WO2013061554A1 - Heating system and method for controlling heating system - Google Patents

Heating system and method for controlling heating system Download PDF

Info

Publication number
WO2013061554A1
WO2013061554A1 PCT/JP2012/006700 JP2012006700W WO2013061554A1 WO 2013061554 A1 WO2013061554 A1 WO 2013061554A1 JP 2012006700 W JP2012006700 W JP 2012006700W WO 2013061554 A1 WO2013061554 A1 WO 2013061554A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
room
heating
control unit
heating system
Prior art date
Application number
PCT/JP2012/006700
Other languages
French (fr)
Japanese (ja)
Inventor
敦 柿本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2012800032590A priority Critical patent/CN103180670A/en
Publication of WO2013061554A1 publication Critical patent/WO2013061554A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1048Counting of energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • F24D19/1018Radiator valves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • G05D23/1923Control of temperature characterised by the use of electric means characterised by the type of controller using thermal energy, the cost of which varies in function of time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D10/00District heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/17District heating

Definitions

  • the present invention relates to a method for controlling a heating system using hot water, and relates to a method for controlling a heating system including a plurality of heating devices such as a radiator and floor heating.
  • Patent Document 1 discloses a conventional hot water heater.
  • the hot water heater disclosed in Patent Document 1 controls the room temperature of a room by supplying hot water from a boiler to a radiator installed in each room. Moreover, the flow volume of the hot water supplied to each radiator can be adjusted with a valve.
  • Each valve is equipped with a wireless receiver and adjusts the flow rate of hot water according to the wireless signal received from the remote controller.
  • Patent Document 1 only discloses that the room temperature of each room can be individually controlled, and does not disclose heat control for overall optimization of the apartment house.
  • an object of the present invention is to provide a heating system and a heating system control method that achieves both reduction in total heat consumption and maintenance of comfort in each room.
  • a method for controlling a heating system controls a plurality of heating apparatuses that are installed in each of a plurality of rooms and that heat the generated rooms by radiating heat generated by a heat supply source. Is the method. Specifically, in the heating system control method, an acquisition step of acquiring from the heat supply source a heat dissipation suppression instruction that requests suppression of heat dissipation from the plurality of heating devices, and the heat dissipation suppression in the acquisition step.
  • a heat dissipation stop step for stopping heat dissipation of the plurality of heating devices, a detection step for detecting the room temperature of each of the plurality of rooms, and a room temperature detected in the detection step, A heat radiation restarting step of individually restarting heat radiation of the heating device installed in each room.
  • the heat dissipation of each heating device is temporarily stopped according to the request from the heat supply source, and then the heat dissipation of the heating device is individually resumed according to the room temperature of each room, thereby reducing the total heat consumption. And maintaining the comfort of each room.
  • stopping heat dissipation of the heating device includes not only literally stopping the heating device literally but also including a state in which a slight amount of heat is radiated to the heating device.
  • the “slight amount of heat” in this case is not radiated for the purpose of heating the room, but is radiated for the purpose of maintaining the function of the heating system, for example, preventing the flow path from freezing. Is.
  • a target temperature may be set in advance for each of the plurality of heating devices.
  • heat radiation restarting step heat radiation is resumed in the heating device in the first mode in which the room temperature is raised to the target temperature in order from the room in which the room temperature detected in the detection step has reached a predetermined threshold temperature. You may let them.
  • control method for the heating system may include a threshold temperature determining step for individually determining the target temperature set for each of the plurality of heating devices.
  • the threshold temperature determining step the threshold temperature of each of the plurality of heating devices may be individually determined so that the threshold temperature increases as the room temperature decrease rate of the installed room increases.
  • control method of the heating system includes a prediction step of predicting, for each heating device, a suppression heat amount that is a heat dissipation amount suppressed by the heat dissipation suppression instruction, and a suppression for each heating device predicted in the prediction step.
  • a target temperature may be set in advance for each of the plurality of heating devices.
  • the heat dissipation suppression instruction acquired in the acquisition step may include information for specifying a suppression end time that is a time at which suppression of heat dissipation ends.
  • the heating device in the first mode in which the room temperature is increased to the target temperature in order from the room where the difference between the room temperature and the target temperature detected at the detection end time is large. The heat dissipation may be resumed.
  • the comfort of each room can be leveled by restarting in order from the room heating device in which the difference between the room temperature and the target temperature at the suppression end time is large.
  • each of the plurality of heating devices radiates heat in the second mode in which the room temperature at the suppression end time is maintained from the suppression end time until the heat dissipation is restarted in the first mode. You may let them.
  • the next heating device has the first mode.
  • the heat release may be resumed.
  • the heat radiation amount per unit time of the heating device that radiates heat in the first mode may be increased as the difference between the room temperature and the target temperature at the suppression end time is larger.
  • the heating system heats each of a plurality of rooms with heat generated by a heat supply source.
  • the heating system includes a plurality of heating devices installed in each of the plurality of rooms, and a control unit that controls the operation of each of the plurality of heating devices.
  • the said control part acquires the heat dissipation suppression instruction
  • the detection part which detects the room temperature of each of these rooms And, in response to the acquisition of the heat radiation suppression instruction by the acquisition unit, the heat dissipation of the plurality of heating devices is stopped, and the heating installed in each room according to the room temperature detected by the detection unit An operation control unit for individually restarting heat dissipation of the device.
  • the control unit includes a first control unit including the acquisition unit and a first operation control unit corresponding to a part of the operation control unit, the detection unit, and another part of the operation control unit. And a second control unit provided for each room.
  • a target temperature may be set in advance for each of the plurality of heating devices.
  • the first operation control unit transmits a heat release suppression start time included in the heat release suppression instruction acquired by the acquisition unit and a threshold temperature indicating a lower limit value of a room temperature to the second control unit of each room. Also good.
  • the second operation control unit stops heat dissipation of the heating device at the heat release suppression start time acquired from the first operation control unit, and the room temperature detected by the detection unit is acquired from the first operation control unit. When the threshold temperature is reached, the heating device may resume heat radiation in the first mode in which the room temperature is raised to the target temperature.
  • the present invention it is possible to reduce the heat consumption of the entire heating system while improving the comfort individually according to the characteristics of each room. Thereby, the peak cut of heat consumption can be achieved, maintaining a user's comfort.
  • FIG. 1 is a schematic diagram for explaining a mechanism of district heat supply.
  • FIG. 2A is a diagram showing a change in the amount of heat consumed by a regional heat consumer.
  • FIG. 2B is a diagram showing a change in the amount of heat when the heating device is stopped in the peak time zone of FIG. 2A.
  • FIG. 3 is a diagram illustrating an example of an apartment house.
  • FIG. 4 is a diagram showing changes in room temperature in each room of the apartment house shown in FIG.
  • FIG. 5 is a schematic block diagram of a heating system according to an aspect of the present invention.
  • FIG. 6 is a flowchart illustrating a control process of the heating system according to one aspect of the present invention.
  • FIG. 1 is a schematic diagram for explaining a mechanism of district heat supply.
  • FIG. 2A is a diagram showing a change in the amount of heat consumed by a regional heat consumer.
  • FIG. 2B is a diagram showing a change in the amount of heat when the heating device is stopped in the peak
  • FIG. 7A is a diagram illustrating an example of equipment in the apartment house necessary for heating each room with hot water supplied from the district heat supplier 100.
  • FIG. 7B is an enlarged view of one of the rooms shown in FIG. 7A.
  • FIG. 8 is a diagram illustrating an outline of control processing of the heating system according to Embodiment 1.
  • FIG. 9 is a diagram illustrating an example of information transmitted and received between each component.
  • FIG. 10A is a flowchart of the heating system control process according to Embodiment 1.
  • FIG. 10B is a flowchart of the suppression heat amount notification process according to Embodiment 1.
  • FIG. 11 is a flowchart of the heating device control process according to Embodiment 1.
  • FIG. 12 is a diagram illustrating a change in temperature and a change in the total heat radiation amount in the rooms A2, A3, and B2 when the control process of the heating system according to Embodiment 1 is performed.
  • FIG. 13 is a diagram illustrating an outline of a control process of the heating system according to the second embodiment.
  • FIG. 14 is a flowchart of threshold temperature determination processing according to the second embodiment.
  • FIG. 15 is a diagram illustrating a change in the temperature of the rooms A2, A3, and B2 and a change in the total heat dissipation when the control process of the heating system according to the second embodiment is performed.
  • FIG. 16 is a diagram illustrating an outline of control processing of the heating system according to Embodiment 3.
  • FIG. 17A is a flowchart of a heating system control process according to Embodiment 3.
  • FIG. 17B is a flowchart of operation condition determination processing according to Embodiment 3.
  • FIG. 18 is a flowchart of the heating device control process according to Embodiment 3.
  • FIG. 19 is a diagram illustrating a change in the temperature of the rooms A2, A3, and B2 and a change in the total heat dissipation when the control process of the heating system according to the third embodiment is performed.
  • FIG. 1 is a schematic diagram for explaining the mechanism of district heat supply, and shows how hot water circulates between a district heat supplier (heat source) 100 and a district heat consumer 110. Show.
  • the district heat supplier 100 is a business that generates heat during operation, and corresponds to, for example, the factory 101 and the power plant 102. That is, the factory 101 and the power plant 102 shown in FIG. 1 discharge hot water (for example, pressurized hot water of 110 ° C.) generated using waste heat generated during operation into the flow path.
  • hot water for example, pressurized hot water of 110 ° C.
  • warm water is generated using waste heat.
  • the present invention is not limited to this, and facilities for generating hot water to be supplied to the regional heat consumer 110 are also shown in FIG. It can be included in the heat supplier 100.
  • it is not limited to the heat
  • the district heat consumer 110 is a facility that uses hot water generated by the district heat supplier 100, and corresponds to, for example, a detached house 111, an apartment house 112, and the like. More specifically, the hot water generated by the district heat supplier 100 is consumed by a heating device and a hot water supply device installed in each room in the detached house 111 and the apartment house 112, and again the district heat supplier. Reflux to 100.
  • the district heat consumer 110 is not limited to the example of FIG. 1, but includes all facilities that consume heat such as an office, a store, a school, and a hospital.
  • FIG. 2A, FIG. 2B, FIG. 3, and FIG. 2A and 2B are diagrams showing the transition of the amount of heat consumed by the district heat consumer 110 of FIG.
  • FIG. 3 is a diagram illustrating an example of the apartment house 112.
  • FIG. 4 is a diagram showing changes in room temperature in each room of the apartment house 112 shown in FIG.
  • the amount of heat consumed by the heating device (hereinafter referred to as “heating amount of heat”) is substantially constant throughout the day.
  • the amount of heat consumed by the hot water supply device (hereinafter referred to as “hot water supply heat amount”) is a predetermined time of the day (in the example of FIG. 2A, between 8 o'clock and 9 o'clock and between 21 o'clock and 22 o'clock) It is concentrated and rarely occurs at other times.
  • a peak of heat consumption occurs in a time zone in which the amount of hot water supply is concentrated (hereinafter referred to as “peak time zone”).
  • the district heat supplier 100 When a peak occurs in the amount of heat consumed as shown in FIG. 2A, the district heat supplier 100 must have a biothermal capacity that matches the peak. In addition, the district heat supplier 100 may have to reheat using expensive fuel (for example, fossil fuel) in order to supply sufficient hot water during peak hours.
  • expensive fuel for example, fossil fuel
  • the heat insulation performance (heat dissipation performance) generally differs depending on the position of the room. More specifically, room A3 in which four of the six surfaces are in contact with the outside air, room A2 in which three of the six surfaces are in contact with the outside air, and two of the six surfaces are in contact with the outside air.
  • the room B2 has the highest heat insulation performance of the room B2, the heat insulation performance of the room A2 is the next highest, and the heat insulation performance of the room A3 is the lowest.
  • FIG. 4 shows a simulation result of room temperature changes in the rooms A2, A3, and B2 when the heating device is stopped from 8:00 to 9:00 (denoted as “stop time zone” in FIG. 4).
  • the size of each room of the apartment house 112 was 10 meters wide, 7 meters deep, and 2.5 meters high.
  • the transition of the outside air temperature which is the premise of the simulation, is also shown in FIG.
  • the room temperatures of the rooms A2, A3, and B2 during the stop time period are monotonously decreasing.
  • the room temperature decreasing rate of the room A3 having the lowest heat insulating performance is the fastest, and the room temperature decreasing speed of the room B2 having the lowest heat insulating performance is the slowest. That is, the room temperature at 9:00 am, which is the end time of the stop time zone, is lowest in the room A3 and highest in the room B3.
  • FIG. 5 is a schematic block diagram of a heating system according to an aspect of the present invention.
  • FIG. 6 is a flowchart illustrating a control process of the heating system according to one aspect of the present invention.
  • the heating system 10 includes a control unit 20 and a plurality of heating devices 31, 32, 33, 34, 35, and 36, as shown in FIG.
  • Each of the heating devices 31 to 36 is installed in a separate room and heats the installed room by radiating heat supplied from the district heat supplier 100.
  • the control unit 20 exchanges information with the district heat supplier 100 and controls the operation of the heating devices 31 to 36 individually. More specifically, the control unit 20 includes a communication unit 21, a detection unit 22, an operation control unit 23, and a prediction unit 24.
  • the communication unit 21 is a communication interface that transmits and receives various types of information to and from the district heat supplier 100 through a communication line.
  • the specific example of the information transmitted / received is not specifically limited,
  • the communication part 21 receives the heat radiation
  • the communication unit 21 is an example of an acquisition unit that acquires a heat dissipation suppression instruction.
  • the SO signal is a signal that requests suppression of heat dissipation of the heating devices 31 to 36.
  • the SO signal includes information for specifying a time zone for suppressing heat dissipation (hereinafter referred to as “SO time zone”), that is, the start time of the SO time zone (hereinafter referred to as “SO start time”) and the SO time.
  • Information specifying the band end time (hereinafter referred to as “SO end time”) is included.
  • the total suppression heat amount is a predicted value of the heat dissipation amount that can be suppressed in the SO time period as a result of the heat dissipation of the heating devices 31 to 36 being suppressed by the SO signal.
  • Detecting unit 22 detects various information (particularly temperature information). More specifically, the detection unit 22 detects the room temperature of each room in which the heating devices 31 to 36 are installed. Moreover, the detection part 22 detects the outside temperature around the building where the heating system 10 is installed. Then, the detection unit 22 notifies the operation control unit 23 and the prediction unit 24 of the detected temperature information.
  • the operation control unit 23 individually controls the operation states of the heating devices 31 to 36. For example, as illustrated in FIG. 6, the operation control unit 23 stops the operation of all the heating devices 31 to 36 in response to obtaining the SO signal from the district heat supplier 100 through the communication unit 21 (S101). (S102). Further, the operation control unit 23 individually restarts the operation of the heating devices 31 to 36 installed in each room according to the room temperature detected by the detection unit 22 (S103) (S104). The timing for resuming the operation of the heating devices 31 to 36 will be described in detail in Embodiments 1 to 3 described later.
  • the prediction unit 24 predicts the total suppression heat amount.
  • the total suppression heat amount is, for example, the amount of heat consumed when the heating devices 31 to 36 are normally operated during the SO time zone and the control shown in FIG. 6 for the heating devices 31 to 36 during the SO time zone. This corresponds to the difference from the amount of heat consumed. Further, the total suppression heat amount is obtained, for example, by predicting the heat release amount (hereinafter referred to as “suppression heat amount”) that can be suppressed in the SO time zone for each of the heating devices 31 to 36 and summing them.
  • FIG. 7A is a diagram illustrating an example of equipment in the apartment house 112 necessary for heating each room with hot water supplied from the district heat supplier 100.
  • FIG. 7B is an enlarged view of one of the rooms shown in FIG. 7A.
  • the housing complex 112 is provided with a heat exchanger 210, a calorimeter 211, a pump 212, an outside air temperature sensor 213, and a heating system controller 214.
  • Each room of the apartment house 112 includes a radiator 201, a valve 202, a room temperature sensor 203, and a heating device control unit 204.
  • solid arrows indicate the flow of hot water
  • broken arrows indicate the flow of information (signal).
  • the heat exchanger 210 is a facility for performing heat exchange between the hot water circulating between the district heat supplier 100 and the heat exchanger 210 and the hot water circulating between the heat exchanger 210 and each room. Typically, it is installed in the basement of the apartment house 112. More specifically, the heat exchanger 210 performs heat exchange between high-temperature hot water flowing from the district heat supplier 100 and low-temperature hot water flowing from each room. Then, the hot water whose temperature has dropped from the heat exchanger 210 to the district heat supplier 100 circulates, and the hot water whose temperature has risen circulates from the heat exchanger 210 to each room.
  • the calorimeter 211 measures the amount of heat exchanged by the heat exchanger 210. Specifically, the calorimeter 211 has a temperature (first temperature) of high-temperature hot water from the district heat supplier 100 to the heat exchanger 210 and a low-temperature reflux that returns from the heat exchanger 210 to the district heat supplier 100. Measures the amount of heat exchanged in the heat exchanger 210 by measuring the temperature of the hot water (second temperature) and multiplying the difference between the first and second temperatures by the flow rate of the hot water flowing into the heat exchanger 210 To do. The amount of heat measured by the calorimeter 211 is used for, for example, calculation of a district heat usage fee charged to the apartment house 112.
  • the pump 212 is a facility that controls the flow rate of hot hot water from the heat exchanger 210 toward each room, and is typically installed in the basement of the apartment house 112. For example, the pump 212 can change the flow rate of hot water from the heat exchanger 210 to each room within a range of 20 to 60 (l / min) according to control from the heating system control unit 214.
  • the outside air temperature sensor 213 detects the outside air temperature around the apartment house 112 and notifies the heating system control unit 214 of it.
  • the outside air temperature sensor 213 in FIG. 7A corresponds to the detection unit 22 in FIG.
  • the heating system control unit 214 controls the entire heating system by exchanging information between the district heat supplier 100 and the heating device control unit 204 of each room.
  • the heating system control unit 214 in FIG. 7A corresponds to, for example, the communication unit 21, a part of the operation control unit 23, and the prediction unit 24 in FIG. 5.
  • the radiator 201 heats the room by radiating the heat of the hot water supplied from the heat exchanger 210.
  • the radiator 201 may radiate the heat of hot water into the air, or may be floor heating that warms the floor with the heat of hot water.
  • One radiator 201 may be installed in each room, or a plurality of radiators 201 may be installed in each room (two are installed in the examples of FIGS. 7A and 7B).
  • the valve 202 controls the flow rate of the hot water flowing from the heat exchanger 210 into the radiator 201.
  • the valve 202 has a function of communicating with the heating device control unit 204 and can change the flow rate in accordance with an instruction from the heating device control unit 204.
  • a valve Thermostatic Radiator Valve: TRV
  • TRV Thermostatic Radiator Valve
  • One valve 202 may control the flow rate of hot water flowing into one radiator 201, or one valve 202 may control the flow rate of hot water flowing into a plurality of radiators 201.
  • the room temperature sensor 203 detects the room temperature of the room and notifies the heating device control unit 204 of it.
  • the room temperature sensor 203 in FIG. 7A corresponds to the detection unit 22 in FIG.
  • the heating device control unit 204 exchanges information with the heating system control unit 214 to thereby provide a radiator 201 and a valve 202 installed in the room (hereinafter collectively referred to as “heating device”). To control. Moreover, the heating apparatus control part 204 receives the input of the target temperature of a room from a user. Then, in a time zone other than the SO time zone, the heating device control unit 204 controls the operation of the heating device so that the room temperature of the room approaches the target temperature. For example, the heating device control unit 204 in FIG. 7A corresponds to a part of the operation control unit 23 in FIG.
  • the heating device control unit 204 can select any one of the stop mode, the first mode, and the second mode as the operation mode of the heating device.
  • the stop mode is an operation mode in which heat dissipation is completely stopped (or only the minimum heat necessary for maintaining the function of the heating system is dissipated).
  • the first mode is an operation mode in which heat necessary for raising the room temperature to a preset target temperature is radiated.
  • the second mode is an operation mode in which heat necessary for maintaining the current room temperature is radiated.
  • the heating apparatus control part 204 can switch each said mode by controlling the flow volume of the warm water supplied to the radiator 201 through the valve
  • the apartment house 112 may further include a hot water supply device that supplies hot water using heat from the district heat supplier 100.
  • a hot water supply device that supplies hot water using heat from the district heat supplier 100.
  • control of the heating device will be mainly described, and thus illustration and description of the hot water supply device are omitted.
  • Embodiment 1 when the SO signal is received from the district heat supplier 100 (S210), the threshold temperature is determined (S220). The threshold temperature is a value indicating a lower limit value of room temperature. Next, in order to stop the heat radiation from all the radiators 201 at the SO start time, all the valves 202 are closed (S230). Thereafter, in order from the room in which the room temperature reaches the threshold temperature (S240), the valve 202 is opened in order to resume the heat radiation of the radiator 201 (S250).
