WO2013059983A1 - 一种动态带宽分配方法和装置 - Google Patents

一种动态带宽分配方法和装置 Download PDF

Info

Publication number
WO2013059983A1
WO2013059983A1 PCT/CN2011/081225 CN2011081225W WO2013059983A1 WO 2013059983 A1 WO2013059983 A1 WO 2013059983A1 CN 2011081225 W CN2011081225 W CN 2011081225W WO 2013059983 A1 WO2013059983 A1 WO 2013059983A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
allocation period
length
allocation
optical network
Prior art date
Application number
PCT/CN2011/081225
Other languages
English (en)
French (fr)
Inventor
蒋代林
Original Assignee
深圳市海思半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市海思半导体有限公司 filed Critical 深圳市海思半导体有限公司
Priority to EP11862846.0A priority Critical patent/EP2608438B1/en
Priority to PCT/CN2011/081225 priority patent/WO2013059983A1/zh
Priority to CN201180002756.4A priority patent/CN102439922B/zh
Publication of WO2013059983A1 publication Critical patent/WO2013059983A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers

Definitions

  • the present invention relates to the field of communications, and in particular, to a dynamic bandwidth allocation method and apparatus. Background technique
  • the PON consists of an OLT (Optical Line Termination), an ONU (Optical Network Unit), and an ODN (Optical Distribution Network) in the middle.
  • OLT Optical Line Termination
  • ONU Optical Network Unit
  • ODN Optical Distribution Network
  • the OLT sends a Grant (Authorization) to each ONU to notify the ONU of the start time and length of the data.
  • Grant Authorization
  • the data is sent to the OLT, and the process of delivering the Grant is bandwidth allocation.
  • a cyclic DBA Dynamic Bandwidth Allocation
  • This method sends a report (bandwidth request) to the OLT through all the ONUs.
  • the OLT dynamically allocates bandwidth for each ONU based on the Report and SLA (Service Level Agreement) sent by the ONU collected in the previous cycle.
  • SLA Service Level Agreement
  • the OLT sends the Grant to the ONU to receive the Grant delay and the ONU uses the Grant to send data to the OLT to receive data.
  • the delay of the prior art is therefore ensured by the delay compensation to ensure that each ONU effectively utilizes Grant.
  • the method of delay compensation is to use the end point of Max_RTT (Max Round Trip Time) as the received ONU specified in the Grant. The start time of the data.
  • the embodiment of the present invention provides a dynamic bandwidth allocation method and apparatus, and the technical solution is as follows:
  • an embodiment of the present invention provides a dynamic bandwidth allocation method, where the method includes:
  • the calculated bandwidth is sent to the optical network unit to receive data sent by the optical network unit at the beginning of the Nth allocation period after the current allocation period.
  • an embodiment of the present invention further provides a dynamic bandwidth allocation apparatus, where the apparatus includes: an obtaining module, configured to acquire a bandwidth request from an optical network unit collected in a last allocation period;
  • a calculation module configured to calculate, according to the bandwidth request acquired by the acquiring module, a bandwidth allocated by the current allocation period to all the optical network units, where a starting time of the bandwidth is a starting point of an Nth allocation period after the current allocation period, N is a natural number;
  • a sending module configured to send the bandwidth calculated by the calculating module to the optical network unit, to receive, by using the optical network unit, a starting point of an Nth allocation period after a current allocation period data.
  • the bandwidth allocated for the current allocation period is calculated according to the bandwidth request collected in the previous allocation period, and the starting time of the bandwidth is the Nth after the current allocation period.
  • the starting point of the allocation period is such that the calculated bandwidth is located in the corresponding allocation period, and the time when the ONU sends the data and the bandwidth request according to the time slice in the allocated bandwidth to the OLT is located after the starting point of the corresponding allocation period and ends at the allocation period.
  • FIG. 1 is a schematic diagram of the architecture of a PON system
  • 2 is a flowchart of a dynamic bandwidth allocation method according to Embodiment 1 of the present invention
  • FIG. 3a is a flowchart of a dynamic bandwidth allocation method according to Embodiment 2 of the present invention.
  • Figure 3b is a schematic diagram of an application of Embodiment 2 of the present invention.
  • FIG. 4a is a flowchart of a dynamic bandwidth allocation method according to Embodiment 3 of the present invention.
  • Figure 4b is a schematic diagram of an application of Embodiment 3 of the present invention.
  • FIG. 5 is a schematic diagram of a dynamic bandwidth allocation apparatus according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic diagram of a dynamic bandwidth allocation apparatus according to Embodiment 5 of the present invention. Detailed ways
  • the PON system is a broadband access network architecture that can use the passive ODN to assist the OLT in broadband communication with ONUs of multiple clients.
  • the PON system is mainly composed of the OLT of the central office, the ONU of multiple users, and the intermediate ODN.
  • the ODN implements an optical path between an OLT and multiple ONUs, and the optical path carrier is an optical fiber.
  • the dynamic bandwidth allocation method and apparatus employed by the PON system will be described in detail below.
  • an embodiment of the present invention provides a dynamic bandwidth allocation method, which includes the following steps:
  • N can be determined according to the following inequality:
  • N is also referred to as an authorization delay.
  • the ONU sends data and bandwidth requests using the bandwidth allocated by the current period in the Nth allocation period after the current allocation period. Therefore, for the ONU, the current allocation period.
  • the subsequent Nth allocation period may also be referred to as the Nth upload period after the current allocation period.
  • the time that the OLT delivers the calculated bandwidth is after the bandwidth calculation is completed, and the calculated bandwidth is Before the start time minus Max_RTT, this ensures that each ONU can receive the delivered bandwidth in advance, so that the specified time slice can be used to send data and bandwidth requests.
  • the OLT can then allocate the Nth after the current allocation period. The data sent by the ONU is received at the beginning of the cycle.
  • the OLT sends the calculated bandwidth to the ONU before the start of the next allocation period, thereby reducing the delay of the ONU sending data and the bandwidth request, and improving the bandwidth utilization. More preferably, the OLT can send the bandwidth to the ONU immediately after the calculation is completed.
  • the bandwidth allocated by the current allocation period is calculated according to the bandwidth request collected in the previous allocation period, and the starting time of the bandwidth is the starting point of the Nth allocation period after the current allocation period.
  • the time is such that the calculated bandwidth is located in the corresponding allocation period, and the time when the ONU sends the data and the bandwidth request according to the time slice in the bandwidth to the OLT is located after the start point of the corresponding allocation period and before the end of the allocation period,
  • the embodiment of the present invention provides a method for allocating a dynamic bandwidth.
  • the method provided by the embodiment of the present invention is described in detail, in which the length of the allocation period is fixed, and the length of each allocation period is equal. As shown in 3a, it includes the following steps:
  • N is not limited in this embodiment.
  • N may be determined according to the following inequality:
  • the bandwidth allocated for all ONUs in the current allocation period may be calculated according to the bandwidth request and the bandwidth allocated within N allocation periods before the current allocation period.
  • r(n) represents the bandwidth requested by the ONU to the OLT in the bandwidth request collected in the nth allocation period
  • g(n) represents the bandwidth allocated by the OLT to the ONU in the nth allocation period.
  • the ONU will use the bandwidth g(n) allocated by the OLT for the ONU during the nth allocation period in the n+Nth upload period.
  • a(n) is the input traffic of the ONU during the nth allocation period, and the input traffic is the upload traffic input by the terminal device to the ONU.
  • the ONU sends r(n) to the OLT according to the received input traffic a(n), so for the OLT, a(n) is invisible, and the bandwidth required by the ONU is represented by r(n). of.
  • r(n) a(n)+r(n-l)-g(n-N), (3)
  • the bandwidth applied by the ONU in the nth cycle is equal to the sum of the input traffic received in the nth cycle and the bandwidth applied by the ONU in the n-1th cycle minus the bandwidth g (nN) already used in the nth cycle.
  • g (nN) represents the bandwidth allocated by the OLT to the ONU during the nNth allocation period
  • g (nN) is equal to the bandwidth of the present embodiment.
