3c is stored in association with “3c”.
  • the voltage value “V3d” of the secondary battery cell 3d is stored in association with “3d”.
  • step S2 the control unit 1 obtains the maximum value and the minimum value of all the secondary battery cells 3, and stores them in the maximum value / minimum value information.
  • the maximum value and the minimum value are obtained with reference to “V3a”, “V3b”, “V3c”, and “V3d” of the voltage measurement information 31.
  • the control part 1 memorize
  • the maximum value / minimum value information 32 includes information such as “maximum value”, “minimum value”, “voltage difference”, and “threshold value”.
  • “maximum value” stores V3a as the maximum value of V3a to V3d
  • “minimum value” stores V3b as the minimum value of V3a to V3d.
  • the “voltage difference” stores the voltage difference between the maximum value and the minimum value.
  • “Vsub” which is the result of V3a ⁇ V3b is stored.
  • the “threshold value” stores a threshold value for determining whether or not to perform the voltage equalization process of the secondary battery cell. In this example, “Vref” is stored as the threshold value.
  • step S3 the control unit 1 compares the voltage difference Vsub between the maximum value and the minimum value with the threshold value Vref to determine whether or not Vsub ⁇ Vref. If Vsub ⁇ Vref, the process proceeds to step S4 (Yes). If Vsub ⁇ Vref, the voltage equalization process is terminated (No).
  • step S4 the control unit 1 obtains a voltage difference from the adjacent secondary battery cells 3 with respect to all the secondary battery cells 3.
  • the adjacent secondary battery cell 3 is detected using the adjacent cell information 33 of FIG. 3, and the voltage values V3a, V3b, V3c, V3d of the secondary battery cells 3a to 3d stored in the voltage measurement information 31 are detected. Is used to determine the voltage difference between the adjacent secondary battery cells 3.
  • the adjacent cell information 33 is associated with the adjacent secondary battery cell 3 and stored in each “cell No.” of the “adjacent cell”, and the voltage difference between the adjacent secondary battery cells 3 is stored in the “voltage difference”.
  • the “determination result” stores a comparison result between each of the voltage differences “Vsub — 1”, “Vsub — 2”, and “Vsub — 3” and the threshold value Vref.
  • “1” is stored if the voltage difference is equal to or greater than the threshold value Vref
  • “0” is stored if the voltage difference is not equal to or greater than the threshold value Vref.
  • step S5 the control unit 1 compares the voltage difference obtained in step S4 with the threshold value Vref, and detects a pair of secondary battery cells having a voltage difference equal to or greater than the threshold value.
  • the voltage differences “Vsub — 1”, “Vsub — 2”, and “Vsub — 3” of the adjacent cell information 33 are compared with the threshold value Vref, and it is determined whether or not the threshold value is equal to or greater than the threshold value.
  • “1”, “1”, and “0” indicating that “Vsub — 1” and “Vsub — 2” are equal to or greater than the threshold value Vref are stored in the “determination result” of the neighboring cell information 33.
  • step S6 the control unit 1 sets the pulse width of the pulse signal used for performing the voltage equalization process on the adjacent secondary battery cell detected in step S5. For example, the voltage difference determined to be greater than or equal to the threshold Vref is acquired, the voltage range of the pulse width information 34 of FIG. 3 including the acquired voltage difference is detected, and the pulse width or duty ( %).
  • the pulse width information 34 stores “voltage range” and “duty”. In the “voltage range”, a voltage range for selecting “duty” is set. In this example, information “Vsub_a”, “Vsub_b”, “Vsub_c”, “Vsub_d”, “Vsub_e”, and “Vsub_f” indicating the voltage range is stored.
  • “Duty” stores a pulse width or duty (%) of a constant width that is output at a constant cycle according to the maximum current within the range that can be supplied to the secondary battery cell in the active method of voltage equalization processing. ing.
  • the pulse width “D5” associated with the pulse width “D4”, “Vsub_e”, and the pulse width “D6” associated with “Vsub_f” are stored.
  • step S7 the control unit 1 switches the switch elements SW1 to SW6 using a pulse or duty (%) having a constant width output at every fixed period determined in step S7 and the adjacent cell control information 35.
  • the process proceeds to step S1.
  • the neighboring cell control information 35 includes information such as “neighboring cell” and “switch”.
  • Information indicating switch elements SW1 to SW6 used in order to associate adjacent secondary battery cells 3 with each other and store them in “cell No” of “adjacent cells” and to equalize the voltages of the adjacent secondary battery cells 3. Is stored in the “switch”.
  • the secondary battery cells 3a to 3d shown in FIG. 1 have “3a” and “3b”, “3b” and “3c”, “3c” and “3d” as a pair of secondary battery cells in “adjacent cells”. Is stored.
  • the “switch” is associated with “3a” and “3b”, “3b” and “3c”, “3c” and “3d”, respectively, and switch elements SW1 to SW6 “SW1” “SW2”, “SW3”. "SW4", "SW5" and “SW6" are stored.
  • control unit 1 refers to the adjacent cell control information 35 in order to equalize the voltages of the secondary battery cell 3a and the secondary battery cell 3b.
  • the switch element SW1 is turned on (conductive state) when a pulse signal having a pulse having a constant width that is output at fixed intervals determined in step S7 is on.
  • the switch element SW2 supplies an inverted pulse signal obtained by inverting the pulse signal, and turns the switch element SW2 on (conductive state) when the inverted pulse signal is on.
  • the control part 1 acquires the result of having alternately measured the voltage of the secondary battery cell 3a and the secondary battery cell 3b by the voltage measurement part 4, and voltage equalization process until it determines with the measured voltage being equal I do.
  • the control unit 1 next selects the switch elements SW3 and SW4 in order to equalize the voltages of the secondary battery cell 3b and the secondary battery cell 3c with reference to the adjacent cell control information 35.
  • the switch element SW3 is turned on (conducting state) when a pulse signal having a pulse having a constant width that is output at fixed intervals determined in step S7 is on.
  • the switch element SW4 supplies an inverted pulse signal obtained by inverting the pulse signal, and turns the switch element SW4 on (conductive state) when the inverted pulse signal is on.
  • the control part 1 acquires the result of having measured the voltage of the secondary battery cell 3b and the secondary battery cell 3c by the voltage measurement part 4 alternately, and voltage equalization process until it determines with the measured voltage being equal I do.
  • the control unit 1 next selects the switch elements SW5 and SW6 in order to equalize the voltages of the secondary battery cell 3c and the secondary battery cell 3d with reference to the adjacent cell control information 35.
  • the switch element SW5 is turned on (conductive state) when a pulse signal having a pulse having a constant width that is output at fixed intervals determined in step S7 is on.
  • the switch element SW6 supplies an inverted pulse signal obtained by inverting the pulse signal, and turns the switch element SW6 on (conductive state) when the inverted pulse signal is on.
  • the control part 1 acquires the result of having alternately measured the voltage of the secondary battery cell 3c and the secondary battery cell 3d by the voltage measurement part 4, and voltage equalization process until it determines with the measured voltage being equal I do.
  • the voltage equalization process is terminated, and the process proceeds to step S1.
  • the pulse width is determined by the voltage difference. For example, when the voltage difference between adjacent secondary battery cells is different, different pulse widths are selected. That is, the pulse width is the same if the voltage difference between adjacent secondary battery cells is the same voltage range, and the pulse width is different if the voltage range is different.
  • each secondary battery cell has a predetermined potential difference by using a pulse having a constant width corresponding to the maximum current within a range that can be supplied to the secondary battery cell. It is possible to charge the battery until the equalization processing time is shortened.
  • the voltage equalization process is further performed using the known Pulse Width Modulation (PWM), thereby reducing the voltage difference between the secondary batteries 3a to 3d. That is, voltage equalization processing is performed using PWM until the voltage difference Vsub between the maximum value and the minimum value of the voltages of the secondary batteries 3a to 3d is smaller than the threshold value Vref and smaller than the threshold value Vref2 smaller than the threshold value Vref.
  • PWM Pulse Width Modulation
  • FIG. 4 is a flowchart showing an example of the operation of the charge / discharge control apparatus of the second embodiment. Steps S1, S2, and S4 to S7 shown in FIG. 4 are the same processes as steps S1, S2, and S4 to S7 described in the first embodiment.
  • the control unit 1 compares the voltage difference Vsub between the maximum value and the minimum value and the threshold value Vref to determine whether or not Vsub ⁇ Vref. If Vsub ⁇ Vref, step S4 (Yes). If Vsub ⁇ Vref, the process moves to step S41 (No).
  • step 41 the control unit 1 compares the voltage difference Vsub between the maximum value and the minimum value with the threshold value Vref2, and determines whether or not Vsub ⁇ Vref2, and if Vsub ⁇ Vref2, the process proceeds to step S42 (Yes). If Vsub ⁇ Vref2, the voltage equalization process is terminated (No).
  • step S42 the control unit 1 determines, by PWM control, the pulse width or duty (%) output for each fixed period according to the voltage difference between the adjacent secondary battery cells 3 acquired by the voltage measurement unit 4.
  • the PWM control is obtained using, for example, a voltage difference between adjacent secondary battery cells.
  • the operation of the voltage equalization processing 2 in the active method is performed by, for example, the switching element SW1, so that the control unit 1 refers to the adjacent cell control information 35 to equalize the voltages of the secondary battery cell 3a and the secondary battery cell 3b.
  • the switch element SW1 is turned on (conductive state) when a pulse signal having a pulse width obtained by PWM control at regular intervals is on.
  • the switch element SW2 supplies an inverted pulse signal obtained by inverting the pulse signal, and turns the switch element SW2 on (conductive state) when the inverted pulse signal is on.
  • the control part 1 acquires the result of having alternately measured the voltage of the secondary battery cell 3a and the secondary battery cell 3b by the voltage measurement part 4, and voltage equalization process until it determines with the measured voltage being equal I do.
  • the control unit 1 next selects the switch elements SW3 and SW4 in order to equalize the voltages of the secondary battery cell 3b and the secondary battery cell 3c with reference to the adjacent cell control information 35.
  • the switch element SW1 is turned on (conductive state) when a pulse signal having a pulse width obtained by PWM control at regular intervals is on.
  • the switch element SW4 supplies an inverted pulse signal obtained by inverting the pulse signal, and turns the switch element SW4 on (conductive state) when the inverted pulse signal is on.
  • the control part 1 acquires the result of having measured the voltage of the secondary battery cell 3b and the secondary battery cell 3c by the voltage measurement part 4 alternately, and voltage equalization process until it determines with the measured voltage being equal I do.
  • the control unit 1 next selects the switch elements SW5 and SW6 in order to equalize the voltages of the secondary battery cell 3c and the secondary battery cell 3d with reference to the adjacent cell control information 35.
  • the switch element SW1 is turned on (conductive state) when a pulse signal having a pulse width obtained by PWM control at regular intervals is on.
  • the switch element SW6 supplies an inverted pulse signal obtained by inverting the pulse signal, and turns the switch element SW6 on (conductive state) when the inverted pulse signal is on.
  • the control part 1 acquires the result of having alternately measured the voltage of the secondary battery cell 3c and the secondary battery cell 3d by the voltage measurement part 4, and voltage equalization process until it determines with the measured voltage being equal I do.
  • the voltage equalization process is terminated, and the process proceeds to step S1.
  • each secondary battery cell has a predetermined potential difference using a pulse having a constant width corresponding to the maximum current within a range that can be supplied to the secondary battery cell. It is possible to charge the battery until the equalization processing time is shortened. Furthermore, the voltage difference of the secondary battery can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention provides a secondary battery charging device which charges each secondary battery cell to a predetermined potential difference using constant-width pulses corresponding to the maximum current in the supply range for the secondary battery cells, thereby reducing the equalisation processing time. The charge and discharge control device is at least one circuit comprising adjacent secondary battery cells connected in series, switching elements connected in series, the secondary battery cells and switching elements being connected in parallel, and an inductor connected between adjacent secondary battery cells connected in series and between switching elements connected in series, the inductor being used to equalise the voltage of adjacent secondary battery cells. In this circuit, adjacent secondary battery cells corresponding to a second voltage difference at or above a first threshold value are detected, and the voltage of the detected adjacent secondary battery cells is equalised by alternately connecting and disconnecting the switching elements to each of the detected adjacent secondary battery cells at fixed intervals using a constant pulse width that enables the supply of the maximum allowable current to the secondary battery cells detected using the second voltage difference.

