WO2013061622A1 - Thermoplastic resin composition for insulation components, and insulation component - Google Patents

Thermoplastic resin composition for insulation components, and insulation component Download PDF

Info

Publication number
WO2013061622A1
WO2013061622A1 PCT/JP2012/053185 JP2012053185W WO2013061622A1 WO 2013061622 A1 WO2013061622 A1 WO 2013061622A1 JP 2012053185 W JP2012053185 W JP 2012053185W WO 2013061622 A1 WO2013061622 A1 WO 2013061622A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
mass
resin composition
thermoplastic resin
polybutylene terephthalate
Prior art date
Application number
PCT/JP2012/053185
Other languages
French (fr)
Japanese (ja)
Inventor
伸 沢野
大輔 下田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012511866A priority Critical patent/JP5091367B1/en
Publication of WO2013061622A1 publication Critical patent/WO2013061622A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34928Salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • C08K5/3417Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • H01B3/422Linear saturated polyesters derived from dicarboxylic acids and dihydroxy compounds
    • H01B3/423Linear aromatic polyesters

Definitions

  • the present invention relates to a thermoplastic resin composition for insulating parts and an insulating part using the same.
  • Polybutylene terephthalate (PBT) resin has excellent mechanical properties, electrical properties, heat resistance, weather resistance, water resistance, chemical resistance and solvent resistance. It is widely used for various applications such as. Numerous technologies have also been developed for improving the flame retardancy.
  • flame retardant polybutylene terephthalate (PBT) resin can also satisfy the UL-94 standard of Underwriter's Laboratories Inc. at a test piece thickness of 0.3 mm. For this reason, it is widely used for electrical insulation parts such as a relay case which is a thin molded product. In addition, the comparative tracking index (CTI) is improved.
  • the response to the IEC 60695-2 standard of the International Electrotechnical Commission is not necessarily sufficiently advanced.
  • IEC International Electrotechnical Commission
  • insulating material parts used in electrical and electronic equipment are required to be resistant to ignition and flame propagation during operation.
  • parts of equipment that operate without an operator such as white goods, support connections with a rated current exceeding 0.2 A, or are within a distance of 3 mm from these connections
  • the demand for safety of electrical insulation parts is increasing.
  • the ignition temperature Glow-wire-Ignition Temperature, abbreviation: GWIT
  • GWIT Low-wire-Ignition Temperature
  • a resin material for insulating parts in addition to the resistance to the combustion test of GWIT 775 ° C., a material satisfying a good balance in terms of flame retardancy, tracking resistance, and mechanical properties is required. Yes.
  • a halogen-containing flame retardant such as halogenated benzyl acrylate and an inorganic flame retardant aid such as antimony trioxide are added to polybutylene terephthalate (PBT) resin.
  • PBT polybutylene terephthalate
  • a composition using a combination and a specific graft copolymer is known (Patent Document 1).
  • Patent Document 2 discloses an insulating material part having a resin molded part formed using a resin composition in which polybutylene terephthalate (PBT) resin is blended with polyhalogenated benzyl (meth) acrylate and antimony pentoxide. The temperature is improved.
  • the resin part of 2 mm or less is intended to improve the GWIT temperature described in the IEC60695-2-13 standard by combining a heat-resistant plate such as metal, and the same as a polybutylene terephthalate (PBT) resin composition alone. It does not satisfy the standard.
  • Patent Document 3 it is proposed that a polybutylene terephthalate (PBT) resin can meet the standard of GWIT 775 ° C. by blending a liquid crystalline polymer known as a flame retardant means of a thermoplastic resin. There is also.
  • PBT polybutylene terephthalate
  • a polybutylene terephthalate (PBT) resin composition is intended to increase the temperature corresponding to the GWIT standard.
  • PBT polybutylene terephthalate
  • blending of a liquid crystalline polymer is essential.
  • the liquid crystalline polymer has a relatively high melting point, and it is not always easy to handle the preparation of the composition. Moreover, it becomes a factor of high cost.
  • in order to raise the compatibility with a GWIT flame-retardant test it is necessary to raise the compounding ratio of glass fiber, and this has the problem that a moldability may be restrict
  • the present invention requires almost all tests for insulating parts without the need for blending a specific component called a liquid crystalline polymer in Patent Document 3 or using glass fibers at a high blending ratio.
  • a thermoplastic resin composition for insulating parts that can achieve strength characteristics equivalent to or better than the GWIT 775 ° C standard in one thickness, and has a good balance between tracking resistance and mechanical characteristics, and insulating parts using the same. Is an issue.
  • thermoplastic resin composition for insulating parts of the present invention comprises (A) a polybutylene terephthalate resin (a1) alone or a polybutylene terephthalate resin (a1) and a polyethylene terephthalate resin (a2).
  • Polybutylene terephthalate resin comprising both, (B) halogen flame retardant, (C) flame retardant auxiliary, (D) moisture content is 20% by mass or more, and dehydration start temperature is 300 ° C. or more.
  • a mineral filler and (E) a glass fiber reinforcing agent, and (B) a halogen-based flame retardant content is 15 to 35 parts by mass with respect to 100 parts by mass of (A) polybutylene terephthalate resin, (D) The content of the mineral filler is 2 to 60 parts by mass with respect to 100 parts by mass of the (A) polybutylene terephthalate resin.
  • the mass ratio of the polybutylene terephthalate resin (a1) to the polyethylene terephthalate resin (a2) is 95/5 to 60/40 as (a1) / (a2). preferable.
  • the halogen flame retardant is at least selected from a halogenated epoxy resin, a halogenated aromatic bisimide compound, a halogenated benzyl acrylate, a halogenated polystyrene, and a halogenated phenylethane.
  • a halogenated epoxy resin a halogenated aromatic bisimide compound
  • a halogenated benzyl acrylate a halogenated polystyrene
  • a halogenated phenylethane a halogenated phenylethane.
  • One type is preferable.
  • the flame retardant aid (C) contains melamine cyanurate and antimony oxide.
  • the content of melamine cyanurate is 15 to 50 parts by mass with respect to 100 parts by mass of (A) polybutylene terephthalate resin, and the mass ratio of antimony oxide to melamine cyanurate is It is preferably 0.05 to 0.85.
  • the mineral filler is preferably colemanite.
  • the content of (E) glass fiber reinforcing agent is preferably 10 to 100 parts by mass with respect to 100 parts by mass of (A) polybutylene terephthalate resin.
  • thermoplastic resin composition for insulating parts it is preferable that the red-hot rod ignition temperature of 775 ° C. or higher described in IEC60695-2-13 is satisfied for any of the test piece thicknesses of 0.75 mm, 1.5 mm, and 3 mm.
  • the insulating component of the present invention is characterized in that at least a part thereof is constituted by the above thermoplastic resin composition for insulating components.
  • thermoplastic resin composition for insulating parts of the present invention and the insulating parts using the same, insulation without requiring the use of a specific component such as a liquid crystalline polymer or the use of glass fiber at a high mixing ratio. It is possible to realize strength characteristics equivalent to or higher than those of the GWIT 775 ° C. standard for almost all test specimen thicknesses for parts, and a good balance between tracking resistance and mechanical characteristics.
  • the mixing of the component (D) mineral filler makes it difficult for the test piece to ignite when a 750 ° C. red hot rod is pressed against the test piece, even in the case of a 1.5 mm test piece.
  • PBT resin Polybutylene terephthalate (PBT) resin as the essential component (a1) in the thermoplastic resin composition for insulating parts of the present invention (hereinafter referred to as PBT resin).
  • PBT resin a thermoplastic resin obtained by polycondensation of terephthalic acid or its ester-forming derivative and C 4 alkylene glycol (1,4-butanediol) or its ester-forming derivative.
  • the PBT resin may be a copolymer containing 70% by mass or more of a butylene terephthalate repeating unit.
  • dibasic acid components other than terephthalic acid or ester-forming derivatives thereof (lower alcohol ester, etc.)
  • aliphatics such as isophthalic acid, naphthalenedicarboxylic acid, adipic acid, sebacic acid, trimellitic acid, succinic acid, Aromatic polybasic acids or ester-forming derivatives thereof.
  • glycol components other than 1,4-butanediol include ordinary alkylene glycols such as ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, hexamethylene glycol, neopentyl glycol, cyclohexanedimethanol, and 1,3-octane.
  • ordinary alkylene glycols such as ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, hexamethylene glycol, neopentyl glycol, cyclohexanedimethanol, and 1,3-octane.
  • Lower alkylene glycol such as diol, aromatic alcohol such as bisphenol A, 4,4′-dihydroxybiphenyl, alkylene oxide adduct alcohol such as ethylene oxide 2 mol adduct of bisphenol A, propylene oxide 3 mol adduct of bisphenol A, Examples thereof include polyhydroxy compounds such as glycerin and pentaerythritol or ester-forming derivatives thereof.
  • any PBT resin obtained by polycondensation using the above compound as a monomer component can be used as the component (a1) of the present invention, and can be used alone or in admixture of two or more.
  • a branched polymer belonging to a copolymer can also be used as the PBT resin.
  • the PBT resin branched polymer referred to here is a polyester having a so-called PBT resin or butylene terephthalate monomer as a main component and branched by adding a polyfunctional compound.
  • the polyfunctional compound that can be used here include trimesic acid, trimellitic acid, pyromellitic acid and alcohol esters thereof, glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol.
  • PET resin polyethylene terephthalate resin
  • the PET resin is a thermoplastic resin obtained by polycondensation of terephthalic acid or its ester-forming derivative and ethylene glycol or its ester-forming derivative.
  • the PET resin may be a copolymer containing 90% by mass or more of ethylene terephthalate repeating units.
  • dibasic acid components and copolymers other than terephthalic acid or ester-forming derivatives thereof may be considered in the same manner as in the case of the PBT resin.
  • the PBT resin (a1) is essential.
  • the blending mass ratio is preferably 95/5 to 60/40 as (a1) / (a2).
  • the amount of halogenated flame retardant used can be reduced as the ratio increases.
  • the ratio of the PET resin (a2) is higher than 40/60 as (a2) / (a1), in the case of a thin molded product such as a relay case, the crystallinity of the resin composition is lowered and the moldability is reduced. It tends to decrease. For this reason, it may be necessary to increase the mold temperature or extend the mold holding time.
  • the combined use of the PBT resin (a1) and the PET resin (a2) may be mixed as separate raw materials, or both may be integrated as a copolymer.
  • the halogen-based flame retardant may be of various types including those conventionally known. Among these, it is preferable to use at least one selected from a halogenated epoxy resin, a halogenated aromatic bisimide compound, a halogenated benzyl acrylate, a halogenated polystyrene, and a halogenated phenyl eta.
  • Halogen in these cases is preferably chlorine or bromine.
  • preferable examples include TBBPA diglycidyl ether copolymer, polypentabromobenzyl acrylate, brominated polystyrene, pentabromophenyl ethane and the like.
  • the addition amount of the halogen-based flame retardant is 15 to 35 parts by mass, preferably 20 to 30 parts by mass with respect to 100 parts by mass of the (A) polybutylene terephthalate resin.
  • the addition amount of the halogen-based flame retardant is 15 parts by mass or more, sufficient flame retardancy can be obtained, and when it is 35 parts by mass or less, deterioration of mechanical properties can be suppressed.
  • antimony compounds such as antimony trioxide and antimony pentoxide, and melamine cyanurate, which are known to have a synergistic effect of flame retardancy when used in combination with (B) a halogen flame retardant, can be used.
  • silicates such as talc and mica, calcium carbonate, magnesium hydroxide, boehmite, zinc sulfate, zinc oxide and the like can be used.
  • the addition amount of the flame retardant aid is preferably 20 to 60 parts by mass with respect to 100 parts by mass of (A) polybutylene terephthalate resin.
  • the flame retardant aid is used in an addition amount of 20 parts by mass or more, the effect as a flame retardant aid is exhibited, and when it is used in an addition amount of 60 parts by mass or less, a decrease in mechanical strength can be suppressed.
  • the flame retardant aid is preferably antimony oxide or melamine cyanurate among those exemplified above.
  • antimony oxide and melamine cyanurate can have a great effect on flame retardancy. Combustibility is often accelerated by the combustible gas generated from the test piece when the red hot rod is pressed against the test piece, but the nitrogen gas generated from melamine cyanurate greatly contributes to suppression of combustibility. Conceivable. That is, by adding melamine cyanurate, sublimation and endotherm occur, and there is a great effect in suppressing combustion when a 750 ° C. red hot rod is pressed.
  • the content of melamine cyanurate is preferably 15 to 50 parts by mass with respect to 100 parts by mass of (A) polybutylene terephthalate resin.
  • the mass ratio of antimony oxide to melamine cyanurate is preferably 0.05 to 0.85, and more preferably 0.05 to 0.35.
  • the mineral filler is characterized by having a water content of 20% by mass or more and a dehydration start temperature of 300 ° C. or more.
  • (D) mineral filler a typical example is colemanite.
  • Colemanite is a mineral of hydrous calcium borate, and it is called a boehmite.
  • the average particle diameter of the mineral filler is not particularly limited, but is usually 100 ⁇ m or less, preferably 1 to 50 ⁇ m.
  • an average particle diameter can be measured using a laser diffraction scattering type particle size distribution measuring apparatus, for example.
  • the average particle diameter is a value derived by measurement using a sample arbitrarily extracted from the population and using the measurement apparatus.
  • the blending amount is in the range of 2 to 60 parts by weight, preferably 2 to 25 parts by weight, more preferably 5 to 25 parts by weight with respect to 100 parts by weight of the (A) polybutylene terephthalate resin.
  • the blending amount is in the range of 2 to 60 parts by weight, preferably 2 to 25 parts by weight, more preferably 5 to 25 parts by weight with respect to 100 parts by weight of the (A) polybutylene terephthalate resin.
  • 2 parts by mass or more In order to obtain a dehydration / endothermic effect, it is necessary to add 2 parts by mass or more.
  • the average fiber diameter of the glass fiber reinforcing agent is not particularly limited, and is, for example, 1 to 100 ⁇ m, preferably 1 to 50 ⁇ m, more preferably about 3 to 30 ⁇ m. Also, the average fiber length is not particularly limited and is, for example, about 0.1 to 20 mm.
  • the addition amount of the glass fiber reinforcing agent may be determined in accordance with the required level of rigidity and dimensional stability.
  • the amount is preferably 10 to 100 parts by mass, and more preferably 30 to 60 parts by mass with respect to 100 parts by mass of the (A) polybutylene terephthalate resin.
  • rigidity and dimensional stability can be improved.
  • addition amount 100 parts by mass or less it is possible to suppress a decrease in melt-kneading property and moldability.
  • the glass fiber reinforcing agent may be surface-treated with a sizing agent or a surface treatment agent (for example, a functional compound such as an epoxy compound, an isocyanate compound, a silane compound, or a titanate compound) as necessary.
  • a sizing agent or a surface treatment agent for example, a functional compound such as an epoxy compound, an isocyanate compound, a silane compound, or a titanate compound.
  • the glass fiber reinforcing agent may be surface-treated in advance with the sizing agent or surface treatment agent, or may be surface-treated by adding a sizing agent or surface treatment agent during the preparation of the resin composition. .
  • thermoplastic resin composition for insulating parts of the present invention when it is required that the flame retardant classification “V-0” of UL standard 94 is used depending on the use of the molded product, dripping prevention of fluorine-based resin, etc.
  • the agent is used with a flame retardant.
  • Fluorine-based resins include tetrafluoroethylene (PTFE), chlorotrifluoroethylene, vinylidene fluoride, hexafluoropropylene, perfluoroalkyl vinyl ether and other fluorine-containing monomers alone or copolymers, the fluorine-containing monomers and ethylene, Examples thereof include copolymers with copolymerizable monomers such as propylene and (meth) acrylate.
  • PTFE tetrafluoroethylene
  • chlorotrifluoroethylene vinylidene fluoride
  • hexafluoropropylene hexafluoropropylene
  • perfluoroalkyl vinyl ether perfluoroalkyl vinyl ether
  • other fluorine-containing monomers alone or copolymers
  • the fluorine-containing monomers and ethylene examples thereof include copolymers with copolymerizable monomers such as propylene and (meth) acrylate.
  • the amount of fluorine resin added is, for example, 0 to 10 parts by weight, preferably 0.1 to 5 parts by weight, more preferably 0.2 to 1 part by weight based on 100 parts by weight of the (A) polybutylene terephthalate resin. .5 parts by mass.
  • thermoplastic resin composition for insulating parts of the present invention if necessary, conventional additives such as antioxidants, ultraviolet absorbers, heat stabilizers, stabilizers such as weather stabilizers, lubricants, A mold release agent, a colorant, a nucleating agent, a crystallization accelerator and the like may be added. Further, other thermoplastic resins (for example, polyamide, acrylic resin, etc.) and thermosetting resins (for example, unsaturated PBT resin, phenol resin, epoxy resin, etc.) may be added.
  • thermoplastic resins for example, polyamide, acrylic resin, etc.
  • thermosetting resins for example, unsaturated PBT resin, phenol resin, epoxy resin, etc.
  • the test piece has a thickness of 0.3 mm, corresponds to UL94 V-0 in the flammability test, and the thickness of the test piece is 0.75 mm. It is preferable that GWIT can substantially satisfy the condition of 775 ° C. or higher at both 1.5 mm and 3.0 mm.
  • thermoplastic resin composition for insulating parts of the present invention any of thicknesses of 0.75 mm, 1.5 mm, and 3.0 mm In addition, combustion and ignition can be suppressed even if a hot rod is pressed against the test piece.
  • thermoplastic resin composition for insulating parts of the present invention may be a powder mixture or a molten mixture, and can be prepared by mixing by a conventional method.
  • each component can be mixed, kneaded by a single-screw or twin-screw extruder, and extruded to prepare a pellet.
  • the insulating component of the present invention can be obtained by performing known molding such as injection molding using the thermoplastic resin composition for insulating component prepared as described above.
  • the insulating parts include those used for automobile parts, electric / electronic parts, and the like, and the electric / electronic parts are also suitable for thin molded products such as switches and relay cases.
  • the mixture was kneaded and melted with a twin-screw extruder heated to 260 ° C., glass fibers were added at a predetermined ratio to the melted portion, and kneading and melting were further performed.
  • ⁇ Preparation of test piece> The molding material composed of the composition shown in Table 1 was pre-dried at 140 ° C. for 4 hours in a thermostatic bath, so that the moisture content in the molding material was 0.02% or less. Thereafter, a test piece was obtained by injection molding with a 100 t injection molding machine.
  • the conditions at that time are a cylinder temperature of 260 ° C. (near the head) and 200 ° C. (material input port), and the mold temperature varies depending on the TP.
  • Test pieces 1) 0.3 mm dumbbell test piece: A 0.8 mm molded product was molded at a mold temperature of 80 ° C. and polished. 2) 0.75 mm test piece: produced at a mold temperature of 80 ° C. 3) 1.5 mm test piece: produced at a mold temperature of 80 ° C. 4) 3.0 mm test piece: produced at a mold temperature of 80 ° C. 5) Tracking test piece: The above dumbbell was used.
  • ⁇ GWIT Conforms to IEC standards.
  • ⁇ Ignition during GWIT measurement The presence or absence of ignition was confirmed using a 0.3 mm dumbbell test piece.
  • the combined use of melamine cyanurate and antimony oxide as a flame retardant aid is effective.
  • the content of melamine cyanurate is 15 to 50 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin, and the mass ratio of antimony oxide to melamine cyanurate is in the range of 0.05 to 0.85.
  • the test piece thickness of 0.75 mm, 1.5 mm, and 3.0 mm achieved the GWIT775 standard or higher.
  • the GWIT showed a clear improvement compared with the comparative example and obtained an excellent result.
  • the GWIT slightly decreased when the specimen thickness was 1.5 mm.

Abstract

Provided are: a thermoplastic resin composition for insulation components, which is capable of achieving strength characteristic equivalent to or higher than the GWIT 775˚C standard in almost all test piece thicknesses for insulation components without requiring blending of a special ingredient that is a liquid crystalline polymer or use of a glass fiber at high blending ratio, while having good balance among the strength characteristic, tracking resistance and mechanical characteristics; and an insulating component which uses the thermoplastic resin composition for insulation components. The thermoplastic resin composition for insulation components is characterized by containing (A) a polybutylene terephthalate resin, (B) a halogen flame retardant, (C) a flame retardant assistant, (D) a mineral filler having a moisture content of 20% by mass or more and a dehydration initiation temperature of 300˚C or more and (E) a glass fiber-based reinforcing agent, and is also characterized in that the component (B) is contained in an amount of 15-35 parts by mass per 100 parts by mass of the component (A) and the component (D) is contained in an amount of 2-60 parts by mass per 100 parts by mass of the component (A).

Description

絶縁部品用熱可塑性樹脂組成物と絶縁部品Thermoplastic resin composition for insulating parts and insulating parts
 本発明は、絶縁部品用熱可塑性樹脂組成物とこれを用いた絶縁部品に関するものである。 The present invention relates to a thermoplastic resin composition for insulating parts and an insulating part using the same.
 ポリブチレンテレフタレート(PBT)樹脂は、優れた機械的特性、電気的特性、耐熱性、耐候性、耐水性、耐薬品性および耐溶剤性を有するため、エンジニアリングプラスチックとして、自動車部品、電気・電子部品などの種々の用途に広く利用されている。また、その難燃性向上に関しても数々の技術が開発されている。 Polybutylene terephthalate (PBT) resin has excellent mechanical properties, electrical properties, heat resistance, weather resistance, water resistance, chemical resistance and solvent resistance. It is widely used for various applications such as. Numerous technologies have also been developed for improving the flame retardancy.
 例えば難燃性ポリブチレンテレフタレート(PBT)樹脂は、試験片厚み0.3mmにおいてアンダーライターズ(Underwriter's Laboratories Inc.)のUL-94規格を満足することも可能である。このことから、薄肉成形品であるリレーケース用途などの電気絶縁部品用途にも多数採用されている。また、比較トラッキング指数(CTI)の向上も図られている。 For example, flame retardant polybutylene terephthalate (PBT) resin can also satisfy the UL-94 standard of Underwriter's Laboratories Inc. at a test piece thickness of 0.3 mm. For this reason, it is widely used for electrical insulation parts such as a relay case which is a thin molded product. In addition, the comparative tracking index (CTI) is improved.
 しかし、国際電気標準会議(International Electrotechnical Commission、略称IEC)のIEC60695-2規格への対応は必ずしも十分に進んでいない。同規格の中では電気電子機器に用いられる絶縁材料部品は、動作中の着火および炎の伝播に対して耐性が要求されている。欧州においては、白物家電など特にオペレータが付かない状態で動作する機器の部品で、定格電流が0.2Aを超える接続部を支持しているか、またはこれらの接続部から3mm以内の距離にある電気絶縁部品の安全に対する要求が高まっている。そして、同規格の中で赤熱棒着火温度(Glow-wire Ignition Temperature、略称:GWIT)が775℃以上であることを満足させなければならない。熱可塑性樹脂に対して特にGWITの規格を満足させることは、これまでのUL-94規格の難燃性評価においてV-0を有する材料であっても必ずしも容易ではない。 However, the response to the IEC 60695-2 standard of the International Electrotechnical Commission (abbreviated as IEC) is not necessarily sufficiently advanced. Within this standard, insulating material parts used in electrical and electronic equipment are required to be resistant to ignition and flame propagation during operation. In Europe, parts of equipment that operate without an operator, such as white goods, support connections with a rated current exceeding 0.2 A, or are within a distance of 3 mm from these connections The demand for safety of electrical insulation parts is increasing. And it must be satisfied that the ignition temperature (Glow-wire-Ignition Temperature, abbreviation: GWIT) is 775 ° C. or higher in the same standard. Satisfying the GWIT standard for thermoplastic resins is not always easy even for materials having V-0 in the flame retardancy evaluation of the UL-94 standard so far.
 これまでのところ、赤熱捧(グローワイヤー)を接触させる間に貫通しない厚肉のもの、例えば繊維強化した3mm厚のものや、非常に薄いものについてはGWIT評価に対応可能とされつつある。しかし、全ての厚みでGWIT775℃規格を満足することは容易でなく、特に1.5mm前後の厚み試験片については難しい。 So far, thick materials that do not penetrate during contact with glowing heat (glow wire), for example, fiber-reinforced 3 mm thick materials or very thin materials, are being made available for GWIT evaluation. However, it is not easy to satisfy the GWIT 775 ° C. standard for all thicknesses, and it is particularly difficult for a thickness test piece of about 1.5 mm.
 そして、絶縁部品用の樹脂材料としては、このようなGWIT775℃という燃焼試験に対しての耐性に加えて、難燃性や耐トラッキング性、機械的性質についても、バランス良く満たす材料が求められている。 Further, as a resin material for insulating parts, in addition to the resistance to the combustion test of GWIT 775 ° C., a material satisfying a good balance in terms of flame retardancy, tracking resistance, and mechanical properties is required. Yes.
 ポリブチレンテレフタレート(PBT)樹脂に難燃性を付与する方法としては、ポリブチレンテレフタレート(PBT)樹脂にハロゲン化ベンジルアクリレート等のハロゲン含有難燃剤と三酸化アンチモン等の無機系難燃助剤とを組み合わせ、更に特定のグラフト共重合体を併用した組成物が知られている(特許文献1)。 As a method for imparting flame retardancy to polybutylene terephthalate (PBT) resin, a halogen-containing flame retardant such as halogenated benzyl acrylate and an inorganic flame retardant aid such as antimony trioxide are added to polybutylene terephthalate (PBT) resin. A composition using a combination and a specific graft copolymer is known (Patent Document 1).
 また、特許文献2では、ポリブチレンテレフタレート(PBT)樹脂にポリハロゲン化ベンジル(メタ)アクリレートと五酸化アンチモンを配合した樹脂組成物を用いて形成された樹脂成形部を有する絶縁材料部品で、GWIT温度の向上が図られている。しかし、2mm以下の樹脂部に対しては金属等の耐熱板を組み合わせることによってIEC60695-2-13規格に記載のGWIT温度の向上を図っており、ポリブチレンテレフタレート(PBT)樹脂組成物単体として同規格を満足するものではない。 Patent Document 2 discloses an insulating material part having a resin molded part formed using a resin composition in which polybutylene terephthalate (PBT) resin is blended with polyhalogenated benzyl (meth) acrylate and antimony pentoxide. The temperature is improved. However, the resin part of 2 mm or less is intended to improve the GWIT temperature described in the IEC60695-2-13 standard by combining a heat-resistant plate such as metal, and the same as a polybutylene terephthalate (PBT) resin composition alone. It does not satisfy the standard.
 一方、特許文献3のように、熱可塑性樹脂の難燃化の手段として知られている液晶性ポリマーを配合することでポリブチレンテレフタレート(PBT)樹脂においてGWIT775℃の規格に対応することが提案されてもいる。 On the other hand, as disclosed in Patent Document 3, it is proposed that a polybutylene terephthalate (PBT) resin can meet the standard of GWIT 775 ° C. by blending a liquid crystalline polymer known as a flame retardant means of a thermoplastic resin. There is also.
特開平8-109320号公報JP-A-8-109320 特開2005-232410号公報JP-A-2005-232410 特開2008-19400号公報JP 2008-19400 A
 特許文献3においては、ポリブチレンテレフタレート(PBT)樹脂の組成物単体として、GWIT規格に対応する温度上昇を図ろうとしている。しかしながら、このポリブチレンテレフタレート(PBT)樹脂組成物では、液晶性ポリマーの配合が必須とされている。液晶性ポリマーは、比較的融点が高く、組成物の調製ではその取扱いが必ずしも容易ではない。また、高コストの要因ともなる。そして、GWIT難燃試験への対応性を高めるためにはガラス繊維の配合比を高める必要があり、このことが成形性を制約しかねないという問題がある。 In Patent Document 3, a polybutylene terephthalate (PBT) resin composition is intended to increase the temperature corresponding to the GWIT standard. However, in this polybutylene terephthalate (PBT) resin composition, blending of a liquid crystalline polymer is essential. The liquid crystalline polymer has a relatively high melting point, and it is not always easy to handle the preparation of the composition. Moreover, it becomes a factor of high cost. And in order to raise the compatibility with a GWIT flame-retardant test, it is necessary to raise the compounding ratio of glass fiber, and this has the problem that a moldability may be restrict | limited.
 本発明は、以上のとおりの背景から、特許文献3における液晶性ポリマーという特異な成分の配合や、高配合比でのガラス繊維の使用を必要とすることなく、絶縁部品用のほぼ全ての試験片厚みにおいてGWIT775℃規格と同等以上の強度特性を実現可能であり、耐トラッキング性、機械的特性とのバランスも良好な絶縁部品用熱可塑性樹脂組成物とそれを用いた絶縁部品を提供することを課題としている。 From the background as described above, the present invention requires almost all tests for insulating parts without the need for blending a specific component called a liquid crystalline polymer in Patent Document 3 or using glass fibers at a high blending ratio. To provide a thermoplastic resin composition for insulating parts that can achieve strength characteristics equivalent to or better than the GWIT 775 ° C standard in one thickness, and has a good balance between tracking resistance and mechanical characteristics, and insulating parts using the same. Is an issue.
 上記の課題を解決するために、本発明の絶縁部品用熱可塑性樹脂組成物は、(A)ポリブチレンテレフタレート樹脂(a1)単独またはポリブチレンテレフタレート樹脂(a1)とポリエチレンテレフタレート樹脂(a2)との両者からなるポリブチレンテレフタレート系樹脂、(B)ハロゲン系難燃剤、(C)難燃助剤、(D)水分含有量が20質量%以上であって、かつ、脱水開始温度が300℃以上である鉱物フィラー、および(E)ガラス繊維強化剤を含有し、(B)ハロゲン系難燃剤の含有量が(A)ポリブチレンテレフタレート系樹脂100質量部に対して15~35質量部、(D)鉱物フィラーの含有量が(A)ポリブチレンテレフタレート系樹脂100質量部に対して2~60質量部であることを特徴とする。 In order to solve the above problems, the thermoplastic resin composition for insulating parts of the present invention comprises (A) a polybutylene terephthalate resin (a1) alone or a polybutylene terephthalate resin (a1) and a polyethylene terephthalate resin (a2). Polybutylene terephthalate resin comprising both, (B) halogen flame retardant, (C) flame retardant auxiliary, (D) moisture content is 20% by mass or more, and dehydration start temperature is 300 ° C. or more. A mineral filler and (E) a glass fiber reinforcing agent, and (B) a halogen-based flame retardant content is 15 to 35 parts by mass with respect to 100 parts by mass of (A) polybutylene terephthalate resin, (D) The content of the mineral filler is 2 to 60 parts by mass with respect to 100 parts by mass of the (A) polybutylene terephthalate resin.
 この絶縁部品用熱可塑性樹脂組成物において、ポリブチレンテレフタレート樹脂(a1)とポリエチレンテレフタレート樹脂(a2)との質量比が、(a1)/(a2)として95/5~60/40であることが好ましい。 In this thermoplastic resin composition for insulating parts, the mass ratio of the polybutylene terephthalate resin (a1) to the polyethylene terephthalate resin (a2) is 95/5 to 60/40 as (a1) / (a2). preferable.
 この絶縁部品用熱可塑性樹脂組成物において、(B)ハロゲン系難燃剤が、ハロゲン化エポキシ樹脂、ハロゲン化芳香族ビスイミド化合物、ハロゲン化ベンジルアクリレート、ハロゲン化ポリスチレン、およびハロゲン化フェニルエタンから選ばれる少なくとも1種であることが好ましい。 In this thermoplastic resin composition for insulating parts, (B) the halogen flame retardant is at least selected from a halogenated epoxy resin, a halogenated aromatic bisimide compound, a halogenated benzyl acrylate, a halogenated polystyrene, and a halogenated phenylethane. One type is preferable.
 この絶縁部品用熱可塑性樹脂組成物において、(C)難燃助剤が、メラミンシアヌレートおよび酸化アンチモンを含有することが好ましい。 In this thermoplastic resin composition for insulating parts, it is preferable that the flame retardant aid (C) contains melamine cyanurate and antimony oxide.
 この絶縁部品用熱可塑性樹脂組成物において、メラミンシアヌレートの含有量が(A)ポリブチレンテレフタレート系樹脂100質量部に対して15~50質量部であり、酸化アンチモンのメラミンシアヌレートに対する質量比が0.05~0.85であることが好ましい。 In this thermoplastic resin composition for insulating parts, the content of melamine cyanurate is 15 to 50 parts by mass with respect to 100 parts by mass of (A) polybutylene terephthalate resin, and the mass ratio of antimony oxide to melamine cyanurate is It is preferably 0.05 to 0.85.
 この絶縁部品用熱可塑性樹脂組成物において、(D)鉱物フィラーがコレマナイトであることが好ましい。 In this thermoplastic resin composition for insulating parts, (D) the mineral filler is preferably colemanite.
 この絶縁部品用熱可塑性樹脂組成物において、(E)ガラス繊維強化剤の含有量が(A)ポリブチレンテレフタレート系樹脂100質量部に対して10~100質量部であることが好ましい。 In this thermoplastic resin composition for insulating parts, the content of (E) glass fiber reinforcing agent is preferably 10 to 100 parts by mass with respect to 100 parts by mass of (A) polybutylene terephthalate resin.
 この絶縁部品用熱可塑性樹脂組成物において、試験片厚み0.75mm、1.5mm、3mmのいずれにおいてもIEC60695-2-13記載の赤熱棒着火温度775℃以上の条件を満足することが好ましい。 In this thermoplastic resin composition for insulating parts, it is preferable that the red-hot rod ignition temperature of 775 ° C. or higher described in IEC60695-2-13 is satisfied for any of the test piece thicknesses of 0.75 mm, 1.5 mm, and 3 mm.
 本発明の絶縁部品は、前記の絶縁部品用熱可塑性樹脂組成物により少なくともその一部が構成されていることを特徴とする。 The insulating component of the present invention is characterized in that at least a part thereof is constituted by the above thermoplastic resin composition for insulating components.
 本発明の絶縁部品用熱可塑性樹脂組成物とそれを用いた絶縁部品によれば、液晶性ポリマーという特異な成分の配合や、高配合比でのガラス繊維の使用を必要とすることなく、絶縁部品用のほぼ全ての試験片厚みにおいてGWIT775℃規格と同等以上の強度特性を実現可能であり、耐トラッキング性、機械的特性とのバランスも良好である。 According to the thermoplastic resin composition for insulating parts of the present invention and the insulating parts using the same, insulation without requiring the use of a specific component such as a liquid crystalline polymer or the use of glass fiber at a high mixing ratio. It is possible to realize strength characteristics equivalent to or higher than those of the GWIT 775 ° C. standard for almost all test specimen thicknesses for parts, and a good balance between tracking resistance and mechanical characteristics.
 特に本発明においては成分(D)鉱物フィラーの配合によって、例えば1.5mmの試験片の場合でも、750℃の赤熱棒を試験片に押し当てた際の試験片の発火が起こりにくくなる。 Particularly in the present invention, the mixing of the component (D) mineral filler makes it difficult for the test piece to ignite when a 750 ° C. red hot rod is pressed against the test piece, even in the case of a 1.5 mm test piece.
 以下に、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明の絶縁部品用熱可塑性樹脂組成物における前記必須成分(a1)としてのポリブチレンテレフタレート(PBT)樹脂〔以下、PBT樹脂と言う。〕は、テレフタル酸またはそのエステル形成性誘導体と炭素数4のアルキレングリコール(1,4-ブタンジオール)またはそのエステル形成性誘導体を重縮合して得られる熱可塑性樹脂である。 Polybutylene terephthalate (PBT) resin as the essential component (a1) in the thermoplastic resin composition for insulating parts of the present invention (hereinafter referred to as PBT resin). ] Is a thermoplastic resin obtained by polycondensation of terephthalic acid or its ester-forming derivative and C 4 alkylene glycol (1,4-butanediol) or its ester-forming derivative.
 また、PBT樹脂はブチレンテレフタレート繰り返し単位を70質量%以上含有する共重合体であってもよい。この場合におけるテレフタル酸またはそのエステル形成性誘導体(低級アルコールエステル等)以外の二塩基酸成分としては、イソフタル酸、ナフタレンジカルボン酸、アジピン酸、セバシン酸、トリメリット酸、コハク酸等の脂肪族、芳香族多塩基酸またはそのエステル形成性誘導体が挙げられる。また、1,4-ブタンジオール以外のグリコール成分としては、通常のアルキレングリコール、例えばエチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、1,3-オクタンジオール等の低級アルキレングリコール、ビスフェノールA、4,4’-ジヒドロキシビフェニル等の芳香族アルコール、ビスフェノールAのエチレンオキサイド2モル付加体、ビスフェノールAのプロピレンオキサイド3モル付加体等のアルキレンオキサイド付加体アルコール、グリセリン、ペンタエリスリトール等のポリヒドロキシ化合物またはそのエステル形成性誘導体等が挙げられる。 The PBT resin may be a copolymer containing 70% by mass or more of a butylene terephthalate repeating unit. In this case, as dibasic acid components other than terephthalic acid or ester-forming derivatives thereof (lower alcohol ester, etc.), aliphatics such as isophthalic acid, naphthalenedicarboxylic acid, adipic acid, sebacic acid, trimellitic acid, succinic acid, Aromatic polybasic acids or ester-forming derivatives thereof. Examples of glycol components other than 1,4-butanediol include ordinary alkylene glycols such as ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, hexamethylene glycol, neopentyl glycol, cyclohexanedimethanol, and 1,3-octane. Lower alkylene glycol such as diol, aromatic alcohol such as bisphenol A, 4,4′-dihydroxybiphenyl, alkylene oxide adduct alcohol such as ethylene oxide 2 mol adduct of bisphenol A, propylene oxide 3 mol adduct of bisphenol A, Examples thereof include polyhydroxy compounds such as glycerin and pentaerythritol or ester-forming derivatives thereof.
 本発明では、上記の如き化合物をモノマー成分として重縮合して得られるPBT樹脂は何れも本発明の(a1)成分として用いることができ、単独でまたは2種類以上を混合して用いられる。 In the present invention, any PBT resin obtained by polycondensation using the above compound as a monomer component can be used as the component (a1) of the present invention, and can be used alone or in admixture of two or more.
 本発明では、PBT樹脂としてコポリマーに属する分岐ポリマーも用いることができる。ここでいうPBT樹脂分岐ポリマーとは、いわゆるPBT樹脂またはブチレンテレフタレート単量体を主成分とし、多官能性化合物を添加することにより分岐形成されたポリエステルである。ここで使用できる多官能性化合物としては、トリメシン酸、トリメリット酸、ピロメリット酸およびこれらのアルコールエステル、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。 In the present invention, a branched polymer belonging to a copolymer can also be used as the PBT resin. The PBT resin branched polymer referred to here is a polyester having a so-called PBT resin or butylene terephthalate monomer as a main component and branched by adding a polyfunctional compound. Examples of the polyfunctional compound that can be used here include trimesic acid, trimellitic acid, pyromellitic acid and alcohol esters thereof, glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol.
 また、本発明では、前記PBT樹脂とともにポリエチレンテレフタレート(PET)樹脂〔以下、PET樹脂と言う。〕が併用されてもよい。PET樹脂は、テレフタル酸またはそのエステル形成性誘導体とエチレングリコールまたはそのエステル形成性誘導体を重縮合して得られる熱可塑性樹脂である。 In the present invention, polyethylene terephthalate (PET) resin [hereinafter referred to as PET resin] together with the PBT resin. ] May be used in combination. The PET resin is a thermoplastic resin obtained by polycondensation of terephthalic acid or its ester-forming derivative and ethylene glycol or its ester-forming derivative.
 また、PET樹脂は、エチレンテレフタレートの繰り返し単位を90質量%以上含有する共重合体であってもよい。この場合におけるテレフタル酸またはそのエステル形成性誘導体以外の二塩基酸成分や共重合体については、前記PBT樹脂の場合と同様に考慮してもよい。 The PET resin may be a copolymer containing 90% by mass or more of ethylene terephthalate repeating units. In this case, dibasic acid components and copolymers other than terephthalic acid or ester-forming derivatives thereof may be considered in the same manner as in the case of the PBT resin.
 本発明では、PBT樹脂(a1)は必須である。PET樹脂(a2)を併用する場合にはその配合質量比は(a1)/(a2)として95/5~60/40とするのが好ましい。 In the present invention, the PBT resin (a1) is essential. When the PET resin (a2) is used in combination, the blending mass ratio is preferably 95/5 to 60/40 as (a1) / (a2).
 PET樹脂(a2)を併用する場合、その比率が高くなるに従ってハロゲン系難燃剤の使用量を減らすことが可能となる。ただし、PET樹脂(a2)の比率が(a2)/(a1)として40/60よりも高くなると、リレーケースなどの薄肉の成形品の場合、樹脂組成物の結晶性が低下し、成形性が低下しやすくなる。このため、金型温度の上昇や金型保持時間の延長が必要となりかねない。 When PET resin (a2) is used in combination, the amount of halogenated flame retardant used can be reduced as the ratio increases. However, when the ratio of the PET resin (a2) is higher than 40/60 as (a2) / (a1), in the case of a thin molded product such as a relay case, the crystallinity of the resin composition is lowered and the moldability is reduced. It tends to decrease. For this reason, it may be necessary to increase the mold temperature or extend the mold holding time.
 PBT樹脂(a1)とPET樹脂(a2)との併用は各々別原料として混合することであってもよいし、両者は、共重合体として一体であってもよい。 The combined use of the PBT resin (a1) and the PET resin (a2) may be mixed as separate raw materials, or both may be integrated as a copolymer.
