WO2013064963A1 - Dispositif et système de télédétection pour des applications en agriculture et autres - Google Patents

Dispositif et système de télédétection pour des applications en agriculture et autres Download PDF

Info

Publication number
WO2013064963A1
WO2013064963A1 PCT/IB2012/055984 IB2012055984W WO2013064963A1 WO 2013064963 A1 WO2013064963 A1 WO 2013064963A1 IB 2012055984 W IB2012055984 W IB 2012055984W WO 2013064963 A1 WO2013064963 A1 WO 2013064963A1
Authority
WO
WIPO (PCT)
Prior art keywords
data acquisition
data
base station
module
acquisition device
Prior art date
Application number
PCT/IB2012/055984
Other languages
English (en)
Inventor
Reinoud Jacob HARTMAN
Original Assignee
Idus Controls Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idus Controls Ltd. filed Critical Idus Controls Ltd.
Publication of WO2013064963A1 publication Critical patent/WO2013064963A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/88Providing power supply at the sub-station
    • H04Q2209/883Providing power supply at the sub-station where the sensing device enters an active or inactive mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/88Providing power supply at the sub-station
    • H04Q2209/886Providing power supply at the sub-station using energy harvesting, e.g. solar, wind or mechanical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • This invention is related to the field of remote sensing devices and systems for agricultural and other applications that are able to sense environmental conditions over large geographical areas and transmit such data to a base station to enable better resource management decisions.
  • This invention generally concerns remote sensing devices.
  • Remote sensing devices are well known in the area of agricultural production and environmental monitoring. Such devices sense soil moisture content, rain-fall in a particular area, sunlight irradiation over time, pollution and particulate loads in the atmosphere. These devices range in complexity from satellite coverage systems down to single soil pH monitors. Conventional, complex, remote sensing devices are very expensive and their data must be processed into a usable format. Such data is often out of reach to a small farmer. At their most simple, remote sensing devices do not provide sufficient amounts and types of data for a comprehensive overview of the environmental condition of an agricultural field which may vary from one part of the field to another.
  • a remote sensing device and system that is able to provide relevant environmental data to a farmer in order to optimize agricultural production.
  • a modern farmer requires detailed data on environmental conditions affecting plant growth and health over the agricultural area throughout the growing season.
  • Growing regions may cover a large geographical area such as a prairie state or province or they may be localized to counties and individual farms. This area can have different environmental characteristics so the growing conditions across the area may also vary.
  • a remote sensing device and system that provides environmental data specific to a growing region or a portion of a growing region.
  • the sensing devices need to be able to communicate with adjacent devices and with a data-reporting base station in a networked fashion to eliminate the need for an expensive uplink from each device.
  • the sensing devices and systems must also be compact, low cost, fully integrated, self-powered, able to co-exist within conventional farming practice, and maintenance-free so that they can be installed in remote locations over a large agricultural region.
  • my invention provides a remote sensing device that is compact, solar-powered, battery-free, fully integrated and and driven by a microprocessor using a plurality of software modules containing neural network elements.
  • My invention operates as a single autonomous device in a local area or as a system comprising a networked array of devices over a larger geographical area such as a farm.
  • the invention is able to acquire, process and transmit data by Radio Frequency (RF) to the operator directly, or via an Ethernet connection, a cellular telephone network, or a combination thereof, to the Internet.
  • RF Radio Frequency
  • My invention provides for the use of portable computer devices to remotely program the device and receive the acquired data.
  • the invention uses software comprising a plurality of modules and neural network elements to store, process and compute, manage, and transmit data.
  • the software elements of the invention also provide for efficient energy use, system control, and communication functions.
  • Compact size contained in a weather-proof housing, solar-powered, battery-free operation, and ability to incorporate or connect with a variety of devices or sensors as well as monitor and operate other devices depending on the needs of the user;
  • the device As an autonomous single unit or as an array of devices in a network to record and monitor environmental and other conditions in adjacent locations or zones with individual devices in direct or indirect communication with a base-station module, which is in communication with a hand-held data collection device or the Internet via another Ethernet, or cell modem device;
  • Ease of association and security of data is achieved by a unique process, whereby a new 'adoptable' powered-up device is automatically associated with a unique base station identifier by passing it very near the base station;
  • An extraordinarily strong radio signal is received by the base device indicating the adjacent data acquisition device is to be added to the network so then the base station stores its unique family data on the device, irrevocably adopting the device and rendering it incapable of joining the network of any other base station with a different identifier;
  • the rounded surfaces of the device enabling it to be brushed aside without locking into passing machinery.
  • Figure 1 is a perspective view of one embodiment of the invention.
  • Figure 2 is a side view of one embodiment of the invention.
  • Figure 3A is a front face view of one embodiment of the invention.
  • Figure 3B is a cross-sectional side view of the embodiment of Figure 3A.
  • Figure 3C is one embodiment of the invention with a display panel.
  • Figure 4A is a side view of one embodiment of the invention.
  • Figure 4B is a cross-sectional side view of the embodiment of Figure 4A.
  • Figure 5 is an assembly view of one embodiment of the invention.
  • Figure 6 is a front view of the base of one embodiment of the invention.
  • Figure 7A is a top view of the base of one embodiment of the invention.
  • Figure 7B is a cross-sectional view of the base of Figure 7A along section BB.
  • Figure 8A is a top view of the circuit board of one embodiment of the invention.
  • Figure 8B is a back view of the circuit board of Figure 8A.
  • Figure 8C is a first side view of the circuit board of Figure 8A.
  • Figure 8D is a front view of the circuit board of Figure 8A.
  • Figure 8E is a second side view of the circuit board of Figure 8A.
  • Figure 8F is one illustration of the control module of the invention.
  • Figure 9A is a diagram of a network of devices in one embodiment of the invention.
  • Figure 9B is a diagram of another network of devices in one embodiment of the invention.
  • Figure 10 is a schematic diagram of external sensor connections in one embodiment of the invention.
  • Figure 11 is a view of LED placement in one embodiment of the invention.
  • Figure 12 is a circuit diagram of one embodiment of the invention.
  • FIG. 13 flow diagram of network start-up in one embodiment of the invention.
  • Figure 14 is a flow diagram of the sleep/wake cycle of one embodiment of the invention.
  • Figures 15A to 15C is a sequence of views of the device being deflected by farm machinery.
  • the device is small, light-weight and robust enough that it can be mounted to a flexible pole, brushed aside by a contacting machine and then spring back in an operating position when the machine passes over it.
  • Power is provided by a power module comprising a set of small solar panels incorporated into the device. These solar panels are oppositely disposed and in an angular orientation to capture solar energy early and late in the day. The solar panels act redundantly to handle cloudy conditions and different orientations of the sun as it moves across the sky during the day. Energy from the solar panels is managed in an optimal way by the control module comprising software elements to charge super capacitors which store the energy in order to supplement the solar panels during energy demand periods that exceed solar panel output. This feature provides for prolonged operational periods of data acquisition and transmission when there is little or no sunlight available for power generation.
  • the power control functions of the invention allow for much lower power requirements and enable practicable battery-free operation. This gives the device a long life cycle and nearly eliminates the need for human maintenance oversight.
  • Multiple devices can be deployed in a network arrangement. When deployed in a networked configuration, one of the devices is programmed to be the base station and the remaining devices in the network act as data acquisition devices. Each data acquisition device is able to relay a message from neighbouring devices to the base station in situations where a given device is disabled, unable to reach the base directly by line-of-sight or if the base station is beyond the device's RF transmission range. Each device is able to store its data internally on a memory device and sends a copy of each piece of data it has stored to the base station. In this way should the base station be destroyed or stolen collected data can be recovered from the data acquisition devices. The base station receives and stores data from the data acquisition devices and then re-transmits this data by transmission means such as RF, Ethernet, Internet or cellular network to a data recipient at a home station.
  • transmission means such as RF, Ethernet, Internet or cellular network
  • the base station is the administrative control centre for the network.
  • the base station assigns digital identifiers to the other data acquisition devices so that the latter devices are linked irrevocably with the base station network.
  • the network will have a common ID root (the digital identification of the base station) and the data acquisition devices have this root name as an element of the device name. For example, if the base station is called ABC then that will be the root name of the network.
  • Associated data acquisition devices called XYZ and MNO will be adopted by the base station ABC and renamed ABC-XYZ and ABC-MNO. Other deployed data acquisition devices will be named in a similar manner.
  • the base station monitors network operations over each 24 hour period and manages a unique sleep/wake cycle for the data acquisition devices to conserve power during the dusk to dawn or any low-light intensity period.
  • the base station operates to ensure that efficient communications are maintained between the data acquisition devices and the base station as well as between the data acquisition devices themselves.
  • the base station will periodically open channels to each of the data acquisition devices in order to receive the data that has been acquired.
  • the data is then transmitted to the base station for storage, processing and re-transmission to a recipient. Processing may include reformatting the data received from the data acquisition stations into a format optimized for the receiving environment of the home station.
  • the base station also has a maintenance function. For example, if any specific data acquisition device reports an energy storage level that falls below a set voltage level, the base station will invoke a sleep/wake cycle, commanding the energy deficient device to de-activate for a period of time in order to conserve power in the energy storage capacitors. If the base station detects that the voltage drop is consistent across a plurality of data acquisition devices it will command the entire network to de-activate for a period of time ranging from 30 minutes to 2 hours. De-activated devices continue to wake momentarily at a time designated by the base station to communicate data in a burst transmission and then resume sleeping until sufficient energy is absorbed through their solar panels to resume a fully-awake state.
  • the base station will receive data from the data acquisition device at 30 minute intervals as long as voltage levels are stable. If voltage levels rise then the data acquisition device will resume normal full-time operation. If voltage levels continue to fall the base station will command the data acquisition device to sleep for longer periods to preserve power. This allows data capture during dark periods when energy is at its lowest as well as efficient operation during daylight regardless of weather conditions.
  • the operating range between adjacent data acquisition devices and the base station is up to 1500 feet.
  • the power conservation features of the invention are critical to continuing data collection and transmission during seasons where darkness and low light conditions may last for up to 16 hours in a day.
  • One more feature of the invention is that the data acquisition devices deployed in a network configuration can be readily re-deployed, moved and replaced anywhere within the operating range of the network.
  • the internal communications module operating in each of the devices is able to re-establish communications with the base station and with neighbouring devices without human intervention.
  • Another feature of the invention is the use of a sub-group selection procedure that is managed by a neural network in the communication module within the base station.
  • the communication module neural network is trained by a first algorithm for achieving power optimized data transmission.
  • This feature optimizes RF communication between the networked devices, minimizes communications failures and reduces power consumption. This permits use of small-sized solar panels, thus reduces the size and increases the cost effectiveness and utility of the devices.
  • a further feature of the neural network algorithm in the communications module is the identification and correction of communications faults. If the base station identifies communication faults due to an over population of data acquisition devices communicating over an assigned RF frequency the base station will invoke the sub-group selection procedure which automatically assigns groups or tiers of data acquisition devices to multiple sub-bandwidths around its 915 MHz centre frequency to prevent cross-talk between devices and between adjacent networks. This optimizes communication and reduces transmission failures, reducing energy demands.
  • communication protocols managed by the communications module in each data acquisition device and the base station ensure that each data acquisition device is aware of and is regularly updated on the presence of any newly established communication links via other data acquisition devices to the base station.
  • the design provides for a highly efficient use of solar energy, very low power use during operation, power storage by super capacitors, and the use of intelligent neural network control module technology to enhance RF communications by optimization of sub group selection managed by the control module.
  • a further feature of the invention is that the device facilitates data collection, data file storage and management, and transmission of diverse data types without human intervention.
  • the data acquisition devices are able to autonomously establish alternative communication pathways to and through other near-by devices that are in communication with the base station. This ensures efficient operation of communications within the network and compensates for new obstructions, failed devices within a communication pathway, and removal or destruction of devices. It also enables ready deployment of additional devices.
  • the device is about the size of a 60 watt light bulb and can be installed on an appendage such as a flexible pole support for above-ground mounting. This permits installation in a farm field where the pole-mounted device may be in contact with a farm machine, automated irrigation machinery, or a farm animal. It is housed in a rounded plastic weather-proof case and is thus resistant to moisture, dirt and contact with other objects. If installed in a field with moving agricultural machinery, the device can be attached to the flexing pole and be placed above the ultimate crop height to ensure communication connectivity. When brushed aside by a passing pivot irrigator, it will spring back into place and resume connectivity.
  • the invention can be connected to or incorporate a number of sensors and components such as a light sensor, temperature sensor, a web camera, GPS transceiver, soil moisture sensor, soil pH sensor, irrigation water flow meter and a barometric pressure sensor.
  • sensors and components such as a light sensor, temperature sensor, a web camera, GPS transceiver, soil moisture sensor, soil pH sensor, irrigation water flow meter and a barometric pressure sensor.
  • each device of the invention may have an accelerometer, GPS, diagnostic LEDs and audio-generating devices in a user interface.
  • a remote user may also be able to interface with any of the data acquisition devices through cloud-based software that communicates with the base station, and from there relay commands and new programming to the data acquisition devices.
  • a camera is installed on the device it can be physically redirected over a limited range to monitor leaf growth, fruit growth and visual appearance of the crop.
  • the device could be mounted on a gimbal and hand oriented to monitor a specific object.
  • the camera can also be used for infrared sensing and area security, enabling monitoring by a remote user.
  • FIG. 1 there is shown one embodiment of the remote sensing and data acquisition device of the present invention 10.
  • the shape illustrated has generally a wedge profile. Other shapes are possible that meet the objectives of the invention.
  • the embodiment of the remote sensing device 10 illustrated comprises a base 12 and a transparent shell 14.
  • the shell 14 fits over the base 12 and is fixed in place by a pair of screws 16 on each side 17 and 19 of the base 12.
  • the shell can be fixed to the base by other moisture proof means such as an adhesive or using a sealed snap-fit.
  • the base further includes a threaded stem 18 so that the base can be attached to an appendage or mounting structure such as a pole if so desired.
  • Figures 15A to 15C wherein the device is spring mounted to a pole so that accidental contact with a passing machine does not damage the device.
  • the shell 14 is illustrated as transparent to permit solar energy 20 to penetrate through the shell and into the interior of the device 10. Shell transparency also allows an operator to view internal components and annunciating devices that may be visible inside the shell.
  • the shell 14 has a first face 22 and a second face 24.
  • the first face 22 is angled away from the vertical by a first angle 26 and the second face is angled away from the vertical by a second angle 28.
  • the first angle 26 and the second angle 28 are the same and are optimized for directing solar energy 20 into the interior of the device 10 as the sun moves across the sky during the beginning and end of the day.
  • the first face 22 and the second face 24 may include a lensing feature 30 and 32 to further intensify solar energy 20 entering the device 10.
  • first mounting structure 34 and a second mounting structure 36 under the shell 14 and mounted to the base 12 are shown a first mounting structure 34 and a second mounting structure 36.
  • the mounting structures are mounted vertical back 38 to vertical back 40 with a space 41 between.
  • the front faces 42 and 44 of the mounting structures 34 and 36 are angled 46 and 48.
  • the angle 46 and 48 are generally identical to angles 26 and 28 of the shell 14 first face 22 and second face 24 respectively.
  • the mounting structures 34 and 36 are mounted by mounting means 60 to the top surface 62 of the base 12.
  • Mounting means 60 can include screws, rivets oradhesive means.
  • FIG 3A there is shown a front view of face 22 of one embodiment of the invention 10 and a sectional side view of the same embodiment along section line B-B in Figure 3B.
  • Side 17 faces the viewer in Figure 3B.
  • Figure 3A illustrates face 22 of transparent shell 14 mounted to base 12 by mounting screws 16 in each of left side 17 and right side 19. Threaded mounting stem 18 is shows with mounting screw 15 for mounting the device 10 to a mounting post.
  • the exterior surfaces 64 and 66 of the mounting structures 34 and 36 create an internal space 68 and 70 behind each mounting structure. When combined with space 41 [ Figure 2] these internal spaces 68 and 70 allow the mounting of a printed circuit board 86. Protruding from the top edge of the printed circuit board 86 is an antenna structure 88 which is more fully described below.
  • first photo-voltaic cell 90 and a second photo-voltaic cell 92. Combined these cells collect solar energy and convert it to electric power to power the remote sensing device as more fully detailed below.
  • FIG. 3B and Figure 3C there is between the shell 14 and the base 12 a water proof and dirt proof sealing ring 100.
  • the internal spaces 68 and 70 are used to accommodate components of the printed circuit board 86 such as the super capacitor 124.
  • a hand-held device 111 operable by a user to communicate with a deployed remote sensing device.
  • the hand-held device 111 is generally the same as a data acquisition device as illustrated in Figure 3A and 3B except that there is one solar cell 92 mounted to exterior surface 66. Additionally, since the hand-held device includes a grip 93 including batteries 97 it may not have a super capacitor to store energy.
  • the user is also able to input programming to the data acquisition device or to a network of configured devices.
  • An accelerometer 129 is installed on the circuit board which is used to permit the user to activate software stored on the hand held device by user gesture such as a tap and communicate with any data acquisition device or network of devices in the field.
  • the operator taps once on the transparent case of the hand-held device above the display screen to start a software program which opens a menu on the display screen allowing further communication with an adjacent data acquisition device or nearby network. Further single taps or predetermined sequences of taps allow the user to scroll through menu options. The operator can then exercise a double tap on the case to select a specific option. For example, the user may be able to walk in a farm field with the hand-held device to a data acquisition device to view its acquired data or download data from the entire array of devices through the accessed device into the hand-held device. Once the user returns to the home station, data collected into the hand-held device can be downloaded into a personal computer and into the Internet for onward transmission. Another option can be used by the user to check the ability of a newly installed data acquisition device to communicate with the base station by a series of taps on the casing to instruct an adjacent data acquisition device to transmit data to the base station and then verify that such transmission is happening correctly.
  • Figure 4A a side 17 view of one embodiment of the invention 10.
  • Figure 4B there is shown a cross-sectional side view of the invention 10 through section line A-A in Figure 4A.
  • Face 22 faces the viewer in Figure 4B.
  • Figure 4A illustrates face 22 and face 24 of transparent shell 14 mounted to base 12 by mounting screws 16 in each of left side 17 and right side 19.
  • Threaded mounting stem 18 is shows with mounting screw 15 for mounting the device 10 to a mounting post.
  • Figure 4B illustrates a cross-sectional side view through section line A-A and shows the transparent shell 14 mounted to the base 12 by screws 16. Between the shell 14 and the base 12 is a water proof and dirt proof sealing ring 100. Within the shell 12 is found circuit board 86 and connecting cable 102 that connects the circuit board to external sensors and exists through the base 12 by way of an environmentally secure channel 105 through threaded stem 18. Mounting nut 15 is also shown.
  • FIG. 5 there is shown an assembly diagram of one embodiment of the invention 10.
  • the transparent shell 14 including faces 22 and 24 is mounted to the base 12 by way mounting screws 16 in each side of the base.
  • a solar energy intensifying lens 32 and 33 may be fixed over each of the faces 22 and 24.
  • Under the shell 14 is mounting structure 34 and 36 which are mounted to the top 62 of the base 12 by screws 60.
  • Solar voltaic panels 90 and 92 are mounted to the mounting structures 34 and 36 respectively by adhesive or other means.
  • Circuit board 86 has antennae 88 as one of its mounted components illustrated as mounted to the base 12.
  • the circuit board is disposed between the two mounting structures and internal spaces under the exterior surface of each mounting structure accommodate components of the circuit board.
  • a moisture and dirt proof sealing ring 100 Between the shell 14 and the base 12 is a moisture and dirt proof sealing ring 100 which is disposed within groove 110. Threaded stem 18 depends from base 12 and includes a mounting ring 15.
  • FIG. 6 there is shown a front view of the base 12 comprising a left side 17 and a right side 19.
  • the groove 110 receives the sealing ring 100 as previously described and illustrated.
  • Threaded stem 18 depends from the base 12.
  • Figure 7A a top view of the base 12 and in Figure 7B there is shown a cross-sectional side view of the base along sectional line B-B.
  • Figure 7A illustrates the base 12 having a central passage 112 extending through the stem 18 to accommodate the connection cable 102 illustrated in Figure 4A.
  • the top surface 62 of the base includes holes 114 for receiving mounting screws 60.
  • Groove 110 circumscribing the top of the base receives the sealing ring 100.
  • the base is shown in cross section with the central passage 112 extending through the stem 18 into the top portion of the base.
  • Figure 8A to Figure 8E there are illustrated a variety of views of one embodiment of the printed circuit board 86 of the invention which is mounted under the shell 14 to the base 12 and between the two mounting structures 34 and 36 as previously described and illustrated.
  • Figure 8A is a top view
  • Figure 8B is a back view
  • Figure 8C is a left side view
  • Figure 8D is a front view
  • Figure 8E is a right side view.
  • Figure 8A shows the following components: optional GPS device 120, super capacitor for energy storage 124 and antennae 88.
  • Figure 8B illustrates the back 130 of the circuit board 86 and the back 134 of the antennae 88.
  • Figure 8C is a left side view of the circuit board 86 illustrating the antennae 88, the microprocessor 122 and the super capacitor 124.
  • Figure 8D illustrates a front view of the circuit board 86 comprising antenna 88, microprocessor 122, optional GPS device 120, super capacitor 124, thermal sensor 126 and optional camera 131.
  • Figure 8E illustrates a right side of the circuit board 86 mounting antenna 88, optional GPS device 120, super capacitor 124, thermal sensor 126 and optional camera 131.
  • the antenna in one embodiment of the invention is an RF antenna.
  • the optional GPS device 120 is mounted to the board so that the location of the remote sensing device 10 can be determined relative to a base station and to other remote sensing devices that may be connected in a remote sensing grid as more fully explained below.
  • the optional camera 131 can be a micro camera chip and can be mounted to the printed circuit board to capture images through the side of transparent cover 14.
  • a microprocessor 122 is mounted to the printed circuit board in order to control the functions of the remote sensing device 10 and to execute commands receive remotely by way of the antennae 88 from a base station.
  • the microprocessor 122 also controls the power functions of the remote sensing device including control of the super capacitor energy storage device 124.
  • a temperature sensor 126 is also mounted to the printed circuit board 86 to measure ambient temperature. Other sensors external to the remote sensing device 10 can be connected by connection cable 102 and received by the microprocessor. These are more fully explained below.
  • control module 400 resides within the microprocessor 122 and comprises sub-modules for communications 402, power management 404, data processing 406, sensor management 408 and optional GPS control 410. Other control elements can be programmed into the control module as desired.
  • the device can be networked into an array to cover a large geographical area 100 that may have a variety of different environmental properties.
  • Each individual networked device 10a to 10e acts as a data acquisition device and collects a variety of environmental data from on-board and external sensors.
  • One of the devices 11 is configured to act as a base station.
  • On-board sensors may include a temperature sensor as shown in Figure 8D items 126.
  • Figure 9B illustrates a second embodiment of an array namely a circular plot of land 900 irrigated by an irrigation system 902 that rotates around an axis 904.
  • a network of data acquisition devices 906a to 906f is installed over the plot 900.
  • a base station 910 controls the operation of the data acquisition devices.
  • the maximum line-of-sight RF communication distance between each data acquisition device and between each device and the base station is 1500 feet.
  • the data acquisition devices communicate 912 by RF with the base station 910 and with each other 916 in order to relay data to the base station.
  • the base station communicates 920 with a home station by RF or Ethernet or cellular network.
  • the remote station can be linked to the Internet through a wired or wireless modem.
  • external sensors may include: a camera 204, a light sensor 206, a soil pH sensor 208, a soil moisture sensor 210, irrigation flow sensor 212, irrigation pump operation sensor 214 and any other sensor to collect relevant data.
  • These external devices can be connected to a connection bus 200 which in turn is connected by cable 102 to the circuit board 86. Operation of the sensor array is controlled by the sensor module within the control module.
  • diagnostic LEDs 220 can also be installed as part of a user interface.
  • the LEDs may be green 222, orange 224 and red 226 to indicate operational status or they may blink in a pre-programmed manner to indicate a specific condition orfault.
  • the LEDs can be programmed to identify a fault or condition in an individual networked device or in the base station.
  • each data acquisition device 10a to 10f is stored in an on-board memory device as shown in Figure 8D, item 121.
  • One of the network data acquisition devices will be configured to be a base station 11.
  • the base station 11 will communicate 9 with the other networked devices either directly, from base station to device, or by a data relay 7 from a first device 10c to a second device 10b and then to the base station 11.
  • the base station will periodically poll each data acquisition device 10a to 10f individually by an RF signal 9 and the queried device will transmit a copy of its data to the base station for storage and processing. A copy of the data always remains on the memory storage device for redundancy. While RF communications appears to be a simple means of implementing the network communications, other means can be used to communicate between devices and the base station such as a cellular network or a wired network.
  • the base station 11 is connectedto the Internet 13 by an Ethernet or modem device 230.
  • Power is provided to the individual device 10 and the base station 11 by the dual solar panels 90 and 92 shown in Figure 3B. Solar energy reaching the solar panels can be enhanced by magnifying windows 30 and 32. Power is managed by the power module programmed on the electronic control boardmicroprocessor 122.
  • circuit diagram Figure 12 There is an advanced photo-voltaic cell to super-capacitor 124 circuit illustrated in circuit diagram Figure 12 which optimizes the flow of energy from photo-voltaic cells to the super-capacitor.
  • the output of the solar photo-voltaic cells is sufficient to power the device however; energy is stored in the super-capacitors 124 for high power demands.
  • the output of the solar panels is optimized along with the charge rate of the super-capacitors by the power module.
  • the super-capacitors also provide pulsed energy bursts to operate equipment at times when energy requirements exceed the output of the solar panel, such as during low light conditions.
  • the neural network-enabled control module is programmed into the microprocessor 122. It provides for the efficient acquisition, storage, processing and transmission of environmental data from the on-board and remotely connected sensors.
  • the control module using its sub-modules as illustrated in Figure 8F manages the collection and transmission of data including light (time of dawn and dusk), temperature, optionally a position via the optional GPS control module, visual data from the on-board camera, a motion sensor, soil moisture sensor, soil pH sensor, and also soil chemical properties, irrigation pump flow rates, pump and valve operations and other relevant data as required.
  • data acquisition devices deployed in the illustrated network configuration may not be able to communicate directly with another data acquisition device or with the base station by line of sight due to intervening obstructions such as hill top 102.
  • communication is facilitated by individual devices having the capability to recognize neighbouring units and utilize those units to relay data to the base station where it is stored and transmitted.
  • the stored data now also contains a record of the new pathway.
  • the network of data acquisition devices is configured by the unique communication sub-module programmed into the control module of each device and in the base station unit to optimize communication between devices and provide for regular checks of connectivity.
  • the base station assigns and records an identifier to each data acquisition device. This allows an operator to relate the data received from a given data acquisition device to its location, specific crop or application.
  • Each of the data acquisition devices is regularly polled at 15 minute intervals by adjacent data acquisition devices in the network so that it may keep track of its communication with adjacent units and the communication pathway by which data is relayed either directly to the base station or by means of an adjacent device to the base station. Thus if a unit is disabled, alternate communication pathways are always available to each device. Data acquisition device relationships are kept updated so that an alternate path can be created to report data.
  • the ability of the data acquisition devices to establish fresh communication pathways to relay data back to the base station facilitates deployment of the invention over large areas that include natural and human made obstacles.
  • the adjacent data acquisition devices can create data pathways that circumvent the damaged device.
  • the base station charts all data pathways and uses a neural network pathway analysis routine within the communications module to learn and relearn which of the charted pathways are the most efficient, based on the pathway's ability to convey uncorrupted data.
  • the neural net elements of the communications module in the base station enable a 'frequency sub-banding' capability. This intelligently assigns varying frequency sub-bands to neural-net selected groups devices within a networked configuration depending on their current routing pathways.
  • the neural net element within the communications module enables concurrent communications within a large network of these devices thereby reducing communication times and power demands. This further enables the small size and cost effectiveness of the devices.
  • the base station groups devices into sub-network groups along optimal pathways and assigns those groups of devices a sub-frequency band around the system's 915MHz centre frequency range [915MHz Sub-Band 1 to 4]. Transmitting concurrently on different frequencies eliminates data corruption and thus fewerre-transmissions are needed along each pathway, allowing the base station to rapidly switch between each sub-network's frequency and collect its messages. This results in significant power savings.
  • each data acquisition device Prior to installation of the network each data acquisition device is passed so near the operating base station that the base station detects the strongest possible radio signal emitted by the data acquisition device. Once the signal is detected, the base station uses this signal to initiate an identification sequence. It reads and records the unique identifier of the data acquisition device and then transfers its own unique base station identifier to it. The result is a combined base station/data acquisition device identifier which is irrevocably stored in the data acquisition device's memory.This irrevocably 'adopts' each data acquisition device to the base station and identifies the entire network of data acquisition devices as controlled by the base station. This is a security feature that prevents a data acquisition device of one network from sharing data with an adjacent network or a base station from communicating with data acquisition devices not a member of its network family. Thus the data is secure and communication is confined to exchanges between devices within the network.
  • the base station 11 administrates the operation of the network 100 and records the identifiers of each of the individual data acquisition devices. For example, if the base station has a digital identifier as '11' and the data acquisition stations have respective identifiers '10a' to '10e' then the adoption process will identify each data acquisition device controlled by base station 11 as '11/10a' to '11/10e' and the network will be known as network '11'.
  • the adoption process codifies the relational position of each data acquisition device within the network; coordinates how individual data acquisition devices join the network and communicate with the base station and with each other; handle routing of data received from each data acquisition device in the network; and, communicate externally with the Internet 13.
  • an installation start-up sequence might appear as shown in Figure 13:
  • Step 300 map network onto desired plot of land.
  • Step 302 - identify the number of data acquisition devices required for the plot of land and assign one of the devices as a base station.
  • Step 304 turn on all devices and pass each data acquisition device near the base station whereupon the base station detects a RF signal which will identify the data acquisition device as an 'adopted' device into the base station's network.
  • Step 306 - provide an identifying digital name to each data acquisition device in the network 11/10a to 11/10f.
  • Step 308 - deploy the base station and the data acquisition devices onto the plot of land.
  • Step 310 - base station checks communication links between it and all data acquisition devices in the network.
  • Step 316- if the communications links are good then the base station can receive data from the data acquisition devices.
  • Step 318 - base station collects, stores and processes data.
  • Step 320 - base station transmits data to Internet.
  • Step 312- if connectivity is not good then the base station will check connectivity between adjacent data acquisition devices;
  • Step 314- data acquisition devices will establish a relay between adjacent data acquisition devices to communicate with base station;
  • Step 316- data is transmitted to the base station
  • Step 320 -data is transmitted to the Internet.
  • an additional characteristic of the invention when deployed in a network array is a 'sleep/wake' cycle.
  • This cycle is intelligently managed by the base station.
  • the cycle facilitates the conservation of energy and allows the network to continue collecting and transmitting data during prolonged dark or low light conditions when there is no or little current generated by the photo-voltaic cells.
  • a single data acquisition device will only use a tiny portion of its stored energy for a transmission.
  • the base station commands the device to cease function and 'sleep' for a period of 30 minutes.
  • the acquisition device Once the acquisition device 'wakes' it will transmit a pulse of data to the base station and if energy is still below the waking daytime voltage will resume sleeping until the next assigned wake time. If other devices in the networkcontinue to fall in voltage, all devices in the network are commanded by the base station to 'sleep' for an assigned sleep period.
  • the assigned sleep period can lengthen to a maximum of 2 hours depending on the energy depletion in the network.
  • the base station monitors the data acquisition devices and manages their sleep cycle and its duration to optimize power consumption while still facilitating regular data gathering by all the units in the array during non-light periods.
  • the power management features of the invention allows the network to continue data gathering, transmission and storage for prolonged periods of low light or darkness. Fully charged devices are capable of conducting the sleep/wake cycle for up to 36 hours.
  • the sleep/wake cycle is shown as comprising the following steps:
  • Step 500 - a data acquisition device transmits a low waking day voltage signal to base station 11.
  • Step 502 - base station 11 initiates a sleep/wake cycle.
  • Step 504 - base station 11 transmits a sleep signal to device 10 to sleep for 30 minutes.
  • Step 508 - if the system voltage of device 10 is equal to or greater than the waking daytime voltage then the device 10 continues fully awake operation.
  • Step 510 - if the system voltage of device 10 is not at the waking daytime voltage, and if its voltage has further decreased the base station 11 will send a signal to the device 10 to sleep for at least 30 minutes so that the device charges.
  • the device can be installed on a flexing pole to allow the unimpeded passage of farm machinery.
  • the invention is equally suited for any setting where environmental data is recorded for scientific and biological research, safety and security applications, monitoring of hazardous sites and industrial applications such as plants, pipelines and electrical grids, factories and processing operations. With sunlight or artificial forms of illumination, the invention can also be deployed to monitor environmental conditions and environmental quality in buildings such as greenhouses, animal barns, hatcheries and fish farming operations or in any situation where the health of humans and animals requires monitoring and control. Finally, the invention can be deployed in remote locations for scientific, weather data, or other data collection purposes where there it is difficult to send a person to collect the same data. Remote deployment may include hydroelectric engineering sites, water gauging networks, tsunami warning locations, unstable terrain and landslide situations, highway snow safety structures and isolated sections of pipelines and power grids. The data acquisition devices can be used to detect emergencies and maintenance requirements.

Abstract

Dispositif de télédétection à radio fréquence pouvant être mis en oeuvre en tant que dispositif seul ou dans le cadre d'un réseau de dispositifs interconnectés pour collecter des données environnementales Ce dispositif est complètement intégré et autonome. Il fonctionne à l'énergie solaire et il est exempt de piles, grâce à sa conception économe en énergie pour son module de commande et son module de communication. Le dispositif peut fonctionner en mode veille / actif pour maintenir sa puissance dans des conditions de faible luminosité.
PCT/IB2012/055984 2011-11-01 2012-10-30 Dispositif et système de télédétection pour des applications en agriculture et autres WO2013064963A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161554383P 2011-11-01 2011-11-01
US61/554,383 2011-11-01

Publications (1)

Publication Number Publication Date
WO2013064963A1 true WO2013064963A1 (fr) 2013-05-10

Family

ID=48191452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/055984 WO2013064963A1 (fr) 2011-11-01 2012-10-30 Dispositif et système de télédétection pour des applications en agriculture et autres

Country Status (1)

Country Link
WO (1) WO2013064963A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103743972A (zh) * 2013-12-25 2014-04-23 青海中控太阳能发电有限公司 一种塔式太阳能热发电系统故障诊断方法
CN104345357A (zh) * 2014-09-30 2015-02-11 天青公司 一种实时气象参数采集装置
CN106125795A (zh) * 2016-07-18 2016-11-16 安徽本立物联网技术有限公司 一种基于物联网的农作物监控装置
CN107422399A (zh) * 2017-09-27 2017-12-01 国电大渡河流域水电开发有限公司 户外工程测量雨感结构
EP3487080A1 (fr) * 2017-11-16 2019-05-22 Yokogawa Electric Corporation Équipement radio qui améliore la sensibilité de la communication en champ proche
IT202000009733A1 (it) * 2020-05-04 2021-11-04 Evja S R L Sistema elettronico per agricoltori e agronomi comprendente una pluralità di apparati
WO2021224695A1 (fr) * 2020-05-04 2021-11-11 Evja S.R.L. Système électronique pour agriculteurs et agronomes comprenant un serveur
CN114466256A (zh) * 2021-12-27 2022-05-10 福建福大北斗通信科技有限公司 一种基于北斗通讯技术的数据采集装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920827A (en) * 1997-06-27 1999-07-06 Baer; John S. Wireless weather station

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920827A (en) * 1997-06-27 1999-07-06 Baer; John S. Wireless weather station

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATNAIK ET AL.: "Applications of Neural Networks in Wireless Communications.", ANTENNAS AND PROPAGATION MAGAZINE, vol. 46, no. ISSUE, June 2004 (2004-06-01), pages 130 - 137, XP001200906, DOI: doi:10.1109/MAP.2004.1374125 *
SIMJEE ET AL.: "Everlast: Long-life, Supercapacitor-operated Wireless Sensor Node.", INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN 2006 (ISLPED'06), 4 October 2006 (2006-10-04), pages 197 - 202, XP031115550 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103743972A (zh) * 2013-12-25 2014-04-23 青海中控太阳能发电有限公司 一种塔式太阳能热发电系统故障诊断方法
CN104345357A (zh) * 2014-09-30 2015-02-11 天青公司 一种实时气象参数采集装置
CN106125795A (zh) * 2016-07-18 2016-11-16 安徽本立物联网技术有限公司 一种基于物联网的农作物监控装置
CN107422399A (zh) * 2017-09-27 2017-12-01 国电大渡河流域水电开发有限公司 户外工程测量雨感结构
JP2019092116A (ja) * 2017-11-16 2019-06-13 横河電機株式会社 無線機器
CN109798933A (zh) * 2017-11-16 2019-05-24 横河电机株式会社 无线仪器
EP3487080A1 (fr) * 2017-11-16 2019-05-22 Yokogawa Electric Corporation Équipement radio qui améliore la sensibilité de la communication en champ proche
US10573158B2 (en) 2017-11-16 2020-02-25 Yokogawa Electric Corporation Radio equipment
CN109798933B (zh) * 2017-11-16 2021-09-03 横河电机株式会社 无线仪器
JP7027831B2 (ja) 2017-11-16 2022-03-02 横河電機株式会社 無線機器
IT202000009733A1 (it) * 2020-05-04 2021-11-04 Evja S R L Sistema elettronico per agricoltori e agronomi comprendente una pluralità di apparati
WO2021224695A1 (fr) * 2020-05-04 2021-11-11 Evja S.R.L. Système électronique pour agriculteurs et agronomes comprenant un serveur
WO2021224694A1 (fr) * 2020-05-04 2021-11-11 Evja S.R.L. Système électronique pour agriculteurs et agronomes comprenant une pluralité d'appareils
CN114466256A (zh) * 2021-12-27 2022-05-10 福建福大北斗通信科技有限公司 一种基于北斗通讯技术的数据采集装置

Similar Documents

Publication Publication Date Title
WO2013064963A1 (fr) Dispositif et système de télédétection pour des applications en agriculture et autres
US20140120972A1 (en) Remote sensing device and system for agricultural and other applications
Bauer et al. Design and implementation of an agricultural monitoring system for smart farming
US10429367B2 (en) Multi-parametric environmental diagnostics and monitoring sensor node
US8326440B2 (en) System for intelligent delegation of irrigation control
US20120037725A1 (en) Sprinkler control systems and methods
US10785719B2 (en) Power efficient base station
Mekonnen et al. Iot sensor network approach for smart farming: An application in food, energy and water system
US8862277B1 (en) Automatic efficient irrigation threshold setting
Velmurugan An IOT based smart irrigation system using soil moisture and weather prediction
CN202854575U (zh) 一种农业物联网系统
Mampentzidou et al. Basic guidelines for deploying wireless sensor networks in agriculture
WO2014129966A1 (fr) Enregistreur de données et plateforme sentinel pour réseau de capteurs
US20200350778A1 (en) Wireless power self harvesting control device and system and method for wirelessly reprogramming the same
CN105432438A (zh) 一种基于云平台的智能农业监控系统
Suba et al. Smart irrigation system through wireless sensor networks
US20220311273A1 (en) Wireless, energy harvester with modular sensor system
US11457576B2 (en) Intelligent irrigation system
CN106768042A (zh) 基于光伏技术的农业信息实时远程监测系统及监控方法
Kanupuru et al. Survey on IoT and its Applications in Agriculture
Gernert et al. PotatoScanner–A mobile delay tolerant wireless sensor node for smart farming applications
Kapetanovic et al. Experiences deploying an always-on farm network
Coates et al. Wireless mesh network for irrigation control and sensing
US20200232939A1 (en) Remote Sensor System
CN110763268A (zh) 一种基于物联网的智能农田管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08.07.2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12845930

Country of ref document: EP

Kind code of ref document: A1