  • steps S210 and S220 are executed by the heating system control unit 214, and steps S230, S240, and S250 are executed by the heating device control unit 204. That is, in Embodiment 1, the function of the operation control unit 23 in FIG. 5 is shared by the heating system control unit 214 and the heating device control unit 204.
  • the above division of roles is an example, and the present invention is not limited to this.
  • FIG. 9 is a diagram illustrating an example of information transmitted and received between each component.
  • FIG. 10A is a flowchart of the heating system control process executed by the heating system control unit 214.
  • FIG. 10B is a flowchart of the suppression heat amount notification process executed by the heating system control unit 214.
  • FIG. 11 is a flowchart of the heating device control process executed by the heating device control unit 204 in each room.
  • FIG. 12 is a diagram showing changes in temperature and total heat dissipation of the rooms A2, A3, and B2 of the apartment house 112 shown in FIG. 3 when the control process of the heating system according to Embodiment 1 is executed. is there.
  • the heating device control unit 204 in each of the rooms A2, A3, and B2 receives the input of the target temperature from the user in advance as shown in FIG.
  • FIG. 9 is a diagram illustrating an example of information transmitted and received between each component.
  • the SO signal is transmitted from the district heat supplier 100 to the heating system control unit 214, and conversely, the total suppression heat amount is controlled by the heating system control. It is transmitted from the section 214 to the district heat supplier 100.
  • the SO start time, the SO end time, and the threshold temperature are transmitted from the heating system control unit 214 to the heating device control unit 204, and conversely, the heat release is resumed.
  • the report is transmitted from the heating device control unit 204 to the heating system control unit 214.
  • the heating device control unit 204 instructs the valve 202 to open and close the valve, and acquires the room temperature from the room temperature sensor 203.
  • the user can input the set target temperature of the room to the heating device control unit 204.
  • total heat dissipation amount the total amount of heat dissipated in the rooms A2, A3, B2 during this period.
  • total heat dissipation amount the total amount of heat dissipated in the rooms A2, A3, B2 during this period.
  • total heat dissipation amount the total amount of heat dissipated in the rooms A2, A3, B2 during this period.
  • the target temperatures of the rooms A2, A3, and B2 are the same, but needless to say, the target temperatures may be different for each room.
  • the heating system control unit 214 receives an SO signal from the district heat supplier 100 (S301).
  • This SO signal includes information for specifying the SO start time and the SO end time.
  • the SO start time is 8:00 and the SO end time is 9:00.
  • a specific example of “information for specifying the SO start time and the SO end time” is not particularly limited. For example, “SO start time: 8 o'clock, SO end time: 9 o'clock”. And the SO end time itself, or information indicating the SO start time and the length of the SO time zone, such as “SO start time: 8 o'clock, SO time: 1 hour”.
  • the SO signal may not explicitly include the SO start time, and the SO signal reception time may be the SO start time. In this case, the SO signal includes information indicating the SO end time or the length of the SO time.
  • the heating system control unit 214 executes threshold temperature determination processing (S302).
  • a threshold temperature common to all rooms is determined.
  • the threshold temperature is determined to be 19 ° C.
  • the threshold temperature in Embodiment 1 may be a fixed value set in advance in the heating system control unit 214, for example.
  • a table indicating a correspondence relationship between the outside air temperature and the threshold temperature may be held in the heating system control unit 214, and a threshold temperature corresponding to the outside air temperature detected by the outside air temperature sensor 213 may be employed.
  • the correspondence relationship between the outside air temperature and the threshold temperature held in the table needs to be derived in advance by simulation or the like using past weather data in an area where the apartment house 112 is located.
  • the heating system controller 214 notifies the SO start time and SO end time acquired from the SO signal and the threshold temperature determined in the threshold temperature determination process to the heating device controller 204 of each room (S303). ).
  • the heating device control unit 204 of each room acquires the SO start time, the SO end time, and the threshold temperature from the heating system control unit 214 (S401).
  • the heating device control unit 204 in each room waits for the SO start time (8 o'clock) to arrive (S402).
  • the heating device control unit 204 in each room closes the valve 202 (S403). That is, the heating device control unit 204 in each room switches the operation mode of the heating device from the second mode to the stop mode.
  • the total heat release after 8:00 becomes zero.
  • the room temperature of each of the rooms A2, A3, B2 gradually decreases from 8 o'clock.
  • the heating device control unit 204 in each room compares the room temperature acquired from the room temperature sensor 203 at a predetermined time interval (for example, 1 second) with the threshold temperature acquired in step S401 (S404).
  • the heating device control unit 204 opens the valve 202 and causes the radiator 201 to resume heat dissipation (S405).
  • the heating device control unit 204 switches the operation mode of the heating device from the stop mode to the first mode.
  • the heating device control unit 204 notifies the heating system control unit 214 that heat radiation has been resumed (S406).
  • FIG. 12 is a diagram showing a change in room temperature and a change in the total heat dissipation in the rooms A2, A3, and B2 when the heating system control process is executed.
  • the horizontal axis represents time, and the vertical axis represents room temperature (° C.) and total heat release (W).
  • the room temperature of the room A3 reaches the threshold temperature (19 ° C.) at 8:25. Therefore, first, the heating device in the room A3 (hereinafter referred to as “heating device A3”) resumes heat radiation. As a result, as shown in FIG. 12, the room temperature of the room A3 gradually increases. Further, the total heat release after 8:25 coincides with the heat release of the heating device A3.
  • heating device A2 resumes heat radiation.
  • the room temperature of the room A2 gradually increases.
  • the total heat release after 8:35 coincides with the total heat release from the heating devices A2 and A3.
  • the heating device control unit 204 of the room A3 changes the operation mode of the heating device A3 from the first mode to the second mode. Switch. As a result, the room temperature of the room A3 is kept at 21 ° C. Further, the total heat release after 8:48 is reduced by the amount of switching of the operation mode of the heating device A3 from the first mode to the second mode.
  • heating device B2 the heating devices in the remaining room B2 (hereinafter referred to as “heating device B2”) resume the heat radiation.
  • the room temperature of the room B2 gradually increases.
  • the total heat radiation after 9 o'clock corresponds to the total heat radiation from the heating devices A2, A3, B2.
  • the room temperature of the room A2 reaches the target temperature at 9:10, and then the room temperature of the room B2 reaches the target temperature at 9:50. Switch to mode.
  • the room temperatures of the subsequent rooms A2, A3, and B2 are kept at the target temperature, and the total heat radiation returns to the level before the SO start time.
  • the room heating apparatus in the room whose room temperature has reached the threshold temperature restarts heat dissipation, thereby preventing the room temperature in some rooms from being extremely lowered. be able to. As a result, the comfort of each room of the apartment house 112 can be leveled.
  • the timing of resuming heat dissipation varies for each heating device.
  • the district heat supplier 100 since the peak of the total heat consumption immediately after the end of the SO time zone and the SO time zone has been leveled, the district heat supplier 100 has to pay a high price in order to cover the heat amount necessary for the peak time zone. You can enjoy the merit that you do not need to heat with the use of fresh fuel.
  • the suppressed heat amount notification process executed by the heating system control unit 214 will be described.
  • this process may be performed simultaneously with the heating system control process of FIG. 10A, for example, and may be performed after the completion of the heating system control process. Further, this process is not an essential process of the present invention and can be omitted.
  • the heating system control unit 214 acquires the outside air temperature around the apartment house 112 from the outside air temperature sensor 213 (S311).
  • the outside temperature acquisition timing may be, for example, the SO start time.
  • the heating system control unit 214 predicts the suppression heat amount for each room using the acquired outside air temperature (S312).
  • the amount of suppressed heat varies depending on the outside air temperature, the length of the SO time zone, and the heat insulation performance of each room. Therefore, for example, the heating system control unit 214 may calculate and hold the correspondence relationship between the outside air temperature, the length of the SO time zone, and the amount of suppressed heat for each room in advance by simulation or the like.
  • the heating system control unit 214 predicts the total suppression heat amount by summing the suppression heat amount of each room (S313), and notifies the predicted total suppression heat amount to the district heat supplier 100 through the communication line (S314). .
  • This total suppression heat amount corresponds to, for example, the area of the hatched region in FIG.
  • the district heat supplier 100 can adjust the amount of heat generated in the SO time zone based on the notified total suppression heat amount. As a result, excessive heat generation can be avoided.
  • the user's comfort is improved by individually controlling the radiator 201 according to the characteristics of each room while suppressing the amount of heat consumed by the entire apartment house 112 (total amount of heat consumed). Can be maintained.
  • Embodiment 2 Next, with reference to FIG. 13, the outline of the control process of the heating system according to Embodiment 2 will be described. In addition, the same number is attached
  • FIG. 14 is a flowchart of the threshold temperature determination process executed by the heating system control unit 214.
  • FIG. 15 is a diagram showing changes in temperature and total heat dissipation in the rooms A2, A3, and B2 of the apartment house 112 shown in FIG. 3 when the control process of the heating system according to Embodiment 2 is executed. is there.
  • the heating system control unit 214 acquires the outside air temperature around the apartment house 112 (S501).
  • the outside temperature acquisition timing may be, for example, the SO start time.
  • the heating system control unit 214 calculates the temperature decrease rate of each room after stopping heat dissipation (S502).
  • the room temperature decrease rate can be calculated based on, for example, the outside air temperature acquired in step S501 and the heat insulation performance of each room that is held in advance.
  • the heating system control unit 214 calculates a threshold temperature for each room based on the temperature decrease rate calculated in step S502 (S503). More specifically, the heating system control unit 214 sets the threshold temperature of a room with a fast room temperature decrease rate relatively high, and sets the threshold temperature of a room with a low room temperature decrease rate relatively low.
  • the room temperature drop rate greatly affects the temperature of the body. Specifically, a room with a fast room temperature decrease rate feels cold even if the room temperature is the same as a room with a slow room temperature decrease rate. That is, in the example of FIG. 15, the sensible temperature of the room A3 is the lowest and the sensible temperature of the room B2 is the highest.
  • the heating system control unit 214 sets the threshold temperature of the room A3 higher than the rooms A2 and B2, and sets the threshold temperature of the room A2 higher than the room B2.
  • the threshold temperature of the room A3 is set to 19 ° C.
  • the threshold temperature of the room A2 is set to 18 ° C.
  • the threshold temperature of the room B2 is set to 17 ° C.
  • the heat release restart time of the room A2 is 8:35 in the example of FIG. 12, but is 8 minutes and 40 minutes late in the example of FIG.
  • the threshold temperature of a room having a low sensible temperature that is, having a fast room temperature decrease rate
  • heat radiation can be resumed before the room temperature decreases so much.
  • resumption of heat release can be delayed by setting the threshold temperature of a room having a high body temperature (that is, a room temperature decreasing rate is slow) to be relatively low.
  • priority is given to maintaining comfort over reduction in heat dissipation, and reduction in heat dissipation is emphasized in rooms with high comfort. That is, according to the second embodiment, the reduction of the total heat consumption and the maintenance of the comfort of each room can be achieved in a balanced manner.
  • step S241 is executed by the heating device control unit 204
  • step S242 is executed by the heating system control unit 214.
  • the above division of roles is an example, and the present invention is not limited to this.
  • FIG. 17A is a flowchart of the heating system control process executed by the heating system control unit 214.
  • FIG. 17B is a flowchart of the operating condition determination process executed by the heating system control unit 214.
  • FIG. 18 is a flowchart of the heating device control process executed by the heating device control unit 204 in each room.
  • FIG. 19 is a diagram illustrating changes in temperature and total heat dissipation in the rooms A2, A3, and B2 of the apartment house 112 illustrated in FIG. 3 when the control process of the heating system according to Embodiment 3 is performed. is there.
  • FIG.7A, FIG.7B description for the second time is abbreviate
  • omitted since the structure of the heating system which concerns on Embodiment 3 is common in FIG.5, FIG.7A, FIG.7B, description for the second time is abbreviate
  • the heating system control unit 214 receives an SO signal from the district heat supplier 100 (S601). This process is common to step S301 in FIG. 10A. Then, the heating system control unit 214 notifies the heating device control unit 204 of each room of the SO start time and SO end time acquired from the SO signal (S602). The heating system control unit 214 executes the processes so far before the SO start time.
  • the heating device control unit 204 of each room acquires the SO start time and the SO end time from the heating system control unit 214 (S701).
  • the heating device control unit 204 in each room waits for the SO start time (8 o'clock) to arrive (S702).
  • the heating device control unit 204 in each room closes the valve 202 (S703). That is, the heating device control unit 204 in each room switches the operation mode of the heating device from the second mode to the stop mode.
  • the total heat release after 8:00 becomes zero.
  • the room temperature of each of the rooms A2, A3, B2 gradually decreases from 8 o'clock.
  • the heating device control unit 204 in each room waits for the arrival of the SO end time (9 o'clock) (S704).
  • the room temperatures of the rooms A2, A3, and B2 in the SO time zone all monotonously decrease.
  • the heating device control unit 204 in each room notifies the heating system control unit 214 of the room temperature detected by the room temperature sensor 203 (S705).
  • the room temperature of the room A3 at the SO end time is 15 ° C.
  • the room temperature of the room A2 at the SO end time is 16.5 ° C.
  • the room temperature of the room B2 at the SO end time is 19 ° C.
  • the heating system control unit 214 determines the operating conditions of the heating device in each room (S603).
  • the heating system control unit 214 acquires the room temperature of each room at the SO end time (S611). That is, the heating system control unit 214 acquires the room temperature at the SO end time detected by the room temperature sensor 203 of each room through the heating device control unit 204 of each room.
  • the heating system control unit 214 determines the heat release restart order of the heating devices installed in each room (S612). For example, the heating system control unit 214 calculates the difference between the target temperature and the room temperature acquired in step S611 for each room, and sets the heat dissipation restart order so that heat dissipation is restarted in order from the heating device in the room where the difference is large. Just decide. In the example of FIG. 19, since the target temperature of all the rooms is 21 ° C. and the room temperature of each room at the SO end time is as described above, heat radiation is resumed in the order of room A3, room A2, and room B3. become.
  • the heating system control unit 214 needs to acquire the target temperature of each room from the heating device control unit 204.
  • the target temperature acquisition timing is not particularly limited.
  • the target temperature may be acquired together with the room temperature at the SO end time at the timing of step S611.
  • the heating system control unit 214 may acquire and store the new target temperature from the heating device control unit 204 at the timing when the new target temperature is set in the heating device control unit 204.
  • the heating system control unit 214 determines the heat radiation amount per unit time of the heating device in each room (S613).
  • the method for determining the amount of heat radiation per unit time is not particularly limited.
  • the time from the restart of heat radiation until the target temperature is reached may be the same in all rooms (5 minutes in the example of FIG. 19). . That is, the heating system control unit 214 sets a relatively large amount of heat released per unit time in a room where the difference between the room temperature and the target temperature at the SO end time is large, and the difference between the room temperature and the target temperature at the SO end time What is necessary is just to set the heat dissipation amount per unit time of a small room relatively small.
  • the heat radiation amount per unit time of the heating device A3 is set to be the largest, and the heat radiation amount per unit time of the heating device B2 is set to the smallest.
  • the heating system control unit 214 determines the heat radiation restart time of the heating device in each room (S614). It is desirable that the heat release restart time of each heating device is determined so that the plurality of heating devices do not release heat simultaneously in the first mode. That is, the heating system control unit 214 resumes heat dissipation in the first mode when the room temperature of the room where the heating device that radiates heat in the first mode reaches the target temperature. As such, the heat release restart time for each heating device may be determined.
  • heat dissipation is resumed in the heating device A3 at 9 o'clock of the SO end time
  • heat dissipation is resumed in the heating device A2 at 9:05 when the room A3 reaches the target temperature
  • the room A2 reaches the target temperature.
  • the heat radiation restart time of each heating device is determined so that heat radiation is resumed at the heating device B2 at 10 minutes.
  • the heating device control unit 204 in the rooms A2 and B2 sets each heating device so as to maintain the room temperature at the SO end time from the end of the SO time until the radiation of the rooms A2 and B2 is resumed. Control.
  • the heating system control unit 214 notifies the determined operating conditions to the heating device control unit 204 of each room (S604). Specifically, the heating system control unit 214 may notify the heating device control unit 204 of each room of the heat release start time and the heat release amount per unit time as operating conditions.
  • the heating device control unit 204 of each room obtains the operating conditions from the heating system control unit 214 (S706). Then, the heating device control unit 204 in each room opens the valve 202 in accordance with the acquired operating condition, that is, resumes heat radiation from the radiator 201 (S707).
  • the heating device control unit 204 in the room A3 causes the heating device A3 to resume heat radiation in the first mode at 9:00, which is the SO end time. Moreover, the heating device control unit 204 of the rooms A2 and B2 may cause the heating devices A2 and B2 to resume heat radiation in the second mode in order to maintain the current room temperatures of the rooms A2 and B2, respectively. As a result, the room temperature of the room A3 gradually increases, and the room temperatures of the rooms A2 and B2 are kept constant.
  • the heating device control unit 204 of the room A3 switches the operation mode of the heating device A3 from the first mode to the second mode.
  • the room temperature of the subsequent room A3 is kept at the target temperature.
  • the heating device control unit 204 in the room A2 switches the operation mode of the heating device A2 from the second mode to the first mode.
  • the room temperature of the room A2 gradually increases.
  • the heating device control unit 204 of the room A2 switches the operation mode of the heating device A2 from the first mode to the second mode.
  • the room temperature of the subsequent room A2 is kept at the target temperature.
  • the heating device control unit 204 in the room B2 switches the operation mode of the heating device B2 from the second mode to the first mode.
  • the room temperature of the room B2 gradually increases.
  • the heating device control unit 204 of the room B2 switches the operation mode of the heating device B2 from the first mode to the second mode. As a result, the room temperature of the subsequent room B2 is kept at the target temperature. Further, the total amount of heat released thereafter returns to the level before the SO start time.
  • the peak of the heat consumption can be leveled by stopping all the heating devices in the SO time zone.
  • all the heating devices are not restarted at the same time at the SO end time, it is possible to prevent the peak of the total heat consumption from occurring immediately after the SO end.
  • the room heating devices in the room where the difference between the room temperature and the target temperature at the SO end time is large are restarted in order, the comfort of each room can be leveled.
  • the “room where the difference between the room temperature and the target temperature at the SO end time is large” refers to a room where the room temperature decrease rate is fast.
  • the room heating devices are restarted in order from the room temperature at which the sensible temperature is low (comfort is low).
  • Each of the above devices is specifically a computer system including a microprocessor, ROM, RAM, a hard disk unit, a display unit, a keyboard, a mouse, and the like.
  • a computer program is stored in the RAM or the hard disk unit.
  • Each device achieves its functions by the microprocessor operating according to the computer program.
  • the computer program is configured by combining a plurality of instruction codes indicating instructions for the computer in order to achieve a predetermined function.
  • the system LSI is a super multifunctional LSI manufactured by integrating a plurality of components on one chip, and specifically, a computer system including a microprocessor, a ROM, a RAM, and the like. .
  • a computer program is stored in the RAM.
  • the system LSI achieves its functions by the microprocessor operating according to the computer program.
  • the constituent elements constituting each of the above devices may be constituted by an IC card that can be attached to and detached from each device or a single module.
  • the IC card or module is a computer system that includes a microprocessor, ROM, RAM, and the like.
  • the IC card or the module may include the super multifunctional LSI described above.
  • the IC card or the module achieves its functions by the microprocessor operating according to the computer program. This IC card or this module may have tamper resistance.
  • the present invention may be the method described above. Moreover, the computer program which implement
  • the present invention also relates to a computer-readable recording medium capable of reading a computer program or a digital signal, such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray Disc), It may be recorded in a semiconductor memory or the like. Further, it may be a digital signal recorded on these recording media.
  • a computer-readable recording medium capable of reading a computer program or a digital signal, such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray Disc), It may be recorded in a semiconductor memory or the like. Further, it may be a digital signal recorded on these recording media.
  • a computer program or a digital signal may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, a data broadcast, or the like.
  • the present invention is a computer system including a microprocessor and a memory.
  • the memory stores the computer program, and the microprocessor may operate according to the computer program.
  • program or digital signal may be recorded on a recording medium and transferred, or the program or digital signal may be transferred via a network or the like, and may be implemented by another independent computer system.
  • the present invention is advantageously used in a heating system including a plurality of heating devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

