WO2013065263A1 - 映像符号化装置、映像復号装置、映像符号化方法、映像復号方法およびプログラム - Google Patents

映像符号化装置、映像復号装置、映像符号化方法、映像復号方法およびプログラム Download PDF

Info

Publication number
WO2013065263A1
WO2013065263A1 PCT/JP2012/006848 JP2012006848W WO2013065263A1 WO 2013065263 A1 WO2013065263 A1 WO 2013065263A1 JP 2012006848 W JP2012006848 W JP 2012006848W WO 2013065263 A1 WO2013065263 A1 WO 2013065263A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance signal
sample position
scan
signal
sampling
Prior art date
Application number
PCT/JP2012/006848
Other languages
English (en)
French (fr)
Inventor
慶一 蝶野
啓史 青木
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to IN3184CHN2014 priority Critical patent/IN2014CN03184A/en
Priority to CN201280053801.3A priority patent/CN103907355A/zh
Priority to EP12845094.7A priority patent/EP2775714A4/en
Priority to US14/355,697 priority patent/US20140307790A1/en
Publication of WO2013065263A1 publication Critical patent/WO2013065263A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/16Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter for a given display mode, e.g. for interlaced or progressive display mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/182Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • the present invention relates to a video encoding device and a video decoding device that predict a color difference signal from a downsampled luminance signal.
  • Non-Patent Document 1 discloses a new color difference signal prediction (hereinafter referred to as intra_chromaFromLuma prediction) technology that utilizes the cross-correlation between a luminance signal (luma signal) and a color difference signal (chroma signal) in the same coding unit.
  • Non-Patent Document 2 describes specific operation steps of intra_chromaFromLuma prediction in Section 8.3.1.8 Section of Intra_FromLuma prediction mode. The outline is shown below.
  • nS is the width of the color difference signal (color difference block signal) (that is, the width of the reconstructed luminance signal (color difference block signal) necessary for processing is 2 + 2 * nS (FIG. 1)).
  • Step 3 Based on L, C, S and X, linear prediction coefficients a and b for linearly predicting the block boundary color difference signal (y) from the block boundary downsampled luminance signal (p Y ') are calculated. To do. Square sum ⁇ of the prediction error of linear prediction (y - a * p Y ' - b) 2 to calculate the linear prediction coefficients a and b to minimize.
  • FIG. 2 is a configuration diagram of a video encoding device using intra_chromaFromLuma prediction described in Non-Patent Document 1.
  • the video encoding device shown in FIG. 2 encodes Largegest Coding Unit (LCU) constituting a frame in raster scan order, and CUs constituting the LCU in jet scan order (FIG. 3). Further, the CU is further divided into Prediction Unit (PU) (FIG. 4). Therefore, the prediction block size is the PU block size. (For example, when the CU size is 32 ⁇ 32 and the PU is 2N ⁇ 2N, nS is 16.)
  • LCU Largegest Coding Unit
  • PU Prediction Unit
  • the residual signal (residual block signal) obtained by subtracting the prediction signal (predicted block signal) generated by the predictor 101 ⁇ ⁇ from the input signal (input block signal) is converted into the frequency converter 102 and
  • the residual frequency transform quantization index (residual level) is converted through the quantizer 103.
  • the entropy encoder 104 entropy-encodes the residual level and outputs a bit stream.
  • the residual level is converted into a reconstructed residual signal (reconstructed residual block signal) via the inverse quantization / inverse frequency converter 105, and reconstructed by adding the prediction signal.
  • the buffer 106 is stored as a signal (reconstructed block signal).
  • the downsampler 107A generates a downsampled luminance signal of the reconstructed luminance signal based on the processing in Step 1.
  • the predictor 101 uses the downsampled luminance signal supplied from the downsampler 107A and the reconstructed color difference signal supplied from the buffer 106 to generate a color difference prediction signal based on the processing in steps 2, 3, and 4.
  • Non-Patent Document 1 shifts the sample position of the downsample luminance signal (downsample luminance sample position) vertically by 1/2 pixel. Therefore, the downsample luminance sample position of the 4: 2: 0 interlace scan is shifted in the vertical direction.
  • the downsample luminance sample position with respect to the chrominance sample position is shifted downward by a quarter in the top field (FIG. 9B). Also, the bottom field shifts 1/4 (FIG. 9B).
  • a video encoding apparatus includes a luminance signal down-sampling unit that down-samples a luminance signal, and a prediction unit that linearly predicts a color difference signal from the down-sampled luminance signal.
  • the luminance signal down-sampling unit scans a processing target.
  • the downsampled luminance signal sample position is shifted according to the above.
  • a video decoding apparatus includes a luminance signal down-sampling unit that down-samples a luminance signal, and a prediction unit that linearly predicts a color difference signal from the down-sampled luminance signal, and the luminance signal down-sampling unit is used for a scan to be processed. Accordingly, the sampling position of the downsampled luminance signal is shifted.
  • a video encoding method is a video encoding method for down-sampling a luminance signal and linearly predicting a color difference signal from the down-sampled luminance signal, wherein the sampling position of the down-sampled luminance signal according to a scan to be processed It is characterized by shifting.
  • the video decoding method according to the present invention is a video decoding method for down-sampling a luminance signal and linearly predicting a color difference signal from the down-sampled luminance signal, and shifting the sample position of the down-sampled luminance signal according to the scan to be processed. It is characterized by doing.
  • a video encoding program is a video encoding program for causing a computer to downsample a luminance signal and linearly predict a color difference signal from the downsampled luminance signal. Then, a process of shifting the sample position of the downsampled luminance signal is executed.
  • a video decoding program is a video decoding program for causing a computer to downsample a luminance signal and linearly predict a color difference signal from the downsampled luminance signal. A process for shifting the sample position of the sample luminance signal is performed.
  • the sample position of the color difference prediction signal generated from the downsampled luminance signal is suitably maintained, and the image quality of the color difference signal can be prevented from being degraded.
  • a downsampled luminance signal at a sample position corresponding to the sample position of the color difference signal with respect to the sample position of the luminance signal to be processed is generated. If the processing target is 4: 2: 0 progressive scan, a downsample luminance signal is generated by shifting the sample position vertically by 1/2 pixel. If the processing target is a top field of 4: 2: 0 interlace scan, a downsample luminance signal is generated by shifting the sample position by 1/4 pixel vertically. If the processing target is a bottom field of 4: 2: 0 interlace scan, a downsample luminance signal is generated by shifting the sample position vertically by 3/4 pixels.
  • a downsample luminance signal at the sample position corresponding to the scan to be processed is generated.
  • the sample position of the color difference prediction signal generated from the downsample luminance signal is suitably maintained, and the image quality of the color difference signal can be prevented from being degraded.
  • FIG. 10 The video encoding apparatus of the present embodiment shown in FIG. 10 includes a predictor 101, a frequency converter 102, a quantizer 103, an entropy encoder 104, an inverse quantization / inverse frequency converter 105, a buffer 106, and a sample position.
  • a downsampler 107 with a shift is provided.
  • the downsampler 107 with sample position shift is a feature of the invention. Since it is not a feature of the present invention that the entropy encoder 104 multiplexes the scan into the bit stream, the entropy encoder 104 is also equivalent to that shown in FIG. The operation of the down sampler 107 with sample position shift, which is a feature of the present invention, will be described below.
  • the down sampler 107 with sample position shift generates a down sample luminance signal having a shift amount corresponding to the sample position of the color difference signal with respect to the sample position of the luminance signal of the scan to be processed.
  • the scan to be processed may be set from the outside, or the video encoding device may determine whether the processing target is moving or not (progressive scan if it is a static region, interlaced scan if it is a motion region, or an odd line. For example, it may be determined by the top field, the bottom field if the line is an even number), or by coding determination (whichever has the better coding result of progressive scan or interlaced scan).
  • the auxiliary information regarding the scan to be processed is multiplexed by the bit stream by the entropy encoder 104. Further, if the scan to be processed is an interlaced scan, the auxiliary information of the top field or the bottom field is also multiplexed by the bit stream by the entropy encoder 104.
  • a downsample luminance signal is generated by a filter of [1/2, 1/2] so that the sample position of the downsample luminance signal is shifted by 1/2 in the vertical direction (FIG. 12 (a)).
  • a downsampled luminance signal is generated with a filter of [3/4, 1/4] so that the sampling position of the downsampled luminance signal is shifted by 1/4 in the vertical direction (FIG. 12 (b)).
  • a downsample luminance signal is generated with a filter of [1/4, 3/4] so that the sample position of the downsample luminance signal is shifted by 3/4 in the vertical direction (FIG. 12 (c)).
  • the operation of the down-sampler 107 with sample position shift described above generates a down-sampled luminance signal with a shift amount corresponding to the sample position of the color difference signal with respect to the sample position of the luminance signal of the scan to be processed.
  • the sample position of the color difference prediction signal generated from the downsampled luminance signal is suitably maintained, and the image quality degradation of the color difference signal can be overcome.
  • FIG. 13 The video decoding apparatus of the present embodiment shown in FIG. 13 includes an entropy decoder 201, an inverse quantization / inverse frequency converter 202, a predictor 203, a buffer 204, and a downsampler 205 with a sample position shift.
  • the entropy decoder 201 entropy-decodes the bitstream and entropy-decodes the processing measures (frame, slice or block) and the residual level. If the scan for processing is an interlaced scan, the auxiliary information of the top field or the bottom field is also subjected to entropy decoding.
  • the inverse quantization / inverse frequency converter 202 performs inverse quantization / inverse frequency conversion on the supplied residual level and outputs a reconstructed residual signal.
  • the reconstructed residual signal is added with the prediction signal supplied from the predictor 203 and stored in the buffer 204 as a reconstructed signal.
  • the downsampler 205 ⁇ ⁇ ⁇ ⁇ with sample position shift Based on the scan to be processed supplied from the entropy decoder 201 ⁇ , the downsampler 205 ⁇ ⁇ ⁇ ⁇ with sample position shift generates a downsampled luminance signal at the sample position corresponding to the sample position of the color difference signal with respect to the sample position of the luminance signal of the scan. Generate.
  • a downsample luminance signal is generated with a filter of [1/2, 1/2] so that the sample position of the downsample luminance signal is shifted by 1/2 in the vertical direction (FIG. 12 (a)).
  • a downsampled luminance signal is generated with a filter of [3/4, 1/4] so that the sampling position of the downsampled luminance signal is shifted by 1/4 in the vertical direction (FIG. 12 (b)).
  • step S205 If the processing target is the bottom field of the interlaced scan (step S205), the downsampler 205 with the sample position shift is the downsampled luminance signal p Y '[x, y] in step S206 described above in step S206.
  • a downsample luminance signal is generated with a filter of [1/4, 3/4] so that the sample position of the downsample luminance signal is shifted by 3/4 in the vertical direction (FIG. 12 (c)).
  • the predictor 203 ⁇ uses the downsampled luminance signal supplied from the downsampler 205 ⁇ with sample position shift and the reconstructed chrominance signal supplied from the buffer 204 ⁇ ⁇ ⁇ , based on the above-described processing in steps 2, 3, and 4. Generate a prediction signal.
  • the shift amount corresponding to the sample position of the color difference signal with respect to the sample position of the luminance signal of the scan to be processed is changed.
  • a downsampled luminance signal is generated.
  • Equation (6) is a 2D filter with coefficients of [[1/8, 2/8, 1/8], [1/8, 2/8, 1/8]]. This means that 2 pixels are shifted and down-sampled to 1/2 (FIG. 15A).
  • the downsampler with the sample position shift of the above-described embodiment in (step 1) performs downsampling if the processing target is a top field of interlaced scanning.
  • a downsampled luminance signal may be generated by a filter (FIG. 15B).
  • the processing target is the top field of the interlace scan, the following equation (7) may be used.
  • the downsampler with sample position shift of the above-described embodiment sets the sample position of the downsample luminance signal to 3/4 in the vertical direction.
  • a downsampled luminance signal may be generated with a two-dimensional filter of coefficients [[1/16, 2/16, 1/16], [3/16, 6/16, 3/16]] so as to shift ( FIG. 15 (b)).
  • the processing target is the bottom field of the interlace scan, the following equation (8) may be used.
  • Embodiment 4 The downsampler with sample position shift of the above-described embodiment can use the two-dimensional filter of FIG.
  • the row downsample luminance signal at the block boundary is calculated by the above equation (12), and the other downsampled luminance signals are calculated by the equation of the present invention. Good.
  • the downsampled luminance signals of the row and column at the block boundary are calculated by the above equations (12) and (13), respectively, and the other downsampled luminance signals are calculated by the equations of the present invention. Calculate it.
  • FIG. Note that video encoding based on Non-Patent Document 3 is subject to processing by setting field_pic_flag described in 7.3.3 Slice header syntax to 0 or setting mb_field_decoding_flag described in 7.3.4 Slice data syntax to 0. Can be signaled to the video decoding side that is a progressive scan. Also, by setting field_pic_flag described in 7.3.3 Slice header syntax to 1 and bottom_field_flag set to 0, or by setting mb_field_decoding_flag described in 7.3.4 Slice data syntax to 1, the processing target is the top of interlace scan. The fact that it is a field can be signaled to the video decoding side.
