WO2013065143A1 - Liquid crystal array inspection device, and method for acquiring images captured by liquid crystal array inspection device - Google Patents

Liquid crystal array inspection device, and method for acquiring images captured by liquid crystal array inspection device Download PDF

Info

Publication number
WO2013065143A1
WO2013065143A1 PCT/JP2011/075288 JP2011075288W WO2013065143A1 WO 2013065143 A1 WO2013065143 A1 WO 2013065143A1 JP 2011075288 W JP2011075288 W JP 2011075288W WO 2013065143 A1 WO2013065143 A1 WO 2013065143A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction
liquid crystal
imaging
movement
moving
Prior art date
Application number
PCT/JP2011/075288
Other languages
French (fr)
Japanese (ja)
Inventor
正道 永井
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN201180073905.6A priority Critical patent/CN103907017B/en
Priority to PCT/JP2011/075288 priority patent/WO2013065143A1/en
Priority to JP2013541527A priority patent/JP5692669B2/en
Publication of WO2013065143A1 publication Critical patent/WO2013065143A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/10Dealing with defective pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present invention relates to a liquid crystal array inspection apparatus that inspects a liquid crystal array using a captured image obtained by capturing an image on a liquid crystal substrate, and more particularly to acquisition of a captured image.
  • a scanning image obtained by two-dimensionally scanning a charged particle beam such as an electron beam or an ion beam on a substrate can be used.
  • an inspection is performed as to whether or not the manufactured TFT array substrate is driven correctly.
  • the TFT array substrate is scanned using, for example, an electron beam as a charged particle beam, and the inspection is performed based on a captured image obtained by scanning.
  • an inspection signal is applied to an array of a liquid crystal substrate to be inspected, and a charged particle beam such as an electron beam or an ion beam is scanned two-dimensionally on the substrate, and a captured image obtained by beam scanning
  • a charged particle beam such as an electron beam or an ion beam
  • An array inspection apparatus that performs substrate inspection based on the above is known.
  • array inspection secondary electrons emitted by electron beam irradiation are detected by converting them into analog signals using a photomultiplier or the like, and array defects are determined based on the signal intensity of the detection signals.
  • the array inspection is performed on the basis of the signal intensity of the captured image at the detected pixel position by detecting the pixel position on the captured image obtained by scanning.
  • the pixel position is detected by performing image processing on the captured image to detect pixel coordinates, and arranging the detected pixel coordinates in accordance with the pixel arrangement set on the liquid crystal substrate.
  • the pixel position on the picked-up image may be displaced due to the movement error of the stage on which the liquid crystal substrate is placed.
  • a pixel position is detected based on a captured image that has been displaced in this way, a deviation occurs between the pixel position set with respect to the substrate and the detected pixel position, and a different pixel is associated with the set pixel position. Inconvenience may occur.
  • the displacement of the detected pixel position becomes a factor that decreases the accuracy of defect detection, and an erroneous determination that a defective pixel is determined to be normal or that a normal pixel is determined to be defective occurs.
  • the captured image of the liquid crystal substrate is performed by scanning the liquid crystal substrate with charged particles while moving the moving stage on which the liquid crystal substrate is placed.
  • an imaging range acquired by an imaging operation by a single scan is limited.
  • each captured image is required to have no positional deviation.
  • a mark is provided at a predetermined position on the moving stage, and this mark is recognized by an imaging means such as a camera fixed on the inspection apparatus side during the operation of the moving stage. It is conceivable to detect a positional deviation by comparing the mark position detected on the captured image with the reference position of the mark and correct the imaging operation based on the detected positional deviation.
  • the actual moving distance of the moving stage is calculated based on the positional deviation obtained from the recognition of the mark, and the moving speed and imaging range of the moving stage are corrected using the calculated actual moving interval. Can be considered.
  • 11 and 12 are diagrams for explaining misalignment correction by correcting the moving speed of the moving stage and the imaging range.
  • FIG. 11 shows an example when the moving stage is not displaced
  • FIG. 12 shows an example when the moving stage is displaced.
  • the movement interval of the stage position for performing each imaging operation is a constant Lo (FIG. 11C).
  • an imaging trigger is generated based on the constant movement interval Lo (FIG. 11D), and imaging is performed based on each imaging trigger.
  • the imaging trigger can be generated when the moving amount of the moving stage is monitored and the moving amount becomes the moving interval Lo.
  • the imaging range of each imaging is determined corresponding to the movement interval Lo of the moving stage (FIG. 11 (e)), and a captured image is acquired by imaging within this imaging range (FIG. 11 (f)).
  • the moving speed of the moving stage is corrected and the imaging range is corrected.
  • the imaging range By correcting the imaging range, the movement interval of the stage position where each imaging operation is performed is corrected to Lc (FIG. 12C).
  • an imaging trigger is generated based on the corrected correction movement interval Lc (FIG. 12D), and imaging is performed based on each imaging trigger.
  • the imaging trigger can be generated when the moving amount of the moving stage is monitored and the moving amount reaches the correction moving interval Lc.
  • the imaging range of each imaging is determined corresponding to the correction movement interval Lc of the moving stage (FIG. 12 (e)), and all the captured images are acquired by connecting the captured images obtained in each imaging range (FIG. 12). (F)).
  • the inventors of the present application may not be able to sufficiently correct the displacement of the moving stage by correcting the moving speed and imaging range of the moving stage. It has been found that there is a cumulative correction error caused by a deviation from the moving resolution of.
  • the position of the moving stage is corrected using the moving resolution as the minimum unit. Therefore, the correction amount can be accurately corrected if the positional deviation correction amount is an integral multiple of the movement resolution. However, if the positional deviation correction amount is not an integral multiple of the movement resolution, there is a correction error in each imaging range. As a result, the correction error of each imaging range is accumulated for the entire imaging range and an accumulated error occurs.
  • the accumulated error of the positional deviation caused by the moving resolution of the driving mechanism of the moving stage is a position error that is not corrected even if the moving speed of the moving stage and the imaging range are corrected.
  • FIG. 13 and 14 are diagrams for explaining the accumulated error.
  • FIG. 13 shows an example of a positive accumulated error
  • FIG. 14 shows an example of a negative accumulated error.
  • the displacement of the moving stage is determined by setting the mark position (FIGS. 13A and 14A) and the mark position detected by photographing with a fixed camera (FIG. 13B). , FIG. 14 (b)) is detected by the positional deviation ⁇ l. Based on this positional deviation ⁇ l, the moving speed of the moving stage is corrected and the imaging range is corrected. In the correction of the imaging range, the correction amount of the movement interval that can be corrected by the moving stage is an integer multiple N of the moving resolution s of the moving stage.
  • FIG. 13C shows a case where the corrected moving interval Lc + of the actual moving stage is longer than the corrected moving interval Lc obtained in the calculation
  • FIG. 14C shows the corrected moving interval of the actual moving stage.
  • Lc - is a movement distance after correction obtained by calculation shorter than Lc.
  • an imaging trigger is generated based on the corrected correction movement intervals Lc + and Lc ⁇ (FIGS. 13D and 14D), and imaging is performed based on each imaging trigger.
  • the imaging trigger can be generated when the moving amount of the moving stage is monitored and the moving amount becomes the correction moving interval Lc + , Lc ⁇ .
  • the imaging range of each imaging is determined corresponding to the correction movement intervals Lc + and Lc ⁇ of the moving stage (FIGS. 13 (e) and 14 (e)), and the captured images obtained in each imaging range are joined together. All captured images are acquired (FIGS. 13 (f) and 14 (f)).
  • All the captured images obtained by joining the captured images have an accumulated error in which the error dl generated in each captured image is accumulated.
  • the accumulated error is longer than the imaging range, and in the case shown in FIG. 14, the entire captured image is shorter than the target imaging range by the accumulated error.
  • FIG. 15 is a diagram for explaining the accumulated error.
  • FIG. 15A shows a case where there is no cumulative error of the moving mechanism of the moving stage
  • FIG. 15B shows a case where a positive cumulative error occurs
  • FIG. 15C shows a negative cumulative error. Shows the case.
  • the imaging range captured by each imaging trigger is Lo
  • the entire imaging range is M ⁇ Lo.
  • M represents the number of times of imaging for acquiring the entire imaging range.
  • the present invention solves the above-described conventional problems, eliminates the accumulated error of the imaging range that occurs based on the moving resolution of the moving stage, and improves the position accuracy of defect detection in the liquid crystal array inspection.
  • the present invention applies an inspection signal of a predetermined voltage to a liquid crystal substrate to drive the array, and images the liquid crystal substrate based on a secondary electron signal obtained by irradiating the liquid crystal substrate with charged particles such as an electron beam.
  • a liquid crystal array inspection apparatus that inspects an array of liquid crystal substrates based on a captured image obtained by the imaging, a movement variation of a moving unit that moves the liquid crystal substrate is detected, and a moving speed of the moving unit is detected based on the movement variation. And the movement interval at the time of each imaging are corrected, and the accumulated error generated by accumulating errors generated based on the movement resolution accompanying the correction of the movement interval is corrected.
  • the correction of the accumulated error is performed by correcting the movement interval by the moving resolution of the moving unit every predetermined number of times of imaging performed a plurality of times.
  • the movement interval is corrected by, for example, calculating the number of corrections by dividing the accumulated error occurring in the entire imaging range by the movement resolution, and correcting the movement interval by dividing the total number of imagings by the calculated number of corrections.
  • the interval can be determined.
  • the present invention can be an aspect of a liquid crystal array inspection apparatus and an aspect of a liquid crystal array inspection method.
  • the aspect of the liquid crystal array inspection apparatus of the present invention drives the array by applying an inspection signal of a predetermined voltage to the liquid crystal substrate, images the liquid crystal substrate based on a signal obtained by irradiating the liquid crystal substrate with a charged particle beam,
  • a liquid crystal array inspection apparatus that inspects an array of liquid crystal substrates based on a captured image obtained by the imaging includes a moving unit, an imaging unit, a captured image forming unit, a fluctuation detecting unit, and an imaging correction unit.
  • the charged particles can be electron beams, and secondary electrons obtained at this time are detected as detection signals.
  • the moving unit is a component that moves the liquid crystal substrate, and can be, for example, a moving stage on which the liquid crystal substrate is placed and moved.
  • the moving stage may be a stage mechanism that can move in the two-dimensional direction in the XY directions, or a stage mechanism that can move in the three-dimensional direction by adding movement in the Z direction to movement in the XY directions.
  • the imaging unit is a component that divides and images the liquid crystal substrate, and starts imaging whenever the liquid crystal substrate moves a distance corresponding to a predetermined movement interval as the liquid crystal substrate is moved by the moving unit. Every time imaging starts, the imaging unit performs imaging with the moving interval as an imaging range, and repeats the imaging operation with the moving interval as the imaging range in each imaging operation. A plurality of divided captured images are acquired by repeated imaging operations.
  • the captured image forming unit connects a plurality of divided captured images acquired by the imaging unit to form one combined captured image.
  • the fluctuation detector detects movement fluctuations of the moving part.
  • the movement fluctuation includes fluctuation caused by expansion of the movement mechanism of the moving unit.
  • the imaging correction unit corrects imaging conditions when the imaging unit acquires a captured image based on the fluctuation range and fluctuation direction of the movement fluctuation of the moving unit detected by the fluctuation detection unit.
  • the moving unit has a moving stage on which the liquid crystal substrate is mounted and moved, and the imaging correction unit uses the moving interval that defines the imaging range as an imaging condition, and the moving unit moves Correct based on fluctuations.
  • the imaging correction unit includes a movement interval correction unit that corrects the movement interval, and a cumulative error correction unit that corrects an accumulated error caused by accumulating correction errors of the movement interval by the movement interval correction unit.
  • the movement interval correction unit calculates the corrected movement interval based on the fluctuation range and fluctuation direction of the movement fluctuation detected by the fluctuation detection unit.
  • the cumulative error correction unit corrects the cumulative error by using the minimum resolution of the moving stage as a correction amount and increasing or decreasing the correction amount to the correction movement interval calculated by the movement interval correction unit.
  • the cumulative error correction unit increases or decreases the correction amount with respect to the correction movement interval for every predetermined number of times of imaging.
  • the amount of increase / decrease in the correction amount and the number of times of increase / decrease are calculated based on the fluctuation range and direction of movement fluctuation.
  • the fluctuation detection unit includes a photographing means fixed on the liquid crystal array inspection apparatus.
  • the photographing unit photographs a mark provided on the moving stage, and detects a movement variation of the moving unit based on a positional deviation of the mark image in the photographed image.
  • the imaging correction unit can include a speed correction unit that corrects the moving speed of the moving stage in addition to the movement interval correction unit and the cumulative error correction unit.
  • the speed correction unit calculates a correction speed based on the fluctuation range and fluctuation direction of the movement fluctuation detected by the fluctuation detection unit.
  • the liquid crystal array inspection apparatus of the present invention is characterized in that the imaging correction unit includes a cumulative error correction unit, and the correction amount is set to the correction movement interval calculated by the movement interval correction unit, with the minimum resolution of the moving stage as the correction amount.
  • an aspect of the liquid crystal array inspection method of the present invention is a secondary electron obtained by applying an inspection signal of a predetermined voltage to the liquid crystal substrate to drive the array and irradiating the liquid crystal substrate with charged particles such as an electron beam.
  • a picked-up image acquisition method of a liquid crystal array inspection apparatus that picks up an image of a liquid crystal substrate based on the signal of the liquid crystal and inspects an array of the liquid crystal substrate based on a picked-up image obtained by the picking, And a variation detection step and an imaging correction step.
  • the moving process moves the liquid crystal substrate.
  • the imaging process starts imaging every time the liquid crystal substrate moves by a predetermined movement interval in accordance with the movement of the liquid crystal substrate by the moving process. Each time imaging is started, the moving interval is imaged as an imaging range, and a one-division captured image is acquired. A plurality of divided captured images are acquired by repeating the imaging operation with the movement interval as the imaging range in each imaging operation.
  • a plurality of divided captured images acquired in the imaging process are connected to form one combined captured image.
  • the fluctuation detection process detects movement fluctuation of the liquid crystal substrate that moves in the movement process.
  • the imaging correction process corrects imaging conditions when the imaging process acquires a captured image based on the fluctuation range and fluctuation direction of the movement fluctuation of the liquid crystal substrate in the movement process detected in the fluctuation detection process.
  • the moving step moves the liquid crystal substrate placed on a moving stage, and the imaging correction step corrects the imaging operation using the moving interval that defines the imaging range as an imaging condition.
  • the imaging correction step includes a movement interval correction step that corrects the movement interval, and a cumulative error correction step that corrects a cumulative error caused by accumulating correction errors of the movement interval in the movement interval correction step.
  • the correction movement interval is calculated based on the fluctuation width and fluctuation direction of the movement fluctuation detected by the fluctuation detection step.
  • the cumulative error correction step the magnitude of the minimum resolution of the moving stage is used as a correction amount, and this correction amount is increased or decreased to the correction movement interval calculated in the movement interval correction step to correct the cumulative error.
  • the correction amount is increased or decreased with respect to the correction movement interval every predetermined number of times of imaging.
  • the amount of increase / decrease in the correction amount and the number of times of increase / decrease can be calculated based on the fluctuation range and fluctuation direction of the movement fluctuation.
  • a mark provided on the moving stage is photographed by photographing means fixed on the liquid crystal array inspection apparatus, and movement fluctuation in the movement process is detected based on the positional deviation of the mark image in the photographed image.
  • the imaging correction process can include a speed correction process for correcting the moving speed of the moving stage in addition to the movement interval correction process and the cumulative error correction process.
  • a correction speed is calculated based on the fluctuation range and fluctuation direction of the movement fluctuation detected by the fluctuation detection step to perform speed correction.
  • the present invention it is possible to eliminate the accumulated error of the imaging range that occurs based on the moving resolution of the moving stage and improve the position accuracy of the liquid crystal substrate defect detection.
  • FIG. 1 is a schematic block diagram for explaining a configuration example of a liquid crystal array inspection apparatus of the present invention. It is a flowchart for demonstrating the schematic process by the liquid crystal test
  • FIG. 1 is a schematic block diagram for explaining a configuration example of a liquid crystal array inspection apparatus of the present invention. Note that the example shown in FIG. 1 shows a configuration example in which an electron beam is irradiated on the liquid crystal substrate, secondary electrons emitted from the liquid crystal substrate are detected, and a captured image is acquired from the detected intensity.
  • a liquid crystal array inspection apparatus 1 includes a moving stage 2 on which a liquid crystal substrate 100 is placed and can be conveyed in the X and Y directions, and an electron gun 3A disposed above the moving stage 2 and away from the moving stage 2. And a detector 3B that detects secondary electrons emitted from pixels (not shown) of the panel 101 of the liquid crystal substrate 100.
  • the movement of the moving stage 2 is controlled by the stage drive control unit 4, and the electron gun 3A is controlled by the imaging control unit 3C to irradiate an electron beam and scan on the liquid crystal substrate 100.
  • the detection signal of the secondary electrons detected by the detector 3B is processed by the signal processing unit 10 and used for inspection such as pixel defect determination in the inspection unit 20.
  • the electron gun 3A, the detector 3B, and the imaging control unit 3C constitute the imaging unit 3, and acquire a captured image of the liquid crystal substrate.
  • the control unit 9 has a function of performing control including the entire operation of the liquid crystal array inspection apparatus 1, and can be configured by a CPU that performs these controls and a memory that stores a program that controls the CPU.
  • the moving stage 2 mounts the liquid crystal substrate 100 and is movable in the X-axis direction and the Y-axis direction by the stage drive control unit 4. Further, the electron beam emitted from the electron gun 3A can be swung in the X-axis direction or the Y-axis direction by the imaging control unit 3C.
  • the stage drive control unit 4 and the imaging control unit 3C independently or cooperatively scan the electron beam on the liquid crystal substrate 100 to obtain a captured image of the liquid crystal substrate 100.
  • the fixed camera 5 images a mark provided on the moving stage 2.
  • FIGS. 2 and 3 are a flowchart and an explanatory diagram for explaining a procedure for calculating a correction amount for correcting a displacement of the moving stage in acquiring a captured image in the liquid crystal array inspection of the present invention.
  • the displacement amount ⁇ L of the moving stage is obtained by the steps S1 to S4, and the moving speed of the moving stage is corrected based on the displacement ⁇ L obtained in the steps S1 to S4 by the step S5.
  • the correction speed is calculated, the correction movement interval for correcting the movement interval L of the movement stage that determines the imaging interval by the steps S6 and S7, and the frequency of the correction operation for correcting the accumulated error are calculated.
  • step S6 a corrected moving interval Lc for correcting the moving interval L of the moving stage that determines the imaging interval is calculated based on the positional deviation ⁇ L obtained in steps S1 to S4.
  • step S7 when the movement interval is corrected by the correction movement interval Lc calculated in the step S6, the frequency of the correction operation performed to correct the accumulated error caused by the moving resolution of the moving stage is calculated.
  • the moving stage generates an imaging trigger every time the moving stage moves the moving distance Lo while moving at the set stage speed vo, and performs an imaging operation in response to the imaging trigger to perform imaging corresponding to the moving distance Lo.
  • a captured image of the range is acquired.
  • FIG. 3A is a diagram showing an outline of the imaging operation.
  • the panel 101 on the substrate 100 is scanned and imaged while moving the moving stage 2, and the entire imaging range is obtained by a plurality of imaging operations. Are obtained by stitching together the captured images.
  • an imaging trigger is generated every time the moving stage moves by the moving distance Lo, and an imaging operation is performed.
  • a mark for detecting displacement is provided at a predetermined position of the moving stage, and based on this mark, fluctuations in moving speed of the moving stage and displacement of the moving stage are detected. To detect.
  • the moving stage After positioning the moving stage at a reference position such as the end position, the moving stage starts to move (S1). After starting to move the moving stage, the moving amount of the moving stage is monitored.
  • the moving amount of the moving stage can be monitored based on, for example, the output of an encoder provided in the moving stage or the rotation amount of a motor that drives the moving mechanism of the moving stage.
  • the set movement distance La can be set to a distance between the reference position and the mark, for example, and is set to a position where the mark can be imaged by the fixed camera.
  • a mark provided on the moving stage is photographed by a fixed camera fixed on the liquid crystal array inspection apparatus side (S3), and a difference between the mark position on the photographed image and a preset mark position is obtained.
  • FIG. 3A the mark 102 provided on the moving stage 2 is photographed by the fixed camera 5.
  • FIG. 3B shows an example of an image obtained by a fixed camera. In the image example, the mark position on the image is shifted from the predetermined mark position by a positional shift ⁇ l.
  • the mark position on the captured image is the same as the preset mark position.
  • the mark position on the captured image is shifted from a preset mark position, and the shift amount depends on the moving speed and the position shift amount.
  • the positional deviation amount ⁇ l between the mark position on the captured image and the preset mark position is a positional deviation amount with respect to the movement distance La from the reference position
  • the positional deviation amount ⁇ L with respect to the entire imaging range is calculated.
  • This positional deviation amount ⁇ L can be obtained, for example, by adding the ratio of (length of entire imaging range / movement distance La) to the positional deviation amount ⁇ l of the mark position.
  • the relationship between the positional deviation amount ⁇ l of the mark position and the positional deviation amount ⁇ L with respect to the entire imaging range is expressed by an arithmetic expression or a data table. It can be obtained in advance by calculating and reading out the ratio as a parameter (S4).
  • Lo is a predetermined moving distance of the moving stage
  • ⁇ l is the amount of displacement of the mark position
  • ⁇ t is a time required for the moving stage to move the predetermined moving distance Lo
  • vo is a set stage speed
  • ⁇ v is a speed. It is a fluctuation.
  • step S6 a corrected movement interval obtained by correcting the movement interval L is calculated.
  • the positional deviation amount ⁇ L calculated in the step S4 is a positional deviation amount with respect to the entire imaging range.
  • the positional deviation amount ⁇ L is divided by M times to calculate a correction amount ⁇ L / M for each imaging, and the movement interval of each imaging is calculated as a correction amount ⁇ L.
  • the correction movement interval Lc is calculated by correcting for / M.
  • M is the number of captured images.
  • ⁇ L / M represents a correction amount for correcting each imaging range.
  • FIG. 3C shows the relationship among the set movement interval Lo, the correction movement interval Lc, and the correction amount ⁇ L / M.
  • the correction movement interval Lc can be corrected by shifting the imaging trigger for starting the imaging operation by the correction amount ⁇ L / M (S6).
  • the moving stage has a moving resolution capable of accurately moving the correction amount ⁇ L / M
  • the moving interval can be corrected without excess or deficiency.
  • the moving stage is driven. Since the moving resolution of the drive mechanism is limited, if the correction amount ⁇ L / M is not an integral multiple of the moving resolution, a correction error occurs for each correction.
  • the cumulative error in the + direction and the cumulative error in the-direction have the same size with a half size of one imaging range as a boundary, so the maximum cumulative error is half the size of one imaging range.
  • the imaging range is set by a corrected moving interval Lcc obtained by correcting the corrected moving interval Lc calculated in step S6 by the moving resolution s of the stage every predetermined number of times in a plurality of imaging operations. Do that.
  • the movement interval that determines each imaging range by correcting the correction movement interval is a combination of the correction movement interval Lc calculated in S6 and the correction movement interval Lcc.
  • the frequency of changing to the corrected moving interval Lc and the corrected moving interval Lcc can be calculated from the magnitude of the accumulated error and the moving resolution.
  • the accumulated error is eliminated by changing the corrected movement interval Lc to the corrected movement interval Lcc every predetermined number of times.
  • FIG. 3D shows a state where the correction movement interval Lcc is introduced (S7).
  • FIG. 4 shows a case where a positive cumulative error is eliminated
  • FIG. 5 shows a case where a negative cumulative error is eliminated.
  • the entire imaging range is longer than the imaging range when there is no cumulative error. This increase is corrected by setting the correction movement interval Lc to the correction movement interval Lcc ( ⁇ Lc).
  • a correction movement interval Lcc ⁇ Lc) is introduced after a predetermined number of correction movement intervals Lc, and an imaging trigger is generated based on the correction movement intervals Lc and Lcc (FIG. 4D). Imaging is performed for the imaging range (FIG. 4E). As a result, the entire imaging range in which the accumulated error is eliminated is acquired (FIG. 4 (f)).
  • the entire imaging range is shorter than the imaging range when there is no cumulative error. This decrease is corrected by setting the correction movement interval Lc to the correction movement interval Lcc (> Lc).
  • FIG. 15D shows a case where the accumulated error is corrected.
  • the accumulated error in FIGS. 15B and 15C is corrected, and the imaging range based on the captured image is the same as that without the accumulated error shown in FIG. 15A. ing.
  • a correction movement interval Lcc (> Lc) is introduced after a predetermined number of correction movement intervals Lc, and an imaging trigger is generated based on the correction movement intervals Lc and Lcc (FIG. 5D). Then, imaging is performed for the imaging range (FIG. 5E). As a result, the entire imaging range in which the accumulated error is eliminated is acquired (FIG. 5 (f)).
  • a first correction example of the accumulated error will be described with reference to FIGS.
  • a correction error dL generated in one imaging is calculated.
  • ⁇ L is a positional deviation amount with respect to the entire imaging range, and as shown in the step of S4, the positional deviation amount ⁇ L is set to the positional deviation amount ⁇ l of the mark position (length of entire imaging range / movement distance La). It can obtain
  • M is the number of a plurality of captured images, and ⁇ L / M obtained by dividing the positional deviation amount ⁇ L by M represents a correction amount per imaging (FIG. 7A).
  • the cumulative error dLL is corrected by switching the correction movement interval Lc to the correction movement interval Lcc.
  • switching to the corrected movement interval Lcc is performed uniformly with respect to all the movement intervals, and the corrected movement interval Lc is switched to the corrected movement interval Lcc every predetermined number of times.
  • the correction of one correction movement interval Lcc is performed by increasing or decreasing the movement resolution s by the correction movement interval Lc. Accordingly, by switching one correction movement interval Lc to the correction movement interval Lcc, the accumulated error dLL is corrected by the movement resolution s.
  • a second correction example of the accumulated error will be described with reference to FIGS.
  • a correction error dL that occurs in one imaging is calculated.
  • ⁇ L is a positional deviation amount with respect to the entire imaging range, and as shown in the step of S4, the positional deviation amount ⁇ L is set to the positional deviation amount ⁇ l of the mark position (length of entire imaging range / movement distance La). It can obtain
  • M is the number of the plurality of captured images, and ⁇ L / M obtained by dividing the positional deviation amount ⁇ L by M represents the correction amount per image capture (FIG. 9A).
  • the accumulated error can be corrected by switching the correction movement interval Lc to the correction movement interval Lcc for every s / dL times of imaging (FIGS. 9C to 9E) and (S8C).
  • the signal processing unit 10 corrects the imaging condition when the imaging unit acquires a captured image based on the variation detection unit 10A that detects the movement variation of the moving stage and the movement variation of the moving stage detected by the variation detection unit 10A.
  • the imaging correction unit 10B and a captured image forming unit 10C that joins a plurality of divided captured images to form one combined captured image.
  • the fluctuation detection unit 10A is configured so that the fixed camera that captures the photographing signal of the fixed camera 5 and forms a photographed image uses the forming unit 10a and the shift amount of the mark provided on the moving stage based on the photographed image. And a stage mark deviation amount detection unit 10b that detects the variation.
  • the imaging correction unit 10B includes a speed correction unit 10c, a movement interval correction unit 10d, an accumulated error correction unit 10e, and a correction data storage unit 10f.
  • the imaging interval is set as an imaging condition with a moving stage speed and a movement interval forming an imaging trigger. These imaging conditions are corrected based on the amount of deviation formed by the variation detector 10A.
  • the speed correction unit 10c corrects the speed of the moving stage based on the deviation amount.
  • the stage drive control unit 4 performs speed control based on the correction speed of the speed correction unit 10c.
  • the movement interval correction unit 10d corrects the movement interval based on the shift amount, corrects the timing of the imaging trigger for performing imaging, and corrects the imaging range.
  • the imaging control unit 3C performs imaging control based on the corrected movement interval of the movement interval correction unit 10d.
  • the cumulative error is corrected by the cumulative error correction unit 10e.
  • the correction processing of the movement interval correction unit 10d and the cumulative error correction unit 10e can be performed using data stored in the correction data storage unit 10f.
  • the captured image forming unit 10C includes a detection signal acquisition unit 10g that receives a detection signal of the detection unit 3B and a captured image formation unit 10h that forms a captured image from the acquired detection signal.
  • the captured image forming unit 10h performs an imaging operation based on the imaging trigger formed by the imaging control unit 3C.
  • the calculation process of the present invention can be applied not only to a liquid crystal array inspection apparatus but also to a semiconductor element substrate inspection.