Description

充放電制御装置Charge / discharge control device
 本発明は、二次電池セルの充放電を制御する充放電制御装置に関する。 The present invention relates to a charge / discharge control device for controlling charge / discharge of a secondary battery cell.
 従来、複数の二次電池セルの電圧を均等にする処理として、二次電池セル各々と並列に接続された抵抗を用いて、二次電池セル各々の電圧を複数の二次電池セルのうち最小の電圧に揃えるパッシブ方式の電圧均等化処理が知られている。しかし、パッシブ方式の電圧均等化処理では、抵抗の発熱を抑え、二次電池セル各々の均等化を行うため、電圧均等化に長時間を要することがある。 Conventionally, as a process for equalizing the voltages of a plurality of secondary battery cells, using a resistor connected in parallel with each of the secondary battery cells, the voltage of each of the secondary battery cells is minimized among the plurality of secondary battery cells. Passive voltage equalization processing that matches the voltage is known. However, in the passive voltage equalization process, resistance heating is suppressed and each secondary battery cell is equalized. Therefore, voltage equalization may take a long time.
 また、アクティブ方式を使った二次電池セルの電圧均等化処理が提案されている。しかし、アクティブ方式の制御方法では、二次電池セル各々の電圧の差に応じてPulse Width Modulation(PWM)制御を行っているため、目標とする電圧差が小さい場合に、電圧均等化に時間がかかることがある。 Also, voltage equalization processing for secondary battery cells using the active method has been proposed. However, in the active control method, since Pulse Width Modulation (PWM) control is performed according to the voltage difference between the secondary battery cells, when the target voltage difference is small, it takes time to equalize the voltage. It may take.
 関連する技術として、例えば、充電電流を切り替える基準値を電池の種類と型番ごとに設定する煩雑さをなくすとともに、基準値を固定した場合の充電特性のばらつきを低減させることを目的とした急速充電回路が知られている。この急速充電回路によれば、二次電池を充電するための電流を発生する電源と、その電源からの電流を所定周期の電流パルスに切り換えて二次電池に供給する電流切換手段を備えている。また、電流パルスのオフ直後の第1タイミングと、電流パルスのオフ期間中であって第1タイミングよりも遅い第2タイミングとを設定し、設定された各タイミングにおける二次電池の電圧を計測する。そして、計測した各タイミングにおける電圧の差を所定の基準値と比較し、比較結果により電流パルスの電流値を変更する。その結果、充電中の過電圧の変化をとらえてガス発生を抑えて電流を切り換えることができ、二次電池の種類、型番による充電特性のばらつきを低減する。例えば、特許文献1など。 As a related technology, for example, quick charging aimed at eliminating the complexity of setting the reference value for switching the charging current for each battery type and model number and reducing variation in charging characteristics when the reference value is fixed A circuit is known. According to the quick charging circuit, a power source that generates a current for charging the secondary battery and a current switching unit that switches the current from the power source to a current pulse of a predetermined cycle and supplies the current to the secondary battery are provided. . Also, a first timing immediately after the current pulse is turned off and a second timing that is during the current pulse off period and is later than the first timing are set, and the voltage of the secondary battery at each set timing is measured. . Then, the measured voltage difference at each timing is compared with a predetermined reference value, and the current value of the current pulse is changed according to the comparison result. As a result, a change in overvoltage during charging can be detected, gas generation can be suppressed and current can be switched, and variation in charging characteristics depending on the type and model number of the secondary battery can be reduced. For example, Patent Document 1 and the like.
 また、関連する技術として、例えば充電される二次電池の履歴を問わず、過充電や充電不足を生じることなく、適正な充電を行う充電装置が知られている。その充電装置によれば、パルス電流の通電期間中の電圧と非通電期間中の電圧との差電圧を求め、差電圧が許容最大差電圧より大きいか否かで電池の状態を判定する。その後、判定結果である電池の状態と差電圧とに応じて、電池温度を大幅に上昇させることなく放電容量を増大させるように充電電流の電流値及びデューティ比を変化させる。例えば、特許文献2など。 As a related technique, for example, a charging device that performs appropriate charging without causing overcharging or insufficient charging is known regardless of the history of the charged secondary battery. According to the charging device, the difference voltage between the voltage during the energization period of the pulse current and the voltage during the non-energization period is obtained, and the state of the battery is determined based on whether or not the difference voltage is larger than the allowable maximum difference voltage. Thereafter, the current value and the duty ratio of the charging current are changed so as to increase the discharge capacity without significantly increasing the battery temperature in accordance with the battery state and the differential voltage that are the determination results. For example, Patent Document 2 and the like.
 また、関連する技術として、例えば直列に接続された1対のバッテリに接続されたバッテリ充電等化器モジュールのスイッチング装置の切り替えを制御する制御装置が知られている。この制御装置によれば、2つのバッテリ間の電圧差が小さくなると、充電電流のレベルを低くする。例えば、特許文献3など。 As a related technique, for example, a control device that controls switching of a switching device of a battery charging equalizer module connected to a pair of batteries connected in series is known. According to this control device, when the voltage difference between the two batteries becomes small, the level of the charging current is lowered. For example, Patent Document 3 and the like.
 また、関連する技術として、例えば被充電電池の電池電圧と充電用入力電圧との電位差を求め、この電位差に応じた充電デューティを満たすように充電入力電圧を被充電電池に対してパルス通電をする技術が知られている。その技術によれば、通電パルスを可変調節して、任意の充電電流をもって被充電電池を充電する。例えば、特許文献4など。 As a related technique, for example, a potential difference between the battery voltage of the battery to be charged and the input voltage for charging is obtained, and the charging input voltage is pulse-energized to the battery to be charged so as to satisfy a charging duty corresponding to the potential difference. Technology is known. According to the technology, the charged battery is charged with an arbitrary charging current by variably adjusting the energization pulse. For example, Patent Document 4 and the like.
 また、関連する技術として、例えば一定パルス幅の充電パルスを用いてパルス充電を行う充電方法が知られている。その充電方法によれば、充電パルスが発生する毎に該充電パルスにより充電を行っている期間中の充電電圧の電圧変化率を測定し、電圧変化率が設定値以上になるまでは充電パルスを基準周期で発生し、電圧変化率が設定値以上になった後は、所定の周期に変更して充電を行う。例えば、特許文献5など。 As a related technique, for example, a charging method is known in which pulse charging is performed using a charging pulse having a constant pulse width. According to the charging method, each time a charging pulse occurs, the voltage change rate of the charging voltage during the period of charging by the charging pulse is measured, and the charging pulse is kept until the voltage changing rate exceeds a set value. After being generated in the reference cycle and the voltage change rate is equal to or higher than the set value, the charging is performed by changing to a predetermined cycle. For example, Patent Document 5 and the like.
特開平09-233725号公報Japanese Patent Application Laid-Open No. 09-233725 特開平08-182215号公報Japanese Patent Laid-Open No. 08-182215 特表2003-513605号公報Special table 2003-513605 gazette 特開2000-316237号公報JP 2000-316237 A 特開平06-030530号公報Japanese Patent Laid-Open No. 06-030530
 本発明は、アクティブ方式の電圧均等化処理において、二次電池セルに供給可能な範囲の最大電流に応じた一定幅のパルスを用いて、二次電池セル各々が所定の電位差になるまで充電をし、均等化処理時間を短縮する充放電制御装置を提供することを目的とする。 In the active voltage equalization process, the present invention uses a pulse having a constant width according to the maximum current within a range that can be supplied to the secondary battery cell, and charges each secondary battery cell until a predetermined potential difference is reached. And it aims at providing the charging / discharging control apparatus which shortens equalization processing time.
 本発明の態様のひとつである充放電制御装置は、隣り合う二次電池セルを均等化する1つ以上の回路、電圧計測部、制御部を有する。 The charge / discharge control apparatus which is one aspect of the present invention includes one or more circuits, a voltage measurement unit, and a control unit that equalize adjacent secondary battery cells.
 回路は、直列に接続される隣り合う二次電池セルと、直列に接続されるスイッチ素子とが並列に接続されている。また、直列に接続される隣り合う上記二次電池セルの間と、直列に接続される上記スイッチ素子の間とに接続されるインダクタを用いて、隣り合う上記二次電池セルの電圧を均等にする。電圧計測部は、上記二次電池セル各々の電圧を計測する。 In the circuit, adjacent secondary battery cells connected in series and switch elements connected in series are connected in parallel. Moreover, the voltage of the said adjacent secondary battery cell is equalized using the inductor connected between the said secondary battery cells connected in series and between the said switch elements connected in series. To do. A voltage measurement part measures the voltage of each said secondary battery cell.