A method for controlling a heating system comprises: an acquisition step (S101) for acquiring, from a heat supply source, a heat radiation restriction instruction requesting restriction of the heat radiated from a plurality of heating devices; a heat radiation stopping step (S102) for stopping the radiation of heat from the plurality of heating devices in accordance with the heat radiation restriction instruction acquired at the acquisition step; a detection step (S103) for detecting the respective room temperatures in a plurality of rooms; and a heat radiation restarting step (S104) for discretely restarting the radiation of heat from the heating devices installed in each room in accordance with the room temperatures detected at the detection step.

Description

暖房システム及び暖房システムの制御方法Heating system and heating system control method
 本発明は、温水を用いた暖房システムの制御方法に関し、ラジエータや床暖房などの複数の暖房装置を備える暖房システムの制御方法に関するものである。 The present invention relates to a method for controlling a heating system using hot water, and relates to a method for controlling a heating system including a plurality of heating devices such as a radiator and floor heating.
 特許文献1には、従来の温水暖房装置が開示されている。特許文献1に開示されている温水暖房装置は、各部屋に設置されたラジエータにボイラから温水を供給することによって、部屋の室温を制御する。また、各ラジエータに供給される温水の流量は、バルブによって調整することができる。そして、各バルブは無線受信機を搭載し、リモートコントローラから受信した無線信号に従って、温水の流量を調整する。 Patent Document 1 discloses a conventional hot water heater. The hot water heater disclosed in Patent Document 1 controls the room temperature of a room by supplying hot water from a boiler to a radiator installed in each room. Moreover, the flow volume of the hot water supplied to each radiator can be adjusted with a valve. Each valve is equipped with a wireless receiver and adjusts the flow rate of hot water according to the wireless signal received from the remote controller.
独国特許出願公開第4221094号明細書German Patent Application Publication No. 42221094
 しかしながら、特許文献1には、各部屋の室温を個別に制御できることが開示されているに留まり、集合住宅の全体最適化のための熱制御については、開示されていない。 However, Patent Document 1 only discloses that the room temperature of each room can be individually controlled, and does not disclose heat control for overall optimization of the apartment house.
 そこで、本発明は、総消費熱量の削減と各部屋の快適性の維持とを両立した暖房システム及び暖房システムの制御方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a heating system and a heating system control method that achieves both reduction in total heat consumption and maintenance of comfort in each room.
 本発明の一形態に係る暖房システムの制御方法は、複数の部屋それぞれに設置され、熱供給源で生成された熱を放熱することによって、設置された部屋を暖房する複数の暖房装置を制御する方法である。具体的には、暖房システムの制御方法は、前記複数の暖房装置からの放熱を抑制することを要求する放熱抑制指示を、前記熱供給源から取得する取得ステップと、前記取得ステップで前記放熱抑制指示を取得したことに応じて、前記複数の暖房装置の放熱を停止させる放熱停止ステップと、前記複数の部屋それぞれの室温を検出する検出ステップと、前記検出ステップで検出された室温に応じて、各部屋に設置されている前記暖房装置の放熱を個別に再開させる放熱再開ステップとを含む。 A method for controlling a heating system according to an aspect of the present invention controls a plurality of heating apparatuses that are installed in each of a plurality of rooms and that heat the generated rooms by radiating heat generated by a heat supply source. Is the method. Specifically, in the heating system control method, an acquisition step of acquiring from the heat supply source a heat dissipation suppression instruction that requests suppression of heat dissipation from the plurality of heating devices, and the heat dissipation suppression in the acquisition step. In response to obtaining the instruction, a heat dissipation stop step for stopping heat dissipation of the plurality of heating devices, a detection step for detecting the room temperature of each of the plurality of rooms, and a room temperature detected in the detection step, A heat radiation restarting step of individually restarting heat radiation of the heating device installed in each room.
 上記のように、熱供給源からの要求に応じて各暖房装置の放熱を一旦停止し、その後に各部屋の室温に応じて暖房装置の放熱を個別に再開させることにより、総消費熱量の削減と各部屋の快適性の維持とを両立することができる。なお、「暖房装置の放熱を停止させる」とは、文字通り暖房装置を完全停止させることのみならず、極僅かな熱量を暖房装置に放熱させている状態をも含むものとする。この場合の「極僅かな熱量」は、部屋を暖房することを目的として放熱されるのではなく、例えば、流路の凍結を防止する等の暖房システムの機能を維持することを目的として放熱されるものである。 As described above, the heat dissipation of each heating device is temporarily stopped according to the request from the heat supply source, and then the heat dissipation of the heating device is individually resumed according to the room temperature of each room, thereby reducing the total heat consumption. And maintaining the comfort of each room. Note that “stopping heat dissipation of the heating device” includes not only literally stopping the heating device literally but also including a state in which a slight amount of heat is radiated to the heating device. The “slight amount of heat” in this case is not radiated for the purpose of heating the room, but is radiated for the purpose of maintaining the function of the heating system, for example, preventing the flow path from freezing. Is.
 また、前記複数の暖房装置それぞれには、予め目標温度が設定されていてもよい。そして、前記放熱再開ステップでは、前記検出ステップで検出された室温が予め定められた閾値温度に達した部屋から順に、室温を前記目標温度まで上昇させる第1のモードで前記暖房装置に放熱を再開させてもよい。 Further, a target temperature may be set in advance for each of the plurality of heating devices. In the heat radiation restarting step, heat radiation is resumed in the heating device in the first mode in which the room temperature is raised to the target temperature in order from the room in which the room temperature detected in the detection step has reached a predetermined threshold temperature. You may let them.
 このように、室温が閾値温度に達した部屋の暖房装置から順に放熱を再開させることにより、一部の部屋の室温が極端に低下するのを防止することができる。その結果、各部屋の快適性を平準化することができる。 In this way, it is possible to prevent the room temperature of some rooms from being extremely lowered by restarting heat radiation in order from the room heating device in which the room temperature has reached the threshold temperature. As a result, the comfort of each room can be leveled.
 さらに、該暖房システムの制御方法は、前記複数の暖房装置それぞれに設定される前記目標温度を個別に決定する閾値温度決定ステップを含んでもよい。そして、前記閾値温度決定ステップでは、設置されている部屋の室温低下速度が速いほど前記閾値温度が高くなるように、前記複数の暖房装置それぞれの前記閾値温度を個別に決定してもよい。 Furthermore, the control method for the heating system may include a threshold temperature determining step for individually determining the target temperature set for each of the plurality of heating devices. In the threshold temperature determining step, the threshold temperature of each of the plurality of heating devices may be individually determined so that the threshold temperature increases as the room temperature decrease rate of the installed room increases.
 これにより、快適性の低い部屋では放熱量の削減より快適性の維持が優先され、快適性の高い部屋では放熱量の削減が重視される。すなわち、総消費熱量の削減と各部屋の快適性の維持とを、さらにバランス良く両立することができる。 Therefore, in the room with low comfort, priority is given to maintaining comfort over reduction of heat dissipation, and reduction of heat dissipation is emphasized in rooms with high comfort. That is, the reduction of the total heat consumption and the maintenance of the comfort of each room can be achieved in a balanced manner.
 さらに、該暖房システムの制御方法は、前記放熱抑制指示によって抑制される放熱量である抑制熱量を、前記暖房装置毎に予測する予測ステップと、前記予測ステップで予測された前記暖房装置毎の抑制熱量の合計である総抑制熱量を、前記熱供給源に通知する通知ステップとを含んでもよい。 Furthermore, the control method of the heating system includes a prediction step of predicting, for each heating device, a suppression heat amount that is a heat dissipation amount suppressed by the heat dissipation suppression instruction, and a suppression for each heating device predicted in the prediction step. A notification step of notifying the heat supply source of a total suppression heat amount that is a total amount of heat.
 これにより、過剰な熱生成を回避することができる。 This makes it possible to avoid excessive heat generation.
 また、前記複数の暖房装置それぞれには、予め目標温度が設定されていてもよい。前記取得ステップで取得される前記放熱抑制指示は、放熱の抑制を終了する時刻である抑制終了時刻を特定する情報を含んでもよい。そして、前記放熱再開ステップでは、前記検出ステップで検出された前記抑制終了時刻における室温と前記目標温度との差が大きい部屋から順に、室温を前記目標温度まで上昇させる第1のモードで前記暖房装置に放熱を再開させてもよい。 Further, a target temperature may be set in advance for each of the plurality of heating devices. The heat dissipation suppression instruction acquired in the acquisition step may include information for specifying a suppression end time that is a time at which suppression of heat dissipation ends. In the heat release restarting step, the heating device in the first mode in which the room temperature is increased to the target temperature in order from the room where the difference between the room temperature and the target temperature detected at the detection end time is large. The heat dissipation may be resumed.
 このように、抑制終了時刻における室温と目標温度との差が大きい部屋の暖房装置から順に再稼動させることにより、各部屋の快適性を平準化することができる。 In this way, the comfort of each room can be leveled by restarting in order from the room heating device in which the difference between the room temperature and the target temperature at the suppression end time is large.
 また、前記放熱再開ステップでは、前記複数の暖房装置それぞれに、前記抑制終了時刻から前記第1のモードで放熱を再開するまでの間、前記抑制終了時刻における室温を維持する第2のモードで放熱させてもよい。 Further, in the heat radiation restarting step, each of the plurality of heating devices radiates heat in the second mode in which the room temperature at the suppression end time is maintained from the suppression end time until the heat dissipation is restarted in the first mode. You may let them.
 また、前記放熱再開ステップでは、前記第1のモードで放熱している前記暖房装置が設置されている部屋の室温が前記目標温度に達したタイミングで、次の前記暖房装置に前記第1のモードで放熱を再開させてもよい。 Further, in the heat radiation restarting step, at the timing when the room temperature of the room in which the heating device that radiates heat in the first mode reaches the target temperature, the next heating device has the first mode. The heat release may be resumed.
 また、前記放熱再開ステップでは、前記抑制終了時刻における室温と前記目標温度との差が大きい程、前記第1のモードで放熱する前記暖房装置の単位時間当たりの放熱量を増加させてもよい。 Further, in the heat radiation restarting step, the heat radiation amount per unit time of the heating device that radiates heat in the first mode may be increased as the difference between the room temperature and the target temperature at the suppression end time is larger.
 本発明の一形態に係る暖房システムは、熱供給源で生成された熱で複数の部屋それぞれを暖房する。具体的には、暖房システムは、前記複数の部屋それぞれに設置される複数の暖房装置と、前記複数の暖房装置それぞれの運転を制御する制御部とを備える。そして、前記制御部は、前記複数の暖房装置からの放熱を抑制することを要求する放熱抑制指示を、前記熱供給源から取得する取得部と、前記複数の部屋それぞれの室温を検出する検出部と、前記取得部で前記放熱抑制指示を取得したことに応じて、前記複数の暖房装置の放熱を停止させ、前記検出部で検出された室温に応じて、各部屋に設置されている前記暖房装置の放熱を個別に再開させる運転制御部とを備える。 The heating system according to an aspect of the present invention heats each of a plurality of rooms with heat generated by a heat supply source. Specifically, the heating system includes a plurality of heating devices installed in each of the plurality of rooms, and a control unit that controls the operation of each of the plurality of heating devices. And the said control part acquires the heat dissipation suppression instruction | indication which requests | requires suppressing the heat dissipation from these heating apparatuses from the said heat supply source, The detection part which detects the room temperature of each of these rooms And, in response to the acquisition of the heat radiation suppression instruction by the acquisition unit, the heat dissipation of the plurality of heating devices is stopped, and the heating installed in each room according to the room temperature detected by the detection unit An operation control unit for individually restarting heat dissipation of the device.
 また、前記制御部は、前記取得部と、前記運転制御部の一部に相当する第1運転制御部とを備える第1制御部と、前記検出部と、前記運転制御部の他の一部に相当する第2運転制御部とを備え、部屋毎に設けられる第2制御部とで構成されてもよい。 The control unit includes a first control unit including the acquisition unit and a first operation control unit corresponding to a part of the operation control unit, the detection unit, and another part of the operation control unit. And a second control unit provided for each room.
 さらに、前記複数の暖房装置それぞれには、予め目標温度が設定されていてもよい。前記第1運転制御部は、前記取得部で取得された前記放熱抑制指示に含まれる放熱抑制開始時刻と、室温の下限値を示す閾値温度とを各部屋の前記第2制御部に送信してもよい。前記第2運転制御部は、前記第1運転制御部から取得した前記放熱抑制開始時刻に、前記暖房装置の放熱を停止させ、前記検出部で検出された室温が前記第1運転制御部から取得した前記閾値温度に達した場合に、室温を前記目標温度まで上昇させる第1のモードで前記暖房装置に放熱を再開させてもよい。 Furthermore, a target temperature may be set in advance for each of the plurality of heating devices. The first operation control unit transmits a heat release suppression start time included in the heat release suppression instruction acquired by the acquisition unit and a threshold temperature indicating a lower limit value of a room temperature to the second control unit of each room. Also good. The second operation control unit stops heat dissipation of the heating device at the heat release suppression start time acquired from the first operation control unit, and the room temperature detected by the detection unit is acquired from the first operation control unit. When the threshold temperature is reached, the heating device may resume heat radiation in the first mode in which the room temperature is raised to the target temperature.
 本発明によれば、各部屋の特性に応じて個別に快適性を改善しつつ、暖房システム全体の消費熱量を削減できる。これにより、ユーザの快適性の維持をしながら、消費熱量のピークカットを達成することができる。 According to the present invention, it is possible to reduce the heat consumption of the entire heating system while improving the comfort individually according to the characteristics of each room. Thereby, the peak cut of heat consumption can be achieved, maintaining a user's comfort.
図1は、地域熱供給の仕組みを説明するための概略図である。FIG. 1 is a schematic diagram for explaining a mechanism of district heat supply. 図2Aは、地域熱消費者が消費する熱量の推移を示す図である。FIG. 2A is a diagram showing a change in the amount of heat consumed by a regional heat consumer. 図2Bは、図2Aのピーク時間帯に暖房装置を停止させた場合の熱量の推移を示す図である。FIG. 2B is a diagram showing a change in the amount of heat when the heating device is stopped in the peak time zone of FIG. 2A. 図3は、集合住宅の一例を示す図である。FIG. 3 is a diagram illustrating an example of an apartment house. 図4は、図3に示される集合住宅の各部屋の室温の推移を示す図である。FIG. 4 is a diagram showing changes in room temperature in each room of the apartment house shown in FIG. 図5は、本発明の一態様に係る暖房システムの概略ブロック図である。FIG. 5 is a schematic block diagram of a heating system according to an aspect of the present invention. 図6は、本発明の一態様に係る暖房システムの制御処理を示すフローチャートである。FIG. 6 is a flowchart illustrating a control process of the heating system according to one aspect of the present invention. 図7Aは、地域熱供給業者100から供給される温水で各部屋を暖房するために必要な集合住宅内の設備の例を示す図である。FIG. 7A is a diagram illustrating an example of equipment in the apartment house necessary for heating each room with hot water supplied from the district heat supplier 100. 図7Bは、図7Aに示される部屋の1つを拡大した図である。FIG. 7B is an enlarged view of one of the rooms shown in FIG. 7A. 図8は、実施の形態1に係る暖房システムの制御処理の概要を示す図である。FIG. 8 is a diagram illustrating an outline of control processing of the heating system according to Embodiment 1. 図9は、各構成要素間で送受信される情報の例を示す図である。FIG. 9 is a diagram illustrating an example of information transmitted and received between each component. 図10Aは、実施の形態1に係る暖房システム制御処理のフローチャートである。FIG. 10A is a flowchart of the heating system control process according to Embodiment 1. 図10Bは、実施の形態1に係る抑制熱量通知処理のフローチャートである。FIG. 10B is a flowchart of the suppression heat amount notification process according to Embodiment 1. 図11は、実施の形態1に係る暖房装置制御処理のフローチャートである。FIG. 11 is a flowchart of the heating device control process according to Embodiment 1. 図12は、実施の形態1に係る暖房システムの制御処理が実行された場合において、部屋A2、A3、B2の温度変化及び総放熱量の推移を示す図である。FIG. 12 is a diagram illustrating a change in temperature and a change in the total heat radiation amount in the rooms A2, A3, and B2 when the control process of the heating system according to Embodiment 1 is performed. 図13は、実施の形態2に係る暖房システムの制御処理の概要を示す図である。FIG. 13 is a diagram illustrating an outline of a control process of the heating system according to the second embodiment. 図14は、実施の形態2に係る閾値温度決定処理のフローチャートである。FIG. 14 is a flowchart of threshold temperature determination processing according to the second embodiment. 図15は、実施の形態2に係る暖房システムの制御処理が実行された場合において、部屋A2、A3、B2の温度変化及び総放熱量の推移を示す図である。FIG. 15 is a diagram illustrating a change in the temperature of the rooms A2, A3, and B2 and a change in the total heat dissipation when the control process of the heating system according to the second embodiment is performed. 図16は、実施の形態3に係る暖房システムの制御処理の概要を示す図である。FIG. 16 is a diagram illustrating an outline of control processing of the heating system according to Embodiment 3. 図17Aは、実施の形態3に係る暖房システム制御処理のフローチャートである。FIG. 17A is a flowchart of a heating system control process according to Embodiment 3. 図17Bは、実施の形態3に係る運転条件決定処理のフローチャートである。FIG. 17B is a flowchart of operation condition determination processing according to Embodiment 3. 図18は、実施の形態3に係る暖房装置制御処理のフローチャートである。FIG. 18 is a flowchart of the heating device control process according to Embodiment 3. 図19は、実施の形態3に係る暖房システムの制御処理が実行された場合において、部屋A2、A3、B2の温度変化及び総放熱量の推移を示す図である。FIG. 19 is a diagram illustrating a change in the temperature of the rooms A2, A3, and B2 and a change in the total heat dissipation when the control process of the heating system according to the third embodiment is performed.
 以下、図面を参照して、本発明の一形態に係る暖房システム及び暖房システムの制御方法を説明する。なお、本発明は、請求の範囲の記載に基づいて特定される。よって、以下の実施の形態における構成要素のうち、請求項に記載されていない構成要素は、本発明の課題を達成するのに必ずしも必要ではない。すなわち、以下の実施の形態は、本発明のより好ましい形態を説明するものである。また、各図は模式図であり、必ずしも厳密に図示したものではない。 Hereinafter, a heating system and a heating system control method according to an embodiment of the present invention will be described with reference to the drawings. In addition, this invention is specified based on description of a claim. Therefore, among the constituent elements in the following embodiments, constituent elements not described in the claims are not necessarily required to achieve the object of the present invention. That is, the following embodiment explains a more preferable embodiment of the present invention. Each figure is a mimetic diagram and is not necessarily illustrated strictly.
 まず、図1を参照して、本発明の一形態に係る暖房システムが適用される環境(インフラ)について説明する。図1は、地域熱供給の仕組みを説明するための概略図であって、地域熱供給業者(熱供給源)100と地域熱消費者110との間で、温水が循環している様子を図示している。 First, an environment (infrastructure) to which a heating system according to an embodiment of the present invention is applied will be described with reference to FIG. FIG. 1 is a schematic diagram for explaining the mechanism of district heat supply, and shows how hot water circulates between a district heat supplier (heat source) 100 and a district heat consumer 110. Show.
 地域熱供給業者100とは、操業時に熱を発生させる事業者であって、例えば、工場101や発電所102等が該当する。すなわち、図1に示される工場101及び発電所102は、操業時に生じる廃熱を利用して生成した温水(例えば、加圧された110℃の温水)を流路に放出する。 The district heat supplier 100 is a business that generates heat during operation, and corresponds to, for example, the factory 101 and the power plant 102. That is, the factory 101 and the power plant 102 shown in FIG. 1 discharge hot water (for example, pressurized hot water of 110 ° C.) generated using waste heat generated during operation into the flow path.
 なお、上記の例では、廃熱を利用して温水を生成しているが、これに限ることなく、地域熱消費者110に供給する温水を生成することを目的とする設備も図1の地域熱供給業者100に含めることができる。また、人工的に生成された熱に限定されず、地熱等を利用して温水を生成してもよいことは言うまでもない。すなわち、地域熱供給業者100は図1の例に限定されず、温水を安定して生成し、供給することのできるあらゆる設備が含まれる。 In the above example, warm water is generated using waste heat. However, the present invention is not limited to this, and facilities for generating hot water to be supplied to the regional heat consumer 110 are also shown in FIG. It can be included in the heat supplier 100. Moreover, it is not limited to the heat | fever produced | generated artificially, It cannot be overemphasized that warm water may be produced | generated using geothermal etc. That is, the district heat supplier 100 is not limited to the example of FIG. 1, and includes all facilities that can stably generate and supply hot water.
 地域熱消費者110とは、地域熱供給業者100で生成された温水を利用する設備であって、例えば、戸建て住宅111や集合住宅112等が該当する。より具体的には、地域熱供給業者100で生成された温水は、戸建て住宅111や集合住宅112内の各部屋に設置される暖房装置及び給湯装置等で熱を消費され、再び地域熱供給業者100に還流する。なお、地域熱消費者110は図1の例に限定されず、オフィス、商店、学校、病院等の熱を消費するあらゆる設備が含まれる。 The district heat consumer 110 is a facility that uses hot water generated by the district heat supplier 100, and corresponds to, for example, a detached house 111, an apartment house 112, and the like. More specifically, the hot water generated by the district heat supplier 100 is consumed by a heating device and a hot water supply device installed in each room in the detached house 111 and the apartment house 112, and again the district heat supplier. Reflux to 100. In addition, the district heat consumer 110 is not limited to the example of FIG. 1, but includes all facilities that consume heat such as an office, a store, a school, and a hospital.
 次に、図2A、図2B、図3、及び図4を参照して、上記の地域熱供給における課題を説明する。図2A及び図2Bは、図1の地域熱消費者110が消費する熱量の推移を示す図である。図3は、集合住宅112の一例を示す図である。図4は、図3に示される集合住宅112の各部屋の室温の推移を示す図である。 Next, with reference to FIG. 2A, FIG. 2B, FIG. 3, and FIG. 2A and 2B are diagrams showing the transition of the amount of heat consumed by the district heat consumer 110 of FIG. FIG. 3 is a diagram illustrating an example of the apartment house 112. FIG. 4 is a diagram showing changes in room temperature in each room of the apartment house 112 shown in FIG.
 例えば寒冷地の集合住宅においては、図2Aに示されるように、暖房装置が消費する熱量(以下「暖房熱量」と表記する)は、1日を通してほぼ一定している。一方、給湯装置が消費する熱量(以下「給湯熱量」と表記する)は、1日のうちの所定の時間帯(図2Aの例では、8時~9時の間、及び21時~22時の間)に集中し、それ以外の時間帯にはほとんど発生していない。その結果、図2Aに示される例では、給湯熱量が集中する時間帯(以下「ピーク時間帯」と表記する)に消費熱量のピークが生じる。 For example, in an apartment house in a cold region, as shown in FIG. 2A, the amount of heat consumed by the heating device (hereinafter referred to as “heating amount of heat”) is substantially constant throughout the day. On the other hand, the amount of heat consumed by the hot water supply device (hereinafter referred to as “hot water supply heat amount”) is a predetermined time of the day (in the example of FIG. 2A, between 8 o'clock and 9 o'clock and between 21 o'clock and 22 o'clock) It is concentrated and rarely occurs at other times. As a result, in the example shown in FIG. 2A, a peak of heat consumption occurs in a time zone in which the amount of hot water supply is concentrated (hereinafter referred to as “peak time zone”).
 図2Aのように消費熱量にピークが生じる場合、地域熱供給業者100は、そのピークに合わせた生熱能力を持たねばならない。また、地域熱供給業者100は、ピーク時間帯に十分な温水を供給するために、割高な燃料(例えば、化石燃料)を用いて生熱しなければならない可能性がある。 When a peak occurs in the amount of heat consumed as shown in FIG. 2A, the district heat supplier 100 must have a biothermal capacity that matches the peak. In addition, the district heat supplier 100 may have to reheat using expensive fuel (for example, fossil fuel) in order to supply sufficient hot water during peak hours.