  • the processing target is interlaced scan. It can be signaled to the video decoding side that it is the bottom.
  • Embodiment 7 FIG. Note that the video encoding based on Non-Patent Document 2 does not have the field_pic_flag, bottom_field_flag, and mb_field_decoding_flag syntax of Non-Patent Document 3. Therefore, as an alternative to these syntaxes, a syntax that explicitly indicates the sample position relationship between the luminance signal to be processed and the color difference signal (that is, the shift amount of the sample position of the downsample luminance signal) may be newly defined.
  • the sample positional relationship between the luminance signal and the color difference signal to be processed in the progressive scan is vertically shifted by 1/2 pixel.
  • the sample positional relationship between the luminance signal and color difference signal to be processed in the top field of the interlace scan is vertically shifted by 1/4 pixel.
  • the sample positional relationship between the luminance signal and the color difference signal to be processed in the bottom field of the interlace scan is vertically shifted by 3/4 pixels. Therefore, the syntax luma_down_sampling_shift_idc indicating the shift amount of the sample position of the downsample luminance signal can be defined as follows.
  • Luma_down_sampling_shift_idc indicates the shift amount of the sample position of the downsample luminance signal.
  • luma_down_sampling_shift_idc takes a value from 0 to 3 cm. If luma_down_sampling_shift_idc does not exist, its value is assumed to be 0.
  • the shift amount of 1/4 pixel in the top field of the interlace scan is -1/4 pixel shift, and 3/4 pixel in the bottom field of the interlace scan.
  • the shift amount is 1/4 pixel shift.
  • Luma_down_sampling_shift_idc indicates the shift amount of the sample position of the downsample luminance signal.
  • luma_down_sampling_shift_idc takes a value from 0 to 3 cm. If luma_down_sampling_shift_idc does not exist, its value is assumed to be 0.
  • the luma_down_sampling_shift_idc syntax may be signaled by a sequence parameter set, a picture parameter set, a slice header, or the like.
  • Embodiment 8 FIG. Note that the video encoding based on Non-Patent Document 2 does not have the field_pic_flag, bottom_field_flag, and mb_field_decoding_flag syntax of Non-Patent Document 3. Therefore, when encoding the input video of the 4: 2: 0 interlace scan signal, it is conceivable to disable intra_chromaFromLuma prediction.
  • chroma_pred_from_luma_enabled_flag described in 7.3.2.1 Sequence parameter set RBSP syntax to 0, or set chroma_pred_from_luma_enabled_flag to 1, and set intra_chroma_pred_mode described in 7.3.7 Prediction unit syntax to other than 0 ( IntraPredMode is set to other than 35, that is, other than Intra_FromLuma prediction mode).
  • the input video of the 4: 2: 0 interlace scan signal may be detected by an external setting or by the motion determination.
  • Embodiment 9 can also be applied to the frame packed frame shown in FIG. FIG. 17A shows frame packing in which a top field and a bottom field are arranged in the upper half and the lower half of one frame, respectively.
  • the downsampled luminance signal in the encoding / decoding of the upper half of the frame, is converted so that the sample position of the downsampled luminance signal is shifted by 1/4 in the vertical direction.
  • the downsampled luminance signal is generated so that the sample position of the downsampled luminance signal is shifted by 3/4 in the vertical direction.
  • the present invention reduces the downscaling in the encoding / decoding of the upper half of the frame.
  • a downsample luminance signal is generated so that the sample position of the sample luminance signal is shifted by 3/4 in the vertical direction.
  • the downsampled luminance signal is generated so that the sample position of the downsampled luminance signal is shifted by 1/4 in the vertical direction.
  • the information processing system shown in FIG. 18 includes a processor 1001, a program memory 1002, a storage medium 1003 for storing video data, and a storage medium 1004 for storing a bitstream.
  • the storage medium 1003 and the storage medium 1004 may be separate storage media, or may be storage areas composed of the same storage medium.
  • a magnetic storage medium such as a hard disk can be used as the storage medium.
  • the program memory 1002 stores a program for realizing the function of each block shown in FIG. 10 and FIG. Then, the processor 1001 implements the functions of the video encoding device or the video decoding device shown in FIGS. 10 and 13 by executing processing according to the program stored in the program memory 1002.
  • Luminance signal down-sampling means for down-sampling the luminance signal by half in at least the vertical direction, and prediction means for linearly predicting a color difference signal from the down-sampled luminance signal, wherein the luminance signal down-sampling means
  • a video encoding apparatus that shifts a sampling position of a downsampled luminance signal in accordance with a scan to be processed, wherein the luminance signal downsampling means uses a filter with a coefficient of [1/2, 1/2] to progressively The sample position of the downsample luminance signal of the scan is shifted by 1/2, and the sample position of the downsampled luminance signal of the top field of the interlaced scan is 1/4 using a filter with a coefficient of [1/4, 3/4]. Shift the sample position of the downsampled luminance signal in the bottom field of the interlace scan using a filter with a coefficient of [3/4, 1/4] to 3/4 Video encoding apparatus, characterized by shift.
  • Luminance signal down-sampling means for down-sampling the luminance signal to 1/2 at least in the vertical direction, and prediction means for linearly predicting a chrominance signal from the down-sampled luminance signal
  • Progressive scan downsampled luminance signal sample position is shifted 1/2
  • interlaced scan top field downsampled luminance signal sample position is shifted 1/4
  • interlaced scan bottom field downsampled luminance signal A video encoding device that shifts a sample position by 3/4, wherein the luminance signal down-sampling means includes [[1/8, 2/8, 1/8], [1/8, 2/8, 1 / 8]]
  • the sample position of the progressive scan downsampled luminance signal is shifted by 1/2, and [[3/16, 6/16, 3/16], [1/16, 2 / 16, 1/16]]
  • the sample position of the downsampled luminance signal in the top field of the interlace scan is shifted by 1/4 using a number of two-dimensional filters
  • Luminance signal down-sampling means for down-sampling the luminance signal by half at least in the vertical direction, and prediction means for linearly predicting a color difference signal from the down-sampled luminance signal, wherein the luminance signal down-sampling means
  • a video encoding apparatus that shifts a sample position of a downsampled luminance signal according to a scan to be processed, wherein the luminance signal downsampling means includes [[1/4, 0, 1/8], [1/8 , 2/8, 1/8]] using a two-dimensional filter with a coefficient of 1/2 shift the sample position of the progressive scan downsampled luminance signal, [[3/8 0, 3/8], [1 / 8, 0, 1/8]] is used to shift the sample position of the downsampled luminance signal of the top field of the interlaced scan by 1/4 using the two-dimensional filter of coefficients [[1/8, 0, 1 / 8], [3/8 0, 3/8]] coefficient filter Video encoding apparatus characterized by 3/4 shifting the sample positions
  • Luminance signal down-sampling means for down-sampling the luminance signal by half in at least the vertical direction, and prediction means for linearly predicting a color difference signal from the down-sampled luminance signal, wherein the luminance signal down-sampling means
  • a video decoding apparatus that shifts a sample position of a downsampled luminance signal in accordance with a scan to be processed, wherein the luminance signal downsampler uses a filter with a coefficient of [1/2, 1/2] to perform progressive scanning
  • the downsampled luminance signal sample position is shifted by 1/2, and the sample position of the downsampled luminance signal in the top field of the interlace scan is shifted by 1/4 using a filter with a coefficient of [1/4, 3/4].
  • the sample position of the downsampled luminance signal in the bottom field of the interlace scan is 3/4 Video decoding apparatus, characterized in that the bets.
  • Luminance signal down-sampling means for down-sampling the luminance signal to 1/2 at least in the vertical direction, and prediction means for linearly predicting a color difference signal from the down-sampled luminance signal, Progressive scan downsampled luminance signal sample position is shifted 1/2, interlaced scan top field downsampled luminance signal sample position is shifted 1/4, interlaced scan bottom field downsampled luminance signal
  • a video decoding apparatus that shifts a sample position by 3/4, wherein the luminance signal down-sampling means includes [[1/8, 2/8, 1/8], [1/8, 2/8, 1/8.
  • the sample position of the progressive scan downsampled luminance signal is shifted by 1/2, and [[3/16, 6/16, 3/16], [1/16, 2 / 16, 1/16]]
  • the sample position of the downsampled luminance signal of the top field of the interlace scan is shifted by 1/4, and [[1/16, 2/16, 1/16], [3/16, 6 / 16, 3/16]] is used to shift the sample position of the downsampled luminance signal in the bottom field of the interlace scan by 3/4.
  • Luminance signal down-sampling means for down-sampling the luminance signal by half in at least the vertical direction, and prediction means for linearly predicting a color difference signal from the down-sampled luminance signal, wherein the luminance signal down-sampling means
  • a video decoding device that shifts a sample position of a downsampled luminance signal according to a scan to be processed, wherein the luminance signal downsampling means includes [[1/4, 0, 1/8], [1/8, 2/8, 1/8]] is used to shift the sample position of the progressive scan downsampled luminance signal by 1/2 using the two-dimensional filter of coefficients, [[3/8 ⁇ 0, 3/8], [1 / [8, ⁇ ⁇ ⁇ 0, 1/8]] Using a two-dimensional filter with coefficients of [8, ⁇ 0, 1/8]], the sample position of the downsampled luminance signal in the top field of the interlace scan is shifted by 1/4. ], [3/8 0, 3/8]] coefficient filter, interlace
  • a coding method which uses a filter with a coefficient of [1/2, 1/2], shifts the sample position of the down-sampling luminance signal of progressive scan by 1/2, and [1/4, 3/4]
  • the sample position of the down-sampling luminance signal in the top field of the interlace scan is shifted by 1/4 using the coefficient filter, and the bottom field of the interlace scan using the coefficient filter of [3/4, 1/4].
  • a video encoding method characterized by shifting the sampling position of the downsampled luminance signal of 3/4 by 3/4.
  • (Appendix 8) Video that downsamples the luminance signal at least in the vertical direction by 1/2, linearly predicts the color difference signal from the downsampled luminance signal, and shifts the sample position of the downsampled luminance signal according to the scan to be processed Progressive scan downsampling using a two-dimensional filter with coefficients [[1/8, 2/8, 1/8], [1/8, 2/8, 1/8]] Shift the luminance signal sample position by 1/2 and use a 2D filter with coefficients of [[3/16, 6/16, 3/16], [1/16, 2/16, 1/16]] Shift the sample position of the downsampled luminance signal of the top field of the interlace scan by 1/4, and [[1/16, 2/16, 1/16], [3/16, 6/16, 3/16]] Video coding method characterized by shifting the sample position of the downsampled luminance signal of the bottom field of the interlace scan by 3/4 using a filter of the coefficients of
  • Video in which the luminance signal is down-sampled at least in the vertical direction, the color difference signal is linearly predicted from the down-sampled luminance signal, and the sample position of the down-sampled luminance signal is shifted according to the scan to be processed Progressive scan downsampled luminance signal using a two-dimensional filter of coefficients [[1/4, 0, 1/8], [1/8, 2/8, 1/8]] The sample position is shifted by 1/2, and the top field of the interlace scan is used using a two-dimensional filter with coefficients of [[3/8 0, 3/8], [1/8, 0, 1/8]].
  • a video encoding method comprising shifting a sample position of a down-sample luminance signal of a bottom field by 3/4.
  • a decoding method which uses a filter of [1/2, 1/2] coefficients, shifts the sample position of the progressive scan downsampled luminance signal by 1/2, and generates [1/4, 3/4] coefficients Is used to shift the sample position of the downsampled luminance signal of the top field of the interlace scan by 1/4, and the filter of the coefficient of [3/4, ⁇ 1/4] is used to filter the bottom field of the interlace scan.
  • a video decoding method characterized by shifting a sample position of a downsample luminance signal by 3/4.
  • the sample position of the downsample luminance signal in the top field of the race scan is shifted by 1/4, and [[1/16, 2/16, 1/16], [3/16, 6/16, 3/16]]
  • a video decoding method wherein a sampling position of a downsampled luminance signal in a bottom field of an interlace scan is shifted by 3/4 using a coefficient filter.
  • Video in which the luminance signal is down-sampled at least in the vertical direction, the color difference signal is linearly predicted from the down-sampled luminance signal, and the sample position of the down-sampled luminance signal is shifted according to the scan to be processed A decoding method using a two-dimensional filter of coefficients [[1/4, 0, 1/8], [1/8, 2/8, 1/8]].
  • a video decoding method characterized by shifting a sample position of a downsampled luminance signal of a field by 3/4.
  • the computer causes the luminance signal to be down-sampled to 1/2 at least in the vertical direction, linearly predicts the color difference signal from the down-sampled luminance signal, and sets the sample position of the down-sampled luminance signal according to the scan to be processed
  • a video encoding program for shifting wherein the computer shifts the sample position of the down-sample luminance signal of the progressive scan by 1/2, and the sample position of the down-sample luminance signal of the top field of the interlace scan by 1/4.
  • the computer causes the luminance signal to be down-sampled to 1/2 at least in the vertical direction, linearly predicts the color difference signal from the down-sampled luminance signal, and determines the sample position of the down-sampled luminance signal according to the scan to be processed.
  • This is a video decoding program for shifting, and the computer shifts the sample position of the downsample luminance signal of progressive scan by 1/2 and the sample position of the downsample luminance signal of the top field of interlaced scan by 1/4.
  • a video decoding program for executing a process of shifting the sample position of the downsample luminance signal in the bottom field of the interlace scan by 3/4.
  • the present invention can be suitably applied to a video encoding device or a video decoding device that predicts a color difference signal from a downsampled luminance signal.
  • Predictor 101 Frequency converter 103
  • Quantizer 104 Entropy encoder 105 Inverse quantization / inverse frequency converter 106 Buffer 107 Downsampler with sample position shift 201
  • Entropy decoder 202 Inverse quantization / inverse frequency converter 203
  • Prediction 204 buffers 205 Downsampler with sample position shift

