WO2013058433A1 - 전처리 해수를 이용한 스피룰리나 배양액 제조 방법 - Google Patents

전처리 해수를 이용한 스피룰리나 배양액 제조 방법 Download PDF

Info

Publication number
WO2013058433A1
WO2013058433A1 PCT/KR2011/009368 KR2011009368W WO2013058433A1 WO 2013058433 A1 WO2013058433 A1 WO 2013058433A1 KR 2011009368 W KR2011009368 W KR 2011009368W WO 2013058433 A1 WO2013058433 A1 WO 2013058433A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
spirulina
salt concentration
naoh
seawater
Prior art date
Application number
PCT/KR2011/009368
Other languages
English (en)
French (fr)
Inventor
강도형
아부아판
허수진
오철홍
이대원
박흥식
전선미
Original Assignee
한국해양연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양연구원 filed Critical 한국해양연구원
Publication of WO2013058433A1 publication Critical patent/WO2013058433A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound

Definitions

  • the present invention relates to a method for preparing spirulina culture solution, and more particularly, to a method for preparing spirulina culture solution which can reduce the production cost of spirulina culture solution using pretreated seawater.
  • Microalgae research is becoming increasingly popular for human food, biofuel, pharmaceutical and cosmetic applications.
  • Spirulina sp. together with Dunaliella sp., Is known as the most valuable marine microalgae that is cultivated primarily for health food market applications, pharmaceuticals and biofuel feedstocks.
  • milky turbidity is mainly produced by magnesium ions (Mg 2+ ) or calcium ions (Ca 2+ ).
  • Mg 2+ magnesium ions
  • Ca 2+ calcium ions
  • Korean Patent Publication No. 10-2004-0073693 discloses a method of culturing spirulina by using a carbon source while controlling the pH by adding char instead of NaOH in SOT culture.
  • the charcoal is precipitated in the culture medium, the pH control effect is not great, there is a problem that spirulina or algae is adsorbed on the precipitated charcoal.
  • Republic of Korea Patent Publication No. 10-2006-17033 discloses a SOT culture medium to adjust the concentration of nitrogen and carbon for optimizing the growth and maximum harvest of spirulina algae, there is a problem that expensive cost.
  • Method for producing spirullina (Spirulina sp.) Culture solution using pre-treated seawater according to an embodiment of the present invention for achieving the above object is to add pre-treated seawater from which the milky turbidity product is removed by adding coal and NaOH Manufacturing step; And diluting the pretreated seawater with freshwater so that the salt concentration is 13-18 psu.
  • the coal may use bituminous coal.
  • Other carbon sources in the form of charcoal and gas such as lignite, anthracite, powdered coal and charcoal can also be used, but can be applied as a characteristic system in consideration of environmental and sustainability characteristics.
  • the coal is preferably added at a concentration determined by the following formula 1 according to the salt concentration (psu) of the natural sea water.
  • Equation 1 ⁇ c is transparent when coal is added to 1 L of natural sea water having a specific salinity concentration, and when the salt concentration is 15.0 psu when diluting with fresh water, the concentration of coal in which white precipitate does not exist is changed to the corresponding salinity concentration.
  • the NaOH is preferably added at a concentration determined by the following formula 2 according to the salt concentration (psu) of the natural sea water.
  • milky turbidity generating substances such as magnesium ions (Mg 2+ ) and calcium ions (Ca 2+ ) can be removed by using pretreatment seawater using coal and NaOH. And can reduce the production of white precipitates in the culture. Through this, it is possible to increase the content of protein during spirulina culture, and to lower the ash (ash) content.
  • the method of producing spirulina culture solution using the pre-treated seawater according to the present invention has the advantage that can be produced spirulina culture solution more than twice as low as SOT culture solution.
  • 1 to 3 show the concentration (biomass) of spirulina or maxima according to the culture period when cultured with spirulina maxima for 4 weeks using various salt concentrations.
  • Figure 4 shows the change in the concentration of spirulina or maxima for 16 days in the culture of spirulina or maxima using the culture medium according to the Examples and Comparative Examples.
  • Figure 5 shows the change in the concentration of chlorophyll a (chlorophyll a) and phycocyanin of spirulina maxima for 16 days in the culture of spirulina maxima using the culture medium according to the Examples and Comparative Examples.
  • Spirulina sp. Culture method according to the present invention includes a pre-treatment seawater preparation step and a pre-treatment seawater dilution step.
  • pretreatment seawater manufacturing step natural seawater is pretreated to prepare pretreated seawater from which milky turbidity generating material is removed.
  • pretreatment of natural seawater coal and NaOH are added to the natural seawater in the present invention.
  • milky turbidity generating substances such as magnesium ions and calcium ions precipitated out.
  • Coal may be charcoal or bituminous coal, but in the case of charcoal, it may be a factor of depleting forest resources, so it is more preferable to use bituminous coal.
  • pretreated seawater approximately 92% was a supernatant and the rest was sediment.
  • the pH increased from 8.20 to 13.14, and the salt concentration increased from 31.00 psu to 45.00 psu.
  • Table 1 shows the contents of organic carbon and various components contained in the supernatant of natural seawater and pretreated seawater.
  • organic carbon is 7 times higher in pretreated seawater than organic carbon in conventional natural seawater.
  • Na, K and Sr were each augmented with natural seawater pretreated.
  • heavy metals such as Hg, As, Cd, Cr and Pb were not detected in the pretreated seawater.
  • Mg and Ca in natural seawater were reduced to 0.80 and 337.90 mg / L in pretreated seawater, whereas 874.40 and 500.70 mg / L.
  • Mg and Ca in natural seawater were detected 99.45% and 32.52% in the sediment, respectively (see Table 1).
  • the Mg content in the detector was 22.28 g / L.
  • CO 2 or CO contained in coal may react with NaOH to form Na 2 CO 3 or NaHCO 3 , and Na 2 CO 3 detects Ca and Mg from seawater at high pH. High pH can also kill organisms present in the pretreated seawater to prevent contamination by other species.
  • Table 2 shows the amount of white precipitate formed in the culture solution having a salinity of 15.00 psu due to the dilution of the pretreatment seawater and the pretreatment seawater diluted according to the amount of coal and NaOH. Observation was made with the naked eye.
  • the coal is preferably added at a concentration of 26.3 ⁇ 30.2 g / L, based on the salt concentration of 31 psu of natural sea water, in which case the use of NaOH increases to neutralize HCl Since it should be used, the use of coal is most preferably added at 27.60 g / L.
  • the NaOH is preferably added at a concentration of 7.75 ⁇ 8.25 g / L, so that white precipitate is not formed in the culture medium based on the salt concentration of 31 psu of natural sea water, 7.75 g / L Is most preferred.
  • the amount of coal and NaOH used depends on the salt concentration (psu) of the natural seawater.
  • the usage-amount of coal is added in the density
  • Equation 1 ⁇ c is transparent when coal is added to 1 L of natural sea water having a specific salinity concentration, and when the salt concentration is 15.0 psu when diluting with fresh water, the concentration of coal in which white precipitate does not exist is changed to the corresponding salinity concentration.
  • ⁇ c is 27.6 / 31, which is approximately 0.89.
  • approximately 17.8 g / L of coal is required for pretreatment in natural seawater with a salt concentration of 20 psu.
  • NaOH is preferably added at a concentration determined by the following formula (2).
  • the pretreatment seawater is diluted with freshwater (FW) so as to have a salt concentration of 13-18 psu suitable for spirulina culture to prepare a spirulina culture solution.
  • Freshwater may use a salt concentration of about 7.5 psu, but is not necessarily limited thereto.
  • the amount of pretreated seawater and freshwater to prepare spirulina culture with a final salt concentration of 13-18 psu can be determined. For example, if the salt concentration of the pretreated seawater is 45 psu and the salt concentration of the fresh water is 7.5, 1L (20vol%) of pretreated seawater and 4L (80vol%) of fresh water are used to prepare a spirulina culture with a salt concentration of 15 psu. Can be.
  • Spirulina culture contains approximately 8.5 g / L NaHCO to increase organic carbon content and provide nutrients.
  • About 1 g / L 2 SO 4 , 0.9 ⁇ 1.1 g / L K 2 HPO 4 May be added, and also, as the Mg concentration is reduced to 0.020 mg / L during the pretreatment of natural seawater, MgSO 4 7H 2 O may be added at a concentration of approximately 0.12 g / L.
  • Na 2 -EDTA, 2H 2 O, ZnSO 4 7H 2 O, FeSO 4 7H 2 O, GeO 2, Co (NO 3 ) 2 6H 2 O, MnCl 2 4H 2 O, Na 2 MoO 4 2H 2 O, CuSO 4 5H 2 O and the like may be further added.
  • the spirulina culture solution prepared through dilution of pre-treated seawater preferably has a salt concentration of 13-18 psu.
  • Table 3 shows the composition of spirulina culture at various salt concentrations.
  • the salt concentrations of spirulina culture were divided into 15.00 psu, 20.00 psu, and 25.00 psu, respectively, and the concentrations of other additives except K 2 HPO 4 were constant.
  • Table 4 and Figures 1 to 3 show the concentration of spirulina (biomass) according to the culture period when cultured for 4 weeks spirulina maxima (spirulina maxima) using a variety of salt concentration of the culture.
  • the salt concentration of the culture medium in Table 4 is most preferably 15.00psu.
  • the spirulina concentrations (g / L) after 4 weeks of culture were 2.75, 2.80 and 2.58, respectively.
  • the spirulina concentrations (g / L) after 4 weeks of culture were 2.87, 2.88, and 2.85.
  • the spirulina concentrations (g / L) after 4 weeks of culture were 2.65, 3.00 and 2.90.
  • an example of the most suitable culture medium may be regarded as a salt concentration of 15.00 psu, K 2 HPO 4 concentration of 1.00 g / L.
  • Spirulina maxima was cultured in SOT culture medium (comparative example) having the composition shown in Table 5 and the salinity concentration of 13.45 psu, and culture medium using the pretreated seawater having the composition and salinity concentration shown in Table 6 (15.00 psu) (Example).
  • the culture temperature was 30.00 °C
  • the light intensity of the light was 7000 lx fluorescence
  • the light / dark cycle was a time (h) ratio of 12:12.
  • the sample was filtered through a filter paper weighed in advance.
  • the filter paper was wetted in distilled water and then dried at the same time for use as a blank.
  • the filter paper was kept at 55 ° C. in an oven, dried and weighed, and the dry weight g / L It is calculated as and represented by the growth curve.
  • the specific growth rate ( ⁇ ) of spirulina maxima is defined as the increase in concentration of spirulina or maxima (X0 ⁇ X1) per unit time (t0 ⁇ t1), and was calculated using the following equation.
  • Figure 4 shows the change in the concentration of spirulina or maxima for 16 days in the culture of spirulina or maxima using the culture medium according to the Examples and Comparative Examples.
  • ⁇ max in FIG. 4 represents the growth rate of spirulina maxima relative to the maximum spirulina maxima produced per unit time (day).
  • ⁇ max of each of the culture solutions according to Examples and Comparative Examples was 0.133 and 0.128 d ⁇ 1 .
  • the yields of spirulina and maxima in each of the Examples and Comparative Examples were 1.47 and 1.44 g / L, respectively.
  • Table 7 shows the components included in the cultured spirulina after 16 days of incubation with the culture medium according to the Examples and Comparative Examples.
  • the comparative example contains almost similar components as a whole although the protein content is slightly higher.
  • Figure 5 shows the change in the concentration of chlorophyll a (chlorophyll a) and phycocyanin of spirulina maxima for 16 days in the culture of spirulina maxima using the culture medium according to the Examples and Comparative Examples.
  • milky turbidity generating substances such as magnesium ions (Mg 2+ ) or calcium ions (Ca 2+ ) can be removed by using pretreatment seawater using coal and NaOH. And can reduce the production of white precipitates in the culture. Through this, it is possible to increase the content of protein during spirulina culture, and to lower the ash (ash) content.
  • the method of producing spirulina culture solution using the pre-treated seawater according to the present invention has the advantage that can be produced spirulina culture solution more than twice as low as SOT culture solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

전처리 해수를 이용하여 스피룰리나((Spirulina sp.) 배양액의 제조 비용을 감소시킬 수 있는 스피룰리나 배양액 제조 방법에 대하여 개시한다. 본 발명에 따른 스피룰리나 배양액 제조 방법은 천연 해수에 석탄 및 NaOH를 첨가하여, 우유빛 탁도 생성 물질이 제거된 전처리 해수를 제조하는 단계; 및 염분 농도 13~18 psu가 되도록 상기 전처리 해수를 담수(Freshwater)로 희석하는 단계;를 포함하는 것을 특징으로 한다.

Description

전처리 해수를 이용한 스피룰리나 배양액 제조 방법
본 발명은 스피룰리나(spirulina sp.) 배양액 제조 방법에 관한 것으로, 보다 상세하게는 전처리 해수를 이용하여 스피룰리나 배양액의 제조 비용을 감소시킬 수 있는 스피룰리나 배양액 제조 방법에 관한 것이다.
인간의 음식물, 바이오 연료, 의약품 및 화장품 용도와 관련하여 미세조류 연구가 점점 더 각광을 받고 있다.
미세조류 중 스피룰리나(Spirulina sp.)는 두날리엘라(Dunaliella sp.)와 함께 건강 식품 시장 용도, 의약품 및 바이오연료 공급원료을 주로 공급하기 위해서 배양되는 가장 가치 높은 해양 미세조류로 알려져 있다.
그러나, 스피룰리나 배양을 위한 배양액으로, 천연해수를 이용하지 못하고, SOT(Spirulina Ogawa Terui)와 같은 고가의 인공 배양액이 이용되고 있다. 스피룰리나 배양액으로 천연해수를 이용하는 경우, 우유빛 탁도 생성, 영양분의 검출, 미세조류의 클럼핑(clumping), HPO4 2- 용해도의 감소, 배양액 내 백색 침전물 형성 등 다양한 문제점이 있다.
이중에서 우유빛 탁도 생성은 주로 마그네슘 이온(Mg2+)이나 칼슘 이온(Ca2+)에 의하여 생성되는데, 미세조류의 배양을 위하여 인산염 및 탄산염을 천연해수에 첨가하면, 배양액이 탁해지는 현상이 발생한다. 이러한 우유빛 탁도 생성은 스피룰리나 배양시 단백질의 함량이 저하되고, 애쉬(ash) 함량이 증가하는 원인이 된다.
또한, 배양액 내 백색 침전물 생성 역시 애쉬 함량이 증가하는 원인이 된다.
한편, 다른 화학물질과 함께 탄소의 이용성은 스피룰리나 성장에 있어서 가장 중요한 인자가 된다. 일반적으로, 탄소는 모든 보고된 스피룰리나 배양 매체 내에서 탄소산염(NaHCO3 및 Na2CO3)으로서 공급되나, 전술한 문제점들은 탄산염을 천연해수로 첨가한 후에 발생된다.
본 발명과 관련하여, 대한민국 특허공개 제10-2004-0073693호에는 SOT 배양액에서 NaOH 대신에 숯을 부가하여 pH를 조절하는 동시에 탄소원으로 활용하여 스피룰리나를 배양하는 방법이 개시되어 있다. 그러나, 상기 문헌에 제시된 기술의 경우, 숯이 배양액에 침전되어 pH 조절효과가 크지 못하고, 침전된 숯에 스피룰리나 조류가 흡착되는 문제점이 있다.
또한, 대한민국 특허공개 제10-2006-17033호에는 스피룰리나 조류의 성장 최적화 및 최대 수확을 위하여, 질소 및 탄소의 농도를 조절한 SOT 배양액이 개시되어 있으나, 고가의 비용이 소요되는 문제점이 있다.
본 발명의 목적은 전처리 해수를 이용하여 스피룰리나 배양액의 제조 비용을 감소시킬 수 있으며, 스리루리나 배양시 단백질 함량을 높이면서 애쉬 함량을 낮출 수 있는 스피룰리나 배양액 제조 방법을 제공하는 것이다.
상기 하나의 목적을 달성하기 위한 본 발명의 실시예에 따른 전처리 해수를 이용한 스피룰리나(Spirulina sp.) 배양액 제조 방법은 천연 해수에 석탄 및 NaOH를 첨가하여, 우유빛 탁도 생성 물질이 제거된 전처리 해수를 제조하는 단계; 및 염분 농도 13~18 psu가 되도록 상기 전처리 해수를 담수(Freshwater)로 희석하는 단계;를 포함하는 것을 특징으로 하는 한다.
이때, 상기 석탄은 역청탄을 이용할 수 있다. 이외 갈탄, 무연탄, 분탄 및 숯과 같은 목탄 및 가스 형태의 탄소원들도 사용 가능하나, 환경적 및 지속가능성의 특성을 고려하여 특성별 시스템으로 적용할 수 있다.
또한, 상기 석탄은 상기 천연해수의 염분 농도(psu)에 따라 하기 식 1에 의해 정해지는 농도로 첨가되는 것이 바람직하다.
[식 1]
RAC (g/L)= 천연해수염분 농도 X μc
(식 1에서, μc는 특정한 염분 농도를 갖는 천연해수 1L에 석탄을 첨가하였을 때 투명하고, 담수로 희석하여 염분 농도 15.0psu로 하였을 때 백색 침전물이 존재하지 않는 석탄의 농도를 해당 염분 농도로 나눈 값)
또한, 상기 NaOH는 상기 천연해수의 염분 농도(psu)에 따라 하기 식 2에 의해 정해지는 농도로 첨가되는 것이 바람직하다.
[식 2]
RANaOH (g/L)= 천연해수염분 농도 X μNaOH
(식 2에서, μNaOH는 특정한 염분 농도를 갖는 천연해수 1L에 NaOH를 첨가하였을 때 투명하고, 담수로 희석하여 염분 농도 15.0psu로 하였을 때 백색 침전물이 존재하지 않는 NaOH의 농도를 해당 염분 농도로 나눈 값)
본 발명에 따른 전처리 해수를 이용한 스피룰리나 배양액 제조 방법은 석탄과 NaOH를 이용한 전처리 해수를 이용함으로써, 마그네슘 이온(Mg2+)이나 칼슘 이온(Ca2+)과 같이 우유빛 탁도 생성 물질을 제거할 수 있으며, 배양액 내 백색 침전물 생성을 감소시킬 수 있다. 이를 통하여, 스피룰리나 배양시 단백질의 함량을 높이고, 애쉬(ash) 함량을 낮출 수 있다.
또한, 본 발명에 따른 전처리 해수를 이용한 스피룰리나 배양액 제조 방법은 SOT 배양액에 비하여 2배 이상 저비용으로 스피룰리나 배양액을 제조할 수 있는 장점이 있다.
도 1 내지 도 3은 다양한 염분 농도의 배양액을 이용하여 스피룰리나 맥시마(spirulina maxima) 4주간 배양 시 배양기간에 따른 스피룰리나 맥시마의 농도(바이오매스)을 나타낸 것이다.
도 4는 실시예 및 비교예에 따른 배양액을 이용하여 스피룰리나 맥시마 배양시, 16일동안 스피룰리나 맥시마의 농도 변화를 나타낸 것이다.
도 5는 실시예 및 비교예에 따른 배양액을 이용하여 스피룰리나 맥시마 배양시, 16일동안 스피룰리나 맥시마의 클로로필 a(chlorophyll a) 및 피코시아닌 (phycocyanin)의 농도 변화를 나타낸 것이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들 및 도면을 참조하면 명확해질 것이다.
그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
이하, 본 발명에 따른 전처리 해수를 이용한 스피룰리나 배양액 제조 방법에 대하여 상세히 설명하기로 한다.
본 발명에 따른 스피룰리나(Spirulina sp.) 배양액 제조 방법은 전처리 해수 제조 단계 및 전처리 해수 희석 단계를 포함한다.
전처리 해수 제조
전처리 해수 제조 단계에서는 천연 해수를 전처리하여 우유빛 탁도 생성 물질이 제거된 전처리 해수를 제조한다. 천연 해수의 전처리를 위하여, 본 발명에서는 석탄 및 NaOH를 천연 해수에 첨가한다. 그 결과 마그네슘 이온과 칼슘 이온과 같은 우유빛 탁도 생성 물질이 침전되었다.
석탄은 목탄, 역청탄 등을 이용할 수 있으나, 목탄의 경우 산림 자원을 고갈시키는 요인이 될 수 있으므로, 역청탄을 이용하는 것이 더 바람직하다.
전처리 해수의 성분 평가를 위하여, pH 8.20 및 염분 농도가 31.00 psu인 천연해수에 27.60 g/L 역청탄 및 7.75g/L NaOH를 첨가한 후, 29℃의 온도에서 일주일간 유지하였다.
전처리 해수의 경우, 대략 92% 정도가 상등액(Supernatant)이었고, 나머지는 침전물이었다. 또한, 천연해수로부터 전처리된 해수까지, pH가 8.20로부터 13.14으로 증가하였으며, 염분 농도가 31.00 psu 로부터 45.00 psu로 증대되었다.
표 1은 천연해수와 전처리 해수의 상등액(Supernatant)에 포함된 유기 탄소(Organic Carbon) 및 각종 성분들의 함량을 나타낸 것이다.
표 1에서, 유기탄소 분석기(TOC-5000A, Shimadzu사 제조)를 이용하여, 천연해수 및 전처리 해수 내의 총 유기 탄소(organic carbon; OC)를 평가하였다. 또한, 천연해수 및 전처리 해수 내의 Ca, Mg, Na, As, Cd, Cr, Pb, Mg, K, Sr 및 Hg의 농도, 그리고 또한 침전물 내의 Ca 및 Mg의 농도를 한국고분자시험연구소에서 측정하였다.
[표 1]
Figure PCTKR2011009368-appb-I000001
표 1을 참조하면, 유기 탄소는 통상적인 천연해수의 유기 탄소 보다 전처리된 해수에서 7배 더 높아 졌다. Na, K 및 Sr이 천연해수로부터 전처리된 해수로 각각 증대되었다. 한편, Hg, As, Cd, Cr 및 Pb와 같은 중금속은 전처리된 해수에서 탐지되지 않았다.
특히, 천연해수 내의 Mg 및 Ca 는 874.40 및 500.70 mg/L 인데 반하여, 전처리된 해수에서 0.80 및 337.90 mg/L로 감소되었다. 천연해수 내의 Mg 및 Ca 는 침전물 내에서 각각 99.45% 및 32.52% 검출되었다(표 1 참조). 검출물 내의 Mg 함량은 22.28 g/L 이었다.
석탄에 함유된 CO2 또는 CO가 NaOH와 반응하여 Na2CO3 또는 NaHCO3 를 형성할 수 있고, 그리고 Na2CO3는 높은 pH에서 해수로부터 Ca 및 Mg를 검출한다. 높은 pH 는 또한 전처리된 해수 내에 존재하는 유기체를 사멸시켜 다른 종에 의한 오염을 방지할 수 있다.
한편, 천연 해수의 염분 농도에 따라 석탄 및 NaOH 첨가량을 최적화할 필요성이 있다.
표 2는 염분 농도가 31 psu인 천연해수에 대하여, 석탄 및 NaOH 첨가량에 따라서 제조되는 전처리 해수의 투명도와 전처리 해수가 희석되어 염분 농도가 15.00 psu인 배양액 내의 백색 침전물 형성 양을 나타낸 것이다. 관찰은 육안으로 하였다.
[표 2]
Figure PCTKR2011009368-appb-I000002
표 2를 참조하면, 천연해수의 일반적 염분 농도에 해당하는 31 psu의 염분 농도를 갖는 천연해수에 역청탄과 NaOH를 첨가하는 경우, 역청탄의 농도가 25g/L 이상이고 NaOH 농도가 7.50 이상일 경우, 투명성이 유지되었다. 또한, 역청탄의 농도가 27.60 g/L 이상이고, NaOH의 농도가 7.75g/L 이상인 경우에는 배양액 내 백색 침전물이 형성되지 않았다.
상기 표 2에서 NaOH가 농도가 8.25g/L일 경우, 역청탄의 농도가 26.3g/L인 경우에도 배양액 내 백색 침전물이 형성되지 않았다. 따라서, 상기 표 2에 의할 때, 석탄은 천연해수의 염분 농도 31 psu를 기준으로, 26.3~30.2 g/L의 농도로 첨가되는 것이 바람직하고, 이 경우 NaOH 사용이 증가하여 중화를 위하여 HCl이 사용되어야 하므로, 석탄의 사용은 27.60g/L로 첨가되는 것이 가장 바람직하다.
또한, 상기 표 2를 참조하면, 상기 NaOH는 천연해수의 염분 농도 31psu를 기준으로, 배양액 내에서 백색 침전물이 형성되지 않도록 7.75~8.25 g/L의 농도로 첨가되는 것이 바람직하고, 7.75 g/L이 가장 바람직하다.
한편, 석탄 및 NaOH의 사용량은 천연해수의 염분 농도(psu)에 따라 달라진다.
우선, 석탄의 사용량은 하기 식 1에 의해 정해지는 농도로 첨가되는 것이 바람직하다.
[식 1]
RAC (g/L)= 천연해수염분 농도 X μc
(식 1에서, μc는 특정한 염분 농도를 갖는 천연해수 1L에 석탄을 첨가하였을 때 투명하고, 담수로 희석하여 염분 농도 15.0psu로 하였을 때 백색 침전물이 존재하지 않는 석탄의 농도를 해당 염분 농도로 나눈 값)
예를 들어, 염분 농도 31 psu에서 27.60g/L의 석탄을 필요로 하는 것을 알고 있다면, μc는 27.6 / 31로서, 대략 0.89가 된다. 따라서, 이를 기초로, 염분 농도 20psu의 천연 해수에서는 전처리를 위하여 대략 17.8g/L의 석탄이 요구된다.
다음으로, NaOH는 하기 식 2에 의해 정해지는 농도로 첨가되는 것이 바람직하다.
[식 2]
RANaOH (g/L)= 천연해수염분 농도 X μNaOH
(식 2에서, μNaOH는 특정한 염분 농도를 갖는 천연해수 1L에 NaOH를 첨가하였을 때 투명하고, 담수로 희석하여 염분 농도 15.0psu로 하였을 때 백색 침전물이 존재하지 않는 NaOH의 농도를 해당 염분 농도로 나눈 값)
예를 들어, 염분 농도 31 psu에서 7.75g/L의 NaOH를 필요로 하는 것을 알고 있다면, μNaOH는 7.75 / 31로서, 대략 0.25가 된다. 따라서, 이를 기초로, 염분 농도 20psu의 천연 해수에서는 전처리를 위하여 대략 5g/L의 석탄이 요구된다.
실제, 상기 식 1 및 식 2에 따른 역청탄 및 NaOH 농도를 10.00~50.00 psu인 천연해수에 적용한 결과, 모든 경우에서 전처리된 해수의 투명도, 스피룰리나 맥시마 배양 매체의 투명도 그리고 백색 침전물 형성 문제가 발생하지 않았다.
전처리 해수 희석
다음으로, 전처리 해수 희석 단계에서는 스피룰리나 배양에 적합한 염분 농도인 13~18 psu가 되도록 전처리 해수를 담수(Freshwater; FW)로 희석하여 스피룰리나 배양액을 제조한다.
담수는 염분 농도 7.5 psu 정도인 것을 이용할 수 있으나, 반드시 이에 제한되는 것은 아니다.
전처리 해수와 담수의 염분 농도에 따라서, 최종 염분 농도 13~18 psu를 갖는 스피룰리나 배양액을 제조하기 위한 전처리 해수 및 담수의 사용량이 결정될 수 있다. 예를 들어, 전처리 해수의 염분 농도가 45 psu이고, 담수의 염분 농도가 7.5인 경우, 전처리 해수 1L(20vol%) 와 담수 4L(80vol%)를 사용하여 염분 농도 15 psu인 스피룰리나 배양액을 제조할 수 있다.
스피룰리나 배양액에는 유기 탄소 함량 증가, 영양분 제공 등을 위해서, 대략 8.5g/L 정도의 NaHCO3, 대략 2.5 g/L 정도의 NaNO3, 대략 1g/L 정도의 K2SO4, 0.9~1.1 g/L의 K2HPO4가 첨가될 수 있으며, 또한, 천연해수의 전처리 과정에서 Mg 농도가 0.020 mg/L로 감소됨에 따라, MgSO4·7H2O가 대략 0.12g/L 정도의 농도로 첨가될 수 있다. 이외에도 미량의 H3BO3, Na2-EDTA·2H2O, ZnSO4·7H2O, FeSO4·7H2O, GeO2, Co(NO3)2·6H2O, MnCl2·4H2O, Na2MoO4·2H2O, CuSO4·5H2O 등이 더 첨가될 수 있다.
한편, 전처리 해수 희석을 통하여 제조되는 스피룰리나 배양액은 염분 농도가 13~18 psu인 것이 바람직하다.
스피룰리나 배양액의 염분 농도가 18 psu를 초과하면, 스피룰리나 배양 시 단백질 함량 비율이 상대적으로 낮아지고 애쉬 함량이 높아지는 문제점이 있다. 반대로, 해산 스피룰리나 배양액의 염분 농도가 13 psu 미만일 경우, 스피룰리나 배양이 잘 이루어지지 않는 문제점이 있다.
표 3은 다양한 염분 농도의 스피룰리나 배양액의 조성을 나타낸 것이다.
표 3에 나타낸 바와 같이, 스피룰리나 배양액의 염분 농도를 각각 15.00 psu, 20.00 psu 및 25.00 psu로 구분하였으며, K2HPO4를 제외하고 다른 첨가물질의 농도는 일정하게 하였다.
[표 3]
Figure PCTKR2011009368-appb-I000003
표 4, 그리고 도 1 내지 도 3은 다양한 염분 농도의 배양액을 이용하여 스피룰리나 맥시마(spirulina maxima) 4주간 배양 시 배양기간에 따른 스피룰리나의 농도(바이오매스)를 나타낸 것이다.
[표 4]
Figure PCTKR2011009368-appb-I000004
표 4를 참조하면, K2HPO4의 농도가 일정한 경우, 배양액의 염분 농도가 낮을수록 단백질의 함량이 더 높으며, 애쉬의 함량이 더 낮아지는 것을 볼 수 있다. 따라서, 표 4에서 배양액의 염분 농도는 15.00psu인 것이 가장 바람직하다.
또한, 표 4를 참조하면, 배양액의 15.00 psu 염분 농도에 대하여, K2HPO4의 농도가 1.00 g/L일 경우, 단백질의 함량이 가장 높았고, 애쉬의 함량이 가장 낮았다.
한편, 배양액의 염분 농도가 15.00 psu인 A1, A2 및 A3의 경우, 4주 배양 후 스피룰리나 농도(g/L)는 각각 2.75, 2.80 및 2.58 이었다. 또한, 염분 농도가 20.00 psu인 B1, B2 및 B3의 경우, 4주 배양 후 스피룰리나 농도(g/L)는 2.87, 2.88 및 2.85 이었다. 또한, 염분 농도가 25.00 psu인 C1, C2 및 C3 의 경우, 4주 배양 후 스피룰리나 농도(g/L)는 2.65, 3.00 및 2.90 이었다.
즉, 표 4 및 도 1 내지 도 3을 참조하면, 동일한 K2HPO4의 농도에서, 배양액의 염분 농도가 증가할수록 대체로 스피룰리나 생산량은 증가하였으나, 스피룰리나 품질 즉, 단백질의 함량은 더 낮아지고, 애쉬의 농도는 더 높아진다고 볼 수 있다. 또한, 동일한 염분 농도에서, K2HPO4의 농도가 1.00일 경우 가장 스피룰리나 생산량이 높았다.
이를 토대로, 가장 적합한 배양액의 예는 염분 농도 15.00 psu, K2HPO4의 농도 1.00 g/L라 볼 수 있다.
표 5에 도시된 조성 및 13.45psu의 염분 농도를 갖는 SOT 배양액(비교예) 과, 표 6에 도시된 조성 및 염분 농도가 15.00 psu인 전처리 해수를 이용한 배양액(실시예)에서 스피룰리나 맥시마를 배양하였다. 배양시 온도는 30.00℃, 빛의 조명 강도는 7000 lx인 형광으로 하였으며, 염암주기(light/dark cycle)는 시간(h)비로 12:12로 하였다.
4.5 L의 배양액을 포함하는 5L 용량 플라스크에서 배양을 하였고, 각각의 배양을 3차례 실시하였다. 약 0.21 g/L 의 스피룰리나 맥시마가 접종되고 그리고 공기주입 장치로 교반되었다. 성장 및 피그먼트 함량을 평가하기 위해서 샘플링하였다. 피그먼트 함량을 흡광분광분석기(PerkinElmer, Lamda35 uv/vis spectrometer, USA)로 분석하였다.
스피룰리나의 성장 측정을 위해서, 미리 중량이 측정된 필터 종이를 통해서 샘플을 여과하였다. 필터 종이를 증류수 내에서 적신 후, 블랭크로서 이용하기 위해서 동시에 건조하였다. 필터 종이를 오븐 내에서 55℃에서 유지하였고, 건조하고 그리고 중량을 측정하였으며, 건조 중량을 g/L 로 계산하여 성장 곡선으로 표시하였다. 스피룰리나 맥시마의 성장율(specific growth rate)(μ)은 단위 시간당(t0 → t1) 스피룰리나 맥시마의 농도 증가(X0 → X1)로 규정되며, 하기 식 3을 이용하여 계산하였다.
[식 3]
Figure PCTKR2011009368-appb-I000005
[표 5] (단위 : g/L)
Figure PCTKR2011009368-appb-I000006
[표 6] (단위 : g/L)
Figure PCTKR2011009368-appb-I000007
도 4는 실시예 및 비교예에 따른 배양액을 이용하여 스피룰리나 맥시마 배양시, 16일동안 스피룰리나 맥시마의 농도 변화를 나타낸 것이다.
여기에서, 도 4에서 μmax는 단위 시간(day)당 최대 스피룰리나 맥시마 생산된 것에 대한 스피룰리나 맥시마의 성장률을 나타내었다.
도 4를 참조하면 실시예 및 비교예에 따른 배양액 각각의 μmax는 0.133 및 0.128 d-1 이었다. 16일의 배양 후에 실시예 및 비교예 각각의 스피룰리나 맥시마의 생산량은 1.47 및 1.44 g/L 였다.
즉, 도 4를 참조하면, 실시예 및 비교예 각각에서 스피룰리나 맥시마의 생산능력에 대하여 큰 차이가 없었다. 다만, 실시예에 따른 배양액의 경우, 그 제조 비용이 비교예에 따른 배양액보다 2.5배 정도 낮았다.
표 7은 실시예 및 비교예에 따른 배양액으로 16일간 배양 후, 각각 배양된 스피룰리나에 포함된 성분들을 나타낸 것이다.
[표 7]
Figure PCTKR2011009368-appb-I000008
표 7을 참조하면, 비교예의 경우가 단백질의 함량이 약간 높기는 하나, 전체적으로 거의 유사한 성분들을 함유하고 있음을 볼 수 있다.
도 4 및 표 7을 참조하면, 본 발명에 따른 전처리 해수를 이용한 스피룰리나 배양액의 경우, 기존의 SOT 배양액과 품질이 거의 유사하면서도 저비용인 것을 의미한다.
도 5는 실시예 및 비교예에 따른 배양액을 이용하여 스피룰리나 맥시마 배양시, 16일동안 스피룰리나 맥시마의 클로로필 a(chlorophyll a) 및 피코시아닌 (phycocyanin)의 농도 변화를 나타낸 것이다.
도 5를 참조하면, 클로로필 a의 경우, 배양 초기에는 실시예 및 비교예 모두 거의 동일한 농도로 증가하다가, 12일을 기점으로 실시예의 경우가 현저히 농도가 증가하는 것을 볼 수 있다.
피코시아닌의 경우, 비교예의 경우가 실시예의 경우보다 약간 높았다.
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.
따라서, 본 발명의 진정한 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.
본 발명에 따른 전처리 해수를 이용한 스피룰리나 배양액 제조 방법은 석탄과 NaOH를 이용한 전처리 해수를 이용함으로써, 마그네슘 이온(Mg2+)이나 칼슘 이온(Ca2+)과 같이 우유빛 탁도 생성 물질을 제거할 수 있으며, 배양액 내 백색 침전물 생성을 감소시킬 수 있다. 이를 통하여, 스피룰리나 배양시 단백질의 함량을 높이고, 애쉬(ash) 함량을 낮출 수 있다.
또한, 본 발명에 따른 전처리 해수를 이용한 스피룰리나 배양액 제조 방법은 SOT 배양액에 비하여 2배 이상 저비용으로 스피룰리나 배양액을 제조할 수 있는 장점이 있다.

Claims (8)

  1. 천연 해수에 석탄 및 NaOH를 첨가하여, 우유빛 탁도 생성 물질이 제거된 전처리 해수를 제조하는 단계; 및
    염분 농도 13~18 psu가 되도록 상기 전처리 해수를 담수(Freshwater)로 희석하는 단계;를 포함하는 것을 특징으로 하는 스피룰리나(Spirulina sp.) 배양액 제조 방법.
  2. 제1항에 있어서,
    상기 석탄은
    역청탄, 갈탄, 무연탄, 분탄 및 목탄 중에서 선택되는 것을 특징으로 하는 스피룰리나 배양액 제조 방법.
  3. 제1항에 있어서,
    상기 석탄은
    상기 천연해수의 염분 농도 31psu를 기준으로, 26.3~30.2 g/L의 농도로 첨가되는 것을 특징으로 하는 스피룰리나 배양액 제조 방법.
  4. 제1항에 있어서,
    상기 석탄은
    상기 천연해수의 염분 농도(psu)에 따라 하기 식 1에 의해 정해지는 농도로 첨가되는 것을 특징으로 하는 스피룰리나 배양액 제조 방법.
    [식 1]
    RAC (g/L)= 천연해수염분 농도 X μc
    (식 1에서, μc는 특정한 염분 농도를 갖는 천연해수 1L에 석탄을 첨가하였을 때 투명하고, 담수로 희석하여 염분 농도 15.0psu로 하였을 때 백색 침전물이 존재하지 않는 석탄의 농도를 해당 염분 농도로 나눈 값)
  5. 제1항에 있어서,
    상기 NaOH는
    상기 천연해수의 염분 농도 31psu를 기준으로, 7.75~8.25 g/L의 농도로 첨가되는 것을 특징으로 하는 스피룰리나 배양액 제조 방법.
  6. 제1항에 있어서,
    상기 NaOH는
    상기 천연해수의 염분 농도(psu)에 따라 하기 식 2에 의해 정해지는 농도로 첨가되는 것을 특징으로 하는 스피룰리나 배양액 제조 방법.
    [식 2]
    RANaOH (g/L)= 천연해수염분 농도 X μNaOH
    (식 2에서, μNaOH는 특정한 염분 농도를 갖는 천연해수 1L에 NaOH를 첨가하였을 때 투명하고, 담수로 희석하여 염분 농도 15.0psu로 하였을 때 백색 침전물이 존재하지 않는 NaOH의 농도를 해당 염분 농도로 나눈 값)
  7. 제1항에 있어서,
    상기 희석된 용액에 0.9~1.1 g/L의 K2HPO4를 더 첨가하는 것을 특징으로 하는 스피룰리나 배양액 제조 방법.
  8. 제7항에 있어서,
    상기 희석된 용액에
    NaHCO3, NaNO3, K2SO4, K2HPO4 및 MgSO4·7H2O가 더 첨가되고,
    H3BO3, Na2-EDTA·2H2O, ZnSO4·7H2O, FeSO4·7H2O, GeO2, Co(NO3)2·6H2O, MnCl2·4H2O, Na2MoO4·2H2O 및 CuSO4·5H2O 중 1종 이상이 더 첨가되는 것을 특징으로 하는 스피룰리나 배양액 제조 방법.
PCT/KR2011/009368 2011-10-18 2011-12-06 전처리 해수를 이용한 스피룰리나 배양액 제조 방법 WO2013058433A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110106662A KR101125668B1 (ko) 2011-10-18 2011-10-18 전처리 해수를 이용한 스피룰리나 배양액 제조 방법
KR10-2011-0106662 2011-10-18

Publications (1)

Publication Number Publication Date
WO2013058433A1 true WO2013058433A1 (ko) 2013-04-25

Family

ID=46142118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009368 WO2013058433A1 (ko) 2011-10-18 2011-12-06 전처리 해수를 이용한 스피룰리나 배양액 제조 방법

Country Status (2)

Country Link
KR (1) KR101125668B1 (ko)
WO (1) WO2013058433A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101670703B1 (ko) * 2014-04-04 2016-11-02 명지대학교 산학협력단 지질 함량이 증진된 미세조류의 배양방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243943A (ja) * 1998-03-04 1999-09-14 Toshiba Corp 藻類培養媒体およびその製造方法
KR20040073693A (ko) * 2003-02-14 2004-08-21 주식회사 한국플랑크톤연구소 스피루리나 배양액 및 배양방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003325165A (ja) * 2002-05-09 2003-11-18 Microalgae Corporation デュナリエラの培養生産方法と該培養生産方法で得られたデュナリエラを主成分とするタラソテラピー用剤

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243943A (ja) * 1998-03-04 1999-09-14 Toshiba Corp 藻類培養媒体およびその製造方法
KR20040073693A (ko) * 2003-02-14 2004-08-21 주식회사 한국플랑크톤연구소 스피루리나 배양액 및 배양방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CID, A. ET AL., AQUATIC TOXICOLOGY, vol. 31, 1995, pages 165 - 174 *
MATERALSSI, R. ET AL., APPL. MICROBIOL. BIOTECHNOL., vol. 19, 1984, pages 384 - 386 *
RABBAY, R. ET AL., PLANT AND SOIL, vol. 89, 1985, pages 107 - 116 *

Also Published As

Publication number Publication date
KR101125668B1 (ko) 2012-03-27

Similar Documents

Publication Publication Date Title
Rodriguez-Valera et al. Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern
CN106047768B (zh) 一种陶厄氏菌菌株及其应用
JP7455386B2 (ja) 淡水産微細藻類の培養方法
Selvakumar et al. Bioactive potential of Streptomyces against fish and shellfish pathogens
Ayitso et al. Isolation and identification by morphological and biochemical methods of antibiotic producing microorganisms from the gut of Macrotermes michaelseni in Maseno, Kenya
Taikhao et al. Dark fermentative hydrogen production by the unicellular halotolerant cyanobacterium Aphanothece halophytica grown in seawater
CN112481165B (zh) 沼泽红假单胞菌p-3及其筛选方法与用途
CN106148480A (zh) 一种超耐硒细菌对亚硒酸盐的还原作用的研究方法
Lyu et al. Optimized culturing conditions for an algicidal bacterium Pseudoalteromonas sp. SP 48 on harmful algal blooms caused by Alexandrium tamarense
WO2013058431A1 (ko) 천연 해수 및 전처리 해수를 이용한 두날리엘라 배양액 제조 방법
WO2013058432A1 (ko) 자연해수를 이용한 조류 배양액 제조 방법
CN114317276B (zh) 处理含盐废水的杜氏盐藻藻株、包括其的微生物群落及其用途
Mizuno et al. Novel multicellular prokaryote discovered next to an underground stream
CN109971691B (zh) 一株富硒细菌及其分离方法
Shokravi et al. Physiological and morphological responses of unexplored cyanoprokaryota Anabaena sp. FS 77 collected from oil polluted soils under a combination of extreme conditions
WO2013058433A1 (ko) 전처리 해수를 이용한 스피룰리나 배양액 제조 방법
Herbert et al. The isolation and some characteristics of photosynthetic bacteria (Chromatiaceae and Chlorobiaceae) from Antarctic marine sediments
CN106011021A (zh) 一种超耐硒细菌分离、纯化及鉴定的方法
Prasertsan et al. Isolation, identification and growth conditions of photosynthetic bacteria found in seafood processing wastewater
Nanjani et al. Diversity and EPS production potential of halotolerant bacteria from veraval and dwarka
Basaglia et al. Resuscitation of viable but not culturable Sinorhizobium meliloti 41 pRP4-luc: effects of oxygen and host plant
Kadiri et al. Screening and isolation of antagonistic actinobacteria associated with marine sponges from Indian coast
CN105861374B (zh) 一种产角蛋白酶的甜菜假单胞菌及其应用
Takahashi et al. Effects of phosphate on arsenate inhibition in a marine cyanobacterium, Phormidium sp.
TWI603776B (zh) 固定二氧化碳用之小球藻及使用其固定二氧化碳之方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874128

Country of ref document: EP

Kind code of ref document: A1