 (B)ハロゲン系難燃剤は、その種類は従来公知のものをはじめとして各種のものであってよい。中でも、ハロゲン化エポキシ樹脂、ハロゲン化芳香族ビスイミド化合物、ハロゲン化ベンジルアクリレート、ハロゲン化ポリスチレン、およびハロゲン化フェニルエタから選ばれる少なくとも1種を用いることが好ましい。 (B) The halogen-based flame retardant may be of various types including those conventionally known. Among these, it is preferable to use at least one selected from a halogenated epoxy resin, a halogenated aromatic bisimide compound, a halogenated benzyl acrylate, a halogenated polystyrene, and a halogenated phenyl eta.
 これらの場合の「ハロゲン」は、好ましくは、塩素または臭素である。 “Halogen” in these cases is preferably chlorine or bromine.
 より具体的には、好適なものとして、TBBPAジグリシジルエーテルコポリマー、ポリペンタブロモベンジルアクリレート、臭素化ポリスチレン、ペンタブロモフェニルエタン等が例示される。 More specifically, preferable examples include TBBPA diglycidyl ether copolymer, polypentabromobenzyl acrylate, brominated polystyrene, pentabromophenyl ethane and the like.
 (B)ハロゲン系難燃剤の添加量は、(A)ポリブチレンテレフタレート系樹脂100質量部に対して15~35質量部、好ましくは20~30質量部である。(B)ハロゲン系難燃剤の添加量を15質量部以上にすると十分な難燃性を得ることができ、35質量部以下にすると機械的特性の低下を抑制できる。 (B) The addition amount of the halogen-based flame retardant is 15 to 35 parts by mass, preferably 20 to 30 parts by mass with respect to 100 parts by mass of the (A) polybutylene terephthalate resin. (B) When the addition amount of the halogen-based flame retardant is 15 parts by mass or more, sufficient flame retardancy can be obtained, and when it is 35 parts by mass or less, deterioration of mechanical properties can be suppressed.
 (C)難燃助剤は、(B)ハロゲン系難燃剤と併用した場合に難燃性の相乗効果が知られる三酸化アンチモンや五酸化アンチモン等のアンチモン化合物やメラミンシアヌレートを用いることができる。その他、タルクやマイカ等のケイ酸塩類、炭酸カルシウム、水酸化マグネシウム、ベーマイト、硫酸亜鉛、酸化亜鉛等を用いることができる。 (C) As the flame retardant aid, antimony compounds such as antimony trioxide and antimony pentoxide, and melamine cyanurate, which are known to have a synergistic effect of flame retardancy when used in combination with (B) a halogen flame retardant, can be used. . In addition, silicates such as talc and mica, calcium carbonate, magnesium hydroxide, boehmite, zinc sulfate, zinc oxide and the like can be used.
 (C)難燃助剤の添加量は、(A)ポリブチレンテレフタレート系樹脂100質量部に対して20~60質量部が好ましい。(C)難燃助剤を20質量部以上の添加量で用いると、難燃助剤としての効果が発揮され、60質量部以下の添加量で用いると、機械的強度の低下を抑制できる。 (C) The addition amount of the flame retardant aid is preferably 20 to 60 parts by mass with respect to 100 parts by mass of (A) polybutylene terephthalate resin. (C) When the flame retardant aid is used in an addition amount of 20 parts by mass or more, the effect as a flame retardant aid is exhibited, and when it is used in an addition amount of 60 parts by mass or less, a decrease in mechanical strength can be suppressed.
 (C)難燃助剤は、上記に例示した中でも、酸化アンチモン、メラミンシアヌレートが好ましい。特に酸化アンチモンとメラミンシアヌレートを併用することで難燃性にも大きな効果を与えることができる。赤熱棒を試験片に押し当てた際に試験片から発生する可燃性ガスにより燃焼性が加速される場合が多いが、メラミンシアヌレートから発生する窒素ガスが燃焼性の抑制に大きく寄与するものと考えられる。すなわちメラミンシアヌレートを添加することにより、昇華・吸熱が起こり750℃の赤熱棒を押し当てた際の燃焼の抑制に大きな効果がある。 (C) The flame retardant aid is preferably antimony oxide or melamine cyanurate among those exemplified above. In particular, the combined use of antimony oxide and melamine cyanurate can have a great effect on flame retardancy. Combustibility is often accelerated by the combustible gas generated from the test piece when the red hot rod is pressed against the test piece, but the nitrogen gas generated from melamine cyanurate greatly contributes to suppression of combustibility. Conceivable. That is, by adding melamine cyanurate, sublimation and endotherm occur, and there is a great effect in suppressing combustion when a 750 ° C. red hot rod is pressed.
 酸化アンチモンとメラミンシアヌレートの併用に際しては、メラミンシアヌレートの含有量は、(A)ポリブチレンテレフタレート系樹脂100質量部に対して15~50質量部が好ましい。かつ、酸化アンチモンのメラミンシアヌレートに対する質量比が0.05~0.85であることが好ましく、0.05~0.35であることがより好ましい。メラミンシアヌレートの含有量がこの範囲内であると、昇華・吸熱効果を得ることができ、酸化アンチモンのメラミンシアヌレートに対する質量比がこの範囲内であると、機械的特性や流動性の低下も抑制できる。 In the combined use of antimony oxide and melamine cyanurate, the content of melamine cyanurate is preferably 15 to 50 parts by mass with respect to 100 parts by mass of (A) polybutylene terephthalate resin. In addition, the mass ratio of antimony oxide to melamine cyanurate is preferably 0.05 to 0.85, and more preferably 0.05 to 0.35. When the content of melamine cyanurate is within this range, a sublimation / endothermic effect can be obtained, and when the mass ratio of antimony oxide to melamine cyanurate is within this range, mechanical properties and fluidity are also reduced. Can be suppressed.
 なお、前記(B)ハロゲン系難燃剤および(C)難燃助剤の配合量については、0.3mm厚試験片の難燃性がUL-94 V-0を満足できるように考慮する。 Note that the blending amounts of the (B) halogen flame retardant and (C) flame retardant aid are considered so that the flame retardancy of the 0.3 mm-thick specimen can satisfy UL-94 V-0.
 (D)鉱物フィラーは、水分含有量が20質量%以上であり、かつ、脱水開始温度が300℃以上のものであることが特徴的である。この(D)鉱物フィラーの添加によって、脱水、吸熱反応が起こり、750℃赤熱棒を試験片に押し当てた際の試験片の発火が起こりにくくなる。特に、1.5mm、3.0mm厚試験片の場合に有効である。 (D) The mineral filler is characterized by having a water content of 20% by mass or more and a dehydration start temperature of 300 ° C. or more. By the addition of the mineral filler (D), dehydration and endothermic reaction occur, and the test piece is less likely to ignite when the 750 ° C. red hot rod is pressed against the test piece. This is particularly effective for 1.5 mm and 3.0 mm thick test pieces.
 このような(D)鉱物フィラーとしてはコレマナイトが代表的なものとして例示される。コレマナイトは、含水硼酸カルシウムの鉱物で、灰硼鉱と呼ばれているものである。 As such (D) mineral filler, a typical example is colemanite. Colemanite is a mineral of hydrous calcium borate, and it is called a boehmite.
 (D)鉱物フィラーの平均粒径は特に限定されないが、通常は100μm以下、好ましくは1~50μmの範囲である。なお、平均粒径は、例えば、レーザ回折散乱式粒度分布測定装置を用いて測定することができる。そして、平均粒径は、母集団から任意に抽出される試料を用い、上記測定装置を利用して測定し導出される値である。 (D) The average particle diameter of the mineral filler is not particularly limited, but is usually 100 μm or less, preferably 1 to 50 μm. In addition, an average particle diameter can be measured using a laser diffraction scattering type particle size distribution measuring apparatus, for example. The average particle diameter is a value derived by measurement using a sample arbitrarily extracted from the population and using the measurement apparatus.
 また、その配合量は、(A)ポリブチレンテレフタレート系樹脂100質量部に対して2~60質量部、好ましくは2~25質量部、より好ましくは5~25質量部の範囲である。脱水・吸熱効果を得るためには2質量部以上添加することが必要である。一方、機械的特性を確保し、燃焼時の滴下による難燃性の低下を抑制するためには60質量部以下の範囲で添加することが必要である。 The blending amount is in the range of 2 to 60 parts by weight, preferably 2 to 25 parts by weight, more preferably 5 to 25 parts by weight with respect to 100 parts by weight of the (A) polybutylene terephthalate resin. In order to obtain a dehydration / endothermic effect, it is necessary to add 2 parts by mass or more. On the other hand, it is necessary to add in the range of 60 parts by mass or less in order to ensure mechanical properties and suppress a decrease in flame retardancy due to dripping during combustion.
 (E)ガラス繊維強化剤については、その平均繊維径は特に制限されず、例えば、1~100μm、好ましくは1~50μm、より好ましくは3~30μm程度である。また、平均繊維長も特に制限されず、例えば、0.1~20mm程度である。 (E) The average fiber diameter of the glass fiber reinforcing agent is not particularly limited, and is, for example, 1 to 100 μm, preferably 1 to 50 μm, more preferably about 3 to 30 μm. Also, the average fiber length is not particularly limited and is, for example, about 0.1 to 20 mm.
 (E)ガラス繊維強化剤の添加量は、要求される剛性や寸法安定性のレベルに応じて配合量を決定すればよい。前記の(A)ポリブチレンテレフタレート系樹脂100質量部に対して好ましくは10~100質量部であり、より好ましくは30~60質量部である。添加量を10質量部以上にすることで、剛性や寸法安定性を高めることができる。添加量を100質量部以下にすることで、溶融混練性や成形性の低下を抑制できる。 (E) The addition amount of the glass fiber reinforcing agent may be determined in accordance with the required level of rigidity and dimensional stability. The amount is preferably 10 to 100 parts by mass, and more preferably 30 to 60 parts by mass with respect to 100 parts by mass of the (A) polybutylene terephthalate resin. By making the addition amount 10 parts by mass or more, rigidity and dimensional stability can be improved. By making the addition amount 100 parts by mass or less, it is possible to suppress a decrease in melt-kneading property and moldability.
 (E)ガラス繊維強化剤は、必要により収束剤または表面処理剤(例えば、エポキシ系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物等の官能性化合物)で表面処理してもよい。(E)ガラス繊維強化剤は、前記収束剤または表面処理剤により予め表面処理してもよく、または樹脂組成物の調製の際に収束剤または表面処理剤を添加して表面処理してもよい。 (E) The glass fiber reinforcing agent may be surface-treated with a sizing agent or a surface treatment agent (for example, a functional compound such as an epoxy compound, an isocyanate compound, a silane compound, or a titanate compound) as necessary. (E) The glass fiber reinforcing agent may be surface-treated in advance with the sizing agent or surface treatment agent, or may be surface-treated by adding a sizing agent or surface treatment agent during the preparation of the resin composition. .
 本発明の絶縁部品用熱可塑性樹脂組成物においては、その成形品の用途によりUL規格94の難燃区分「V-0」であることを要求される場合には、フッ素系樹脂等の滴下防止剤を難燃剤と共に用いることが好ましい。 In the thermoplastic resin composition for insulating parts of the present invention, when it is required that the flame retardant classification “V-0” of UL standard 94 is used depending on the use of the molded product, dripping prevention of fluorine-based resin, etc. Preferably, the agent is used with a flame retardant.
 フッ素系樹脂としては、テトラフルオロエチレン(PTFE)、クロロトリフルオロエチレン、ビニリデンフルオライド、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル等のフッ素含有モノマーの単独または共重合体や、前記フッ素含有モノマーとエチレン、プロピレン、(メタ)アクリレート等の共重合性モノマーとの共重合体等が挙げられる。 Fluorine-based resins include tetrafluoroethylene (PTFE), chlorotrifluoroethylene, vinylidene fluoride, hexafluoropropylene, perfluoroalkyl vinyl ether and other fluorine-containing monomers alone or copolymers, the fluorine-containing monomers and ethylene, Examples thereof include copolymers with copolymerizable monomers such as propylene and (meth) acrylate.
 フッ素系樹脂の添加量は、例えば、前記の(A)ポリブチレンテレフタレート系樹脂100質量部に対して0~10質量部、好ましくは0.1~5質量部、より好ましくは0.2~1.5質量部である。 The amount of fluorine resin added is, for example, 0 to 10 parts by weight, preferably 0.1 to 5 parts by weight, more preferably 0.2 to 1 part by weight based on 100 parts by weight of the (A) polybutylene terephthalate resin. .5 parts by mass.
 さらに、本発明の絶縁部品用熱可塑性樹脂組成物には、必要に応じて、慣用の添加剤、例えば、酸化防止剤、紫外線吸収剤、耐熱安定剤、耐候安定剤等の安定剤、滑剤、離型剤、着色剤、造核剤、結晶化促進剤等を添加してもよい。また、他の熱可塑性樹脂(例えば、ポリアミド、アクリル樹脂等)や熱硬化性樹脂(例えば、不飽和PBT樹脂、フェノール樹脂、エポキシ樹脂等)を添加してもよい。 Furthermore, in the thermoplastic resin composition for insulating parts of the present invention, if necessary, conventional additives such as antioxidants, ultraviolet absorbers, heat stabilizers, stabilizers such as weather stabilizers, lubricants, A mold release agent, a colorant, a nucleating agent, a crystallization accelerator and the like may be added. Further, other thermoplastic resins (for example, polyamide, acrylic resin, etc.) and thermosetting resins (for example, unsaturated PBT resin, phenol resin, epoxy resin, etc.) may be added.
 以上のとおりの成分配合の本発明の絶縁部品用熱可塑性樹脂組成物においては、試験片が0.3mm厚みで燃焼性試験でUL94 V-0に相当することと共に、試験片厚み0.75mm、1.5mm、そして3.0mmのいずれにおいてもGWITが775℃以上の条件をほぼ満足可能であることが好ましい。 In the thermoplastic resin composition for insulating parts of the present invention containing the components as described above, the test piece has a thickness of 0.3 mm, corresponds to UL94 V-0 in the flammability test, and the thickness of the test piece is 0.75 mm. It is preferable that GWIT can substantially satisfy the condition of 775 ° C. or higher at both 1.5 mm and 3.0 mm.
 GWITでは熱棒を試験片に押し当てた場合、0.75mmではすぐに貫通するため、比較的燃焼・発火は発生し難く、3.0mmの場合は試験片が貫通しないため比較的燃焼・発火が発生しにくい。これに比べて1.5mmの場合は燃焼・発火は発生しやすくなるが、本発明の絶縁部品用熱可塑性樹脂組成物によれば、厚み0.75mm、1.5mm、そして3.0mmのいずれにおいても、試験片に熱棒を押し当てても燃焼・発火を抑制できる。 In GWIT, when a hot rod is pressed against a test piece, it penetrates immediately at 0.75 mm, so combustion and ignition are relatively difficult to occur. Is unlikely to occur. In comparison with this, in the case of 1.5 mm, combustion / ignition tends to occur, but according to the thermoplastic resin composition for insulating parts of the present invention, any of thicknesses of 0.75 mm, 1.5 mm, and 3.0 mm In addition, combustion and ignition can be suppressed even if a hot rod is pressed against the test piece.
 このような本発明の絶縁部品用熱可塑性樹脂組成物は、粉粒体混合物や溶融混合物であってもよく、慣用の方法で混合することにより調製できる。例えば、各成分を混合して、一軸または二軸の押出機により混練し押出してペレットとして調製することができる。 Such a thermoplastic resin composition for insulating parts of the present invention may be a powder mixture or a molten mixture, and can be prepared by mixing by a conventional method. For example, each component can be mixed, kneaded by a single-screw or twin-screw extruder, and extruded to prepare a pellet.
 本発明の絶縁部品は、上記のようにして調製した絶縁部品用熱可塑性樹脂組成物を用いて射出成形等の公知の成形を行うことで得られる。絶縁部品としては、自動車部品、電気・電子部品等に使用されるものを挙げることができ、電気・電子部品としては、スイッチ、リレーケース等の薄肉成形品にも好適である。 The insulating component of the present invention can be obtained by performing known molding such as injection molding using the thermoplastic resin composition for insulating component prepared as described above. Examples of the insulating parts include those used for automobile parts, electric / electronic parts, and the like, and the electric / electronic parts are also suitable for thin molded products such as switches and relay cases.
 以下に、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
<組成物の調製>
 別表の表1に示した実施例、比較例の各配合材料を、ガラス繊維を除いた状態で配合し、ブレンダーで30分間混合し均一化した。
<Preparation of composition>
The blending materials of Examples and Comparative Examples shown in Table 1 of the attached table were blended with the glass fibers removed, and mixed for 30 minutes with a blender for homogenization.
 260℃に加熱した二軸押出機で混練溶融し、溶融したところへガラス繊維を所定比率で添加し、さらに混練溶融を行った。 The mixture was kneaded and melted with a twin-screw extruder heated to 260 ° C., glass fibers were added at a predetermined ratio to the melted portion, and kneading and melting were further performed.
 なお、一部の鉱物フィラー(コレマナイト)に関しては別供給フィーダーにて混練機根元部より供給した。その後、50℃水中で冷却、ペレタイザーで2~4mmに切断してペレット状材料を得た。 In addition, some mineral fillers (colemanite) were supplied from the root of the kneading machine using a separate supply feeder. Thereafter, it was cooled in 50 ° C. water and cut into 2 to 4 mm with a pelletizer to obtain a pellet-like material.
 配合材料については次のものを用いた。
[(a1)PBT樹脂]
 ・市販のPBT樹脂
[(a2)PET樹脂]
 ・市販のPET樹脂
[(B)ハロゲン系難燃剤]
 ・臭素化エポキシ樹脂:坂本薬品工業 SR T20000
 ・1,2ビス-ペンタブロモフェニルエタン:アルベマール SAYTEX8010
 ・ポリペンタブロモベンジルアクリレート:Dead Sea Bromine GrFR1025
[(C)難燃助剤]
 ・メラミンシアヌレート:日産化学 MC4500
 ・三酸化アンチモン
[(D)鉱物フィラー]
 ・コレマナイト:キンセイマテック UBパウダー
[(E)ガラス繊維強化剤]
 ・ガラス繊維(平均繊維径13μm、平均繊維長3.0mm)
[添加剤]
 ・タルク
 ・モンタン酸エステル:クラリアント WAX-E
 ・テトラフルオロエチレン(PTFE)
About the compounding material, the following were used.
[(A1) PBT resin]
・ Commercially available PBT resin
[(A2) PET resin]
・ Commercially available PET resin
[(B) Halogen flame retardant]
-Brominated epoxy resin: Sakamoto Yakuhin SR T20000
・ 1,2-Bis-pentabromophenylethane: Albemarle SAYTEX8010
Polypentabromobenzyl acrylate: Dead Sea Bromine GrFR1025
[(C) Flame retardant aid]
Melamine cyanurate: Nissan Chemical MC4500
・ Antimony trioxide
[(D) Mineral filler]
・ Colemanite: Kinsei Matec UB Powder
[(E) Glass fiber reinforcement]
・ Glass fiber (average fiber diameter 13μm, average fiber length 3.0mm)
[Additive]
・ Talc ・ Montanic acid ester: Clariant WAX-E
・ Tetrafluoroethylene (PTFE)
<試験片の作製>
 表1の配合の組成物からなる成形材料を恒温槽で140℃×4hの前乾燥を行い、成形材料中の含有水分率0.02%以下にした。その後、100t射出成形機で射出成形を行いテストピースを得た。
<Preparation of test piece>
The molding material composed of the composition shown in Table 1 was pre-dried at 140 ° C. for 4 hours in a thermostatic bath, so that the moisture content in the molding material was 0.02% or less. Thereafter, a test piece was obtained by injection molding with a 100 t injection molding machine.
 その時の条件はシリンダー温度260℃(ヘッド付近)、200℃付近(材料投入口)で、金型温度はTPによって異なる。 The conditions at that time are a cylinder temperature of 260 ° C. (near the head) and 200 ° C. (material input port), and the mold temperature varies depending on the TP.
 試験片:
 1)0.3mmダンベル試験片:金型温度80℃にて0.8mm成形品を成形し研磨加工を行った。
 2)0.75mm試験片:金型温度80℃にて作製。
 3)1.5mm試験片:金型温度80℃にて作製。
 4)3.0mm試験片:金型温度80℃にて作製。
 5)トラッキング性試験片:上記ダンベルを用いた。
Test pieces:
1) 0.3 mm dumbbell test piece: A 0.8 mm molded product was molded at a mold temperature of 80 ° C. and polished.
2) 0.75 mm test piece: produced at a mold temperature of 80 ° C.
3) 1.5 mm test piece: produced at a mold temperature of 80 ° C.
4) 3.0 mm test piece: produced at a mold temperature of 80 ° C.
5) Tracking test piece: The above dumbbell was used.
<評価方法と評価結果>
 各試験片について次の評価を行った。
<Evaluation method and evaluation results>
The following evaluation was performed about each test piece.
 ◆引張り・曲げ強度測定:ISOに準ずる。 ◆ Tensile / bending strength measurement: According to ISO.
 ◆耐トラッキング性:IEC規格に準ずる。 ◆ Tracking resistance: Conforms to IEC standards.
 ◆GWIT:IEC規格に準ずる。 ◆ GWIT: Conforms to IEC standards.
 ◆GWIT測定時の発火:0.3mmダンベル試験片を用いて発火の有無を確認した。 ♦ Ignition during GWIT measurement: The presence or absence of ignition was confirmed using a 0.3 mm dumbbell test piece.
 評価の結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 実施例1~7と比較例1、2との対比から明らかなように、鉱物フィラーのコレマナイトを配合する実施例1~7においては、GWIT775の規格以上をほぼ全ての試験片厚みにおいて実現している。これに対し、比較例1、2では格段に劣っていることがわかる。 As is clear from the comparison between Examples 1 to 7 and Comparative Examples 1 and 2, in Examples 1 to 7 in which the mineral filler colemanite is blended, the GWIT775 standard or higher is realized in almost all test specimen thicknesses. Yes. On the other hand, it can be seen that Comparative Examples 1 and 2 are significantly inferior.
 また、難燃助剤としてのメラミンシアヌレートと酸化アンチモンとの併用が有効であることもわかる。特に、メラミンシアヌレートの含有量がポリブチレンテレフタレート系樹脂100質量部に対して15~50質量部であり、酸化アンチモンのメラミンシアヌレートに対する質量比が0.05~0.85の範囲内である実施例1~6では試験片厚み0.75mm、1.5mm、3.0mmのいずれにおいてもGWIT775の規格以上を実現している。実施例7は比較例に比べるとGWITは明らかな向上を示し優れた結果を得ているが、実施例1~6に比べると試験片厚み1.5mmにおいてやや低下した。 It can also be seen that the combined use of melamine cyanurate and antimony oxide as a flame retardant aid is effective. In particular, the content of melamine cyanurate is 15 to 50 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin, and the mass ratio of antimony oxide to melamine cyanurate is in the range of 0.05 to 0.85. In Examples 1 to 6, the test piece thickness of 0.75 mm, 1.5 mm, and 3.0 mm achieved the GWIT775 standard or higher. In Example 7, the GWIT showed a clear improvement compared with the comparative example and obtained an excellent result. However, compared with Examples 1 to 6, the GWIT slightly decreased when the specimen thickness was 1.5 mm.

Claims (9)

  1.  (A)ポリブチレンテレフタレート樹脂(a1)単独またはポリブチレンテレフタレート樹脂(a1)とポリエチレンテレフタレート樹脂(a2)との両者からなるポリブチレンテレフタレート系樹脂、(B)ハロゲン系難燃剤、(C)難燃助剤、(D)水分含有量が20質量%以上であって、かつ、脱水開始温度が300℃以上である鉱物フィラー、および(E)ガラス繊維強化剤を含有し、前記(B)ハロゲン系難燃剤の含有量が前記(A)ポリブチレンテレフタレート系樹脂100質量部に対して15~35質量部、前記(D)鉱物フィラーの含有量が前記(A)ポリブチレンテレフタレート系樹脂100質量部に対して2~60質量部であることを特徴とする絶縁部品用熱可塑性樹脂組成物。 (A) Polybutylene terephthalate resin (a1) alone or polybutylene terephthalate resin comprising both polybutylene terephthalate resin (a1) and polyethylene terephthalate resin (a2), (B) halogen flame retardant, (C) flame retardant An auxiliary, (D) a mineral filler having a water content of 20% by mass or more and a dehydration start temperature of 300 ° C. or higher, and (E) a glass fiber reinforcing agent, and the (B) halogen-based The flame retardant content is 15 to 35 parts by mass with respect to 100 parts by mass of the (A) polybutylene terephthalate resin, and the (D) mineral filler content is 100 parts by mass of the (A) polybutylene terephthalate resin. 2. A thermoplastic resin composition for insulating parts, characterized by being 2 to 60 parts by mass.
  2.  前記ポリブチレンテレフタレート樹脂(a1)と前記ポリエチレンテレフタレート樹脂(a2)との質量比が、(a1)/(a2)として95/5~60/40であることを特徴とする請求項1に記載の絶縁部品用熱可塑性樹脂組成物。 The mass ratio of the polybutylene terephthalate resin (a1) and the polyethylene terephthalate resin (a2) is 95/5 to 60/40 as (a1) / (a2). Thermoplastic resin composition for insulating parts.
  3.  前記(B)ハロゲン系難燃剤が、ハロゲン化エポキシ樹脂、ハロゲン化芳香族ビスイミド化合物、ハロゲン化ベンジルアクリレート、ハロゲン化ポリスチレン、およびハロゲン化フェニルエタンから選ばれる少なくとも1種であることを特徴とする請求項1または2に記載の絶縁部品用熱可塑性樹脂組成物。 The (B) halogen-based flame retardant is at least one selected from a halogenated epoxy resin, a halogenated aromatic bisimide compound, a halogenated benzyl acrylate, a halogenated polystyrene, and a halogenated phenylethane. Item 3. The thermoplastic resin composition for insulating parts according to item 1 or 2.
  4.  前記(C)難燃助剤が、メラミンシアヌレートおよび酸化アンチモンを含有することを特徴とする請求項1から3のうちのいずれか一項に記載の絶縁部品用熱可塑性樹脂組成物。 The thermoplastic resin composition for insulating parts according to any one of claims 1 to 3, wherein the flame retardant aid (C) contains melamine cyanurate and antimony oxide.
  5.  前記メラミンシアヌレートの含有量が前記(A)ポリブチレンテレフタレート系樹脂100質量部に対して15~50質量部であり、前記酸化アンチモンの前記メラミンシアヌレートに対する質量比が0.05~0.85であることを特徴とする請求項4に記載の絶縁部品用熱可塑性樹脂組成物。 The content of the melamine cyanurate is 15 to 50 parts by mass with respect to 100 parts by mass of the (A) polybutylene terephthalate resin, and the mass ratio of the antimony oxide to the melamine cyanurate is 0.05 to 0.85. The thermoplastic resin composition for insulating parts according to claim 4, wherein:
  6.  前記(D)鉱物フィラーがコレマナイトであることを特徴とする請求項1から5のいずれか一項に記載の絶縁部品用熱可塑性樹脂組成物。 The thermoplastic resin composition for insulating parts according to any one of claims 1 to 5, wherein the mineral filler (D) is colemanite.
  7.  前記(E)ガラス繊維強化剤の含有量が前記(A)ポリブチレンテレフタレート系樹脂100質量部に対して10~100質量部であることを特徴とする請求項1から6のいずれか一項に記載の絶縁部品用熱可塑性樹脂組成物。 The content of the (E) glass fiber reinforcing agent is 10 to 100 parts by mass with respect to 100 parts by mass of the (A) polybutylene terephthalate resin, according to any one of claims 1 to 6. The thermoplastic resin composition for insulating parts as described.
  8.  試験片厚み0.75mm、1.5mm、3mmのいずれにおいてもIEC60695-2-13記載の赤熱棒着火温度775℃以上の条件を満足することを特徴とする請求項1から7のいずれか一項に記載の絶縁部品用熱可塑性樹脂組成物。 The test piece thickness of 0.75 mm, 1.5 mm, or 3 mm satisfies the condition of the red hot rod ignition temperature of 775 ° C. or more described in IEC60695-2-13. The thermoplastic resin composition for insulating parts as described in 2.
  9.  請求項1から8のいずれか一項に記載の絶縁部品用熱可塑性樹脂組成物により少なくともその一部が構成されていることを特徴とする絶縁部品。 An insulating part, wherein at least a part thereof is constituted by the thermoplastic resin composition for insulating parts according to any one of claims 1 to 8.
PCT/JP2012/053185 2011-10-24 2012-02-10 Thermoplastic resin composition for insulation components, and insulation component WO2013061622A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012511866A JP5091367B1 (en) 2011-10-24 2012-02-10 Thermoplastic resin composition for insulating parts and insulating parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011232480 2011-10-24
JP2011-232480 2011-10-24

Publications (1)

Publication Number Publication Date
WO2013061622A1 true WO2013061622A1 (en) 2013-05-02

Family

ID=48167469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053185 WO2013061622A1 (en) 2011-10-24 2012-02-10 Thermoplastic resin composition for insulation components, and insulation component

Country Status (1)

Country Link
WO (1) WO2013061622A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069489A1 (en) * 2012-10-29 2014-05-08 ウィンテックポリマー株式会社 Polybutylene terephthalate resin composition
WO2015037592A1 (en) * 2013-09-10 2015-03-19 ウィンテックポリマー株式会社 Flame-retardant polybutylene terephthalate resin composition
JP2021024876A (en) * 2019-07-31 2021-02-22 ポリプラスチックス株式会社 Flame-retardant polybutylene terephthalate resin composition for electric insulation parts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019400A (en) * 2006-07-14 2008-01-31 Wintech Polymer Ltd Flame-retardant polybutylene terephthalate resin composition
JP2011032295A (en) * 2009-07-08 2011-02-17 Mitsubishi Engineering Plastics Corp Thermoplastic polyester resin composition
JP2012025931A (en) * 2010-06-24 2012-02-09 Panasonic Electric Works Co Ltd Flame-retardant polybutylene terephthalate resin composition and insulation component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019400A (en) * 2006-07-14 2008-01-31 Wintech Polymer Ltd Flame-retardant polybutylene terephthalate resin composition
JP2011032295A (en) * 2009-07-08 2011-02-17 Mitsubishi Engineering Plastics Corp Thermoplastic polyester resin composition
JP2012025931A (en) * 2010-06-24 2012-02-09 Panasonic Electric Works Co Ltd Flame-retardant polybutylene terephthalate resin composition and insulation component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069489A1 (en) * 2012-10-29 2014-05-08 ウィンテックポリマー株式会社 Polybutylene terephthalate resin composition
JPWO2014069489A1 (en) * 2012-10-29 2016-09-08 ウィンテックポリマー株式会社 Polybutylene terephthalate resin composition
WO2015037592A1 (en) * 2013-09-10 2015-03-19 ウィンテックポリマー株式会社 Flame-retardant polybutylene terephthalate resin composition
JPWO2015037592A1 (en) * 2013-09-10 2017-03-02 ウィンテックポリマー株式会社 Flame retardant polybutylene terephthalate resin composition
JP2021024876A (en) * 2019-07-31 2021-02-22 ポリプラスチックス株式会社 Flame-retardant polybutylene terephthalate resin composition for electric insulation parts
JP7454342B2 (en) 2019-07-31 2024-03-22 ポリプラスチックス株式会社 Flame-retardant polybutylene terephthalate resin composition for electrical insulation parts

Similar Documents

Publication Publication Date Title
WO2011162145A1 (en) Flame-retardant polybutylene terephthalate resin composition and insulation component
JP5480500B2 (en) Polybutylene terephthalate resin composition for insulating parts
JP2008019400A (en) Flame-retardant polybutylene terephthalate resin composition
JP6924825B2 (en) Flame-retardant polyester composition
EP2480601A1 (en) Thermoplastic polyester compositions, methods of manufacture, and articles thereof
JP4911547B2 (en) Flame retardant polybutylene terephthalate resin composition and molded article
JP4692108B2 (en) Insulating material parts
WO2013061622A1 (en) Thermoplastic resin composition for insulation components, and insulation component
JP6309948B2 (en) Polybutylene terephthalate resin composition
JP5091367B1 (en) Thermoplastic resin composition for insulating parts and insulating parts
JP6177252B2 (en) Polybutylene terephthalate resin composition
JP6456291B2 (en) Flame retardant polybutylene terephthalate resin composition
JP2001072843A (en) Resin composition
JP2019006866A (en) Polybutylene terephthalate-based resin composition and molded product
JP2019523334A (en) Flame retardant polyester composition
JPH1067925A (en) Resin composition
JP3020708B2 (en) Polyethylene terephthalate resin composition
JP7112913B2 (en) Polyester resin composition and molded article
JP5194357B2 (en) Flame retardant polyethylene terephthalate resin composition
JP2005154570A (en) Flame-retardant polybutylene terephthalate resin composition
JP2004010694A (en) Flame-retardant polyester resin composition and molding
JP2006117721A (en) Flame-retardant thermoplastic polyester resin composition
JP2005206642A (en) Flame-retardant polyester resin composition
JP2017122170A (en) Polybutylene terephthalate resin composition and molded body
JP2002047400A (en) Electric and electronic device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012511866

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12843353

Country of ref document: EP

Kind code of ref document: A1