 制御部は、計測した上記二次電池セルの電圧の最大値と最小値の第1の電圧差を求め、上記二次電池セル各々の電圧が均等であるか否かを判定するための第1の閾値と比較する。そして、上記第1の電圧差が第1の閾値以上であるとき、隣り合う前記二次電池セル各々について第2の電圧差を求め、上記第1の閾値以上である前記第2の電圧差に対応する隣り合う前記二次電池セルを検出する。その後、検出した隣り合う上記二次電池セル各々に対して、上記第2の電圧差により決まる上記二次電池セルが許容できる最大電流を供給可能な一定のパルス幅を用いて、一定周期ごとに上記スイッチ素子各々を交互に導通と遮断を切り替え、検出した隣り合う前記二次電池セルの電圧を均等にさせる。 The control unit obtains a first voltage difference between the maximum value and the minimum value of the measured voltage of the secondary battery cell, and determines whether or not the voltage of each of the secondary battery cells is equal. Compare with the threshold value. When the first voltage difference is equal to or greater than a first threshold value, a second voltage difference is obtained for each of the adjacent secondary battery cells, and the second voltage difference equal to or greater than the first threshold value is obtained. Corresponding adjacent secondary battery cells are detected. Thereafter, for each of the detected adjacent secondary battery cells, a constant pulse width that can supply the maximum current that can be allowed by the secondary battery cell determined by the second voltage difference is used at regular intervals. The switch elements are alternately switched on and off, and the detected voltages of the adjacent secondary battery cells are made equal.
 実施の形態によれば、電圧均等化処理にかかる時間を短縮することができるという効果を奏する。 According to the embodiment, there is an effect that the time required for the voltage equalization process can be shortened.
図1は、充放電制御装置の一実施例を示す図である。FIG. 1 is a diagram illustrating an embodiment of a charge / discharge control device. 図2は、実施形態1の充放電制御装置の動作の一実施例を示すフロー図である。FIG. 2 is a flowchart illustrating an example of the operation of the charge / discharge control apparatus according to the first embodiment. 図3は、記憶部2に記憶されている電圧計測情報、最大値最小値情報、隣接セル情報、パルス幅情報、隣接セル制御情報のデータ構造の一実施例を示す図である。FIG. 3 is a diagram illustrating an example of a data structure of voltage measurement information, maximum value / minimum value information, adjacent cell information, pulse width information, and adjacent cell control information stored in the storage unit 2. 図4は、実施形態2の充放電制御装置の動作の一実施例を示すフロー図である。FIG. 4 is a flowchart illustrating an example of the operation of the charge / discharge control apparatus according to the second embodiment.
 以下図面に基づいて、実施形態について詳細を説明する。
 図1は、充放電制御装置の一実施例を示す図である。なお、本実施形態の充放電制御装置は、プラグインハイブリット車、電気自動車、またはフォークリフトなどの車両に搭載されることが考えられる。ただし、上記車両に限定されるものではない。
Hereinafter, embodiments will be described in detail based on the drawings.
FIG. 1 is a diagram illustrating an embodiment of a charge / discharge control device. Note that the charge / discharge control device of this embodiment may be mounted on a vehicle such as a plug-in hybrid vehicle, an electric vehicle, or a forklift. However, it is not limited to the said vehicle.
 図1の充放電制御装置は、制御部1、記憶部2、二次電池セル3(3a~3d)、電圧計測部4、インダクタL1~L3、スイッチ素子SW1~SW6、SW11~SW18を備えている。 1 includes a control unit 1, a storage unit 2, secondary battery cells 3 (3a to 3d), a voltage measurement unit 4, inductors L1 to L3, switch elements SW1 to SW6, and SW11 to SW18. Yes.
 制御部1は充放電制御装置の各部を制御する。制御部1は、例えば、車両に搭載される電池Electronic Control Unit(ECU)などが考えられる。なお、制御部1は、Central Processing Unit(CPU)やプログラマブルなデバイス(Field Programmable Gate Array(FPGA)、Programmable Logic Device(PLD)など)を用いることが考えられる。 Control unit 1 controls each part of the charge / discharge control device. The control unit 1 may be, for example, a battery Electronic Control Unit (ECU) mounted on a vehicle. Note that the control unit 1 may use a Central Processing Unit (CPU) or a programmable device (Field Programmable Gate Array (FPGA), Programmable Logic Device (PLD), or the like).
 記憶部2は、制御部1が実行するプログラム、各種テーブルなどのデータが記憶されている。また、記憶部2はRead Only Memory(ROM)、Random Access Memory(RAM)などのメモリやハードディスクなどが考えられる。なお、記憶部2にはパラメータ値、変数値などのデータを記録してもよいし、実行時のワークエリアとして用いてもよい。制御部1の詳細については後述する。 The storage unit 2 stores data such as programs executed by the control unit 1 and various tables. The storage unit 2 may be a memory such as a Read Only Memory (ROM) or a Random Access Memory (RAM), a hard disk, or the like. Data such as parameter values and variable values may be recorded in the storage unit 2 or may be used as a work area at the time of execution. Details of the control unit 1 will be described later.
 電圧計測部4は、二次電池セル3(3a~3d)各々の電圧を計測する。
 二次電池セル3a~3dが直列に接続されている二次電池ブロックは、放電時は不図示の負荷に接続され、充電時不図示の充電器などに接続される。負荷は、例えば、車両用の駆動モータなどが考えられる。充電器は、例えば、車両に設けられ、AC100VまたはAC200Vを用いて二次電池セル3a~3dに充電する充電器が考えられる。
The voltage measuring unit 4 measures the voltage of each of the secondary battery cells 3 (3a to 3d).
The secondary battery block in which the secondary battery cells 3a to 3d are connected in series is connected to a load (not shown) at the time of discharging, and is connected to a charger (not shown) at the time of charging. As the load, for example, a drive motor for a vehicle can be considered. As the charger, for example, a charger that charges the secondary battery cells 3a to 3d using AC100V or AC200V can be considered.
 インダクタL1~L3は、隣り合う二次電池セル3a~3dを均等にするために用いられる。 The inductors L1 to L3 are used to make the adjacent secondary battery cells 3a to 3d uniform.
 スイッチ素子SW1~SW6、スイッチ素子SW11~SW18は電圧均等化処理を行う回路で用いる。なお、スイッチ素子SW1~SW6、SW11~SW18は、例えば、Metal Oxide Semiconductor field Effect Transistor(MOSFET)などにより構成され、制御部1から出力される制御信号(図1の破線は制御配線)によりオンオフされる。なお、スイッチ素子はMOSFETに限定されるものではなく、スイッチの機能を有するものであればよくリレーなどを用いてもよい。 The switch elements SW1 to SW6 and the switch elements SW11 to SW18 are used in a circuit that performs voltage equalization processing. The switch elements SW1 to SW6 and SW11 to SW18 are composed of, for example, MetalMetaOxide Semiconductor field Effect Transistor (MOSFET) and are turned on / off by a control signal output from the control unit 1 (the broken line in FIG. 1 is a control wiring). The Note that the switch element is not limited to a MOSFET, and any relay element may be used as long as it has a switch function.
 図1に示す回路の構成について説明する。
 スイッチ素子SW1の一方の端子と二次電池セル3aの正極端子とスイッチ素子SW11の一方の端子が接続されている。スイッチ素子SW1の他方の端子とスイッチ素子SW2の一方の端子とインダクタL1の一方の端子とが接続されている。二次電池セル3aの負極端子とインダクタL1の他方の端子とスイッチ素子SW3の一方の端子とスイッチ素子SW12の一方の端子とスイッチ素子SW13の一方の端子と二次電池セル3bの正極端子とが接続されている。
The configuration of the circuit shown in FIG. 1 will be described.
One terminal of the switch element SW1, the positive terminal of the secondary battery cell 3a, and one terminal of the switch element SW11 are connected. The other terminal of the switch element SW1, the one terminal of the switch element SW2, and the one terminal of the inductor L1 are connected. The negative terminal of the secondary battery cell 3a, the other terminal of the inductor L1, one terminal of the switch element SW3, one terminal of the switch element SW12, one terminal of the switch element SW13, and the positive terminal of the secondary battery cell 3b It is connected.
 スイッチ素子SW2の他方の端子とスイッチ素子SW5の一方の端子とインダクタL2の一方の端子と二次電池セル3bの負極端子とスイッチ素子SW14の一方の端子とスイッチ素子SW15の一方の端子と二次電池セル3cの正極端子とが接続されている。 The other terminal of the switch element SW2, one terminal of the switch element SW5, one terminal of the inductor L2, the negative terminal of the secondary battery cell 3b, one terminal of the switch element SW14, one terminal of the switch element SW15, and the secondary The positive electrode terminal of the battery cell 3c is connected.
 インダクタL2の他方の端子とスイッチ素子SW3の他方の端子とスイッチ素子SW4の一方の端子とが接続されている。 The other terminal of the inductor L2, the other terminal of the switch element SW3, and one terminal of the switch element SW4 are connected.
 スイッチ素子SW5の他方の端子とスイッチ素子SW6の一方の端子とインダクタL3の一方の端子とが接続されている。 The other terminal of the switch element SW5, one terminal of the switch element SW6, and one terminal of the inductor L3 are connected.