  • the time that the OLT delivers the calculated bandwidth is after the bandwidth calculation is completed, and before the start time of the calculated bandwidth is subtracted from the Max_RTT, so that the ONU can receive the delivered bandwidth in advance.
  • the data and bandwidth request can be effectively transmitted using the specified time slice, and the OLT can receive the data sent by the ONU and the new bandwidth request at the beginning of the Nth allocation period after the current allocation period.
  • the OLT sends the calculated bandwidth to the ONU before the start of the next allocation period, thereby reducing the delay of the ONU sending data and the bandwidth request, and improving the bandwidth utilization. More preferably, the OLT can send the bandwidth to the ONU immediately after the calculation is completed.
  • the bandwidth request r(n-1) for collecting the n-1th allocation period Cycle(n-1) is completed, and the calculation of the allocated bandwidth is started.
  • the allocation bandwidth is calculated based on the bandwidth request r (n-1) and the historical bandwidth request and the bandwidth allocation, and the allocated bandwidth g (n) of the nth allocation period Cycle (n) is calculated.
  • the allocated bandwidth g (n) of the nth allocation period Cycle (n) is issued.
  • the bandwidth application r (n) of the nth allocation cycle Cycle (n) is collected, and a new round of calculation of the allocated bandwidth is started, and thus the loop.
  • the ONU obtains the allocated bandwidth g (n) in the n+2th allocation period Cycle (n+2), and transmits the message and bandwidth request r (n+2).
  • the starting point for calculating the allocated bandwidth is the starting point of the allocation period and is fixed.
  • the end point of the collection bandwidth request is the end point of the allocation period and is fixed, and the time for allocating the bandwidth is strictly aligned with the allocation period.
  • the data of the ONU in the time slice arrives at the OLT on time, and no overlap occurs.
  • the bandwidth allocated by the current allocation period is calculated according to the bandwidth request collected in the previous allocation period, and the starting time of the bandwidth is the starting point of the Nth allocation period after the current allocation period.
  • the time is such that the calculated bandwidth is located in the corresponding allocation period, and the time when the ONU sends the data and the bandwidth request according to the time slice in the bandwidth to the OLT is located after the start point of the corresponding allocation period and before the end of the allocation period,
  • This embodiment provides a dynamic bandwidth allocation method.
  • the embodiment of the present invention provides a method according to an embodiment of the present invention. As shown in FIG. 4a, the method includes the following steps:
  • N is not limited in this embodiment.
  • N may be determined according to the following inequality:
  • the bandwidth allocated by the current allocation period for all ONUs is calculated according to the foregoing bandwidth request and the bandwidth allocated within N allocation periods before the current allocation period.
  • the bandwidth allocated by the OLT to the ONU in the nth cycle can be calculated according to the foregoing formulas (1) and (2).
  • the final delivery period can be the same as the input traffic or conform to the SLA, thereby maximizing the bandwidth utilization.
  • the principle is the same as the previous step 302, and is no longer here. Narration.
  • step 403 Determine whether the calculated current allocation period is that the bandwidth allocated by all ONUs is equal to the length of the preset allocation period, and the bandwidth allocated by each ONU in the current allocation period is an integer multiple of the maximum transmission unit of the corresponding ONU. If they are not equal, proceed to step 404; if they are equal, proceed directly to step 405.
  • the maximum transmission unit is the maximum length of the packet that the ONU can transmit.
  • the dynamic bandwidth allocation method further includes: setting a maximum adjustment value of the length of the allocation period, where the maximum adjustment value is less than or equal to the maximum transmission unit; correspondingly, the foregoing adjusting the length of the current allocation period includes: Adjust the length of the current allocation period based on the maximum adjustment value.
  • the set maximum adjustment value is not limited. In actual application, the maximum adjustment value may be half of the maximum transmission unit or the maximum transmission unit.
  • the difference between the bandwidth allocated by the current allocation period and the preset allocation period is not greater than or equal to the maximum transmission unit.
  • adjusting the length of the current allocation period according to the maximum adjustment value includes:
  • the calculated current allocation period is that the bandwidth allocated by all ONUs is greater than the length of the preset allocation period, and the difference between the bandwidth and the length of the preset allocation period is less than the maximum adjustment value, the difference is accumulated to the next one. If the calculated current allocation period is that the bandwidth allocated by all the ONUs is greater than the length of the preset allocation period, and the difference between the bandwidth and the length of the preset allocation period is greater than the maximum adjustment value and less than the maximum transmission unit, The bandwidth is pre-bored from the next allocation period, and the length of the pre-borrowed bandwidth is the difference between the difference and the maximum transmission unit;
  • the bandwidth is pre-borrowed from the next allocation period.
  • the length of the pre-borrowed bandwidth is the difference
  • the accumulated bandwidth is For the next allocation period, the length of the accumulated bandwidth is the difference between the difference and the maximum transmission unit.
  • the length adjustment of the current allocation period when calculating the bandwidth allocated by the OLT to the ONU in the next allocation period, it is necessary to consider the length of the bandwidth pre-borrowed from the next allocation period or the bandwidth accumulated to the next allocation period.
  • the length of the sum of the lengths of the respective distribution periods is substantially equal to the preset allocation period, and the lengths of the respective allocation periods are not necessarily the same, so this case may also be referred to as an implicit fixed allocation period, and the foregoing
  • the case where the allocation period length is fixed may be referred to as an explicit allocation period.
  • the length of the current allocation period is adjusted so that the length of the current allocation period matches the bandwidth calculated by the OLT in the current allocation period, and the OLT can send the bandwidth calculated by the current allocation period to the ONU, thereby further improving the bandwidth utilization.
  • the calculated bandwidth allocated by the current allocation period is sent to the ONU to receive the data sent by the ONU at the beginning of the Nth allocation period after the current allocation period.
  • the time that the OLT delivers the calculated bandwidth is after the bandwidth calculation is completed, and before the start time of the calculated bandwidth is subtracted from the Max_RTT, so that the ONU can receive the delivered bandwidth in advance.
  • the data and bandwidth request can be sent efficiently using the specified time slice, and the OLT can in turn receive the data transmitted by the ONU at the beginning of the Nth allocation period after the current allocation period.
  • the OLT sends the calculated bandwidth to the ONU before the start of the next allocation period, thereby reducing the delay of the ONU sending data and the bandwidth request, and improving the bandwidth utilization. More preferably, the OLT can send the bandwidth to the ONU immediately after the calculation is completed.
  • the bandwidth request r(n-1) of the n-1th allocation cycle Cycle (n-1) is collected, and the calculation of the allocated bandwidth is started.
  • the allocation bandwidth is calculated based on the bandwidth request r (n-1) and the historical bandwidth request and allocation bandwidth, and the allocated bandwidth g (n) of the nth allocation cycle Cycle (n) is calculated.
  • the allocated bandwidth g (n) of the nth allocation cycle Cycle (n) is issued.
  • the bandwidth request r (n) of the nth allocation cycle Cycle (n) is collected, and a new round of calculation of the allocated bandwidth is started, and the cycle is repeated.
  • the ONU obtains the bandwidth grant g (n) in the n+2 allocation cycle Cycle (n+2), and sends a message and bandwidth request r (n+2).
  • the starting point for calculating the allocated bandwidth is the starting point of the allocation period but not fixed
  • the end point of the collection bandwidth request is the end point of the allocation period but not fixed.
  • the length of the allocation period is variable, the allocation bandwidth is still aligned with the allocation period, that is, the allocation bandwidth is also variable, thereby reducing or eliminating tail waste and further improving bandwidth utilization.
  • This embodiment is particularly applicable to an EPON (Ethernet Passive Optical Network) system because it can reduce or eliminate tail waste.
