WO2013065100A1 - Polymerizable composition and liquid crystal display element - Google Patents

Polymerizable composition and liquid crystal display element Download PDF

Info

Publication number
WO2013065100A1
WO2013065100A1 PCT/JP2011/075065 JP2011075065W WO2013065100A1 WO 2013065100 A1 WO2013065100 A1 WO 2013065100A1 JP 2011075065 W JP2011075065 W JP 2011075065W WO 2013065100 A1 WO2013065100 A1 WO 2013065100A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
monomer
polymerizable composition
substrate
mass
Prior art date
Application number
PCT/JP2011/075065
Other languages
French (fr)
Japanese (ja)
Inventor
ラジェッシュ クマール
潤一 小川
倫恵 月原
Original Assignee
株式会社ビジョンマルチメディアテクノロジ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ビジョンマルチメディアテクノロジ filed Critical 株式会社ビジョンマルチメディアテクノロジ
Priority to PCT/JP2011/075065 priority Critical patent/WO2013065100A1/en
Publication of WO2013065100A1 publication Critical patent/WO2013065100A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K19/544Macromolecular compounds as dispersing or encapsulating medium around the liquid crystal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate

Definitions

  • the present invention relates to a polymerizable composition and a liquid crystal display device. Specifically, the present invention relates to a polymerizable composition used in a liquid crystal display element and the like, and a liquid crystal display element in which such a polymerizable composition is used.
  • Patent Document 1 discloses a polymerizable liquid crystal compound, a photopolymerization initiator, a light absorber having a double bond in the skeleton, and a polymerizable cholesteric liquid crystal containing a non-liquid crystalline polymerizable compound, and non-liquid crystalline polymerization.
  • a polymerizable cholesteric liquid crystal composition characterized in that the concentration of the functional compound is 0.5 to 5% is described.
  • polymerizable cholesteric liquid crystal composition contains a non-liquid crystalline polymerizable compound at a specific concentration
  • the polymerizable cholesteric liquid crystal composition when applied to a substrate, is uniformly aligned so that its spiral axis is vertical, and has a large retardation. Small haze (light scattering) can be realized.
  • the present invention has been made in view of the above points, and provides a polymerizable composition having fine domains even after polymerization, and a liquid crystal display device using such a polymerizable composition. Objective.
  • the polymerizable composition of the present invention comprises 14.0 to 16.0% by mass of a monofunctional monomer and 3.0 to 5.0% by mass of a bifunctional monomer, based on the total amount of the composition. And 0.5 to 1.5% by mass of a polyfunctional monomer, with the balance being a liquid crystal material.
  • the monofunctional monomer, the bifunctional monomer, and the polyfunctional monomer are mixed, a plurality of reaction points exist, and as a result, the reaction rate when polymerizing is high. Moreover, since these monomers are blended at a predetermined concentration, it is possible to achieve both a low driving voltage and a high response speed.
  • the monofunctional monomer is di (ethylene glycol) 2-ethylhexyl ether acrylate, since the molecular weight is larger than 250, the monofunctional monomer does not volatilize even in a vacuum state. There is no change in the composition ratio of the polymer / liquid crystal composite material obtained.
  • the bifunctional monomer may be 1,6-hexanediol diacrylate, and the polyfunctional monomer may be trimethylolpropane triacrylate.
  • a liquid crystal display element of the present invention includes a first substrate on which a first electrode is formed, a first substrate, a second substrate, and a second substrate.
  • a polymer / liquid crystal composite which is a polymer of a polymerizable composition containing 3.0 to 5.0% by mass of a bifunctional monomer and 0.5 to 1.5% by mass of a polyfunctional monomer, and the balance being a liquid crystal material Material.
  • the polymerizable composition according to the present invention has fine domains even when polymerized. In the liquid crystal display element according to the present invention, aging of the domain hardly occurs.
  • the polymerizable composition of the present invention has a monofunctional monomer of 14.0 to 16.0% by mass, a bifunctional monomer of 3.0 to 5.0% by mass, and a polyfunctional monomer of 0.5 to A mixture containing 1.5% by mass and the balance being a liquid crystal material.
  • the polyfunctional monomer is a monomer having three or more functional groups.
  • Monofunctional monomers, bifunctional monomers, and polyfunctional monomers can be polymerized by light irradiation (light exposure), that is, ultraviolet irradiation.
  • Examples of the monofunctional monomer include 3,5,5-trimethylhexyl acrylate, 2-hexyl acrylate, butoxyethyl acrylate, hydroxyethyl acrylate, phenoxyethyl acrylate, 2- (2-ethoxyethoxy) ethyl acrylate, di ( Ethylene glycol) 2-ethylhexyl ether acrylate, polyethylene glycol methyl ether acrylate, and mixtures of at least two of these.
  • bifunctional monomer examples include 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, and mixtures thereof.
  • examples of the polyfunctional monomer include dipentaerythritol hexaacrylate, trimethylolpropane triacrylate, trifunctional acrylate ester, and a mixture of at least two of these.
  • the blending ratio of the monofunctional monomer, the bifunctional monomer, and the polyfunctional monomer is based on the total amount of the composition.
  • the monofunctional monomer is 14.0 to 16.0% by mass
  • the bifunctional monomer is 3.0 to 5.0% by mass
  • the polyfunctional monomer is 0.5 to 1.5% by mass.
  • the polymerizable composition of the present invention comprises 14.0 to 16.0% by mass of a monofunctional monomer, 3.0 to 5.0% by mass of a bifunctional monomer, and 0. If the balance is 5 to 1.5% by mass and the balance is a liquid crystal material, a photocuring initiator (photopolymerization initiator) is added to the polymerizable composition in order to increase the curing rate (polymerization rate). May be.
  • a photocuring initiator photopolymerization initiator
  • photocuring initiator examples include benzoin ether compounds, benzophenone compounds, acetophenone compounds, thioxanthone compounds, and specific examples include 2-dimethoxy-2-phenylacetophenone. It is done.
  • the polymerizable composition of the present invention is filled in a vacuum injection apparatus between two glass substrates or film substrates with a transparent electrode by a vacuum injection method, and then the polymerizable composition is irradiated with light (light exposure). )
  • a liquid crystal display element in which a polymer / liquid crystal composite material in which a liquid crystal material is dispersed in the form of droplets in a polymer material is sandwiched between glass substrates or film substrates.
  • Light irradiation here generally means ultraviolet irradiation.
  • lamps that generate ultraviolet rays include metal halide lamps, high-pressure mercury lamps, and ultra-high pressure mercury lamps.
  • the wavelength of the ultraviolet rays to be irradiated is a wavelength in a wavelength region that is an absorption wavelength region of the photopolymerization initiator contained in the polymerizable composition of the present invention and that is not an absorption wavelength region of the contained liquid crystal material.
  • a metal halide lamp, a high-pressure mercury lamp, or an ultra-high pressure mercury lamp and cut off ultraviolet rays of less than 330 nm.
  • a UV-LED lamp that can irradiate a single wavelength may be used.
  • the light illuminance upon ultraviolet irradiation is preferably 10 mW / cm 2 to 40 mW / cm 2 , particularly preferably 10 mW / cm 2 to 30 mW / cm 2 .
  • the driving voltage of the liquid crystal display element tends to be high, whereas when it is higher than 30 mW / cm 2 , the durability of the liquid crystal display element tends to be low.
  • the irradiation time is preferably 5 to 100 seconds, particularly preferably 30 to 60 seconds, and the durability of the liquid crystal display element tends to be low even if it is shorter than 5 seconds or longer than 60 seconds.
  • FIG. 1 is a schematic view showing an example of a transmissive liquid crystal display device manufactured using the polymerizable composition of the present invention.
  • a transmissive liquid crystal display element 1 includes a first ITO electrode (an example of a first electrode) 4 made of ITO (indium tin oxide) 4 formed on one surface.
  • Film substrate (which is an example of a first substrate) 2.
  • the transmissive liquid crystal display element 1 is disposed to face the first film substrate 2 and a second ITO electrode (an example of a second electrode) 5 made of ITO is one of them.
  • a second film substrate (an example of a second substrate) 3 formed on the surface is provided.
  • first film substrate 2 and the second film substrate 3 are arranged with the electrodes facing each other, and the first film substrate 2 and the second film substrate 3 The polymer / liquid crystal composite material 6 is sandwiched between them.
  • the polymer / liquid crystal composite material 6 irradiates the polymerizable composition of the present invention filled between the first film substrate 2 and the second film substrate 3 with ultraviolet rays, for example, by a vacuum injection method. It was obtained.
  • a film substrate is used as an example of the first substrate and the second substrate.
  • the substrate is not necessarily a film substrate, and may of course be a glass substrate.
  • the liquid crystal display element usually includes a polarizing plate.
  • the polarizing plate is not necessary.
  • FIG. 2 is a schematic view showing an example of a reflective liquid crystal display device manufactured using the polymerizable composition of the present invention.
  • the reflective liquid crystal display element 8 is the same as the transmissive liquid crystal display element 1 except that the reflective liquid crystal display element 8 includes a reflective plate 7 attached to the other surface of the first film substrate 2.
  • Example 1 Monofunctional monomer, 3,5,5-trimethylhexyl acrylate 15.3 mass percent, bifunctional monomer 1,6-hexanediol diacrylate 3.5 mass percent, polyfunctional monomer trimethylolpropane triacrylate 1.0 mass Percent and 80.2 mass percent of liquid crystal were mixed.
  • 2-dimethoxy-2-phenylacetophenone as a photopolymerization initiator was added to the mixture in an amount of 5.0% by mass based on the total amount of monomers to prepare a polymerizable composition of liquid crystal molecules and a polymerizable substance.
  • the obtained polymerizable composition was injected into a transmissive empty cell substrate by a vacuum injection method.
  • the specific procedure of the vacuum injection method is as follows.
  • the liquid crystal dish storing the obtained polymerizable composition and the empty cell substrate were placed in a vacuum injection apparatus provided in the vacuum apparatus. Then, the inside of the vacuum injection apparatus was evacuated and decompressed, and the inside of the cell substrate and the polymerizable composition were deaerated.
  • the inlet of the cell substrate was brought into contact with the polymerizable composition in the liquid crystal dish.
  • the polymerizable composition in the liquid crystal dish was sucked into the cell substrate, and the polymerizable composition was filled in the cell substrate.
  • the monomer was polymerized by uniformly irradiating the cell substrate with ultraviolet rays having an intensity of 15 mW / cm 2 at 22 ° C. for 60 seconds from the cell substrate side on which the TFT array was formed. In this way, a test body of the color TFT liquid crystal display element of Example 1 was obtained.
  • Example 2 15.4 weight percent of di (ethylene glycol) 2-ethylhexyl ether acrylate as a monofunctional monomer, 3.8 weight percent of 1,6-hexanediol diacrylate as a bifunctional monomer, and trimethylolpropane triacrylate as a polyfunctional monomer. 0 mass percent and 79.8 mass percent of liquid crystal were mixed.
  • 2-dimethoxy-2-phenylacetophenone as a photopolymerization initiator was added to the mixture in an amount of 5.0% by mass based on the total amount of monomers to prepare a polymerizable composition of liquid crystal molecules and a polymerizable substance.
  • the polymerizable composition was filled in the cell substrate by vacuum injection as in Example 1. Then, the monomer was polymerized by uniformly irradiating the cell substrate with ultraviolet rays having an intensity of 30 mW / cm 2 at 29 ° C. for 60 seconds from the cell substrate side on which the TFT array was formed. In this way, a test body of the color TFT liquid crystal display element of Example 2 was obtained.
  • ⁇ Comparative Example 1> A commonly used polymerizable liquid crystal compound (liquid crystal monomer) was filled in the cell substrate by vacuum injection as in Example 1. Then, the monomer was polymerized by uniformly irradiating the cell substrate with ultraviolet rays having an intensity of 30 mW / cm 2 at 25 ° C. for 30 seconds from the cell substrate side on which the TFT array was formed. In this way, a test body of the color TFT liquid crystal display element of Comparative Example 1 was obtained.
  • liquid crystal monomer liquid crystal monomer
  • Example 1 The color TFT liquid crystal display device specimens obtained in Example 1, Example 2 and Comparative Example 1 were imaged with a polarizing microscope (magnification magnification is 500 times, polarizing plate angle is orthogonal). A copy of the resulting photograph is shown in FIGS.
  • the gap (gap) of the transmissive color TFT liquid crystal display element used here is the same in Example 1, Example 2, and Comparative Example 1.
  • the domain size was determined to be “large” if it was larger than 5 ⁇ m, and it was determined to be “small” if it was smaller than 5 ⁇ m.
  • the results are shown in Table 1.
  • Example 1 3,5,5-trimethylhexyl acrylate used in Example 1, the di (ethylene glycol) 2-ethylhexyl ether acrylate used in Example 2, and the polymerizable liquid crystal compound used in Comparative Example 1 have the same shape.
  • the color TFT liquid crystal display element test body (Example 1 and Example 2) obtained using the polymerizable composition of the present invention has a relatively small domain of the entire pixel. Also, it was uniformly formed.
  • the color TFT liquid crystal display element test body (Comparative Example 1) obtained using a conventional polymerizable liquid crystal compound (liquid crystal monomer) had a large domain in the entire pixel. . Therefore, a color TFT liquid crystal display element using a conventional polymerizable liquid crystal compound (liquid crystalline monomer) is concerned about a decrease in contrast and a decrease in reflectance.
  • the monofunctional monomer (3,5,5-trimethylhexyl acrylate) used in Example 1 volatilizes and has a mass when placed in a vacuum state of 100 kPa for 10 minutes. It decreased by 32%.
  • the monofunctional monomer (di (ethylene glycol) 2-ethylhexyl ether acrylate) used in Example 2 does not volatilize even when placed in a vacuum state of 100 kPa for 10 minutes. There was no change in mass.
  • the polymerizable composition of the present invention is a mixture of a monofunctional monomer, a bifunctional monomer, and a polyfunctional monomer, there are a plurality of reaction points, and as a result, when the polymerization is performed.
  • the reaction rate is fast.
  • the polymerizable composition according to the present invention has fine domains even when polymerized.
  • the domain is fine, so that the unpolymerized monomer under the array substrate of the liquid crystal display element, the domain, Fusion is less likely to occur, and therefore the aging of the domain is less likely to occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

A polymerizable composition which contains, based on the total amount of the composition, 14.0-16.0% by mass of a monofunctional monomer, 3.0-5.0% by mass of a bifunctional monomer and 0.5-1.5% by mass of a polyfunctional monomer, with the balance made up of a liquid crystal material. A liquid crystal display element which comprises: a first substrate that is provided with a first electrode; a second substrate that is arranged so as to face the first substrate and provided with a second electrode; and a polymer/liquid crystal composite material that is sandwiched between the first substrate and the second substrate and formed of a polymer of a polymerizable composition which contains, based on the total amount of the composition, 14.0-16.0% by mass of a monofunctional monomer, 3.0-5.0% by mass of a bifunctional monomer and 0.5-1.5% by mass of a polyfunctional monomer, with the balance made up of a liquid crystal material.

Description

重合性組成物並びに液晶表示素子Polymerizable composition and liquid crystal display device
 本発明は重合性組成物並びに液晶表示素子に関する。詳しくは、液晶表示素子などに使用される重合性組成物、並びにかかる重合性組成物が使用された液晶表示素子に係るものである。 The present invention relates to a polymerizable composition and a liquid crystal display device. Specifically, the present invention relates to a polymerizable composition used in a liquid crystal display element and the like, and a liquid crystal display element in which such a polymerizable composition is used.
 液晶表示素子のコントラストの向上のために、重合性液晶(液晶性モノマー)を使用する例が報告されている。 An example of using a polymerizable liquid crystal (liquid crystal monomer) for improving the contrast of a liquid crystal display element has been reported.
 例えば、特許文献1には、重合性液晶化合物、光重合開始剤、骨格中に二重結合を有する光吸収剤、及び非液晶性重合性化合物を含有する重合性コレステリック液晶において、非液晶性重合性化合物の濃度が0.5~5%であることを特徴とする重合性コレステリック液晶組成物が記載されている。 For example, Patent Document 1 discloses a polymerizable liquid crystal compound, a photopolymerization initiator, a light absorber having a double bond in the skeleton, and a polymerizable cholesteric liquid crystal containing a non-liquid crystalline polymerizable compound, and non-liquid crystalline polymerization. A polymerizable cholesteric liquid crystal composition characterized in that the concentration of the functional compound is 0.5 to 5% is described.
 このような重合性コレステリック液晶組成物は、特定の濃度で非液晶性重合性化合物を含有するので、基板に塗布した際に、その螺旋軸が垂直になるよう均一に配向し、大きな位相差と小さなヘイズ(光散乱)を実現することが可能になる。 Since such a polymerizable cholesteric liquid crystal composition contains a non-liquid crystalline polymerizable compound at a specific concentration, when applied to a substrate, the polymerizable cholesteric liquid crystal composition is uniformly aligned so that its spiral axis is vertical, and has a large retardation. Small haze (light scattering) can be realized.
特開2011-079984号公報JP 2011-079984 A
 しかしながら、重合性液晶化合物を用いた場合、液晶部位に反応点が直結しているために反応点が限定されており、光重合させるときの反応速度が遅くなり、その結果、液晶層(ドメイン)のサイズが大きくなる。 However, when a polymerizable liquid crystal compound is used, since the reactive site is directly connected to the liquid crystal site, the reactive site is limited, and the reaction rate when photopolymerizing is slowed, resulting in a liquid crystal layer (domain). Increases in size.
 そして、ドメインのサイズが大きくなると、例えば液晶表示素子のアレイ基板の下にある未重合のモノマーと、ドメインとの融合が生じやすくなり、その結果、ドメインが崩れやすくなって経年劣化が早まる。 When the size of the domain is increased, for example, unpolymerized monomers under the array substrate of the liquid crystal display element and the domain are likely to be fused, and as a result, the domain is liable to collapse and the aging is accelerated.
 本発明は、以上の点に鑑みて創案されたものであり、重合してもドメインが微細である重合性組成物、並びにこのような重合性組成物を用いた液晶表示素子を提供することを目的とする。 The present invention has been made in view of the above points, and provides a polymerizable composition having fine domains even after polymerization, and a liquid crystal display device using such a polymerizable composition. Objective.
 上記の目的を達成するために、本発明の重合性組成物は、組成物全量基準で、単官能モノマー14.0~16.0質量%と、二官能モノマー3.0~5.0質量%と、多官能モノマー0.5~1.5質量%とを含み、残部が液晶材料であるものである。 In order to achieve the above object, the polymerizable composition of the present invention comprises 14.0 to 16.0% by mass of a monofunctional monomer and 3.0 to 5.0% by mass of a bifunctional monomer, based on the total amount of the composition. And 0.5 to 1.5% by mass of a polyfunctional monomer, with the balance being a liquid crystal material.
 ここで、単官能モノマーと、二官能モノマーと、多官能モノマーとが混合されているので、反応点が複数個存在し、その結果、重合させるときの反応速度が速い。
 また、これらモノマーが所定の濃度で配合されているので、低駆動電圧化と高応答速度化とを両立させることができる。
Here, since the monofunctional monomer, the bifunctional monomer, and the polyfunctional monomer are mixed, a plurality of reaction points exist, and as a result, the reaction rate when polymerizing is high.
Moreover, since these monomers are blended at a predetermined concentration, it is possible to achieve both a low driving voltage and a high response speed.
 また、本発明の重合性組成物において、単官能モノマーは、ジ(エチレングリコール)2-エチルヘキシルエーテルアクリレートである場合、分子量が250より大きいため、真空状態でも単官能モノマーが揮発しないので、重合して得られる高分子/液晶複合材料の組成比変化がない。 In the polymerizable composition of the present invention, when the monofunctional monomer is di (ethylene glycol) 2-ethylhexyl ether acrylate, since the molecular weight is larger than 250, the monofunctional monomer does not volatilize even in a vacuum state. There is no change in the composition ratio of the polymer / liquid crystal composite material obtained.
 また、本発明の重合性組成物において、二官能モノマーは、1,6-ヘキサンジオールジアクリレートであり、多官能モノマーは、トリメチロールプロパントリアクリレートであるものとすることができる。 In the polymerizable composition of the present invention, the bifunctional monomer may be 1,6-hexanediol diacrylate, and the polyfunctional monomer may be trimethylolpropane triacrylate.
 また、上記の目的を達成するために、本発明の液晶表示素子は、第1の電極が形成された第1の基板と、該第1の基板と対向して配置されると共に、第2の電極が形成された第2の基板と、前記第1の基板と前記第2の基板との間に挟持されると共に、組成物全量基準で、単官能モノマー14.0~16.0質量%と、二官能モノマー3.0~5.0質量%と、多官能モノマー0.5~1.5質量%とを含み残部が液晶材料である重合性組成物の重合体である高分子/液晶複合材料とを備える。 In order to achieve the above object, a liquid crystal display element of the present invention includes a first substrate on which a first electrode is formed, a first substrate, a second substrate, and a second substrate. A monofunctional monomer 14.0 to 16.0% by mass, sandwiched between the second substrate on which the electrode is formed, the first substrate and the second substrate, and based on the total amount of the composition, A polymer / liquid crystal composite which is a polymer of a polymerizable composition containing 3.0 to 5.0% by mass of a bifunctional monomer and 0.5 to 1.5% by mass of a polyfunctional monomer, and the balance being a liquid crystal material Material.
 ここで、単官能モノマーと、二官能モノマーと、多官能モノマーとが混合された重合性組成物によって、反応点が複数個存在し、その結果、重合させるときの反応速度が速い。
 また、これらモノマーが所定の濃度で配合されているので、低駆動電圧化と高応答速度化とを両立させることができる。
Here, due to the polymerizable composition in which the monofunctional monomer, the bifunctional monomer, and the polyfunctional monomer are mixed, a plurality of reaction points exist, and as a result, the reaction rate when polymerizing is high.
Moreover, since these monomers are blended at a predetermined concentration, it is possible to achieve both a low driving voltage and a high response speed.
 本発明に係る重合性組成物は、重合してもドメインが微細である。
 本発明に係る液晶表示素子は、ドメインの経年劣化が起こりにくい。
The polymerizable composition according to the present invention has fine domains even when polymerized.
In the liquid crystal display element according to the present invention, aging of the domain hardly occurs.
本発明の重合性組成物を用いて製造された透過型液晶表示素子の一例を示す概略図である。It is the schematic which shows an example of the transmissive liquid crystal display element manufactured using the polymeric composition of this invention. 本発明の重合性組成物を用いて製造された反射型液晶表示素子の一例を示す概略図である。It is the schematic which shows an example of the reflection type liquid crystal display element manufactured using the polymeric composition of this invention. 実施例1で得られたカラーTFT液晶表示素子の試験体の偏光顕微鏡写真のコピーである。2 is a copy of a polarizing microscope photograph of a test body of a color TFT liquid crystal display element obtained in Example 1. 実施例2で得られたカラーTFT液晶表示素子の試験体の偏光顕微鏡写真のコピーである。2 is a copy of a polarizing microscope photograph of a test body of a color TFT liquid crystal display element obtained in Example 2. 比較例1で得られたカラーTFT液晶表示素子の試験体の偏光顕微鏡写真のコピーである。2 is a copy of a polarizing microscope photograph of a test body of a color TFT liquid crystal display element obtained in Comparative Example 1.
 以下、本発明の実施の形態について図面を参照しながら説明し、本発明の理解に供する。
 本発明の重合性組成物は、組成物全量基準で、単官能モノマー14.0~16.0質量%と、二官能モノマー3.0~5.0質量%と、多官能モノマー0.5~1.5質量%とを含み、残部が液晶材料である混合物である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings to facilitate understanding of the present invention.
The polymerizable composition of the present invention has a monofunctional monomer of 14.0 to 16.0% by mass, a bifunctional monomer of 3.0 to 5.0% by mass, and a polyfunctional monomer of 0.5 to A mixture containing 1.5% by mass and the balance being a liquid crystal material.
 ここで、多官能モノマーは、3個以上の官能基を持つモノマーである。
 また、単官能モノマー、二官能モノマー、及び多官能モノマーは、光照射(光露光)即ち紫外線照射にて重合可能である。
Here, the polyfunctional monomer is a monomer having three or more functional groups.
Monofunctional monomers, bifunctional monomers, and polyfunctional monomers can be polymerized by light irradiation (light exposure), that is, ultraviolet irradiation.
 また、単官能モノマーとしては、例えば、3,5,5-トリメチルヘキシルアクリレート、2-ヘキシルアクリレート、ブトキシエチルアクリレート、ヒドロキシエチルアクリレート、フェノキシエチルアクリレート、2-(2-エトキシエトキシ)エチルアクリレート、ジ(エチレングリコール)2-エチルヘキシルエーテルアクリレート、ポリエチレングリコールメチルエーテルアクリレート、及びこれらの少なくとも2種の混合物が挙げられる。 Examples of the monofunctional monomer include 3,5,5-trimethylhexyl acrylate, 2-hexyl acrylate, butoxyethyl acrylate, hydroxyethyl acrylate, phenoxyethyl acrylate, 2- (2-ethoxyethoxy) ethyl acrylate, di ( Ethylene glycol) 2-ethylhexyl ether acrylate, polyethylene glycol methyl ether acrylate, and mixtures of at least two of these.
 また、二官能モノマーとしては、例えば、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、及びこれらの混合物が挙げられる。 Examples of the bifunctional monomer include 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, and mixtures thereof.
 また、多官能モノマーとしては、例えば、ジペンタエリスリトールヘキサアクリレート、トリメチロールプロパントリアクリレート、トリファンクショナルアクリレートエステル、及びこれらの少なくとも2種の混合物が挙げられる。 In addition, examples of the polyfunctional monomer include dipentaerythritol hexaacrylate, trimethylolpropane triacrylate, trifunctional acrylate ester, and a mixture of at least two of these.
 また、液晶表示素子の駆動電圧は低いほど好ましく、駆動電圧を低く抑えるために単官能モノマーを配合するが、一方で駆動電圧が下がると、液晶の応答速度も下がってしまう。従って、低駆動電圧化と高応答速度化を両立させるために、本発明の重合性組成物において、単官能モノマーと、二官能モノマーと、多官能モノマーの配合割合は、組成物全量基準で、単官能モノマー14.0~16.0質量%、二官能モノマー3.0~5.0質量%、そして多官能モノマー0.5~1.5質量%である。 In addition, the lower the driving voltage of the liquid crystal display element, the better, and a monofunctional monomer is blended in order to keep the driving voltage low. Therefore, in order to achieve both low driving voltage and high response speed, in the polymerizable composition of the present invention, the blending ratio of the monofunctional monomer, the bifunctional monomer, and the polyfunctional monomer is based on the total amount of the composition. The monofunctional monomer is 14.0 to 16.0% by mass, the bifunctional monomer is 3.0 to 5.0% by mass, and the polyfunctional monomer is 0.5 to 1.5% by mass.
 また、本発明の重合性組成物は、組成物全量基準で、単官能モノマー14.0~16.0質量%と、二官能モノマー3.0~5.0質量%と、多官能モノマー0.5~1.5質量%とを含み、残部が液晶材料であれば、重合性組成物には、硬化速度(重合速度)を速めるために、光硬化開始剤(光重合開始剤)が添加されてもよい。 The polymerizable composition of the present invention comprises 14.0 to 16.0% by mass of a monofunctional monomer, 3.0 to 5.0% by mass of a bifunctional monomer, and 0. If the balance is 5 to 1.5% by mass and the balance is a liquid crystal material, a photocuring initiator (photopolymerization initiator) is added to the polymerizable composition in order to increase the curing rate (polymerization rate). May be.
 光硬化開始剤(光重合開始剤)としては、ベンゾインエーテル系化合物、ベンゾフェノン系化合物、アセトフェノン系化合物、チオキサントン系化合物などが挙げられ、具体的には例えば、2-ジメトキシ-2-フェニルアセトフェノンが挙げられる。 Examples of the photocuring initiator (photopolymerization initiator) include benzoin ether compounds, benzophenone compounds, acetophenone compounds, thioxanthone compounds, and specific examples include 2-dimethoxy-2-phenylacetophenone. It is done.
 次に、本発明の重合性組成物を用いて、液晶表示素子を製造する方法の一例を説明する。
 本発明の重合性組成物を、真空注入装置内において、透明電極付きの2枚のガラス基板またはフィルム基板の間に、真空注入法によって充填し、その後、重合性組成物に光照射(光露光)する。
Next, an example of a method for producing a liquid crystal display element using the polymerizable composition of the present invention will be described.
The polymerizable composition of the present invention is filled in a vacuum injection apparatus between two glass substrates or film substrates with a transparent electrode by a vacuum injection method, and then the polymerizable composition is irradiated with light (light exposure). )
 そして、光照射(光露光)の間、複数のモノマーが共重合して高分子化し、液晶材料と高分子材料とが、ミクロ相分離を起こすことで薄膜(液晶層)を形成する。 Then, during light irradiation (light exposure), a plurality of monomers are copolymerized to be polymerized, and the liquid crystal material and the polymer material undergo microphase separation to form a thin film (liquid crystal layer).
 以上の手順により、液晶材料が高分子材料中に液滴状に分散された状態の高分子/液晶複合材料が、ガラス基板またはフィルム基板の間に挟持された、液晶表示素子が得られる。 By the above procedure, a liquid crystal display element is obtained in which a polymer / liquid crystal composite material in which a liquid crystal material is dispersed in the form of droplets in a polymer material is sandwiched between glass substrates or film substrates.
 ここで言う光照射とは、一般に紫外線照射を意味する。また、紫外線を発生させるランプとしては、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプなどが挙げられる。 “Light irradiation” here generally means ultraviolet irradiation. Examples of lamps that generate ultraviolet rays include metal halide lamps, high-pressure mercury lamps, and ultra-high pressure mercury lamps.
 また、照射する紫外線の波長としては、本発明の重合性組成物に含有されている光重合開始剤の吸収波長領域であり、且つ含有されている液晶材料の吸収波長域ではない波長領域の波長が好ましい。
 具体的には、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプを使用し、330nm未満の紫外線をカットして使用することが好ましい。また、単一波長を照射できるUV-LEDランプを用いてもよい。
Further, the wavelength of the ultraviolet rays to be irradiated is a wavelength in a wavelength region that is an absorption wavelength region of the photopolymerization initiator contained in the polymerizable composition of the present invention and that is not an absorption wavelength region of the contained liquid crystal material. Is preferred.
Specifically, it is preferable to use a metal halide lamp, a high-pressure mercury lamp, or an ultra-high pressure mercury lamp, and cut off ultraviolet rays of less than 330 nm. Further, a UV-LED lamp that can irradiate a single wavelength may be used.
 また、紫外線照射を行う際の光照度は、10mW/cm~40mW/cm、特に10mW/cm~30mW/cmが好ましい。光照度が10mW/cmより低いと、液晶表示素子の駆動電圧が高くなる傾向があり、他方、30mW/cmより高いと、液晶表示素子の耐久性が低くなる傾向がある。 Further, the light illuminance upon ultraviolet irradiation is preferably 10 mW / cm 2 to 40 mW / cm 2 , particularly preferably 10 mW / cm 2 to 30 mW / cm 2 . When the light illuminance is lower than 10 mW / cm 2 , the driving voltage of the liquid crystal display element tends to be high, whereas when it is higher than 30 mW / cm 2 , the durability of the liquid crystal display element tends to be low.
 また、照射時間は5秒~100秒、特に30秒~60秒が好ましく、5秒より短くても60秒より長くても液晶表示素子の耐久性が低い傾向にある。 Further, the irradiation time is preferably 5 to 100 seconds, particularly preferably 30 to 60 seconds, and the durability of the liquid crystal display element tends to be low even if it is shorter than 5 seconds or longer than 60 seconds.
 図1は、本発明の重合性組成物を用いて製造された透過型液晶表示素子の一例を示す概略図である。
 図1において、透過型液晶表示素子1は、ITO(インジウムスズ酸化物)で構成された第1のITO電極(第1の電極の一例である。)4が一方の面に形成された第1のフィルム基板(第1の基板の一例である。)2を備える。
FIG. 1 is a schematic view showing an example of a transmissive liquid crystal display device manufactured using the polymerizable composition of the present invention.
In FIG. 1, a transmissive liquid crystal display element 1 includes a first ITO electrode (an example of a first electrode) 4 made of ITO (indium tin oxide) 4 formed on one surface. Film substrate (which is an example of a first substrate) 2.
 また、透過型液晶表示素子1は、第1のフィルム基板2と対向して配置されると共に、ITOで構成された第2のITO電極(第2の電極の一例である。)5が一方の面に形成された第2のフィルム基板(第2の基板の一例である。)3を備える。 In addition, the transmissive liquid crystal display element 1 is disposed to face the first film substrate 2 and a second ITO electrode (an example of a second electrode) 5 made of ITO is one of them. A second film substrate (an example of a second substrate) 3 formed on the surface is provided.
 また、図に示すように、第1のフィルム基板2と、第2のフィルム基板3とは、互いに電極を対向させて配置されており、第1のフィルム基板2と第2のフィルム基板3との間に、高分子/液晶複合材料6が挟持されている。 Moreover, as shown in the figure, the first film substrate 2 and the second film substrate 3 are arranged with the electrodes facing each other, and the first film substrate 2 and the second film substrate 3 The polymer / liquid crystal composite material 6 is sandwiched between them.
 ここで、高分子/液晶複合材料6は、例えば真空注入法で第1のフィルム基板2と第2のフィルム基板3との間に充填された本発明の重合性組成物に、紫外線を照射して得られたものである。 Here, the polymer / liquid crystal composite material 6 irradiates the polymerizable composition of the present invention filled between the first film substrate 2 and the second film substrate 3 with ultraviolet rays, for example, by a vacuum injection method. It was obtained.
 ここで、第1の基板及び第2の基板の例として、フィルム基板を挙げたが、必ずしもフィルム基板でなくてもよく、例えばガラス基板でもよいことは勿論である。 Here, a film substrate is used as an example of the first substrate and the second substrate. However, the substrate is not necessarily a film substrate, and may of course be a glass substrate.
 また、液晶表示素子は通常、偏光板を備えているが、本発明のように高分子/液晶複合材料を使用した場合は、偏光板が不要になる。 The liquid crystal display element usually includes a polarizing plate. However, when a polymer / liquid crystal composite material is used as in the present invention, the polarizing plate is not necessary.
 図2は、本発明の重合性組成物を用いて製造された反射型液晶表示素子の一例を示す概略図である。
 図2に示すように、反射型液晶表示素子8は、第1のフィルム基板2の他方の面に取付けられた反射板7を備える点以外は、透過型液晶表示素子1と同じである。
FIG. 2 is a schematic view showing an example of a reflective liquid crystal display device manufactured using the polymerizable composition of the present invention.
As shown in FIG. 2, the reflective liquid crystal display element 8 is the same as the transmissive liquid crystal display element 1 except that the reflective liquid crystal display element 8 includes a reflective plate 7 attached to the other surface of the first film substrate 2.
 以下に、本発明の特徴をさらに具体的に明らかにするため実施例を記すが、この例のみに制限されるものではない。 Hereinafter, examples will be described in order to clarify the features of the present invention more specifically. However, the present invention is not limited to these examples.
 <実施例1>
 単官能モノマーとして3,5,5-トリメチルヘキシルアクリレート15.3質量パーセント、二官能モノマーとして1,6-ヘキサンジオールジアクリレート3.5質量パーセント、多官能モノマーとしてトリメチロールプロパントリアクリレート1.0質量パーセント、液晶80.2質量パーセントを混合した。
<Example 1>
Monofunctional monomer, 3,5,5-trimethylhexyl acrylate 15.3 mass percent, bifunctional monomer 1,6-hexanediol diacrylate 3.5 mass percent, polyfunctional monomer trimethylolpropane triacrylate 1.0 mass Percent and 80.2 mass percent of liquid crystal were mixed.
 次に、混合物中に、光重合開始剤として2-ジメトキシ-2-フェニルアセトフェノンをモノマーの全量に対して5.0質量パーセント加え、液晶分子と重合性物質の重合性組成物を作製した。 Next, 2-dimethoxy-2-phenylacetophenone as a photopolymerization initiator was added to the mixture in an amount of 5.0% by mass based on the total amount of monomers to prepare a polymerizable composition of liquid crystal molecules and a polymerizable substance.
 次に、得られた重合性組成物を、透過型の空のセル基板内に真空注入法によって注入した。真空注入法の具体的な手順は以下のとおりである。 Next, the obtained polymerizable composition was injected into a transmissive empty cell substrate by a vacuum injection method. The specific procedure of the vacuum injection method is as follows.
 得られた重合性組成物を貯留した液晶皿と、空のセル基板を、真空装置に設けられた真空注入装置内に入れた。そして、真空注入装置内を真空排気して減圧し、セル基板内と重合性組成物を脱気した。 The liquid crystal dish storing the obtained polymerizable composition and the empty cell substrate were placed in a vacuum injection apparatus provided in the vacuum apparatus. Then, the inside of the vacuum injection apparatus was evacuated and decompressed, and the inside of the cell substrate and the polymerizable composition were deaerated.
 セル基板の内部を充分に真空引きし、重合性組成物中の空気を抜くために一定時間真空状態を保った後、セル基板の注入口を、液晶皿内の重合性組成物に接触させた。 After sufficiently evacuating the inside of the cell substrate and keeping the vacuum state for a certain period of time to remove air in the polymerizable composition, the inlet of the cell substrate was brought into contact with the polymerizable composition in the liquid crystal dish. .
 次に、真空注入装置内を大気圧に戻すことにより、液晶皿内の重合性組成物がセル基板内に吸い上げられ、セル基板内に重合性組成物を充填させた。 Next, by returning the inside of the vacuum injection apparatus to atmospheric pressure, the polymerizable composition in the liquid crystal dish was sucked into the cell substrate, and the polymerizable composition was filled in the cell substrate.
 その後、15mW/cmの強度の紫外線を、TFTアレイが形成されたセル基板側より、22℃で60秒間、セル基板に均一に照射することにより、モノマーを高分子化させた。このようにして、実施例1のカラーTFT液晶表示素子の試験体が得られた。 Then, the monomer was polymerized by uniformly irradiating the cell substrate with ultraviolet rays having an intensity of 15 mW / cm 2 at 22 ° C. for 60 seconds from the cell substrate side on which the TFT array was formed. In this way, a test body of the color TFT liquid crystal display element of Example 1 was obtained.
 <実施例2>
 単官能モノマーとしてジ(エチレングリコール)2-エチルヘキシルエーテルアクリレート15.4質量パーセント、二官能モノマーとして、1,6-ヘキサンジオールジアクリレート3.8質量パーセント、多官能モノマーとしてトリメチロールプロパントリアクリレート1.0質量パーセント、液晶79.8質量パーセントを混合した。
<Example 2>
15.4 weight percent of di (ethylene glycol) 2-ethylhexyl ether acrylate as a monofunctional monomer, 3.8 weight percent of 1,6-hexanediol diacrylate as a bifunctional monomer, and trimethylolpropane triacrylate as a polyfunctional monomer. 0 mass percent and 79.8 mass percent of liquid crystal were mixed.
 次に、混合物中に、光重合開始剤として2-ジメトキシ-2-フェニルアセトフェノンをモノマーの全量に対して5.0質量パーセント加え、液晶分子と重合性物質の重合性組成物を作製した。 Next, 2-dimethoxy-2-phenylacetophenone as a photopolymerization initiator was added to the mixture in an amount of 5.0% by mass based on the total amount of monomers to prepare a polymerizable composition of liquid crystal molecules and a polymerizable substance.
 次に、実施例1と同様に真空注入法によって、セル基板内に重合性組成物を充填させた。その後、30mW/cmの強度の紫外線を、TFTアレイが形成されたセル基板側より、29℃で60秒間、セル基板に均一に照射することにより、モノマーを高分子化させた。このようにして、実施例2のカラーTFT液晶表示素子の試験体が得られた。 Next, the polymerizable composition was filled in the cell substrate by vacuum injection as in Example 1. Then, the monomer was polymerized by uniformly irradiating the cell substrate with ultraviolet rays having an intensity of 30 mW / cm 2 at 29 ° C. for 60 seconds from the cell substrate side on which the TFT array was formed. In this way, a test body of the color TFT liquid crystal display element of Example 2 was obtained.
 <比較例1>
 一般的に使用されている重合性液晶化合物(液晶性モノマー)を、実施例1と同様に真空注入法によって、セル基板内に充填させた。
 その後、30mW/cmの強度の紫外線を、TFTアレイが形成されたセル基板側より、25℃で30秒間、セル基板に均一に照射することにより、モノマーを高分子化させた。このようにして、比較例1のカラーTFT液晶表示素子の試験体が得られた。
<Comparative Example 1>
A commonly used polymerizable liquid crystal compound (liquid crystal monomer) was filled in the cell substrate by vacuum injection as in Example 1.
Then, the monomer was polymerized by uniformly irradiating the cell substrate with ultraviolet rays having an intensity of 30 mW / cm 2 at 25 ° C. for 30 seconds from the cell substrate side on which the TFT array was formed. In this way, a test body of the color TFT liquid crystal display element of Comparative Example 1 was obtained.
 実施例1、実施例2及び比較例1でそれぞれ得られたカラーTFT液晶表示素子の試験体を、偏光顕微鏡(拡大倍率は500倍、偏光板角度は直交状態)によって撮像した。
 得られた写真のコピーを、図3、図4及び図5に示す。ここで使用した透過型のカラーTFT液晶表示素子の空隙(ギャップ)は、実施例1、実施例2及び比較例1において同じである。
The color TFT liquid crystal display device specimens obtained in Example 1, Example 2 and Comparative Example 1 were imaged with a polarizing microscope (magnification magnification is 500 times, polarizing plate angle is orthogonal).
A copy of the resulting photograph is shown in FIGS. The gap (gap) of the transmissive color TFT liquid crystal display element used here is the same in Example 1, Example 2, and Comparative Example 1.
 偏光顕微鏡で観察した結果、ドメインの大きさが5μmより大きければ「大きい」と判定し、5μmより小さければ「小さい」と判定した。結果を表1に示す。 As a result of observing with a polarizing microscope, the domain size was determined to be “large” if it was larger than 5 μm, and it was determined to be “small” if it was smaller than 5 μm. The results are shown in Table 1.
 また、実施例1、実施例2及び比較例1でそれぞれ得られたカラーTFT液晶表示素子の試験体について、駆動電圧とヒステリシスを測定した。結果を表1に示す。 In addition, the driving voltage and the hysteresis were measured for the color TFT liquid crystal display element specimens obtained in Example 1, Example 2 and Comparative Example 1, respectively. The results are shown in Table 1.
 また、実施例1で用いた3,5,5-トリメチルヘキシルアクリレート、実施例2で用いたジ(エチレングリコール)2-エチルヘキシルエーテルアクリレート、及び比較例1で用いた重合性液晶化合物をそれぞれ同じ形状の容器に入れ、容器を真空度100kPaの真空装置内に10分間入れたときの各物質の質量変化率を測定した。結果を表1に示す。 In addition, the 3,5,5-trimethylhexyl acrylate used in Example 1, the di (ethylene glycol) 2-ethylhexyl ether acrylate used in Example 2, and the polymerizable liquid crystal compound used in Comparative Example 1 have the same shape. The mass change rate of each substance when the container was placed in a vacuum apparatus with a degree of vacuum of 100 kPa for 10 minutes was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図3及び図4から判るように、本発明の重合性組成物を用いて得られたカラーTFT液晶表示素子の試験体(実施例1及び実施例2)は、画素全体のドメインが比較的小さく、また均一に形成されていた。 As can be seen from FIG. 3 and FIG. 4, the color TFT liquid crystal display element test body (Example 1 and Example 2) obtained using the polymerizable composition of the present invention has a relatively small domain of the entire pixel. Also, it was uniformly formed.
 一方、図5から判るように、従来の重合性液晶化合物(液晶性モノマー)を用いて得られたカラーTFT液晶表示素子の試験体(比較例1)は、画素全体においてドメインが大きくなっていた。
 従って、従来の重合性液晶化合物(液晶性モノマー)を用いたカラーTFT液晶表示素子は、コントラストの低下や反射率の低下が懸念される。
On the other hand, as can be seen from FIG. 5, the color TFT liquid crystal display element test body (Comparative Example 1) obtained using a conventional polymerizable liquid crystal compound (liquid crystal monomer) had a large domain in the entire pixel. .
Therefore, a color TFT liquid crystal display element using a conventional polymerizable liquid crystal compound (liquid crystalline monomer) is concerned about a decrease in contrast and a decrease in reflectance.
 また、表1に示すように、実施例1で使用した単官能モノマー(3,5,5-トリメチルヘキシルアクリレート)は、真空度100kPaの真空状態で10分間配置されると、揮発して質量が32%減少した。 As shown in Table 1, the monofunctional monomer (3,5,5-trimethylhexyl acrylate) used in Example 1 volatilizes and has a mass when placed in a vacuum state of 100 kPa for 10 minutes. It decreased by 32%.
 従って、3,5,5-トリメチルヘキシルアクリレートを含んだ重合性組成物を、真空注入法によってセル基板内に充填する場合、この重合性組成物を重合して得られる高分子/液晶複合材料の組成比が変化するので、設計時に予期していた光学特性が得られない、という懸念が生じる。 Therefore, when a polymerizable composition containing 3,5,5-trimethylhexyl acrylate is filled into a cell substrate by a vacuum injection method, a polymer / liquid crystal composite material obtained by polymerizing the polymerizable composition is used. Since the composition ratio changes, there is a concern that the optical characteristics expected at the time of design cannot be obtained.
 これに対して、表1に示すように、実施例2で使用した単官能モノマー(ジ(エチレングリコール)2-エチルヘキシルエーテルアクリレート)は、真空度100kPaの真空状態で10分間配置されても揮発せず、質量変化もなかった。 On the other hand, as shown in Table 1, the monofunctional monomer (di (ethylene glycol) 2-ethylhexyl ether acrylate) used in Example 2 does not volatilize even when placed in a vacuum state of 100 kPa for 10 minutes. There was no change in mass.
 従って、ジ(エチレングリコール)2-エチルヘキシルエーテルアクリレートを含んだ重合性組成物を、真空注入法によってセル基板内に充填する場合、この重合性組成物を重合して得られる高分子/液晶複合材料の組成比は変化しないので、設計時に予期していた光学特性を得ることができる。 Accordingly, when a polymerizable composition containing di (ethylene glycol) 2-ethylhexyl ether acrylate is filled into a cell substrate by a vacuum injection method, a polymer / liquid crystal composite material obtained by polymerizing the polymerizable composition Therefore, the optical characteristics expected at the time of design can be obtained.
 以上のように、本発明の重合性組成物は、単官能モノマーと、二官能モノマーと、多官能モノマーとが混合されているので、反応点が複数個存在し、その結果、重合させるときの反応速度が速い。 As described above, since the polymerizable composition of the present invention is a mixture of a monofunctional monomer, a bifunctional monomer, and a polyfunctional monomer, there are a plurality of reaction points, and as a result, when the polymerization is performed. The reaction rate is fast.
 従って、本発明に係る重合性組成物は、重合してもドメインが微細である。
 また、このような重合性組成物を基板の間に挟持した液晶表示素子も、重合してもドメインが微細であるから、液晶表示素子のアレイ基板の下にある未重合のモノマーと、ドメインとの融合が生じにくくなり、よってドメインの経年劣化は起こりにくい。
Therefore, the polymerizable composition according to the present invention has fine domains even when polymerized.
In addition, since the liquid crystal display element in which such a polymerizable composition is sandwiched between the substrates is polymerized, the domain is fine, so that the unpolymerized monomer under the array substrate of the liquid crystal display element, the domain, Fusion is less likely to occur, and therefore the aging of the domain is less likely to occur.
   1  透過型液晶表示素子
   2  第1のフィルム基板
   3  第2のフィルム基板
   4  第1のITO電極
   5  第2のITO電極
   6  高分子/液晶複合材料
   7  反射板
   8  反射型液晶表示素子
DESCRIPTION OF SYMBOLS 1 Transmission type liquid crystal display element 2 1st film substrate 3 2nd film substrate 4 1st ITO electrode 5 2nd ITO electrode 6 Polymer / liquid crystal composite material 7 Reflector 8 Reflection type liquid crystal display element

Claims (4)

  1.  組成物全量基準で、
     単官能モノマー14.0~16.0質量%と、
     二官能モノマー3.0~5.0質量%と、
     多官能モノマー0.5~1.5質量%とを含み、
     残部が液晶材料である
     重合性組成物。
    Based on the total amount of the composition,
    Monofunctional monomer 14.0 to 16.0% by mass,
    3.0 to 5.0% by weight of bifunctional monomer,
    Containing 0.5 to 1.5% by mass of a polyfunctional monomer,
    A polymerizable composition, the balance being a liquid crystal material.
  2.  前記単官能モノマーは、ジ(エチレングリコール)2-エチルヘキシルエーテルアクリレートである
     請求項1に記載の重合性組成物。
    The polymerizable composition according to claim 1, wherein the monofunctional monomer is di (ethylene glycol) 2-ethylhexyl ether acrylate.
  3.  前記二官能モノマーは、1,6-ヘキサンジオールジアクリレートであり、
     前記多官能モノマーは、トリメチロールプロパントリアクリレートである
     請求項1または請求項2に記載の重合性組成物。
    The bifunctional monomer is 1,6-hexanediol diacrylate;
    The polymerizable composition according to claim 1, wherein the polyfunctional monomer is trimethylolpropane triacrylate.
  4.  第1の電極が形成された第1の基板と、
     該第1の基板と対向して配置されると共に、第2の電極が形成された第2の基板と、
     前記第1の基板と前記第2の基板との間に挟持されると共に、組成物全量基準で、単官能モノマー14.0~16.0質量%と、二官能モノマー3.0~5.0質量%と、多官能モノマー0.5~1.5質量%とを含み残部が液晶材料である重合性組成物の重合体である高分子/液晶複合材料とを備える
     液晶表示素子。
    A first substrate on which a first electrode is formed;
    A second substrate disposed opposite to the first substrate and having a second electrode formed thereon;
    The monofunctional monomer 14.0 to 16.0% by mass and the bifunctional monomer 3.0 to 5.0 are sandwiched between the first substrate and the second substrate and based on the total amount of the composition. A liquid crystal display device comprising: a polymer / liquid crystal composite material that is a polymer of a polymerizable composition that includes 0.5% by mass and a polyfunctional monomer of 0.5 to 1.5% by mass with the balance being a liquid crystal material.
PCT/JP2011/075065 2011-10-31 2011-10-31 Polymerizable composition and liquid crystal display element WO2013065100A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/075065 WO2013065100A1 (en) 2011-10-31 2011-10-31 Polymerizable composition and liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/075065 WO2013065100A1 (en) 2011-10-31 2011-10-31 Polymerizable composition and liquid crystal display element

Publications (1)

Publication Number Publication Date
WO2013065100A1 true WO2013065100A1 (en) 2013-05-10

Family

ID=48191496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075065 WO2013065100A1 (en) 2011-10-31 2011-10-31 Polymerizable composition and liquid crystal display element

Country Status (1)

Country Link
WO (1) WO2013065100A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2277744A (en) * 1993-05-03 1994-11-09 Merck Patent Gmbh PDLC system based on thiol-ene type polymer matrix precursor
JPH0862561A (en) * 1994-08-19 1996-03-08 Ricoh Co Ltd Liquid crystal prepolymer composition and liquid crystal display element using same
JPH09218396A (en) * 1996-02-14 1997-08-19 Hitachi Cable Ltd Polymer dispersion type liquid crystal display element
JPH10102061A (en) * 1996-09-27 1998-04-21 Hitachi Cable Ltd Liquid crystal display element
JPH11344693A (en) * 1998-06-03 1999-12-14 Canon Inc Polymer dispersion type liquid crystal display device and its production
JPH11349949A (en) * 1998-06-03 1999-12-21 Canon Inc Polymer dispersion type liquid crystal element and its production
JP2002072180A (en) * 2000-08-28 2002-03-12 Canon Inc Liquid crystal element
JP2002148600A (en) * 2000-11-14 2002-05-22 Canon Inc Polymer dispersion type liquid crystal element and method of manufacture
JP2002182188A (en) * 2000-10-02 2002-06-26 Omron Corp (polymer/liquid crystal) composite film display and method of manufacturing the same
JP2003131234A (en) * 2001-10-25 2003-05-08 Canon Inc Polymer dispersion type liquid crystal element
JP2004013131A (en) * 2002-06-12 2004-01-15 Japan Science & Technology Corp Liquid crystal display element and method for manufacturing the same
JP2004051783A (en) * 2002-07-19 2004-02-19 Omron Corp Photocurable resin composition capable of forming porous material, and porous cured resin
JP2010014869A (en) * 2008-07-02 2010-01-21 Dic Corp Liquid crystal element

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2277744A (en) * 1993-05-03 1994-11-09 Merck Patent Gmbh PDLC system based on thiol-ene type polymer matrix precursor
JPH0862561A (en) * 1994-08-19 1996-03-08 Ricoh Co Ltd Liquid crystal prepolymer composition and liquid crystal display element using same
JPH09218396A (en) * 1996-02-14 1997-08-19 Hitachi Cable Ltd Polymer dispersion type liquid crystal display element
JPH10102061A (en) * 1996-09-27 1998-04-21 Hitachi Cable Ltd Liquid crystal display element
JPH11344693A (en) * 1998-06-03 1999-12-14 Canon Inc Polymer dispersion type liquid crystal display device and its production
JPH11349949A (en) * 1998-06-03 1999-12-21 Canon Inc Polymer dispersion type liquid crystal element and its production
JP2002072180A (en) * 2000-08-28 2002-03-12 Canon Inc Liquid crystal element
JP2002182188A (en) * 2000-10-02 2002-06-26 Omron Corp (polymer/liquid crystal) composite film display and method of manufacturing the same
JP2002148600A (en) * 2000-11-14 2002-05-22 Canon Inc Polymer dispersion type liquid crystal element and method of manufacture
JP2003131234A (en) * 2001-10-25 2003-05-08 Canon Inc Polymer dispersion type liquid crystal element
JP2004013131A (en) * 2002-06-12 2004-01-15 Japan Science & Technology Corp Liquid crystal display element and method for manufacturing the same
JP2004051783A (en) * 2002-07-19 2004-02-19 Omron Corp Photocurable resin composition capable of forming porous material, and porous cured resin
JP2010014869A (en) * 2008-07-02 2010-01-21 Dic Corp Liquid crystal element

Similar Documents

Publication Publication Date Title
TWI356246B (en) Retardation film having a homeotropic alignment li
JP6448397B2 (en) Phosphor dispersion composition and fluorescent molded body, wavelength conversion film, wavelength conversion member, backlight unit, and liquid crystal display device obtained by using the same
TWI333109B (en) Liquid crystal display device and method of producing the same
JP2610686B2 (en) Dispersion of liquid crystal droplets in a photopolymerization matrix and apparatus and method manufactured therefrom
TWI471398B (en) A polarizing plate and a laminated optical member using the same
KR101701183B1 (en) Polymerizable composition, polymer, image display device, and method for producing same
JP2004515633A (en) Layer-separated composite with cross-linked polymer layer
TW200914923A (en) Image display device and method for manufacturing the same
CN103180410A (en) Liquid crystal composition containing polymerizable compound, and liquid crystal display element utilizing same
CN103782230A (en) Method for manufacturing liquid-crystal display device
JP7498681B2 (en) Retardation film, polarizing plate compensation film, and external light anti-reflection film
KR20150093751A (en) Display apparatus
WO2002006859A1 (en) Light diffusing films
KR101809987B1 (en) Liquid crystal display device and manufacturing method thereof
TW201215970A (en) Liquid crystal alignment process
TWI364592B (en) Display
WO2011129012A1 (en) Solar-cell coating layer and manufacturing method therefor
JP2009258214A (en) Display device
JP2010277072A (en) Liquid crystal sealing agent and liquid crystal display cell obtained using the same
JP5645765B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP5804867B2 (en) Liquid pressure-sensitive adhesive composition, optical member enclosing the composition, and method for producing the optical member
WO2013065100A1 (en) Polymerizable composition and liquid crystal display element
JPWO2013065100A1 (en) Polymerizable composition and liquid crystal display device
EP0540806A2 (en) Liquid crystal film
WO2014187050A1 (en) Preparation method for pdlc liquid crystal panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541493

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875160

Country of ref document: EP

Kind code of ref document: A1