Abstract

 映像符号化装置は、輝度信号をダウンサンプルするサンプル位置シフト付きダウンサンプル器107 と、ダウンサンプルされた輝度信号から色差信号を線形予測する予測器101 とを備え、サンプル位置シフト付きダウンサンプル器107 が処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする。映像復号装置は、輝度信号をダウンサンプルするサンプル位置シフト付きダウンサンプル器205 と、ダウンサンプルされた輝度信号から色差信号を線形予測する予測器203 とを備え、サンプル位置シフト付きダウンサンプル器205 が処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする。

Description

映像符号化装置、映像復号装置、映像符号化方法、映像復号方法およびプログラム
 本発明は、ダウンサンプルした輝度信号から色差信号を予測する映像符号化装置および映像復号装置に関する。
 非特許文献1は、同じ符号化単位の輝度信号(luma信号)と色差信号(chroma信号)との相互相関を活用した、新しい色差信号予測(以後、intra_chromaFromLuma予測と呼ぶ)技術を開示している。非特許文献2は、8.3.3.1.8 節Specification of Intra_FromLuma prediction mode にて、intra_chromaFromLuma予測の具体的な動作ステップを記述する。以下にその概要を示す。
 (ステップ1 )再構築した輝度信号 predSamples[ x, y ] を水平2画素ごとに、垂直方向に1/2にダウンサンプルしたダウンサンプル輝度信号pY'[ x, y ](x = -1..nS-1 , y = -1..nS-1 )を式(1 )で計算する。
 pY'[ x, y ] = ( recSamplesL[ 2x, 2y ] + recSamplesL[ 2x, 2y+1 ] ) >> 1  ・・・式(1 )
 ただし、nSは色差信号(色差ブロック信号)の幅である(つまり、処理に必要な再構築輝度信号(色差ブロック信号)の幅は、2+2*nSとなる(図1))。
 (ステップ2 )pY'[ x, y ](x, y = -1..nS-1 )と再構築した色差信号 p[ x, y ] (x=-1, y=0,...nS-1およびx=0,...nS-1, y=-1)に基づいて、ブロックの境界のダウンサンプル輝度信号の総和L、ブロックの境界の色差信号の総和C、ブロックの境界のダウンサンプル輝度信号の2乗和Sおよびブロックの境界のダウンサンプル輝度信号とブロックの境界の色差信号を乗じた値の和Xを計算する。
 (ステップ3)L、C、SおよびXに基づいて、ブロックの境界のダウンサンプル輝度信号(pY')からブロックの境界の色差信号(y)を線形予測する線形予測係数aとbを計算する。線形予測の予測誤差の2乗和Σ(y - a*pY' - b)2を最小にする線形予測係数aとbを計算する。
 (ステップ4)計算したaおよびbに基づいて、ブロック内のダウンサンプル輝度信号pY'[ x, y ]からブロック内の色差予測信号predSamples[ x, y ](x, y = -1..nS-1 )を以下の式(2 )で計算する。
 predSamples[ x, y ] = a * pY'[ x, y ] + b  ・・・式(2 )
 図2は、非特許文献1に記載されたintra_chromaFromLuma予測を用いる映像符号化装置の構成図である。図2に示す映像符号化装置はフレーム(Frame)を構成するLargest Coding Unit(LCU)をラスタスキャン順で、LCUを構成するCUをゼットスキャン順で符号化する(図3)。また、CUをさらにPrediction Unit(PU)に分割する(図4)。ゆえに、予測のブロックサイズは、PUのブロックサイズとなる。(例えば、CUのサイズが32×32、PUが2N×2Nの場合、nSは16となる。)
 図2に示す映像符号化装置において、予測器101 が生成した予測信号(予測ブロック信号)を入力信号(入力ブロック信号)から減じた、残差信号(残差ブロック信号)を周波数変換器102 および量子化器103 を介して残差周波数変換量子化インデックス(残差レベル)に変換する。エントロピー符号化器104 は、残差レベルをエントロピー符号化して、ビットストリームを出力する。以後の入力信号の予測のために、残差レベルを逆量子化/逆周波数変換器105 を介して再構築残差信号(再構築残差ブロック信号)に変換し、予測信号を加えて再構築信号(再構築ブロック信号)としてバッファ106 格納する。ダウンサンプル器107A は、ステップ1の処理に基づいて、再構築した輝度信号のダウンサンプル輝度信号を生成する。予測器101 は、ダウンサンプル器107A から供給されるダウンサンプル輝度信号とバッファ106 から供給される再構築色差信号を用いて、ステップ2,3,4の処理に基づいて色差予測信号を生成する。
Jianle Chen, Vadim Seregin, Woo-Jin Han, Jungsun Kim, and Byeongmoon Jeon, "CE6.a.4: Chroma intra prediction by reconstructed luma samples", JCTVC-E266, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 5th Meeting: Geneva, 16-23 March, 2011 Benjamin Bross, Woo-Jin Han, Jens-Rainer Ohm, Gary J. Sullivan, and Thomas Wiegand, "WD4: Working Draft 4 of High-Efficiency Video Coding", JCTVC-F803_d1, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 6th Meeting: Torino, IT, 14-22 July, 2011 "ISO/IEC 14496-10 Minezawa, K. Sugimoto, S. Sekiguchi (Mitsubishi), "An improvement to chroma intra prediction from luma", JCTVC-F173, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 6th Meeting: Torino, IT, 14-22 July, 2011 Jianle Chen, "BoG report on simplification of intra_chromaFromLuma mode prediction", JCTVC-F760, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 6th Meeting: Torino, IT, 14-22 July, 2011
 4:2:0のプログレッシブスキャンと4:2:0のインタレーススキャン(図5)とでは、輝度信号のサンプル位置に対する色差信号のサンプル位置が異なる(図6、図7および図8)。(なお、4:2:0のインタレーススキャンにおけるサンプル位置に対する色差信号のサンプル位置は非特許文献1のFigure 6-2にも記載されている。)
 非特許文献1に記載された技術は、ダウンサンプル輝度信号のサンプル位置(ダウンサンプル輝度サンプル位置)を縦に1/2画素だけシフトする。ゆえに、4:2:0のインタレーススキャンのダウンサンプル輝度サンプル位置は縦方向にずれる。
 具体的には、インタレーススキャンにおいて、色差サンプル位置に対するダウンサンプル輝度サンプル位置がトップフィールドで下に1/4ずれる(図9(b))。また、ボトムフィールドで上に1/4ずれる(図9(b))。
 ダウンサンプル輝度サンプル位置が縦方向にずれると、縦方向にサンプル位置がずれたダウンサンプル輝度信号から色差予測信号が生成される。この結果、色差予測信号のサンプル位置も縦方向にずれるため色差信号の画質が低下する課題がある。
 本発明は、ダウンサンプル輝度信号から生成される色差予測信号のサンプル位置が好適に保たれて、色差信号の画質低下を防止することを目的とする。
 本発明による映像符号化装置は、輝度信号をダウンサンプルする輝度信号ダウンサンプル手段と、ダウンサンプルした輝度信号から色差信号を線形予測する予測手段とを備え、輝度信号ダウンサンプル手段が処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトすることを特徴とする。
 本発明による映像復号装置は、輝度信号をダウンサンプルする輝度信号ダウンサンプル手段と、ダウンサンプルした輝度信号から色差信号を線形予測する予測手段とを備え、輝度信号ダウンサンプル手段が処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトすることを特徴とする。
 本発明による映像符号化方法は、輝度信号をダウンサンプルし、ダウンサンプルした輝度信号から色差信号を線形予測する映像符号化方法であって、処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトすることを特徴とする。
 本発明による映像復号方法は、輝度信号をダウンサンプルし、ダウンサンプルした輝度信号から色差信号を線形予測する映像復号方法であって、処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトすることを特徴とする。
 本発明による映像符号化プログラムは、コンピュータに、輝度信号をダウンサンプルし、ダウンサンプルした輝度信号から色差信号を線形予測させるための映像符号化プログラムであって、コンピュータに、処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする処理を実行させることを特徴とする。
 本発明による映像復号プログラムは、コンピュータに、輝度信号をダウンサンプルし、ダウンサンプルした輝度信号から色差信号を線形予測させるための映像復号プログラムであって、コンピュータに、処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする処理を実行させることを特徴とする。
 本発明によれば、ダウンサンプル輝度信号から生成される色差予測信号のサンプル位置が好適に保たれて、色差信号の画質低下を防止できる。
輝度ブロック(Y)と色差ブロック(UとV)の関係を示す説明図である。 一般的な映像符号化装置の構成図である。 FrameとLCUとCUの関係を示す説明図である。 PUの形状(イントラCUの場合)を示す説明図である。 プログレッシブスキャンとインタレーススキャンの例を示す説明図である。 プログレッシブスキャンにおける輝度信号と色差信号のサンプル位置を示す説明図である。 インタレーススキャンのトップフィールドにおける輝度信号と色差信号のサンプル位置を示す説明図である。 インタレーススキャンのボトムフィールドにおける輝度信号と色差信号のサンプル位置を示す説明図である。 従来技術による輝度ダウンサンプル位置(輝度サンプル位置の丸内の数字はフィルタ係数)を示す説明図である。 第1の実施形態の映像符号化装置の構成例を示すブロック図である。 サンプル位置シフト付きダウンサンプル器の動作例を示すフローチャートである。 発明技術による輝度ダウンサンプル位置(輝度サンプル位置の丸内の数字はフィルタ係数)を示す説明図である。 第2の実施形態の映像符号化装置の構成例を示すブロック図である。 サンプル位置シフト付きダウンサンプル器の動作例を示すフローチャートである。 その他の実施形態の発明による輝度ダウンサンプル位置(その1)を示す説明図である。 その他の実施形態の発明による輝度ダウンサンプル位置(その2)を示す説明図である。 インタレース信号のフレームパッキングの例の説明図である。 本発明を利用した情報処理装置の構成例を示すブロック図である。
 本発明では、処理対象の輝度信号のサンプル位置に対する色差信号のサンプル位置に応じたサンプル位置のダウンサンプル輝度信号を生成する。処理対象が4:2:0プログレッシブスキャンであれば、サンプル位置を縦に1/2画素シフトしたダウンサンプル輝度信号を生成する。処理対象が4:2:0インタレーススキャンのトップフィールドであれば、サンプル位置を縦に1/4画素シフトしたダウンサンプル輝度信号を生成する。処理対象が4:2:0インタレーススキャンのボトムフィールドであれば、サンプル位置を縦に3/4画素シフトしたダウンサンプル輝度信号を生成する。よって、処理対象のスキャンに応じたサンプル位置のダウンサンプル輝度信号が生成される。この結果、ダウンサンプル輝度信号から生成される色差予測信号のサンプル位置が好適に保たれて、色差信号の画質低下を防止できる。
実施形態1.
 図10に示す本実施形態の映像符号化装置は、予測器101 、周波数変換器102 、量子化器103 、エントロピー符号化器104 、逆量子化/逆周波数変換器105 、バッファ106 、およびサンプル位置シフト付きダウンサンプル器107 を備える。
 図2に示す映像符号化装置と比較すると明らかなように、サンプル位置シフト付きダウンサンプル器107 が発明の特徴部である。なお、エントロピー符号化器104 が、スキャンをビットストリームに多重化することが本発明の特徴ではないため、エントロピー符号化器104 も図2に示すものと同等とする。以下、本発明の特徴であるサンプル位置シフト付きダウンサンプル器107 の動作を説明する。
 サンプル位置シフト付きダウンサンプル器107 は、処理対象のスキャンの輝度信号のサンプル位置に対する色差信号のサンプル位置に応じたシフト量の、ダウンサンプル輝度信号を生成する。
 なお、処理対象のスキャンは外部から設定してもよいし、映像符号化装置が、処理対象の動静判定(静止領域であればプログレッシブスキャン。動き領域であればインタレーススキャンで、奇数ラインであればトップフィールド、偶数ラインであればボトムフィールド)や符号化判定(プログレッシブスキャンとインタレーススキャンそれぞれの符号化結果の良い方)などによって、決定してもよい。また、処理対象のスキャンに関する補助情報は、エントロピー符号化器104 によってビットストリームによって多重化されるものとする。さらに、処理対象のスキャンがインタレーススキャンであれば、トップフィールドかボトムフィールドの補助情報もエントロピー符号化器104 によってビットストリームによって多重化されるものとする。
 次に、本発明の特徴であるサンプル位置シフト付きダウンサンプル器107 の動作を図11のフローチャートを参照して説明する。
 処理対象がプログレッシブスキャンであれば(ステップS101)、サンプル位置シフト付きダウンサンプル器107 は、ステップS102で、上述したステップ1においてダウンサンプル輝度信号pY'[ x, y ](x = -1..nS-1 , y = -1..nS-1 )を以下の式(3 )によって計算する。
 pY'[ x, y ] = ( recSamplesL[ 2x, 2y ] + recSamplesL[ 2x, 2y+1 ] ) >> 1  ・・・式(3 )
 つまり、ダウンサンプル輝度信号のサンプル位置を垂直方向に1/2シフトするように[1/2, 1/2]のフィルタでダウンサンプル輝度信号を生成する(図12(a))。
 処理対象がインタレーススキャンのトップフィールドであれば(ステップS103)、サンプル位置シフト付きダウンサンプル器107 は、ステップS104で、上述したステップ1においてダウンサンプル輝度信号pY'[ x, y ](x = -1..nS-1 , y = -1..nS-1 )を以下の式(4 )によって計算する。
 pY'[ x, y ] = ( 3*recSamplesL[ 2x, 2y ] + recSamplesL[ 2x, 2y+1 ] ) >> 2  ・・・式(4 )
 つまり、ダウンサンプル輝度信号のサンプル位置を垂直方向に1/4シフトするように[3/4, 1/4]のフィルタでダウンサンプル輝度信号を生成する(図12(b))。
 処理対象がインタレーススキャンのボトムフィールドであれば(ステップS105)、サンプル位置シフト付きダウンサンプル器107 は、ステップS106で、上述したステップ1においてダウンサンプル輝度信号pY'[ x, y ](x = -1..nS-1 , y = -1..nS-1 )を以下の式(5 )によって計算する。
 pY'[ x, y ] = ( recSamplesL[ 2x, 2y ] + 3*recSamplesL[ 2x, 2y+1 ] ) >> 2  ・・・式(5 )
 つまり、ダウンサンプル輝度信号のサンプル位置を垂直方向に3/4シフトするように[1/4, 3/4]のフィルタでダウンサンプル輝度信号を生成する(図12(c))。
 以上で、サンプル位置シフト付きダウンサンプル器107 の動作説明を終了する。
 上述したサンプル位置シフト付きダウンサンプル器107 の動作によって、処理対象のスキャンの輝度信号のサンプル位置に対する色差信号のサンプル位置に応じたシフト量のダウンサンプル輝度信号が生成される。この結果、発明の映像符号化装置においては、ダウンサンプル輝度信号から生成される色差予測信号のサンプル位置が好適に保たれて色差信号の画質低下を克服できる。
実施形態2.
 図13に示す本実施形態の発明の映像復号装置は、エントロピー復号器201 、逆量子化/逆周波数変換器202 、予測器203 、バッファ204 およびサンプル位置シフト付きダウンサンプル器205 を備える。
 エントロピー復号器201 は、ビットストリームをエントロピー復号し、処理対処(フレーム、スライスまたはブロック)のスキャンおよび残差レベルをエントロピー復号する。なお、処理対処のスキャンがインタレーススキャンであれば、トップフィールドかボトムフィールドの補助情報もントロピー復号する。
 逆量子化/逆周波数変換器202 は、供給される残差レベルを逆量子化/逆周波数変換して、再構築残差信号を出力する。再構築残差信号は、予測器203 から供給される予測信号が加えられて、再構築信号としてバッファ204 に格納される。
 次に、本発明の特徴であるサンプル位置シフト付きダウンサンプル器205 の動作を図14のフローチャートを参照して説明する。
 サンプル位置シフト付きダウンサンプル器205 は、エントロピー復号器201 から供給される処理対象のスキャンに基づいて、スキャンの輝度信号のサンプル位置に対する色差信号のサンプル位置に応じたサンプル位置のダウンサンプル輝度信号を生成する。
 具体的には、処理対象がプログレッシブスキャンであれば(ステップS201)、サンプル位置シフト付きダウンサンプル器205 は、ステップS202で、上述したステップ1においてダウンサンプル輝度信号pY'[ x, y ](x = -1..nS-1 , y = -1..nS-1 )を上記の式(3 )によって計算する。
 つまり、ダウンサンプル輝度信号のサンプル位置を垂直方向に1/2シフトするように[1/2, 1/2]のフィルタでダウンサンプル輝度信号を生成する(図12(a))。
 処理対象がインタレーススキャンのトップフィールドであれば(ステップS203)、サンプル位置シフト付きダウンサンプル器205 は、ステップS204で、上述したステップ1においてダウンサンプル輝度信号pY'[ x, y ](x = -1..nS-1 , y = -1..nS-1 )を上記の式(4 )によって計算する。
 つまり、ダウンサンプル輝度信号のサンプル位置を垂直方向に1/4シフトするように[3/4, 1/4]のフィルタでダウンサンプル輝度信号を生成する(図12(b))。
 処理対象がスキャンがインタレーススキャンのボトムフィールドであれば(ステップS205)、サンプル位置シフト付きダウンサンプル器205 は、ステップS206で、上述したステップ1においてダウンサンプル輝度信号pY'[ x, y ](x = -1..nS-1 , y = -1..nS-1 )を上記の式(5 )によって計算する。
 つまり、ダウンサンプル輝度信号のサンプル位置を垂直方向に3/4シフトするように[1/4, 3/4]のフィルタでダウンサンプル輝度信号を生成する(図12(c))。
 予測器203 は、サンプル位置シフト付きダウンサンプル器205 から供給されるダウンサンプル輝度信号とバッファ204 から供給される再構築色差信号を用いて、上述したステップ2,3,4の処理に基づいて色差予測信号を生成する。
 以上で、本実施形態の発明の映像復号装置の動作説明を終了する。
 サンプル位置シフト付きダウンサンプル器205 の動作によって、エントロピー復号器201 から供給される処理対象のスキャンに基づいて、処理対象のスキャンの輝度信号のサンプル位置に対する色差信号のサンプル位置に応じたシフト量のダウンサンプル輝度信号が生成される。この結果、発明の映像復号装置においては、ダウンサンプル輝度信号から生成される色差予測信号のサンプル位置が好適に保たれて色差信号の画質低下を克服できる。
実施形態3.
 ところで、非特許文献4は、ブロック内のダウンサンプル輝度信号pY'[ x, y ](x, y = 0..nS-1)を、式(1)の代わりに以下の式(6 )で計算することを提案している。
 pY'[ x, y ] = ( recSamplesL[ 2x-1, 2y ] + 2*recSamplesL[ 2x, 2y ] + recSamplesL[ 2x+1, 2y ] + recSamplesL[ 2x-1, 2y+1 ] + 2*recSamplesL[ 2x, 2y+1 ] + recSamplesL[ 2x+1, 2y+1 ] ) >> 3  ・・・式(6 )
 式(6 )は、[[1/8, 2/8, 1/8], [1/8, 2/8, 1/8]]の係数の2次元フィルタで輝度信号を垂直方向に1/2画素シフトして1/2にダウンサンプルすることを意味している(図15(a))。
 上記の2次元フィルタをプログレッシブスキャンの処理対象に用いる場合、処理対象がインタレーススキャンのトップフィールドであれは、上述した実施形態のサンプル位置シフト付きダウンサンプル器は、(ステップ1)において、ダウンサンプル輝度信号のサンプル位置を垂直方向に1/4シフトするように[[3/16, 6/16, 3/16], [1/16, 2/16, 1/16]]の係数の2次元フィルタでダウンサンプル輝度信号を生成すればよい(図15(b))。つまり、処理対象がインタレーススキャンのトップフィールドであれは、以下の式(7 )を使えばよい。
pY'[ x, y ] = ( 3*recSamplesL[ 2x-1, 2y ] + 6*recSamplesL[ 2x, 2y ] + 3*recSamplesL[ 2x+1, 2y ] + recSamplesL[ 2x-1, 2y+1 ] + 2*recSamplesL[ 2x, 2y+1 ] + recSamplesL[ 2x+1, 2y+1 ] ) >> 4  ・・・式(7 )
 同様に、処理対象がインタレーススキャンのボトムフィールドであれば、上述した実施形態のサンプル位置シフト付きダウンサンプル器は、(ステップ1)において、ダウンサンプル輝度信号のサンプル位置を垂直方向に3/4シフトするように[[1/16, 2/16, 1/16], [3/16, 6/16, 3/16] ]の係数の2次元フィルタでダウンサンプル輝度信号を生成すればよい(図15(b))。つまり、処理対象がインタレーススキャンのボトムフィールドであれは、以下の式(8 )を使えばよい。
pY'[ x, y ] = ( recSamplesL[ 2x-1, 2y ] + 2*recSamplesL[ 2x, 2y ] + recSamplesL[ 2x+1, 2y ] + 3*recSamplesL[ 2x-1, 2y+1 ] + 6*recSamplesL[ 2x, 2y+1 ] + 3*recSamplesL[ 2x+1, 2y+1 ] ) >> 4  ・・・式(8 )
実施形態4.
 上述した実施形態のサンプル位置シフト付きダウンサンプル器は、実施形態3とは異なる、図16の2次元フィルタを用いることも可能である。
 つまり、処理対象プログレッシブスキャンであれは、以下の式(9 )を使えばよい。
 pY'[ x, y ] = ( recSamplesL[ 2x-1, 2y ] + recSamplesL[ 2x+1, 2y ] + recSamplesL[ 2x-1, 2y+1 ] + recSamplesL[ 2x+1, 2y+1 ] ) >> 2  ・・・式(9 )
 処理対象がインタレーススキャンのトップフィールドであれは、以下の式(10)を使えばよい。
 pY'[ x, y ] = ( 3*recSamplesL[ 2x-1, 2y ] + 3*recSamplesL[ 2x+1, 2y ] + recSamplesL[ 2x-1, 2y+1 ] + recSamplesL[ 2x+1, 2y+1 ] ) >> 3  ・・・式(10)
 処理対象がインタレーススキャンのボトムフィールドであれは、以下の式(11)を使えばよい。
 pY'[ x, y ] = ( recSamplesL[ 2x-1, 2y ] + recSamplesL[ 2x+1, 2y ] + 3*recSamplesL[ 2x-1, 2y+1 ] + 3*recSamplesL[ 2x+1, 2y+1 ] ) >> 3  ・・・式(11)
実施形態5.
 ところで、非特許文献5は、ラインバッファを削減するために、ブロック境界の行のダウンサンプル輝度信号pY'[ x, y ](x = 0..nS-1, y = -1)を、以下の式(12)で計算することを提案している。
 pY'[ x, y ] = ( recSamplesL[ 2x-1, -1 ] + 2*recSamplesL[ 2x, -1 ] + recSamplesL[ 2x+1, -1 ] ) >> 2  ・・・式(12)
 非特許文献5に記載された技術と本発明を組み合わせる場合、ブロック境界の行ダウンサンプル輝度信号を上記の式(12)で計算し、その他のダウンサンプル輝度信号を本発明の式で計算すればよい。
 さらに、非特許文献5は、計算量を削減するために、ブロック境界の列のダウンサンプル輝度信号pY'[ x, y ]( x = -1, y = 0..nS-1)を、以下の式(13)で計算することを提案している。
 pY'[ x, y ] = ( recSamplesL[ 2x, 2y ] + recSamplesL[ 2x, 2y+1 ] ) >> 1  ・・・式(13)
 非特許文献5と本発明を組み合わせる場合、ブロック境界の行および列のダウンサンプル輝度信号を上記の式(12),(13)でそれぞれ計算し、その他のダウンサンプル輝度信号を本発明の式で計算すればよい。なお、ブロック境界の列のダウンサンプル輝度信号pY'[ x, y ]( x = -1, y = 0..nS-1)は、実施形態1および実施形態2の式(1 )、(2 )、(3 )で計算してもよい。
実施形態6.
 なお、非特許文献3に基づく映像符号化は、7.3.3 Slice header syntax記載のfield_pic_flagを0 と設定すること、または、7.3.4 Slice data syntax記載のmb_field_decoding_flagを0 と設定することによって、処理対象がプログレッシブスキャンであることを映像復号側にシグナリングできる。また、7.3.3 Slice header syntax記載のfield_pic_flagを1、bottom_field_flagを0 とそれぞれ設定すること、または、7.3.4 Slice data syntax記載のmb_field_decoding_flagを1 と設定することによって、処理対象がインタレーススキャンのトップフィールドであることを映像復号側にシグナリングできる。同様に、7.3.3 Slice header syntax記載のfield_pic_flagを1 、bottom_field_flagを1 とそれぞれ設定すること、または、7.3.4 Slice data syntax記載のmb_field_decoding_flagを1 と設定することによって、処理対象がインタレーススキャンのボトムであることを映像復号側にシグナリングできる。
実施形態7.
 なお、非特許文献2に基づく映像符号化は、非特許文献3のfield_pic_flag、bottom_field_flag、および、mb_field_decoding_flagシンタクスが存在しない。よって、それらのシンタクス代替として、処理対象の輝度信号と色差信号のサンプル位置関係(すなわち、ダウンサンプル輝度信号のサンプル位置のシフト量)を明示的に示すシンタクスを新たに定義してもよい。
 例えば、図6を参照すると、プログレッシブスキャンにおける処理対象の輝度信号と色差信号のサンプル位置関係は垂直に1/2画素シフトしている。図7を参照すると、インタレーススキャンのトップフィールドにおける処理対象の輝度信号と色差信号のサンプル位置関係は垂直に1/4画素シフトしている。図8を参照すると、インタレーススキャンのボトムフィールドにおける処理対象の輝度信号と色差信号のサンプル位置関係は垂直に3/4画素シフトしている。よって、ダウンサンプル輝度信号のサンプル位置のシフト量を示すシンタクスluma_down_sampling_shift_idcを以下のように定義できる。
 luma_down_sampling_shift_idcは、ダウンサンプル輝度信号のサンプル位置のシフト量を示す。luma_down_sampling_shift_idc=0は1/2画素のシフト量を示す。luma_down_sampling_shift_idc=1は1/4画素のシフト量を示す。luma_down_sampling_shift_idc=2は3/4画素のシフト量を示す。luma_down_sampling_shift_idcは、0 から3 の値をとる。luma_down_sampling_shift_idcが存在しない場合、その値は0 とみなす。
 なお、プログレッシブスキャンにおける1/2画素シフトを基準とすれば、インタレーススキャンのトップフィールドにおける1/4画素のシフト量は-1/4画素シフトとなり、インタレーススキャンのボトムフィールドにおける3/4画素のシフト量は1/4画素シフトとなる。その場合、上記の定義は、以下になる。
 luma_down_sampling_shift_idcは、ダウンサンプル輝度信号のサンプル位置のシフト量を示す。luma_down_sampling_shift_idc=0は1/2画素のシフト量を示す。luma_down_sampling_shift_idc=1はluma_down_sampling_shift_idc=0のシフト量に対して-1/4画素のシフト量を示す。luma_down_sampling_shift_idc=2 luma_down_sampling_shift_idc=0のシフト量に対して+1/4画素のシフト量を示す。luma_down_sampling_shift_idcは、0 から3 の値をとる。luma_down_sampling_shift_idcが存在しない場合、その値は0 とみなす。
 なお、luma_down_sampling_shift_idcシンタクスは、シーケンスパラメータセット、ピクチャパラメータセット、スライスヘッダなどでシグナリングすればよい。
実施形態8.
 なお、非特許文献2に基づく映像符号化は、非特許文献3のfield_pic_flag、bottom_field_flag、および、mb_field_decoding_flagシンタクスが存在しない。よって、4:2:0のインタレーススキャン信号の入力映像を符号化する際には、intra_chromaFromLuma予測を無効にすることが考えられる。intra_chromaFromLuma予測を無効にするとは、7.3.2.1 Sequence parameter set RBSP syntax記載のchroma_pred_from_luma_enabled_flagを0に設定すること、または、chroma_pred_from_luma_enabled_flagを1に設定し、さらに、7.3.7 Prediction unit syntax記載のintra_chroma_pred_modeを0以外(IntraPredModeを35以外、つまり、Intra_FromLuma prediction mode以外)に設定することである。4:2:0のインタレーススキャン信号の入力映像は、外部設定によって検出してもよいし、前記動静判定によって検出してもよい。
実施形態9.
 ところで、本発明は、図17に示すフレームパッキングされたフレームに対しても適用可能である。図17(a)は、1つのフレームの上半分と下半分にトップフィールドとボトムフィールドをそれぞれ配置するフレームパッキングを示す。図17(a)のフレームパッキングの場合、本発明は、フレームの上半分の符号化/復号においては、ダウンサンプル輝度信号のサンプル位置を垂直方向に1/4シフトするようにダウンサンプル輝度信号を生成する。フレームの下半分の符号化/復号においては、ダウンサンプル輝度信号のサンプル位置を垂直方向に3/4シフトするようにダウンサンプル輝度信号を生成する。図17(b)のフレームパッキングの場合(1つのフレームの上半分と下半分にボトムフィールドとトップフィールドをそれぞれ配置する場合)、本発明は、フレームの上半分の符号化/復号においては、ダウンサンプル輝度信号のサンプル位置を垂直方向に3/4シフトするようにダウンサンプル輝度信号を生成する。フレームの下半分の符号化/復号においては、ダウンサンプル輝度信号のサンプル位置を垂直方向に1/4シフトするようにダウンサンプル輝度信号を生成する。
 さらには上述した発明の実施形態においては、上述した説明からも明らかなように、ハードウェアで構成することも可能であるが、コンピュータプログラムにより実現することも可能である。
 図18に示す情報処理システムは、プロセッサ1001、プログラムメモリ1002、映像データを格納するための記憶媒体1003およびビットストリームを格納するための記憶媒体1004を備える。記憶媒体1003と記憶媒体1004とは、別個の記憶媒体であってもよいし、同一の記憶媒体からなる記憶領域であってもよい。記憶媒体として、ハードディスク等の磁気記憶媒体を用いることができる。
 図18に示す情報処理システムにおいて、プログラムメモリ1002には、図10,図13のそれぞれに示す各ブロックの機能を実現するためのプログラムが格納される。そして、プロセッサ1001は、プログラムメモリ1002に格納されているプログラムに従って処理を実行することによって、図10,図13のそれぞれに示す映像符号化装置または映像復号装置の機能を実現する。
 上記の実施形態の一部又は全部は以下の付記のようにも記載されうるが、本発明の構成は以下の構成に限定されない。
(付記1)少なくとも垂直方向に輝度信号を1/2にダウンサンプルする輝度信号ダウンサンプル手段と、ダウンサンプルした輝度信号から色差信号を線形予測する予測手段とを備え、前記輝度信号ダウンサンプル手段が処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする映像符号化装置であって、前記輝度信号ダウンサンプル手段は、[1/2, 1/2]の係数のフィルタを用いてプログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、[1/4, 3/4]の係数のフィルタを用いてインタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、[3/4, 1/4]の係数のフィルタを用いてインタレーススキャンのトボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトすることを特徴とする映像符号化装置。
(付記2)少なくとも垂直方向に輝度信号を1/2にダウンサンプルする輝度信号ダウンサンプル手段と、ダウンサンプルした輝度信号から色差信号を線形予測する予測手段とを備え、輝度信号ダウンサンプル手段は、プログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、インタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、インタレーススキャンのボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトする映像符号化装置であって、前記輝度信号ダウンサンプル手段は、[[1/8, 2/8, 1/8], [1/8, 2/8, 1/8]]の係数の2次元フィルタを用いてプログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、[[3/16, 6/16, 3/16], [1/16, 2/16, 1/16]]の係数の2次元フィルタを用いてインタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、[[1/16, 2/16, 1/16], [3/16, 6/16, 3/16]]の係数のフィルタを用いてインタレーススキャンのトボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトすることを特徴とする映像符号化装置。
(付記3)少なくとも垂直方向に輝度信号を1/2にダウンサンプルする輝度信号ダウンサンプル手段と、ダウンサンプルした輝度信号から色差信号を線形予測する予測手段とを備え、前記輝度信号ダウンサンプル手段が処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする映像符号化装置であって、前記輝度信号ダウンサンプル手段は、[[1/4, 0, 1/8], [1/8, 2/8, 1/8]]の係数の2次元フィルタを用いてプログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、[[3/8 0, 3/8], [1/8, 0, 1/8]]の係数の2次元フィルタを用いてインタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、[[1/8, 0, 1/8],[3/8 0, 3/8]]の係数のフィルタを用いてインタレーススキャンのトボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトすることを特徴とする映像符号化装置。
(付記4)少なくとも垂直方向に輝度信号を1/2にダウンサンプルする輝度信号ダウンサンプル手段と、ダウンサンプルした輝度信号から色差信号を線形予測する予測手段とを備え、前記輝度信号ダウンサンプル手段が処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする映像復号装置であって、前記輝度信号ダウンサンプル手段は、[1/2, 1/2]の係数のフィルタを用いてプログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、[1/4, 3/4]の係数のフィルタを用いてインタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、[3/4, 1/4]の係数のフィルタを用いてインタレーススキャンのトボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトすることを特徴とする映像復号装置。
(付記5)少なくとも垂直方向に輝度信号を1/2にダウンサンプルする輝度信号ダウンサンプル手段と、ダウンサンプルした輝度信号から色差信号を線形予測する予測手段とを備え、輝度信号ダウンサンプル手段は、プログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、インタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、インタレーススキャンのボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトする映像復号装置であって、前記輝度信号ダウンサンプル手段は、[[1/8, 2/8, 1/8], [1/8, 2/8, 1/8]]の係数の2次元フィルタを用いてプログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、[[3/16, 6/16, 3/16], [1/16, 2/16, 1/16]]の係数の2次元フィルタを用いてインタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、[[1/16, 2/16, 1/16], [3/16, 6/16, 3/16]]の係数のフィルタを用いてインタレーススキャンのトボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトすることを特徴とする映像復号装置。
(付記6)少なくとも垂直方向に輝度信号を1/2にダウンサンプルする輝度信号ダウンサンプル手段と、ダウンサンプルした輝度信号から色差信号を線形予測する予測手段とを備え、前記輝度信号ダウンサンプル手段が処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする映像復号装置であって、前記輝度信号ダウンサンプル手段は、[[1/4, 0, 1/8], [1/8, 2/8, 1/8]]の係数の2次元フィルタを用いてプログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、[[3/8 0, 3/8], [1/8, 0, 1/8]]の係数の2次元フィルタを用いてインタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、[[1/8, 0, 1/8],[3/8 0, 3/8]]の係数のフィルタを用いてインタレーススキャンのトボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトすることを特徴とする映像復号装置。
(付記7)少なくとも垂直方向に輝度信号を1/2にダウンサンプルし、ダウンサンプルした輝度信号から色差信号を線形予測し、処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする映像符号化方法であって、[1/2, 1/2]の係数のフィルタを用いてプログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、[1/4, 3/4]の係数のフィルタを用いてインタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、[3/4, 1/4]の係数のフィルタを用いてインタレーススキャンのトボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトすることを特徴とする映像符号化方法。
(付記8)少なくとも垂直方向に輝度信号を1/2にダウンサンプルし、ダウンサンプルした輝度信号から色差信号を線形予測し、処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする映像符号化方法であって、[[1/8, 2/8, 1/8], [1/8, 2/8, 1/8]]の係数の2次元フィルタを用いてプログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、[[3/16, 6/16, 3/16], [1/16, 2/16, 1/16]]の係数の2次元フィルタを用いてインタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、[[1/16, 2/16, 1/16], [3/16, 6/16, 3/16]]の係数のフィルタを用いてインタレーススキャンのトボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトすることを特徴とする映像符号化方法。
(付記9)少なくとも垂直方向に輝度信号を1/2にダウンサンプルし、ダウンサンプルした輝度信号から色差信号を線形予測し、処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする映像符号化方法であって、[[1/4, 0, 1/8], [1/8, 2/8, 1/8]]の係数の2次元フィルタを用いてプログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、[[3/8 0, 3/8], [1/8, 0, 1/8]]の係数の2次元フィルタを用いてインタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、[[1/8, 0, 1/8],[3/8 0, 3/8]]の係数のフィルタを用いてインタレーススキャンのトボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトすることを特徴とする映像符号化方法。
(付記10)少なくとも垂直方向に輝度信号を1/2にダウンサンプルし、ダウンサンプルした輝度信号から色差信号を線形予測し、処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする映像復号方法であって、[1/2, 1/2]の係数のフィルタを用いてプログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、[1/4, 3/4]の係数のフィルタを用いてインタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、[3/4, 1/4]の係数のフィルタを用いてインタレーススキャンのトボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトすることを特徴とする映像復号方法。
(付記11)少なくとも垂直方向に輝度信号を1/2にダウンサンプルし、ダウンサンプルした輝度信号から色差信号を線形予測し、処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする映像復号方法であって、[[1/8, 2/8, 1/8], [1/8, 2/8, 1/8]]の係数の2次元フィルタを用いてプログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、[[3/16, 6/16, 3/16], [1/16, 2/16, 1/16]]の係数の2次元フィルタを用いてインタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、[[1/16, 2/16, 1/16], [3/16, 6/16, 3/16]]の係数のフィルタを用いてインタレーススキャンのトボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトすることを特徴とする映像復号方法。
(付記12)少なくとも垂直方向に輝度信号を1/2にダウンサンプルし、ダウンサンプルした輝度信号から色差信号を線形予測し、処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする映像復号方法であって、[[1/4, 0, 1/8], [1/8, 2/8, 1/8]]の係数の2次元フィルタを用いてプログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、[[3/8 0, 3/8], [1/8, 0, 1/8]]の係数の2次元フィルタを用いてインタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、[[1/8, 0, 1/8],[3/8 0, 3/8]]の係数のフィルタを用いてインタレーススキャンのトボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトすることを特徴とする映像復号方法。
(付記13)コンピュータに、少なくとも垂直方向に輝度信号を1/2にダウンサンプルさせ、ダウンサンプルした輝度信号から色差信号を線形予測させ、処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトさせるための映像符号化プログラムであって、コンピュータに、プログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、インタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、インタレーススキャンのボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトする処理を実行させるための映像符号化プログラム。
(付記14)付記13の映像符号化プログラムであって、コンピュータに、[1/2, 1/2]の係数のフィルタを用いてプログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、[1/4, 3/4]の係数のフィルタを用いてインタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、[3/4, 1/4]の係数のフィルタを用いてインタレーススキャンのトボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトする処理を実行させるための映像符号化プログラム。
(付記15)付記13の映像符号化プログラムであって、コンピュータに、[[1/8, 2/8, 1/8], [1/8, 2/8, 1/8]]の係数の2次元フィルタを用いてプログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、[[3/16, 6/16, 3/16], [1/16, 2/16, 1/16]]の係数の2次元フィルタを用いてインタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、[[1/16, 2/16, 1/16], [3/16, 6/16, 3/16]]の係数のフィルタを用いてインタレーススキャンのトボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトする処理を実行させるための映像符号化プログラム。
(付記16)付記13の映像符号化プログラムであって、コンピュータに、[[1/4, 0, 1/8], [1/8, 2/8, 1/8]]の係数の2次元フィルタを用いてプログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、[[3/8 0, 3/8], [1/8, 0, 1/8]]の係数の2次元フィルタを用いてインタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、[[1/8, 0, 1/8],[3/8 0, 3/8]]の係数のフィルタを用いてインタレーススキャンのトボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトする処理を実行させるための映像符号化プログラム。
(付記17)コンピュータに、少なくとも垂直方向に輝度信号を1/2にダウンサンプルさせ、ダウンサンプルした輝度信号から色差信号を線形予測させ、処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトさせるための映像復号プログラムであって、コンピュータに、プログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、インタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、インタレーススキャンのボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトする処理を実行させるための映像復号プログラム。
(付記18)付記17の映像復号プログラムであって、コンピュータに、[1/2, 1/2]の係数のフィルタを用いてプログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、[1/4, 3/4]の係数のフィルタを用いてインタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、[3/4, 1/4]の係数のフィルタを用いてインタレーススキャンのトボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトする処理を実行させるための映像復号プログラム。
(付記19)付記17の映像復号プログラムであって、コンピュータに、[[1/8, 2/8, 1/8], [1/8, 2/8, 1/8]]の係数の2次元フィルタを用いてプログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、[[3/16, 6/16, 3/16], [1/16, 2/16, 1/16]]の係数の2次元フィルタを用いてインタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、[[1/16, 2/16, 1/16], [3/16, 6/16, 3/16]]の係数のフィルタを用いてインタレーススキャンのトボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトする処理を実行させるための映像復号プログラム。
(付記20)付記17の映像復号プログラムであって、コンピュータに、[[1/4, 0, 1/8], [1/8, 2/8, 1/8]]の係数の2次元フィルタを用いてプログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、[[3/8 0, 3/8], [1/8, 0, 1/8]]の係数の2次元フィルタを用いてインタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、[[1/8, 0, 1/8],[3/8 0, 3/8]]の係数のフィルタを用いてインタレーススキャンのトボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトする処理を実行させるための映像復号プログラム。
 以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2011年11月2日に出願された日本特許出願2011-241450を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、ダウンサンプルした輝度信号から色差信号を予測する映像符号化装置や映像復号装置などに好適に適用可能である。
 101 予測器
 102 周波数変換器
 103 量子化器
 104 エントロピー符号化器
 105 逆量子化/逆周波数変換器
 106 バッファ
 107 サンプル位置シフト付きダウンサンプル器
 201 エントロピー復号器
 202 逆量子化/逆周波数変換器
 203 予測器
 204 バッファ
205 サンプル位置シフト付きダウンサンプル器

Claims (10)

  1.  輝度信号をダウンサンプルする輝度信号ダウンサンプル手段と、ダウンサンプルした輝度信号から色差信号を線形予測する予測手段とを備える映像符号化装置であって、
     前記輝度信号ダウンサンプル手段が処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする
     ことを特徴とする映像符号化装置。
  2.  前記輝度信号ダウンサンプル手段は、少なくとも垂直方向に輝度信号を1/2にダウンサンプルする手段であって、
     前記輝度信号ダウンサンプル手段は、プログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、インタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、インタレーススキャンのボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトする
     請求項1記載の映像符号化装置。
  3.  輝度信号をダウンサンプルする輝度信号ダウンサンプル手段と、ダウンサンプルした輝度信号から色差信号を線形予測する予測手段とを備える映像復号装置であって、
     前記輝度信号ダウンサンプル手段が処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする
     ことを特徴とする映像復号装置。
  4.  前記輝度信号ダウンサンプル手段は、少なくとも垂直方向に輝度信号を1/2にダウンサンプルする手段であって、
     前記輝度信号ダウンサンプル手段は、プログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、インタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、インタレーススキャンのボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトする
     請求項3記載の映像復号装置。
  5.  輝度信号をダウンサンプルし、ダウンサンプルした輝度信号から色差信号を線形予測する映像符号化方法であって、
     処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする
     ことを特徴とする映像符号化方法。
  6.  少なくとも垂直方向に輝度信号を1/2にダウンサンプルする映像符号化方法であって、
     プログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、インタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、インタレーススキャンのボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトする
     請求項5記載の映像符号化方法。
  7.  輝度信号をダウンサンプルし、ダウンサンプルした輝度信号から色差信号を線形予測する映像復号方法であって、
     処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする
     ことを特徴とする映像復号方法。
  8.  少なくとも垂直方向に輝度信号を1/2にダウンサンプルする映像復号方法であって、
     プログレッシブスキャンのダウンサンプル輝度信号のサンプル位置を1/2シフトし、インタレーススキャンのトップフィールドのダウンサンプル輝度信号のサンプル位置を1/4シフトし、インタレーススキャンのボトムフィールドのダウンサンプル輝度信号のサンプル位置を3/4シフトする
     請求項7記載の映像復号方法。
  9.  コンピュータに、輝度信号をダウンサンプルし、ダウンサンプルした輝度信号から色差信号を線形予測させるための映像符号化プログラムであって、
     コンピュータに、処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする処理を実行させるための映像符号化プログラム。
  10.  コンピュータに、輝度信号をダウンサンプルし、ダウンサンプルした輝度信号から色差信号を線形予測させるための映像復号プログラムであって、
     コンピュータに、処理対象のスキャンに応じてダウンサンプル輝度信号のサンプル位置をシフトする処理を実行させるための映像復号プログラム。
PCT/JP2012/006848 2011-11-02 2012-10-25 映像符号化装置、映像復号装置、映像符号化方法、映像復号方法およびプログラム WO2013065263A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
IN3184CHN2014 IN2014CN03184A (ja) 2011-11-02 2012-10-25
CN201280053801.3A CN103907355A (zh) 2011-11-02 2012-10-25 视频编码设备、视频解码设备、视频编码方法、视频解码方法和程序
EP12845094.7A EP2775714A4 (en) 2011-11-02 2012-10-25 VIDEO ENCODING DEVICE, VIDEO DECODING DEVICE, VIDEO ENCODING METHOD, VIDEO DECODING METHOD, AND PROGRAM
US14/355,697 US20140307790A1 (en) 2011-11-02 2012-10-25 Video encoding device, video decoding device, video encoding method, video decoding method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-241450 2011-11-02
JP2011241450 2011-11-02