  • the current allocation period is calculated according to the bandwidth request collected in the previous allocation period.
  • the bandwidth allocated by the ONU, the start time of the bandwidth is the start time of the Nth allocation period after the current allocation period, so that the calculated allocated bandwidth is located in the corresponding allocation period, and the ONU sends according to the time slice in the bandwidth.
  • the time when the data and bandwidth request arrives at the OLT is located after the start point of the corresponding allocation period and is completed before the end of the allocation period.
  • the bandwidth application overlaps that is, the obtained bandwidth request is accurate, and then calculated based on the bandwidth request.
  • the bandwidth is more accurate, which can effectively improve bandwidth utilization.
  • an embodiment of the present invention provides a dynamic bandwidth allocation apparatus, where the apparatus includes:
  • the obtaining module 501 is configured to obtain a bandwidth request from the ONU collected in the last allocation period
  • the calculating module 502 is configured to calculate, according to the bandwidth request acquired by the obtaining module 501, a bandwidth allocated by the current allocation period for all ONUs, where the starting time of the bandwidth is the starting point of the Nth allocation period after the current allocation period, and N is a natural number;
  • the sending module 503 is configured to send the calculated bandwidth of the calculating module 502 to the ONU to receive the data sent by the ONU at the beginning of the Nth allocation period after the current allocation period.
  • the dynamic bandwidth allocation apparatus further includes:
  • N value determining module for determining the value of N according to the following inequality:
  • the calculation module 502 calculates the current allocation period as all based on the bandwidth request and the previously allocated bandwidth.
  • the bandwidth allocated by the ONU is allocated by the ONU.
  • calculation module 502 calculates the bandwidth allocated by the current allocation period for all ONUs according to the foregoing formulas (1) and (2).
  • the sending module 503 sends the calculated bandwidth to the ONU to ensure that each ONU can receive the delivered bandwidth in advance. Therefore, the data and bandwidth request can be effectively transmitted using the specified time slice, and the OLT can receive the data sent by the ONU at the beginning of the Nth allocation period after the current allocation period.
  • the sending module 503 sends the bandwidth calculated by the calculating module 502 to the ONU before the start of the next allocation period, to receive the data sent by the ONU at the beginning of the Nth allocation period after the current allocation period.
  • the current allocation period is calculated according to the bandwidth request collected in the previous allocation period.
  • the bandwidth allocated by the ONU, the start time of the bandwidth is the start time of the Nth allocation period after the current allocation period, and the calculated bandwidth is located in the corresponding allocation period, and the ONU is sent according to the time slice in the bandwidth.
  • the time when the data and bandwidth application arrives at the OLT is located after the start point of the corresponding allocation period and before the end of the allocation period, there is no bandwidth request for receiving different upload periods in the same allocation period, and the bandwidth application for different upload periods is eliminated.
  • the obtained bandwidth request is accurate, and the calculated allocated bandwidth is further calculated according to the bandwidth request. Accurate, which can effectively improve bandwidth utilization.
  • an embodiment of the present invention provides a dynamic bandwidth allocation apparatus, where the apparatus includes:
  • the obtaining module 601 is configured to obtain a bandwidth request from the ONU collected in the last allocation period;
  • the calculating module 602 is configured to calculate, according to the bandwidth request acquired by the obtaining module 601, a bandwidth allocated by the current allocation period for all the ONUs, where the starting time of the bandwidth is the starting point of the Nth allocation period after the current allocation period, and N is a natural number;
  • the sending module 603 is configured to send the bandwidth calculated by the calculating module 602 to the ONU to receive the data sent by the ONU at the beginning of the Nth allocation period after the current allocation period.
  • the dynamic bandwidth allocation apparatus further includes:
  • the determining module 604 is configured to determine whether the current allocation period calculated by the calculating module 602 is equal to the length of the preset allocation period, and the bandwidth allocated by each ONU is the maximum transmission of the corresponding ONU. Integer multiple of the unit;
  • the allocation period adjustment module 605 is configured to adjust the length of the current allocation period when the determination result of the determining module 604 is negative, so that the length of the current allocation period is equal to the bandwidth allocated for all ONUs.
  • the dynamic bandwidth allocation device further includes:
  • An N value determination module for determining the value of N according to the following formula:
  • the dynamic bandwidth allocation device further includes:
  • a setting module configured to set a maximum adjustment value of a length of the allocation period, the maximum adjustment value being less than or equal to the maximum transmission unit
  • the allocation period adjustment module 605 adjusts the length of the current allocation period according to the maximum adjustment value set by the setting module.
  • the allocation period adjustment module 605 includes:
  • a comparison unit configured to compare a difference between a bandwidth allocated by the current allocation period for all the ONUs and a length of the preset allocation period, and a size of the maximum adjustment value
  • the adjusting unit is configured to: when the calculated current allocation period is that the bandwidth allocated by all the ONUs is greater than the length of the preset allocation period, and the difference between the bandwidth and the length of the preset allocation period is less than the maximum adjustment value, the difference is The value is accumulated to the next An allocation cycle;
  • the next one is Allocation period pre-borrowing bandwidth, the length of the pre-borrowing bandwidth is the difference between the difference and the maximum transmission unit;
  • the bandwidth is pre-borrowed from the next allocation period.
  • the length of the pre-borrowed bandwidth is the difference
  • the accumulated bandwidth is For the next allocation period, the length of the accumulated bandwidth is the difference between the difference and the maximum transmission unit.
  • the calculation module 602 calculates the bandwidth allocated for all ONUs according to the foregoing bandwidth request and the previously allocated bandwidth.
  • calculation module 602 calculates the bandwidth allocated by the current allocation period for all ONUs according to the foregoing formulas (1) and (2).
  • the sending module 603 sends the calculated bandwidth to the ONU to ensure that each ONU can receive the delivered bandwidth in advance. Therefore, the data and bandwidth request can be effectively transmitted using the specified time slice, and the OLT can receive the data sent by the ONU and the new bandwidth request at the beginning of the Nth allocation period after the current allocation period.
  • the sending module 603 sends the calculated bandwidth of the calculating module 502 to the ONU before the start of the next allocation period, to receive the data sent by the ONU at the beginning of the Nth allocation period after the current allocation period.
  • the bandwidth allocated by the current allocation period is calculated according to the bandwidth request collected in the previous allocation period, and the starting time of the bandwidth is the starting point of the Nth allocation period after the current allocation period.
  • the time is such that the calculated allocated bandwidth is located in the corresponding allocation period, and the time when the ONU sends the data and the bandwidth request according to the time slice in the bandwidth to the OLT is located after the start point of the corresponding allocation period and is sent before the end of the allocation period.
  • the dynamic bandwidth allocation apparatus provided by the foregoing embodiment is only illustrated by the division of the foregoing functional modules. In actual applications, the functions may be assigned different functions according to requirements.
  • the energy module is completed, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the dynamic bandwidth allocation apparatus and the dynamic bandwidth allocation method are provided in the same embodiment. For details, refer to the method embodiment, and details are not described herein.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明提供了一种动态带宽分配方法和装置,属于通信领域。方法包括:获取上一分配周期收集到的来自光网络单元的带宽申请;根据所述带宽申请计算当前分配周期为所有光网络单元分配的带宽,所述带宽的起始时间为当前分配周期后的第N个分配周期的起点,所述N为自然数;及将计算出的所述带宽下发给所述光网络单元。装置包括:收集模块、计算模块和下发模块。本发明通过根据上一分配周期收集到的带宽申请计算当前分配周期分配的带宽,所述带宽的起始时间为当前分配周期后的第N个分配周期的起点,使分配带宽的起始时间与第N个周期的起始时间相同,从而消除了带宽申请的在不同分配周期重叠的情况,进而可以提高带宽利用率。

Description

说 明 书 一种动态带宽分配方法和装置 技术领域
本发明涉及通信领域, 特别涉及一种动态带宽分配方法和装置。 背景技术
为了提升带宽利用率, 在主要由局端的 OLT (Optical Line Termination, 光线路终端)、 用户端的 ONU (Optical Network Unit, 光网络单元) 及中间的 ODN (Optical Distribution Network, 光分配网络)组成的 PON (Passive Optical Network, 无源光纤网络)系统中, OLT 通过广播的方式向各个 ONU下发 Grant (授权), 通知 ONU发送数据的起始时间及时间长 度, 以此来管理 ONU采用时分复用方式向 OLT发送数据, 而该下发 Grant的过程即为带宽 分配。
现有技术在进行带宽分配时, 通常采用有周期的 DBA ( Dynamic Bandwidth Allocation, 动态带宽分配)方式。 该方式通过所有 ONU向 OLT发送 Report (带宽申请), 再由 OLT根 据上一周期收集到的 ONU发送的 Report及 SLA (Service Level Agreement, 服务等级协议) 为每个 ONU动态分配带宽。另夕卜, 由于数据在光通路上的传输存在 RTT (Round Trip Time, 往返时间) 延时, 即 OLT下发 Grant到 ONU接收 Grant的延时及 ONU使用 Grant向 OLT 发送数据到 OLT收到数据的延时, 因此, 现有技术通过时延补偿来保证各 ONU有效利用 Grant, 时延补偿的方法是以 Max_RTT (Max Round Trip Time, 最大往返时间) 的终点作为 Grant中指定的收到 ONU发送的数据的起始时间。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题:
由于现有技术以 Max_RTT的终点作为 Grant中指定的收到 ONU发送的数据的起始时 间, 则 ONU发送的数据及 Report将在 Max_RTT后到达 OLT, 如果 Max_RTT与分配周期 的长度不相等, OLT在当前分配周期收集到的 Report中会有上一分配周期和当前分配周期 下发 Grant后 ONU发送的 Report。所以, OLT在当前分配周期收集到的 Report并不能准确 反应一个分配周期内实际所需要的带宽, 从而导致以此计算出来的 Grant不准确, 不仅不能 有效利用带宽, 反而会降低带宽利用率。 发明内容 为了克服计算出的 Grant不准确、带宽利用率低的缺陷, 本发明实施例提供了一种动态 带宽分配方法和装置, 所述技术方案如下:
一方面, 本发明实施例提供了一种动态带宽分配方法, 所述方法包括:
获取上一分配周期收集到的来自光网络单元的带宽申请;
根据所述带宽申请计算当前分配周期为所有光网络单元分配的带宽, 所述带宽的起始 时间为当前分配周期后的第 N个分配周期的起点, 所述 N为自然数; 及
将计算出的所述带宽下发给所述光网络单元, 以在当前分配周期后的第 N个分配周期 的起点处收到所述光网络单元发送的数据。
另一方面, 本发明实施例还提供了一种动态带宽分配装置, 所述装置包括: 获取模块, 用于获取上一分配周期收集到的来自光网络单元的带宽申请;
计算模块, 用于根据所述获取模块获取的带宽申请计算当前分配周期为所有光网络单 元分配的带宽, 所述带宽的起始时间为当前分配周期后的第 N个分配周期的起点, 所述 N 为自然数; 及
下发模块, 用于将所述计算模块计算出的所述带宽下发给所述光网络单元, 以在当前 分配周期后的第 N个分配周期的起点处收到所述光网络单元发送的数据。
本发明实施例提供的技术方案带来的有益效果是:
在本发明实施例的动态带宽分配方法和装置中, 根据上一分配周期收集到的带宽申请 计算当前分配周期为所有 ONU分配的带宽,该带宽的起始时间为当前分配周期后的第 N个 分配周期的起点, 使得计算出的带宽位于对应的分配周期内, ONU根据分配带宽中的时间 片发送的数据和带宽申请到达 OLT的时刻位于对应的分配周期的起始点后并在该分配周期 结束时刻之前, 不存在同一个分配周期收到不同上传周期的带宽申请, 消除了不同上传周 期的带宽申请交叠的情况, 也就是说, 获得的带宽申请是准确的, 进而根据该带宽申请计 算出的带宽更加准确, 从而可以有效提高带宽利用率。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要使用的 附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本 领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的 附图。
图 1是 PON系统的架构示意图; 图 2是本发明实施例 1提供的一种动态带宽分配方法的流程图;
图 3a是本发明实施例 2的提供的一种动态带宽分配方法的流程图;
图 3b是本发明实施例 2的一个应用的示意图;
图 4a是本发明实施例 3的提供的一种动态带宽分配方法的流程图;
图 4b是本发明实施例 3的一个应用的示意图;
图 5是本发明实施例 4提供的一种动态带宽分配装置的示意图;
图 6是本发明实施例 5提供的一种动态带宽分配装置的示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作 进一步地详细描述。 PON系统是一种宽带接入的网络架构, 能够利用无源 ODN协助 OLT 与多个用户端的 ONU进行宽带通讯。 如图 1所示, PON系统主要由局端的 OLT、 多个用 户端的 ONU及中间的 ODN组成, ODN实现了一个 OLT与多个 ONU的光通路连接, 光通 路的载体为光纤。 下文将对 PON系统采用的动态带宽分配方法和装置进行详细描述。 实施例 1
如图 2所示, 本发明实施例提供了一种动态带宽分配方法, 其包括以下步骤:
201: 获取上一分配周期收集到的来自 ONU的带宽申请。
202: 根据带宽申请计算当前分配周期为所有 ONU分配的带宽, 该带宽的起始时间为 当前分配周期后的第 N个分配周期的起点, N为自然数。
进一步地, 在该步骤中, N可以根据以下不等式确定:
(N-1 ) *分配周期的长度 计算带宽需要的时间 +Max_RTT N*分配周期的长度, 其 中, 计算带宽需要的时间是指 OLT计算为所有 ONU分配的带宽的时间, Max_RTT为系统 中预设的最大往返时间, 该最大往返时间大于等于所有 ONU的往返时间的最大值。
203: 将计算出的带宽下发给 ONU, 以在当前分配周期后的第 N个分配周期的起点处 收到 ONU发送的数据。
需要说明的是,前述 N在下文中也被称为授权延时, ONU在当前分配周期后的第 N个 分配周期使用当前周期分配的带宽发送数据及带宽申请, 所以对于 ONU而言, 当前分配周 期后的第 N个分配周期也可以称为当前分配周期后的第 N个上传周期。
具体地, OLT将计算出的带宽下发的时间是在带宽计算完成后、 且在计算出的带宽的 起始时间减去 Max_RTT之前, 这样可以保证各 ONU能提前收到下发的带宽, 从而可以有 效地使用指定的时间片发送数据和带宽申请, OLT进而可以在当前分配周期后的第 N个分 配周期的起点处收到 ONU发送的数据。
优选地, OLT在下一分配周期开始之前将计算出的带宽下发给 ONU, 从而减小 ONU 发送数据和带宽申请的延时, 提高带宽利用率。 更优选地, OLT 可以在计算完成后立即将 带宽下发给 ONU。
在本发明实施例中, 根据上一分配周期收集到的带宽申请计算当前分配周期为所有 ONU分配的带宽, 该带宽的起始时间为当前分配周期后的第 N个分配周期的起点为起始时 间, 使得计算出的带宽位于对应的分配周期内, ONU根据带宽中的时间片发送的数据和带 宽申请到达 OLT的时刻位于对应的分配周期的起始点后并在该分配周期结束时刻之前, 不 存在同一个分配周期收到不同上传周期的带宽申请, 消除了不同上传周期的带宽申请交叠 的情况, 也就是说, 获得的带宽申请是准确的, 进而根据该带宽申请计算出的带宽更加准 确, 从而可以有效提高带宽利用率。 实施例 2
本发明实施例提供了一种动态带宽分配方法, 本发明实施例以分配周期的长度固定不 变, 且每个分配周期的长度相等为例, 对本发明实施例提供的方法进行详细说明, 如图 3a 所示, 其包括以下步骤:
301: 获取上一分配周期收集到的来自 ONU的带宽申请。
302: 根据带宽申请计算当前分配周期为所有 ONU分配的带宽, 该带宽的起始时间为 当前分配周期后的第 N个分配周期的起点, N为自然数。
进一步地, 在该步骤中, 本实施例不对 N的具体数值进行限定, 实际应用时, N可以 根据以下不等式确定:
(N-1 ) *分配周期的长度 计算带宽需要的时间 +Max_RTT N*分配周期的长度, 其中, 计算带宽需要的时间是指 OLT计算为所有 ONU分配的带宽的时间, Max_RTT 为系统中预设的最大往返时间, 该最大往返时间大于等于所有 ONU的往返时间的最大值。
优选地, 可以根据带宽申请以及当前分配周期之前的 N个分配周期内分配的带宽计算 当前分配周期为所有 ONU分配的带宽。
具体地, 可以根据以下公式计算在第 n个分配周期 OLT为 ONU分配的带宽: g(n)=r(n-l)-g(n-l)---g(n-N+l)-g(n-N), ( 1 ) 且 g(-N)=g(l-N)="'=g(0) =0, (2)
其中, r(n)表示第 n个分配周期收集到的带宽申请中 ONU向 OLT申请的带宽, g(n)表 示 OLT在第 n个分配周期为 ONU分配的带宽。如前所述, ONU将在第 n+N个上传周期使 用 OLT在第 n个分配周期为 ONU分配的带宽 g(n)。 下面简单介绍上述公式 (1 ) 的推导过程。
假定 a(n)为 ONU在第 n个分配周期的输入流量, 该输入流量为终端设备向 ONU输入 的上传流量。 在实际应用中, ONU根据其接收到的输入流量 a(n)向 OLT发送 r(n), 所以对 于 OLT来说, a(n)不可见, ONU需要的带宽是通过 r(n)来体现的。 而对于 ONU而言, 有: r(n)=a(n)+r(n-l)-g(n-N), (3)
其含义是 ONU在第 n个周期申请的带宽等于第 n个周期接收到的输入流量与 ONU在 第 n-1个周期申请的带宽的和减去第 n个周期已经使用了的带宽 g(n-N),由于本实施例中的 带宽是提前下发,所以对于 OLT而言, g (n-N)表示 OLT在第 n-N个分配周期分配给 ONU 的带宽, 而对于 ONU而言, g (n-N)等于其在第 n个上传周期中可以使用的带宽。 在理想 状态下, 分配给 ONU的带宽等于该 ONU接收到的输入流量, 即
g(n)=a(n-l) (4)
现假定 ONU在第 0个周期开始向 OLT发送带宽申请, 在第 0个周期以前, ONU没有 向 OLT发送带宽申请,进而有初始条件 r(-l)=0。 由于 OLT在收到带宽申请的后一周期才开 始计算分配给 ONU的带宽,所以可以将第 0个周期及以前 OLT为 ONU分配的带宽记为 0, 得到前述公式 (2)。
当 n=0时, 根据公式 (2) (3) 和初始条件 r(-l)=0, 可以得到 r(0)=a(0),
n=l时, 根据公式 (4), 有: g(l )=a(0)
所以 g(l)=r(0), 且根据公式 (2) (3) 有 r(l)=a(l)+r(0)-g(l-N)=a(l)+g(l),
所以可以推出 a(l) =r(l)-g(l);
当 n=2时, 根据公式 (4), 有: g(2)=a(l),
贝 lj g(2)=r(l)-g(l), 且根据公式 (2) (3) 有 r(2)=a(2)+r(l)-g(2-N)=a(2)+g(2)+g(l);
所以可以推出 a(2)=r(2)-g(l)-g(2);
当 n=3时, 根据公式 (4), 有: g(3)=a(2),
则 g(3)=r(2)-g(2)-g(l),
且根据公式 (2) (3) 有 r(3)=a(3)+r(2)-g(3-N)=a(3)+g(3)+g(2)+g(l), 依此类推:
当 n=N时, 根据公式 (4), 有: g(N)=a(N-l),
则 g(N)=r(N-l)-g(N-l)- - -g(l) , 且根据公式 ( 2 ) ( 3 ) 有 r(N)=a(N)+r(N-l)-g(0)= a(N)+g(N)+g(N-l)+〜+g(l), 所以可以推出 a(N)= r(N)-g(N) -… -g(2);
当 n=N+l时, g (N+l)=a(N),
则 g(N+l)=r(N)-g(N) -… -g(2), 且 r(N+l)=a(N+l)+r(N)-g(l)=a(N+l)+g(N+l)+"'+g(2); 依此类推:
当 n=n时, r(n)=a(n)+r(n- 1 )-g(n-N)=a(n)+g(n)+g(n- 1 )+ · · -+g(n-N+l ) ,
g(n)=a(n-l),
贝 'J g(n)=r(n-l) -g(n-l)-g(n-2) -… -g(n-N+l)-g(n-N)
从上述推导过程可以看出,前述公式考虑了 ONU在当前分配周期 n之前的 N个分配周 期中已使用的带宽, 所以根据该公式计算出的分配带宽更加准确, 可以使得最终下发的分 配带宽与输入流量相同或符合 SLA, 进而使得带宽利用率最大化。 容易知道, 步骤 302也可以采用现有的方法计算分配带宽, 即仅根据收到的带宽申请 来分配带宽,不考虑 ONU在当前分配周期 n到第 N个分配周期中使用的带宽,在这种情况 下, g(n)=r(n-l)。
303: 将计算出的带宽下发给 ONU, 以在当前分配周期后的第 N个分配周期的起点处 收到 ONU发送的数据。
具体地, OLT将计算出的带宽下发的时间是在带宽计算完成后、 且在计算出的带宽的 起始时间减去 Max_RTT之前, 这样可以保证各 ONU能提前收到下发的带宽, 从而可以有 效地使用指定的时间片发送数据和带宽申请, OLT进而可以在当前分配周期后的第 N个分 配周期的起点处收到 ONU发送的数据及新的带宽申请。
优选地, OLT在下一分配周期开始之前将计算出的带宽下发给 ONU, 从而减小 ONU 发送数据和带宽申请的延时, 提高带宽利用率。 更优选地, OLT 可以在计算完成后立即将 带宽下发给 ONU。
在本实施例中, 各个分配周期的长度是相等的且固定不变的, 授权延时为 2, 即 N=2。 如图 3b所示, 在 31处, 收集第 n-1个分配周期 Cycle (n-1 ) 的带宽申请 r (n-1 ) 完成, 并 启动分配带宽的计算。 在 32处, 根据带宽申请 r (n-1 ) 及历史带宽申请和带宽分配等信息 进行分配带宽的计算, 计算第 n个分配周期 Cycle (n) 的分配带宽 g (n)。 33处, 计算完 成后, 下发第 n个分配周期 Cycle (n)的分配带宽 g (n)。 34处, 收集第 n个分配周期 Cycle (n) 的带宽申请 r (n) 完成, 启动新一轮的分配带宽的计算, 如此循环。 35处, ONU在 第 n+2个分配周期 Cycle (n+2) 获得分配带宽 g (n), 并发送报文和带宽申请 r (n+2)。 从 图中可以看出, 计算分配带宽的起点为分配周期的起点且固定不变, 收集带宽申请的终点 为分配周期的终点且固定不变, 分配带宽的时间与分配周期严格对齐, 在授权的时间片内 ONU的数据准时到达 OLT, 没有交叠的情况发生。
在本发明实施例中, 根据上一分配周期收集到的带宽申请计算当前分配周期为所有 ONU分配的带宽, 该带宽的起始时间为当前分配周期后的第 N个分配周期的起点为起始时 间, 使得计算出的带宽位于对应的分配周期内, ONU根据带宽中的时间片发送的数据和带 宽申请到达 OLT的时刻位于对应的分配周期的起始点后并在该分配周期结束时刻之前, 不 存在同一个分配周期收到不同上传周期的带宽申请, 消除了不同上传周期的带宽申请交叠 的情况, 也就是说, 获得的带宽申请是准确的, 进而根据该带宽申请计算出的分配带宽更 加准确, 从而可以有效提高带宽利用率。 实施例 3
本实施例提供了一种动态带宽分配方法, 本发明实施例以分配周期的长度是可变的来 说明本发明实施例提供的方法, 如图 4a所示, 其包括以下步骤:
401: 获取上一分配周期收集到的来自 ONU的带宽申请。
402: 根据带宽申请计算当前分配周期为所有 ONU分配的带宽, 该带宽的起始时间为 当前分配周期后的第 N个分配周期的起点, N为自然数。
进一步地, 在该步骤中, 本实施例不对 N的具体数值进行限定, 实际应用时, N可以 根据以下不等式确定:
(N-1 ) *分配周期的长度 计算带宽需要的时间 +Max_RTT N*分配周期的长度, 其 中, 计算带宽需要的时间是指 OLT计算为所有 ONU分配的带宽的时间, Max_RTT为为系 统中预设的最大往返时间, 该最大往返时间大于等于所有 ONU的往返时间的最大值。
优选地, 根据前述带宽申请以及当前分配周期之前的 N个分配周期内分配的带宽计算 当前分配周期为所有 ONU分配的带宽。
具体地, 可以根据前述公式 (1 ) 和 (2) 计算在第 n个周期 OLT为 ONU分配的带宽。 根据公式 (1 ) 和 (2) 计算出的分配带宽, 可以使得最终下发的分配周期与输入流量 相同的或符合 SLA, 进而使得带宽利用率最大化。 其原理与前述步骤 302相同, 在此不再 赘述。
403: 判断计算出的当前分配周期为所有 ONU分配的带宽与预设的分配周期的长度是 否相等,当前分配周期为各 ONU分配的带宽分别为对应的 ONU的最大传输单元的整数倍。 若不相等, 则进入步骤 404; 若相等, 则直接进入步骤 405。
其中, 最大传输单元是指 ONU可以传输的报文的最大长度。
404: 调整当前分配周期的长度, 以使当前分配周期的长度等于为所有 ONU分配的带 宽。
具体地, 在该步骤之前, 该动态带宽分配方法还包括设定分配周期的长度的最大调整 值, 该最大调整值小于等于最大传输单元; 相应地, 前述调整当前分配周期的长度, 具体 包括: 根据最大调整值调整当前分配周期的长度。 本实施例不对设定的最大调整值进行限 定, 实际应用时, 最大调整值可以为最大传输单元或最大传输单元的一半。
容易知道, 根据前述带宽的计算方法, 当前分配周期分配的带宽与预设的分配周期的 长度差值, 不会大于或者等于最大传输单元。
进一步地, 根据最大调整值调整当前分配周期的长度, 具体包括:
若计算出的当前分配周期为所有 ONU分配的带宽大于预设的分配周期的长度,且该带 宽与预设的分配周期的长度的差值小于最大调整值, 则将该差值累计到下一个分配周期; 若计算出的当前分配周期为所有 ONU分配的带宽大于预设的分配周期的长度,且该带 宽与预设的分配周期的长度的差值大于最大调整值且小于最大传输单元, 则从下一个分配 周期预借带宽, 预借带宽的长度为该差值与最大传输单元的差值;
若计算出的当前分配周期为所有 ONU分配的带宽小于预设的分配周期的长度,且该带 宽与预设的分配周期的长度的差值小于最大调整值, 则从下一个分配周期预借带宽, 预借 带宽的长度为该差值;
若计算出的当前分配周期为所有 ONU分配的带宽小于预设的分配周期的长度,且该带 宽与预设的分配周期的长度的差值大于最大调整值且小于最大传输单元, 则累计带宽到下 一分配周期, 累计带宽的长度为该差值与最大传输单元的差值。
显然, 在当前分配周期的长度调整后, 在计算下一分配周期 OLT为 ONU分配的带宽 时, 需要考虑当前分配周期从下一分配周期预借的带宽的长度或累计到下一分配周期的带 宽的长度, 以使各分配周期的长度之和的平均值基本上等于预设的分配周期, 而各分配周 期的长度不一定相同, 故这种情况也可以称为隐式固定分配周期, 而前述分配周期长度固 定不变的情况可以称之为显式分配周期。 调整当前分配周期的长度, 使得当前分配周期的长度与 OLT在当前分配周期计算出的 带宽相匹配, OLT才能将当前分配周期计算出的带宽下发给 ONU, 从而进一步提高带宽的 利用率。
405: 将计算出的当前分配周期分配的带宽下发给 ONU, 以在当前分配周期后的第 N 个分配周期的起点处收到 ONU发送的数据。
具体地, OLT将计算出的带宽下发的时间是在带宽计算完成后、 且在计算出的带宽的 起始时间减去 Max_RTT之前, 这样可以保证各 ONU能提前收到下发的带宽, 从而可以有 效地使用指定的时间片发送数据和带宽申请, OLT进而可以在当前分配周期后的第 N个分 配周期的起点处收到 ONU发送的数据。
优选地, OLT在下一分配周期开始之前将计算出的带宽下发给 ONU, 从而减小 ONU 发送数据和带宽申请的延时, 提高带宽利用率。 更优选地, OLT 可以在计算完成后立即将 带宽下发给 ONU。
在本实施例中, 分配周期的长度是可变的, 授权延时为 2, 即 N=2。 如图 4b所示, 在 41处, 收集第 n-1个分配周期 Cycle (n-1 ) 的带宽申请 r (n-1 )完成, 并启动分配带宽的计 算。 在 42处, 根据带宽申请 r (n-1 ) 及历史带宽申请和分配带宽等信息进行分配带宽的计 算, 计算第 n个分配周期 Cycle (n) 的分配带宽 g (n)。 43处, 计算完成后, 下发第 n个 分配周期 Cycle (n) 的分配带宽 g (n)。 44处, 收集第 n个分配周期 Cycle (n) 的带宽申 请 r (n)完成, 启动新一轮的分配带宽的计算, 如此循环。 45处, ONU在第 n+2个分配周 期 Cycle (n+2) 获得带宽授权 g (n), 并发送报文和带宽申请 r (n+2)。 从图中可以看出, 计算分配带宽的起点为分配周期的起点但不固定, 收集带宽申请的终点为分配周期的终点 但不固定。 尽管分配周期的长度是可变的, 但分配带宽与分配周期依然是对齐的, 即分配 带宽也是可变的, 从而可以减小或消除尾片浪费, 进一步提高带宽利用率。 由于可以减小 或消除尾片浪费, 故本实施例尤其适用于 EPON (Ethernet Passive Optical Network, 以太网 无源光网络) 系统。
在本发明实施例中, 根据上一分配周期收集到的带宽申请计算当前分配周期为所有
ONU分配的带宽, 该带宽的起始时间为当前分配周期后的第 N个分配周期的起点为起始时 间, 使得计算出的分配带宽位于对应的分配周期内, ONU根据带宽中的时间片发送的数据 和带宽申请到达 OLT的时刻位于对应的分配周期的起始点后并在该分配周期结束时刻之前 发送完成, 不存在同一个分配周期收到不同上传周期的带宽申请, 消除了不同上传周期的 带宽申请交叠的情况, 也就是说, 获得的带宽申请是准确的, 进而根据该带宽申请计算出 的带宽更加准确, 从而可以有效提高带宽利用率。 实施例 4
如图 5所示, 本发明实施例提供了一种动态带宽分配装置, 该装置包括:
获取模块 501, 用于获取上一分配周期收集到的来自 ONU的带宽申请;
计算模块 502, 用于根据获取模块 501获取的带宽申请计算当前分配周期为所有 ONU 分配的带宽, 该带宽的起始时间为当前分配周期后的第 N个分配周期的起点, N为自然数; 及
下发模块 503, 用于将计算模块 502计算出的带宽下发给 ONU, 以在当前分配周期后 的第 N个分配周期的起点处收到 ONU发送的数据。
进一步地, 该动态带宽分配装置还包括:
N值确定模块, 用于根据以下不等式确定 N的值:
(N-1 ) *分配周期的长度 计算带宽需要的时间 +Max_RTT N*分配周期的长度, 其 中, Max_RTT大于等于所有 ONU的往返时间的最大值。
优选地, 计算模块 502根据带宽申请以及之前已分配的带宽计算当前分配周期为所有
ONU分配的带宽。
进一步地, 计算模块 502根据前述公式 (1 )和 (2)计算当前分配周期为所有 ONU分 配的带宽。
具体地, 在带宽计算完成后, 而在计算出的带宽的起始时间减去 Max_RTT之前, 下发 模块 503将计算出的带宽下发给 ONU, 以保证各 ONU能提前收到下发的带宽, 从而可以 有效地使用指定的时间片发送数据和带宽申请, OLT进而可以在当前分配周期后的第 N个 分配周期的起点处收到 ONU发送的数据。
优选地, 下发模块 503在下一分配周期开始之前将计算模块 502计算出的带宽下发给 ONU, 以在当前分配周期后的第 N个分配周期的起点处收到 ONU发送的数据。
在本发明实施例中, 根据上一分配周期收集到的带宽申请计算当前分配周期为所有
ONU分配的带宽, 该带宽的起始时间为当前分配周期后的第 N个分配周期的起点为起始时 间, 使得计算出的带宽位于对应的分配周期内, ONU根据带宽中的时间片发送的数据和带 宽申请到达 OLT的时刻位于对应的分配周期的起始点后并在该分配周期结束时刻之前, 不 存在同一个分配周期收到不同上传周期的带宽申请, 消除了不同上传周期的带宽申请交叠 的情况, 也就是说, 获得的带宽申请是准确的, 进而根据该带宽申请计算出的分配带宽更 加准确, 从而可以有效提高带宽利用率。 实施例 5
如图 6所示, 本发明实施例提供了一种动态带宽分配装置, 该装置包括:
获取模块 601, 用于获取上一分配周期收集到的来自 ONU的带宽申请;
计算模块 602, 用于根据获取模块 601获取的带宽申请计算当前分配周期为所有 ONU 分配的带宽, 该带宽的起始时间为当前分配周期后的第 N个分配周期的起点, N为自然数; 及
下发模块 603, 用于将计算模块 602计算出的带宽下发给 ONU, 以在当前分配周期后 的第 N个分配周期的起点处收到 ONU发送的数据。
进一步地, 该动态带宽分配装置还包括:
判断模块 604, 用于判断计算模块 602计算出的当前分配周期为所有 ONU分配的带宽 与预设的分配周期的长度是否相等,当前分配周期为各 ONU分配的带宽分别为对应的 ONU 的最大传输单元的整数倍; 及
分配周期调整模块 605, 用于当判断模块 604的判断结果为否时, 调整当前分配周期的 长度, 以使当前分配周期的长度等于为所有 ONU分配的带宽。
更进一步地, 该动态带宽分配装置还包括:
N值确定模块, 用于根据以下公式确定 N的值:
(N-1 ) *分配周期的长度: ^十算带宽需要的时间 +Max RTT N*分配周期的长度,其中, Max RTT大于等于所有 ONU的往返时间的最大值。
更进一步地, 该动态带宽分配装置还包括:
设定模块, 用于设定分配周期的长度的最大调整值, 该最大调整值小于等于最大传输 单元;
相应地, 分配周期调整模块 605 根据设定模块设定的最大调整值调整当前分配周期的 长度。
进一步地, 分配周期调整模块 605包括:
比较单元,用于比较当前分配周期为所有 ONU分配的带宽与预设的分配周期的长度的 差值、 和最大调整值的大小;
调整单元,用于当计算出的当前分配周期为所有 ONU分配的带宽大于预设的分配周期 的长度, 且该带宽与预设的分配周期的长度的差值小于最大调整值时, 将该差值累计到下 一个分配周期;
当计算出的当前分配周期为所有 ONU分配的带宽大于预设的分配周期的长度,且该带 宽与预设的分配周期的长度的差值大于最大调整值且小于最大传输单元时, 从下一个分配 周期预借带宽, 预借带宽的长度为该差值与最大传输单元的差值;
当计算出的当前分配周期为所有 ONU分配的带宽小于预设的分配周期的长度,且该带 宽与预设的分配周期的长度的差值小于最大调整值时, 从下一个分配周期预借带宽, 预借 带宽的长度为该差值;
当计算出的当前分配周期为所有 ONU分配的带宽小于预设的分配周期的长度,且该带 宽与预设的分配周期的长度的差值大于最大调整值且小于最大传输单元时, 累计带宽到下 一分配周期, 累计带宽的长度为该差值与最大传输单元的差值。
优选地, 计算模块 602根据前述带宽申请以及之前已分配的带宽计算当前分配周期为 所有 ONU分配的带宽。
进一步地, 计算模块 602根据前述公式 (1 )和 (2)计算当前分配周期为所有 ONU分 配的带宽。
具体地, 在带宽计算完成后, 而在计算出的带宽的起始时间减去 Max_RTT之前, 下发 模块 603将计算出的带宽下发给 ONU, 以保证各 ONU能提前收到下发的带宽, 从而可以 有效地使用指定的时间片发送数据和带宽申请, OLT进而可以在当前分配周期后的第 N个 分配周期的起点处收到 ONU发送的数据及新的带宽申请。
优选地, 下发模块 603在下一分配周期开始之前将计算模块 502计算出的带宽下发给 ONU, 以在当前分配周期后的第 N个分配周期的起点处收到 ONU发送的数据。
在本发明实施例中, 根据上一分配周期收集到的带宽申请计算当前分配周期为所有 ONU分配的带宽, 该带宽的起始时间为当前分配周期后的第 N个分配周期的起点为起始时 间, 使得计算出的分配带宽位于对应的分配周期内, ONU根据带宽中的时间片发送的数据 和带宽申请到达 OLT的时刻位于对应的分配周期的起始点后并在该分配周期结束时刻之前 发送完成, 不存在同一个分配周期收到不同上传周期的带宽申请, 消除了不同上传周期的 带宽申请交叠的情况, 也就是说, 获得的带宽申请是准确的, 进而根据该带宽申请计算出 的分配带宽更加准确, 从而可以有效提高带宽利用率。 需要说明的是: 上述实施例提供的动态带宽分配装置在进行带宽分配时, 仅以上述各 功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功能分配由不同的功 能模块完成, 即将装置的内部结构划分成不同的功能模块, 以完成以上描述的全部或者部 分功能。 另外, 上述实施例提供的动态带宽分配装置与动态带宽分配方法实施例属于同一 构思, 其具体实现过程详见方法实施例, 这里不再赘述。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完 成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读存储 介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种动态带宽分配方法, 其特征在于, 所述方法包括:
获取上一分配周期收集到的来自光网络单元的带宽申请;
根据所述带宽申请计算当前分配周期为所有光网络单元分配的带宽, 所述带宽的起始时 间为当前分配周期后的第 N个分配周期的起点, 所述 N为自然数; 及
将计算出的所述带宽下发给所述光网络单元, 以在当前分配周期后的第 N个分配周期的 起点处收到所述光网络单元发送的数据。
2、 如权利要求 1所述的动态带宽分配方法, 其特征在于, 所述 N根据以下不等式确定:
(N-1 ) *分配周期的长度 计算所述带宽需要的时间 +Max_RTT N*分配周期的长度, 其中, Max_RTT大于等于所有光网络单元的往返时间的最大值。
3、 如权利要求 1所述的动态带宽分配方法, 其特征在于, 所述根据所述带宽申请计算当 前分配周期为所有光网络单元分配的带宽, 具体包括:
根据所述带宽申请以及当前分配周期之前的 N个分配周期内分配的带宽计算当前分配周 期为所有光网络单元分配的带宽。
4、 如权利要求 1-3任一项所述的动态带宽分配方法, 其特征在于, 所述分配周期的长度 是固定不变的, 且每个分配周期的长度相同。
5、 如权利要求 1-3任一项所述的动态带宽分配方法, 其特征在于, 每个分配周期的长度 是可变的, 则在将计算出的所述带宽下发给所述光网络单元之前, 所述方法还包括:
判断计算出的当前分配周期为所有光网络单元分配的带宽与预设的分配周期的长度是否 相等, 当前分配周期为各光网络单元分配的带宽分别为对应的光网络单元的最大传输单元的 整数倍;
若不相等, 则调整当前分配周期的长度, 以使当前分配周期的长度等于为所有光网络单 元分配的带宽。
6、 如权利要求 5所述的动态带宽分配方法, 其特征在于, 在所述调整当前分配周期的长 度之前, 所述方法还包括:
设定分配周期的长度的最大调整值, 所述最大调整值小于等于最大传输单元; 相应地, 所述调整当前分配周期的长度, 具体包括:
根据所述最大调整值调整当前分配周期的长度。
7、 如权利要求 6所述的动态带宽分配方法, 其特征在于, 所述根据所述最大调整值调整 当前分配周期的长度, 具体包括:
若计算出的当前分配周期为所有光网络单元分配的带宽大于预设的分配周期的长度, 且 所述带宽与所述预设的分配周期的长度的差值小于最大调整值, 则将该差值累计到下一个分 配周期;
若计算出的当前分配周期为所有光网络单元分配的带宽大于预设的分配周期的长度, 且 所述带宽与所述预设的分配周期的长度的差值大于最大调整值且小于最大传输单元, 则从下 一个分配周期预借带宽, 预借带宽的长度为该差值与最大传输单元的差值;
若计算出的当前分配周期为所有光网络单元分配的带宽小于预设的分配周期的长度, 且 所述带宽与所述预设的分配周期的长度的差值小于最大调整值, 则从下一个分配周期预借带 宽, 预借带宽的长度为该差值;
若计算出的当前分配周期为所有光网络单元分配的带宽小于预设的分配周期的长度, 且 所述带宽与所述预设的分配周期的长度的差值大于最大调整值且小于最大传输单元, 则累计 带宽到下一分配周期, 累计带宽的长度为该差值与最大传输单元的差值。
8、 如权利要求 1所述的动态带宽分配方法, 其特征在于, 所述将计算出的所述带宽下发 给所述光网络单元, 具体包括:
在下一分配周期开始之前将计算出的所述当前分配周期分配的带宽下发给所述光网络单 元。
9、 一种动态带宽分配装置, 其特征在于, 所述装置包括:
获取模块, 用于获取上一分配周期收集到的来自光网络单元的带宽申请;
计算模块, 用于根据所述获取模块获取的带宽申请计算当前分配周期为所有光网络单元 分配的带宽, 所述带宽的起始时间为当前分配周期后的第 N个分配周期的起点, 所述 N为自 然数; 及 下发模块, 用于将所述计算模块计算出的所述带宽下发给光网络单元, 以在当前分配周 期后的第 N个分配周期的起点处接收到所述光网络单元发送的数据。
10、 如权利要求 9所述的动态带宽分配装置, 其特征在于, 还包括:
N值确定模块, 用于根据以下不等式确定 N的值:
(N-1 ) *分配周期的长度 计算所述带宽需要的时间 +Max_RTT N*分配周期的长度, 其中, Max_RTT大于等于所有光网络单元的往返时间的最大值。
11、 如权利要求 9所述的动态带宽分配装置, 其特征在于, 所述计算模块, 用于根据所 述带宽申请以及当前分配周期之前的 N个分配周期内分配的带宽计算当前分配周期为所有光 网络单元分配的带宽。
12、 如权利要求 9-11任一项所述的动态带宽分配装置, 其特征在于, 还包括: 判断模块, 用于判断所述当前分配周期为所有光网络单元分配的带宽与预设的分配周期 的长度是否相等, 当前分配周期为各网络单元分配的带宽分别为对应的光网络单元的最大传 输单元的整数倍;
分配周期调整模块, 用于当所述判断模块的判断结果为否时, 调整当前分配周期的长度, 以使当前分配周期的长度等于为所有光网络单元分配的带宽。
13、 如权利要求 12所述的动态带宽分配装置, 其特征在于, 还包括:
设定模块, 用于设定分配周期的长度的最大调整值;
相应地, 所述分配周期调整模块根据所述设定模块设定的最大调整值调整当前分配周期 的长度。
14、如权利要求 13所述的动态带宽分配装置,其特征在于,所述分配周期调整模块包括: 比较单元, 用于比较所述当前分配周期为所有光网络单元分配的带宽与预设的分配周期 的长度的差值、 和所述最大调整值的大小;
调整单元, 用于当计算出的当前分配周期为所有光网络单元分配的带宽大于预设的分配 周期的长度, 且所述带宽与所述预设的分配周期的长度的差值小于最大调整值时, 将该差值 累计到下一个分配周期; 当计算出的当前分配周期为所有光网络单元分配的带宽大于预设的分配周期的长度, 且 所述带宽与所述预设的分配周期的长度的差值大于最大调整值且小于最大传输单元时, 从下 一个分配周期预借带宽, 预借带宽的长度为该差值与最大传输单元的差值;
当计算出的当前分配周期为所有光网络单元分配的带宽小于预设的分配周期的长度, 且 所述带宽与所述预设的分配周期的长度的差值小于最大调整值时, 从下一个分配周期预借带 宽, 预借带宽的长度为该差值;
当计算出的当前分配周期为所有光网络单元分配的带宽小于预设的分配周期的长度, 且 所述带宽与所述预设的分配周期的长度的差值大于最大调整值且小于最大传输单元时, 累计 带宽到下一分配周期, 累计带宽的长度为该差值与最大传输单元的差值。
15、 如权利要求 9所述的动态带宽分配装置, 其特征在于, 所述下发模块, 用于在下一 分配周期开始之前将所述计算模块计算出的所述带宽下发给所述光网络单元, 以在当前分配 周期后的第 N个分配周期的起点处收到所述光网络单元发送的数据。
PCT/CN2011/081225 2011-10-25 2011-10-25 一种动态带宽分配方法和装置 WO2013059983A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11862846.0A EP2608438B1 (en) 2011-10-25 2011-10-25 Dynamic bandwidth allocation method and device
PCT/CN2011/081225 WO2013059983A1 (zh) 2011-10-25 2011-10-25 一种动态带宽分配方法和装置
CN201180002756.4A CN102439922B (zh) 2011-10-25 2011-10-25 一种动态带宽分配方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/081225 WO2013059983A1 (zh) 2011-10-25 2011-10-25 一种动态带宽分配方法和装置

Publications (1)

Publication Number Publication Date
WO2013059983A1 true WO2013059983A1 (zh) 2013-05-02

Family

ID=45986275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081225 WO2013059983A1 (zh) 2011-10-25 2011-10-25 一种动态带宽分配方法和装置

Country Status (3)

Country Link
EP (1) EP2608438B1 (zh)
CN (1) CN102439922B (zh)
WO (1) WO2013059983A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116389272A (zh) * 2023-04-11 2023-07-04 国家气象信息中心(中国气象局气象数据中心) 基于逻辑通道数据量修正的广播信道统计复用方法及装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103518355B (zh) * 2013-04-19 2016-09-28 华为技术有限公司 一种带宽分配的方法、设备及系统
WO2014201605A1 (zh) * 2013-06-17 2014-12-24 华为技术有限公司 带宽分配方法、装置、局端、终端和系统
CA2961090A1 (en) 2016-04-11 2017-10-11 Tti (Macao Commercial Offshore) Limited Modular garage door opener
CA2961221A1 (en) 2016-04-11 2017-10-11 Tti (Macao Commercial Offshore) Limited Modular garage door opener
CN108667752A (zh) * 2017-03-31 2018-10-16 深圳市中兴微电子技术有限公司 一种动态带宽分配方法及装置
WO2020000407A1 (zh) * 2018-06-29 2020-01-02 华为技术有限公司 一种减少上行时延的方法以及相关设备
CN110519110B (zh) * 2019-10-12 2023-06-23 驷途(上海)科技有限公司 一种云宽带配置装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1445940A (zh) * 2002-03-11 2003-10-01 三星电子株式会社 千兆位以太网无源光纤网络中传输数据的方法
CN101742368A (zh) * 2009-12-09 2010-06-16 华为技术有限公司 一种以太网无源光网络中带宽的分配方法和装置
CN102045605A (zh) * 2010-12-09 2011-05-04 北京邮电大学 OFDM-PON系统中基于QoS的周期轮询动态带宽分配算法
CN102118212A (zh) * 2009-12-30 2011-07-06 中兴通讯股份有限公司 一种进行光网络单元带宽分配的方法及光线路终端

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1796313A1 (en) * 2005-12-06 2007-06-13 Siemens Aktiengesellschaft A method, communication system and central communication unit for controlling accesses to a shared medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1445940A (zh) * 2002-03-11 2003-10-01 三星电子株式会社 千兆位以太网无源光纤网络中传输数据的方法
CN101742368A (zh) * 2009-12-09 2010-06-16 华为技术有限公司 一种以太网无源光网络中带宽的分配方法和装置
CN102118212A (zh) * 2009-12-30 2011-07-06 中兴通讯股份有限公司 一种进行光网络单元带宽分配的方法及光线路终端
CN102045605A (zh) * 2010-12-09 2011-05-04 北京邮电大学 OFDM-PON系统中基于QoS的周期轮询动态带宽分配算法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2608438A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116389272A (zh) * 2023-04-11 2023-07-04 国家气象信息中心(中国气象局气象数据中心) 基于逻辑通道数据量修正的广播信道统计复用方法及装置
CN116389272B (zh) * 2023-04-11 2023-11-21 国家气象信息中心(中国气象局气象数据中心) 基于逻辑通道数据量修正的广播信道统计复用方法及装置

Also Published As

Publication number Publication date
EP2608438A4 (en) 2013-10-23
EP2608438B1 (en) 2017-04-05
EP2608438A1 (en) 2013-06-26
CN102439922B (zh) 2014-02-19
CN102439922A (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
WO2013059983A1 (zh) 一种动态带宽分配方法和装置
CN108809851B (zh) 基于gpon系统的业务带宽分配方法及装置
CN101953119B (zh) 频带分配方法以及无源光通信网系统
EP2230785A2 (en) Optical line terminal, passive optical network system, and bandwidth assignment method
WO2008128478A1 (fr) Procédé de mesure de la longueur d'une fibre optique, terminal de ligne optique et système de réseau optique
US8873565B2 (en) Method and apparatus of delivering upstream data in ethernet passive optical network over coaxial network
WO2011088727A1 (zh) 无源光网络的时间同步方法、装置及系统
WO2011060734A1 (zh) 在无源光网络中测距的方法和装置
WO2014139267A1 (zh) 一种提高带宽分配效率的方法及系统
US20130236178A1 (en) Multi-point control protocol proxy architecture in a network with optical and coaxial domains
EP3151490A1 (en) Data transmission control method, passive optical network equipment and device, and passive optical network
CN108270749B (zh) 一种虚拟光网络单元的注册方法及系统
WO2012119358A1 (zh) 无源光网络的动态带宽分配方法及装置
WO2012149726A1 (zh) 下发带宽调整方法及模块、动态带宽分配设备
WO2009000194A1 (fr) Procédé d'attribution de bande passante, système et appareil dans un réseau optique
WO2012130022A1 (zh) 嵌套无源光网络的测距方法及装置
US11800265B2 (en) Bandwidth allocation method and related device
US20170005724A1 (en) Station-side device and pon system
WO2014169483A1 (zh) 一种带宽分配的方法、设备及系统
WO2014201605A1 (zh) 带宽分配方法、装置、局端、终端和系统
WO2011157167A2 (zh) 一种无源光网络的数据发送方法及设备
CN102833640B (zh) 一种参数粒度的传递方法和装置
WO2020063570A1 (zh) 光网络的测距方法、通信方法、olt、onu、光网络系统
WO2017193879A1 (zh) 数据的传输方法、装置及系统
CN111565115B (zh) 一种动态宽带跟踪方法、装置、存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002756.4

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2011862846

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011862846

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE