WO2013064755A1 - Method for deacidifying a gas using a plurality of steps for cross-flow contact with an absorbent solution - Google Patents

Method for deacidifying a gas using a plurality of steps for cross-flow contact with an absorbent solution Download PDF

Info

Publication number
WO2013064755A1
WO2013064755A1 PCT/FR2012/000379 FR2012000379W WO2013064755A1 WO 2013064755 A1 WO2013064755 A1 WO 2013064755A1 FR 2012000379 W FR2012000379 W FR 2012000379W WO 2013064755 A1 WO2013064755 A1 WO 2013064755A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
absorbent solution
lining
acidic compounds
Prior art date
Application number
PCT/FR2012/000379
Other languages
French (fr)
Inventor
Ludovic Raynal
Sébastien GONNARD
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Publication of WO2013064755A1 publication Critical patent/WO2013064755A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0233Other waste gases from cement factories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/025Other waste gases from metallurgy plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/05Biogas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to the field of deacidification processes of a gas with an absorbent solution.
  • the invention relates to contacting the gas with the absorbent solution.
  • contactors In gas treatment processes by contacting the gas with a liquid, distillation, reactive distillation, gas treatment or washing processes, mass and heat transfers between a gas phase and a liquid phase, are realized by means of technologies, called contactors, which favor these transfers.
  • contactors There are three main types of contactors, bulk packings, structured packings and column trays.
  • the contact between the two gas and liquid phases is generally carried out in a vertical cylindrical column, operated against the current, in which the gas follows a generally vertical ascending movement and the liquid follows a movement globally. vertical downward.
  • the document FR 2913 353 describes a column provided with a structured packing for bringing a gas and a liquid into contact against the current.
  • a column requiring a height of 22 m of packing bed is subdivided into three beds of 7.3 m high with implementation of a distribution system at the head of the first bed and two redistribution systems between the following beds .
  • These distribution and redistribution systems are generally gravity feed systems and are characterized by a total footprint of 1 to 2 m high.
  • the present invention proposes to contact a gas with a liquid in several stages in which the gas flows in a substantially horizontal direction by crossing the liquid which flows in a substantially vertical direction to reduce the bulk and the investment and operating costs of the process.
  • the subject of the invention is a process for the deacidification of a feed gas comprising at least one of the acidic compounds CO 2 and H 2 S, in which the following steps are carried out:
  • step a) said filler gas is contacted in a first packing with an acid-enriched liquid absorbent solution produced in step b), the feed gas flowing in the first packing in a substantially horizontal direction crossing the absorbing solution; circulating in a substantially vertical direction, to produce a gas depleted of acidic compounds and an absorbent solution loaded with acidic compounds, b) the gas is brought into contact in a second lining with a liquid absorbent solution, the gas flowing in the second lining in said substantially horizontal direction by crossing the absorbent solution flowing in a substantially vertical direction, to produce a gas poor in acidic compounds and said liquid absorbent solution enriched in acidic compounds implemented in step a).
  • the first lining may be juxtaposed to the second lining, the first and second lining being aligned in the said direction of circulation of the gas.
  • a gas that is low in acid compounds is contacted in a third lining with an absorbent liquid, the gas flowing in the third lining in said substantially horizontal direction by crossing the liquid flowing in a substantially vertical direction to produce a treated gas and the liquid absorbent solution implemented in step b).
  • Said packings can develop a geometric area greater than 100 m 2 / m 3 and preferably greater than 200 m 2 / m 3 .
  • the gas can be circulated in the packings at a speed greater than 1 m / s, preferably greater than 2 m / s.
  • a portion of at least one of the absorbent solutions obtained from one of the packings may be taken, and then said portion may be introduced into the upper part of said packing.
  • the pressure of the acid-enriched liquid absorbent solution produced in step b) can be increased and said pressurized solution can be introduced into the first packing.
  • said acid-enriched liquid absorbent solution produced in step b) can be cooled.
  • the absorbent solution loaded with acidic compounds produced in step a) can be regenerated so as to release acidic compounds and produce said absorbing solution implemented in step b) or said absorbent liquid implemented in step c ).
  • the feed gas may be chosen from one of the following gases: a combustion smoke, a natural gas, a gas obtained at the bottom of the Claus process, a synthesis gas, a gas resulting from the fermentation of biomass, an effluent resulting from a cement plant and a gas from a steel plant.
  • gases a combustion smoke, a natural gas, a gas obtained at the bottom of the Claus process, a synthesis gas, a gas resulting from the fermentation of biomass, an effluent resulting from a cement plant and a gas from a steel plant.
  • the present invention offers the possibility of recycling liquid to increase the flow rate. This recycling can be useful on the one hand to allow better take advantage of the packing for which the effective surface increases with the specific flow of liquid and secondly to achieve better loading rates of the absorbent solution in the bottom section of the contact.
  • FIG. 1 schematizes a deacidification process according to the invention
  • FIG. 2 schematizes a second embodiment of the method according to the invention
  • FIG. 3 represents a cross-current contact device according to the invention
  • FIG. 4 represents a deacidification process according to the prior art.
  • the gas to be treated arrives via line 1 at a pressure that can be between 1 and 150 bar absolute, and at a temperature that can be between 10 ° C. and 70 ° C.
  • the gas may be combustion fumes, natural gas or tail gas from the Claus process.
  • the gas may also be a synthesis gas, a conversion gas used in integrated coal, heavy crude, wood or natural gas combustion plants, a gas resulting from the fermentation of biomass, an effluent from a cement plant or a steel plant.
  • the process makes it possible to remove the acidic compounds, for example CO 2 and / or hbS, optionally other acidic compounds such as COS, CS 2 or mercaptans.
  • the process is particularly well suited to capture CO 2 contained in combustion fumes.
  • the gas contains acidic compounds such as CO 2 or H 2 S between 0.1 and 30% by volume.
  • the gas also contains oxygen, between 1 and 10% by volume, and the content of SOx and NOx type compounds can reach a value of the order of 200 mg / Nm 3 volume for each of said compounds.
  • the gas arriving via line 1 may be compressed by member A.
  • element A is a blower or compressor providing a pressure increase which may be order of 150 to 200 mbar.
  • the gas is introduced through line 2 into the contacting device between gas and liquid C.
  • Device C is composed of several compartments, in this case compartments C1, C2 and C3.
  • the device may also comprise two or four or more compartments.
  • Each compartment has a packing, commonly called “packing", to promote the bringing into contact of the gas and the liquid.
  • the lining may be loose packing type or structured packing.
  • the gas passes successively through the three compartments C1 to C3 in a substantially horizontal direction and is discharged from C via line 3.
  • Each of the compartments is supplied with liquid absorbent solution in its upper part.
  • the liquid flows into the compartment under the effect of gravity, so in a substantially vertical downward direction.
  • the flow of gas flowing in a horizontal direction intersects the flow of liquid flowing in a vertical direction.
  • the absorbent solution is collected at the bottom of each of the compartments.
  • the packings used in the process according to the invention in particular the packings of the compartments C1, C2 and C3, may be structured packings, for example sold under the trademark BX or Mellapak by the company Sulzer Chemtech or sold under the brand B1.
  • packings which comprise a large geometric area, that is to say greater than 100 m 2 / m 3 , preferably greater than 200 m 2 / m 3 , or even greater than 300 m 2 / m 3 because the setting in cross flow contact allow the use of these high specific surfaces at high flow, without risk of clogging.
  • the height of the packing bed is chosen so that it is maximum while limiting the need for redistribution.
  • a single bed is chosen with heights preferably less than 20 m and preferably 12 m, or even less than 8 m depending on the type of lining used.
  • the flow of gas is brought into contact with the absorbent solution introduced into the upper part of compartment C1 via line 4.
  • the gas flows in a cross-flow manner with respect to the liquid solution.
  • the absorbent solution captures acidic compounds, for example CO 2 and hbS contained in the gas.
  • the liquid absorbent solution enriched in acidic compounds is collected at the bottom of compartment C1 to be evacuated via line 5.
  • the flow of gas After passing through compartment C1, the flow of gas passes through compartment C2.
  • Crossing C2 the flow of gas is brought into contact with the absorbent solution introduced in the upper part of the compartment C2 by the conduit 6.
  • the gas flows in a cross flow with respect to the liquid solution.
  • the absorbent solution captures acidic compounds, for example CO 2 and H 2 S contained in the gas.
  • the liquid absorbent solution enriched in acidic compounds is collected at the bottom of the compartment C2 to be discharged through the conduit 41.
  • the absorbent solution is pumped by the pump P1 to be introduced at the head of C1 through the conduit 4.
  • the flow of gas passes through compartment C3.
  • Crossing C3 the gas flow is brought into contact with the absorbent solution introduced in the upper part of compartment C3 via line 7.
  • the gas flows in a cross-flow manner with respect to the liquid solution.
  • the absorbent solution captures acidic compounds, for example CO 2 and hfeS contained in the gas.
  • the liquid absorbent solution enriched in acidic compounds is collected at the bottom of compartment C3 to be evacuated via line 61.
  • Absorbent solution 61 is pumped by pump P2 to be introduced at the top of C2 through line 6.
  • the gas can circulate in compartments C1, C2 and C3 at a speed greater than m / s, preferably greater than 2 m / s.
  • Absorbent solution 4 may have been cooled, for example by means of a heat exchanger disposed on line 4 or 41, or by means of a heat exchanger arranged at the bottom of compartment C2.
  • the absorbent solution 6 may have been cooled, for example by means of a heat exchanger disposed on the duct 6 or 61, or by means of a heat exchanger arranged at the bottom of the compartment C3.
  • Part of the liquid collected at the bottom of a compartment for example via line 5, 41 or 61, may be recycled by being reintroduced at the head of the same compartment, respectively via line 4, 6 or 7.
  • This recycling makes it possible to better take advantage of the packing for which the effective area increases with the specific flow rate of liquid in order to achieve better loading rates of the absorbent solution at the bottom of the contact section.
  • composition of the absorbent solution used in the present invention is chosen for its ability to absorb the acidic compounds. It is possible to use an aqueous solution comprising, in general, between 10% and 80%, preferably between 20% and 60%, by weight of amines, preferably alkanolamines, or any other organic compound which can react with the acidic compounds contained in the gas.
  • the absorbent solution may comprise between 20% and 90% by weight, preferably between 40% and 80% by weight of water.
  • Amines can be selected from monoamines such as MEA
  • DEA diethanolamine
  • MDEA methyldiethanolamine
  • DIPA diisopropylamine
  • DGA diglycolamine
  • multiamines such as piperazine, N- (2-hydroxyethyl) piperazine, ⁇ , ⁇ , ⁇ ', ⁇ '-Tetramethylhexane-1, 6-diamine, ⁇ , ⁇ , ⁇ ', ⁇ '-tetraethyldiethylenetriamine, 1,2-bis (2-dimethylaminoethoxy) ethane, 1,2-bis (2-diethylaminoethoxy) ethane, and 1,2-bis (2-pyrolidinoethoxy) ethane, 1,2,3,4-tetrahydroisoquinoline, 1-butylpiperazine and 2-methylpiperazine.
  • These amines can be used alone, or in a mixture.
  • the absorbent solution may contain, instead of or in addition to the amine, a compounded third which makes it possible to promote the physical solubility of the acidic compounds to be absorbed.
  • This third compound can be, for example and without limitation, methanol, sulfolane, polyethylene glycols which can be etherified, pyrrolydones or derivatives such as, for example, N-methylpyrrolidone, methanol, N-formyl morpholine, acetyl morpholine, propylene carbonate.
  • This third compound may represent between 0 to 100% by weight of the amine.
  • the absorbent solution discharged into the bottom of the compartment C1 via the pipe 5 is introduced into the heat exchanger E1 to be heated and then introduced into the regeneration column R via the pipe 8.
  • the regeneration column R is equipped with gas-liquid contacting internals, for example trays, loose or structured packings.
  • the bottom of the column R is equipped with a reboiler E2 which provides the heat necessary for the regeneration by vaporizing a fraction of the absorbing solution.
  • the acid compounds for example CO 2 and H 2 S, are released in gaseous form and evacuated at the head of R via line 9.
  • the gas stream discharged at the top of R through line 9 is partially liquefied by cooling in exchanger E3 and then introduced into separator B.
  • the condensates are wholly or partly recycled through line 10 at the top of column R as a reflux.
  • the gaseous flow rich in acidic compounds is discharged at the top of B through line 11.
  • the regenerated absorbent solution that is to say depleted in acidic compounds, is discharged at the bottom of the column R through the conduit 12 and introduced into the exchanger E1 to be cooled.
  • the cooled absorbent solution is pumped by the pump P3, then discharged through the conduit 7 to be introduced into the device C in the upper part of the compartment C3.
  • the absorbent solution must be raised to a height of nearly 10 m (8 m bed case according to the present invention) against more than 30 m in the case of a conventional column according to the prior art (22 m useful bed of packing + 6 m distribution systems + column bottoms), which corresponds to a power reduced by a factor 3, this being proportional to the load supplied by the pump.
  • the invention it is possible to reduce or increase the processing capacities by putting more or fewer compartments into operation.
  • the treatment capacity for example to a change in the composition or the flow rate of the gas to be treated, or by changing the capture performance of the acidic compounds.
  • this modularity can be used in particular for a C0 2 capture process contained in combustion fumes produced by a power plant. Indeed, in times of consumption peaks during which the price of electricity is very high, it may be economically advantageous to operate only part of the compartments which allows a reduction of the energy consumption of the process of capture via less vapor sampling on the plant. The plant can then produce more electricity. This operation also leads to a lowering of the capture rate, which can be offset either by the purchase of additional emission rights, which is possible given the selling price of electricity in these peak periods, or by a rate of higher capture during off-peak hours when electricity requirements are lower.
  • the treated gas can cause impurities or pollutants such as organic components present in the liquid phase either by mechanical drive or for thermodynamic reasons of vapor pressure.
  • the CO 2 capture processes have a washing section located above the gas-liquid contact zone.
  • the height of the absorption column is increased by the addition of this section which requires, a feed zone at the head, a contact zone, generally a packing bed and a collection zone.
  • the whole thing usually requires heights between 5 and 10 m. Nevertheless, these can be even higher in the case of the presence of highly volatile compounds or very advanced specifications.
  • FIG. 2 represents the diagram of FIG. 1 in which the device C of a washing zone L has been increased.
  • the references of FIG. 2 identical to those of FIG. 1 denote the same elements.
  • the length of the installation C is increased, but not its height.
  • the cost of construction is increased but less than in the case of increased height, and the investment and operating costs of the circulation pump of the washing fluid, which may be water or an alkaline solution, are significantly less than those of a typical implementation.
  • the flow of gas passes through the compartment L. While passing through L, the gas flow is brought into contact with a washing water introduced into the upper part of the compartment L via the duct. 21.
  • the gas flows in a cross-flow manner with respect to the liquid water.
  • the wash water captures impurities contained in the gas.
  • the wash water charged with impurities is collected at the bottom of the compartment L to be discharged through the conduit 20.
  • the water 20 is pumped by the pump P4 to be introduced at the top of the L through the conduit 21.
  • it carries out water extractions through the duct 22 and fresh water connections via the conduit 23 in the circuit of the washing water.
  • FIG. 3 represents an exemplary embodiment of the device C of FIG. 1.
  • the references of FIG. 3 identical to that of FIG. 1 denote the same elements.
  • the device C is composed of an enclosure E comprising the compartments C1, C2 and C3.
  • the enclosure E is of parallelepipedal shape, in which the length is generally greater than the height and the width but not necessarily.
  • the compartments being aligned one after the other in the direction of the length of the parallelepiped.
  • the gas arriving via the conduit 2 is introduced into an entry zone ZE in the enclosure E.
  • the zone ZE communicates with the compartment C1.
  • the gas can be distributed by means of the gas distributor DG to be distributed homogeneously over the entire surface of the zone ZE in contact with C1.
  • the compartment C1 communicates with the compartment C2 for example by being in contact with the compartment C2 in an interface, preferably flat.
  • compartment C2 communicates with the compartment C3 for example by being in contact with the compartment C3 according to an interface, preferably flat.
  • the compartment C3 communicates with the outlet zone ZS in which the gas which has passed through C1, C2 and C3 is collected.
  • the gas collected in ZS is discharged through line 3.
  • the packings C1, C2 and C3 are arranged juxtaposed to each other, being aligned horizontally in the gas flow direction.
  • the gas flows in a substantially horizontal direction from the conduit 2 to the conduit 3 through C1, C2 and C3.
  • the upper part of the compartment C1 communicates with a supply zone ZA1 in liquid.
  • Line 4 feeds the liquid distributor DL1 located in ZA1.
  • DL1 makes it possible to homogeneously water the part of compartment C1 in contact with zone ZA1.
  • the lower part of the compartment C1 communicates with a collection zone ZC1 of liquid.
  • Zone ZC1 is connected to conduit 5.
  • the liquid flowing in the compartment C1 is collected in ZC1 and discharged through the conduit 5.
  • the compartments C2 and C3 communicate with liquid supply zones ZA2 and ZA3 and liquid collection zones ZC2 and ZC-3.
  • DL1 liquid distribution systems
  • DL1 may be composed of spray nozzles.
  • the liquid distribution under pressure can generate a good distribution with a much smaller footprint than conventional gravity distributors.
  • the different input zones ZE, output zone ZS, feed zone ZA1, ZA2, ZA3, and collection zones ZC1, ZC2, ZC3 can be separated by separation means S, for example portions of flat plate.
  • these separation means S extend over a surface portion in the interfaces between the zone SE and the compartment C1, between the compartments C1 and C2, between the compartments C2 and C3 and between the compartment C3 and the zone ZS.
  • the separation means S make it possible to ensure that the gas circulation is carried out in the gas / liquid contact zone of the compartments C1, C2 and C3, and not in the supply zones ZA1, ZA2, ZA3 or liquid collection zone ZC1. , ZC2, ZC3.
  • the means S situated between ZC1 and ZC2 and between ZC2 and ZC3 may comprise orifices so that the liquid can circulate between the liquid collection zones ZC1, ZC2, ZC3.
  • the level of liquid in the liquid collection zones can be balanced in cases of poor process operation.
  • the results presented in Table 1 below show the characteristics and sizing of various processes to decarbonate combustion fumes from a 630 MWe coal-fired power plant.
  • the fumes to be treated have a flow rate of 1,750,000 Nm 3 / h with a composition of 13.5% CO 2 volume.
  • CO 2 capture processes with a capture rate of 90% of the CO 2 contained in the fumes are carried out thanks to the circulation of a flow rate of 7110 m 3 / h of absorbent solution composed of an aqueous solution of MEA at 30% by weight, having a respective input and output loading rate of 0.24 and 0.47.
  • a case of implementation according to the prior art is compared with two cases of implementation according to the present invention.
  • the flow of fumes to be treated 40 is divided in four to supply each of the four columns CA1, CA2, CA3 and CA4, inducing a gas velocity of 2.4 m / m.sup.2. s in the columns.
  • the columns are equipped with a structured packing characterized by a geometric area of 250 m 2 / m 3 and developing an effective area of 200 m 2 / m 3 for the flow conditions retained.
  • the absorbent solution arriving via line 41 is split into four fractions, each supplying one of the columns CA1, CA2, CA3 and CA4. In the columns CA1 to CA4, the gas flows in an upward vertical direction against the current of the flowing liquid in a downward vertical direction.
  • the height required for the contact zone in columns CA1 to CA4 is 22 m for a diameter of 8.8 meters, ie a total packing volume of nearly 5300 m 3 .
  • This height is determined via the use of an absorber model integrating kinetic and thermodynamic models specific to an aqueous solution of MEA 30% by weight and mass transfer models specific to the lining used, which make it possible to calculate the reaction rates of CO 2 with the amine, the liquid-vapor equilibria and the reactive transfer.
  • each of the CA1 to CA4 columns can decompose from bottom to top in the following manner: 4 m high at the bottom to collect the liquid, 2 m for the gas distribution, 7.4 m lining, a space of 1.9 m redistribution of gas and liquid, 7.4 m of lining, a space of 1.9 m redistribution of gas and liquid, 7.4 m of lining and 3 m from head to head for the distribution of liquid.
  • the column can be raised by 6 m for the washing section located above the liquid distribution.
  • the absorbent solution is introduced at a height of about 35 m, which requires a pump with a power of 255 kW.
  • the diagram of FIG. 1 is implemented with the compartments C1, C2 and C3 equipped with structured packing developing the same effective area of 200 m 2 / m 3 .
  • the total dimensions of the three contactors are a length of 3x7.8 m, a width of 7.13 m and a height of 8 m, a total packing volume of nearly 5300 m 3 .
  • the device has a height of 1 m at the supply zones ZA1, ZA2 and ZA3 and a height of 2.8 m at the liquid collection zones ZC1, ZC2 and ZC3.
  • the power of the pumps is 75 kW for the pump P3, 76 kW for the pump P2 and 77 kW for the pump P3.
  • the diagram of FIG. 1 is implemented with compartments C1, C2 and C3 equipped with a structured packing developing an effective area of 400 m 2 / m 3 .
  • the use of such an internal lining in the case according to the prior art with counter-current contact is not possible because the lining being less capacitive, it would require absorber diameters too high to sufficiently reduce the gas velocities and thus not to encounter problems of engorgement.
  • the total dimensions of the three contactors are a length of 3x4 m, a width of 7.13 m and a height of 8 m, ie a total packing volume of nearly 2700 m 3 .
  • the device has a height of 1 m at the supply zones ZA1, ZA2 and ZA3 and a height of 2.8 m at the liquid collection zones ZC1, ZC2 and ZC3. This represents a 49% decrease in the volume of packing compared to the case according to the prior art, which represents in addition to the gain realized in the construction due to the parallelepipedal geometry a gain significant on the cost of the gas / liquid contact device.
  • the contacting device represents between 30% and 50% of the total cost of a CO 2 capture unit, the invention has a certain economic advantage.
  • the power of the pumps is the same as for the first case according to the invention.

Abstract

The invention relates to a method for deacidifying a gas using a plurality of staged steps for cross-flow contact with an absorbent solution, wherein a plurality of cross-flow contact stages are implemented in a series of contact areas in which the gas flows in an essentially horizontal direction while intersecting with the liquid that flows in an essentially vertical direction. The gas to be treated, which arrives via pipe 1, flows consecutively into the cross-flow contactors C1, C2, and then C3, in a substantially horizontal direction. The absorbent solution arriving via pipe 7 consecutively flows into the contactors C3, C2, and then C1. In each of the contactors, the liquid flows in a substantially downward vertical direction.

Description

PROCÉDÉ DE DÉSACIDIFICATION D'UN GAZ AVEC PLUSIEURS ÉTAPES DE MISE EN CONTACT À COURANT CROISÉ AVEC UNE METHOD FOR DEACIDIFYING A GAS WITH MULTIPLE STAGES OF CURRENT CURRENT CONTACT WITH A
SOLUTION ABSORBANTE La présente invention concerne le domaine des procédés de désacidification d'un gaz avec une solution absorbante. L'invention porte sur la mise en contact du gaz avec la solution absorbante. The present invention relates to the field of deacidification processes of a gas with an absorbent solution. The invention relates to contacting the gas with the absorbent solution.
Dans les procédés de traitement de gaz par mise en contact du gaz avec un liquide, les procédés de distillation, de distillation réactive, de traitement ou de lavage de gaz, les transferts de masse et de chaleur entre une phase gaz et une phase liquide, sont réalisés au moyen de technologies, appelés contacteurs, qui favorisent ces transferts. Il existe trois grands types de contacteurs, les garnissages vrac, les garnissages structurés et les plateaux de colonnes. Quel que soit le choix de la technologie, le contact entre les deux phases gaz et liquide est généralement réalisé dans une colonne cylindrique verticale, opérée à contre- courant, dans laquelle le gaz suit un mouvement globalement vertical ascendant et le liquide suit un mouvement globalement vertical descendant. Par exemple, le document FR 2913 353 décrit une colonne munie d'un garnissage structuré pour la mise en contact d'un gaz et d'un liquide à contre-courant. In gas treatment processes by contacting the gas with a liquid, distillation, reactive distillation, gas treatment or washing processes, mass and heat transfers between a gas phase and a liquid phase, are realized by means of technologies, called contactors, which favor these transfers. There are three main types of contactors, bulk packings, structured packings and column trays. Whatever the choice of the technology, the contact between the two gas and liquid phases is generally carried out in a vertical cylindrical column, operated against the current, in which the gas follows a generally vertical ascending movement and the liquid follows a movement globally. vertical downward. For example, the document FR 2913 353 describes a column provided with a structured packing for bringing a gas and a liquid into contact against the current.
Cependant, la mise en œuvre de contact à contre-courant dans une colonne présente différents inconvénients.  However, the implementation of countercurrent contact in a column has different disadvantages.
Les écoulements de gaz et liquide à contre-courant sont contraints par le phénomène d'engorgement. En effet, dans le cas classique d'une mise en œuvre à contre-courant, il faut faire en sorte que le diamètre de la colonne soit suffisamment grand pour limiter les vitesses des phases et assurer ainsi que le gaz ascendant ne freine pas le liquide descendant et inversement. Ce mode de mise en contact requiert de faibles vitesses et donc induit des colonnes de très grands diamètres. On atteint dans le cas des procédés de captage de CO2 des limites technologiques de réalisation de réacteurs de grands diamètres. De plus, dans une colonne à garnissage il est d'usage, pour éviter la formation de court-circuits, ou "by-pass", et éviter la baisse de performance associée, de limiter la hauteur des lits et d'insérer des systèmes de collecte et de redistribution entre deux lits consécutifs. Ainsi une colonne nécessitant une hauteur de 22 m de lit de garnissage est subdivisée en trois lits de 7,3 m de haut avec mise en place d'un système de distribution en tête du premier lit et de deux systèmes de redistribution entre les lits suivants. Ces systèmes de distribution et redistribution sont généralement des systèmes d'alimentation gravitaire et sont caractérisés par un encombrement total de 1 à 2 m de haut. Ainsi pour une telle colonne cela requiert au total une hauteur de 3 m voire 6 m qui est perdue comme zone de contact entre le gaz et le liquide. Cela génère des hauteurs de colonne plus importantes que la hauteur de garnissage nécessaire et induit des coûts de construction non négligeables. La présente invention propose de mettre en contact un gaz avec un liquide en plusieurs étapes dans lesquelles le gaz s'écoule selon une direction essentiellement horizontale en croisant le liquide qui s'écoule selon une direction essentiellement verticale afin de réduire l'encombrement ainsi que les coûts d'investissement et de fonctionnement du procédé. The flow of gas and liquid against the current are constrained by the phenomenon of engorgement. Indeed, in the conventional case of implementation against the current, it must be ensured that the diameter of the column is sufficiently large to limit the phase velocities and thus ensure that the ascending gas does not brake the liquid descending and vice versa. This mode of contacting requires low speeds and thus induces columns of very large diameters. In the case of CO 2 capture processes, technological limits are reached for the production of large diameter reactors. In addition, in a packed column it is customary, to avoid the formation of short circuits, or "bypass", and avoid the associated performance decline, to limit the height of the beds and to insert systems collection and redistribution between two consecutive beds. Thus a column requiring a height of 22 m of packing bed is subdivided into three beds of 7.3 m high with implementation of a distribution system at the head of the first bed and two redistribution systems between the following beds . These distribution and redistribution systems are generally gravity feed systems and are characterized by a total footprint of 1 to 2 m high. Thus for such a column it requires a total height of 3 m or 6 m which is lost as contact area between the gas and the liquid. This generates higher column heights than the necessary packing height and leads to significant construction costs. The present invention proposes to contact a gas with a liquid in several stages in which the gas flows in a substantially horizontal direction by crossing the liquid which flows in a substantially vertical direction to reduce the bulk and the investment and operating costs of the process.
De manière générale, l'invention a pour objet un procédé de désacidification d'un gaz de charge comportant au moins l'un des composés acides CO2 et H2S, dans lequel on effectue les étapes suivantes : In general, the subject of the invention is a process for the deacidification of a feed gas comprising at least one of the acidic compounds CO 2 and H 2 S, in which the following steps are carried out:
a) on met en contact dans un premier garnissage ledit gaz de charge avec une solution absorbante liquide enrichie en composés acides produite à l'étape b), le gaz de charge circulant dans le premier garnissage selon une direction sensiblement horizontale en croisant la solution absorbante circulant selon une direction sensiblement verticale, pour produire un gaz appauvri en composés acides et une solution absorbante chargée en composés acides, b) on met en contact dans un deuxième garnissage ledit gaz appauvri en composés acides avec une solution absorbante liquide, le gaz circulant dans le deuxième garnissage selon ladite direction sensiblement horizontale en croisant la solution absorbante circulant selon une direction sensiblement verticale, pour produire un gaz pauvre en composés acides et ladite solution absorbante liquide enrichie en composés acides mise en œuvre à l'étape a). a) said filler gas is contacted in a first packing with an acid-enriched liquid absorbent solution produced in step b), the feed gas flowing in the first packing in a substantially horizontal direction crossing the absorbing solution; circulating in a substantially vertical direction, to produce a gas depleted of acidic compounds and an absorbent solution loaded with acidic compounds, b) the gas is brought into contact in a second lining with a liquid absorbent solution, the gas flowing in the second lining in said substantially horizontal direction by crossing the absorbent solution flowing in a substantially vertical direction, to produce a gas poor in acidic compounds and said liquid absorbent solution enriched in acidic compounds implemented in step a).
Selon l'invention, le premier garnissage peut être juxtaposé au deuxième garnissage, le premier et le deuxième garnissage étant alignés selon ladite direction de circulation du gaz. According to the invention, the first lining may be juxtaposed to the second lining, the first and second lining being aligned in the said direction of circulation of the gas.
Dans le procédé selon l'invention, on peut effectuer l'étape suivante :  In the process according to the invention, the following step can be carried out:
c) on met en contact dans un troisième garnissage ledit gaz pauvre en composés acides avec un liquide absorbant, le gaz circulant dans le troisième garnissage selon ladite direction sensiblement horizontale en croisant le liquide circulant selon une direction sensiblement verticale, pour produire un gaz traité et la solution absorbante liquide mise en œuvre à l'étape b). Lesdits garnissages peuvent développer une aire géométrique supérieure à 100 m2/m3 et de préférence supérieure à 200 m2/m3. c) a gas that is low in acid compounds is contacted in a third lining with an absorbent liquid, the gas flowing in the third lining in said substantially horizontal direction by crossing the liquid flowing in a substantially vertical direction to produce a treated gas and the liquid absorbent solution implemented in step b). Said packings can develop a geometric area greater than 100 m 2 / m 3 and preferably greater than 200 m 2 / m 3 .
On peut faire circuler le gaz dans les garnissages à une vitesse supérieure à 1 m/s, de préférence supérieure à 2 m/s.  The gas can be circulated in the packings at a speed greater than 1 m / s, preferably greater than 2 m / s.
On peut prélever une portion d'au moins une des solutions absorbantes issue d'un des garnissages, puis on peut introduire ladite portion dans la partie supérieure dudit garnissage.  A portion of at least one of the absorbent solutions obtained from one of the packings may be taken, and then said portion may be introduced into the upper part of said packing.
On peut augmenter la pression de la solution absorbante liquide enrichie en composés acides produite à l'étape b) et on peut introduire ladite solution sous pression dans le premier garnissage.  The pressure of the acid-enriched liquid absorbent solution produced in step b) can be increased and said pressurized solution can be introduced into the first packing.
Avant d'effectuer l'étape a), on peut refroidir ladite solution absorbante liquide enrichie en composés acides produite à l'étape b). On peut régénérer la solution absorbante chargée en composés acides produite à l'étape a) de manière à libérer des composés acides et produire ladite solution absorbante mise en œuvre à l'étape b) ou ledit liquide absorbant mis en œuvre à l'étape c). Before performing step a), said acid-enriched liquid absorbent solution produced in step b) can be cooled. The absorbent solution loaded with acidic compounds produced in step a) can be regenerated so as to release acidic compounds and produce said absorbing solution implemented in step b) or said absorbent liquid implemented in step c ).
Le gaz de charge peut être choisi parmi l'un des gaz suivants : une fumée de combustion, un gaz naturel, un gaz obtenu en queue du procédé Claus, un gaz de synthèse, un gaz issu de la fermentation de biomasse, un effluent issu d'une cimenterie et un gaz issu d'une usine de sidérurgie. Un avantage majeur de la mise en œuvre du contact par courant croisé entre gaz et liquide, selon l'invention, est de s'affranchir du phénomène d'engorgement. En conséquence, selon l'invention, on peut mettre en œuvre des garnissages de mise en contact moins capacitifs mais plus efficaces de façon à optimiser la surface d'échange et les paramètres de transfert afin de réduire la taille totale du dispositif via une augmentation de la surface de passage mais une réduction du volume utile et du volume total. De plus, on peut moduler indépendamment les débits de gaz et de liquide ce qui permet d'augmenter aisément la capacité de traitement de l'unité. Par ailleurs, la présente invention offre la possibilité de recycler du liquide pour en augmenter le débit. Ce recyclage peut être utile d'une part pour permettre de mieux tirer parti du garnissage pour lequel la surface efficace augmente avec le débit spécifique de liquide et d'autre part pour atteindre des meilleurs taux de charge de la solution absorbante en fond de section de contact.  The feed gas may be chosen from one of the following gases: a combustion smoke, a natural gas, a gas obtained at the bottom of the Claus process, a synthesis gas, a gas resulting from the fermentation of biomass, an effluent resulting from a cement plant and a gas from a steel plant. A major advantage of the implementation of the cross-current contact between gas and liquid, according to the invention, is to overcome the phenomenon of congestion. Consequently, according to the invention, it is possible to implement less capacitive but more effective contacting lining so as to optimize the exchange surface and the transfer parameters in order to reduce the total size of the device via an increase of the passing surface but a reduction of the useful volume and the total volume. In addition, it is possible to independently modulate the flow rates of gas and liquid which allows to easily increase the processing capacity of the unit. Furthermore, the present invention offers the possibility of recycling liquid to increase the flow rate. This recycling can be useful on the one hand to allow better take advantage of the packing for which the effective surface increases with the specific flow of liquid and secondly to achieve better loading rates of the absorbent solution in the bottom section of the contact.
La présente invention comporte également d'autres avantages présentés ci-après :  The present invention also has other advantages presented below:
- elle limite très fortement la hauteur et le volume total de l'unité, - it strongly limits the height and the total volume of the unit,
- via l'utilisation d'équipements de hauteur limitée, elle permet de limiter les nuisances visuelles et leur impact environnemental,- via the use of equipment of limited height, it makes it possible to limit the visual nuisances and their environmental impact,
- elle permet une mise en œuvre dans des colonnes rectangulaires de construction modulaire et peu coûteuse, et permet la réalisation de colonnes avec des largeurs non limitées contrairement au cas des colonnes cylindriques - It allows implementation in rectangular columns of modular construction and inexpensive, and allows the realization columns with unrestricted widths unlike the case of cylindrical columns
- elle permet, en fond de sections, l'utilisation d'échangeurs de chaleur intégrés ce qui limite les coûts d'investissement et facilite l'opération et la maintenance par rapport à un équipement externe, ces échangeurs permettant d'effectuer un contrôle de la température de la solution absorbante en circulation, permettant notamment d'optimiser le taux de charge de la solution absorbante en sortie de l'équipement après lavage du gaz,  it allows, at the bottom of the sections, the use of integrated heat exchangers which limits the investment costs and facilitates the operation and the maintenance compared to an external equipment, these exchangers making it possible to carry out a control of the temperature of the absorbent solution in circulation, in particular making it possible to optimize the loading rate of the absorbent solution at the outlet of the equipment after washing the gas,
- elle permet d'utiliser des systèmes de distribution de gaz et de liquide dédiés, sans mélange des phases et donc optimisés. Elle permet notamment l'utilisation de distributeurs de liquide sous pression, peu encombrants et très efficaces.  - It allows the use of dedicated gas and liquid distribution systems, without mixing phases and therefore optimized. It allows in particular the use of pressurized liquid distributors, compact and very effective.
- elle permet une modularité de fonctionnement en offrant la possibilité de n'opérer que certains tronçons et non la totalité, ce qui permet d'avoir une bonne efficacité même si les débits à traiter varient significativement,  it allows a modularity of operation by offering the possibility of operating only certain sections and not all of them, which makes it possible to have a good efficiency even if the flow rates to be treated vary significantly,
- elle permet, dans le cas de l'utilisation de garnissages structurés, d'économiser des coûts d'étude, de construction et de montage importants quant à la réalisation des garnissages; le pavage d'une section circulaire étant beaucoup plus complexe que celui d'une section rectangulaire. En effet, dans le cas d'une section circulaire, tous les éléments de garnissage situés en périphérie de colonne doivent avoir des longueurs adaptées (étude, découpe et mise en place spécifique), ce qui n'est pas le cas d'une section parallélépipédique.  it makes it possible, in the case of the use of structured packings, to save on study, construction and assembly costs which are important for the realization of the packings; the paving of a circular section being much more complex than that of a rectangular section. Indeed, in the case of a circular section, all the packing elements located at the column periphery must have adapted lengths (study, cutting and specific implementation), which is not the case of a section cuboid.
D'autres caractéristiques et avantages de l'invention seront mieux compris et apparaîtront clairement à la lecture de la description faite ci-après en se référant aux dessins parmi lesquels : - la figure 1 schématise un procédé de désacidification selon l'invention, Other features and advantages of the invention will be better understood and will become clear from reading the description given below with reference to the drawings among which: FIG. 1 schematizes a deacidification process according to the invention,
- la figure 2 schématise un second mode de réalisation du procédé selon l'invention  FIG. 2 schematizes a second embodiment of the method according to the invention
- la figure 3 représente un dispositif de mise en contact à courant- croisé selon l'invention,  FIG. 3 represents a cross-current contact device according to the invention,
- la figure 4 représente un procédé de désacidification selon l'art antérieur. En référence à la figure 1 , le gaz à traiter arrive par le conduit 1 à une pression qui peut être comprise entre 1 et 150 bars absolus, et à une température qui peut être comprise entre 10 °C et 70°C.  FIG. 4 represents a deacidification process according to the prior art. With reference to FIG. 1, the gas to be treated arrives via line 1 at a pressure that can be between 1 and 150 bar absolute, and at a temperature that can be between 10 ° C. and 70 ° C.
Le gaz peut être des fumées de combustion, un gaz naturel ou un gaz obtenu en queue du procédé Claus. Le gaz peut également être un gaz de synthèse, un gaz de conversion mis en œuvre dans les centrales intégrées de combustion de charbon, de brut lourd, de bois ou de gaz naturel, un gaz issu de la fermentation de biomasse, un effluent issu d'une cimenterie ou d'une usine de sidérurgie. Le procédé permet de retirer les composés acides, par exemple le CO2 et/ou l'hbS, éventuellement d'autres composés acides tels que le COS, le CS2, les mercaptans. Le procédé est particulièrement bien adapté pour capter le CO2 contenu dans des fumées de combustion. The gas may be combustion fumes, natural gas or tail gas from the Claus process. The gas may also be a synthesis gas, a conversion gas used in integrated coal, heavy crude, wood or natural gas combustion plants, a gas resulting from the fermentation of biomass, an effluent from a cement plant or a steel plant. The process makes it possible to remove the acidic compounds, for example CO 2 and / or hbS, optionally other acidic compounds such as COS, CS 2 or mercaptans. The process is particularly well suited to capture CO 2 contained in combustion fumes.
Le gaz contient des composés acides tels que le CO2 ou de l'H2S entre 0,1 et 30% volume. Dans le cas des fumées de combustion, le gaz contient également de l'oxygène, entre 1 et 10% volume, et la teneur en composés de type SOx et NOx peut atteindre une valeur de l'ordre de 200 mg/Nm3 volume pour chacun desdits composés. The gas contains acidic compounds such as CO 2 or H 2 S between 0.1 and 30% by volume. In the case of combustion fumes, the gas also contains oxygen, between 1 and 10% by volume, and the content of SOx and NOx type compounds can reach a value of the order of 200 mg / Nm 3 volume for each of said compounds.
Le gaz arrivant par le conduit 1 peut être comprimé par l'organe A. Par exemple, dans le cas d'une fumée de combustion, l'élément A est une soufflante ou un compresseur assurant une augmentation de pression qui peut être de l'ordre de 150 à 200 mbar. Le gaz est introduit par le conduit 2 dans le dispositif de mise en contact entre gaz et liquide C. Le dispositif C est composé de plusieurs compartiments, en l'occurrence les compartiments C1 , C2 et C3. Sans sortir du cadre de la présente invention, le dispositif peut également comporter deux ou quatre ou plus de quatre compartiments. Chaque compartiment comporte un garnissage, couramment nommé "packing", pour favoriser la mise en contact du gaz et du liquide. Le garnissage peut être de type garnissage vrac ou garnissage structuré. En référence à la figure 1 , le gaz traverse successivement les trois compartiments C1 à C3 selon une direction sensiblement horizontale et est évacué de C par le conduit 3. Chacun des compartiments est alimenté en solution absorbante liquide dans sa partie supérieure. Le liquide s'écoule dans le compartiment sous l'effet de la gravité, donc selon une direction sensiblement verticale descendante. Ainsi, dans C1 , C2 et C3, le flux de gaz circulant selon une direction horizontale croise le flux de liquide circulant selon une direction verticale. La solution absorbante est recueillie en fond de chacun des compartiments. En traversant le dispositif C depuis l'entrée par le conduit 2 jusqu'à la sortie par le conduit 3, le gaz est successivement mis en contact avec du liquide dans les compartiments C1 , C2 et C3. Les garnissages mis en œuvre dans le procédé selon l'invention, notamment les garnissages des compartiments C1 , C2 et C3, peuvent être des garnissages structurés, par exemple commercialisés sous la marque BX ou Mellapak par la société Sulzer Chemtech ou commercialisés sous la marque B1 par la société Montz, ou des garnissages vracs par exemple commercialisés sous la marque IMTP par la société Koch-Glitsch, ou des garnissages décrits dans les documents US 4,296,050 ou USD379096, ou des mélangeurs statiques par exemple commercialisés sous la marque SMV par la société Sulzer Chemtech. The gas arriving via line 1 may be compressed by member A. For example, in the case of combustion smoke, element A is a blower or compressor providing a pressure increase which may be order of 150 to 200 mbar. The gas is introduced through line 2 into the contacting device between gas and liquid C. Device C is composed of several compartments, in this case compartments C1, C2 and C3. Without departing from the scope of the present invention, the device may also comprise two or four or more compartments. Each compartment has a packing, commonly called "packing", to promote the bringing into contact of the gas and the liquid. The lining may be loose packing type or structured packing. With reference to FIG. 1, the gas passes successively through the three compartments C1 to C3 in a substantially horizontal direction and is discharged from C via line 3. Each of the compartments is supplied with liquid absorbent solution in its upper part. The liquid flows into the compartment under the effect of gravity, so in a substantially vertical downward direction. Thus, in C1, C2 and C3, the flow of gas flowing in a horizontal direction intersects the flow of liquid flowing in a vertical direction. The absorbent solution is collected at the bottom of each of the compartments. By passing through the device C from the inlet through line 2 to the outlet via line 3, the gas is successively brought into contact with liquid in compartments C1, C2 and C3. The packings used in the process according to the invention, in particular the packings of the compartments C1, C2 and C3, may be structured packings, for example sold under the trademark BX or Mellapak by the company Sulzer Chemtech or sold under the brand B1. by the company Montz, or bulk packings for example sold under the trademark IMTP by the company Koch-Glitsch, or packings described in US 4,296,050 or USD379096, or static mixers for example marketed under the brand SMV by the company Sulzer Chemtech.
Selon l'invention, on met de préférence en œuvre des garnissages qui comportent une aire géométrique importante, c'est-à-dire supérieure à 100 m2/m3, de préférence supérieure à 200 m2/m3, voire supérieure à 300 m2/m3 car la mise en contact à courant croisé autorisent l'utilisation de ces surfaces spécifiques élevées à grand débit, sans risque d'engorgement. According to the invention, it is preferable to use packings which comprise a large geometric area, that is to say greater than 100 m 2 / m 3 , preferably greater than 200 m 2 / m 3 , or even greater than 300 m 2 / m 3 because the setting in cross flow contact allow the use of these high specific surfaces at high flow, without risk of clogging.
Dans les compartiments C1 , C2 et C3, la hauteur du lit de garnissage est choisie de telle sorte que celle-ci soit maximale tout en limitant le besoin de redistribution. On choisit de préférence un lit d'un seul tenant avec des hauteurs de préférence inférieures à 20 m et de préférence à 12 m, voire inférieures à 8 m selon le type de garnissage utilisé.  In the compartments C1, C2 and C3, the height of the packing bed is chosen so that it is maximum while limiting the need for redistribution. Preferably a single bed is chosen with heights preferably less than 20 m and preferably 12 m, or even less than 8 m depending on the type of lining used.
Plus en détail, en traversant C1 , le flux de gaz est mis en contact avec la solution absorbante introduite en partie supérieure du compartiment C1 par le conduit 4. Le gaz circule à courant croisé par rapport à la solution liquide. La solution absorbante capte des composés acides, par exemple du CO2 et de l'hbS contenu dans le gaz. La solution absorbante liquide enrichie en composés acides est recueillie en fond du compartiment C1 pour être évacuée par le conduit 5. In more detail, while passing through C1, the flow of gas is brought into contact with the absorbent solution introduced into the upper part of compartment C1 via line 4. The gas flows in a cross-flow manner with respect to the liquid solution. The absorbent solution captures acidic compounds, for example CO 2 and hbS contained in the gas. The liquid absorbent solution enriched in acidic compounds is collected at the bottom of compartment C1 to be evacuated via line 5.
Après avoir traversé le compartiment C1 , le flux de gaz traverse le compartiment C2. En traversant C2, le flux de gaz est mis en contact avec la solution absorbante introduite en partie supérieure du compartiment C2 par le conduit 6. Le gaz circule à courant croisé par rapport à la solution liquide. La solution absorbante capte des composés acides, par exemple du CO2 et de l'H2S contenus dans le gaz. La solution absorbante liquide enrichie en composés acides est recueillie en fond du compartiment C2 pour être évacuée par le conduit 41. La solution absorbante est pompée par la pompe P1 pour être introduite en tête de C1 par le conduit 4. After passing through compartment C1, the flow of gas passes through compartment C2. Crossing C2, the flow of gas is brought into contact with the absorbent solution introduced in the upper part of the compartment C2 by the conduit 6. The gas flows in a cross flow with respect to the liquid solution. The absorbent solution captures acidic compounds, for example CO 2 and H 2 S contained in the gas. The liquid absorbent solution enriched in acidic compounds is collected at the bottom of the compartment C2 to be discharged through the conduit 41. The absorbent solution is pumped by the pump P1 to be introduced at the head of C1 through the conduit 4.
Après avoir traversé le compartiment C2, le flux de gaz traverse le compartiment C3. En traversant C3, le flux de gaz est mis en contact avec la solution absorbante introduite en partie supérieure du compartiment C3 par le conduit 7. Le gaz circule à courant croisé par rapport à la solution liquide. La solution absorbante capte des composés acides, par exemple du CO2 et de l'hfeS contenus dans le gaz. La solution absorbante liquide enrichie en composés acides est recueillie en fond du compartiment C3 pour être évacuée par le conduit 61. La solution absorbante 61 est pompée par la pompe P2 pour être introduite en tête de C2 par le conduit 6. After passing through compartment C2, the flow of gas passes through compartment C3. Crossing C3, the gas flow is brought into contact with the absorbent solution introduced in the upper part of compartment C3 via line 7. The gas flows in a cross-flow manner with respect to the liquid solution. The absorbent solution captures acidic compounds, for example CO 2 and hfeS contained in the gas. The liquid absorbent solution enriched in acidic compounds is collected at the bottom of compartment C3 to be evacuated via line 61. Absorbent solution 61 is pumped by pump P2 to be introduced at the top of C2 through line 6.
Le gaz peut circuler dans les compartiments C1 , C2 et C3 à une vitesse supérieure à m/s, de préférence supérieure à 2m/s.  The gas can circulate in compartments C1, C2 and C3 at a speed greater than m / s, preferably greater than 2 m / s.
La solution absorbante 4 peut avoir subi un refroidissement par exemple au moyen d'un échangeur de chaleur disposé sur le conduit 4 ou 41 , ou bien au moyen d'un échangeur de chaleur disposé en fond du compartiment C2. De la même manière, la solution absorbante 6 peut avoir subi un refroidissement, par exemple au moyen d'un échangeur de chaleur disposé sur le conduit 6 ou 61 , ou bien au moyen d'un échangeur de chaleur disposé en fond du compartiment C3.  Absorbent solution 4 may have been cooled, for example by means of a heat exchanger disposed on line 4 or 41, or by means of a heat exchanger arranged at the bottom of compartment C2. In the same way, the absorbent solution 6 may have been cooled, for example by means of a heat exchanger disposed on the duct 6 or 61, or by means of a heat exchanger arranged at the bottom of the compartment C3.
Une partie du liquide recueilli en fond d'un compartiment, par exemple par le conduit 5, 41 ou 61 , peut être recyclée en étant réintroduite en tête du même compartiment, respectivement par le conduit 4, 6 ou 7. Ce recyclage permet de mieux tirer parti du garnissage pour lequel la surface efficace augmente avec le débit spécifique de liquide afin d'atteindre des meilleurs taux de charge de la solution absorbante en fond de section de contact.  Part of the liquid collected at the bottom of a compartment, for example via line 5, 41 or 61, may be recycled by being reintroduced at the head of the same compartment, respectively via line 4, 6 or 7. This recycling makes it possible to better take advantage of the packing for which the effective area increases with the specific flow rate of liquid in order to achieve better loading rates of the absorbent solution at the bottom of the contact section.
La composition de la solution absorbante mise en œuvre dans la présente invention est choisie pour sa capacité à absorber les composés acides. On peut mettre en œuvre une solution aqueuse comportant, en général entre 10% et 80%, de préférence entre 20% et 60%, en poids d'amines, de préférence des alcanolamines, ou tout autre composé organique pouvant réagir avec les composés acides contenus dans le gaz. La solution absorbante peut comporter entre 20% et 90% poids, de préférence entre 40% et 80% poids d'eau. The composition of the absorbent solution used in the present invention is chosen for its ability to absorb the acidic compounds. It is possible to use an aqueous solution comprising, in general, between 10% and 80%, preferably between 20% and 60%, by weight of amines, preferably alkanolamines, or any other organic compound which can react with the acidic compounds contained in the gas. The absorbent solution may comprise between 20% and 90% by weight, preferably between 40% and 80% by weight of water.
On peut choisir les aminés parmi des monoamines telles que la MEA Amines can be selected from monoamines such as MEA
(monoéthanolamine), la DEA (diéthanolamine), la MDEA (méthyldiéthanolamine), la DIPA (diisopropylamine), ou la DGA (diglycolamine), mais aussi parmi des multiamines telles que la pipérazine, la N-(2-hydroxyéthyl)piperazine, la Ν,Ν,Ν',Ν'- Tétraméthylhexane-1 ,6-diamine, la Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine, la 1 ,2- bis(2-diméthylaminoéthoxy)éthane, la 1 ,2-bis(2-diéthylaminoéthoxy)éthane, et la 1 ,2-bis(2-pyrolidinoéthoxy)éthane, la 1 ,2,3,4-Tetrahydroisoquinoline, la 1-butylpipérazine et la 2-méthylpipérazine. Ces aminés peuvent être employées seules, ou en mélange. (monoethanolamine), DEA (diethanolamine), MDEA (methyldiethanolamine), DIPA (diisopropylamine), or DGA (diglycolamine), but also among multiamines such as piperazine, N- (2-hydroxyethyl) piperazine, Ν, Ν, Ν ', Ν'-Tetramethylhexane-1, 6-diamine, Ν, Ν, Ν', Ν'-tetraethyldiethylenetriamine, 1,2-bis (2-dimethylaminoethoxy) ethane, 1,2-bis (2-diethylaminoethoxy) ethane, and 1,2-bis (2-pyrolidinoethoxy) ethane, 1,2,3,4-tetrahydroisoquinoline, 1-butylpiperazine and 2-methylpiperazine. These amines can be used alone, or in a mixture.
La solution absorbante peut contenir à la place ou en plus de l'aminé un tiers composé qui permet de favoriser la solubilité physique des composés acides à absorber. Ce tiers composé peut être, par exemple et de façon non limitative du méthanol, du sulfolane, des polyéthylèneglycols qui peuvent être éthérifiés, des pyrrolydones ou dérivés comme par exemple la N-méthylpyrrolidone, le méthanol, la N-formyl morpholine, l'acétyl morpholine, le carbonate de propylène. Ce tiers composé peut représenter entre 0 à 100% en poids de l'aminé.  The absorbent solution may contain, instead of or in addition to the amine, a compounded third which makes it possible to promote the physical solubility of the acidic compounds to be absorbed. This third compound can be, for example and without limitation, methanol, sulfolane, polyethylene glycols which can be etherified, pyrrolydones or derivatives such as, for example, N-methylpyrrolidone, methanol, N-formyl morpholine, acetyl morpholine, propylene carbonate. This third compound may represent between 0 to 100% by weight of the amine.
La solution absorbante évacuée en fond du compartiment C1 par le conduit 5 est introduite dans l'échangeur de chaleur E1 pour y être chauffée, puis introduite dans la colonne de régénération R par le conduit 8. The absorbent solution discharged into the bottom of the compartment C1 via the pipe 5 is introduced into the heat exchanger E1 to be heated and then introduced into the regeneration column R via the pipe 8.
La colonne de régénération R est équipée d'internes de mise en contact entre gaz et liquide, par exemple des plateaux, des garnissages en vrac ou structurés. Le fond de la colonne R est équipé d'un rebouilleur E2 qui apporte la chaleur nécessaire à la régénération en vaporisant une fraction de la solution absorbante. Dans la colonne R, sous l'effet de la mise en contact de la solution absorbante arrivant par 8 avec la vapeur produite par E2, les composés acides, par exemple le CO2 et l'H2S, sont libérés sous forme gazeuse et évacués en tête de R par le conduit 9. The regeneration column R is equipped with gas-liquid contacting internals, for example trays, loose or structured packings. The bottom of the column R is equipped with a reboiler E2 which provides the heat necessary for the regeneration by vaporizing a fraction of the absorbing solution. In the column R, under the effect of contacting the absorbent solution arriving by 8 with the vapor produced by E2, the acid compounds, for example CO 2 and H 2 S, are released in gaseous form and evacuated at the head of R via line 9.
Le flux gazeux évacué en tête de R par le conduit 9 est partiellement liquéfié par refroidissement dans l'échangeur E3 puis introduit dans le séparateur B. Les condensais sont tout ou en partie recyclés par le conduit 10 en tête de la colonne R à titre de reflux. Le flux gazeux riche en composés acides est évacué en tête de B par le conduit 11.  The gas stream discharged at the top of R through line 9 is partially liquefied by cooling in exchanger E3 and then introduced into separator B. The condensates are wholly or partly recycled through line 10 at the top of column R as a reflux. The gaseous flow rich in acidic compounds is discharged at the top of B through line 11.
La solution absorbante régénérée, c'est-à-dire appauvrie en composés acides, est évacuée en fond de la colonne R par le conduit 12 et introduite dans l'échangeur E1 pour être refroidie. La solution absorbante refroidie est pompée par la pompe P3, puis évacuée par le conduit 7 pour être introduite dans le dispositif C dans la partie supérieure du compartiment C3. Le fait d'utiliser plusieurs pompes P1 , P2 et P3 par rapport à un schéma classique qui nécessite une seule pompe présente a priori un coût d'investissement et un coût de fonctionnement associé plus important. Cependant, cette augmentation du coût est contrebalancée par le fait que les puissances requises sont sensiblement moins fortes dans le cas de la présente invention. En effet, la solution absorbante doit être portée à une hauteur de près de 10 m (cas de lit de 8 m selon la présente invention) contre plus de 30 m dans le cas d'une colonne classique selon l'art antérieur (22 m de lit utile de garnissage + 6 m de systèmes de distribution + fonds de colonne), ce qui correspond à une puissance réduite d'un facteur 3, celle-ci étant proportionnelle à la charge fournie par la pompe. The regenerated absorbent solution, that is to say depleted in acidic compounds, is discharged at the bottom of the column R through the conduit 12 and introduced into the exchanger E1 to be cooled. The cooled absorbent solution is pumped by the pump P3, then discharged through the conduit 7 to be introduced into the device C in the upper part of the compartment C3. The fact of using several pumps P1, P2 and P3 with respect to a conventional scheme which requires a single pump has a priori investment cost and a higher associated operating cost. However, this increase in cost is counterbalanced by the fact that the required powers are substantially lower in the case of the present invention. Indeed, the absorbent solution must be raised to a height of nearly 10 m (8 m bed case according to the present invention) against more than 30 m in the case of a conventional column according to the prior art (22 m useful bed of packing + 6 m distribution systems + column bottoms), which corresponds to a power reduced by a factor 3, this being proportional to the load supplied by the pump.
Selon l'invention, on peut diminuer ou augmenter les capacités de traitement en mettant plus ou moins de compartiments en œuvre. Ainsi, en augmentant ou en diminuant le nombre de compartiments mis en œuvre, on peut adapter la capacité de traitement, par exemple à un changement dans la composition ou le débit du gaz à traiter, ou bien en changeant les performances de captage des composés acides. According to the invention, it is possible to reduce or increase the processing capacities by putting more or fewer compartments into operation. Thus, by increasing or decreasing the number of compartments used, it is possible to adapt the treatment capacity, for example to a change in the composition or the flow rate of the gas to be treated, or by changing the capture performance of the acidic compounds. .
Par exemple, cette modularité peut être notamment utilisée pour un procédé de captage de C02 contenu dans des fumées de combustion produites par une centrale électrique. En effet, aux heures des pics de consommations pendant lesquelles le prix de l'électricité est très élevé, il peut y avoir un intérêt économique à ne faire fonctionner qu'une partie des compartiments ce qui permet une réduction de la consommation énergétique du procédé de captage via un prélèvement de vapeur moindre sur la centrale. La centrale peut alors produire plus d'électricité. Ce fonctionnement induit également une baisse du taux de captage qui peut être compensée soit par l'achat de droits d'émission supplémentaires, ce qui est possible vu le prix de vente de l'électricité dans ces périodes de pointe, soit par un taux de captage plus important aux heures creuses pendant lesquelles les besoins en électricité sont moindres. En général, le gaz traité peut entraîner des impuretés ou polluants comme des composants organiques présents en phase liquide soit par entrainement mécanique, soit pour des raisons thermodynamiques de tension de vapeur. Il doit alors être lavé pour réduire la quantité d'impuretés et respecter les normes imposées par le législateur ou le client sur la qualité du gaz. Ainsi, les procédés de captage de CO2 possèdent une section de lavage située au dessus de la zone de contact gaz-liquide. La hauteur de la colonne d'absorption est augmentée du fait de l'ajout de cette section qui requiert, une zone de d'alimentation en tête, une zone de contact, généralement un lit de garnissage et une zone de collecte. Le tout nécessite généralement des hauteurs comprises entre 5 et 10 m. Néanmoins, celles-ci peuvent être encore supérieures dans le cas de la présence de composés très volatils ou de spécifications très poussées. For example, this modularity can be used in particular for a C0 2 capture process contained in combustion fumes produced by a power plant. Indeed, in times of consumption peaks during which the price of electricity is very high, it may be economically advantageous to operate only part of the compartments which allows a reduction of the energy consumption of the process of capture via less vapor sampling on the plant. The plant can then produce more electricity. This operation also leads to a lowering of the capture rate, which can be offset either by the purchase of additional emission rights, which is possible given the selling price of electricity in these peak periods, or by a rate of higher capture during off-peak hours when electricity requirements are lower. In general, the treated gas can cause impurities or pollutants such as organic components present in the liquid phase either by mechanical drive or for thermodynamic reasons of vapor pressure. It must then be washed to reduce the amount of impurities and meet the standards imposed by the legislator or the customer on the quality of the gas. Thus, the CO 2 capture processes have a washing section located above the gas-liquid contact zone. The height of the absorption column is increased by the addition of this section which requires, a feed zone at the head, a contact zone, generally a packing bed and a collection zone. The whole thing usually requires heights between 5 and 10 m. Nevertheless, these can be even higher in the case of the presence of highly volatile compounds or very advanced specifications.
Dans le cas de la présente invention, on peut disposer une zone de contact en aval des compartiments de désacidification. La figure 2 représente le schéma de la figure 1 dans lequel on a augmenté le dispositif C d'une zone de lavage L. Les références de la figure 2 identiques à celles de la figure 1 désignent les mêmes éléments. Dans ce cas, la longueur de l'installation C est augmentée, mais pas sa hauteur. Le coût de construction est augmenté mais moins que dans le cas d'une hauteur augmentée, et les coûts d'investissement et de fonctionnement de la pompe de circulation du fluide de lavage, qui peut être de l'eau ou une solution alcaline, sont sensiblement moindres que ceux d'une mise en œuvre classique.  In the case of the present invention, it is possible to have a contact zone downstream of the deacidification compartments. FIG. 2 represents the diagram of FIG. 1 in which the device C of a washing zone L has been increased. The references of FIG. 2 identical to those of FIG. 1 denote the same elements. In this case, the length of the installation C is increased, but not its height. The cost of construction is increased but less than in the case of increased height, and the investment and operating costs of the circulation pump of the washing fluid, which may be water or an alkaline solution, are significantly less than those of a typical implementation.
En référence à la figure 2, après avoir traversé le compartiment C3, le flux de gaz traverse le compartiment L. En traversant L, le flux de gaz est mis en contact avec une eau de lavage introduite en partie supérieure du compartiment L par le conduit 21. Le gaz circule à courant croisé par rapport à l'eau liquide. L'eau de lavage capte des impuretés contenues dans le gaz. L'eau de lavage chargée en impuretés est recueillie en fond du compartiment L pour être évacuée par le conduit 20. L'eau 20 est pompée par la pompe P4 pour être introduite en tête de L par le conduit 21. Eventuellement, on effectue des extractions d'eau par le conduit 22 et des appoints en eau fraîche par le conduit 23 dans le circuit de l'eau de lavage. With reference to FIG. 2, after passing through the compartment C3, the flow of gas passes through the compartment L. While passing through L, the gas flow is brought into contact with a washing water introduced into the upper part of the compartment L via the duct. 21. The gas flows in a cross-flow manner with respect to the liquid water. The wash water captures impurities contained in the gas. The wash water charged with impurities is collected at the bottom of the compartment L to be discharged through the conduit 20. The water 20 is pumped by the pump P4 to be introduced at the top of the L through the conduit 21. Optionally, it carries out water extractions through the duct 22 and fresh water connections via the conduit 23 in the circuit of the washing water.
La figure 3 représente un exemple de réalisation du dispositif C de la figure 1. Les références de la figure 3 identiques à celle de la figure 1 désignent les mêmes éléments. FIG. 3 represents an exemplary embodiment of the device C of FIG. 1. The references of FIG. 3 identical to that of FIG. 1 denote the same elements.
En référence à la figure 3, le dispositif C est composé d'une enceinte E comportant les compartiments C1 , C2 et C3. De préférence, l'enceinte E est de forme parallélépipédique, dans laquelle la longueur est en général plus grande que la hauteur et la largeur mais pas nécessairement. Les compartiments étant alignés les uns après les autres dans le sens de la longueur du parallélépipède. En référence à la figure 3, le gaz arrivant par le conduit 2 est introduit dans une zone d'entrée ZE dans l'enceinte E. La zone ZE communique avec le compartiment C1. Dans la zone ZE, le gaz peut être distribué au moyen du distributeur gaz DG pour être réparti de manière homogène sur toute la surface de la zone ZE en contact avec C1. Le compartiment C1 communique avec le compartiment C2 par exemple en étant en contact avec le compartiment C2 selon une interface, de préférence plane. De la même manière le compartiment C2 communique avec le compartiment C3 par exemple en étant en contact avec le compartiment C3 selon une interface, de préférence plane. Le compartiment C3 communique avec la zone de sortie ZS dans laquelle on recueille le gaz qui a traversé C1 , C2 et C3. Le gaz recueilli dans ZS est évacué par le conduit 3. Les garnissages C1 , C2 et C3 sont disposés juxtaposés les uns aux autres, en étant alignés horizontalement dans la direction de circulation du gaz. Ainsi, le gaz circule selon une direction sensiblement horizontale depuis le conduit 2 jusqu'au conduit 3 à travers C1 , C2 et C3. La partie supérieure du compartiment C1 communique avec une zone d'alimentation ZA1 en liquide.  With reference to FIG. 3, the device C is composed of an enclosure E comprising the compartments C1, C2 and C3. Preferably, the enclosure E is of parallelepipedal shape, in which the length is generally greater than the height and the width but not necessarily. The compartments being aligned one after the other in the direction of the length of the parallelepiped. With reference to FIG. 3, the gas arriving via the conduit 2 is introduced into an entry zone ZE in the enclosure E. The zone ZE communicates with the compartment C1. In the zone ZE, the gas can be distributed by means of the gas distributor DG to be distributed homogeneously over the entire surface of the zone ZE in contact with C1. The compartment C1 communicates with the compartment C2 for example by being in contact with the compartment C2 in an interface, preferably flat. In the same way the compartment C2 communicates with the compartment C3 for example by being in contact with the compartment C3 according to an interface, preferably flat. The compartment C3 communicates with the outlet zone ZS in which the gas which has passed through C1, C2 and C3 is collected. The gas collected in ZS is discharged through line 3. The packings C1, C2 and C3 are arranged juxtaposed to each other, being aligned horizontally in the gas flow direction. Thus, the gas flows in a substantially horizontal direction from the conduit 2 to the conduit 3 through C1, C2 and C3. The upper part of the compartment C1 communicates with a supply zone ZA1 in liquid.
Le conduit 4 alimente le distributeur de liquide DL1 situé dans ZA1. DL1 permet d'arroser de manière homogène la partie du compartiment C1 en contact avec la zone ZA1. La partie inférieure du compartiment C1 communique avec une zone de collecte ZC1 de liquide. La zone ZC1 est connectée au conduit 5. Le liquide s'écoulant dans le compartiment C1 est collecté dans ZC1 et évacué par le conduit 5. De la même manière, les compartiments C2 et C3 communiquent avec des zones d'alimentation en liquide ZA2 et ZA3 et des zones de collecte de liquide ZC2 et ZC3. Line 4 feeds the liquid distributor DL1 located in ZA1. DL1 makes it possible to homogeneously water the part of compartment C1 in contact with zone ZA1. The lower part of the compartment C1 communicates with a collection zone ZC1 of liquid. Zone ZC1 is connected to conduit 5. The liquid flowing in the compartment C1 is collected in ZC1 and discharged through the conduit 5. In the same way, the compartments C2 and C3 communicate with liquid supply zones ZA2 and ZA3 and liquid collection zones ZC2 and ZC-3.
Le fait d'utiliser une pompe de relevage P1 ou P2 entre deux compartiments consécutifs, par exemple C1 et C2 ou C2 et C3, permet d'utiliser des systèmes de distribution de liquide DL1 opérant sous pression. Par exemple DL1 peut être composé de buses à spray. La distribution liquide sous pression permet de générer une bonne distribution avec un encombrement bien plus faible que celui des distributeurs gravitaires classiques.  The fact of using a lifting pump P1 or P2 between two consecutive compartments, for example C1 and C2 or C2 and C3, makes it possible to use liquid distribution systems DL1 operating under pressure. For example DL1 may be composed of spray nozzles. The liquid distribution under pressure can generate a good distribution with a much smaller footprint than conventional gravity distributors.
Dans l'enceinte E, les différentes zones d'entrée ZE, zone de sortie ZS, zone d'alimentation ZA1 , ZA2, ZA3, et zones de collecte ZC1 , ZC2, ZC3 peuvent être séparées par des moyens de séparation S, par exemple des portions de plaque plane. De préférence, ces moyens de séparation S se prolongent sur une portion de surface dans les interfaces entre la zone SE et le compartiment C1 , entre les compartiments C1 et C2, entre les compartiments C2 et C3 et entre le compartiment C3 et la zone ZS. Les moyens de séparation S permettent d'assurer que la circulation gaz est réalisée dans la zone de contact gaz/liquide des compartiments C1 , C2 et C3, et pas dans les zones d'alimentation ZA1 , ZA2, ZA3 ou de collecte de liquide ZC1 , ZC2, ZC3. Les moyens S situés entre ZC1 et ZC2 et entre ZC2 et ZC3 peuvent comporter des orifices de manière à ce que le liquide puisse circuler entre les zones de collecte de liquide ZC1 , ZC2, ZC3. Ainsi le niveau de liquide dans les zones de collecte de liquide peut s'équilibrer dans les cas de mauvaise opération du procédé.  In the enclosure E, the different input zones ZE, output zone ZS, feed zone ZA1, ZA2, ZA3, and collection zones ZC1, ZC2, ZC3 can be separated by separation means S, for example portions of flat plate. Preferably, these separation means S extend over a surface portion in the interfaces between the zone SE and the compartment C1, between the compartments C1 and C2, between the compartments C2 and C3 and between the compartment C3 and the zone ZS. The separation means S make it possible to ensure that the gas circulation is carried out in the gas / liquid contact zone of the compartments C1, C2 and C3, and not in the supply zones ZA1, ZA2, ZA3 or liquid collection zone ZC1. , ZC2, ZC3. The means S situated between ZC1 and ZC2 and between ZC2 and ZC3 may comprise orifices so that the liquid can circulate between the liquid collection zones ZC1, ZC2, ZC3. Thus, the level of liquid in the liquid collection zones can be balanced in cases of poor process operation.
Les exemples de fonctionnement présentés ci-après permettent de comparer et d'illustrer des avantages de l'invention par rapport à l'art antérieur. The examples of operation presented below make it possible to compare and illustrate advantages of the invention with respect to the prior art.
Les résultats présentés dans le tableau 1 ci-dessous montrent les caractéristiques et le dimensionnement de différents procédés pour décarbonater des fumées de combustion issues d'une centrale électrique au charbon de 630 MWe. Les fumées à traiter ont un débit de 1 750 000 Nm3/h avec une composition de 13,5% volume de CO2. On met en œuvre des procédés de captage de CO2 ayant un taux de captage de 90% du CO2 contenu dans les fumées grâce à la circulation d'un débit de 7110 m3/h de solution absorbante composée d'une solution aqueuse de MEA à 30% poids, ayant un taux de charge en entrée et en sortie respectif de 0,24 et de 0,47. On compare un cas de mise en œuvre selon l'art antérieur avec deux cas de mise en œuvre selon la présente invention. The results presented in Table 1 below show the characteristics and sizing of various processes to decarbonate combustion fumes from a 630 MWe coal-fired power plant. The fumes to be treated have a flow rate of 1,750,000 Nm 3 / h with a composition of 13.5% CO 2 volume. CO 2 capture processes with a capture rate of 90% of the CO 2 contained in the fumes are carried out thanks to the circulation of a flow rate of 7110 m 3 / h of absorbent solution composed of an aqueous solution of MEA at 30% by weight, having a respective input and output loading rate of 0.24 and 0.47. A case of implementation according to the prior art is compared with two cases of implementation according to the present invention.
Le cas selon l'art antérieur est schématisé par la figure 4. Le flux de fumées à traiter 40 est divisé en quatre pour alimenter chacune des quatre colonnes CA1 , CA2, CA3 et CA4, induisant une vitesse de gaz de 2,4 m/s dans les colonnes. Les colonnes sont équipées d'un garnissage structuré caractérisé par une aire géométrique de 250 m2/m3 et développant une aire efficace de 200 m2/m3 pour les conditions d'écoulement retenues. La solution absorbante arrivant par le conduit 41 est scindée en quatre fractions qui alimentent chacune l'une des colonnes CA1 , CA2, CA3 et CA4. Dans les colonnes CA1 à CA4, le gaz circule selon une direction verticale ascendante à contre courant du liquide circulant selon une direction verticale descendante. Pour traiter le débit de fumées, la hauteur requise pour la zone de contact dans les colonnes CA1 à CA4 est de 22 m pour un diamètre de 8,8 mètres, soit un volume de garnissage total de près de 5300 m3. Cette hauteur est déterminée via l'utilisation d'un modèle d'absorbeur intégrant des modèles de cinétique et de thermodynamique propres à une solution aqueuse de MEA 30% poids et des modèles de transfert de masse propres au garnissage utilisé, qui permettent ainsi de calculer les vitesses de réaction du CO2 avec l'aminé, les équilibres liquide-vapeur et le transfert réactif. Pour agencer le garnissage de 22 m de hauteur, chacune des colonnes CA1 à CA4 peut se décomposer de bas en haut de la manière suivante : 4 m de hauteur en fond pour recueillir le liquide, 2 m pour la distribution de gaz, 7,4 m de garnissage, un espace de 1 ,9 m de redistribution de gaz et de liquide, 7,4 m de garnissage, un espace de 1 ,9 m de redistribution de gaz et de liquide, 7,4 m de garnissage et 3 m de hauteur en tête pour la distribution de liquide. Eventuellement la colonne peut être rehaussée de 6 m pour la section de lavage située au-dessus de la distribution de liquide. Dans cette configuration, la solution absorbante est introduite à une hauteur d'environ 35 m, ce qui nécessite une pompe d'une puissance de 255 kW. The case according to the prior art is shown diagrammatically in FIG. 4. The flow of fumes to be treated 40 is divided in four to supply each of the four columns CA1, CA2, CA3 and CA4, inducing a gas velocity of 2.4 m / m.sup.2. s in the columns. The columns are equipped with a structured packing characterized by a geometric area of 250 m 2 / m 3 and developing an effective area of 200 m 2 / m 3 for the flow conditions retained. The absorbent solution arriving via line 41 is split into four fractions, each supplying one of the columns CA1, CA2, CA3 and CA4. In the columns CA1 to CA4, the gas flows in an upward vertical direction against the current of the flowing liquid in a downward vertical direction. To treat the flue gas flow, the height required for the contact zone in columns CA1 to CA4 is 22 m for a diameter of 8.8 meters, ie a total packing volume of nearly 5300 m 3 . This height is determined via the use of an absorber model integrating kinetic and thermodynamic models specific to an aqueous solution of MEA 30% by weight and mass transfer models specific to the lining used, which make it possible to calculate the reaction rates of CO 2 with the amine, the liquid-vapor equilibria and the reactive transfer. To arrange the 22 m high packing, each of the CA1 to CA4 columns can decompose from bottom to top in the following manner: 4 m high at the bottom to collect the liquid, 2 m for the gas distribution, 7.4 m lining, a space of 1.9 m redistribution of gas and liquid, 7.4 m of lining, a space of 1.9 m redistribution of gas and liquid, 7.4 m of lining and 3 m from head to head for the distribution of liquid. Possibly the column can be raised by 6 m for the washing section located above the liquid distribution. In this configuration, the absorbent solution is introduced at a height of about 35 m, which requires a pump with a power of 255 kW.
Selon un premier cas selon l'invention, on met en œuvre le schéma de la figure 1 avec les compartiments C1 , C2 et C3 équipés d'un garnissage structuré développant la même aire efficace de 200 m2/m3 . Pour traiter le débit de fumées, les dimensions totales des trois contacteurs sont une longueur de 3x7,8 m, une largeur de 7,13 m et une hauteur de 8 m, soit un volume de garnissage total de près de 5300 m3. Le dispositif comporte une hauteur de 1 m au niveau des zones d'alimentation ZA1 , ZA2 et ZA3 et une hauteur de 2,8 m au niveau des zone de collecte de liquide ZC1 , ZC2 et ZC3. On retrouve le même volume de garnissage que dans le cas selon l'art antérieur, mais on diminue sensiblement les coûts de construction vu les faibles hauteurs d'équipements. Dans cette configuration, la puissance des pompes est 75 kW pour la pompe P3, 76 kW pour la pompe P2 et 77 kW pour la pompe P3. According to a first case according to the invention, the diagram of FIG. 1 is implemented with the compartments C1, C2 and C3 equipped with structured packing developing the same effective area of 200 m 2 / m 3 . To treat the flue gas flow, the total dimensions of the three contactors are a length of 3x7.8 m, a width of 7.13 m and a height of 8 m, a total packing volume of nearly 5300 m 3 . The device has a height of 1 m at the supply zones ZA1, ZA2 and ZA3 and a height of 2.8 m at the liquid collection zones ZC1, ZC2 and ZC3. The same volume of lining is found as in the case according to the prior art, but the construction costs are significantly reduced in view of the low equipment heights. In this configuration, the power of the pumps is 75 kW for the pump P3, 76 kW for the pump P2 and 77 kW for the pump P3.
Selon la présente invention, il est possible d'utiliser un garnissage beaucoup plus efficace tout en conservant la section de passage totale. Selon un deuxième cas selon l'invention, on met en uvre le schéma de la figure 1 avec les compartiments C1 , C2 et C3 équipés d'un garnissage structuré développant une aire efficace de 400 m2/m3. L'utilisation d'un tel garnissage interne dans le cas selon l'art antérieur avec contact à contre courant n'est pas possible car le garnissage étant moins capacitif, il faudrait des diamètres d'absorbeurs trop élevés pour réduire suffisamment les vitesses gaz et ainsi ne pas rencontrer de problèmes d'engorgement. Pour traiter le débit de fumées, les dimensions totales des trois contacteurs sont une longueur de 3x4 m, une largeur de 7,13 m et une hauteur de 8 m, soit un volume de garnissage total de près de 2700 m3. Le dispositif comporte une hauteur de 1 m au niveau des zones d'alimentation ZA1 , ZA2 et ZA3 et une hauteur de 2,8 m au niveau des zones de collecte de liquide ZC1 , ZC2 et ZC3. Cela représente une diminution de 49% du volume de garnissage par rapport au cas selon l'art antérieur ce qui représente en plus du gain réalisé à la construction du fait de la géométrie parallélépipédique un gain significatif sur le coût du dispositif de mise en contact gaz/liquide. Compte tenu que le dispositif de mise en contact représente environ entre 30% et 50% du coût total d'une unité de captage de CO2, l'invention présente un avantage économique certain. La puissance des pompes est la même que pour le premier cas selon l'invention. According to the present invention, it is possible to use a much more efficient packing while maintaining the total passage section. According to a second case according to the invention, the diagram of FIG. 1 is implemented with compartments C1, C2 and C3 equipped with a structured packing developing an effective area of 400 m 2 / m 3 . The use of such an internal lining in the case according to the prior art with counter-current contact is not possible because the lining being less capacitive, it would require absorber diameters too high to sufficiently reduce the gas velocities and thus not to encounter problems of engorgement. To treat the flue gas flow, the total dimensions of the three contactors are a length of 3x4 m, a width of 7.13 m and a height of 8 m, ie a total packing volume of nearly 2700 m 3 . The device has a height of 1 m at the supply zones ZA1, ZA2 and ZA3 and a height of 2.8 m at the liquid collection zones ZC1, ZC2 and ZC3. This represents a 49% decrease in the volume of packing compared to the case according to the prior art, which represents in addition to the gain realized in the construction due to the parallelepipedal geometry a gain significant on the cost of the gas / liquid contact device. Given that the contacting device represents between 30% and 50% of the total cost of a CO 2 capture unit, the invention has a certain economic advantage. The power of the pumps is the same as for the first case according to the invention.
Figure imgf000019_0001
Figure imgf000019_0001
Tableau 1 - Bilan des dimensionnements  Table 1 - Summary of sizing
Le fait d'utiliser plusieurs pompes au lieu d'une seule n'entraîne pas de surcoût. En effet, le coût lié au nombre (investissement et fonctionnement) est entièrement compensé par le fait que les pompes sont beaucoup moins puissantes, les hauteurs de charge étant très différentes entre le cas selon l'art antérieur et le cas selon la présente invention (proche de 35 m pour une colonne classique, et de moins de 12 m selon la présente invention). The fact of using several pumps instead of one does not entail additional cost. Indeed, the cost related to the number (investment and operation) is entirely compensated by the fact that the pumps are much less powerful, the load heights being very different between the case according to the prior art and the case according to the present invention ( close to 35 m for a conventional column, and less than 12 m according to the present invention).

Claims

REVENDICATIONS
1) Procédé de désacidification d'un gaz de charge comportant au moins l'un des composés acides CO2 et H2S, dans lequel on effectue les étapes suivantes : a) on met en contact dans un premier garnissage ledit gaz de charge avec une solution absorbante liquide enrichie en composés acides produite à l'étape b), le gaz de charge circulant dans le premier garnissage selon une direction sensiblement horizontale en croisant la solution absorbante circulant selon une direction sensiblement verticale, pour produire un gaz appauvri en composés acides et une solution absorbante chargée en composés acides, 1) A process for deacidifying a feed gas comprising at least one of the acidic compounds CO 2 and H 2 S, in which the following steps are carried out: a) contacting the feed gas with a solution in a first packing acid-enriched liquid absorbent product produced in step b), the feed gas flowing in the first packing in a substantially horizontal direction by crossing the absorbent solution flowing in a substantially vertical direction to produce a gas depleted of acidic compounds and a absorbent solution loaded with acidic compounds,
b) on met en contact dans un deuxième garnissage ledit gaz appauvri en composés acides avec une solution absorbante liquide, le gaz circulant dans le deuxième garnissage selon ladite direction sensiblement horizontale en croisant la solution absorbante circulant selon une direction sensiblement verticale, pour produire un gaz pauvre en composés acides et ladite solution absorbante liquide enrichie en composés acides mise en œuvre à l'étape a).  b) the gas is brought into contact in a second lining with a liquid absorbent solution, the gas flowing in the second lining in said substantially horizontal direction by crossing the absorbent solution flowing in a substantially vertical direction, to produce a gas poor in acidic compounds and said liquid absorbent solution enriched in acidic compounds implemented in step a).
2) Procédé selon la revendication 1 , dans lequel le premier garnissage est juxtaposé au deuxième garnissage, le premier et le deuxième garnissage étant alignés selon la direction de circulation du gaz. 2) The method of claim 1, wherein the first lining is juxtaposed to the second lining, the first and second lining being aligned in the direction of flow of the gas.
3) Procédé selon l'une des revendications précédentes, dans lequel on effectue l'étape suivante : 3) Method according to one of the preceding claims, wherein the following step is carried out:
c) on met en contact dans un troisième garnissage ledit gaz pauvre en composés acides avec un liquide absorbant, le gaz circulant dans le troisième garnissage selon ladite direction sensiblement horizontale en croisant le liquide circulant selon une direction sensiblement verticale, pour produire un gaz traité et la solution absorbante liquide mise en oeuvre à l'étape b). c) a gas that is low in acidic compounds is brought into contact in a third lining with an absorbent liquid, the gas flowing in the third lining in said substantially horizontal direction, crossing the liquid flowing in a substantially vertical direction, for produce a treated gas and the liquid absorbent solution implemented in step b).
4) Procédé selon l'une des revendications précédentes, dans lequel lesdits garnissages développent une aire géométrique supérieure à 100 m2/m3, et de préférence supérieure à 200 m2/m3. 4) Method according to one of the preceding claims, wherein said packings develop a geometric area greater than 100 m 2 / m 3 , and preferably greater than 200 m 2 / m 3 .
5) Procédé selon l'une des revendications précédentes, dans lequel on fait circuler le gaz dans les garnissages à une vitesse supérieure à 1 m/s, de préférence supérieure à 2 m/s. 5) Method according to one of the preceding claims, wherein the gas is circulated in the packings at a speed greater than 1 m / s, preferably greater than 2 m / s.
6) Procédé selon l'une des revendications précédentes, dans lequel on prélève une portion d'au moins une des solutions absorbantes issue d'un des garnissages, puis on introduit ladite portion dans la partie supérieure dudit garnissage. 6) Method according to one of the preceding claims, wherein is removed a portion of at least one of the absorbent solutions from a lining, then said portion is introduced into the upper part of said lining.
7) Procédé selon l'une des revendications précédentes, dans lequel on augmente la pression de la solution absorbante liquide enrichie en composés acides produite à l'étape b) et on introduit ladite solution sous pression dans le premier garnissage. 7) Method according to one of the preceding claims, wherein increases the pressure of the acid-absorbed liquid absorbent solution produced in step b) and introduced said solution under pressure in the first lining.
8) Procédé selon l'une des revendications précédentes, dans lequel, avant d'effectuer l'étape a), on refroidit ladite solution absorbante liquide enrichie en composés acides produite à l'étape b). 8) Method according to one of the preceding claims, wherein, before performing step a), said acid absorbed liquid absorbent solution produced in step b) is cooled.
9) Procédé selon l'une des revendications précédentes, dans lequel on régénère la solution absorbante chargée en composés acides produite à l'étape a) de manière à libérer des composés acides et produire ladite solution absorbante mise en œuvre à l'étape b) ou ledit liquide absorbant mis en œuvre à l'étape c). 10) Procédé selon l'une des revendications précédentes, dans lequel le gaz de charge est choisi parmi l'un des gaz suivants : une fumée de combustion, un gaz naturel, un gaz obtenu en queue du procédé Claus, un gaz de synthèse, un gaz issu de la fermentation de biomasse, un effluent issu d'une cimenterie et un gaz issu d'une usine de sidérurgie. 9) Method according to one of the preceding claims, wherein the acid-loaded absorbent solution produced in step a) is regenerated so as to release acidic compounds and produce said absorbing solution implemented in step b). or said absorbent liquid implemented in step c). 10) Method according to one of the preceding claims, wherein the feed gas is selected from one of the following gases: a combustion smoke, a natural gas, a gas obtained at the bottom of the Claus process, a synthesis gas, a gas resulting from the fermentation of biomass, an effluent from a cement plant and a gas from a steel plant.
PCT/FR2012/000379 2011-11-04 2012-09-26 Method for deacidifying a gas using a plurality of steps for cross-flow contact with an absorbent solution WO2013064755A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR11/03.360 2011-11-04
FR1103360A FR2982171B1 (en) 2011-11-04 2011-11-04 METHOD FOR DEACIDIFYING GAS WITH MULTIPLE STAGES OF CURRENT CURRENT CONTACT WITH AN ABSORBENT SOLUTION

Publications (1)

Publication Number Publication Date
WO2013064755A1 true WO2013064755A1 (en) 2013-05-10

Family

ID=47071322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/000379 WO2013064755A1 (en) 2011-11-04 2012-09-26 Method for deacidifying a gas using a plurality of steps for cross-flow contact with an absorbent solution

Country Status (2)

Country Link
FR (1) FR2982171B1 (en)
WO (1) WO2013064755A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002706A1 (en) * 2013-07-02 2015-01-08 Saudi Arabian Oil Company Variable capacity multiple-leg packed separation column
US20150343370A1 (en) * 2013-07-02 2015-12-03 Saudi Arabian Oil Company Variable capacity multiple-leg packed separation column

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049399A (en) * 1975-04-08 1977-09-20 Teller Environmental Systems, Inc. Treatment of flue gases
US4059421A (en) * 1975-09-02 1977-11-22 United Resources Industry Co., Ltd. Cross-flow type stripping-absorption apparatus
US4296050A (en) 1977-05-12 1981-10-20 Sulzer Brothers Ltd. Packing element for an exchange column
JPH09201512A (en) * 1996-01-30 1997-08-05 Kenichi Nakagawa Method for recovering sulfuric acid by exhaust gas desulfurization
FR2913353A1 (en) 2007-03-09 2008-09-12 Inst Francais Du Petrole HIGH PERFORMANCE STRUCTURE TRIM FOR FLUID CONTACT COLUMN AND METHOD OF MANUFACTURE.
US20110126715A1 (en) * 2009-11-30 2011-06-02 Takeshi Kimura Carbon dioxide gas recovery apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049399A (en) * 1975-04-08 1977-09-20 Teller Environmental Systems, Inc. Treatment of flue gases
US4059421A (en) * 1975-09-02 1977-11-22 United Resources Industry Co., Ltd. Cross-flow type stripping-absorption apparatus
US4296050A (en) 1977-05-12 1981-10-20 Sulzer Brothers Ltd. Packing element for an exchange column
US4296050B1 (en) 1977-05-12 1996-04-23 Sulzer Bros Packing element for an exchange column
JPH09201512A (en) * 1996-01-30 1997-08-05 Kenichi Nakagawa Method for recovering sulfuric acid by exhaust gas desulfurization
FR2913353A1 (en) 2007-03-09 2008-09-12 Inst Francais Du Petrole HIGH PERFORMANCE STRUCTURE TRIM FOR FLUID CONTACT COLUMN AND METHOD OF MANUFACTURE.
US20110126715A1 (en) * 2009-11-30 2011-06-02 Takeshi Kimura Carbon dioxide gas recovery apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002706A1 (en) * 2013-07-02 2015-01-08 Saudi Arabian Oil Company Variable capacity multiple-leg packed separation column
US20150343370A1 (en) * 2013-07-02 2015-12-03 Saudi Arabian Oil Company Variable capacity multiple-leg packed separation column
US9480947B2 (en) * 2013-07-02 2016-11-01 Saudi Arabian Oil Company Variable capacity multiple-leg packed separation column
US20160332112A1 (en) * 2013-07-02 2016-11-17 Saudi Arabian Oil Company Variable capacity multiple-leg packed separation column system and method of operation
US9901868B2 (en) 2013-07-02 2018-02-27 Saudi Arabian Oil Company Variable capacity multiple-leg packed separation column system and method of operation

Also Published As

Publication number Publication date
FR2982171A1 (en) 2013-05-10
FR2982171B1 (en) 2013-11-08

Similar Documents

Publication Publication Date Title
EP3017857B1 (en) Method for deacidifying a gaseous effluent with an absorbent solution with steam injection in the regenerated absorbent solution and device for implementing same
Reddy et al. Fluor’s econamine FG plus SM technology
CA3076090C (en) Gas capture system
US20100205964A1 (en) Post-combustion processing in power plants
US11691105B2 (en) Rotating packed beds with internal heat transfer for absorption/regeneration applications
FR3030309A1 (en) DISPENSING TRAY FOR HEAT EXCHANGE COLUMN AND / OR MATERIAL COMPRISING BULLAGE MEANS
KR20120066657A (en) Single absorber vessel to capture co2
FR2938454A1 (en) Acid compound e.g. carbon dioxide, capturing method for gas to be treated, involves allowing gas enriched with acid compounds to be in contact in washing section, and recycling part of water enriched in amine
CN107913575B (en) Low pressure steam preheater for gas purification system and method of use
CA2686118A1 (en) Method and plant for co2 capture
JPWO2018190104A1 (en) Apparatus and method for recovering carbon dioxide in flue gas
CA2834761C (en) Gas/liquid contacting vessel and the use thereof in a flue gas treatment system
WO2018114696A1 (en) Column for the exchange of matter and/or heat between a gas and a liquid with means for recirculating the liquid and use of same
CA3027775A1 (en) Exchange column tray with aerodynamically profiled capped gas chimneys
WO2013064755A1 (en) Method for deacidifying a gas using a plurality of steps for cross-flow contact with an absorbent solution
EP2896447B1 (en) Distribution table for exchange column between a gas and a liquid with liquid diverter
FR2977168A1 (en) METHOD FOR DEACIDIFYING A GAS WITH MULTIPLE STAGES OF CONTACT WITH A CO-CURRENT WITH AN ABSORBENT SOLUTION
CN202983506U (en) Oil furnace smoke purification combined tower integrating dust collection, smoke elimination and desulfurization
WO2019120937A1 (en) Distributor tray with compartments and gas risers of the same shape for an offshore gas/liquid contact column
FR2961115A1 (en) Method for capturing e.g. carbon dioxide compounds contained in natural gas to limit global warming phenomenon, involves making gas fractions to be in contact with absorbing solution fractions in absorbing sections arranged in same column
EP2480315A1 (en) Process for the deacidification of a gas by an absorbent solution with removal of cos by hydrolysis
FR2958180A1 (en) Capturing acid compounds comprising carbon dioxide and hydrogen sulfide contained in e.g. natural gas, comprises contacting gas with absorbent solution, and regenerating fraction of absorbent solution enriched in acid compounds
WO2013117828A1 (en) Method for capturing co2 by means of absorption with two absorption sections and use of low-temperature steam for regeneration
AU2006200510A1 (en) Carbon Dioxide Recovery and Power Generation
DK3031510T3 (en) A process for the recovery of carbon dioxide from an absorber with a reduced supply of stripping steam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12775736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12775736

Country of ref document: EP

Kind code of ref document: A1