 そこで、上記の課題を解決するために、例えば、ピーク時間帯に全ての暖房装置を停止させることが考えられる。これにより、図2Bに示されるように、ピーク時間帯の暖房熱量が0になるので、消費熱量のピークが平準化される。 Therefore, in order to solve the above-described problem, for example, it is conceivable to stop all the heating devices during peak hours. As a result, as shown in FIG. 2B, the heating heat amount in the peak time zone becomes zero, so that the peak of the heat consumption amount is leveled.
 しかしながら、ピーク時間帯に全ての暖房装置を停止させた場合、下記のような新たな課題を生じる。例えば、図3に示されるように、3階建ての各階に4部屋ずつ計12部屋ある集合住宅112を考えた場合、部屋の位置によって断熱性能(放熱性能)が異なるのが一般的である。より具体的には、6面のうちの4面が外気に接している部屋A3と、6面のうちの3面が外気に接している部屋A2と、6面のうち2面が外気に接している部屋B2とでは、部屋B2の断熱性能が最も高く、部屋A2の断熱性が次に高く、部屋A3の断熱性能が最も低い。 However, when all the heating devices are stopped during peak hours, the following new problems arise. For example, as shown in FIG. 3, when considering an apartment house 112 having 12 rooms in total of 4 rooms on each of 3 floors, the heat insulation performance (heat dissipation performance) generally differs depending on the position of the room. More specifically, room A3 in which four of the six surfaces are in contact with the outside air, room A2 in which three of the six surfaces are in contact with the outside air, and two of the six surfaces are in contact with the outside air. The room B2 has the highest heat insulation performance of the room B2, the heat insulation performance of the room A2 is the next highest, and the heat insulation performance of the room A3 is the lowest.
 そのため、部屋A2、A3、B2に設置されている暖房装置を同時に停止させた場合の室温の変化は、部屋によって異なる。例えば、暖房装置を8時~9時(図4では「停止時間帯」と表記する)まで停止させた場合の部屋A2、A3、B2の室温変化のシミュレーション結果を、図4に示す。なお、この集合住宅112各部屋の大きさは、幅10メートル、奥行き7メートル、高さ2.5メートルとした。また、シミュレーションの前提となる外気温度の推移も図4に合わせて図示している。 Therefore, the change in room temperature when the heating devices installed in the rooms A2, A3, and B2 are simultaneously stopped differs depending on the room. For example, FIG. 4 shows a simulation result of room temperature changes in the rooms A2, A3, and B2 when the heating device is stopped from 8:00 to 9:00 (denoted as “stop time zone” in FIG. 4). The size of each room of the apartment house 112 was 10 meters wide, 7 meters deep, and 2.5 meters high. In addition, the transition of the outside air temperature, which is the premise of the simulation, is also shown in FIG.
 図4を参照すれば明らかなように、停止時間帯における部屋A2、A3、B2の室温は、単調減少している。このとき、最も断熱性能の低い部屋A3の室温低下速度が最も速く、最も断熱性能の低い部屋B2の室温低下速度が最も遅い。すなわち、停止時間帯の終了時刻である午前9時における室温は、部屋A3が最も低く、部屋B3が最も高くなっているこのように、全ての部屋の暖房装置を一律に停止させると、部屋によって快適性が大きく異なるという第1の課題を生じる。 As is clear from FIG. 4, the room temperatures of the rooms A2, A3, and B2 during the stop time period are monotonously decreasing. At this time, the room temperature decreasing rate of the room A3 having the lowest heat insulating performance is the fastest, and the room temperature decreasing speed of the room B2 having the lowest heat insulating performance is the slowest. That is, the room temperature at 9:00 am, which is the end time of the stop time zone, is lowest in the room A3 and highest in the room B3. Thus, when the heating devices of all the rooms are uniformly stopped, The first problem that comfort differs greatly arises.
 さらに、停止時間帯の終了時刻である午前9時の時点において、各部屋の暖房装置は、室温を当初の設定温度まで上昇させるために、一斉に運転を再開する。その結果、図2Bに示されるように、当初のピーク時間帯(8時~9時、及び21時~22時)の直後の時間帯(9時~10時、及び22時~23時)に新たなピークが生じるという第2の課題を生じる。 Furthermore, at the time of 9:00 am, which is the end time of the stop time zone, the heating devices in each room restart their operations all at once in order to raise the room temperature to the original set temperature. As a result, as shown in FIG. 2B, in the time zone (9 to 10 o'clock and 22:00 to 23 o'clock) immediately after the initial peak time zone (8 o'clock to 9 o'clock and 21:00 to 22:00) A second problem that a new peak occurs is generated.
 そこで、図5及び図6を参照して、上記の第1及び第2の課題を解決するための暖房システム及び暖房システムの制御方法の一例を説明する。図5は、本発明の一態様に係る暖房システムの概略ブロック図である。図6は、本発明の一態様に係る暖房システムの制御処理を示すフローチャートである。 Therefore, an example of a heating system and a heating system control method for solving the first and second problems will be described with reference to FIGS. 5 and 6. FIG. 5 is a schematic block diagram of a heating system according to an aspect of the present invention. FIG. 6 is a flowchart illustrating a control process of the heating system according to one aspect of the present invention.
 まず、本発明の一態様に係る暖房システム10は、図5に示されるように、制御部20と、複数の暖房装置31、32、33、34、35、36とを備える。暖房装置31~36は、それぞれが別々の部屋に設置され、地域熱供給業者100から供給される熱を放熱することによって、設置された部屋を暖房する。 First, the heating system 10 according to one aspect of the present invention includes a control unit 20 and a plurality of heating devices 31, 32, 33, 34, 35, and 36, as shown in FIG. Each of the heating devices 31 to 36 is installed in a separate room and heats the installed room by radiating heat supplied from the district heat supplier 100.
 制御部20は、地域熱供給業者100との間で情報交換を行なうと共に、暖房装置31~36の運転を個別に制御する。より具体的には、制御部20は、通信部21と、検出部22と、運転制御部23と、予測部24とを備える。 The control unit 20 exchanges information with the district heat supplier 100 and controls the operation of the heating devices 31 to 36 individually. More specifically, the control unit 20 includes a communication unit 21, a detection unit 22, an operation control unit 23, and a prediction unit 24.
 通信部21は、通信回線を通じて、地域熱供給業者100との間で各種情報を送受信する通信インタフェースである。送受信される情報の具体例は特に限定されないが、例えば、通信部21は、放熱抑制指示(以下「SO(Shut Off)信号」と表記する)を地域熱供給業者100から受信し、総抑制熱量を地域熱供給業者100に送信する。通信部21は、放熱抑制指示を取得する取得部の例である。 The communication unit 21 is a communication interface that transmits and receives various types of information to and from the district heat supplier 100 through a communication line. Although the specific example of the information transmitted / received is not specifically limited, For example, the communication part 21 receives the heat radiation | emission suppression instruction | indication (it describes as "SO (Shut Off) signal" hereafter) from the district heat supplier 100, and is total suppression calorie | heat amount. Is transmitted to the district heat supplier 100. The communication unit 21 is an example of an acquisition unit that acquires a heat dissipation suppression instruction.
 なお、SO信号とは、暖房装置31~36の放熱を抑制することを要求する信号である。このSO信号には、放熱を抑制する時間帯(以下「SO時間帯」と表記する)を特定する情報、すなわち、SO時間帯の開始時刻(以下「SO開始時刻」と表記する)及びSO時間帯の終了時刻(以下「SO終了時刻」と表記する)を特定する情報が含まれる。また、総抑制熱量とは、SO信号によって暖房装置31~36の放熱が抑制された結果、SO時間帯に抑制できる放熱量の予測値である。 Note that the SO signal is a signal that requests suppression of heat dissipation of the heating devices 31 to 36. The SO signal includes information for specifying a time zone for suppressing heat dissipation (hereinafter referred to as “SO time zone”), that is, the start time of the SO time zone (hereinafter referred to as “SO start time”) and the SO time. Information specifying the band end time (hereinafter referred to as “SO end time”) is included. The total suppression heat amount is a predicted value of the heat dissipation amount that can be suppressed in the SO time period as a result of the heat dissipation of the heating devices 31 to 36 being suppressed by the SO signal.
 検出部22は、各種情報(特に温度情報)を検出する。より具体的には、検出部22は、暖房装置31~36が設置されている各部屋の室温を検出する。また、検出部22は、暖房システム10が設置されている建物周辺の外気温度を検出する。そして、検出部22は、検出した温度情報を運転制御部23及び予測部24に通知する。 Detecting unit 22 detects various information (particularly temperature information). More specifically, the detection unit 22 detects the room temperature of each room in which the heating devices 31 to 36 are installed. Moreover, the detection part 22 detects the outside temperature around the building where the heating system 10 is installed. Then, the detection unit 22 notifies the operation control unit 23 and the prediction unit 24 of the detected temperature information.
 運転制御部23は、暖房装置31~36の運転状態を個別に制御する。運転制御部23は、例えば図6に示されるように、通信部21を通じて地域熱供給業者100からSO信号を取得したことに応じて(S101)、全ての暖房装置31~36の運転を停止させる(S102)。また、運転制御部23は、検出部22で検出された室温に応じて(S103)、各部屋に設置されている暖房装置31~36の運転を個別に再開させる(S104)。なお、暖房装置31~36の運転を再開させるタイミングについては、後述の実施の形態1~3で詳細に説明する。 The operation control unit 23 individually controls the operation states of the heating devices 31 to 36. For example, as illustrated in FIG. 6, the operation control unit 23 stops the operation of all the heating devices 31 to 36 in response to obtaining the SO signal from the district heat supplier 100 through the communication unit 21 (S101). (S102). Further, the operation control unit 23 individually restarts the operation of the heating devices 31 to 36 installed in each room according to the room temperature detected by the detection unit 22 (S103) (S104). The timing for resuming the operation of the heating devices 31 to 36 will be described in detail in Embodiments 1 to 3 described later.
 予測部24は、総抑制熱量を予測する。総抑制熱量は、例えば、SO時間帯に暖房装置31~36を通常運転させた場合に消費される熱量と、SO時間帯に暖房装置31~36に対して図6に示される制御を行った場合に消費される熱量との差に相当する。また、総抑制熱量は、例えば、SO時間帯に抑制できる放熱量(以下「抑制熱量」と表記する)を暖房装置31~36毎に予測し、それらを合計することによって得られる。 The prediction unit 24 predicts the total suppression heat amount. The total suppression heat amount is, for example, the amount of heat consumed when the heating devices 31 to 36 are normally operated during the SO time zone and the control shown in FIG. 6 for the heating devices 31 to 36 during the SO time zone. This corresponds to the difference from the amount of heat consumed. Further, the total suppression heat amount is obtained, for example, by predicting the heat release amount (hereinafter referred to as “suppression heat amount”) that can be suppressed in the SO time zone for each of the heating devices 31 to 36 and summing them.
 以下、図面を参照して、本発明の実施の形態1~3に係る暖房システム及び暖房システムの制御方法を説明する。 Hereinafter, a heating system and a heating system control method according to Embodiments 1 to 3 of the present invention will be described with reference to the drawings.
 (実施の形態1)
 まず、図7A及び図7Bを参照して、実施の形態1に係る暖房システムの構成を説明する。図7Aは、地域熱供給業者100から供給される温水で各部屋を暖房するために必要な集合住宅112内の設備の例を示す図である。図7Bは、図7Aに示される部屋の1つを拡大した図である。
(Embodiment 1)
First, the configuration of the heating system according to Embodiment 1 will be described with reference to FIGS. 7A and 7B. FIG. 7A is a diagram illustrating an example of equipment in the apartment house 112 necessary for heating each room with hot water supplied from the district heat supplier 100. FIG. 7B is an enlarged view of one of the rooms shown in FIG. 7A.
 図7A及び図7Bに示されるように、集合住宅112には、熱交換器210と、熱量計211と、ポンプ212と、外気温センサ213と、暖房システム制御部214とが設置されている。また、集合住宅112の各部屋には、ラジエータ201と、バルブ202と、室温センサ203と、暖房装置制御部204とを備える。なお、図7A及び図7Bにおいて、実線の矢印は温水の流れを表し、破線の矢印は情報(信号)の流れを表す。 7A and 7B, the housing complex 112 is provided with a heat exchanger 210, a calorimeter 211, a pump 212, an outside air temperature sensor 213, and a heating system controller 214. Each room of the apartment house 112 includes a radiator 201, a valve 202, a room temperature sensor 203, and a heating device control unit 204. In FIGS. 7A and 7B, solid arrows indicate the flow of hot water, and broken arrows indicate the flow of information (signal).
 熱交換器210は、地域熱供給業者100及び熱交換器210の間を循環する温水と、熱交換器210及び各部屋の間を循環する温水との間で熱交換を行なわせる設備であって、典型的には集合住宅112の地下に設置される。より具体的には、熱交換器210は、地域熱供給業者100から流入する高温の温水と、各部屋から流入する低温の温水との間で熱交換を行なう。そして、熱交換器210から地域熱供給業者100に温度の下がった温水が還流し、熱交換器210から各部屋に温度の上がった温水が還流する。 The heat exchanger 210 is a facility for performing heat exchange between the hot water circulating between the district heat supplier 100 and the heat exchanger 210 and the hot water circulating between the heat exchanger 210 and each room. Typically, it is installed in the basement of the apartment house 112. More specifically, the heat exchanger 210 performs heat exchange between high-temperature hot water flowing from the district heat supplier 100 and low-temperature hot water flowing from each room. Then, the hot water whose temperature has dropped from the heat exchanger 210 to the district heat supplier 100 circulates, and the hot water whose temperature has risen circulates from the heat exchanger 210 to each room.
 熱量計211は、熱交換器210で交換された熱量を計測する。具体的には、熱量計211は、地域熱供給業者100から熱交換器210に向かう高温の温水の温度(第1の温度)と、熱交換器210から地域熱供給業者100に還流する低温の温水の温度(第2の温度)とを計測し、第1及び第2の温度の差に熱交換器210に流入する温水の流量を乗じることによって、熱交換器210で交換された熱量を計測する。なお、熱量計211で計測された熱量は、例えば、集合住宅112に課金される地域熱の使用料の計算等に用いられる。 The calorimeter 211 measures the amount of heat exchanged by the heat exchanger 210. Specifically, the calorimeter 211 has a temperature (first temperature) of high-temperature hot water from the district heat supplier 100 to the heat exchanger 210 and a low-temperature reflux that returns from the heat exchanger 210 to the district heat supplier 100. Measures the amount of heat exchanged in the heat exchanger 210 by measuring the temperature of the hot water (second temperature) and multiplying the difference between the first and second temperatures by the flow rate of the hot water flowing into the heat exchanger 210 To do. The amount of heat measured by the calorimeter 211 is used for, for example, calculation of a district heat usage fee charged to the apartment house 112.
 ポンプ212は、熱交換器210から各部屋に向かう高温の温水の流量を制御する設備であって、典型的には集合住宅112の地下に設置される。例えば、ポンプ212は、熱交換器210から各部屋に向かう温水の流量を、暖房システム制御部214からの制御に従って20~60(l/min)の範囲内で変更することができる。 The pump 212 is a facility that controls the flow rate of hot hot water from the heat exchanger 210 toward each room, and is typically installed in the basement of the apartment house 112. For example, the pump 212 can change the flow rate of hot water from the heat exchanger 210 to each room within a range of 20 to 60 (l / min) according to control from the heating system control unit 214.
 外気温センサ213は、集合住宅112の周囲の外気温度を検出し、暖房システム制御部214に通知する。例えば、図7Aの外気温センサ213は、図5の検出部22に相当する。 The outside air temperature sensor 213 detects the outside air temperature around the apartment house 112 and notifies the heating system control unit 214 of it. For example, the outside air temperature sensor 213 in FIG. 7A corresponds to the detection unit 22 in FIG.
 暖房システム制御部214は、地域熱供給業者100及び各部屋の暖房装置制御部204との間で情報交換を行なうことにより、暖房システム全体の制御を行う。図7Aの暖房システム制御部214は、例えば、図5の通信部21、運転制御部23の一部、及び予測部24に相当する。 The heating system control unit 214 controls the entire heating system by exchanging information between the district heat supplier 100 and the heating device control unit 204 of each room. The heating system control unit 214 in FIG. 7A corresponds to, for example, the communication unit 21, a part of the operation control unit 23, and the prediction unit 24 in FIG. 5.
 ラジエータ201は、熱交換器210から供給される温水の熱を放熱することによって、部屋を暖房する。なお、ラジエータ201は、温水の熱を空気中に放熱するものであってもよいし、温水の熱で床を暖める床暖房であってもよい。また、ラジエータ201は、各部屋に1台ずつ設置されてもよいし、各部屋に複数台設置(図7A及び図7Bの例では、2台ずつ設置されている)されてもよい。 The radiator 201 heats the room by radiating the heat of the hot water supplied from the heat exchanger 210. The radiator 201 may radiate the heat of hot water into the air, or may be floor heating that warms the floor with the heat of hot water. One radiator 201 may be installed in each room, or a plurality of radiators 201 may be installed in each room (two are installed in the examples of FIGS. 7A and 7B).
 バルブ202は、熱交換器210からラジエータ201に流入する温水の流量を制御する。このバルブ202は、暖房装置制御部204と通信する機能を有し、暖房装置制御部204からの指示に従って流量を変更することができる。例えば、特許文献1に開示されているように、無線受信機を搭載したバルブ(Thermostatic Radiator Valve:TRV)を用いればよい。1つのバルブ202で1台のラジエータ201に流入する温水の流量を制御してもよいし、1つのバルブ202で複数台のラジエータ201に流入する温水の流量を制御してもよい。 The valve 202 controls the flow rate of the hot water flowing from the heat exchanger 210 into the radiator 201. The valve 202 has a function of communicating with the heating device control unit 204 and can change the flow rate in accordance with an instruction from the heating device control unit 204. For example, as disclosed in Patent Document 1, a valve (Thermostatic Radiator Valve: TRV) equipped with a wireless receiver may be used. One valve 202 may control the flow rate of hot water flowing into one radiator 201, or one valve 202 may control the flow rate of hot water flowing into a plurality of radiators 201.
 室温センサ203は、部屋の室温を検出し、暖房装置制御部204に通知する。例えば、図7Aの室温センサ203は、図5の検出部22に相当する。 The room temperature sensor 203 detects the room temperature of the room and notifies the heating device control unit 204 of it. For example, the room temperature sensor 203 in FIG. 7A corresponds to the detection unit 22 in FIG.
 暖房装置制御部204は、暖房システム制御部214との間で情報交換を行なうことにより、部屋に設置されているラジエータ201及びバルブ202(以下、これらを総称して「暖房装置」と表記する)を制御する。また、暖房装置制御部204は、部屋の目標温度の入力をユーザから受け付ける。そして、SO時間帯以外の時間帯において、暖房装置制御部204は、部屋の室温が目標温度に近づくように、暖房装置の運転を制御する。例えば、図7Aの暖房装置制御部204は、図5の運転制御部23の一部に相当する。 The heating device control unit 204 exchanges information with the heating system control unit 214 to thereby provide a radiator 201 and a valve 202 installed in the room (hereinafter collectively referred to as “heating device”). To control. Moreover, the heating apparatus control part 204 receives the input of the target temperature of a room from a user. Then, in a time zone other than the SO time zone, the heating device control unit 204 controls the operation of the heating device so that the room temperature of the room approaches the target temperature. For example, the heating device control unit 204 in FIG. 7A corresponds to a part of the operation control unit 23 in FIG.
 なお、暖房装置制御部204は、暖房装置の運転モードとして、停止モード、第1のモード、及び第2のモードのいずれかを選択することができる。停止モードとは、放熱を完全に停止させる(又は、暖房システムの機能を維持するために必要な最小限の熱のみを放熱する)運転モードである。第1のモードとは、室温を予め設定された目標温度まで上昇させるのに必要な熱を放熱させる運転モードである。第2のモードとは、現在の室温を維持するのに必要な熱を放熱させる運転モードである。 Note that the heating device control unit 204 can select any one of the stop mode, the first mode, and the second mode as the operation mode of the heating device. The stop mode is an operation mode in which heat dissipation is completely stopped (or only the minimum heat necessary for maintaining the function of the heating system is dissipated). The first mode is an operation mode in which heat necessary for raising the room temperature to a preset target temperature is radiated. The second mode is an operation mode in which heat necessary for maintaining the current room temperature is radiated.
 そして、暖房装置制御部204は、バルブ202を通じてラジエータ201に供給される温水の流量を制御することによって、上記の各モードを相互に切り替えることができる。すなわち、第1のモードを選択した場合にラジエータ201に供給される温水の量(熱量)は、第2のモードを選択した場合にラジエータ201に供給される温水の量(熱量)より多くなる。 And the heating apparatus control part 204 can switch each said mode by controlling the flow volume of the warm water supplied to the radiator 201 through the valve | bulb 202. FIG. That is, the amount (heat amount) of hot water supplied to the radiator 201 when the first mode is selected is larger than the amount (heat amount) of hot water supplied to the radiator 201 when the second mode is selected.
 また、集合住宅112は、地域熱供給業者100からの熱を利用して温水を供給する給湯装置をさらに備えてもよい。しかしながら、本明細書では、主に暖房装置の制御について説明するので、給湯装置の図示及び説明は省略する。 Moreover, the apartment house 112 may further include a hot water supply device that supplies hot water using heat from the district heat supplier 100. However, in this specification, control of the heating device will be mainly described, and thus illustration and description of the hot water supply device are omitted.
 次に、図8を参照して、実施の形態1に係る暖房システムの制御処理の概要を説明する。実施の形態1では、地域熱供給業者100からSO信号を受信すると(S210)、閾値温度が決定される(S220)。閾値温度とは、室温の下限値を示す値である。次に、SO開始時刻に全てのラジエータ201からの放熱を停止させるために、全てのバルブ202を閉止する(S230)。その後、室温が閾値温度に達した部屋から順に(S240)、ラジエータ201の放熱を再開させるためにバルブ202を開放する(S250)。 Next, with reference to FIG. 8, the outline of the control processing of the heating system according to Embodiment 1 will be described. In Embodiment 1, when the SO signal is received from the district heat supplier 100 (S210), the threshold temperature is determined (S220). The threshold temperature is a value indicating a lower limit value of room temperature. Next, in order to stop the heat radiation from all the radiators 201 at the SO start time, all the valves 202 are closed (S230). Thereafter, in order from the room in which the room temperature reaches the threshold temperature (S240), the valve 202 is opened in order to resume the heat radiation of the radiator 201 (S250).
 なお、実施の形態1では、上記の処理のうち、ステップS210、S220を暖房システム制御部214が実行し、ステップS230、S240、S250を暖房装置制御部204が実行する。すなわち、実施の形態1においては、図5の運転制御部23の機能を、暖房システム制御部214と暖房装置制御部204とで分担している。但し、上記の役割分担は一例であって、これに限定されない。 In the first embodiment, among the above processes, steps S210 and S220 are executed by the heating system control unit 214, and steps S230, S240, and S250 are executed by the heating device control unit 204. That is, in Embodiment 1, the function of the operation control unit 23 in FIG. 5 is shared by the heating system control unit 214 and the heating device control unit 204. However, the above division of roles is an example, and the present invention is not limited to this.
 次に、図9、図10A、図10B、図11、及び図12を参照して、実施の形態1に係る暖房システムの制御処理を詳しく説明する。図9は、各構成要素間で送受信される情報の例を示す図である。図10Aは、暖房システム制御部214によって実行される暖房システム制御処理のフローチャートである。図10Bは、暖房システム制御部214によって実行される抑制熱量通知処理のフローチャートである。図11は、各部屋の暖房装置制御部204によって実行される暖房装置制御処理のフローチャートである。図12は、実施の形態1に係る暖房システムの制御処理が実行された場合において、図3に示される集合住宅112の部屋A2、A3、B2の温度変化及び総放熱量の推移を示す図である。 Next, with reference to FIG. 9, FIG. 10A, FIG. 10B, FIG. 11, and FIG. 12, the control process of the heating system according to Embodiment 1 will be described in detail. FIG. 9 is a diagram illustrating an example of information transmitted and received between each component. FIG. 10A is a flowchart of the heating system control process executed by the heating system control unit 214. FIG. 10B is a flowchart of the suppression heat amount notification process executed by the heating system control unit 214. FIG. 11 is a flowchart of the heating device control process executed by the heating device control unit 204 in each room. FIG. 12 is a diagram showing changes in temperature and total heat dissipation of the rooms A2, A3, and B2 of the apartment house 112 shown in FIG. 3 when the control process of the heating system according to Embodiment 1 is executed. is there.
 まず、各部屋A2、A3、B2の暖房装置制御部204は、図9に示されるように、ユーザから目標温度の入力を予め受け付けている。 First, the heating device control unit 204 in each of the rooms A2, A3, and B2 receives the input of the target temperature from the user in advance as shown in FIG.
 図9は、各構成要素間で送受信される情報の例を示す図である。地域熱供給業者100と暖房システム制御部214との間では、図9に示すように、SO信号が地域熱供給業者100から暖房システム制御部214に送信され、逆に総抑制熱量が暖房システム制御部214から地域熱供給業者100に送信される。また、暖房システム制御部214と暖房装置制御部204との間では、SO開始時刻、SO終了時刻、及び閾値温度が暖房システム制御部214から暖房装置制御部204に送信され、逆に放熱の再開報告が暖房装置制御部204から暖房システム制御部214に送信される。そして、暖房装置制御部204は、バルブ202に対してバルブの開閉の指示を行い、また室温センサ203から室温を取得する。さらに、ユーザは、暖房装置制御部204に部屋の設定目標温度を入力することができる。 FIG. 9 is a diagram illustrating an example of information transmitted and received between each component. As shown in FIG. 9, between the district heat supplier 100 and the heating system control unit 214, the SO signal is transmitted from the district heat supplier 100 to the heating system control unit 214, and conversely, the total suppression heat amount is controlled by the heating system control. It is transmitted from the section 214 to the district heat supplier 100. Further, between the heating system control unit 214 and the heating device control unit 204, the SO start time, the SO end time, and the threshold temperature are transmitted from the heating system control unit 214 to the heating device control unit 204, and conversely, the heat release is resumed. The report is transmitted from the heating device control unit 204 to the heating system control unit 214. Then, the heating device control unit 204 instructs the valve 202 to open and close the valve, and acquires the room temperature from the room temperature sensor 203. Furthermore, the user can input the set target temperature of the room to the heating device control unit 204.
 例えば、全ての部屋A2、A3、B2の目標温度が21℃であったとすると、図12の8時までの時間帯における各部屋の暖房装置は、第2のモードで運転することによって、室温を21℃に保っている。また、この期間に部屋A2、A3、B2で消費される放熱量の合計(以下「総放熱量」と表記する)は、一定に保たれている。なお、図12の例では、部屋A2、A3、B2の目標温度を同一としたが、部屋毎に異なってもよいことは言うまでもない。 For example, if the target temperatures of all the rooms A2, A3, and B2 are 21 ° C., the room heating devices in the time zone up to 8 o'clock in FIG. It is kept at 21 ° C. Further, the total amount of heat dissipated in the rooms A2, A3, B2 during this period (hereinafter referred to as “total heat dissipation amount”) is kept constant. In the example of FIG. 12, the target temperatures of the rooms A2, A3, and B2 are the same, but needless to say, the target temperatures may be different for each room.
 次に、図10Aに示されるように、暖房システム制御部214は、地域熱供給業者100からSO信号を受信する(S301)。このSO信号には、SO開始時刻及びSO終了時刻を特定するための情報が含まれている。図12の例では、SO開始時刻を8時、SO終了時刻を9時とする。 Next, as shown in FIG. 10A, the heating system control unit 214 receives an SO signal from the district heat supplier 100 (S301). This SO signal includes information for specifying the SO start time and the SO end time. In the example of FIG. 12, the SO start time is 8:00 and the SO end time is 9:00.
 なお、「SO開始時刻及びSO終了時刻を特定するための情報」の具体例は特に限定されないが、例えば、「SO開始時刻:8時、SO終了時刻:9時」のように、SO開始時刻及びSO終了時刻そのものであってもよいし、「SO開始時刻:8時、SO時間:1時間」のように、SO開始時刻及びSO時間帯の長さを表す情報であってもよい。または、SO信号にはSO開始時刻が明示的に含まれず、SO信号の受信時刻をSO開始時刻としてもよい。この場合、SO信号には、SO終了時刻又はSO時間の長さを表す情報が含まれる。 A specific example of “information for specifying the SO start time and the SO end time” is not particularly limited. For example, “SO start time: 8 o'clock, SO end time: 9 o'clock”. And the SO end time itself, or information indicating the SO start time and the length of the SO time zone, such as “SO start time: 8 o'clock, SO time: 1 hour”. Alternatively, the SO signal may not explicitly include the SO start time, and the SO signal reception time may be the SO start time. In this case, the SO signal includes information indicating the SO end time or the length of the SO time.
 次に、暖房システム制御部214は、閾値温度決定処理を実行する(S302)。なお、実施の形態1では、全ての部屋に共通の閾値温度が決定される。この例では、閾値温度が19℃に決定されたとする。 Next, the heating system control unit 214 executes threshold temperature determination processing (S302). In the first embodiment, a threshold temperature common to all rooms is determined. In this example, it is assumed that the threshold temperature is determined to be 19 ° C.
 なお、実施の形態1における閾値温度は、例えば、暖房システム制御部214に予め設定されている固定値であってもよい。または、外気温度と閾値温度との対応関係を示すテーブルを暖房システム制御部214に保持させておき、外気温センサ213で検出された外気温度に対応する閾値温度を採用してもよい。この場合、テーブルに保持される外気温度と閾値温度との対応関係は、予め集合住宅112のある地域の過去の気象データ等を用いて、シミュレーションなどによって導出しておく必要がある。 In addition, the threshold temperature in Embodiment 1 may be a fixed value set in advance in the heating system control unit 214, for example. Alternatively, a table indicating a correspondence relationship between the outside air temperature and the threshold temperature may be held in the heating system control unit 214, and a threshold temperature corresponding to the outside air temperature detected by the outside air temperature sensor 213 may be employed. In this case, the correspondence relationship between the outside air temperature and the threshold temperature held in the table needs to be derived in advance by simulation or the like using past weather data in an area where the apartment house 112 is located.
 次に、暖房システム制御部214は、SO信号から取得したSO開始時刻及びSO終了時刻と、閾値温度決定処理で決定された閾値温度とを、各部屋の暖房装置制御部204に通知する(S303)。 Next, the heating system controller 214 notifies the SO start time and SO end time acquired from the SO signal and the threshold temperature determined in the threshold temperature determination process to the heating device controller 204 of each room (S303). ).
 次に、図11に示されるように、各部屋の暖房装置制御部204は、SO開始時刻、SO終了時刻、及び閾値温度を、暖房システム制御部214から取得する(S401)。 Next, as shown in FIG. 11, the heating device control unit 204 of each room acquires the SO start time, the SO end time, and the threshold temperature from the heating system control unit 214 (S401).
 次に、各部屋の暖房装置制御部204は、SO開始時刻(8時)が到来するのを待つ(S402)。そして、SO開始時刻が到来すると(S402でYES)、各部屋の暖房装置制御部204は、バルブ202を閉止する(S403)。すなわち、各部屋の暖房装置制御部204は、暖房装置の運転モードを第2のモードから停止モードに切り替える。その結果、8時以降の総放熱量は0になる。また、各部屋A2、A3、B2の室温は8時から徐々に低下する。 Next, the heating device control unit 204 in each room waits for the SO start time (8 o'clock) to arrive (S402). When the SO start time arrives (YES in S402), the heating device control unit 204 in each room closes the valve 202 (S403). That is, the heating device control unit 204 in each room switches the operation mode of the heating device from the second mode to the stop mode. As a result, the total heat release after 8:00 becomes zero. Moreover, the room temperature of each of the rooms A2, A3, B2 gradually decreases from 8 o'clock.
 次に、各部屋の暖房装置制御部204は、所定の時間間隔(例えば1秒)毎に室温センサ203から取得した室温と、ステップS401で取得した閾値温度とを比較する(S404)。そして、室温が閾値温度に達した場合(S404でYES)、暖房装置制御部204は、バルブ202を開放してラジエータ201に放熱を再開させる(S405)。具体的には、暖房装置制御部204は、暖房装置の運転モードを停止モードから第1のモードに切り替える。また、暖房装置制御部204は、放熱を再開したことを暖房システム制御部214に通知する(S406)。 Next, the heating device control unit 204 in each room compares the room temperature acquired from the room temperature sensor 203 at a predetermined time interval (for example, 1 second) with the threshold temperature acquired in step S401 (S404). When the room temperature reaches the threshold temperature (YES in S404), the heating device control unit 204 opens the valve 202 and causes the radiator 201 to resume heat dissipation (S405). Specifically, the heating device control unit 204 switches the operation mode of the heating device from the stop mode to the first mode. Moreover, the heating device control unit 204 notifies the heating system control unit 214 that heat radiation has been resumed (S406).
 図12は、暖房システムの制御処理が実行された場合において、部屋A2、A3、B2の室温変化及び総放熱量の推移を示す図である。横軸は時刻、縦軸は室温(℃)と総放熱量(W)とを示している。 FIG. 12 is a diagram showing a change in room temperature and a change in the total heat dissipation in the rooms A2, A3, and B2 when the heating system control process is executed. The horizontal axis represents time, and the vertical axis represents room temperature (° C.) and total heat release (W).
 図12の例では、部屋A3の室温が8時25分に閾値温度(19℃)に達する。そこで、まず、部屋A3の暖房装置(以下「暖房装置A3」と表記する)が放熱を再開する。その結果、図12に示されるように、部屋A3の室温が徐々に上昇する。また、8時25分以降の総放熱量は、暖房装置A3の放熱量に一致する。 In the example of FIG. 12, the room temperature of the room A3 reaches the threshold temperature (19 ° C.) at 8:25. Therefore, first, the heating device in the room A3 (hereinafter referred to as “heating device A3”) resumes heat radiation. As a result, as shown in FIG. 12, the room temperature of the room A3 gradually increases. Further, the total heat release after 8:25 coincides with the heat release of the heating device A3.
 次に、部屋A2の室温が8時35分に閾値温度に達し、部屋A2の暖房装置(以下「暖房装置A2」と表記する)が放熱を再開する。その結果、図12に示されるように、部屋A2の室温が徐々に上昇する。また、8時35分以降の総放熱量は、暖房装置A2、A3からの放熱量の合計に一致する。 Next, the room temperature of the room A2 reaches the threshold temperature at 8:35, and the heating device in the room A2 (hereinafter referred to as “heating device A2”) resumes heat radiation. As a result, as shown in FIG. 12, the room temperature of the room A2 gradually increases. Further, the total heat release after 8:35 coincides with the total heat release from the heating devices A2 and A3.
 次に、部屋A3の室温が8時48分に目標温度(21℃)に達すると、部屋A3の暖房装置制御部204は、暖房装置A3の運転モードを第1のモードから第2のモードに切り替える。その結果、部屋A3の室温は21℃に保たれる。また、8時48分以降の総放熱量は、暖房装置A3の運転モードを第1のモードから第2のモードに切り替えた分だけ減少する。 Next, when the room temperature of the room A3 reaches the target temperature (21 ° C.) at 8:48, the heating device control unit 204 of the room A3 changes the operation mode of the heating device A3 from the first mode to the second mode. Switch. As a result, the room temperature of the room A3 is kept at 21 ° C. Further, the total heat release after 8:48 is reduced by the amount of switching of the operation mode of the heating device A3 from the first mode to the second mode.
 次に、SO終了時刻である9時になると、室温が閾値温度に達したか否かにかかわらず、全ての部屋の暖房装置の放熱が再開される。図12の例では、暖房装置A2、A3の放熱は既に再開されているので、残りの部屋B2の暖房装置(以下「暖房装置B2」と表記する)が放熱を再開する。その結果、部屋B2の室温が徐々に上昇する。また、9時以降の総放熱量は暖房装置A2、A3、B2からの放熱量の合計に一致する。 Next, at 9 o'clock, which is the SO end time, heat radiation of the heating devices in all rooms is resumed regardless of whether the room temperature has reached the threshold temperature or not. In the example of FIG. 12, since the heat radiation of the heating devices A2 and A3 has already been resumed, the heating devices in the remaining room B2 (hereinafter referred to as “heating device B2”) resume the heat radiation. As a result, the room temperature of the room B2 gradually increases. Moreover, the total heat radiation after 9 o'clock corresponds to the total heat radiation from the heating devices A2, A3, B2.
 そして、部屋A2の室温が9時10分に目標温度に達し、次いで部屋B2の室温が9時50分に目標温度に達したことにより、全ての部屋の暖房装置の運転モードが、第2のモードに切り替わる。その結果、これ以降の部屋A2、A3、B2の室温は目標温度に保たれ、総放熱量はSO開始時刻以前の水準に戻る。 Then, the room temperature of the room A2 reaches the target temperature at 9:10, and then the room temperature of the room B2 reaches the target temperature at 9:50. Switch to mode. As a result, the room temperatures of the subsequent rooms A2, A3, and B2 are kept at the target temperature, and the total heat radiation returns to the level before the SO start time.
 上記のように、SO時間帯の終了前であっても、室温が閾値温度に達した部屋の暖房装置に放熱を再開させることにより、一部の部屋の室温が極端に低下するのを防止することができる。その結果、集合住宅112の各部屋の快適性を平準化することができる。 As described above, even before the end of the SO time period, the room heating apparatus in the room whose room temperature has reached the threshold temperature restarts heat dissipation, thereby preventing the room temperature in some rooms from being extremely lowered. be able to. As a result, the comfort of each room of the apartment house 112 can be leveled.
 また、SO開始時刻に全ての暖房装置の放熱を一旦停止させることにより、特にSO時間帯の前半の時間帯での放熱量を削減することができる。なお、SO時間帯の後半の時間帯では一部の暖房装置が放熱を再開するので、全ての暖房装置を完全に停止させる場合と比較すれば放熱量は増加するものの、通常運転(SO時間帯の制御を行わない場合)と比較すれば、放熱量の削減が期待できる。すなわち、実施の形態1によれば、総消費熱量の削減と各部屋の快適性の維持とをバランス良く両立することができる。 Also, by temporarily stopping the heat radiation of all the heating devices at the SO start time, it is possible to reduce the heat radiation amount especially in the first half of the SO time zone. In addition, since some heating devices resume heat radiation in the second half of the SO time zone, the amount of heat radiation increases compared to the case where all the heating devices are completely stopped, but normal operation (SO time zone) Compared to the case where the control is not performed), a reduction in the amount of heat radiation can be expected. That is, according to the first embodiment, it is possible to achieve a balance between the reduction of the total heat consumption and the maintenance of the comfort of each room.
 さらに、上記の制御を行うことにより、放熱再開のタイミングが暖房装置毎にバラバラになる。その結果、SO終了時刻に全ての暖房装置が一斉に第1のモードで放熱を再開するのを防止することができる。これにより、SO時間帯の終了直後に総消費熱量のピークが生じるのを防止することができる。 Furthermore, by performing the above control, the timing of resuming heat dissipation varies for each heating device. As a result, it is possible to prevent all the heating devices from restarting heat radiation in the first mode at the same time at the SO end time. Thereby, it is possible to prevent the peak of the total heat consumption from occurring immediately after the end of the SO time period.
 そして上記のように、SO時間帯及びSO時間帯終了直後における総消費熱量のピークが平準化されたことにより、地域熱供給業者100にとっては、ピーク時間帯に必要な熱量を賄うために、割高な燃料を用いて生熱する必要がなくなるメリットを享受できる。 As described above, since the peak of the total heat consumption immediately after the end of the SO time zone and the SO time zone has been leveled, the district heat supplier 100 has to pay a high price in order to cover the heat amount necessary for the peak time zone. You can enjoy the merit that you do not need to heat with the use of fresh fuel.
 次に、図10Bを参照して、暖房システム制御部214によって実行される抑制熱量通知処理を説明する。なお、この処理は、例えば図10Aの暖房システム制御処理と同時に実行されてもよいし、暖房システム制御処理終了後に実行されてもよい。また、この処理は、本発明に必須の処理ではなく、省略することができる。 Next, with reference to FIG. 10B, the suppressed heat amount notification process executed by the heating system control unit 214 will be described. In addition, this process may be performed simultaneously with the heating system control process of FIG. 10A, for example, and may be performed after the completion of the heating system control process. Further, this process is not an essential process of the present invention and can be omitted.
 まず、図10Bに示されるように、暖房システム制御部214は、集合住宅112周辺の外気温度を外気温センサ213から取得する(S311)。外気温度の取得タイミングは、例えば、SO開始時刻とすればよい。 First, as shown in FIG. 10B, the heating system control unit 214 acquires the outside air temperature around the apartment house 112 from the outside air temperature sensor 213 (S311). The outside temperature acquisition timing may be, for example, the SO start time.
 次に、暖房システム制御部214は、取得した外気温度を用いて、部屋毎の抑制熱量を予測する(S312)。抑制熱量は、外気温度と、SO時間帯の長さと、各部屋の断熱性能とによって変化する。そこで、暖房システム制御部214は、例えば、外気温度と、SO時間帯の長さと、抑制熱量との対応関係をシミュレーション等によって予め部屋毎に算出し、保持しておけばよい。 Next, the heating system control unit 214 predicts the suppression heat amount for each room using the acquired outside air temperature (S312). The amount of suppressed heat varies depending on the outside air temperature, the length of the SO time zone, and the heat insulation performance of each room. Therefore, for example, the heating system control unit 214 may calculate and hold the correspondence relationship between the outside air temperature, the length of the SO time zone, and the amount of suppressed heat for each room in advance by simulation or the like.
 次に、暖房システム制御部214は、各部屋の抑制熱量を合計することによって総抑制熱量を予測し(S313)、予測した総抑制熱量を通信回線を通じて地域熱供給業者100に通知する(S314)。この総抑制熱量は、例えば、図12のハッチングした領域の面積に相当する。これにより、地域熱供給業者100は、通知された総抑制熱量に基づいて、SO時間帯に生成する熱量を調整することができる。その結果、過剰な熱生成を回避することができる。 Next, the heating system control unit 214 predicts the total suppression heat amount by summing the suppression heat amount of each room (S313), and notifies the predicted total suppression heat amount to the district heat supplier 100 through the communication line (S314). . This total suppression heat amount corresponds to, for example, the area of the hatched region in FIG. Thus, the district heat supplier 100 can adjust the amount of heat generated in the SO time zone based on the notified total suppression heat amount. As a result, excessive heat generation can be avoided.
 以上の通り実施の形態1では、集合住宅112全体で消費される熱量(総消費熱量)を抑制しつつ、各部屋の特性に応じてラジエータ201を個別に制御することによって、ユーザの快適性を維持することができる。 As described above, in the first embodiment, the user's comfort is improved by individually controlling the radiator 201 according to the characteristics of each room while suppressing the amount of heat consumed by the entire apartment house 112 (total amount of heat consumed). Can be maintained.
 (実施の形態2)
 次に、図13を参照して、実施の形態2に係る暖房システムの制御処理の概要を説明する。なお、図8と共通する処理には同一の番号を付し、説明を省略する。図8と図13とは、閾値温度の算出方法(図8のS220と、図13のS221、S222)が相違し、その他の処理は共通する。具体的には、実施の形態2においては、外気温度から各部屋の室温低下速度を計算し(S221)、この室温低下速度に基づいて閾値温度を部屋毎に決定する(S222)。なお、実施の形態2では、ステップS211、S222を暖房システム制御部214が実行する。但し、上記の役割分担は一例であって、これに限定されない。
(Embodiment 2)
Next, with reference to FIG. 13, the outline of the control process of the heating system according to Embodiment 2 will be described. In addition, the same number is attached | subjected to the process which is common in FIG. 8, and description is abbreviate | omitted. 8 and 13 are different from each other in the threshold temperature calculation method (S220 in FIG. 8 and S221 and S222 in FIG. 13), and other processes are common. Specifically, in the second embodiment, the room temperature decrease rate of each room is calculated from the outside air temperature (S221), and the threshold temperature is determined for each room based on this room temperature decrease rate (S222). In the second embodiment, the heating system control unit 214 executes steps S211 and S222. However, the above division of roles is an example, and the present invention is not limited to this.
 図14及び図15を参照して、実施の形態2に係る閾値温度決定処理を詳しく説明する。図14は、暖房システム制御部214によって実行される閾値温度決定処理のフローチャートである。図15は、実施の形態2に係る暖房システムの制御処理が実行された場合において、図3に示される集合住宅112の部屋A2、A3、B2の温度変化及び総放熱量の推移を示す図である。 The threshold temperature determination processing according to the second embodiment will be described in detail with reference to FIGS. FIG. 14 is a flowchart of the threshold temperature determination process executed by the heating system control unit 214. FIG. 15 is a diagram showing changes in temperature and total heat dissipation in the rooms A2, A3, and B2 of the apartment house 112 shown in FIG. 3 when the control process of the heating system according to Embodiment 2 is executed. is there.
 なお、実施の形態2に係る暖房システムの構成は、図5、図7A、図7Bと共通するので、再度の説明は省略する。また、実施の形態1、2は、図10Aの閾値温度決定処理(S302)の内容のみが相違し、その他の処理は共通する。 In addition, since the structure of the heating system which concerns on Embodiment 2 is common in FIG.5, FIG.7A, FIG.7B, description for the second time is abbreviate | omitted. In the first and second embodiments, only the contents of the threshold temperature determination process (S302) in FIG. 10A are different, and other processes are common.
 まず、図14に示されるように、暖房システム制御部214は、集合住宅112周辺の外気温度を取得する(S501)。外気温度の取得タイミングは、例えば、SO開始時刻とすればよい。 First, as shown in FIG. 14, the heating system control unit 214 acquires the outside air temperature around the apartment house 112 (S501). The outside temperature acquisition timing may be, for example, the SO start time.
 次に、暖房システム制御部214は、放熱を停止した後の各部屋の温度低下速度を算出する(S502)。室温低下速度は、例えば、ステップS501で取得した外気温度と、予め保持している各部屋の断熱性能とに基づいて算出することができる。 Next, the heating system control unit 214 calculates the temperature decrease rate of each room after stopping heat dissipation (S502). The room temperature decrease rate can be calculated based on, for example, the outside air temperature acquired in step S501 and the heat insulation performance of each room that is held in advance.
 次に、暖房システム制御部214は、ステップS502で算出した温度低下速度に基づいて、閾値温度を部屋毎に算出する(S503)。より具体的には、暖房システム制御部214は、室温低下速度の速い部屋の閾値温度を相対的に高く設定し、室温低下速度の遅い部屋の閾値温度を相対的に低く設定する。 Next, the heating system control unit 214 calculates a threshold temperature for each room based on the temperature decrease rate calculated in step S502 (S503). More specifically, the heating system control unit 214 sets the threshold temperature of a room with a fast room temperature decrease rate relatively high, and sets the threshold temperature of a room with a low room temperature decrease rate relatively low.
 ここで、室温低下速度は、体感温度に大きく影響する。具体的には、室温低下速度が速い部屋は、室温低下速度が遅い部屋と同じ室温であったとしても寒く感じる。すなわち、図15の例では、部屋A3の体感温度が最も低く、部屋B2の体感温度が最も高いことになる。 Here, the room temperature drop rate greatly affects the temperature of the body. Specifically, a room with a fast room temperature decrease rate feels cold even if the room temperature is the same as a room with a slow room temperature decrease rate. That is, in the example of FIG. 15, the sensible temperature of the room A3 is the lowest and the sensible temperature of the room B2 is the highest.
 そこで、暖房システム制御部214は、部屋A3の閾値温度を部屋A2、B2より高く設定し、部屋A2の閾値温度を部屋B2より高く設定する。この例では、部屋A3の閾値温度が19℃、部屋A2の閾値温度が18℃、部屋B2の閾値温度が17℃に設定されたとする。その結果、部屋A2の放熱再開時刻が、図12の例では8時35分であったのに対して、図15の例では8時40分と5分遅くなっている。 Therefore, the heating system control unit 214 sets the threshold temperature of the room A3 higher than the rooms A2 and B2, and sets the threshold temperature of the room A2 higher than the room B2. In this example, it is assumed that the threshold temperature of the room A3 is set to 19 ° C., the threshold temperature of the room A2 is set to 18 ° C., and the threshold temperature of the room B2 is set to 17 ° C. As a result, the heat release restart time of the room A2 is 8:35 in the example of FIG. 12, but is 8 minutes and 40 minutes late in the example of FIG.
 このように、体感温度の低い(すなわち、室温低下速度が速い)部屋の閾値温度を相対的に高く設定することにより、室温があまり下がらないうちに放熱を再開することができる。一方、体感温度の高い(すなわち、室温低下速度が遅い)部屋の閾値温度を相対的に低く設定することにより、放熱再開を遅らせることができる。その結果、快適性の低い部屋では放熱量の削減より快適性の維持が優先され、快適性の高い部屋では放熱量の削減が重視される。すなわち、実施の形態2によれば、総消費熱量の削減と各部屋の快適性の維持とを、さらにバランス良く両立することができる。 As described above, by setting the threshold temperature of a room having a low sensible temperature (that is, having a fast room temperature decrease rate) to a relatively high temperature, heat radiation can be resumed before the room temperature decreases so much. On the other hand, resumption of heat release can be delayed by setting the threshold temperature of a room having a high body temperature (that is, a room temperature decreasing rate is slow) to be relatively low. As a result, in a room with low comfort, priority is given to maintaining comfort over reduction in heat dissipation, and reduction in heat dissipation is emphasized in rooms with high comfort. That is, according to the second embodiment, the reduction of the total heat consumption and the maintenance of the comfort of each room can be achieved in a balanced manner.
 (実施の形態3)
 次に、図16を参照して、実施の形態3に係る暖房システムの制御処理の概要を説明する。なお、図8と共通する処理には同一の番号を付し、説明を省略する。まず、図16の制御処理では、SO開始時刻からSO終了時刻まで全ての暖房装置の放熱を停止させるので、閾値温度を算出する処理(図8のS220)及び室温と閾値温度とを比較する処理(図8のS240)は必要ない。その一方で、図16の制御処理では、SO時間帯の終了時刻における各部屋の室温を取得し(S241)、取得した室温に基づいて暖房装置の放熱再開順序を決定する(S242)処理が新たに追加される。なお、実施の形態3では、ステップS241を暖房装置制御部204が実行し、ステップS242を暖房システム制御部214が実行する。但し、上記の役割分担は一例であって、これに限定されない。
(Embodiment 3)
Next, with reference to FIG. 16, the outline of the control processing of the heating system according to Embodiment 3 will be described. In addition, the same number is attached | subjected to the process which is common in FIG. 8, and description is abbreviate | omitted. First, in the control process of FIG. 16, since the heat radiation of all the heating devices is stopped from the SO start time to the SO end time, a process for calculating the threshold temperature (S220 in FIG. 8) and a process for comparing the room temperature with the threshold temperature. (S240 in FIG. 8) is not necessary. On the other hand, in the control process of FIG. 16, the room temperature of each room at the end time of the SO time zone is acquired (S241), and the heat release restart order of the heating device is determined based on the acquired room temperature (S242). To be added. In the third embodiment, step S241 is executed by the heating device control unit 204, and step S242 is executed by the heating system control unit 214. However, the above division of roles is an example, and the present invention is not limited to this.
 図17A、図17B、図18、及び図19を参照して、実施の形態3に係る暖房システムの制御方法を詳しく説明する。図17Aは、暖房システム制御部214によって実行される暖房システム制御処理のフローチャートである。図17Bは、暖房システム制御部214によって実行される運転条件決定処理のフローチャートである。図18は、各部屋の暖房装置制御部204によって実行される暖房装置制御処理のフローチャートである。図19は、実施の形態3に係る暖房システムの制御処理が実行された場合において、図3に示される集合住宅112の部屋A2、A3、B2の温度変化及び総放熱量の推移を示す図である。なお、実施の形態3に係る暖房システムの構成は、図5、図7A、図7Bと共通するので、再度の説明は省略する。 The control method of the heating system according to Embodiment 3 will be described in detail with reference to FIGS. 17A, 17B, 18, and 19. FIG. FIG. 17A is a flowchart of the heating system control process executed by the heating system control unit 214. FIG. 17B is a flowchart of the operating condition determination process executed by the heating system control unit 214. FIG. 18 is a flowchart of the heating device control process executed by the heating device control unit 204 in each room. FIG. 19 is a diagram illustrating changes in temperature and total heat dissipation in the rooms A2, A3, and B2 of the apartment house 112 illustrated in FIG. 3 when the control process of the heating system according to Embodiment 3 is performed. is there. In addition, since the structure of the heating system which concerns on Embodiment 3 is common in FIG.5, FIG.7A, FIG.7B, description for the second time is abbreviate | omitted.
 まず、図17Aに示されるように、暖房システム制御部214は、地域熱供給業者100からSO信号を受信する(S601)。この処理は、図10AのステップS301と共通する。そして、暖房システム制御部214は、SO信号から取得したSO開始時刻及びSO終了時刻を、各部屋の暖房装置制御部204に通知する(S602)。暖房システム制御部214は、ここまでの処理をSO開始時刻以前に実行する。 First, as shown in FIG. 17A, the heating system control unit 214 receives an SO signal from the district heat supplier 100 (S601). This process is common to step S301 in FIG. 10A. Then, the heating system control unit 214 notifies the heating device control unit 204 of each room of the SO start time and SO end time acquired from the SO signal (S602). The heating system control unit 214 executes the processes so far before the SO start time.
 次に、図18に示されるように、各部屋の暖房装置制御部204は、SO開始時刻及びSO終了時刻を、暖房システム制御部214から取得する(S701)。 Next, as shown in FIG. 18, the heating device control unit 204 of each room acquires the SO start time and the SO end time from the heating system control unit 214 (S701).
 次に、各部屋の暖房装置制御部204は、SO開始時刻(8時)が到来するのを待つ(S702)。そして、SO開始時刻が到来すると(S702でYES)、各部屋の暖房装置制御部204は、バルブ202を閉止する(S703)。すなわち、各部屋の暖房装置制御部204は、暖房装置の運転モードを第2のモードから停止モードに切り替える。その結果、8時以降の総放熱量は0になる。また、各部屋A2、A3、B2の室温は8時から徐々に低下する。 Next, the heating device control unit 204 in each room waits for the SO start time (8 o'clock) to arrive (S702). When the SO start time comes (YES in S702), the heating device control unit 204 in each room closes the valve 202 (S703). That is, the heating device control unit 204 in each room switches the operation mode of the heating device from the second mode to the stop mode. As a result, the total heat release after 8:00 becomes zero. Moreover, the room temperature of each of the rooms A2, A3, B2 gradually decreases from 8 o'clock.
 次に、各部屋の暖房装置制御部204は、SO終了時刻(9時)が到来するのを待つ(S704)。なお、実施の形態3では、SO時間帯に放熱を再開することがないので、図19に示されるように、SO時間帯における部屋A2、A3、B2の室温は、いずれも単調減少する。 Next, the heating device control unit 204 in each room waits for the arrival of the SO end time (9 o'clock) (S704). In the third embodiment, since heat radiation is not resumed in the SO time zone, as shown in FIG. 19, the room temperatures of the rooms A2, A3, and B2 in the SO time zone all monotonously decrease.
 そして、SO終了時刻が到来すると(S704でYES)、各部屋の暖房装置制御部204は、室温センサ203で検出された室温を暖房システム制御部214に通知する(S705)。図19の例では、SO終了時刻における部屋A3の室温が15℃、SO終了時刻における部屋A2の室温が16.5℃、SO終了時刻における部屋B2の室温が19℃であったとする。 When the SO end time comes (YES in S704), the heating device control unit 204 in each room notifies the heating system control unit 214 of the room temperature detected by the room temperature sensor 203 (S705). In the example of FIG. 19, it is assumed that the room temperature of the room A3 at the SO end time is 15 ° C., the room temperature of the room A2 at the SO end time is 16.5 ° C., and the room temperature of the room B2 at the SO end time is 19 ° C.
 次に、図17Aに戻って、暖房システム制御部214は、各部屋の暖房装置の運転条件を決定する(S603)。 Next, returning to FIG. 17A, the heating system control unit 214 determines the operating conditions of the heating device in each room (S603).
 具体的には、図17Bに示されるように、暖房システム制御部214は、SO終了時刻における各部屋の室温を取得する(S611)。すなわち、暖房システム制御部214は、各部屋の室温センサ203で検出されたSO終了時刻の室温を、各部屋の暖房装置制御部204を通じて取得する。 Specifically, as shown in FIG. 17B, the heating system control unit 214 acquires the room temperature of each room at the SO end time (S611). That is, the heating system control unit 214 acquires the room temperature at the SO end time detected by the room temperature sensor 203 of each room through the heating device control unit 204 of each room.
 次に、暖房システム制御部214は、各部屋に設置されている暖房装置の放熱再開順序を決定する(S612)。暖房システム制御部214は、例えば、目標温度とステップS611で取得した室温との差を部屋毎に算出し、この差が大きい部屋の暖房装置から順に放熱が再開されるように、放熱再開順序を決定すればよい。図19の例では、全ての部屋の目標温度が21℃であり、SO終了時刻における各部屋の室温は前述した通りであるので、部屋A3、部屋A2、部屋B3の順に放熱が再開されることになる。 Next, the heating system control unit 214 determines the heat release restart order of the heating devices installed in each room (S612). For example, the heating system control unit 214 calculates the difference between the target temperature and the room temperature acquired in step S611 for each room, and sets the heat dissipation restart order so that heat dissipation is restarted in order from the heating device in the room where the difference is large. Just decide. In the example of FIG. 19, since the target temperature of all the rooms is 21 ° C. and the room temperature of each room at the SO end time is as described above, heat radiation is resumed in the order of room A3, room A2, and room B3. become.
 なお、上記の方法で放熱再開順序を決定する場合、暖房システム制御部214は、各部屋の目標温度を暖房装置制御部204から取得する必要がある。目標温度の取得タイミングは特に限定されないが、例えば、ステップS611のタイミングで、SO終了時刻における室温と共に目標温度を取得してもよい。または、暖房システム制御部214は、暖房装置制御部204に新たな目標温度が設定されたタイミングで、当該新たな目標温度を暖房装置制御部204から取得し、記憶しておいてもよい。 In addition, when determining the heat radiation resumption order by the above method, the heating system control unit 214 needs to acquire the target temperature of each room from the heating device control unit 204. The target temperature acquisition timing is not particularly limited. For example, the target temperature may be acquired together with the room temperature at the SO end time at the timing of step S611. Alternatively, the heating system control unit 214 may acquire and store the new target temperature from the heating device control unit 204 at the timing when the new target temperature is set in the heating device control unit 204.
 また、図19の例では、全ての部屋の目標温度を同一(21℃)としたので、SO終了時刻における室温の低い部屋から順に放熱が再開されることになる。しかしながら、目標温度は部屋毎に異なってもよく、この場合には、SO終了時刻における室温が最も低い部屋から順に放熱が再開されるとは限らない。なぜなら、目標温度とステップS611で取得した室温との差を部屋毎に算出し、この差が大きい部屋の暖房装置から順に放熱が再開されるように、放熱再開順序を決定するからである。 In the example of FIG. 19, since the target temperature of all the rooms is the same (21 ° C.), heat radiation is resumed in order from the room with the lowest room temperature at the SO end time. However, the target temperature may be different for each room. In this case, heat radiation is not always resumed in order from the room with the lowest room temperature at the SO end time. This is because the difference between the target temperature and the room temperature acquired in step S611 is calculated for each room, and the heat radiation resumption order is determined so that heat radiation is resumed in order from the heating device in the room where the difference is large.
 次に、暖房システム制御部214は、各部屋の暖房装置の単位時間当たりの放熱量を決定する(S613)。単位時間当たりの放熱量の決定方法は特に限定されないが、例えば、放熱再開から目標温度に達するまでの時間が全ての部屋で同じ(図19の例では、5分間)になるようにしてもよい。すなわち、暖房システム制御部214は、SO終了時刻における室温と目標温度との差が大きい部屋の単位時間当たりの放熱量を相対的に大きく設定し、SO終了時刻における室温と目標温度との差が小さい部屋の単位時間当たりの放熱量を相対的に小さく設定すればよい。図19のこの例では、暖房装置A3の単位時間当たりの放熱量が最も大きく設定され、暖房装置B2の単位時間当たりの放熱量が最も小さく設定される。 Next, the heating system control unit 214 determines the heat radiation amount per unit time of the heating device in each room (S613). The method for determining the amount of heat radiation per unit time is not particularly limited. For example, the time from the restart of heat radiation until the target temperature is reached may be the same in all rooms (5 minutes in the example of FIG. 19). . That is, the heating system control unit 214 sets a relatively large amount of heat released per unit time in a room where the difference between the room temperature and the target temperature at the SO end time is large, and the difference between the room temperature and the target temperature at the SO end time What is necessary is just to set the heat dissipation amount per unit time of a small room relatively small. In this example of FIG. 19, the heat radiation amount per unit time of the heating device A3 is set to be the largest, and the heat radiation amount per unit time of the heating device B2 is set to the smallest.
 次に、暖房システム制御部214は、各部屋の暖房装置の放熱再開時刻を決定する(S614)。各暖房装置の放熱再開時刻は、複数の暖房装置が同時に第1のモードで放熱を行なわないように決定されるのが望ましい。すなわち、暖房システム制御部214は、第1のモードで放熱している暖房装置が設置されている部屋の室温が目標温度に達したタイミングで、次の暖房装置が第1のモードで放熱を再開するように、各暖房装置の放熱再開時刻を決定すればよい。 Next, the heating system control unit 214 determines the heat radiation restart time of the heating device in each room (S614). It is desirable that the heat release restart time of each heating device is determined so that the plurality of heating devices do not release heat simultaneously in the first mode. That is, the heating system control unit 214 resumes heat dissipation in the first mode when the room temperature of the room where the heating device that radiates heat in the first mode reaches the target temperature. As such, the heat release restart time for each heating device may be determined.
 図19の例では、SO終了時刻の9時に暖房装置A3で放熱が再開され、部屋A3が目標温度に達する9時5分に暖房装置A2で放熱が再開され、部屋A2が目標温度に達する9時10分に暖房装置B2で放熱が再開されるように、各暖房装置の放熱再開時刻が決定される。また、部屋A2、B2の暖房装置制御部204は、SO時刻終了後から各部屋A2、B2の放熱が再開されるまでの間は、SO終了時刻における室温を維持するように、各暖房装置を制御する。 In the example of FIG. 19, heat dissipation is resumed in the heating device A3 at 9 o'clock of the SO end time, heat dissipation is resumed in the heating device A2 at 9:05 when the room A3 reaches the target temperature, and the room A2 reaches the target temperature. The heat radiation restart time of each heating device is determined so that heat radiation is resumed at the heating device B2 at 10 minutes. In addition, the heating device control unit 204 in the rooms A2 and B2 sets each heating device so as to maintain the room temperature at the SO end time from the end of the SO time until the radiation of the rooms A2 and B2 is resumed. Control.
 次に、図17Aに再び戻って、暖房システム制御部214は、決定した運転条件を各部屋の暖房装置制御部204に通知する(S604)。具体的には、暖房システム制御部214は、放熱開始時刻と単位時間当たりの放熱量とを、運転条件として各部屋の暖房装置制御部204に通知すればよい。 Next, returning to FIG. 17A again, the heating system control unit 214 notifies the determined operating conditions to the heating device control unit 204 of each room (S604). Specifically, the heating system control unit 214 may notify the heating device control unit 204 of each room of the heat release start time and the heat release amount per unit time as operating conditions.
 次に、図18に戻って、各部屋の暖房装置制御部204は、暖房システム制御部214から運転条件を取得する(S706)。そして、各部屋の暖房装置制御部204は、取得した運転条件に従ってバルブ202を開放、すなわち、ラジエータ201からの放熱を再開する(S707)。 Next, returning to FIG. 18, the heating device control unit 204 of each room obtains the operating conditions from the heating system control unit 214 (S706). Then, the heating device control unit 204 in each room opens the valve 202 in accordance with the acquired operating condition, that is, resumes heat radiation from the radiator 201 (S707).
 図19の例では、部屋A3の暖房装置制御部204は、SO終了時刻である9時に暖房装置A3に第1のモードで放熱を再開させる。また、部屋A2、B2の暖房装置制御部204は、それぞれ部屋A2、B2の現在の室温を維持するために、暖房装置A2、B2に第2のモードで放熱を再開させてもよい。その結果、部屋A3の室温は徐々に増加し、部屋A2、B2の室温は一定に保たれる。 In the example of FIG. 19, the heating device control unit 204 in the room A3 causes the heating device A3 to resume heat radiation in the first mode at 9:00, which is the SO end time. Moreover, the heating device control unit 204 of the rooms A2 and B2 may cause the heating devices A2 and B2 to resume heat radiation in the second mode in order to maintain the current room temperatures of the rooms A2 and B2, respectively. As a result, the room temperature of the room A3 gradually increases, and the room temperatures of the rooms A2 and B2 are kept constant.
 次に、9時5分に部屋A3の室温が目標温度に達すると、部屋A3の暖房装置制御部204は、暖房装置A3の運転モードを第1のモードから第2のモードに切り替える。その結果、これ以降の部屋A3の室温は目標温度に保たれる。また、これと同時に、部屋A2の暖房装置制御部204は、暖房装置A2の運転モードを第2のモードから第1のモードに切り替える。その結果、部屋A2の室温は徐々に増加する。 Next, when the room temperature of the room A3 reaches the target temperature at 9:05, the heating device control unit 204 of the room A3 switches the operation mode of the heating device A3 from the first mode to the second mode. As a result, the room temperature of the subsequent room A3 is kept at the target temperature. At the same time, the heating device control unit 204 in the room A2 switches the operation mode of the heating device A2 from the second mode to the first mode. As a result, the room temperature of the room A2 gradually increases.
 次に、9時10分に部屋A2の室温が目標温度に達すると、部屋A2の暖房装置制御部204は、暖房装置A2の運転モードを第1のモードから第2のモードに切り替える。その結果、これ以降の部屋A2の室温は目標温度に保たれる。また、これと同時に、部屋B2の暖房装置制御部204は、暖房装置B2の運転モードを第2のモードから第1のモードに切り替える。その結果、部屋B2の室温は徐々に増加する。 Next, when the room temperature of the room A2 reaches the target temperature at 9:10, the heating device control unit 204 of the room A2 switches the operation mode of the heating device A2 from the first mode to the second mode. As a result, the room temperature of the subsequent room A2 is kept at the target temperature. At the same time, the heating device control unit 204 in the room B2 switches the operation mode of the heating device B2 from the second mode to the first mode. As a result, the room temperature of the room B2 gradually increases.
 そして、9時15分に部屋B2の室温が目標温度に達すると、部屋B2の暖房装置制御部204は、暖房装置B2の運転モードを第1のモードから第2のモードに切り替える。その結果、これ以降の部屋B2の室温は目標温度に保たれる。また、これ以降の総放熱量は、SO開始時刻以前の水準に戻る。 When the room temperature of the room B2 reaches the target temperature at 9:15, the heating device control unit 204 of the room B2 switches the operation mode of the heating device B2 from the first mode to the second mode. As a result, the room temperature of the subsequent room B2 is kept at the target temperature. Further, the total amount of heat released thereafter returns to the level before the SO start time.
 上記のように、SO時間帯に全ての暖房装置を停止させることにより、消費熱量のピークを平準化することができる。また、SO終了時刻に全ての暖房装置を一斉に再稼動させないので、SO終了直後に総消費熱量のピークが生じることも防止できる。 As mentioned above, the peak of the heat consumption can be leveled by stopping all the heating devices in the SO time zone. In addition, since all the heating devices are not restarted at the same time at the SO end time, it is possible to prevent the peak of the total heat consumption from occurring immediately after the SO end.
 さらに、SO終了時刻における室温と目標温度との差が大きい部屋の暖房装置から順に再稼動させるので、各部屋の快適性を平準化することができる。ここで、「SO終了時刻における室温と目標温度との差が大きい部屋」とは、室温低下速度が速い部屋のことを指す。すなわち、前述したように、体感温度が低い(快適性が低い)部屋の暖房装置から順に再稼動させることになる。 Furthermore, since the room heating devices in the room where the difference between the room temperature and the target temperature at the SO end time is large are restarted in order, the comfort of each room can be leveled. Here, the “room where the difference between the room temperature and the target temperature at the SO end time is large” refers to a room where the room temperature decrease rate is fast. In other words, as described above, the room heating devices are restarted in order from the room temperature at which the sensible temperature is low (comfort is low).
 (その他の実施の形態)
 なお、本発明を上記実施の形態に基づいて説明してきたが、本発明は、上記の実施の形態に限定されないのはもちろんである。以下のような場合も本発明に含まれる。
(Other embodiments)
Although the present invention has been described based on the above embodiment, it is needless to say that the present invention is not limited to the above embodiment. The following cases are also included in the present invention.
 上記の各装置は、具体的には、マイクロプロセッサ、ROM、RAM、ハードディスクユニット、ディスプレイユニット、キーボード、マウスなどから構成されるコンピュータシステムである。RAMまたはハードディスクユニットには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、各装置は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されたものである。 Each of the above devices is specifically a computer system including a microprocessor, ROM, RAM, a hard disk unit, a display unit, a keyboard, a mouse, and the like. A computer program is stored in the RAM or the hard disk unit. Each device achieves its functions by the microprocessor operating according to the computer program. Here, the computer program is configured by combining a plurality of instruction codes indicating instructions for the computer in order to achieve a predetermined function.
 上記の各装置を構成する構成要素の一部または全部は、1個のシステムLSI(大規模集積回路)から構成されているとしてもよい。システムLSIは、複数の構成要素を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。RAMには、コンピュータプログラムが記憶さている。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、システムLSIは、その機能を達成する。 Some or all of the constituent elements constituting each of the above-described devices may be constituted by one system LSI (Large Scale Integrated circuit). The system LSI is a super multifunctional LSI manufactured by integrating a plurality of components on one chip, and specifically, a computer system including a microprocessor, a ROM, a RAM, and the like. . A computer program is stored in the RAM. The system LSI achieves its functions by the microprocessor operating according to the computer program.
 上記の各装置を構成する構成要素の一部または全部は、各装置に脱着可能なICカードまたは単体のモジュールから構成されているとしてもよい。ICカードまたはモジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。ICカードまたはモジュールは、上記の超多機能LSIを含むとしてもよい。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、ICカードまたはモジュールは、その機能を達成する。このICカードまたはこのモジュールは、耐タンパ性を有してもよい。 Some or all of the constituent elements constituting each of the above devices may be constituted by an IC card that can be attached to and detached from each device or a single module. The IC card or module is a computer system that includes a microprocessor, ROM, RAM, and the like. The IC card or the module may include the super multifunctional LSI described above. The IC card or the module achieves its functions by the microprocessor operating according to the computer program. This IC card or this module may have tamper resistance.
 本発明は、上記に示す方法であるとしてもよい。また、これらの方法をコンピュータにより実現するコンピュータプログラムであってもよいし、コンピュータプログラムからなるデジタル信号であってもよい。 The present invention may be the method described above. Moreover, the computer program which implement | achieves these methods with a computer may be sufficient, and the digital signal which consists of a computer program may be sufficient.
 また、本発明は、コンピュータプログラムまたはデジタル信号をコンピュータ読み取り可能な記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray Disc)、半導体メモリなどに記録してもよい。また、これらの記録媒体に記録されているデジタル信号であるとしてもよい。 The present invention also relates to a computer-readable recording medium capable of reading a computer program or a digital signal, such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray Disc), It may be recorded in a semiconductor memory or the like. Further, it may be a digital signal recorded on these recording media.
 また、本発明は、コンピュータプログラムまたはデジタル信号を、電気通信回線、無線または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送してもよい。 In the present invention, a computer program or a digital signal may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, a data broadcast, or the like.
 また、本発明は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、メモリは、上記コンピュータプログラムを記憶しており、マイクロプロセッサは、コンピュータプログラムにしたがって動作してもよい。 Further, the present invention is a computer system including a microprocessor and a memory. The memory stores the computer program, and the microprocessor may operate according to the computer program.
 また、プログラムまたはデジタル信号を記録媒体に記録して移送することにより、またはプログラムまたはデジタル信号をネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施してもよい。 Also, the program or digital signal may be recorded on a recording medium and transferred, or the program or digital signal may be transferred via a network or the like, and may be implemented by another independent computer system.
 上記実施の形態及び上記変形例をそれぞれ組み合わせてもよい。 The above embodiment and the above modifications may be combined.
 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。 As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.
 本発明は、複数の暖房装置を備える暖房システムに有利に利用される。 The present invention is advantageously used in a heating system including a plurality of heating devices.
 10 暖房システム
 20 制御部
 21 通信部
 22 検出部
 23 運転制御部
 24 予測部
 31,32,33,34,35,36 暖房装置
 100 地域熱供給業者
 101 工場
 102 発電所
 110 地域熱消費者
 111 戸建て住宅
 112 集合住宅
 201 ラジエータ
 202 バルブ
 203 室温センサ
 204 暖房装置制御部
 210 熱交換器
 211 熱量計
 212 ポンプ
 213 外気温センサ
 214 暖房システム制御部
DESCRIPTION OF SYMBOLS 10 Heating system 20 Control part 21 Communication part 22 Detection part 23 Operation control part 24 Prediction part 31,32,33,34,35,36 Heating apparatus 100 District heat supplier 101 Factory 102 Power plant 110 District heat consumer 111 Detached house DESCRIPTION OF SYMBOLS 112 Apartment house 201 Radiator 202 Valve 203 Room temperature sensor 204 Heating apparatus control part 210 Heat exchanger 211 Calorimeter 212 Pump 213 Outside air temperature sensor 214 Heating system control part

Claims (11)

  1.  複数の部屋それぞれに設置され、熱供給源で生成された熱を放熱することによって、設置された部屋を暖房する複数の暖房装置を制御する暖房システムの制御方法であって、
     前記複数の暖房装置からの放熱を抑制することを要求する放熱抑制指示を、前記熱供給源から取得する取得ステップと、
     前記取得ステップで前記放熱抑制指示を取得したことに応じて、前記複数の暖房装置の放熱を停止させる放熱停止ステップと、
     前記複数の部屋それぞれの室温を検出する検出ステップと、
     前記検出ステップで検出された室温に応じて、各部屋に設置されている前記暖房装置の放熱を個別に再開させる放熱再開ステップとを含む
     暖房システムの制御方法。
    A control method for a heating system that controls a plurality of heating devices that are installed in each of a plurality of rooms and that heats the generated rooms by radiating heat generated by a heat supply source,
    An acquisition step of acquiring, from the heat supply source, a heat dissipation suppression instruction that requests suppression of heat dissipation from the plurality of heating devices;
    In response to obtaining the heat radiation suppression instruction in the obtaining step, a heat radiation stopping step for stopping heat radiation of the plurality of heating devices;
    A detecting step for detecting a room temperature of each of the plurality of rooms;
    A heating system control method comprising: a heat dissipation restarting step of individually restarting heat dissipation of the heating device installed in each room according to the room temperature detected in the detection step.
  2.  前記複数の暖房装置それぞれには、予め目標温度が設定されており、
     前記放熱再開ステップでは、前記検出ステップで検出された室温が予め定められた閾値温度に達した部屋から順に、室温を前記目標温度まで上昇させる第1のモードで前記暖房装置に放熱を再開させる
     請求項1に記載の暖房システムの制御方法。
    A target temperature is set in advance for each of the plurality of heating devices,
    In the heat dissipation restarting step, the heating device restarts heat dissipation in a first mode in which the room temperature is increased to the target temperature in order from the room in which the room temperature detected in the detection step has reached a predetermined threshold temperature. Item 2. A heating system control method according to Item 1.
  3.  該暖房システムの制御方法は、さらに、前記複数の暖房装置それぞれに設定される前記目標温度を個別に決定する閾値温度決定ステップを含み、
     前記閾値温度決定ステップでは、設置されている部屋の室温低下速度が速いほど前記閾値温度が高くなるように、前記複数の暖房装置それぞれの前記閾値温度を個別に決定する
     請求項2に記載の暖房システムの制御方法。
    The control method of the heating system further includes a threshold temperature determining step for individually determining the target temperature set for each of the plurality of heating devices,
    3. The heating according to claim 2, wherein in the threshold temperature determination step, the threshold temperature of each of the plurality of heating devices is individually determined so that the threshold temperature becomes higher as the room temperature decrease rate of the installed room is faster. How to control the system.
  4.  該暖房システムの制御方法は、さらに、
     前記放熱抑制指示によって抑制される放熱量である抑制熱量を、前記暖房装置毎に予測する予測ステップと、
     前記予測ステップで予測された前記暖房装置毎の抑制熱量の合計である総抑制熱量を、前記熱供給源に通知する通知ステップとを含む
     請求項1~3のいずれか1項に記載の暖房システムの制御方法。
    The method for controlling the heating system further includes:
    A prediction step of predicting, for each heating device, a suppression heat amount that is a heat dissipation amount suppressed by the heat dissipation suppression instruction;
    The heating system according to any one of claims 1 to 3, further comprising a notification step of notifying the heat supply source of a total suppression heat amount that is a sum of suppression heat amounts for each of the heating devices predicted in the prediction step. Control method.
  5.  前記複数の暖房装置それぞれには、予め目標温度が設定されており、
     前記取得ステップで取得される前記放熱抑制指示は、放熱の抑制を終了する時刻である抑制終了時刻を特定する情報を含み、
     前記放熱再開ステップでは、前記検出ステップで検出された前記抑制終了時刻における室温と前記目標温度との差が大きい部屋から順に、室温を前記目標温度まで上昇させる第1のモードで前記暖房装置に放熱を再開させる
     請求項1に記載の暖房システムの制御方法。
    A target temperature is set in advance for each of the plurality of heating devices,
    The heat dissipation suppression instruction acquired in the acquisition step includes information for specifying a suppression end time, which is a time at which suppression of heat dissipation ends.
    In the heat radiation restarting step, heat is radiated to the heating device in a first mode in which the room temperature is increased to the target temperature in order from the room where the difference between the room temperature and the target temperature detected at the detection end time is large. The method for controlling the heating system according to claim 1.
  6.  前記放熱再開ステップでは、前記複数の暖房装置それぞれに、前記抑制終了時刻から前記第1のモードで放熱を再開するまでの間、前記抑制終了時刻における室温を維持する第2のモードで放熱させる
     請求項5に記載の暖房システムの制御方法。
    In the heat dissipation restarting step, each of the plurality of heating devices is caused to dissipate heat in a second mode that maintains the room temperature at the suppression end time from the suppression end time to when heat dissipation is restarted in the first mode. Item 6. A heating system control method according to Item 5.
  7.  前記放熱再開ステップでは、前記第1のモードで放熱している前記暖房装置が設置されている部屋の室温が前記目標温度に達したタイミングで、次の前記暖房装置に前記第1のモードで放熱を再開させる
     請求項5又は6に記載の暖房システムの制御方法。
    In the heat radiation resuming step, heat is radiated to the next heating device in the first mode at a timing when the room temperature of the room where the heating device that is radiating heat in the first mode reaches the target temperature. The control method of the heating system according to claim 5 or 6.
  8.  前記放熱再開ステップでは、前記抑制終了時刻における室温と前記目標温度との差が大きい程、前記第1のモードで放熱する前記暖房装置の単位時間当たりの放熱量を増加させる
     請求項5~7のいずれか1項に記載の暖房システムの制御方法。
    The heat dissipation restarting step increases the heat dissipation amount per unit time of the heating device that radiates heat in the first mode, as the difference between the room temperature and the target temperature at the suppression end time is larger. The heating system control method according to claim 1.
  9.  熱供給源で生成された熱で複数の部屋それぞれを暖房する暖房システムであって、
     前記複数の部屋それぞれに設置される複数の暖房装置と、
     前記複数の暖房装置それぞれの運転を制御する制御部とを備え、
     前記制御部は、
     前記複数の暖房装置からの放熱を抑制することを要求する放熱抑制指示を、前記熱供給源から取得する取得部と、
     前記複数の部屋それぞれの室温を検出する検出部と、
     前記取得部で前記放熱抑制指示を取得したことに応じて、前記複数の暖房装置の放熱を停止させ、前記検出部で検出された室温に応じて、各部屋に設置されている前記暖房装置の放熱を個別に再開させる運転制御部とを備える
     暖房システム。
    A heating system for heating each of a plurality of rooms with heat generated by a heat supply source,
    A plurality of heating devices installed in each of the plurality of rooms;
    A control unit for controlling the operation of each of the plurality of heating devices,
    The controller is
    An acquisition unit that acquires, from the heat supply source, a heat dissipation suppression instruction that requests to suppress heat dissipation from the plurality of heating devices;
    A detector for detecting the room temperature of each of the plurality of rooms;
    In response to the acquisition of the heat dissipation suppression instruction by the acquisition unit, the heat dissipation of the plurality of heating devices is stopped, and according to the room temperature detected by the detection unit, the heating device installed in each room A heating system including an operation control unit that individually resumes heat dissipation.
  10.  前記制御部は、
     前記取得部と、前記運転制御部の一部に相当する第1運転制御部とを備える第1制御部と、
     前記検出部と、前記運転制御部の他の一部に相当する第2運転制御部とを備え、部屋毎に設けられる第2制御部とで構成される
     請求項9に記載の暖房システム。
    The controller is
    A first control unit comprising the acquisition unit and a first operation control unit corresponding to a part of the operation control unit;
    The heating system according to claim 9, comprising the detection unit and a second operation control unit corresponding to another part of the operation control unit, and a second control unit provided for each room.
  11.  前記複数の暖房装置それぞれには、予め目標温度が設定されており、
     前記第1運転制御部は、前記取得部で取得された前記放熱抑制指示に含まれる放熱抑制開始時刻と、室温の下限値を示す閾値温度とを各部屋の前記第2制御部に送信し、
     前記第2運転制御部は、
     前記第1運転制御部から取得した前記放熱抑制開始時刻に、前記暖房装置の放熱を停止させ、
     前記検出部で検出された室温が前記第1運転制御部から取得した前記閾値温度に達した場合に、室温を前記目標温度まで上昇させる第1のモードで前記暖房装置に放熱を再開させる
     請求項10に記載の暖房システム。
    A target temperature is set in advance for each of the plurality of heating devices,
    The first operation control unit transmits a heat release suppression start time included in the heat release suppression instruction acquired by the acquisition unit and a threshold temperature indicating a lower limit value of a room temperature to the second control unit of each room,
    The second operation controller is
    At the heat radiation suppression start time acquired from the first operation control unit, the heat radiation of the heating device is stopped,
    When the room temperature detected by the detection unit reaches the threshold temperature acquired from the first operation control unit, the heating device resumes heat radiation in a first mode in which the room temperature is increased to the target temperature. The heating system according to 10.
PCT/JP2012/006700 2011-10-25 2012-10-19 Heating system and method for controlling heating system WO2013061554A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012800032590A CN103180670A (en) 2011-10-25 2012-10-19 Heating system and method for controlling heating system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011234417A JP5853162B2 (en) 2011-10-25 2011-10-25 Heating system and heating system control method
JP2011-234417 2011-10-25

Publications (1)

Publication Number Publication Date
WO2013061554A1 true WO2013061554A1 (en) 2013-05-02

Family

ID=48167410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006700 WO2013061554A1 (en) 2011-10-25 2012-10-19 Heating system and method for controlling heating system

Country Status (3)

Country Link
JP (1) JP5853162B2 (en)
CN (1) CN103180670A (en)
WO (1) WO2013061554A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105371355B (en) * 2014-08-25 2018-01-16 珠海格力电器股份有限公司 Floor heating temperature control method of water and system
GB2544063B (en) * 2015-11-03 2018-04-11 Basic Holdings Distributed heat pump network
EP3339753A1 (en) * 2016-12-22 2018-06-27 Netatmo System and method for enforcing a manual temperature setpoint within a smart thermal management system
JP7237357B2 (en) * 2019-09-19 2023-03-13 株式会社総合設備コンサルタント Heat source water network system and controller for heat source water network system
CN112556115A (en) * 2020-12-04 2021-03-26 珠海格力电器股份有限公司 Method, device and system for temperature control and computer readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115851U (en) * 1974-03-06 1975-09-20
JPH01134133A (en) * 1987-11-19 1989-05-26 Agency Of Ind Science & Technol Device for reservation of supplying hot water
DE4221094A1 (en) 1992-06-26 1994-01-05 Buderus Heiztechnik Gmbh Room temp. control in central heating system - uses remote controller to transfer program data to receivers mounted on radiator thermostat valves
JPH07217917A (en) * 1994-01-24 1995-08-18 Tokyo Gas Co Ltd Central heating/hot water supply system
JPH1054590A (en) * 1996-08-09 1998-02-24 Kajima Corp Receiving equipment of district cooling-heating system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115851U (en) * 1974-03-06 1975-09-20
JPH01134133A (en) * 1987-11-19 1989-05-26 Agency Of Ind Science & Technol Device for reservation of supplying hot water
DE4221094A1 (en) 1992-06-26 1994-01-05 Buderus Heiztechnik Gmbh Room temp. control in central heating system - uses remote controller to transfer program data to receivers mounted on radiator thermostat valves
JPH07217917A (en) * 1994-01-24 1995-08-18 Tokyo Gas Co Ltd Central heating/hot water supply system
JPH1054590A (en) * 1996-08-09 1998-02-24 Kajima Corp Receiving equipment of district cooling-heating system

Also Published As

Publication number Publication date
JP5853162B2 (en) 2016-02-09
JP2013092299A (en) 2013-05-16
CN103180670A (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5909684B2 (en) Heating system and heating system control method
JP5025834B2 (en) Operation planning method, operation planning device, operation method of heat pump hot water supply system, and operation method of heat pump hot water supply heating system
JP5958912B2 (en) Heating system control method and heating system
JP6133774B2 (en) System and method for establishing on-site control of an air conditioning load during a direct load control event
JP5853162B2 (en) Heating system and heating system control method
JP5899482B2 (en) Heating device control method and control device
JP6240900B2 (en) HEAT PUMP CONTROL DEVICE AND HEAT PUMP CONTROL DEVICE CONTROL METHOD
JP6052675B2 (en) HEAT PUMP SYSTEM CONTROL DEVICE, HEAT PUMP SYSTEM, AND HEAT PUMP SYSTEM CONTROL METHOD
JP2008286445A (en) Set value management method and device
EP2511618B1 (en) Air conditioning system and air conditioning method
US20160290673A1 (en) Apparatus and method for adaptively applying central hvac system and individual hvac system
JP5090580B1 (en) Heating system and heating system control method
JP5820998B2 (en) Heating system control method and heating system
JP2012233620A (en) Air conditioning apparatus, air conditioning method, and program
JP5899484B2 (en) Heat pump heating system control method and heating system
JP7215069B2 (en) Control program, control method and control device
JP2020067207A (en) Control program, control method and control device
JP6979606B2 (en) Air conditioner control device, air conditioner control method, and program
JP2015105816A (en) Air conditioning system and program for air conditioning system
JP5938744B2 (en) Heat pump heating system control method and heating system
JP2015183927A (en) Solar heat storage control device, solar heat storage system and control program
KR20130028497A (en) Apparatus and method for thermostat control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE