WO2013059720A1 - Appareil et procédé de mesure des dimensions d'une pièce - Google Patents

Appareil et procédé de mesure des dimensions d'une pièce Download PDF

Info

Publication number
WO2013059720A1
WO2013059720A1 PCT/US2012/061188 US2012061188W WO2013059720A1 WO 2013059720 A1 WO2013059720 A1 WO 2013059720A1 US 2012061188 W US2012061188 W US 2012061188W WO 2013059720 A1 WO2013059720 A1 WO 2013059720A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
laser
fixture
enclosed space
image
Prior art date
Application number
PCT/US2012/061188
Other languages
English (en)
Inventor
Valdas JANKAUSKIS
Kevin CAZABON
Original Assignee
Jankauskis Valdas
Cazabon Kevin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jankauskis Valdas, Cazabon Kevin filed Critical Jankauskis Valdas
Publication of WO2013059720A1 publication Critical patent/WO2013059720A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging

Definitions

  • the image processing to produce the 3D model may be performed entirely by a processor (not shown) that is external to the apparatus.
  • the digital images and the correlated apparatus positional data may be communicated to the external processor, or to an external memory or other data storage device such as a hard disk drive or memory card via wireless communication means, or a hard-wired network connection (not shown) that may be connected to the processor.
  • the communication to the external processor may be in real time during the measuring and imaging, or the communication may be after completion of measuring and imaging the room.
  • a first laser is mounted on a first support extending outwardly from the fixture, and a second laser is mounted on a second support extending outwardly from the fixture in a direction opposite to the first support.
  • a first laser is mounted on a first support extending vertically upwardly from the fixture
  • a second laser is mounted on a second support extending vertically downwardly from the fixture
  • a third laser is mounted on a third support extending horizontally from the fixture
  • a fourth laser is mounted on a fourth support extending horizontally from the fixture in a direction opposite of the third support.
  • the apparatus may be further comprised of four laser sets, wherein a first laser set is mounted on a first support extending vertically upwardly from the fixture, a second laser set is mounted on a second support extending vertically downwardly from the fixture, a third laser set is mounted on a third support extending horizontally from the fixture, and a fourth laser set is mounted on a fourth support extending horizontally from the fixture in a direction opposite of the third support.
  • the first, second, third, and fourth laser sets may be comprised of at least two lasers.
  • the first, second, third, and fourth laser sets may be comprised of three lasers.
  • the three lasers may be a red laser, a blue laser, and a green laser.
  • FIG. 12B is a further illustration of the measurement of a room dimension when the camera of the room measurement apparatus has been rotated relative to its angular position at the start of a scan of a room; and [0038] FIG 13 is a control target that may be used for calibrating the angle of view of a camera system used in the room measurement apparatus of FIGS. 7-9.
  • the apparatus may include a power supply 46, such as one or more compact batteries, which provide electrical power to the various components 20, 22, 30, 36, 38, 40, and 44.
  • a power supply 46 such as one or more compact batteries, which provide electrical power to the various components 20, 22, 30, 36, 38, 40, and 44.
  • more than one laser may be supported by each of the supports 223-229.
  • the lasers may be provided in sets of at least two lasers. In the embodiment depicted in FIGS. 7-9, the lasers are provided in sets of three lasers, the sets being first set 222 comprised of lasers 222A, 222B, and 222C, and in like manner for laser sets 224, 226, and 228.
  • the lasers of any of the respective sets are of different wavelengths.
  • a laser set may be comprised of a red laser, and blue laser, and a green laser. Such a configuration is advantageous because common charge coupled device (CCD) imaging sensors that are contained in digital cameras typically have a red light detector, and green light detector, and a blue light detector in each pixel of the CCD array.
  • CCD charge coupled device
  • the motion control module 44 contains sensors and/or encoders (not shown) to track the linear and rotary positions of the housing 214, camera system 250, and laser sets 222A B/C, 224A B/C, 226A B/C, and 228A B/C during a scan.
  • the positional data from motion control module 44 is communicated to the processor 36. This data may be stored in the memory of the processor 36.
  • the data is also correlated with the acquired images such that for any image, the exact position of the camera and lasers when that image was acquired are known. This combination of data may be used by the processor in calculating the dimensions of the room and/or objects contained therein.
  • the camera system 250 has been rotated 35 degrees counterclockwise from the zero angle of the reference grid.
  • the camera entrance pupil plane 259 is 0.25 units from the rotational axis at the center of the pole 216.
  • the surface 83 is calculated by parallax triangulation to be 3.1869 units from the entrance pupil 255, at an angle of 82 degrees from the entrance pupil plane 259.
  • the absolute position of the point (laser spot) 248A in the reference grid may be calculated as follows:
  • the absolute position of the spot 248A may be expressed as the ordered pair (1.5902, 3.0443). (It is noted that counterclockwise rotation in the above example is considered to be the positive direction; hence in the numbering of the Y-axis of the grid, the positive direction is to the left, contrary to conventional practice.)

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

L'invention concerne un appareil destiné à mesurer un espace clos. L'appareil comprend un mât support ; un appareil en prise avec le mât support ; un dispositif d'entraînement en prise avec l'appareil pour le faire tourner autour du mât support et pour le déplacer en translation le long du mât support ; une caméra montée sur l'appareil, positionnée face à l'extérieur par rapport à ce dernier, qui possède une pupille d'entrée et un champ de vision englobant une partie des surfaces de l'espace clos ; une pluralité de lasers associés à l'appareil qui envoient des rayons laser vers l'extérieur depuis l'appareil sur la partie des surfaces de l'espace clos englobée dans le champ de vision de la caméra ; et un processeur en communication de signal avec la caméra, ledit processeur contenant un algorithme de traitement des images des surfaces et de calcul des distances entre la pupille d'entrée et les spots laser sur les surfaces.
PCT/US2012/061188 2011-10-20 2012-10-19 Appareil et procédé de mesure des dimensions d'une pièce WO2013059720A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161549718P 2011-10-20 2011-10-20
US61/549,718 2011-10-20

Publications (1)

Publication Number Publication Date
WO2013059720A1 true WO2013059720A1 (fr) 2013-04-25

Family

ID=48141430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/061188 WO2013059720A1 (fr) 2011-10-20 2012-10-19 Appareil et procédé de mesure des dimensions d'une pièce

Country Status (1)

Country Link
WO (1) WO2013059720A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2827099A1 (fr) * 2013-07-16 2015-01-21 Leica Geosystems AG Appareil de suivi laser avec fonctionnalité de recherche d'objectif
WO2016160961A1 (fr) * 2015-03-31 2016-10-06 Amazon Technologies, Inc. Système lidar modulaire
TWI612275B (zh) * 2013-10-18 2018-01-21 創科電動工具科技有限公司 用於測量目標表面之面積之方法
US20180045505A1 (en) * 2016-08-12 2018-02-15 Symbol Technologies, Llc Arrangement for, and method of, remotely dimensioning generally planar, target surfaces of objects
CN110443275A (zh) * 2019-06-28 2019-11-12 炬星科技(深圳)有限公司 去除噪声的方法、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124524A (en) * 1990-11-15 1992-06-23 Laser Design Inc. Laser alignment and control system
US20030193657A1 (en) * 1998-05-25 2003-10-16 Kenya Uomori Range finder device and camera
US7302359B2 (en) * 2006-02-08 2007-11-27 Honeywell International Inc. Mapping systems and methods
US20080218739A1 (en) * 2007-03-06 2008-09-11 Kabushiki Kaisha Topcon Laser measuring system
US20090131141A1 (en) * 2006-03-23 2009-05-21 Walker Jay S Content determinative game systems and methods for keno and lottery games
US20090262974A1 (en) * 2008-04-18 2009-10-22 Erik Lithopoulos System and method for obtaining georeferenced mapping data
US20100296075A1 (en) * 2007-10-26 2010-11-25 Leica Geosystems Ag Distance-measuring method for a device projecting a reference line, and such a device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124524A (en) * 1990-11-15 1992-06-23 Laser Design Inc. Laser alignment and control system
US20030193657A1 (en) * 1998-05-25 2003-10-16 Kenya Uomori Range finder device and camera
US7302359B2 (en) * 2006-02-08 2007-11-27 Honeywell International Inc. Mapping systems and methods
US20090131141A1 (en) * 2006-03-23 2009-05-21 Walker Jay S Content determinative game systems and methods for keno and lottery games
US20080218739A1 (en) * 2007-03-06 2008-09-11 Kabushiki Kaisha Topcon Laser measuring system
US20100296075A1 (en) * 2007-10-26 2010-11-25 Leica Geosystems Ag Distance-measuring method for a device projecting a reference line, and such a device
US20090262974A1 (en) * 2008-04-18 2009-10-22 Erik Lithopoulos System and method for obtaining georeferenced mapping data

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10048379B2 (en) 2013-07-16 2018-08-14 Leica Geosystems Ag Laser tracker having target-seeking functionality
WO2015007799A2 (fr) * 2013-07-16 2015-01-22 Leica Geosystems Ag Laser de poursuite à fonction de recherche de cible
WO2015007799A3 (fr) * 2013-07-16 2015-04-30 Leica Geosystems Ag Laser de poursuite à fonction de recherche de cible
CN105452806A (zh) * 2013-07-16 2016-03-30 莱卡地球系统公开股份有限公司 具有目标寻找功能的激光跟踪仪
EP2827099A1 (fr) * 2013-07-16 2015-01-21 Leica Geosystems AG Appareil de suivi laser avec fonctionnalité de recherche d'objectif
TWI612275B (zh) * 2013-10-18 2018-01-21 創科電動工具科技有限公司 用於測量目標表面之面積之方法
WO2016160961A1 (fr) * 2015-03-31 2016-10-06 Amazon Technologies, Inc. Système lidar modulaire
US10012723B2 (en) 2015-03-31 2018-07-03 Amazon Technologies, Inc. Modular LIDAR system
US20180045505A1 (en) * 2016-08-12 2018-02-15 Symbol Technologies, Llc Arrangement for, and method of, remotely dimensioning generally planar, target surfaces of objects
WO2018031118A1 (fr) * 2016-08-12 2018-02-15 Symbol Technologies, Llc Dispositif et procédé de dimensionnement à distance de surfaces cibles généralement planes d'objets
US10317194B2 (en) 2016-08-12 2019-06-11 Symbol Technologies, Llc Arrangement for, and method of, remotely dimensioning generally planar, target surfaces of objects
CN110443275A (zh) * 2019-06-28 2019-11-12 炬星科技(深圳)有限公司 去除噪声的方法、设备及存储介质
CN110443275B (zh) * 2019-06-28 2022-11-25 炬星科技(深圳)有限公司 去除噪声的方法、设备及存储介质

Similar Documents

Publication Publication Date Title
US10401143B2 (en) Method for optically measuring three-dimensional coordinates and controlling a three-dimensional measuring device
US10455216B2 (en) Three-dimensional imager
US10444006B2 (en) Three-dimensional imager
JP5943547B2 (ja) 非接触測定を行う装置および方法
US9677755B1 (en) Controlling three-dimensional lighting arrangements
US20150116691A1 (en) Indoor surveying apparatus and method
WO2016049402A1 (fr) Caméra à réalité augmentée destinée à être utilisée avec un équipement de métrologie 3d pour former des images 3d à partir d'images de caméra 2d
JP2013190272A (ja) 3次元レーザ測量装置及び3次元レーザ測量方法
JP2012173114A (ja) 全周画像計測装置
WO2013059720A1 (fr) Appareil et procédé de mesure des dimensions d'une pièce
CN112492292B (zh) 一种自由姿态的智能视觉3d信息采集设备
CN112254680B (zh) 一种多自由度的智能视觉3d信息采集设备
JP4419570B2 (ja) 3次元画像撮影装置および方法
WO2022078442A1 (fr) Procédé d'acquisition d'informations 3-d basé sur la fusion du balayage optique et de la vision intelligente
CN112361962B (zh) 一种多俯仰角度的智能视觉3d信息采集设备
WO2016040271A1 (fr) Procédé pour mesurer optiquement des coordonnées tridimensionnelles et commander un dispositif de mesures tridimensionnelles
JP2021507209A (ja) コンピュータ生成された参照物体を有するマシンビジョンシステム
CN112254676B (zh) 一种便携式智能3d信息采集设备
KR20180099497A (ko) 가속도계를 갖는 3d 스캐너
CN213179863U (zh) 一种具有平移距离的3d信息采集、合成及利用设备
WO2022078438A1 (fr) Dispositif d'acquisition d'informations 3d d'intérieur
WO2022078433A1 (fr) Système et procédé d'acquisition d'images 3d combinées à de multiples emplacements
CN112484663B (zh) 一种多翻滚角度的智能视觉3d信息采集设备
CN112254679B (zh) 一种多位置组合式3d采集系统及方法
CN213179860U (zh) 一种多位置三维信息采集、合成及利用设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842469

Country of ref document: EP

Kind code of ref document: A1