Abstract

In order to eliminate cumulative errors in an imaging range generated on the basis of the movement resolution of a moving stage, and improve the positional accuracy of defect detection in liquid crystal array inspections, this liquid crystal array inspection device applies a test signal of a prescribed voltage to a liquid crystal substrate to drive an array, captures images of the liquid crystal substrate on the basis of a signal, such as a secondary electron beam obtained by irradiating the liquid crystal substrate with charged particles, such as an electron beam, and inspects the liquid crystal substrate array on the basis of the captured images obtained by the abovementioned imaging operations. The liquid crystal array inspection device: detects movement variations in a moving part that moves the liquid crystal substrate, and corrects the movement speed of the moving part on the basis of the movement variations, and movement intervals when performing each imaging operation; and corrects a cumulative error produced by the accumulation of errors generated on the basis of movement resolutions associated with the correction of the movement intervals. In an imaging operation performed a plurality of times, the correction of a cumulative error involves carrying out only a movement resolution of the moving part for each prescribed number of imaging operations by correcting the movement interval.

Description

液晶アレイ検査装置および液晶アレイ検査装置の撮像画像取得方法Liquid crystal array inspection apparatus and method for acquiring captured image of liquid crystal array inspection apparatus
 本発明は、液晶基板上を撮像して得られる撮像画像を用いて液晶アレイを検査する液晶アレイ検査装置に関し、特に、撮像画像の取得に関する。 The present invention relates to a liquid crystal array inspection apparatus that inspects a liquid crystal array using a captured image obtained by capturing an image on a liquid crystal substrate, and more particularly to acquisition of a captured image.
 液晶アレイ検査装置において、電子ビームやイオンビーム等の荷電粒子ビームを基板上で二次元的に走査して得られる走査画像を用いることができる。 In a liquid crystal array inspection apparatus, a scanning image obtained by two-dimensionally scanning a charged particle beam such as an electron beam or an ion beam on a substrate can be used.
 例えば、TFTディスプレイ装置に用いるTFTアレイ基板の製造工程では、製造されたTFTアレイ基板が正しく駆動するか否かの検査が行われる。このTFTアレイ基板検査では、荷電粒子ビームとして例えば電子ビームを用いてTFTアレイ基板を走査し、走査によって取得した撮像画像に基づいて検査を行っている。(特許文献1,2) For example, in the manufacturing process of the TFT array substrate used in the TFT display device, an inspection is performed as to whether or not the manufactured TFT array substrate is driven correctly. In this TFT array substrate inspection, the TFT array substrate is scanned using, for example, an electron beam as a charged particle beam, and the inspection is performed based on a captured image obtained by scanning. (Patent Documents 1 and 2)
 アレイ検査装置の例として、例えば検査対象の液晶基板のアレイに検査信号を印加し、電子ビームやイオンビーム等の荷電粒子ビームを基板上で二次元的に走査し、ビーム走査で得られる撮像画像に基づいて基板検査を行うアレイ検査装置が知られている。アレイ検査では、電子線の照射によって放出される二次電子をフォトマルチプライヤなどによってアナログ信号に変換して検出し、この検出信号の信号強度に基づいてアレイ欠陥を判定している。 As an example of an array inspection apparatus, for example, an inspection signal is applied to an array of a liquid crystal substrate to be inspected, and a charged particle beam such as an electron beam or an ion beam is scanned two-dimensionally on the substrate, and a captured image obtained by beam scanning An array inspection apparatus that performs substrate inspection based on the above is known. In array inspection, secondary electrons emitted by electron beam irradiation are detected by converting them into analog signals using a photomultiplier or the like, and array defects are determined based on the signal intensity of the detection signals.
 アレイ検査は、走査で得られた撮像画像上のピクセル位置を検出し、検出したピクセル位置における撮像画像の信号強度に基づいて行う。ピクセル位置の検出は、撮像画像を画像処理してピクセル座標を検出し、検出したピクセル座標を液晶基板に設定されたピクセル配置に合わせて配列することで行う。 The array inspection is performed on the basis of the signal intensity of the captured image at the detected pixel position by detecting the pixel position on the captured image obtained by scanning. The pixel position is detected by performing image processing on the captured image to detect pixel coordinates, and arranging the detected pixel coordinates in accordance with the pixel arrangement set on the liquid crystal substrate.
 撮像画像上でピクセル位置を検出する際、液晶基板を載置するステージの移動誤差等によって撮像画像上のピクセル位置に位置ずれが生じる場合がある。このように位置ずれした撮像画像に基づいてピクセル位置を検出すると、基板に対して設定したピクセル位置と検出したピクセル位置との間にずれが生じ、設定したピクセル位置に対して異なるピクセルが対応付けられるという不都合が生じる場合がある。検出したピクセル位置の位置ずれは欠陥検出の精度を低下させる要因となり、欠陥ピクセルが正常と判定されたり、あるいは正常ピクセルが欠陥と判定されるといった誤判定が発生することになる。 When detecting the pixel position on the picked-up image, the pixel position on the picked-up image may be displaced due to the movement error of the stage on which the liquid crystal substrate is placed. When a pixel position is detected based on a captured image that has been displaced in this way, a deviation occurs between the pixel position set with respect to the substrate and the detected pixel position, and a different pixel is associated with the set pixel position. Inconvenience may occur. The displacement of the detected pixel position becomes a factor that decreases the accuracy of defect detection, and an erroneous determination that a defective pixel is determined to be normal or that a normal pixel is determined to be defective occurs.
 そのため、このような不都合を解消して欠陥の検出精度を高めるためには、撮像画像について高い位置精度が求められる。 Therefore, in order to eliminate such inconvenience and increase the accuracy of defect detection, high positional accuracy is required for the captured image.
特開2004-271516号公報JP 2004-271516 A 特開2004-309488号公報JP 2004-309488 A
 液晶基板の撮像画像は、液晶基板を載置した移動ステージを移動させながら、液晶基板上を荷電粒子で走査することで行われる。荷電粒子を基板上で走査することによって液晶基板の撮像画像を取得する場合には、一回の走査による撮像動作で取得される撮像範囲は限られている。 The captured image of the liquid crystal substrate is performed by scanning the liquid crystal substrate with charged particles while moving the moving stage on which the liquid crystal substrate is placed. In a case where a captured image of a liquid crystal substrate is acquired by scanning charged particles on the substrate, an imaging range acquired by an imaging operation by a single scan is limited.
 そのため、液晶基板の全体について撮像画像を取得するには、撮像動作を繰り返すことによって各撮像範囲の撮像画像を取得し、これらの複数の撮像画像をつなぎ合わせる必要がある。 Therefore, in order to acquire a captured image of the entire liquid crystal substrate, it is necessary to acquire a captured image of each imaging range by repeating the imaging operation and to connect these captured images.
 このように複数の撮像画像をつなぎ合わせることによって液晶基板の全体について撮像画像を取得するには、各撮像画像に位置ずれがないことが求められる。 In order to obtain a captured image of the entire liquid crystal substrate by connecting a plurality of captured images in this way, each captured image is required to have no positional deviation.
 しかしながら、一般にステージ動作等の機械動作は誤差を含むため、この誤差によって撮像画像に位置ずれが生じる。機械動作による位置ずれの要因として移動ステージを駆動するボールねじ等の駆動機構の膨張がある。このような撮像画像の位置ずれの発生を抑制するために、撮像動作の位置ずれを補正する必要がある。 However, since mechanical operations such as stage operations generally include errors, positional errors occur in captured images due to these errors. As a cause of displacement due to mechanical operation, there is expansion of a driving mechanism such as a ball screw that drives the moving stage. In order to suppress the occurrence of such a displacement of the captured image, it is necessary to correct the displacement of the imaging operation.
 この撮像動作の位置ずれを補正するために、移動ステージ上の予め定めた位置にマークを設けておき、移動ステージの動作中にこのマークを検査装置側に固定したカメラ等の撮影手段で認識し、撮影画像上で検出されるマーク位置をマークの基準位置と比較することによって位置ずれを検出し、検出した位置ずれに基づいて撮像動作を補正することが考えられる。 In order to correct the positional deviation of this imaging operation, a mark is provided at a predetermined position on the moving stage, and this mark is recognized by an imaging means such as a camera fixed on the inspection apparatus side during the operation of the moving stage. It is conceivable to detect a positional deviation by comparing the mark position detected on the captured image with the reference position of the mark and correct the imaging operation based on the detected positional deviation.
 この撮像動作の補正として、マークの認識から求めた位置ずれに基づいて、移動ステージの実移動距離を算出し、算出した実移動間隔を用いて、移動ステージの移動速度や撮像範囲を補正することが考えられる。 As correction of this imaging operation, the actual moving distance of the moving stage is calculated based on the positional deviation obtained from the recognition of the mark, and the moving speed and imaging range of the moving stage are corrected using the calculated actual moving interval. Can be considered.
 図11、12は、移動ステージの移動速度や撮像範囲を補正による位置ずれ補正を説明するための図である。 11 and 12 are diagrams for explaining misalignment correction by correcting the moving speed of the moving stage and the imaging range.
 図11は移動ステージが位置ずれしていない場合の例を示し、図12は移動ステージが位置ずれした場合の例を示している。 FIG. 11 shows an example when the moving stage is not displaced, and FIG. 12 shows an example when the moving stage is displaced.
 図11において、移動ステージが位置ずれしていない場合には、マークの設定位置(図11(a))と、固定カメラで撮影して検出されたマークの位置(図11(b))との間には位置ずれは生じない。この場合には、各撮像動作を行うステージ位置の移動間隔は一定のLoである(図11(c))。撮像動作は、この一定の移動間隔Loに基づいて撮像トリガを発生し(図11(d))、各撮像トリガに基づいて撮像を行う。なお、撮像トリガは、移動ステージの移動量をモニタし、この移動量が移動間隔Loとなった時点で発生させることができる。各撮像の撮像範囲は、移動ステージの移動間隔Loに対応して定まり(図11(e))、この撮像範囲で撮像することで撮像画像が取得される(図11(f))。 In FIG. 11, when the moving stage is not displaced, the mark setting position (FIG. 11 (a)) and the mark position detected by photographing with a fixed camera (FIG. 11 (b)). There is no misalignment between them. In this case, the movement interval of the stage position for performing each imaging operation is a constant Lo (FIG. 11C). In the imaging operation, an imaging trigger is generated based on the constant movement interval Lo (FIG. 11D), and imaging is performed based on each imaging trigger. The imaging trigger can be generated when the moving amount of the moving stage is monitored and the moving amount becomes the moving interval Lo. The imaging range of each imaging is determined corresponding to the movement interval Lo of the moving stage (FIG. 11 (e)), and a captured image is acquired by imaging within this imaging range (FIG. 11 (f)).
 移動ステージが位置ずれしない場合には、複数の撮像画像の間に位置ずれが生じないため、各撮像画像をつなぎ合わせることで基板の全体の撮像画像を取得することができる。 When the moving stage is not misaligned, no misalignment occurs between the plurality of captured images, so that the entire captured image of the substrate can be acquired by connecting the captured images.
 図12において、移動ステージが位置ずれしている場合には、マークの設定位置(図12(a))と、固定カメラで撮影して検出されたマークの位置(図12(b))との間には位置ずれΔlが検出される。この位置ずれΔlは、例えば移動ステージの端部等の基準位置からマークまでの距離の間において発生した位置ずれ量を示している。 In FIG. 12, when the moving stage is displaced, the mark setting position (FIG. 12 (a)) and the mark position detected by photographing with a fixed camera (FIG. 12 (b)). In the meantime, a displacement Δl is detected. This positional deviation Δl indicates the amount of positional deviation that occurs during the distance from the reference position such as the end of the moving stage to the mark.
 この位置ずれΔlに基づいて、移動ステージの移動速度を補正すると共に、撮像範囲を補正する。撮像範囲の補正によって、各撮像動作を行うステージ位置の移動間隔をLcに補正する(図12(c))。撮像動作は、補正した補正移動間隔Lcに基づいて撮像トリガを発生し(図12(d))、各撮像トリガに基づいて撮像を行う。なお、撮像トリガは、移動ステージの移動量をモニタし、この移動量が補正移動間隔Lcとなった時点で発生させることができる。各撮像の撮像範囲は、移動ステージの補正移動間隔Lcに対応して定まり(図12(e))、各撮像範囲で得られる撮像画像をつなぎ合わせることで全撮像画像が取得される(図12(f))。 基 づ い Based on this positional deviation Δl, the moving speed of the moving stage is corrected and the imaging range is corrected. By correcting the imaging range, the movement interval of the stage position where each imaging operation is performed is corrected to Lc (FIG. 12C). In the imaging operation, an imaging trigger is generated based on the corrected correction movement interval Lc (FIG. 12D), and imaging is performed based on each imaging trigger. The imaging trigger can be generated when the moving amount of the moving stage is monitored and the moving amount reaches the correction moving interval Lc. The imaging range of each imaging is determined corresponding to the correction movement interval Lc of the moving stage (FIG. 12 (e)), and all the captured images are acquired by connecting the captured images obtained in each imaging range (FIG. 12). (F)).
 本出願の発明者は、上記したように移動ステージの移動速度や撮像範囲を補正することによっても移動ステージの位置ずれを十分に補正できない場合があること、およびこの要因として、補正量と移動ステージの移動分解能とのずれによって生じる補正誤差の累積があることを見出した。 As described above, the inventors of the present application may not be able to sufficiently correct the displacement of the moving stage by correcting the moving speed and imaging range of the moving stage. It has been found that there is a cumulative correction error caused by a deviation from the moving resolution of.
 移動ステージの位置補正は移動分解能を最小単位として行われる。そのため、位置ずれの補正量が移動分解能の整数倍であれば正確に補正量を補正することができるが、位置ずれの補正量が移動分解能の整数倍でない場合には各撮像範囲において補正誤差が生じ、各撮像範囲の補正誤差が全撮像範囲について累積し累積誤差が発生する。 The position of the moving stage is corrected using the moving resolution as the minimum unit. Therefore, the correction amount can be accurately corrected if the positional deviation correction amount is an integral multiple of the movement resolution. However, if the positional deviation correction amount is not an integral multiple of the movement resolution, there is a correction error in each imaging range. As a result, the correction error of each imaging range is accumulated for the entire imaging range and an accumulated error occurs.
 この移動ステージの駆動機構の移動分解能を要因とする位置ずれの累積誤差は、単に移動ステージの移動速度や撮像範囲を補正しても補正されない位置誤差である。 The accumulated error of the positional deviation caused by the moving resolution of the driving mechanism of the moving stage is a position error that is not corrected even if the moving speed of the moving stage and the imaging range are corrected.
 図13,14は、累積誤差を説明するための図であり、図13は正の累積誤差の例を示し、図14は負の累積誤差の例を示している。 13 and 14 are diagrams for explaining the accumulated error. FIG. 13 shows an example of a positive accumulated error, and FIG. 14 shows an example of a negative accumulated error.
 図13、14において、移動ステージの位置ずれを、マークの設定位置(図13(a),図14(a))と、固定カメラで撮影して検出されたマークの位置(図13(b),図14(b))との間の位置ずれΔlによって検出する。この位置ずれΔlに基づいて、移動ステージの移動速度を補正すると共に、撮像範囲を補正する。撮像範囲の補正において、移動ステージが補正できる移動間隔の補正量は、移動ステージの移動分解能sの整数倍Nである。 13 and 14, the displacement of the moving stage is determined by setting the mark position (FIGS. 13A and 14A) and the mark position detected by photographing with a fixed camera (FIG. 13B). , FIG. 14 (b)) is detected by the positional deviation Δl. Based on this positional deviation Δl, the moving speed of the moving stage is corrected and the imaging range is corrected. In the correction of the imaging range, the correction amount of the movement interval that can be corrected by the moving stage is an integer multiple N of the moving resolution s of the moving stage.
 計算上で得られる補正後の移動間隔をLcに対して、実際の移動ステージの移動間隔には移動分解能に基づいてくdLの誤差が発生する。図13(c)は実際の移動ステージの補正移動間隔Lcが計算上で得られる補正後の移動間隔をLcよりも長い場合を示し、図14(c)は実際の移動ステージの補正移動間隔Lcが計算上で得られる補正後の移動間隔をLcよりも短い場合を示している。 An error of dL occurs based on the moving resolution in the moving distance of the actual moving stage with respect to the moving distance after correction obtained by calculation as Lc. FIG. 13C shows a case where the corrected moving interval Lc + of the actual moving stage is longer than the corrected moving interval Lc obtained in the calculation, and FIG. 14C shows the corrected moving interval of the actual moving stage. In this example, Lc - is a movement distance after correction obtained by calculation shorter than Lc.
 撮像動作は、補正した補正移動間隔Lc、Lcに基づいて撮像トリガを発生し(図13(d),図14(d))、各撮像トリガに基づいて撮像を行う。なお、撮像トリガは、移動ステージの移動量をモニタし、この移動量が補正移動間隔Lc、Lcとなった時点で発生させることができる。各撮像の撮像範囲は、移動ステージの補正移動間隔Lc、Lcに対応して定まり(図13(e),図14(e))、各撮像範囲で得られる撮像画像をつなぎ合わせることで全撮像画像が取得される(図13(f),図14(f))。 In the imaging operation, an imaging trigger is generated based on the corrected correction movement intervals Lc + and Lc (FIGS. 13D and 14D), and imaging is performed based on each imaging trigger. The imaging trigger can be generated when the moving amount of the moving stage is monitored and the moving amount becomes the correction moving interval Lc + , Lc . The imaging range of each imaging is determined corresponding to the correction movement intervals Lc + and Lc of the moving stage (FIGS. 13 (e) and 14 (e)), and the captured images obtained in each imaging range are joined together. All captured images are acquired (FIGS. 13 (f) and 14 (f)).
 各撮像画像をつなぎ合わせて得られる全撮像画像は、各撮像画像で発生する誤差分dlが累積されてなる累積誤差を有することになり、図13に示す場合には全撮像画像は目的とする撮像範囲よりも累積誤差だけ長くなり、図14に示す場合には全撮像画像は目的とする撮像範囲よりも累積誤差だけ短くなる。 All the captured images obtained by joining the captured images have an accumulated error in which the error dl generated in each captured image is accumulated. In the case shown in FIG. The accumulated error is longer than the imaging range, and in the case shown in FIG. 14, the entire captured image is shorter than the target imaging range by the accumulated error.
 図15は累積誤差を説明するための図である。図15(a)は移動ステージの移動機構の累積誤差が無い場合を示し、図15(b)は正の累積誤差が発生する場合を示し、図15(c)は負の累積誤差が発生する場合を示している。 FIG. 15 is a diagram for explaining the accumulated error. FIG. 15A shows a case where there is no cumulative error of the moving mechanism of the moving stage, FIG. 15B shows a case where a positive cumulative error occurs, and FIG. 15C shows a negative cumulative error. Shows the case.
 図15(a)の移動ステージの移動機構の膨張量が無い場合には、各撮像トリガで撮像される撮像範囲はLoであり、全撮像範囲はM・Loとなる。なお、Mは全撮像範囲を取得するための撮像回数を表している。 When there is no expansion amount of the moving mechanism of the moving stage in FIG. 15A, the imaging range captured by each imaging trigger is Lo, and the entire imaging range is M · Lo. M represents the number of times of imaging for acquiring the entire imaging range.
 図15(b)の正の累積誤差が発生する場合には、各撮像で発生する誤差分dl(=Lc-Lc)が累積して累積誤差が発生し、図15(c)の負の累積誤差が発生する場合には、各撮像で発生する誤差分dl(=Lc-Lc)が累積して累積誤差が発生する。 When the positive accumulated error of FIG. 15B occurs, the error dl (= Lc + −Lc) generated in each imaging is accumulated to generate the accumulated error, and the negative error of FIG. When a cumulative error occurs, an error dl (= Lc−Lc ) generated in each imaging is accumulated to generate a cumulative error.
 このように、つなぎ合わせて得られる全撮像画像と、目的とする撮像範囲との間に、累積誤差の長さのずれが生じると、この全撮像画像に基づいてピクセル位置を定めると、実際のピクセル値との間に位置ずれが生じることになり、位置ずれを有したピクセル位置に基づいて欠陥検査を行った場合には、欠陥位置に誤りが発生することになる。 As described above, when a difference in the length of the accumulated error occurs between the total captured image obtained by joining and the target imaging range, if the pixel position is determined based on the total captured image, A positional deviation occurs between the pixel value and an error occurs at the defective position when the defect inspection is performed based on the pixel position having the positional deviation.
 そこで、本発明は前記した従来の問題点を解決し、移動ステージの移動分解能に基づいて発生する撮像範囲の累積誤差を解消し、液晶アレイ検査における欠陥検出の位置精度を向上させることができる。 Therefore, the present invention solves the above-described conventional problems, eliminates the accumulated error of the imaging range that occurs based on the moving resolution of the moving stage, and improves the position accuracy of defect detection in the liquid crystal array inspection.
 本発明は、液晶基板に所定電圧の検査信号を印加してアレイを駆動し、前記液晶基板に電子線等の荷電粒子を照射して得られる二次電子等の信号に基づいて液晶基板を撮像し、前記撮像で得られる撮像画像に基づいて液晶基板のアレイを検査する液晶アレイ検査装置において、液晶基板を移動させる移動部の移動変動を検出し、この移動変動に基づいて移動部の移動速度と、各撮像を行う際の移動間隔とを補正すると共に、移動間隔の補正に伴う移動分解能に基づいて発生する誤差分が累積して生じる累積誤差を補正する。累積誤差の補正は、複数回行う撮像において、所定の撮像回数毎に移動部の移動分解能だけ移動間隔を補正することで行う。 The present invention applies an inspection signal of a predetermined voltage to a liquid crystal substrate to drive the array, and images the liquid crystal substrate based on a secondary electron signal obtained by irradiating the liquid crystal substrate with charged particles such as an electron beam. In a liquid crystal array inspection apparatus that inspects an array of liquid crystal substrates based on a captured image obtained by the imaging, a movement variation of a moving unit that moves the liquid crystal substrate is detected, and a moving speed of the moving unit is detected based on the movement variation. And the movement interval at the time of each imaging are corrected, and the accumulated error generated by accumulating errors generated based on the movement resolution accompanying the correction of the movement interval is corrected. The correction of the accumulated error is performed by correcting the movement interval by the moving resolution of the moving unit every predetermined number of times of imaging performed a plurality of times.
 移動間隔の補正は、例えば、全撮像範囲で生じる累積誤差を移動分解能で除算することによって補正回数を算出し、全撮像回数を算出した補正回数で除算することによって、移動間隔の補正を行う撮像間隔を求めることができる。 The movement interval is corrected by, for example, calculating the number of corrections by dividing the accumulated error occurring in the entire imaging range by the movement resolution, and correcting the movement interval by dividing the total number of imagings by the calculated number of corrections. The interval can be determined.
 本発明は、液晶アレイ検査装置の態様、および液晶アレイ検査方法の態様とすることができる。 The present invention can be an aspect of a liquid crystal array inspection apparatus and an aspect of a liquid crystal array inspection method.
 本発明の液晶アレイ検査装置の態様は、液晶基板に所定電圧の検査信号を印加してアレイを駆動し、液晶基板に荷電粒子線を照射して得られる信号に基づいて液晶基板を撮像し、この撮像で得られる撮像画像に基づいて液晶基板のアレイを検査する液晶アレイ検査装置において、移動部と、撮像部と、撮像画像形成部と、変動検出部と、撮像補正部の各部を備える。荷電粒子は電子線とすることができ、この際に得られる二次電子を検出信号として検出する。 The aspect of the liquid crystal array inspection apparatus of the present invention drives the array by applying an inspection signal of a predetermined voltage to the liquid crystal substrate, images the liquid crystal substrate based on a signal obtained by irradiating the liquid crystal substrate with a charged particle beam, A liquid crystal array inspection apparatus that inspects an array of liquid crystal substrates based on a captured image obtained by the imaging includes a moving unit, an imaging unit, a captured image forming unit, a fluctuation detecting unit, and an imaging correction unit. The charged particles can be electron beams, and secondary electrons obtained at this time are detected as detection signals.
 移動部は、液晶基板を移動する構成要素であり、例えば、液晶基板を載置して移動する移動ステージとすることができる。移動ステージは、XY方向の二次元方向に移動自在とするステージ機構とする他、XY方向の移動にZ方向の移動を加えた三次元方向に移動自在とするステージ機構としてもよい。 The moving unit is a component that moves the liquid crystal substrate, and can be, for example, a moving stage on which the liquid crystal substrate is placed and moved. The moving stage may be a stage mechanism that can move in the two-dimensional direction in the XY directions, or a stage mechanism that can move in the three-dimensional direction by adding movement in the Z direction to movement in the XY directions.
 撮像部は、液晶基板を分割して撮像する構成要素であり、移動部による液晶基板の移動に伴って、液晶基板が所定の移動間隔分の距離を移動する毎に撮像を開始する。撮像部は撮像を開始する度に、移動間隔分を撮像範囲として撮像を行い、各撮像動作において移動間隔を撮像範囲とする撮像動作を繰り返す。繰り返して行う撮像動作によって複数の分割撮像画像を取得する。 The imaging unit is a component that divides and images the liquid crystal substrate, and starts imaging whenever the liquid crystal substrate moves a distance corresponding to a predetermined movement interval as the liquid crystal substrate is moved by the moving unit. Every time imaging starts, the imaging unit performs imaging with the moving interval as an imaging range, and repeats the imaging operation with the moving interval as the imaging range in each imaging operation. A plurality of divided captured images are acquired by repeated imaging operations.
 撮像画像形成部は、撮像部で取得した複数の分割撮像画像をつなぎ合わせて一つの結合撮像画像を形成する。 The captured image forming unit connects a plurality of divided captured images acquired by the imaging unit to form one combined captured image.
 変動検出部は、移動部の移動変動を検出する。移動変動には、移動部の移動機構が膨張することによって生じる変動分も含まれている。 The fluctuation detector detects movement fluctuations of the moving part. The movement fluctuation includes fluctuation caused by expansion of the movement mechanism of the moving unit.
 撮像補正部は、変動検出部で検出した移動部の移動変動の変動幅および変動方向に基づいて、撮像部が撮像画像を取得する際の撮像条件を補正する。 The imaging correction unit corrects imaging conditions when the imaging unit acquires a captured image based on the fluctuation range and fluctuation direction of the movement fluctuation of the moving unit detected by the fluctuation detection unit.
本発明の液晶アレイ検査装置に一形態において、移動部は液晶基板を載置して移動する移動ステージを有し、撮像補正部は、撮像範囲を定める移動間隔を撮像条件とし、移動部の移動変動に基づいて補正する。 In one mode of the liquid crystal array inspection apparatus of the present invention, the moving unit has a moving stage on which the liquid crystal substrate is mounted and moved, and the imaging correction unit uses the moving interval that defines the imaging range as an imaging condition, and the moving unit moves Correct based on fluctuations.
 撮像補正部は、移動間隔を補正する移動間隔補正部と、移動間隔補正部による移動間隔の補正誤差が累積することで生じる累積誤差を補正する累積誤差補正部とを備える。 The imaging correction unit includes a movement interval correction unit that corrects the movement interval, and a cumulative error correction unit that corrects an accumulated error caused by accumulating correction errors of the movement interval by the movement interval correction unit.
 移動間隔補正部は、移動間隔を変動検出部が検出した移動変動の変動幅および変動方向に基づいて補正移動間隔を算出する。累積誤差補正部は、移動ステージの最小分解能の大きさを補正量とし、移動間隔補正部で算出した補正移動間隔に補正量を増減して累積誤差を補正する。 The movement interval correction unit calculates the corrected movement interval based on the fluctuation range and fluctuation direction of the movement fluctuation detected by the fluctuation detection unit. The cumulative error correction unit corrects the cumulative error by using the minimum resolution of the moving stage as a correction amount and increasing or decreasing the correction amount to the correction movement interval calculated by the movement interval correction unit.
 累積誤差補正部は、補正移動間隔に対する補正量の増減を所定回の撮像毎に行う。補正量の増減量および増減回数は、移動変動の変動幅および変動方向に基づいて算出する。 The cumulative error correction unit increases or decreases the correction amount with respect to the correction movement interval for every predetermined number of times of imaging. The amount of increase / decrease in the correction amount and the number of times of increase / decrease are calculated based on the fluctuation range and direction of movement fluctuation.
 変動検出部の一形態は、液晶アレイ検査装置上に固定した撮影手段を備える。撮影手段は、移動ステージ上に設けたマークを撮影し、撮影画像におけるマーク画像の位置ずれに基づいて移動部の移動変動を検出する。 One form of the fluctuation detection unit includes a photographing means fixed on the liquid crystal array inspection apparatus. The photographing unit photographs a mark provided on the moving stage, and detects a movement variation of the moving unit based on a positional deviation of the mark image in the photographed image.
 撮像補正部は、上記した移動間隔補正部および累積誤差補正部の他に、移動ステージの移動速度を補正する速度補正部を備えることができる。速度補正部は、変動検出部が検出した移動変動の変動幅および変動方向に基づいて補正速度を算出する。 The imaging correction unit can include a speed correction unit that corrects the moving speed of the moving stage in addition to the movement interval correction unit and the cumulative error correction unit. The speed correction unit calculates a correction speed based on the fluctuation range and fluctuation direction of the movement fluctuation detected by the fluctuation detection unit.
 本発明の液晶アレイ検査装置は、撮像補正部において累積誤差補正部を備えることを特徴とし、移動ステージの最小分解能の大きさを補正量とし、移動間隔補正部で算出した補正移動間隔に補正量を増減することによって、分割撮像する際に、移動間隔補正部が補正を行う度に発生する誤差が全撮像画像分について累積して形成される累積誤差を補正する。 The liquid crystal array inspection apparatus of the present invention is characterized in that the imaging correction unit includes a cumulative error correction unit, and the correction amount is set to the correction movement interval calculated by the movement interval correction unit, with the minimum resolution of the moving stage as the correction amount. By increasing / decreasing the value, an error that occurs every time the movement interval correction unit performs correction when performing divided imaging correction corrects an accumulated error formed for all captured images.
 次に、本発明の液晶アレイ検査方法の態様は、液晶基板に所定電圧の検査信号を印加してアレイを駆動し、液晶基板に電子線等の荷電粒子を照射して得られる二次電子等の信号に基づいて液晶基板を撮像し、撮像で得られる撮像画像に基づいて液晶基板のアレイを検査する液晶アレイ検査装置の撮像画像取得方法において、移動工程と、撮像工程と、撮像画像形成工程と、変動検出工程と、撮像補正工程の各工程を備える。 Next, an aspect of the liquid crystal array inspection method of the present invention is a secondary electron obtained by applying an inspection signal of a predetermined voltage to the liquid crystal substrate to drive the array and irradiating the liquid crystal substrate with charged particles such as an electron beam. In a picked-up image acquisition method of a liquid crystal array inspection apparatus that picks up an image of a liquid crystal substrate based on the signal of the liquid crystal and inspects an array of the liquid crystal substrate based on a picked-up image obtained by the picking, And a variation detection step and an imaging correction step.
 移動工程は、液晶基板を移動する。撮像工程は、移動工程による液晶基板の移動に伴って液晶基板が所定の移動間隔分を移動する毎に撮像を開始する。撮像を開始する毎に、移動間隔分を撮像範囲として撮像し、一分割撮像画像を取得する。各撮像動作において移動間隔を撮像範囲とする撮像動作を繰り返すことによって、複数の分割撮像画像を取得する。 The moving process moves the liquid crystal substrate. The imaging process starts imaging every time the liquid crystal substrate moves by a predetermined movement interval in accordance with the movement of the liquid crystal substrate by the moving process. Each time imaging is started, the moving interval is imaged as an imaging range, and a one-division captured image is acquired. A plurality of divided captured images are acquired by repeating the imaging operation with the movement interval as the imaging range in each imaging operation.
 撮像画像形成工程において、撮像工程で取得した複数の分割撮像画像をつなぎ合わせて一つの結合撮像画像を形成する。 In the captured image forming process, a plurality of divided captured images acquired in the imaging process are connected to form one combined captured image.
 変動検出工程は、移動工程で移動する液晶基板の移動変動を検出する。 The fluctuation detection process detects movement fluctuation of the liquid crystal substrate that moves in the movement process.
 撮像補正工程は、変動検出工程で検出した移動工程における液晶基板の移動変動の変動幅および変動方向に基づいて、撮像工程が撮像画像を取得する際の撮像条件を補正する。 The imaging correction process corrects imaging conditions when the imaging process acquires a captured image based on the fluctuation range and fluctuation direction of the movement fluctuation of the liquid crystal substrate in the movement process detected in the fluctuation detection process.
 液晶アレイ検査方法の一形態において、移動工程は液晶基板を移動ステージ上に載置して移動し、撮像補正工程は、撮像範囲を定める移動間隔を撮像条件として撮像動作を補正する。 In one form of the liquid crystal array inspection method, the moving step moves the liquid crystal substrate placed on a moving stage, and the imaging correction step corrects the imaging operation using the moving interval that defines the imaging range as an imaging condition.
 撮像補正工程は、移動間隔を補正する移動間隔補正工程と、移動間隔補正工程による移動間隔の補正誤差が累積することで生じる累積誤差を補正する累積誤差補正工程とを備える。 The imaging correction step includes a movement interval correction step that corrects the movement interval, and a cumulative error correction step that corrects a cumulative error caused by accumulating correction errors of the movement interval in the movement interval correction step.
 移動間隔補正工程は、移動間隔を変動検出工程が検出した移動変動の変動幅および変動方向に基づいて補正移動間隔を算出する。累積誤差補正工程は、移動ステージの最小分解能の大きさを補正量とし、移動間隔補正工程で算出した補正移動間隔にこの補正量を増減して累積誤差を補正する。 In the movement interval correction step, the correction movement interval is calculated based on the fluctuation width and fluctuation direction of the movement fluctuation detected by the fluctuation detection step. In the cumulative error correction step, the magnitude of the minimum resolution of the moving stage is used as a correction amount, and this correction amount is increased or decreased to the correction movement interval calculated in the movement interval correction step to correct the cumulative error.
 累積誤差補正工程は、補正移動間隔に対する補正量の増減を所定回の撮像毎に行う。補正量の増減量および増減回数は、移動変動の変動幅および変動方向に基づいて算出することができる。 In the accumulated error correction step, the correction amount is increased or decreased with respect to the correction movement interval every predetermined number of times of imaging. The amount of increase / decrease in the correction amount and the number of times of increase / decrease can be calculated based on the fluctuation range and fluctuation direction of the movement fluctuation.
 変動検出工程は、液晶アレイ検査装置上に固定した撮影手段によって移動ステージ上に設けたマークを撮影し、撮影画像におけるマーク画像の位置ずれに基づいて移動工程の移動変動を検出する。 In the fluctuation detection process, a mark provided on the moving stage is photographed by photographing means fixed on the liquid crystal array inspection apparatus, and movement fluctuation in the movement process is detected based on the positional deviation of the mark image in the photographed image.
 撮像補正工程は、移動間隔補正工程および累積誤差補正工程に加えて、移動ステージの移動速度を補正する速度補正工程を備えることができる。速度補正工程は、変動検出工程が検出した移動変動の変動幅および変動方向に基づいて補正速度を算出して速度補正を行う。 The imaging correction process can include a speed correction process for correcting the moving speed of the moving stage in addition to the movement interval correction process and the cumulative error correction process. In the speed correction step, a correction speed is calculated based on the fluctuation range and fluctuation direction of the movement fluctuation detected by the fluctuation detection step to perform speed correction.
 本発明によれば、移動ステージの移動分解能に基づいて発生する撮像範囲の累積誤差を解消し、液晶基板の欠陥検出の位置精度を向上させることができる。 According to the present invention, it is possible to eliminate the accumulated error of the imaging range that occurs based on the moving resolution of the moving stage and improve the position accuracy of the liquid crystal substrate defect detection.
図1は、本発明の液晶アレイ検査装置の構成例を説明するための概略ブロック図である。FIG. 1 is a schematic block diagram for explaining a configuration example of a liquid crystal array inspection apparatus of the present invention. 本発明の液晶検査装置による概略処理を説明するためのフローチャートである。It is a flowchart for demonstrating the schematic process by the liquid crystal test | inspection apparatus of this invention. 本発明の液晶検査装置による概略処理を説明するための動作説明図である。It is operation | movement explanatory drawing for demonstrating the schematic process by the liquid crystal test | inspection apparatus of this invention. 正の累積誤差の補正を説明するための図である。It is a figure for demonstrating correction | amendment of a positive accumulation error. 負の累積誤差の補正を説明するための図である。It is a figure for demonstrating correction | amendment of a negative accumulation error. 累積誤差の第1の補正例を説明するためのフローチャートである。It is a flowchart for demonstrating the 1st correction example of an accumulation error. 累積誤差の第1の補正例を説明するための図である。It is a figure for demonstrating the 1st example of correction | amendment of an accumulation error. 累積誤差の第2の補正例を説明するためのフローチャートである。It is a flowchart for demonstrating the 2nd correction example of an accumulation error. 累積誤差の第2の補正例を説明するための図である。It is a figure for demonstrating the 2nd correction example of an accumulation error. 本発明の液晶検査装置の信号処理部の概略構成例を説明するための図である。It is a figure for demonstrating the schematic structural example of the signal processing part of the liquid crystal test | inspection apparatus of this invention. 移動ステージの移動速度や撮像範囲を補正による位置ずれ補正を説明するための図である。It is a figure for demonstrating the position shift correction | amendment by correction | amending the moving speed and imaging range of a moving stage. 移動ステージの移動速度や撮像範囲を補正による位置ずれ補正を説明するための図である。It is a figure for demonstrating the position shift correction | amendment by correction | amending the moving speed and imaging range of a moving stage. 移動ステージの移動速度や撮像範囲を補正による位置ずれ補正を説明するための図である。It is a figure for demonstrating the position shift correction | amendment by correction | amending the moving speed and imaging range of a moving stage. 移動ステージの移動速度や撮像範囲を補正による位置ずれ補正を説明するための図である。It is a figure for demonstrating the position shift correction | amendment by correction | amending the moving speed and imaging range of a moving stage. 累積誤差を説明するための比較図である。It is a comparison figure for demonstrating an accumulation error.
 以下、本発明の実施の形態について、図を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 本発明の液晶検査装置の概略構成を図1の概略説明図を用いて説明し、本発明の液晶検査装置による概略処理を図2のフローチャートおよび図3の動作説明図を用いて説明する。 Schematic configuration of the liquid crystal inspection apparatus of the present invention will be described with reference to the schematic explanatory diagram of FIG. 1, and schematic processing by the liquid crystal inspection apparatus of the present invention will be described with reference to the flowchart of FIG. 2 and the operation explanatory diagram of FIG.
 図1は、本発明の液晶アレイ検査装置の構成例を説明するための概略ブロック図である。なお、図1に示す例では、液晶基板に電子線を照射し、液晶基板から放出される二次電子を検出し、検出強度から撮像画像を取得する構成例を示している。 FIG. 1 is a schematic block diagram for explaining a configuration example of a liquid crystal array inspection apparatus of the present invention. Note that the example shown in FIG. 1 shows a configuration example in which an electron beam is irradiated on the liquid crystal substrate, secondary electrons emitted from the liquid crystal substrate are detected, and a captured image is acquired from the detected intensity.
 図1において、液晶アレイ検査装置1は、液晶基板100を載置しXY方向に搬送自在とする移動ステージ2と、移動ステージ2の上方位置に移動ステージ2から離して配置された電子銃3Aと液晶基板100のパネル101のピクセル(図示していない)から放出される二次電子を検出する検出器3Bとを備える。 In FIG. 1, a liquid crystal array inspection apparatus 1 includes a moving stage 2 on which a liquid crystal substrate 100 is placed and can be conveyed in the X and Y directions, and an electron gun 3A disposed above the moving stage 2 and away from the moving stage 2. And a detector 3B that detects secondary electrons emitted from pixels (not shown) of the panel 101 of the liquid crystal substrate 100.
 移動ステージ2はステージ駆動制御部4によって駆動が制御され、電子銃3Aは撮像制御部3Cによって電子線の照射および液晶基板100上の走査が制御される。検出器3Bで検出された二次電子の検出信号は信号処理部10で処理され、検査部20においてピクセルの欠陥判定等の検査に用いられる。電子銃3A、検出器3B、および撮像制御部3Cは撮像部3を構成し、液晶基板の撮像画像を取得する。 The movement of the moving stage 2 is controlled by the stage drive control unit 4, and the electron gun 3A is controlled by the imaging control unit 3C to irradiate an electron beam and scan on the liquid crystal substrate 100. The detection signal of the secondary electrons detected by the detector 3B is processed by the signal processing unit 10 and used for inspection such as pixel defect determination in the inspection unit 20. The electron gun 3A, the detector 3B, and the imaging control unit 3C constitute the imaging unit 3, and acquire a captured image of the liquid crystal substrate.
 撮像制御部3C,ステージ駆動制御部4,信号処理部10、検査部20の各部の駆動動作は制御部9によって制御される。また、制御部9は、液晶アレイ検査装置1の全体の動作を含む制御を行う機能を有し、これらの制御を行うCPUおよびCPUを制御するプログラム記憶するメモリ等によって構成することができる。 The drive operation of each part of the imaging control unit 3C, the stage drive control unit 4, the signal processing unit 10, and the inspection unit 20 is controlled by the control unit 9. The control unit 9 has a function of performing control including the entire operation of the liquid crystal array inspection apparatus 1, and can be configured by a CPU that performs these controls and a memory that stores a program that controls the CPU.
 移動ステージ2は、液晶基板100を載置するとともに、ステージ駆動制御部4によってX軸方向およびY軸方向に移動自在である。また、電子銃3Aから照射される電子線は撮像制御部3CによってX軸方向あるいはY軸方向に振らせることができる。ステージ駆動制御部4および撮像制御部3Cは単独あるいは協働動作によって、電子線を液晶基板100上で走査し、液晶基板100の撮像画像を取得する。固定カメラ5は移動ステージ2上に設けたマークを撮像する。 The moving stage 2 mounts the liquid crystal substrate 100 and is movable in the X-axis direction and the Y-axis direction by the stage drive control unit 4. Further, the electron beam emitted from the electron gun 3A can be swung in the X-axis direction or the Y-axis direction by the imaging control unit 3C. The stage drive control unit 4 and the imaging control unit 3C independently or cooperatively scan the electron beam on the liquid crystal substrate 100 to obtain a captured image of the liquid crystal substrate 100. The fixed camera 5 images a mark provided on the moving stage 2.
 図2、3は本発明の液晶アレイ検査において、撮像画像の取得において、移動ステージの位置ずれを補正するための補正量を算出する手順を説明するためのフローチャートおよび説明図である。 FIGS. 2 and 3 are a flowchart and an explanatory diagram for explaining a procedure for calculating a correction amount for correcting a displacement of the moving stage in acquiring a captured image in the liquid crystal array inspection of the present invention.
 補正量を算出する手順は、S1~S4の工程によって移動ステージの位置ずれ量ΔLを求め、S5の工程によってS1~S4の工程で求めた位置ずれΔLに基づいて移動ステージの移動速度を補正する補正速度を算出し、S6,S7の工程によって撮像間隔を定める移動ステージの移動間隔Lを補正する補正移動間隔、および累積誤差を補正する補正動作の頻度を算出する。 In the procedure for calculating the correction amount, the displacement amount ΔL of the moving stage is obtained by the steps S1 to S4, and the moving speed of the moving stage is corrected based on the displacement ΔL obtained in the steps S1 to S4 by the step S5. The correction speed is calculated, the correction movement interval for correcting the movement interval L of the movement stage that determines the imaging interval by the steps S6 and S7, and the frequency of the correction operation for correcting the accumulated error are calculated.
 S6の工程において、撮像間隔を定める移動ステージの移動間隔Lを補正する補正移動間隔Lcを、S1~S4の工程で求めた位置ずれΔLに基づいて算出する。S7の工程において、S6の工程で算出した補正移動間隔Lcで移動間隔を補正した際に、移動ステージの移動分解能によって生じる累積誤差を補正するために行う補正動作の頻度を算出する。 In step S6, a corrected moving interval Lc for correcting the moving interval L of the moving stage that determines the imaging interval is calculated based on the positional deviation ΔL obtained in steps S1 to S4. In the step S7, when the movement interval is corrected by the correction movement interval Lc calculated in the step S6, the frequency of the correction operation performed to correct the accumulated error caused by the moving resolution of the moving stage is calculated.
 ここで、移動ステージは、設定ステージ速度としてvoが予め設定され、各撮像間隔を定める移動ステージの移動距離としてLoが予め設定されているものとする。これによって、移動ステージは設定ステージ速度voで移動しながら、移動ステージが移動距離Loを移動する度に撮像トリガを発生し、この撮像トリガを受けて撮像動作を行って移動距離Loに対応する撮像範囲の撮像画像を取得する。この移動ステージの移動、撮像トリガの発生、および撮像トリガによる撮像画像の取得を繰り返すことによって、全撮像範囲の撮像画像を取得する。 Here, it is assumed that for the moving stage, vo is preset as the set stage speed, and Lo is preset as the moving distance of the moving stage that determines each imaging interval. As a result, the moving stage generates an imaging trigger every time the moving stage moves the moving distance Lo while moving at the set stage speed vo, and performs an imaging operation in response to the imaging trigger to perform imaging corresponding to the moving distance Lo. A captured image of the range is acquired. By repeating the movement of the moving stage, the generation of the imaging trigger, and the acquisition of the captured image by the imaging trigger, the captured image of the entire imaging range is acquired.
 図3(a)は、撮像動作の概略を示す図であり、移動ステージ2を移動させながら基板100上のパネル101を走査して撮像し、全撮像範囲は複数回の撮像動作によって得られる複数の撮像画像をつなぎ合わせることで取得される。 FIG. 3A is a diagram showing an outline of the imaging operation. The panel 101 on the substrate 100 is scanned and imaged while moving the moving stage 2, and the entire imaging range is obtained by a plurality of imaging operations. Are obtained by stitching together the captured images.
 したがって、移動ステージの移動速度に変動が無く、また、移動ステージに位置ずれが無い場合には、移動ステージが移動距離Lo分を移動する毎に撮像トリガを発生して撮像動作を行い、各撮像動作で得られた複数の撮像画像を取得しつなぎ合わせることによって、ピクセルに位置ずれを有することなく全撮像画像を得ることができる。 Therefore, when there is no fluctuation in the moving speed of the moving stage and there is no position shift in the moving stage, an imaging trigger is generated every time the moving stage moves by the moving distance Lo, and an imaging operation is performed. By acquiring and stitching together a plurality of captured images obtained by the operation, it is possible to obtain all captured images without having a positional shift in the pixels.
 一方、移動ステージの移動速度の変動や移動ステージの位置ずれ等の誤差要因がある場合には、これら誤差によって各撮像動作で得られる撮像画像に位置ずれが含まれることになる。これらの位置ずれを有する複数の撮像画像を取得しつなぎ合わせて全撮像画像を形成し、この全撮像画像に基づいてピクセル位置を特定すると、ピクセル位置に位置ずれが生じ、正確なピクセル位置を定めることができない。 On the other hand, when there are error factors such as fluctuations in the moving speed of the moving stage and displacements of the moving stage, misalignment is included in the captured image obtained by each imaging operation due to these errors. A plurality of captured images having these positional shifts are acquired and connected to form a total captured image, and when the pixel position is specified based on the total captured image, a positional shift occurs in the pixel position, and an accurate pixel position is determined. I can't.
 そこで、移動ステージの位置ずれを検出するために、移動ステージの所定位置に位置ずれ検出用のマークを設けておき、このマークに基づいて、移動ステージの移動速度の変動や移動ステージの位置ずれを検出する。 Therefore, in order to detect displacement of the moving stage, a mark for detecting displacement is provided at a predetermined position of the moving stage, and based on this mark, fluctuations in moving speed of the moving stage and displacement of the moving stage are detected. To detect.
 移動ステージを例えば端部位置等の基準位置に位置決めした後、移動ステージの移動を開始する(S1)。移動ステージの移動を開始した後、移動ステージの移動量をモニタする。移動ステージの移動量は、例えば移動ステージが備えるエンコーダの出力や、移動ステージの移動機構を駆動するモータの回転量に基づいてモニタすることができる。 After positioning the moving stage at a reference position such as the end position, the moving stage starts to move (S1). After starting to move the moving stage, the moving amount of the moving stage is monitored. The moving amount of the moving stage can be monitored based on, for example, the output of an encoder provided in the moving stage or the rotation amount of a motor that drives the moving mechanism of the moving stage.
 モニタした移動量が予め設定された移動距離Laに達した時点(S2)で、固定カメラによって移動ステージ上に設けたマークを撮影する。設定移動距離Laは、例えば基準位置とマークとの間の距離とすることができ、固定カメラによってマークを撮像することができる位置に設定する。移動ステージ上に設けたマークを液晶アレイ検査装置側に固定した固定カメラに撮影し(S3)、撮影画像上のマーク位置と予め設定されたマーク位置との差を求める。 When the monitored moving amount reaches the preset moving distance La (S2), the mark provided on the moving stage is photographed by the fixed camera. The set movement distance La can be set to a distance between the reference position and the mark, for example, and is set to a position where the mark can be imaged by the fixed camera. A mark provided on the moving stage is photographed by a fixed camera fixed on the liquid crystal array inspection apparatus side (S3), and a difference between the mark position on the photographed image and a preset mark position is obtained.
 図3(a)において、移動ステージ2に設けたマーク102を固定カメラ5によって撮影する。図3(b)は固定カメラによる画像例を示している。画像例では、画像上のマーク位置は予め定められたマーク位置から位置ずれΔlだけずれた位置にある。 3A, the mark 102 provided on the moving stage 2 is photographed by the fixed camera 5. FIG. 3B shows an example of an image obtained by a fixed camera. In the image example, the mark position on the image is shifted from the predetermined mark position by a positional shift Δl.
 移動ステージの移動速度や位置にずれが無い場合には、撮影画像上のマーク位置と予め設定されたマーク位置とは同一位置となる。一方、移動ステージの移動速度や位置にずれがある場合には、撮影画像上のマーク位置は予め設定されたマーク位置からずれた位置となり、そのずれ量は移動速度や位置ずれ量に依存する。 When there is no deviation in the moving speed or position of the moving stage, the mark position on the captured image is the same as the preset mark position. On the other hand, when there is a shift in the moving speed or position of the moving stage, the mark position on the captured image is shifted from a preset mark position, and the shift amount depends on the moving speed and the position shift amount.
 撮影画像上のマーク位置と予め設定されたマーク位置との位置ずれ量Δlは、基準位置からの移動距離Laに対する位置ずれ量であるため、撮像範囲の全体に対する位置ずれ量ΔLを算出する。この位置ずれ量ΔLは、例えば、マーク位置の位置ずれ量Δlに(全撮像範囲の長さ/移動距離La)の比を積算することで求めることができる。 Since the positional deviation amount Δl between the mark position on the captured image and the preset mark position is a positional deviation amount with respect to the movement distance La from the reference position, the positional deviation amount ΔL with respect to the entire imaging range is calculated. This positional deviation amount ΔL can be obtained, for example, by adding the ratio of (length of entire imaging range / movement distance La) to the positional deviation amount Δl of the mark position.
 なお、全撮像範囲の長さと移動距離Laとの比率が既知である場合には、マーク位置の位置ずれ量Δlと撮像範囲の全体に対する位置ずれ量ΔLとの関係を、演算式あるはデータテーブルの形式で予め求めて記憶しておき、前記比率をパラメータとして演算あるいは読み出すことで求めることができる(S4)。 When the ratio between the length of the entire imaging range and the movement distance La is known, the relationship between the positional deviation amount Δl of the mark position and the positional deviation amount ΔL with respect to the entire imaging range is expressed by an arithmetic expression or a data table. It can be obtained in advance by calculating and reading out the ratio as a parameter (S4).
 S5の速度の補正分を算出する工程において、変動速度vは、
 v=(Lo+Δl)/Δt=vo+Δv
の式で表される。上記式において、Loは移動ステージの所定の移動距離、Δlはマーク位置の位置ずれ量、Δtは移動ステージが所定の移動距離Loを移動するに要した時間、voは設定ステージ速度、Δvは速度変動分である。
In the step of calculating the correction amount of the speed of S5, the fluctuation speed v is
v = (Lo + Δl) / Δt = vo + Δv
It is expressed by the following formula. In the above equation, Lo is a predetermined moving distance of the moving stage, Δl is the amount of displacement of the mark position, Δt is a time required for the moving stage to move the predetermined moving distance Lo, vo is a set stage speed, and Δv is a speed. It is a fluctuation.
 移動ステージの速度補正は速度変動分Δvを削減することで行うことができるため、速度補正分vcは、
 vc=-Δv
で表すことができる。
Since the speed correction of the moving stage can be performed by reducing the speed fluctuation Δv, the speed correction vc is
vc = -Δv
Can be expressed as
 次に、S6の工程において、移動間隔Lを補正した補正移動間隔を算出する。S4の工程で算出した位置ずれ量ΔLは撮像範囲の全体に対する位置ずれ量である。この位置ずれ量ΔLを各撮像画像に分散させて補正するには、位置ずれ量ΔLをM回で除算して各撮像において補正量ΔL/Mを算出し、各撮像の移動間隔を補正量ΔL/M分補正して補正移動間隔Lcを算出する。ここで、Mは複数の撮像画像の個数である。 Next, in step S6, a corrected movement interval obtained by correcting the movement interval L is calculated. The positional deviation amount ΔL calculated in the step S4 is a positional deviation amount with respect to the entire imaging range. In order to correct this positional deviation amount ΔL by dispersing it in each captured image, the positional deviation amount ΔL is divided by M times to calculate a correction amount ΔL / M for each imaging, and the movement interval of each imaging is calculated as a correction amount ΔL. The correction movement interval Lc is calculated by correcting for / M. Here, M is the number of captured images.
 したがって、各撮像画像の撮像範囲を取得するために、移動ステージが移動する補正移動間隔Lcは
 Lc=Lo+ΔL/M
で表される。
Therefore, in order to acquire the imaging range of each captured image, the correction movement interval Lc at which the moving stage moves is Lc = Lo + ΔL / M
It is represented by
 ここで、ΔL/Mは各撮像範囲を補正する補正量を表している。図3(c)は、設定された移動間隔Loと補正移動間隔Lcと補正量ΔL/Mとの関係を示している。 Here, ΔL / M represents a correction amount for correcting each imaging range. FIG. 3C shows the relationship among the set movement interval Lo, the correction movement interval Lc, and the correction amount ΔL / M.
 補正移動間隔Lcの補正は、撮像動作を開始する撮像トリガを補正量ΔL/M分だけずらせることで行うことができる(S6)。 The correction movement interval Lc can be corrected by shifting the imaging trigger for starting the imaging operation by the correction amount ΔL / M (S6).
 ここで、移動ステージが補正量ΔL/M分を正確に移動させることができる移動分解能を有している場合には、移動間隔を過不足無く補正することができる、しかしながら、移動ステージを駆動する駆動機構の移動分解能には限界があるため、補正量ΔL/M分が移動分解能の整数倍でない場合には、補正毎に補正誤差が発生する。 Here, when the moving stage has a moving resolution capable of accurately moving the correction amount ΔL / M, the moving interval can be corrected without excess or deficiency. However, the moving stage is driven. Since the moving resolution of the drive mechanism is limited, if the correction amount ΔL / M is not an integral multiple of the moving resolution, a correction error occurs for each correction.
 移動ステージの移動分解能をsとしたとき、移動ステージが補正できる補正量は分解能sの整数倍の(n・s)である。そのため、移動ステージが移動する補正移動間隔の補正量ΔL/Mは、以下の式
 ΔL/M=n・s+δ
で表される。ここで、δ(<s)は補正誤差分を表している。
When the moving resolution of the moving stage is s, the correction amount that can be corrected by the moving stage is (n · s) that is an integer multiple of the resolution s. Therefore, the correction amount ΔL / M of the correction movement interval at which the moving stage moves is expressed by the following equation: ΔL / M = n · s + δ
It is represented by Here, δ (<s) represents a correction error.
 したがって、各撮像範囲では、補正を行う度に最大で移動分解能s未満の補正誤差が発生する。この補正誤差によって、撮像範囲の全体では最大でM・s分に相当する累積誤差が発生する。 Therefore, in each imaging range, every time correction is performed, a correction error that is less than the moving resolution s occurs at the maximum. Due to this correction error, an accumulated error corresponding to a maximum of M · s occurs in the entire imaging range.
 なお、+方向に累積誤差と-方向の累積誤差は、一撮像範囲の半分の大きさを境にして同じ大きさとなるため、累積誤差の最大は一撮像範囲の半分の大きさである。 Note that the cumulative error in the + direction and the cumulative error in the-direction have the same size with a half size of one imaging range as a boundary, so the maximum cumulative error is half the size of one imaging range.
 S6で算出した補正移動間隔を補正することによって累積誤差を解消する。この累積誤差の補正は、複数回の撮像動作において所定の撮像回数毎に、S6の工程で算出した補正移動間隔Lcをステージの移動分解能s分だけ補正した補正移動間隔Lccによって撮像範囲を設定することで行う。 ∙ Eliminate the accumulated error by correcting the corrected movement interval calculated in S6. In this correction of the accumulated error, the imaging range is set by a corrected moving interval Lcc obtained by correcting the corrected moving interval Lc calculated in step S6 by the moving resolution s of the stage every predetermined number of times in a plurality of imaging operations. Do that.
 この補正移動間隔の補正によって、各撮像範囲を定める移動間隔は、S6で算出した補正移動間隔Lcと補正移動間隔Lccとの組み合わせとなる。補正移動間隔Lcと補正移動間隔Lccに変更する頻度は、累積誤差の大きさおよび移動分解能から算出することができる。補正移動間隔Lcを所定回数毎に補正移動間隔Lccに変更することによって、累積誤差を解消する。図3(d)は補正移動間隔Lccの導入した状態を示している(S7)。 The movement interval that determines each imaging range by correcting the correction movement interval is a combination of the correction movement interval Lc calculated in S6 and the correction movement interval Lcc. The frequency of changing to the corrected moving interval Lc and the corrected moving interval Lcc can be calculated from the magnitude of the accumulated error and the moving resolution. The accumulated error is eliminated by changing the corrected movement interval Lc to the corrected movement interval Lcc every predetermined number of times. FIG. 3D shows a state where the correction movement interval Lcc is introduced (S7).
 次に、図4,5を用いて累積誤差の補正について説明する。図4は正の累積誤差を解消させる場合を示し、図5は負の累積誤差を解消する場合を示している。 Next, correction of the accumulated error will be described with reference to FIGS. FIG. 4 shows a case where a positive cumulative error is eliminated, and FIG. 5 shows a case where a negative cumulative error is eliminated.
 累積誤差が+方向の正の累積誤差である場合には、全撮像範囲は累積誤差がない場合の撮像範囲よりも長くなる。この増加分を、補正移動間隔Lcを補正移動間隔Lcc(<Lc)とすることによって補正する。 When the cumulative error is a positive cumulative error in the + direction, the entire imaging range is longer than the imaging range when there is no cumulative error. This increase is corrected by setting the correction movement interval Lc to the correction movement interval Lcc (<Lc).
 図4(c)において、所定回数の補正移動間隔Lcの後に補正移動間隔Lcc<Lc)を導入し、この補正移動間隔Lc,Lccに基づいて撮像トリガを発生し(図4(d))、撮像範囲について撮像を行う(図4(e))。これによって、累積誤差を解消した全撮像範囲を取得する(図4(f))。 In FIG. 4C, a correction movement interval Lcc <Lc) is introduced after a predetermined number of correction movement intervals Lc, and an imaging trigger is generated based on the correction movement intervals Lc and Lcc (FIG. 4D). Imaging is performed for the imaging range (FIG. 4E). As a result, the entire imaging range in which the accumulated error is eliminated is acquired (FIG. 4 (f)).
 累積誤差が-方向の負の累積誤差である場合には、全撮像範囲は累積誤差がない場合の撮像範囲よりも短くなる。この減少分を、補正移動間隔Lcを補正移動間隔Lcc(>Lc)とすることによって補正する。 When the cumulative error is a negative negative cumulative error, the entire imaging range is shorter than the imaging range when there is no cumulative error. This decrease is corrected by setting the correction movement interval Lc to the correction movement interval Lcc (> Lc).
 図15(d)は、累積誤差を補正した場合を示している。図15(d)によれば、図15(b),(c)の累積誤差が補正され、撮像画像による撮像範囲が図15(a)に示す累積誤差が無い場合と同じとなることを示している。 FIG. 15D shows a case where the accumulated error is corrected. According to FIG. 15D, the accumulated error in FIGS. 15B and 15C is corrected, and the imaging range based on the captured image is the same as that without the accumulated error shown in FIG. 15A. ing.
 図5(c)において、所定回数の補正移動間隔Lcの後に補正移動間隔Lcc(>Lc)を導入し、この補正移動間隔Lc,Lccに基づいて撮像トリガを発生し(図5(d))、撮像範囲について撮像を行う(図5(e))。これによって、累積誤差を解消した全撮像範囲を取得する(図5(f))。 In FIG. 5C, a correction movement interval Lcc (> Lc) is introduced after a predetermined number of correction movement intervals Lc, and an imaging trigger is generated based on the correction movement intervals Lc and Lcc (FIG. 5D). Then, imaging is performed for the imaging range (FIG. 5E). As a result, the entire imaging range in which the accumulated error is eliminated is acquired (FIG. 5 (f)).
 次に、累積誤差の補正例について図6,8のフローチャートおよび図7,9の説明図を用いて説明する。 Next, an example of correcting the accumulated error will be described using the flowcharts of FIGS. 6 and 8 and the explanatory diagrams of FIGS.
 累積誤差の第1の補正例について図6、7を用いて説明する。
 第1の補正例では、はじめに1回の撮像において発生する補正誤差分dLを算出する。
 この補正誤差分dLは、
 dL=n・s-ΔL/M
で表される。
A first correction example of the accumulated error will be described with reference to FIGS.
In the first correction example, first, a correction error dL generated in one imaging is calculated.
This correction error dL is
dL = n · s-ΔL / M
It is represented by
 ここで、ΔLは撮像範囲の全体に対する位置ずれ量であり、S4の工程で示したように、位置ずれ量ΔLはマーク位置の位置ずれ量Δlに(全撮像範囲の長さ/移動距離La)の比を積算することで求めることができる。Mは複数の撮像画像の個数であり、位置ずれ量ΔLをMで除算したΔL/Mは、一撮像当たりの補正量を表している(図7(a))。 Here, ΔL is a positional deviation amount with respect to the entire imaging range, and as shown in the step of S4, the positional deviation amount ΔL is set to the positional deviation amount Δl of the mark position (length of entire imaging range / movement distance La). It can obtain | require by integrating | accumulating the ratio of. M is the number of a plurality of captured images, and ΔL / M obtained by dividing the positional deviation amount ΔL by M represents a correction amount per imaging (FIG. 7A).
 この補正量ΔL/Mを移動ステージの移動分解能sで補正する場合、移動ステージが補正できる間隔分は、移動分解能sの整数n倍の(n・s)であるため、補正誤差分dLは(n・s-ΔL/M)で表される(図7(b)),(S6a)。 When this correction amount ΔL / M is corrected with the moving resolution s of the moving stage, the interval that can be corrected by the moving stage is (n · s), which is an integer n times the moving resolution s, so the correction error dL is ( n · s−ΔL / M) (FIG. 7B), (S6a).
 次に、M回の撮像を発生する累積誤差分dLLを算出する。
 S6aの工程で算出した補正誤差分dLは一撮像範囲で発生する補正誤差分であるため、各撮像範囲において補正誤差分dLが発生した場合には、全撮像範囲の累積誤差分dLLは、
 dLL=(dL・M)
で表すことができる(図7(c,d))。
Next, a cumulative error dLL that generates M times of imaging is calculated.
Since the correction error amount dL calculated in the process of S6a is a correction error amount generated in one imaging range, when a correction error amount dL occurs in each imaging range, the accumulated error amount dLL of the entire imaging range is
dLL = (dL ・ M)
(Fig. 7 (c, d)).
 次に、補正移動間隔Lcを補正する頻度を算出する。累積誤差分dLLの補正は、補正移動間隔Lcを補正移動間隔Lccに切り替えることによって行う。ここで、補正移動間隔Lccへの切り替えを全移動間隔に対して均等に行う例を示し、補正移動間隔Lcを所定回数の毎に補正移動間隔Lccに切り替える。 Next, the frequency of correcting the correction movement interval Lc is calculated. The cumulative error dLL is corrected by switching the correction movement interval Lc to the correction movement interval Lcc. Here, an example is shown in which switching to the corrected movement interval Lcc is performed uniformly with respect to all the movement intervals, and the corrected movement interval Lc is switched to the corrected movement interval Lcc every predetermined number of times.
 一つの補正移動間隔Lccの補正は、補正移動間隔Lcに対して移動分解能s分を増加あるいは減少させることで行う。したがって、一つの補正移動間隔Lcを補正移動間隔Lccに切り替えることによって、累積誤差分dLLは移動分解能s分だけ補正される。 The correction of one correction movement interval Lcc is performed by increasing or decreasing the movement resolution s by the correction movement interval Lc. Accordingly, by switching one correction movement interval Lc to the correction movement interval Lcc, the accumulated error dLL is corrected by the movement resolution s.
 累積誤差分dLLは、M個の補正移動間隔Lcのうち、dLL/s(=dL・M/s)個の補正移動間隔Lcを補正移動間隔Lccに切り替えることによって補正することができる。 The accumulated error dLL can be corrected by switching dLL / s (= dL · M / s) correction movement intervals Lc among the M correction movement intervals Lc to the correction movement intervals Lcc.
 したがって、均等間隔で補正移動間隔の切り替えを行う場合には、M/(dLL/s)=s/dL回毎に補正移動間隔Lcを補正移動間隔Lccに切り替えることによって、累積誤差dLLを補正する(図7(e)),(S6c)。 Therefore, when switching the correction movement interval at equal intervals, the cumulative error dLL is corrected by switching the correction movement interval Lc to the correction movement interval Lcc every M / (dLL / s) = s / dL times. (FIG. 7 (e)), (S6c).
 累積誤差の第2の補正例について図8、9を用いて説明する。
 第2の補正例では、第1の補正例と同様に、はじめに1回の撮像において発生する補正誤差分dLを算出する。
A second correction example of the accumulated error will be described with reference to FIGS.
In the second correction example, similarly to the first correction example, first, a correction error dL that occurs in one imaging is calculated.
 この補正誤差分dLは、
 dL=n・s-ΔL/M
で表される。
This correction error dL is
dL = n · s-ΔL / M
It is represented by
 ここで、ΔLは撮像範囲の全体に対する位置ずれ量であり、S4の工程で示したように、位置ずれ量ΔLはマーク位置の位置ずれ量Δlに(全撮像範囲の長さ/移動距離La)の比を積算することで求めることができる。Mは複数の撮像画像の個数であり、位置ずれ量ΔLをMで除算したΔL/Mは、一撮像当たりの補正量を表している(図9(a))。 Here, ΔL is a positional deviation amount with respect to the entire imaging range, and as shown in the step of S4, the positional deviation amount ΔL is set to the positional deviation amount Δl of the mark position (length of entire imaging range / movement distance La). It can obtain | require by integrating | accumulating the ratio of. M is the number of the plurality of captured images, and ΔL / M obtained by dividing the positional deviation amount ΔL by M represents the correction amount per image capture (FIG. 9A).
 この補正量ΔL/Mを移動ステージの移動分解能sで補正する場合、移動ステージが補正できる間隔分は、移動分解能sの整数n倍の(n・s)であるため、補正誤差分dlは(n・s-ΔL/M)で表される(図9(b)),(S8A)。 When this correction amount ΔL / M is corrected with the moving resolution s of the moving stage, the interval that can be corrected by the moving stage is (n · s), which is an integer n times the moving resolution s, so the correction error dl is ( n · s−ΔL / M) (FIG. 9B), (S8A).
 次に、累積誤差分dLLが移動分解能sとなる撮像回数を算出する(S8B)。一撮像によって発生する補正誤差分はdLであるため、s/dL回の撮像によって累積誤差分dLLは移動分解能sとなり、以下の式で表される。
 累積誤差分dLL=dL・(s/dL)=s
Next, the number of times that the accumulated error dLL becomes the moving resolution s is calculated (S8B). Since the correction error generated by one imaging is dL, the accumulated error dLL becomes the moving resolution s by imaging of s / dL times, and is expressed by the following equation.
Cumulative error dLL = dL ・ (s / dL) = s
 したがって、s/dL回の撮像毎に、補正移動間隔Lcを補正移動間隔Lccに切り替えることによって累積誤差を補正することができる(図9(c)~(e)),(S8C)。 Therefore, the accumulated error can be corrected by switching the correction movement interval Lc to the correction movement interval Lcc for every s / dL times of imaging (FIGS. 9C to 9E) and (S8C).
 図10を用いて本発明の液晶検査装置の信号処理部10の概略構成例について説明する。
 信号処理部10は、移動ステージの移動変動を検出する変動検出部10Aと、変動検出部10Aで検出した移動ステージの移動変動に基づいて撮像部が撮像画像を取得する際の撮像条件を補正する撮像補正部10Bと、複数の分割撮像画像をつなぎ合わせて一つの結合撮像画像を形成する撮像画像形成部10Cとを備える。
A schematic configuration example of the signal processing unit 10 of the liquid crystal inspection apparatus of the present invention will be described with reference to FIG.
The signal processing unit 10 corrects the imaging condition when the imaging unit acquires a captured image based on the variation detection unit 10A that detects the movement variation of the moving stage and the movement variation of the moving stage detected by the variation detection unit 10A. The imaging correction unit 10B and a captured image forming unit 10C that joins a plurality of divided captured images to form one combined captured image.
 変動検出部10Aは、固定カメラ5の撮影信号を取り込んで撮影画像を形成する固定カメラが形成部10aと、撮影画像に基づいて移動ステージ上に設けられたマークのずれ量を、移動ステージの移動変動として検出するステージマークずれ量検出部10bとを備える。 The fluctuation detection unit 10A is configured so that the fixed camera that captures the photographing signal of the fixed camera 5 and forms a photographed image uses the forming unit 10a and the shift amount of the mark provided on the moving stage based on the photographed image. And a stage mark deviation amount detection unit 10b that detects the variation.
 撮像補正部10Bは、速度補正部10cと、移動間隔補正部10dおよび累積誤差補正部10eと、補正データ記憶部10fを備え、移動ステージの速度および撮像トリガを形成する移動間隔を撮像条件とし、これら撮像条件を変動検出部10Aで形成したずれ量に基づいて補正する。 The imaging correction unit 10B includes a speed correction unit 10c, a movement interval correction unit 10d, an accumulated error correction unit 10e, and a correction data storage unit 10f. The imaging interval is set as an imaging condition with a moving stage speed and a movement interval forming an imaging trigger. These imaging conditions are corrected based on the amount of deviation formed by the variation detector 10A.
 速度補正部10cは、ずれ量に基づいて移動ステージの速度を補正する。ステージ駆動制御部4は、速度補正部10cの補正速度に基づいて速度制御を行う。 The speed correction unit 10c corrects the speed of the moving stage based on the deviation amount. The stage drive control unit 4 performs speed control based on the correction speed of the speed correction unit 10c.
 移動間隔補正部10dは、ずれ量に基づいて移動間隔を補正し、撮像を行う撮像トリガのタイミングを補正し、撮像範囲を補正する。撮像制御部3Cは、移動間隔補正部10dの補正移動間隔に基づいて撮像制御を行う。 The movement interval correction unit 10d corrects the movement interval based on the shift amount, corrects the timing of the imaging trigger for performing imaging, and corrects the imaging range. The imaging control unit 3C performs imaging control based on the corrected movement interval of the movement interval correction unit 10d.
 移動間隔補正部10dが形成する補正移動間隔は、累積誤差補正部10eによって累積誤差が補正される。移動間隔補正部10dおよび累積誤差補正部10eの補正処理は、補正データ記憶部10fに格納されたデータを用いて行うことができる。 In the corrected movement interval formed by the movement interval correction unit 10d, the cumulative error is corrected by the cumulative error correction unit 10e. The correction processing of the movement interval correction unit 10d and the cumulative error correction unit 10e can be performed using data stored in the correction data storage unit 10f.
 撮像画像形成部10Cは、検出部3Bの検出信号を受ける検出信号取得部10gおよび取得した検出信号から撮像画像を形成する撮像画像形成部10hを備える。撮像画像形成部10hは、撮像制御部3Cで形成した撮像トリガに基づいて撮像動作を行う。 The captured image forming unit 10C includes a detection signal acquisition unit 10g that receives a detection signal of the detection unit 3B and a captured image formation unit 10h that forms a captured image from the acquired detection signal. The captured image forming unit 10h performs an imaging operation based on the imaging trigger formed by the imaging control unit 3C.
 本発明の算出処理は、液晶アレイ検査装置に限らず、半導体素子の基板検査に適用することができる。 The calculation process of the present invention can be applied not only to a liquid crystal array inspection apparatus but also to a semiconductor element substrate inspection.
 1  液晶アレイ検査装置
 2  移動ステージ
 3  撮像部
 3A  電子銃
 3B  検出部
 3C  撮像制御部
 4  ステージ駆動制御部
 5  固定カメラ
 6  ステージ駆動制御部
 9  制御部
 10  信号処理部
 10A  変動検出部
 10B  撮像補正部
 10C  撮像画像形成部
 10a  固定カメラ画像形成部
 10b  ステージマークずれ量検出部
 10c  速度補正部
 10d  移動間隔補正部
 10e  累積誤差補正部
 10f  補正データ記憶部
 10g  検出信号取得部
 10h  撮像画像形成部
 20  検査部
 100  液晶基板
 101  パネル
 102  マーク
 dL  補正誤差分
 dLL  累積誤差分
 L  移動間隔
 La  設定移動距離
 Lc  補正移動間隔
 Lcc  補正移動間隔
 Lo  移動間隔
 s  移動分解能
 v  変動速度
 vc  速度補正分
 vo  設定ステージ速度
DESCRIPTION OF SYMBOLS 1 Liquid crystal array inspection apparatus 2 Moving stage 3 Imaging part 3A Electron gun 3B Detection part 3C Imaging control part 4 Stage drive control part 5 Fixed camera 6 Stage drive control part 9 Control part 10 Signal processing part 10A Fluctuation detection part 10B Imaging correction part 10C Captured image forming unit 10a Fixed camera image forming unit 10b Stage mark deviation amount detection unit 10c Speed correction unit 10d Movement interval correction unit 10e Cumulative error correction unit 10f Correction data storage unit 10g Detection signal acquisition unit 10h Captured image formation unit 20 Inspection unit 100 LCD panel 101 Panel 102 Mark dL Correction error dLL Cumulative error L Movement interval La Set movement distance Lc Correction movement interval Lcc Correction movement interval Lo Movement interval s Movement resolution v Fluctuating speed vc Speed correction vo Setting stage speed

Claims (10)

  1.  液晶基板に所定電圧の検査信号を印加してアレイを駆動し、前記液晶基板に荷電粒子を照射して得られる信号に基づいて液晶基板を撮像し、前記撮像で得られる撮像画像に基づいて液晶基板のアレイを検査する液晶アレイ検査装置であって、
     前記液晶基板を移動する移動部と、
     前記移動部による液晶基板の移動に伴って当該液晶基板が所定の移動間隔分を移動する毎に撮像を開始し、各撮像動作において当該移動間隔を撮像範囲とする撮像動作を繰り返して複数の分割撮像画像を取得する撮像部と、
     前記複数の分割撮像画像をつなぎ合わせて一つの結合撮像画像を形成する撮像画像形成部と、
     前記移動部の移動変動を検出する変動検出部と、
     前記変動検出部で検出した前記移動部の移動変動に基づいて前記撮像部が撮像画像を取得する際の撮像条件を補正する撮像補正部とを備え、
     前記撮像補正部は、前記移動変動の変動幅および変動方向に基づいて前記撮像条件を補正することを特徴とする、液晶アレイ検査装置。
    An inspection signal of a predetermined voltage is applied to the liquid crystal substrate to drive the array, the liquid crystal substrate is imaged based on a signal obtained by irradiating the liquid crystal substrate with charged particles, and the liquid crystal is based on the captured image obtained by the imaging A liquid crystal array inspection apparatus for inspecting an array of substrates,
    A moving unit for moving the liquid crystal substrate;
    Imaging is started each time the liquid crystal substrate moves by a predetermined movement interval as the liquid crystal substrate is moved by the moving unit, and a plurality of divisions are performed by repeating the imaging operation with the movement interval as the imaging range in each imaging operation. An imaging unit for acquiring a captured image;
    A captured image forming unit that connects the plurality of divided captured images to form one combined captured image;
    A fluctuation detecting unit for detecting movement fluctuations of the moving unit;
    An imaging correction unit that corrects an imaging condition when the imaging unit acquires a captured image based on a movement variation of the moving unit detected by the variation detection unit;
    The liquid crystal array inspection apparatus, wherein the imaging correction unit corrects the imaging condition based on a fluctuation range and a fluctuation direction of the movement fluctuation.
  2.  前記移動部は液晶基板を載置して移動する移動ステージを有し、
     前記撮像補正部は、撮像範囲を定める移動間隔を撮像条件とし、
     前記移動間隔を補正する移動間隔補正部と
     前記移動間隔補正部による移動間隔の補正誤差が累積することで生じる累積誤差を補正する累積誤差補正部とを備え、
     前記移動間隔補正部は、前記移動間隔を前記変動検出部が検出した移動変動の変動幅および変動方向に基づいて補正移動間隔を算出し、
     前記累積誤差補正部は、前記移動ステージの最小分解能の大きさを補正量とし、前記移動間隔補正部で算出した補正移動間隔に当該補正量を増減して前記累積誤差を補正することを特徴とする請求項1に記載の液晶アレイ検査装置。
    The moving unit has a moving stage on which a liquid crystal substrate is placed and moved,
    The imaging correction unit uses the movement interval that defines the imaging range as an imaging condition,
    A movement interval correction unit that corrects the movement interval; and a cumulative error correction unit that corrects a cumulative error caused by accumulating correction errors of the movement interval by the movement interval correction unit,
    The movement interval correction unit calculates a correction movement interval based on a fluctuation range and a fluctuation direction of movement fluctuation detected by the fluctuation detection unit.
    The cumulative error correction unit corrects the cumulative error by increasing or decreasing the correction amount to the correction movement interval calculated by the movement interval correction unit using the minimum resolution of the moving stage as a correction amount. The liquid crystal array inspection apparatus according to claim 1.
  3.  前記累積誤差補正部は、補正移動間隔に対する前記補正量の増減を所定回の撮像毎に行い、当該補正量の増減量および増減回数は移動変動の変動幅および変動方向に基づいて算出することを特徴とする請求項2に記載の液晶アレイ検査装置。 The cumulative error correction unit performs the increase / decrease of the correction amount with respect to the correction movement interval every predetermined number of times of imaging, and calculates the increase / decrease amount and the increase / decrease number of the correction amount based on the fluctuation width and fluctuation direction of the movement fluctuation. The liquid crystal array inspection apparatus according to claim 2, characterized in that:
  4.  前記変動検出部は、液晶アレイ検査装置上に固定した撮影手段を備え、
     前記撮影手段は、前記移動ステージ上に設けたマークを撮影し、当該撮影画像におけるマーク画像の位置ずれに基づいて移動部の移動変動を検出することを特徴とする請求項1から3の何れか一つに記載の液晶アレイ検査装置。
    The variation detection unit includes a photographing unit fixed on the liquid crystal array inspection apparatus,
    4. The imaging device according to claim 1, wherein the imaging unit images a mark provided on the moving stage and detects a movement variation of the moving unit based on a positional deviation of the mark image in the captured image. The liquid crystal array inspection apparatus according to one.
  5.  前記撮像補正部は、前記移動ステージの移動速度を補正する速度補正部を備え、
     当該速度補正部は、前記変動検出部が検出した移動変動の変動幅および変動方向に基づいて補正速度を算出することを特徴とする請求項1から4の何れか一つに記載の液晶アレイ検査装置。
    The imaging correction unit includes a speed correction unit that corrects the moving speed of the moving stage,
    The liquid crystal array inspection according to claim 1, wherein the speed correction unit calculates a correction speed based on a fluctuation range and a fluctuation direction of the movement fluctuation detected by the fluctuation detection unit. apparatus.
  6.  液晶基板に所定電圧の検査信号を印加してアレイを駆動し、前記液晶基板に荷電粒子を照射して得られる信号に基づいて液晶基板を撮像し、前記撮像で得られる撮像画像に基づいて液晶基板のアレイを検査する液晶アレイ検査装置の撮像画像取得方法であって、
     前記液晶基板を移動する移動工程と、
     前記移動工程による液晶基板の移動に伴って当該液晶基板が所定の移動間隔分を移動する毎に撮像を開始し、各撮像動作において当該移動間隔を撮像範囲とする撮像動作を繰り返して複数の分割撮像画像を取得する撮像工程と、
     前記複数の分割撮像画像をつなぎ合わせて一つの結合撮像画像を形成する撮像画像形成工程と、
     前記移動工程の移動変動を検出する変動検出工程と、
     前記変動検出工程で検出した前記移動工程の移動変動に基づいて前記撮像工程が撮像画像を取得する際の撮像条件を補正する撮像補正工程とを備え、
     前記撮像補正工程は、前記移動変動の変動幅および変動方向に基づいて前記撮像条件を補正することを特徴とする、液晶アレイ検査装置の撮像画像取得方法。
    An inspection signal of a predetermined voltage is applied to the liquid crystal substrate to drive the array, the liquid crystal substrate is imaged based on a signal obtained by irradiating the liquid crystal substrate with charged particles, and the liquid crystal is based on the captured image obtained by the imaging A method for acquiring a captured image of a liquid crystal array inspection apparatus for inspecting an array of substrates,
    A moving step of moving the liquid crystal substrate;
    Imaging is started each time the liquid crystal substrate moves by a predetermined movement interval in accordance with the movement of the liquid crystal substrate in the moving step, and the imaging operation with the movement interval as the imaging range is repeated in each imaging operation to perform a plurality of divisions. An imaging process for acquiring a captured image;
    A captured image forming step of connecting the plurality of divided captured images to form one combined captured image;
    A fluctuation detecting step for detecting movement fluctuation in the moving step;
    An imaging correction step of correcting an imaging condition when the imaging step acquires a captured image based on movement fluctuation of the movement step detected in the variation detection step;
    The method for acquiring a captured image of a liquid crystal array inspection apparatus, wherein the imaging correction step corrects the imaging condition based on a fluctuation range and a fluctuation direction of the movement fluctuation.
  7.  前記移動工程は液晶基板を移動ステージ上に載置して移動し、
     前記撮像補正工程は、撮像範囲を定める移動間隔を撮像条件とし、
     前記移動間隔を補正する移動間隔補正工程と
     前記移動間隔補正工程による移動間隔の補正誤差が累積することで生じる累積誤差を補正する累積誤差補正工程とを備え、
     前記移動間隔補正工程は、前記移動間隔を前記変動検出工程が検出した移動変動の変動幅および変動方向に基づいて補正移動間隔を算出し、
     前記累積誤差補正工程は、前記移動ステージの最小分解能の大きさを補正量とし、前記移動間隔補正工程で算出した補正移動間隔に当該補正量を増減して前記累積誤差を補正することを特徴とする請求項6に記載の液晶アレイ検査装置の撮像画像取得方法。
    In the moving step, the liquid crystal substrate is placed on a moving stage and moved,
    In the imaging correction step, a moving interval that defines an imaging range is set as an imaging condition,
    A movement interval correction step of correcting the movement interval; and a cumulative error correction step of correcting a cumulative error caused by accumulating correction errors of the movement interval by the movement interval correction step,
    The movement interval correction step calculates a correction movement interval based on a fluctuation range and a fluctuation direction of the movement fluctuation detected by the fluctuation detection step.
    The cumulative error correction step uses the magnitude of the minimum resolution of the moving stage as a correction amount, and corrects the cumulative error by increasing or decreasing the correction amount to the correction movement interval calculated in the movement interval correction step. A captured image acquisition method for a liquid crystal array inspection apparatus according to claim 6.
  8.  前記累積誤差補正工程は、補正移動間隔に対する前記補正量の増減を所定回の撮像毎に行い、当該補正量の増減量および増減回数は移動変動の変動幅および変動方向に基づいて算出することを特徴とする請求項7に記載の液晶アレイ検査装置の撮像画像取得方法。 The cumulative error correction step performs the increase / decrease of the correction amount with respect to the correction movement interval every predetermined number of times of imaging, and calculates the increase / decrease amount of the correction amount and the number of increase / decreases based on the fluctuation width and fluctuation direction of the movement fluctuation. The captured image acquisition method of the liquid crystal array inspection apparatus according to claim 7,
  9.  前記変動検出工程は、液晶アレイ検査装置上に固定した撮影手段によって前記移動ステージ上に設けたマークを撮影し、当該撮影画像におけるマーク画像の位置ずれに基づいて移動工程の移動変動を検出することを特徴とする請求項6から8の何れか一つに記載の液晶アレイ検査装置の撮像画像取得方法。 In the variation detection step, a mark provided on the moving stage is photographed by photographing means fixed on a liquid crystal array inspection apparatus, and movement variation in the movement step is detected based on a positional deviation of the mark image in the photographed image. The captured image acquisition method of the liquid crystal array inspection apparatus according to any one of claims 6 to 8.
  10.  前記撮像補正工程は、前記移動ステージの移動速度を補正する速度補正工程を備え、
     当該速度補正工程は、前記変動検出工程が検出した移動変動の変動幅および変動方向に基づいて補正速度を算出することを特徴とする請求項6から9の何れか一つに記載の液晶アレイ検査装置の撮像画像取得方法。
    The imaging correction step includes a speed correction step of correcting the moving speed of the moving stage,
    10. The liquid crystal array inspection according to claim 6, wherein the speed correction step calculates a correction speed based on a fluctuation range and a fluctuation direction of the movement fluctuation detected by the fluctuation detection step. A captured image acquisition method of an apparatus.
PCT/JP2011/075288 2011-11-02 2011-11-02 Liquid crystal array inspection device, and method for acquiring images captured by liquid crystal array inspection device WO2013065143A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180073905.6A CN103907017B (en) 2011-11-02 2011-11-02 The shooting image acquiring method of liquid crystal array inspecting apparatus and liquid crystal array inspecting apparatus
PCT/JP2011/075288 WO2013065143A1 (en) 2011-11-02 2011-11-02 Liquid crystal array inspection device, and method for acquiring images captured by liquid crystal array inspection device
JP2013541527A JP5692669B2 (en) 2011-11-02 2011-11-02 Liquid crystal array inspection apparatus and method for acquiring captured image of liquid crystal array inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/075288 WO2013065143A1 (en) 2011-11-02 2011-11-02 Liquid crystal array inspection device, and method for acquiring images captured by liquid crystal array inspection device

Publications (1)

Publication Number Publication Date
WO2013065143A1 true WO2013065143A1 (en) 2013-05-10

Family

ID=48191536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075288 WO2013065143A1 (en) 2011-11-02 2011-11-02 Liquid crystal array inspection device, and method for acquiring images captured by liquid crystal array inspection device

Country Status (3)

Country Link
JP (1) JP5692669B2 (en)
CN (1) CN103907017B (en)
WO (1) WO2013065143A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200541A (en) * 2014-04-07 2015-11-12 株式会社荏原製作所 Control device for generating timing signal for imaging device in inspection device and method of transmitting timing signal to imaging device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646948B (en) * 2016-12-23 2019-09-13 武汉精立电子技术有限公司 The detection control method of the mobile image detection device of display module
CN106679570A (en) * 2017-02-23 2017-05-17 苏州坤镥光电科技有限公司 OLED panel display industry large-sized ultra-precision full-automatic coordinate measurement device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100362A (en) * 1998-09-18 2000-04-07 Hitachi Ltd Charged particle beam scanning type automatic inspection apparatus
JP2003202217A (en) * 2002-01-09 2003-07-18 Hitachi High-Technologies Corp Inspection method and apparatus for pattern defects
JP2006084185A (en) * 2004-09-14 2006-03-30 I-Pulse Co Ltd Imaging method of mounting substrate, inspection method, inspection device, and mounting line
JP2008008890A (en) * 2006-05-31 2008-01-17 Shimadzu Corp Tft array inspection apparatus and scanning beam device
JP2009162717A (en) * 2008-01-10 2009-07-23 Shimadzu Corp Tft array inspection device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194669A (en) * 2001-12-27 2003-07-09 Seiko Epson Corp Inspection method and inspection device for liquid crystal device
KR20060118006A (en) * 2004-03-05 2006-11-17 도시바 마쯔시따 디스플레이 테크놀로지 컴퍼니, 리미티드 Board inspecting method, array board inspecting method and array board inspecting equipment
JP2006073841A (en) * 2004-09-03 2006-03-16 I-Pulse Co Ltd Inspection device of mounted substrate
JP2010117185A (en) * 2008-11-11 2010-05-27 Olympus Corp Device and method for inspecting flaw

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100362A (en) * 1998-09-18 2000-04-07 Hitachi Ltd Charged particle beam scanning type automatic inspection apparatus
JP2003202217A (en) * 2002-01-09 2003-07-18 Hitachi High-Technologies Corp Inspection method and apparatus for pattern defects
JP2006084185A (en) * 2004-09-14 2006-03-30 I-Pulse Co Ltd Imaging method of mounting substrate, inspection method, inspection device, and mounting line
JP2008008890A (en) * 2006-05-31 2008-01-17 Shimadzu Corp Tft array inspection apparatus and scanning beam device
JP2009162717A (en) * 2008-01-10 2009-07-23 Shimadzu Corp Tft array inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200541A (en) * 2014-04-07 2015-11-12 株式会社荏原製作所 Control device for generating timing signal for imaging device in inspection device and method of transmitting timing signal to imaging device

Also Published As

Publication number Publication date
JP5692669B2 (en) 2015-04-01
JPWO2013065143A1 (en) 2015-04-02
CN103907017B (en) 2016-01-13
CN103907017A (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5424144B2 (en) Vision inspection system and coordinate conversion method using the same
US20100177192A1 (en) Three-dimensional measuring device
JP6443095B2 (en) Infrared stress measurement method and infrared stress measurement apparatus
WO2007129733A1 (en) Imaging position correction method, imaging method, and substrate imaging apparatus
WO2013155403A1 (en) Active alignment using continuous motion sweeps and temporal interpolation
KR20100124742A (en) Electronic component inspecting method and apparatus used in the method
JP2006332296A (en) Focus correction method in electronic beam applied circuit pattern inspection
CN107110643B (en) Three-dimensional measuring device
CN108139208B (en) Three-dimensional measuring device
JPWO2016171265A1 (en) Shape measuring apparatus and shape measuring method
JP5692669B2 (en) Liquid crystal array inspection apparatus and method for acquiring captured image of liquid crystal array inspection apparatus
JP5331771B2 (en) Inspection device
KR20070016752A (en) Length Measuring Device and Method
JP5357528B2 (en) Semiconductor wafer inspection equipment
JP2013096863A (en) Calibration method and substrate inspection device
JP6031265B2 (en) Parts inspection device
TWI606227B (en) Three-dimensional measuring device
WO2009147707A1 (en) Liquid crystal array inspection apparatus and method for correcting imaging range
US20180276806A1 (en) Method for detecting coordinates, coordinate output device and defect inspection device
TWI580927B (en) Three - dimensional measuring device and three - dimensional measurement method
JP5417997B2 (en) Imaging inspection method
CN107923736B (en) Three-dimensional measuring device
JP2013224961A (en) Inspection device for semiconductor wafer
WO2009153858A1 (en) Liquid crystal array inspecting apparatus
CN112530821B (en) Chip mounting apparatus and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541527

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874877

Country of ref document: EP

Kind code of ref document: A1