 二次電池セル3cの負極端子とインダクタL3の他方の端子とスイッチ素子SW4の他方の端子とスイッチ素子SW16の一方の端子とスイッチ素子SW17の一方の端子と二次電池セル3dの正極端子とが接続されている。 The negative terminal of the secondary battery cell 3c, the other terminal of the inductor L3, the other terminal of the switch element SW4, one terminal of the switch element SW16, one terminal of the switch element SW17, and the positive terminal of the secondary battery cell 3d It is connected.
 スイッチ素子SW6の他方の端子とスイッチ素子SW18の一方の端子と二次電池セル3dの負極端子とが接続されている。 The other terminal of the switch element SW6, one terminal of the switch element SW18, and the negative terminal of the secondary battery cell 3d are connected.
 スイッチ素子SW11の他方の端子とスイッチ素子SW13の他方の端子とスイッチ素子SW15の他方の端子とスイッチ素子SW17の他方の端子と電圧計測部4の一方の端子とが接続されている。 The other terminal of the switch element SW11, the other terminal of the switch element SW13, the other terminal of the switch element SW15, the other terminal of the switch element SW17, and one terminal of the voltage measuring unit 4 are connected.
 スイッチ素子SW12の他方の端子とスイッチ素子SW14の他方の端子とスイッチ素子SW16の他方の端子とスイッチ素子SW18の他方の端子と電圧計測部4の他方の端子とが接続されている。 The other terminal of the switch element SW12, the other terminal of the switch element SW14, the other terminal of the switch element SW16, the other terminal of the switch element SW18, and the other terminal of the voltage measuring unit 4 are connected.
 制御部1について説明する。
 電圧均等化処理は、隣り合う二次電池セル3a~3dを充放電するためのインダクタL1~L3を用いて、隣り合う二次電池セル3の電圧を順次均等にする。二次電池セル3aの電圧と二次電池セル3bの電圧を均等にする場合、インダクタL1とスイッチ素子SW1とスイッチ素子SW2を用いて電圧を均等にする。二次電池セル3bの電圧と二次電池セル3cの電圧を均等にする場合、インダクタL2とスイッチ素子SW3とスイッチ素子SW4を用いて電圧を均等にする。二次電池セル3cの電圧と二次電池セル3dの電圧を均等にする場合、インダクタL3とスイッチ素子SW5とスイッチ素子SW6を用いて電圧を均等にする。
The control unit 1 will be described.
In the voltage equalization process, the voltages of the adjacent secondary battery cells 3 are sequentially equalized using the inductors L1 to L3 for charging and discharging the adjacent secondary battery cells 3a to 3d. When equalizing the voltage of the secondary battery cell 3a and the voltage of the secondary battery cell 3b, the voltage is equalized using the inductor L1, the switch element SW1, and the switch element SW2. When equalizing the voltage of the secondary battery cell 3b and the voltage of the secondary battery cell 3c, the voltage is equalized using the inductor L2, the switch element SW3, and the switch element SW4. When equalizing the voltage of the secondary battery cell 3c and the voltage of the secondary battery cell 3d, the inductor L3, the switch element SW5, and the switch element SW6 are used to equalize the voltage.
 電圧均等化処理について説明する。
 まず、二次電池セル3aと二次電池セル3bの各電圧を均等にするには、スイッチ素子SW1、SW2を交互に断続して動作(導通状態と遮断状態を切り替える)させ、二次電池セル3aと二次電池セル3bとの間でインダクタを介して電荷の移動をして電圧を均等にする。二次電池セル3aと二次電池セル3bの各電圧を均等にするとき、他のスイッチ素子は遮断状態である。また、交互に断続して動作させる制御信号として、制御部1が、スイッチ素子SW1にパルス信号を出力し、スイッチ素子SW2にパルス信号を反転させた反転パルス信号を出力する。
The voltage equalization process will be described.
First, in order to equalize each voltage of the secondary battery cell 3a and the secondary battery cell 3b, the switch elements SW1 and SW2 are alternately intermittently operated (switching between the conduction state and the cutoff state), and the secondary battery cell. Electric charges are transferred between the 3a and the secondary battery cell 3b through the inductor to equalize the voltage. When the voltages of the secondary battery cell 3a and the secondary battery cell 3b are equalized, the other switch elements are in a cut-off state. In addition, as a control signal that operates alternately and intermittently, the control unit 1 outputs a pulse signal to the switch element SW1, and outputs an inverted pulse signal obtained by inverting the pulse signal to the switch element SW2.
 次に、隣り合う二次電池セル3aと二次電池セル3bの電圧が均等になると、次の隣り合う二次電池セル3bと二次電池セル3cを選択する。 Next, when the voltages of the adjacent secondary battery cells 3a and secondary battery cells 3b become equal, the next adjacent secondary battery cell 3b and secondary battery cell 3c are selected.
 二次電池セル3bの電圧と二次電池セル3cの各電圧を均等するに場合は、スイッチ素子SW3、SW4を交互に断続して動作(導通状態と遮断状態を切り替える)させ、二次電池セル3bと二次電池セル3cとの間で電荷の移動をして電圧を均等にする。二次電池セル3bと二次電池セル3cの各電圧を均等にするとき、他のスイッチ素子は遮断状態である。また、交互に断続して動作させる制御信号として、制御部1が、スイッチ素子SW3にパルス信号を出力し、スイッチ素子SW4にパルス信号を反転させた反転パルス信号を出力する。 When equalizing the voltage of the secondary battery cell 3b and the voltage of the secondary battery cell 3c, the switch elements SW3 and SW4 are alternately intermittently operated (switching between the conductive state and the cut-off state), and the secondary battery cell The charge is moved between 3b and the secondary battery cell 3c to equalize the voltage. When the voltages of the secondary battery cell 3b and the secondary battery cell 3c are equalized, the other switch elements are in a cut-off state. In addition, as a control signal that operates alternately and intermittently, the control unit 1 outputs a pulse signal to the switch element SW3 and outputs an inverted pulse signal obtained by inverting the pulse signal to the switch element SW4.
 次に、隣り合う二次電池セル3bと二次電池セル3cの電圧が均等になると、次の隣り合う二次電池セル3cと二次電池セル3dを選択する。 Next, when the voltages of the adjacent secondary battery cell 3b and the secondary battery cell 3c become equal, the next adjacent secondary battery cell 3c and the secondary battery cell 3d are selected.
 二次電池セル3cの電圧と二次電池セル3dの各電圧を均等するに場合は、スイッチ素子SW5、SW6を交互に断続して動作(導通状態と遮断状態を切り替える)させ、二次電池セル3cと二次電池セル3dとの間で電荷の移動をして電圧を均等にする。二次電池セル3cと二次電池セル3dの各電圧を均等にするとき、他のスイッチ素子は遮断状態である。また、交互に断続して動作させる制御信号として、制御部1が、スイッチ素子SW5にパルス信号を出力し、スイッチ素子SW6にパルス信号を反転させた反転パルス信号を出力する。 In order to equalize the voltage of the secondary battery cell 3c and the voltage of the secondary battery cell 3d, the switch elements SW5 and SW6 are alternately intermittently operated (switching between the conductive state and the cut-off state), and the secondary battery cell The charge is transferred between 3c and the secondary battery cell 3d to equalize the voltage. When the voltages of the secondary battery cell 3c and the secondary battery cell 3d are equalized, the other switch elements are in a cut-off state. In addition, as a control signal that operates alternately and intermittently, the control unit 1 outputs a pulse signal to the switch element SW5 and outputs an inverted pulse signal obtained by inverting the pulse signal to the switch element SW6.
 上記処理を繰り返して全ての二次電池セル3a~3dの電圧値が所定の範囲内になると電圧均等化処理を停止する。 When the above processing is repeated and the voltage values of all the secondary battery cells 3a to 3d are within the predetermined range, the voltage equalization processing is stopped.
 なお、本例では、4つの二次電池セルについて記載しているが、4つに限定されるものではない。 In this example, four secondary battery cells are described, but the number is not limited to four.
 充放電制御装置の動作について説明する。
 図2は、充放電制御装置の動作の一実施例を示すフロー図である。ステップS1では、制御部1が二次電池セル3各々の電圧値を計測する。例えば、二次電池セル3aの電圧値を取得するために、制御部1がスイッチ素子SW11、SW12を導通状態にして、電圧計測部4から電圧値を取得する。二次電池セル3bの電圧値を取得するために、制御部1がスイッチ素子SW13、SW14を導通状態にして、電圧計測部4から電圧値を取得する。二次電池セル3cの電圧値を取得するために、制御部1がスイッチ素子SW15、SW16を導通状態にして、電圧計測部4から電圧値を取得する。二次電池セル3dの電圧値を取得するために、制御部1がスイッチ素子SW17、SW18を導通状態にして、電圧計測部4から電圧値を取得する。
The operation of the charge / discharge control device will be described.
FIG. 2 is a flowchart showing an embodiment of the operation of the charge / discharge control device. In step S <b> 1, the control unit 1 measures the voltage value of each secondary battery cell 3. For example, in order to acquire the voltage value of the secondary battery cell 3a, the control unit 1 sets the switch elements SW11 and SW12 to the conductive state and acquires the voltage value from the voltage measurement unit 4. In order to acquire the voltage value of the secondary battery cell 3b, the control unit 1 sets the switch elements SW13 and SW14 to the conductive state and acquires the voltage value from the voltage measurement unit 4. In order to acquire the voltage value of the secondary battery cell 3 c, the control unit 1 sets the switch elements SW <b> 15 and SW <b> 16 in a conductive state and acquires the voltage value from the voltage measurement unit 4. In order to acquire the voltage value of the secondary battery cell 3d, the control unit 1 sets the switch elements SW17 and SW18 to the conductive state and acquires the voltage value from the voltage measurement unit 4.
 図3は、記憶部2に記憶されている電圧計測情報、最大値最小値情報、隣接セル情報、パルス幅情報、隣接セル制御情報のデータ構造の一実施例を示す図である。ステップS1では、制御部1が電圧計測情報31を参照してスイッチ素子SW11~SW18を切り替えることが考えられる。電圧計測情報31は「セルNo」「スイッチ」「電圧値」などの情報を有する。本例では、「セルNo」には図1に示す二次電池セル3a~3dを示す「3a」「3b」「3c」「3d」が記憶されている。「スイッチ」には図1に示す二次電池セル3a~3d各々の電圧を計測するために制御するスイッチ素子SW11~SW18を示す情報が記憶されている。本例では、「3a」に関連付けられて二次電池セル3aの電圧を計測するために導通状態にするスイッチ素子SW11、SW12を示す「SW11、SW12」が記憶されている。また、二次電池セル3bの電圧各々を計測するために導通状態にするスイッチ素子SW13、SW14を示す「SW13、SW14」が「3b」に関連付けられて記憶されている。また、二次電池セル3cの電圧各々を計測するために導通状態にするスイッチ素子SW15、SW16を示す「SW15、SW16」が「3c」に関連付けられて記憶されている。また、二次電池セル3dの電圧各々を計測するために導通状態にするスイッチ素子SW17、SW18を示す「SW17、SW18」が「3d」に関連付けられて記憶されている。「電圧値」には、電圧計測部4が計測した二次電池セル3a~3dの電圧各々が記憶されている。本例では、「3a」に関連付けられて二次電池セル3aの電圧値「V3a」が記憶されている。「3b」に関連付けられて二次電池セル3bの電圧値「V3b」が記憶されている。「3c」に関連付けられて二次電池セル3cの電圧値「V3c」が記憶されている。「3d」に関連付けられて二次電池セル3dの電圧値「V3d」が記憶されている。 FIG. 3 is a diagram illustrating an example of a data structure of voltage measurement information, maximum value / minimum value information, adjacent cell information, pulse width information, and adjacent cell control information stored in the storage unit 2. In step S1, it is conceivable that the control unit 1 switches the switch elements SW11 to SW18 with reference to the voltage measurement information 31. The voltage measurement information 31 includes information such as “cell number”, “switch”, and “voltage value”. In this example, “cell No” stores “3a”, “3b”, “3c”, and “3d” indicating the secondary battery cells 3a to 3d shown in FIG. The “switch” stores information indicating the switch elements SW11 to SW18 that are controlled to measure the voltages of the secondary battery cells 3a to 3d shown in FIG. In this example, “SW11, SW12” indicating the switch elements SW11, SW12 that are brought into a conductive state in order to measure the voltage of the secondary battery cell 3a in association with “3a” is stored. Further, “SW13, SW14” indicating the switch elements SW13, SW14 to be turned on to measure each voltage of the secondary battery cell 3b is stored in association with “3b”. Further, “SW15, SW16” indicating the switch elements SW15, SW16 to be turned on to measure each voltage of the secondary battery cell 3c is stored in association with “3c”. Further, “SW17, SW18” indicating the switch elements SW17, SW18 to be turned on to measure each voltage of the secondary battery cell 3d is stored in association with “3d”. In the “voltage value”, each voltage of the secondary battery cells 3a to 3d measured by the voltage measuring unit 4 is stored. In this example, the voltage value “V3a” of the secondary battery cell 3a is stored in association with “3a”. The voltage value “V3b” of the secondary battery cell 3b is stored in association with “3b”. The voltage value “V3c” of the secondary battery cell 3c is stored in association with “3c”. The voltage value “V3d” of the secondary battery cell 3d is stored in association with “3d”.
 ステップS2では、制御部1が全ての二次電池セル3のうちの最大値と、最小値を求め、最大値最小値情報に記憶する。例えば、電圧計測情報31の「V3a」「V3b」「V3c」「V3d」を参照して最大値と最小値を求める。そして、制御部1は取得した最大値と最小値を図3の最大値最小値情報32に記憶する。最大値最小値情報32は、「最大値」「最小値」「電圧差」「閾値」などの情報を有する。本例では、「最大値」にV3a~V3dの最大値としてV3aが記憶され、「最小値」にV3a~V3dの最小値としてV3bが記憶されている。「電圧差」には、最大値と最小値の電圧差が記憶される。本例では、V3a-V3bの結果である「Vsub」が記憶されている。「閾値」には、二次電池セルの電圧均等化処理を行うか否かを判定するための閾値が記憶されている。本例では、閾値として「Vref」が記憶されている。 In step S2, the control unit 1 obtains the maximum value and the minimum value of all the secondary battery cells 3, and stores them in the maximum value / minimum value information. For example, the maximum value and the minimum value are obtained with reference to “V3a”, “V3b”, “V3c”, and “V3d” of the voltage measurement information 31. And the control part 1 memorize | stores the acquired maximum value and minimum value in the maximum value minimum value information 32 of FIG. The maximum value / minimum value information 32 includes information such as “maximum value”, “minimum value”, “voltage difference”, and “threshold value”. In this example, “maximum value” stores V3a as the maximum value of V3a to V3d, and “minimum value” stores V3b as the minimum value of V3a to V3d. The “voltage difference” stores the voltage difference between the maximum value and the minimum value. In this example, “Vsub” which is the result of V3a−V3b is stored. The “threshold value” stores a threshold value for determining whether or not to perform the voltage equalization process of the secondary battery cell. In this example, “Vref” is stored as the threshold value.
 ステップS3では、制御部1が最大値と最小値との電圧差Vsubと閾値Vrefを比較し、Vsub≧Vrefであるか否かを判定し、Vsub≧VrefであればステップS4(Yes)に移行し、Vsub≧Vrefでなければ電圧均等化処理を終了(No)する。 In step S3, the control unit 1 compares the voltage difference Vsub between the maximum value and the minimum value with the threshold value Vref to determine whether or not Vsub ≧ Vref. If Vsub ≧ Vref, the process proceeds to step S4 (Yes). If Vsub ≧ Vref, the voltage equalization process is terminated (No).
 ステップS4では、制御部1が全ての二次電池セル3に対して、隣接する二次電池セル3との電圧差を求める。例えば、図3の隣接セル情報33を用いて隣接する二次電池セル3を検出し、電圧計測情報31に記憶されている二次電池セル3a~3d各々の電圧値V3a、V3b、V3c、V3dを用いて、隣接する二次電池セル3との電圧差を求める。隣接セル情報33に、隣接する二次電池セル3を対応付けて「隣接セル」の「セルNo」各々に記憶し、隣接する二次電池セル3の電圧差を「電圧差」に記憶する。本例では、図1に示す二次電池セル3a~3dが「隣接セル」に二次電池セルの対として「3a」と「3b」、「3b」と「3c」、「3c」と「3d」が記憶されている。また、電圧差には、「3a」と「3b」、「3b」と「3c」、「3c」と「3d」それぞれ対応付けられて電圧差「Vsub_1」「Vsub_2」「Vsub_3」が記憶されている。電圧差「Vsub_1」は、「3a」と「3b」に対応付けられ、電圧差「Vsub_2」は、「3b」と「3c」に対応付けられ、電圧差「Vsub_3」は、「3c」と「3d」に対応付けられている。「判定結果」には、電圧差「Vsub_1」「Vsub_2」「Vsub_3」各々と閾値Vrefとの比較結果が記憶されている。本例では、電圧差が閾値Vref以上であれば「1」を記憶し、電圧差が閾値Vref以上でない場合には「0」を記憶する。 In step S4, the control unit 1 obtains a voltage difference from the adjacent secondary battery cells 3 with respect to all the secondary battery cells 3. For example, the adjacent secondary battery cell 3 is detected using the adjacent cell information 33 of FIG. 3, and the voltage values V3a, V3b, V3c, V3d of the secondary battery cells 3a to 3d stored in the voltage measurement information 31 are detected. Is used to determine the voltage difference between the adjacent secondary battery cells 3. The adjacent cell information 33 is associated with the adjacent secondary battery cell 3 and stored in each “cell No.” of the “adjacent cell”, and the voltage difference between the adjacent secondary battery cells 3 is stored in the “voltage difference”. In this example, the secondary battery cells 3a to 3d shown in FIG. 1 have “3a” and “3b”, “3b” and “3c”, “3c” and “3d” as a pair of secondary battery cells in “adjacent cells”. Is stored. In addition, the voltage differences “3a” and “3b”, “3b” and “3c”, “3c” and “3d” are associated with the voltage differences “Vsub_1”, “Vsub_2”, and “Vsub_3”, respectively. Yes. The voltage difference “Vsub — 1” is associated with “3a” and “3b”, the voltage difference “Vsub — 2” is associated with “3b” and “3c”, and the voltage difference “Vsub — 3” is associated with “3c” and “3c”. 3d ". The “determination result” stores a comparison result between each of the voltage differences “Vsub — 1”, “Vsub — 2”, and “Vsub — 3” and the threshold value Vref. In this example, “1” is stored if the voltage difference is equal to or greater than the threshold value Vref, and “0” is stored if the voltage difference is not equal to or greater than the threshold value Vref.
 ステップS5では、制御部1がステップS4で求めた電圧差と閾値Vrefを比較し、閾値以上の電圧差の二次電池セルの対を検出する。例えば、隣接セル情報33の電圧差「Vsub_1」「Vsub_2」「Vsub_3」各々と閾値Vrefを比較し、閾値以上であるか否かを判定する。本例では、隣接セル情報33の「判定結果」に「Vsub_1」「Vsub_2」が閾値Vref以上であるのであることを示す「1」「1」「0」が記憶されている。 In step S5, the control unit 1 compares the voltage difference obtained in step S4 with the threshold value Vref, and detects a pair of secondary battery cells having a voltage difference equal to or greater than the threshold value. For example, the voltage differences “Vsub — 1”, “Vsub — 2”, and “Vsub — 3” of the adjacent cell information 33 are compared with the threshold value Vref, and it is determined whether or not the threshold value is equal to or greater than the threshold value. In this example, “1”, “1”, and “0” indicating that “Vsub — 1” and “Vsub — 2” are equal to or greater than the threshold value Vref are stored in the “determination result” of the neighboring cell information 33.
 ステップS6では、制御部1がステップS5で検出された隣接する二次電池セルに対して、電圧均等化処理を実施するのに用いるパルス信号のパルス幅を設定する。例えば、閾値Vref以上であると判定された電圧差を取得し、取得した電圧差が含まれる図3のパルス幅情報34の電圧範囲を検出し、電圧範囲に関連付けられているパルス幅またはデューティ(%)を取得する。パルス幅情報34は、「電圧範囲」「デューティ」を記憶する。「電圧範囲」には、「デューティ」を選択するための電圧範囲が設定されている。本例では、電圧範囲を示す情報「Vsub_a」「Vsub_b」「Vsub_c」「Vsub_d」「Vsub_e」「Vsub_f」が記憶されている。「デューティ」には、アクティブ方式の電圧均等化処理において、二次電池セルに供給可能な範囲の最大電流に応じた一定周期ごとに出力される一定幅のパルス幅またはデューティ(%)が記憶されている。本例では、「Vsub_a」に関連付けられたパルス幅「D1」、「Vsub_b」に関連付けられたパルス幅「D2」、「Vsub_c」に関連付けられたパルス幅「D3」、「Vsub_d」に関連付けられたパルス幅「D4」、「Vsub_e」に関連付けられたパルス幅「D5」、「Vsub_f」に関連付けられたパルス幅「D6」が記憶されている。 In step S6, the control unit 1 sets the pulse width of the pulse signal used for performing the voltage equalization process on the adjacent secondary battery cell detected in step S5. For example, the voltage difference determined to be greater than or equal to the threshold Vref is acquired, the voltage range of the pulse width information 34 of FIG. 3 including the acquired voltage difference is detected, and the pulse width or duty ( %). The pulse width information 34 stores “voltage range” and “duty”. In the “voltage range”, a voltage range for selecting “duty” is set. In this example, information “Vsub_a”, “Vsub_b”, “Vsub_c”, “Vsub_d”, “Vsub_e”, and “Vsub_f” indicating the voltage range is stored. “Duty” stores a pulse width or duty (%) of a constant width that is output at a constant cycle according to the maximum current within the range that can be supplied to the secondary battery cell in the active method of voltage equalization processing. ing. In this example, the pulse width “D1” associated with “Vsub_a”, the pulse width “D2” associated with “Vsub_b”, the pulse width “D3” associated with “Vsub_c”, and the “Vsub_d” associated with “Vsub_d”. The pulse width “D5” associated with the pulse width “D4”, “Vsub_e”, and the pulse width “D6” associated with “Vsub_f” are stored.
 ステップS7では、制御部1がステップS7で決定した一定周期ごとに出力される一定幅のパルスまたはデューティ(%)と隣接セル制御情報35を用いて、スイッチ素子SW1~SW6を切り替える。電圧均等化処理を終了するとステップS1に移行する。 In step S7, the control unit 1 switches the switch elements SW1 to SW6 using a pulse or duty (%) having a constant width output at every fixed period determined in step S7 and the adjacent cell control information 35. When the voltage equalization process ends, the process proceeds to step S1.
 隣接セル制御情報35は、「隣接セル」「スイッチ」などの情報を有している。隣接する二次電池セル3を対応付けて「隣接セル」の「セルNo」各々に記憶し、隣接する二次電池セル3各々の電圧を均等にするために用いるスイッチ素子SW1~SW6を示す情報を「スイッチ」に記憶する。本例では、図1に示す二次電池セル3a~3dが「隣接セル」に二次電池セルの対として「3a」と「3b」、「3b」と「3c」、「3c」と「3d」が記憶されている。また、「スイッチ」には、「3a」と「3b」、「3b」と「3c」、「3c」と「3d」それぞれ対応付けられてスイッチ素子SW1~SW6「SW1」「SW2」、「SW3」「SW4」、「SW5」「SW6」が記憶されている。 The neighboring cell control information 35 includes information such as “neighboring cell” and “switch”. Information indicating switch elements SW1 to SW6 used in order to associate adjacent secondary battery cells 3 with each other and store them in “cell No” of “adjacent cells” and to equalize the voltages of the adjacent secondary battery cells 3. Is stored in the “switch”. In this example, the secondary battery cells 3a to 3d shown in FIG. 1 have “3a” and “3b”, “3b” and “3c”, “3c” and “3d” as a pair of secondary battery cells in “adjacent cells”. Is stored. The “switch” is associated with “3a” and “3b”, “3b” and “3c”, “3c” and “3d”, respectively, and switch elements SW1 to SW6 “SW1” “SW2”, “SW3”. "SW4", "SW5" and "SW6" are stored.
 アクティブ方式の電圧均等化処理の動作は、例えば、制御部1が隣接セル制御情報35を参照して二次電池セル3aと二次電池セル3bの電圧を均等にするためにスイッチ素子SW1、SW2を選択する。そして、ステップS7で決定した一定周期ごとに出力される一定幅のパルスを有するパルス信号がオン(high)のときスイッチ素子SW1をオン(導通状態)にする。また、スイッチ素子SW2は、上記パルス信号を反転させた反転パルス信号を供給し、反転パルス信号がオン(high)のときスイッチ素子SW2をオン(導通状態)にする。また、制御部1は電圧計測部4により二次電池セル3aと二次電池セル3bの電圧を交互に計測した結果を取得し、計測した電圧が均等であると判定されるまで電圧均等化処理を行う。 For example, the control unit 1 refers to the adjacent cell control information 35 in order to equalize the voltages of the secondary battery cell 3a and the secondary battery cell 3b. Select. The switch element SW1 is turned on (conductive state) when a pulse signal having a pulse having a constant width that is output at fixed intervals determined in step S7 is on. The switch element SW2 supplies an inverted pulse signal obtained by inverting the pulse signal, and turns the switch element SW2 on (conductive state) when the inverted pulse signal is on. Moreover, the control part 1 acquires the result of having alternately measured the voltage of the secondary battery cell 3a and the secondary battery cell 3b by the voltage measurement part 4, and voltage equalization process until it determines with the measured voltage being equal I do.
 電圧が均等になると、次に制御部1が隣接セル制御情報35を参照して二次電池セル3bと二次電池セル3cの電圧を均等にするためにスイッチ素子SW3、SW4を選択する。そして、ステップS7で決定した一定周期ごとに出力される一定幅のパルスを有するパルス信号がオン(high)のときスイッチ素子SW3をオン(導通状態)にする。また、スイッチ素子SW4は、上記パルス信号を反転させた反転パルス信号を供給し、反転パルス信号がオン(high)のときスイッチ素子SW4をオン(導通状態)にする。また、制御部1は電圧計測部4により二次電池セル3bと二次電池セル3cの電圧を交互に計測した結果を取得し、計測した電圧が均等であると判定されるまで電圧均等化処理を行う。 When the voltages become equal, the control unit 1 next selects the switch elements SW3 and SW4 in order to equalize the voltages of the secondary battery cell 3b and the secondary battery cell 3c with reference to the adjacent cell control information 35. The switch element SW3 is turned on (conducting state) when a pulse signal having a pulse having a constant width that is output at fixed intervals determined in step S7 is on. The switch element SW4 supplies an inverted pulse signal obtained by inverting the pulse signal, and turns the switch element SW4 on (conductive state) when the inverted pulse signal is on. Moreover, the control part 1 acquires the result of having measured the voltage of the secondary battery cell 3b and the secondary battery cell 3c by the voltage measurement part 4 alternately, and voltage equalization process until it determines with the measured voltage being equal I do.
 電圧が均等になると、次に制御部1が隣接セル制御情報35を参照して二次電池セル3cと二次電池セル3dの電圧を均等にするためにスイッチ素子SW5、SW6を選択する。そして、ステップS7で決定した一定周期ごとに出力される一定幅のパルスを有するパルス信号がオン(high)のときスイッチ素子SW5をオン(導通状態)にする。また、スイッチ素子SW6は、上記パルス信号を反転させた反転パルス信号を供給し、反転パルス信号がオン(high)のときスイッチ素子SW6をオン(導通状態)にする。また、制御部1は電圧計測部4により二次電池セル3cと二次電池セル3dの電圧を交互に計測した結果を取得し、計測した電圧が均等であると判定されるまで電圧均等化処理を行う。電圧が均等になると電圧均等化処理を終了し、ステップS1に移行する。 When the voltages become equal, the control unit 1 next selects the switch elements SW5 and SW6 in order to equalize the voltages of the secondary battery cell 3c and the secondary battery cell 3d with reference to the adjacent cell control information 35. The switch element SW5 is turned on (conductive state) when a pulse signal having a pulse having a constant width that is output at fixed intervals determined in step S7 is on. The switch element SW6 supplies an inverted pulse signal obtained by inverting the pulse signal, and turns the switch element SW6 on (conductive state) when the inverted pulse signal is on. Moreover, the control part 1 acquires the result of having alternately measured the voltage of the secondary battery cell 3c and the secondary battery cell 3d by the voltage measurement part 4, and voltage equalization process until it determines with the measured voltage being equal I do. When the voltages become equal, the voltage equalization process is terminated, and the process proceeds to step S1.
 なお、パルス幅は電圧差によって決定する。例えば、隣接する二次電池セルの電圧差が異なる場合、異なるパルス幅が選択される。すなわち、隣接する二次電池セルの電圧差が同じ電圧範囲ならばパルス幅は同じであり、異なる電圧範囲ならばパルス幅が異なる。 Note that the pulse width is determined by the voltage difference. For example, when the voltage difference between adjacent secondary battery cells is different, different pulse widths are selected. That is, the pulse width is the same if the voltage difference between adjacent secondary battery cells is the same voltage range, and the pulse width is different if the voltage range is different.
 実施形態1によれば、アクティブ方式の電圧均等化処理において、二次電池セルに供給可能な範囲の最大電流に応じた一定幅のパルスを用いて、二次電池セル各々が所定の電位差になるまで充電をし、均等化処理時間を短縮することができるという効果を奏する。 According to the first embodiment, in the voltage equalization process of the active method, each secondary battery cell has a predetermined potential difference by using a pulse having a constant width corresponding to the maximum current within a range that can be supplied to the secondary battery cell. It is possible to charge the battery until the equalization processing time is shortened.
 変形例について説明する。
 変形例では、実施形態1により電圧均等が完了後、さらに既知のPulse Width Modulation(PWM)を用いて電圧均等化処理を行うことにより、二次電池3a~3dの電圧差を小さくする。すなわち、二次電池3a~3dの電圧の最大値と最小値の電圧差Vsubが閾値Vrefより小さく、閾値Vrefより小さい閾値Vref2より小さくなるまで、PWMを用いて電圧均等処理を行う。
A modification will be described.
In the modification, after the voltage equalization is completed according to the first embodiment, the voltage equalization process is further performed using the known Pulse Width Modulation (PWM), thereby reducing the voltage difference between the secondary batteries 3a to 3d. That is, voltage equalization processing is performed using PWM until the voltage difference Vsub between the maximum value and the minimum value of the voltages of the secondary batteries 3a to 3d is smaller than the threshold value Vref and smaller than the threshold value Vref2 smaller than the threshold value Vref.
 図4は、実施形態2の充放電制御装置の動作の一実施例を示すフロー図である。図4に示すステップS1、S2、S4~S7は実施形態1で説明したステップS1、S2、S4~S7と同じ処理である。ステップS40の処理は、制御部1が最大値と最小値との電圧差Vsubと閾値Vrefを比較し、Vsub≧Vrefであるか否かを判定し、Vsub≧VrefであればステップS4(Yes)に移行し、Vsub≧VrefでなければステップS41(No)に移行する。 FIG. 4 is a flowchart showing an example of the operation of the charge / discharge control apparatus of the second embodiment. Steps S1, S2, and S4 to S7 shown in FIG. 4 are the same processes as steps S1, S2, and S4 to S7 described in the first embodiment. In the process of step S40, the control unit 1 compares the voltage difference Vsub between the maximum value and the minimum value and the threshold value Vref to determine whether or not Vsub ≧ Vref. If Vsub ≧ Vref, step S4 (Yes). If Vsub ≧ Vref, the process moves to step S41 (No).
 ステップ41では、制御部1が最大値と最小値との電圧差Vsubと閾値Vref2を比較し、Vsub≧Vref2であるか否かを判定し、Vsub≧Vref2であればステップS42(Yes)に移行し、Vsub≧Vref2でなければ電圧均等化処理を終了(No)する。 In step 41, the control unit 1 compares the voltage difference Vsub between the maximum value and the minimum value with the threshold value Vref2, and determines whether or not Vsub ≧ Vref2, and if Vsub ≧ Vref2, the process proceeds to step S42 (Yes). If Vsub ≧ Vref2, the voltage equalization process is terminated (No).
 ステップS42で制御部1は、電圧計測部4が取得した隣接する二次電池セル3の電圧差に応じて、一定周期ごとに出力されるパルス幅またはデューティ(%)をPWM制御によって決定する。PWM制御は、例えば、隣接する二次電池セルの電圧差を用いて求める。 In step S42, the control unit 1 determines, by PWM control, the pulse width or duty (%) output for each fixed period according to the voltage difference between the adjacent secondary battery cells 3 acquired by the voltage measurement unit 4. The PWM control is obtained using, for example, a voltage difference between adjacent secondary battery cells.
 アクティブ方式の電圧均等化処理2の動作は、例えば、制御部1が隣接セル制御情報35を参照して二次電池セル3aと二次電池セル3bの電圧を均等にするためにスイッチ素子SW1、SW2を選択する。そして、一定周期ごとにPWM制御により求めたパルス幅のパルス信号がオン(high)のときスイッチ素子SW1をオン(導通状態)にする。また、スイッチ素子SW2は、上記パルス信号を反転させた反転パルス信号を供給し、反転パルス信号がオン(high)のときスイッチ素子SW2をオン(導通状態)にする。また、制御部1は電圧計測部4により二次電池セル3aと二次電池セル3bの電圧を交互に計測した結果を取得し、計測した電圧が均等であると判定されるまで電圧均等化処理を行う。 The operation of the voltage equalization processing 2 in the active method is performed by, for example, the switching element SW1, so that the control unit 1 refers to the adjacent cell control information 35 to equalize the voltages of the secondary battery cell 3a and the secondary battery cell 3b. Select SW2. The switch element SW1 is turned on (conductive state) when a pulse signal having a pulse width obtained by PWM control at regular intervals is on. The switch element SW2 supplies an inverted pulse signal obtained by inverting the pulse signal, and turns the switch element SW2 on (conductive state) when the inverted pulse signal is on. Moreover, the control part 1 acquires the result of having alternately measured the voltage of the secondary battery cell 3a and the secondary battery cell 3b by the voltage measurement part 4, and voltage equalization process until it determines with the measured voltage being equal I do.
 電圧が均等になると、次に制御部1が隣接セル制御情報35を参照して二次電池セル3bと二次電池セル3cの電圧を均等にするためにスイッチ素子SW3、SW4を選択する。そして、一定周期ごとにPWM制御により求めたパルス幅のパルス信号がオン(high)のときスイッチ素子SW1をオン(導通状態)にする。また、スイッチ素子SW4は、上記パルス信号を反転させた反転パルス信号を供給し、反転パルス信号がオン(high)のときスイッチ素子SW4をオン(導通状態)にする。また、制御部1は電圧計測部4により二次電池セル3bと二次電池セル3cの電圧を交互に計測した結果を取得し、計測した電圧が均等であると判定されるまで電圧均等化処理を行う。 When the voltages become equal, the control unit 1 next selects the switch elements SW3 and SW4 in order to equalize the voltages of the secondary battery cell 3b and the secondary battery cell 3c with reference to the adjacent cell control information 35. The switch element SW1 is turned on (conductive state) when a pulse signal having a pulse width obtained by PWM control at regular intervals is on. The switch element SW4 supplies an inverted pulse signal obtained by inverting the pulse signal, and turns the switch element SW4 on (conductive state) when the inverted pulse signal is on. Moreover, the control part 1 acquires the result of having measured the voltage of the secondary battery cell 3b and the secondary battery cell 3c by the voltage measurement part 4 alternately, and voltage equalization process until it determines with the measured voltage being equal I do.
 電圧が均等になると、次に制御部1が隣接セル制御情報35を参照して二次電池セル3cと二次電池セル3dの電圧を均等にするためにスイッチ素子SW5、SW6を選択する。そして、一定周期ごとにPWM制御により求めたパルス幅のパルス信号がオン(high)のときスイッチ素子SW1をオン(導通状態)にする。また、スイッチ素子SW6は、上記パルス信号を反転させた反転パルス信号を供給し、反転パルス信号がオン(high)のときスイッチ素子SW6をオン(導通状態)にする。また、制御部1は電圧計測部4により二次電池セル3cと二次電池セル3dの電圧を交互に計測した結果を取得し、計測した電圧が均等であると判定されるまで電圧均等化処理を行う。電圧が均等になると電圧均等化処理を終了し、ステップS1に移行する。 When the voltages become equal, the control unit 1 next selects the switch elements SW5 and SW6 in order to equalize the voltages of the secondary battery cell 3c and the secondary battery cell 3d with reference to the adjacent cell control information 35. The switch element SW1 is turned on (conductive state) when a pulse signal having a pulse width obtained by PWM control at regular intervals is on. The switch element SW6 supplies an inverted pulse signal obtained by inverting the pulse signal, and turns the switch element SW6 on (conductive state) when the inverted pulse signal is on. Moreover, the control part 1 acquires the result of having alternately measured the voltage of the secondary battery cell 3c and the secondary battery cell 3d by the voltage measurement part 4, and voltage equalization process until it determines with the measured voltage being equal I do. When the voltages become equal, the voltage equalization process is terminated, and the process proceeds to step S1.
 実施形態2によれば、アクティブ方式の電圧均等化処理において、二次電池セルに供給可能な範囲の最大電流に応じた一定幅のパルスを用いて、二次電池セル各々が所定の電位差になるまで充電をし、均等化処理時間を短縮することができるという効果を奏する。さらに、二次電池の電圧差を小さくすることができる。 According to the second embodiment, in the voltage equalization process of the active method, each secondary battery cell has a predetermined potential difference using a pulse having a constant width corresponding to the maximum current within a range that can be supplied to the secondary battery cell. It is possible to charge the battery until the equalization processing time is shortened. Furthermore, the voltage difference of the secondary battery can be reduced.
 また、本発明は、上記実施形態1と変形例に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。
 
Further, the present invention is not limited to the first embodiment and the modifications, and various improvements and modifications can be made without departing from the gist of the present invention.

Claims (3)

  1.  直列に接続される隣り合う二次電池セルと、直列に接続されるスイッチ素子とが並列に接続され、直列に接続される隣り合う前記二次電池セルの間と、直列に接続される前記スイッチ素子の間とに接続されるインダクタを用いて、隣り合う前記二次電池セルの電圧を均等にする1つ以上の回路と、
     前記二次電池セル各々の電圧を計測する電圧計測部と、
     計測した前記二次電池セルの電圧の最大値と最小値の第1の電圧差を求め、前記二次電池セル各々の電圧が均等であるか否かを判定するための第1の閾値と比較し、前記第1の電圧差が第1の閾値以上であるとき、隣り合う前記二次電池セル各々について第2の電圧差を求め、前記第1の閾値以上である前記第2の電圧差に対応する隣り合う前記二次電池セルを検出し、検出した隣り合う前記二次電池セル各々に対して、前記第2の電圧差により決まる前記二次電池セルが許容できる最大電流を供給可能な一定のパルス幅を用いて、一定周期ごとに隣り合う前記スイッチ素子を交互に導通と遮断を切り替え、検出した隣り合う前記二次電池セルの電圧を均等にさせる制御部と、
     を備えることを特徴とする充放電制御装置。
    Adjacent secondary battery cells connected in series and switch elements connected in series are connected in parallel, between adjacent secondary battery cells connected in series, and the switch connected in series One or more circuits for equalizing the voltages of the adjacent secondary battery cells using an inductor connected between the elements;
    A voltage measuring unit for measuring the voltage of each of the secondary battery cells;
    A first voltage difference between the maximum value and the minimum value of the measured voltage of the secondary battery cell is obtained and compared with a first threshold value for determining whether or not the voltages of the secondary battery cells are equal. When the first voltage difference is equal to or greater than a first threshold value, a second voltage difference is obtained for each of the adjacent secondary battery cells, and the second voltage difference equal to or greater than the first threshold value is obtained. The corresponding adjacent secondary battery cell is detected, and a constant current that can be supplied by the secondary battery cell determined by the second voltage difference can be supplied to each of the detected adjacent secondary battery cells. A switching unit that alternately switches between conduction and shut-off adjacent to each other at regular intervals, and a control unit that equalizes the detected voltages of the adjacent secondary battery cells,
    A charge / discharge control apparatus comprising:
  2.  前記制御部は、
     前記第1の電圧差が前記第1の閾値より小さくなると、電圧を均等にさせる制御を停止することを特徴とする請求項1に記載の充放電制御装置。
    The controller is
    2. The charge / discharge control device according to claim 1, wherein when the first voltage difference is smaller than the first threshold, the control for equalizing the voltage is stopped.
  3.  前記制御部は、
     前記第1の電圧差が前記第1の閾値より小さく、かつ第2の閾値より大きいとき、一定周期ごとに第2の電圧差によりパルス幅を決め、該パルス幅により前記スイッチ素子各々を交互に導通と遮断を切り替え、検出した隣り合う前記二次電池セルの電圧を均等にし、
     前記第2の閾値より前記第1の電圧差が小さくなると、電圧を均等にさせる制御を停止することを特徴とする請求項1に記載の充放電制御装置。
     
    The controller is
    When the first voltage difference is smaller than the first threshold value and larger than the second threshold value, the pulse width is determined by the second voltage difference at regular intervals, and the switch elements are alternately arranged by the pulse width. Switching between conduction and interruption, the detected voltage of the adjacent secondary battery cells is equalized,
    2. The charge / discharge control device according to claim 1, wherein when the first voltage difference is smaller than the second threshold, the control for equalizing the voltage is stopped.
PCT/JP2012/068502 2011-10-31 2012-07-20 Charge and discharge control device WO2013065364A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011239069A JP5126403B1 (en) 2011-10-31 2011-10-31 Charge / discharge control device
JP2011-239069 2011-10-31

Publications (1)

Publication Number Publication Date
WO2013065364A1 true WO2013065364A1 (en) 2013-05-10

Family

ID=47692914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068502 WO2013065364A1 (en) 2011-10-31 2012-07-20 Charge and discharge control device

Country Status (2)

Country Link
JP (1) JP5126403B1 (en)
WO (1) WO2013065364A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2884575A3 (en) * 2013-12-03 2015-07-08 Samsung SDI Co., Ltd. Battery system and method of connecting battery module to a battery rack
EP2916423A1 (en) * 2014-03-04 2015-09-09 Ricoh Company, Ltd. Method of controlling a storage status adjusting circuit, and storage battery pack
CN104993538A (en) * 2015-07-06 2015-10-21 苏州海格新能源汽车电控系统科技有限公司 Balancing application device and method for chargeable battery pack
JP2018516034A (en) * 2015-12-23 2018-06-14 エルジー・ケム・リミテッド Voltage balancing device and method between battery racks
US11342776B2 (en) * 2020-06-15 2022-05-24 Magnetic Energy Charging, Inc. Battery charger and method for charging a battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101570475B1 (en) 2013-12-16 2015-11-19 국민대학교산학협력단 Vehicle battery management system considering functional safety and controlling method of the same, and computer-readable recording medium for the same
KR101632694B1 (en) * 2014-01-28 2016-06-22 주식회사 엘지화학 Battery cell voltage balancing apparatus and method
JP6559463B2 (en) * 2015-05-14 2019-08-14 ローム株式会社 Charge control device, charge control method, and battery pack
CN108923088B (en) * 2018-08-10 2020-11-06 必利恩(北京)新能源技术研究有限责任公司 Device and method for improving discharge capacity of storage battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322516A (en) * 1994-05-25 1995-12-08 Okamura Kenkyusho:Kk Apparatus and method for control of charging of battery
JP2009232660A (en) * 2008-03-25 2009-10-08 Fdk Corp Voltage balance correction circuit of series cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322516A (en) * 1994-05-25 1995-12-08 Okamura Kenkyusho:Kk Apparatus and method for control of charging of battery
JP2009232660A (en) * 2008-03-25 2009-10-08 Fdk Corp Voltage balance correction circuit of series cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2884575A3 (en) * 2013-12-03 2015-07-08 Samsung SDI Co., Ltd. Battery system and method of connecting battery module to a battery rack
US9865901B2 (en) 2013-12-03 2018-01-09 Samsung Sdi Co., Ltd. Battery system and method for connecting a battery to the battery system
EP2916423A1 (en) * 2014-03-04 2015-09-09 Ricoh Company, Ltd. Method of controlling a storage status adjusting circuit, and storage battery pack
US9641003B2 (en) 2014-03-04 2017-05-02 Ricoh Company, Ltd. Method of controlling switch circuit, storage status adjusting circuit, and storage battery pack
CN104993538A (en) * 2015-07-06 2015-10-21 苏州海格新能源汽车电控系统科技有限公司 Balancing application device and method for chargeable battery pack
JP2018516034A (en) * 2015-12-23 2018-06-14 エルジー・ケム・リミテッド Voltage balancing device and method between battery racks
US10181733B2 (en) 2015-12-23 2019-01-15 Lg Chem, Ltd. Apparatus and method of balancing voltages between battery racks
US11342776B2 (en) * 2020-06-15 2022-05-24 Magnetic Energy Charging, Inc. Battery charger and method for charging a battery
US11710978B2 (en) 2020-06-15 2023-07-25 Magnetic Energy Charging, Inc. Battery charger and method for charging a battery

Also Published As

Publication number Publication date
JP2013099082A (en) 2013-05-20
JP5126403B1 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5126403B1 (en) Charge / discharge control device
JP5454632B2 (en) Charge / discharge control device
JP4400536B2 (en) Capacity adjustment device and capacity adjustment method for battery pack
US9564768B2 (en) Discharge device for electricity storage device
WO2014041730A1 (en) Storage battery management device, and storage battery management method
JP5477448B1 (en) Voltage equalization device
US20190013680A1 (en) Parallel battery equalization device and method
JP5867345B2 (en) Charging apparatus and charging method
EP2826128A1 (en) Method and system for balancing cells with variable bypass current
EP2685592A1 (en) Balance correction device and electricity storage system
KR20150109643A (en) Apparatus and Method for estimating deterioration of battery pack
JP2007300701A (en) Power supply device for vehicle
JPWO2013140894A1 (en) Adjusting device, assembled battery device and adjusting method
JP6314701B2 (en) Capacitor connection state control device
WO2013114696A1 (en) Balancing device
JP2013121242A (en) Soc estimation device and battery pack
JP2018057137A (en) Full charge capacity calculation device
KR102621817B1 (en) Method and battery management sytem for cell balancing
JP2009017630A (en) Control method for battery capacity
JP6708011B2 (en) Battery pack
JP2016025782A (en) Capacity equalization device
WO2018147091A1 (en) Balancing control device and in-vehicle power supply device
JP2014093857A (en) Battery voltage equalization device and method
JP6328454B2 (en) Equalization equipment
JP5601568B2 (en) Voltage regulation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12845382

Country of ref document: EP

Kind code of ref document: A1