Publications (1)

Publication Number Publication Date
WO2013065263A1 true WO2013065263A1 (ja) 2013-05-10

Family

ID=48191641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006848 WO2013065263A1 (ja) 2011-11-02 2012-10-25 映像符号化装置、映像復号装置、映像符号化方法、映像復号方法およびプログラム

Country Status (6)

Country Link
US (1) US20140307790A1 (ja)
EP (1) EP2775714A4 (ja)
JP (1) JPWO2013065263A1 (ja)
CN (1) CN103907355A (ja)
IN (1) IN2014CN03184A (ja)
WO (1) WO2013065263A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11902509B2 (en) 2016-10-04 2024-02-13 Lx Semicon Co., Ltd. Method and device for encoding/decoding image, and recording medium storing bit stream

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9998742B2 (en) * 2015-01-27 2018-06-12 Qualcomm Incorporated Adaptive cross component residual prediction
CN108134938B (zh) * 2016-12-01 2021-08-06 中兴通讯股份有限公司 视频扫描方式检测、纠正方法、及视频播放方法和装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2933487B2 (ja) * 1994-07-15 1999-08-16 松下電器産業株式会社 クロマフォーマット変換の方法
US7136417B2 (en) * 2002-07-15 2006-11-14 Scientific-Atlanta, Inc. Chroma conversion optimization
US7474355B2 (en) * 2003-08-06 2009-01-06 Zoran Corporation Chroma upsampling method and apparatus therefor
US7724827B2 (en) * 2003-09-07 2010-05-25 Microsoft Corporation Multi-layer run level encoding and decoding
JP5003620B2 (ja) * 2008-03-11 2012-08-15 富士通株式会社 映像信号処理装置、及び映像信号処理方法
US8212927B2 (en) * 2008-07-28 2012-07-03 Hitachi, Ltd. Image signal processing apparatus, image signal processing method and video display apparatus
US8310592B2 (en) * 2008-10-10 2012-11-13 Panasonic Corporation Signal processing apparatus, signal processing method, and program for signal processing
KR101359490B1 (ko) * 2008-12-23 2014-02-10 에스케이 텔레콤주식회사 컬러 영상 부호화/복호화 방법 및 장치
US8712153B2 (en) * 2010-03-09 2014-04-29 Dynamic Invention Llc Subpixel-based image down-sampling
CN103141103B (zh) * 2010-04-09 2016-02-03 Lg电子株式会社 处理视频数据的方法和装置
JP2013034160A (ja) * 2011-07-06 2013-02-14 Panasonic Corp 動画像符号化装置および動画像符号化方法
JP2013048307A (ja) * 2011-07-26 2013-03-07 Panasonic Corp 動画像復号化装置および動画像復号化方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
AKIRA MINEZAWA ET AL.: "An improvement to chroma intra prediction from luma", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11, JCTVC-F173, 6TH MEETING, July 2011 (2011-07-01), TORINO, IT, pages 1 - 10, XP030009196 *
BENJAMIN BROSS; WOO-JIN HAN; JENS-RAINER OHM; GARY J. SULLIVAN; THOMAS WIEGAND: "WD4: Working Draft 4 of High-Efficiency Video Coding", JCTVC-F803 DL, JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11 6TH MEETING: TORINO, IT, 14 July 2011 (2011-07-14)
JIANLE CHEN ET AL.: "CE6.a.4: Chroma intra prediction by reconstructed luma samples", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11, JCTVC-E266_RL, 5TH MEETING, March 2011 (2011-03-01), GENEVA, pages 1 - 10, XP030008772 *
JIANLE CHEN: "BoG report on simplification of intra chromaFromLuma mode prediction", JCTVC-F760, JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11 6TH MEETING: TORINO, IT, 14 July 2011 (2011-07-14)
JIANLE CHEN; VADIM SEREGIN; WOO-JIN HAN; JUNGSUN KIM; BYEONGMOON JEON: "CE6.a.4: Chroma intra prediction by reconstructed luma samples", JCTVC-E266, JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11 5TH MEETING: GENEVA, 16 March 2011 (2011-03-16)
JUNGSUN KIM ET AL.: "New intra chroma prediction using inter-channel correlation", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11, JCTVC-B021, 2ND MEETING, July 2010 (2010-07-01), GENEVA, CH, pages 1 - 9, XP030007601 *
KEIICHI CHONO ET AL.: "On issues for interlaced format support in HEVC standard", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT- VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/ WG11, JCTVC-G170-R1, 7TH MEETING, November 2011 (2011-11-01), GENEVA, CH, pages 1 - 6, XP030050286 *
MINEZAWA; K. SUGIMOTO; S. SEKIGUCHI: "An improvement to chroma intra prediction from luma", JCTVC-F173, JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11 6TH MEETING: TORINO, IT, 14 July 2011 (2011-07-14)
See also references of EP2775714A4
SHUN-ICHI SEKIGUCHI ET AL.: "Proposal on the support of interlace format in HEVC", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11, JCTVC-F194_RL, 6TH MEETING, July 2011 (2011-07-01), pages 1 - 3, XP030009217 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11902509B2 (en) 2016-10-04 2024-02-13 Lx Semicon Co., Ltd. Method and device for encoding/decoding image, and recording medium storing bit stream

Also Published As

Publication number Publication date
CN103907355A (zh) 2014-07-02
EP2775714A4 (en) 2016-06-22
JPWO2013065263A1 (ja) 2015-04-02
US20140307790A1 (en) 2014-10-16
IN2014CN03184A (ja) 2015-07-03
EP2775714A1 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
US9451279B2 (en) Method for decoding a moving picture
US9609354B2 (en) Apparatus for decoding a moving picture
EP2787728B1 (en) Method for inducing a merge candidate block
KR102653005B1 (ko) 휘도 샘플을 이용한 색차 블록의 화면 내 예측 방법 및 이러한 방법을 사용하는 장치
KR101604959B1 (ko) 화상 부호화 장치, 화상 복호 장치, 화상 부호화 방법 및 화상 복호 방법
JP6432662B2 (ja) 映像符号化装置、映像符号化方法及びプログラム
EP3005702B1 (en) Resampling using scaling factor
JP6497423B2 (ja) 映像復号装置、映像復号方法及びプログラム
JP2014524707A (ja) 非対称な空間解像度を持つ3次元ビデオ
JP2017060202A (ja) 画像処理装置、画像処理方法、並びに記録媒体
KR20160106616A (ko) 예측 블록으로부터의 인트라 예측
KR20160023729A (ko) 변위 벡터들을 이용한 예측 블록으로부터의 인트라 예측
KR20130050149A (ko) 인터 모드에서의 예측 블록 생성 방법
US9473789B2 (en) Apparatus for decoding a moving picture
KR20160009543A (ko) 비디오 신호 처리 방법 및 장치
WO2013065263A1 (ja) 映像符号化装置、映像復号装置、映像符号化方法、映像復号方法およびプログラム
JP2021518084A (ja) 動きベクトルに基づく映像コーディング方法およびその装置
WO2015118835A1 (ja) 映像符号化装置、映像符号化方法及び映像符号化プログラム
CN115988202A (zh) 一种用于帧内预测的设备和方法
KR20200040192A (ko) 양자화된 변환 계수들의 부호화 및 복호화를 위한 방법 및 장치
KR20140129419A (ko) 잔차 변환을 이용한 인트라 예측 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541613

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012845094

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14355697

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE