WO2013058132A1 - Passive fuel cell and liquid fuel supply member - Google Patents

Passive fuel cell and liquid fuel supply member Download PDF

Info

Publication number
WO2013058132A1
WO2013058132A1 PCT/JP2012/076049 JP2012076049W WO2013058132A1 WO 2013058132 A1 WO2013058132 A1 WO 2013058132A1 JP 2012076049 W JP2012076049 W JP 2012076049W WO 2013058132 A1 WO2013058132 A1 WO 2013058132A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid fuel
fuel cell
passive
ionic
anode
Prior art date
Application number
PCT/JP2012/076049
Other languages
French (fr)
Japanese (ja)
Inventor
曽我部 敦
小山 俊樹
Original Assignee
株式会社資生堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社資生堂 filed Critical 株式会社資生堂
Publication of WO2013058132A1 publication Critical patent/WO2013058132A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • Embodiments of the present invention relate to a passive fuel cell and a liquid fuel supply member.
  • fuel cells have attracted attention as energy generators with high power generation efficiency and low environmental impact.
  • the basic principle of a fuel cell is the reverse reaction of water electrolysis, which does not involve combustion. For this reason, no harmful substances such as nitrogen oxides are generated, and carbon dioxide is generated when energy is extracted from fuel other than hydrogen, but the generation amount is suppressed as compared with an internal combustion engine.
  • chemical energy is directly converted into electrical energy, energy loss in the conversion process is small and power generation efficiency is high.
  • the fuel cell has a simple device configuration by combining the anode, cathode and electrolyte membrane, it does not require a special power source and can be made compact. It can be used not only for stationary distributed power sources but also for power sources for vehicles, etc. Recently, research on practical application has been widely conducted as a power source for mobile devices.
  • a direct methanol fuel cell is known as a fuel cell in which liquid fuel such as aqueous methanol solution is supplied to the anode for oxidation and oxygen is supplied to the cathode for reduction.
  • the direct methanol fuel cell has an anode with a reaction formula CH 3 OH + H 2 O ⁇ CO 2 + 6H + + 6e ⁇ (1) As shown, the methanol reacts with water to give hydrogen ions and electrons. On the other hand, at the cathode, the reaction formula O 2 + 4H + + 4e ⁇ ⁇ 2H 2 O (2) As shown, protons and electrons are consumed. At this time, protons permeate the electrolyte membrane, and electrons move through the external circuit, whereby electric energy can be obtained.
  • a direct methanol fuel cell has a problem that methanol crossover occurs in which methanol permeates the electrolyte membrane and moves to the cathode.
  • Patent Document 1 discloses a liquid fuel for a fuel cell containing a fuel component and an ionic microgel. At this time, the ionic microgel has a structural unit derived from an ionic monomer and a structural unit derived from a nonionic monomer.
  • One embodiment of the present invention provides a passive fuel cell and a liquid fuel supply member that can improve power generation characteristics and power generation characteristics when refilled with liquid fuel, in view of the problems of the above-described conventional technology. For the purpose.
  • One embodiment of the present invention includes a membrane electrode assembly in which an electrolyte membrane is sandwiched between an anode and a cathode in a passive fuel cell, and a liquid fuel supply member that supplies liquid fuel to the anode.
  • the supply member has a porous membrane provided so as to face the anode, the liquid fuel includes a fuel component and an ionic microgel, and the ionic microgel includes a structural unit derived from an ionic monomer and It has a structural unit derived from a nonionic monomer.
  • One embodiment of the present invention is a liquid fuel supply member that supplies liquid fuel to an anode of a passive fuel cell, and has a porous membrane provided to face the anode, and the liquid fuel is
  • the ionic microgel includes a constituent unit derived from an ionic monomer and a constituent unit derived from a nonionic monomer.
  • FIG. 1 shows an example of a passive fuel cell.
  • the passive fuel cell 100 includes a membrane electrode assembly 110 in which an electrolyte membrane 113 is sandwiched between an anode 111 that oxidizes a fuel component contained in a liquid fuel F and a cathode 112 that reduces an oxidizing agent (not shown) such as oxygen.
  • an oxidizing agent such as oxygen.
  • the anode 111 has the catalyst layer 111b formed on the diffusion layer 111a
  • the cathode 112 has the catalyst layer 112b formed on the diffusion layer 112a.
  • a separator 120 is installed on the anode 111, and the separator 120 has a flow path 121 through which a fuel component contained in the liquid fuel F flows.
  • the separator 130 is installed on the cathode 112, and the separator 130 has the flow path 131 through which an oxidizing agent flows.
  • the catalyst contained in the catalyst layer 111b is not particularly limited, and examples thereof include a platinum-ruthenium catalyst.
  • the catalyst contained in the catalyst layer 112b is not particularly limited, and examples thereof include a platinum catalyst.
  • the material constituting the electrolyte membrane 113 is not particularly limited, and examples thereof include Nafion (registered trademark).
  • the material constituting the separators 120 and 130 is not particularly limited, and examples thereof include metals such as stainless steel and carbon.
  • a liquid fuel supply tank 140 for supplying the liquid fuel F to the anode 111 is detachably installed.
  • the liquid fuel F further includes an ionic microgel having a structural unit derived from an ionic monomer and a structural unit derived from a nonionic monomer.
  • the liquid fuel F stored in the liquid fuel supply tank 140 holds the fuel component by the ionic microgel and suppresses the fuel component from passing through the electrolyte membrane 113 and moving to the cathode 112. be able to.
  • the liquid fuel supply tank 140 has a porous membrane 141 installed on the separator 120 so as to face the anode 111. For this reason, adhesion of the ionic microgel to the diffusion layer 111a can be suppressed. As a result, the power generation characteristics of the passive fuel cell 100 can be improved.
  • the material constituting the main body of the liquid fuel supply tank 140 is not particularly limited, and examples thereof include fluororesin and vinyl resin.
  • the average pore diameter of the porous membrane 141 is usually 0.01 to 10 ⁇ m, preferably 0.05 to 0.2 ⁇ m.
  • the average pore diameter of the porous membrane 141 is less than 0.01 ⁇ m, the power generation characteristics when the liquid fuel of the passive fuel cell 100 is refilled may deteriorate, and when it exceeds 10 ⁇ m, the passive fuel cell 100 The power generation characteristics may deteriorate.
  • the material constituting the porous film 141 is not particularly limited, and examples thereof include fluororesin, polyimide, phenol resin, glass, and carbon. Of these, fluororesins are preferred because ionic microgels are difficult to adhere.
  • the content of ionic microgel in the liquid fuel F is usually 0.1 to 50% by mass, preferably 0.1 to 10% by mass, and more preferably 0.1 to 5% by mass. If the content of the ionic microgel in the liquid fuel F is less than 0.1% by mass, a crossover of the fuel component may occur. If the content exceeds 50% by mass, the liquid fuel of the passive fuel cell 100 may be reused. When it is filled, the power generation characteristics may deteriorate.
  • the content of the fuel component in the liquid fuel F is usually 10 to 99.9% by mass, preferably 64% by mass or more. When the content of the fuel component in the liquid fuel F is less than 64% by mass, the power generation efficiency of the passive fuel cell 100 may be lowered.
  • the liquid fuel F may further contain water.
  • the method for producing the ionic microgel is not particularly limited, and includes a reverse phase emulsion polymerization method and the like.
  • the reverse phase emulsion polymerization method is a method in which an ionic monomer and a nonionic monomer are radically polymerized in a state where an aqueous phase containing an ionic monomer and a nonionic monomer is dispersed in an oil phase.
  • powdery ionic microgel can be separated without crushing.
  • the ionic microgel swells when dispersed in a fuel component such as methanol, ethanol, dimethyl ether, etc., crossover of the fuel component can be suppressed.
  • the oil phase is not particularly limited, but alkanes such as pentane, hexane, heptane, octane, nonane, decane and undecane; cycloalkanes such as cyclopentane, cyclohexane, cycloheptane and cyclooctane; benzene, toluene, xylene, Aromatic hydrocarbons such as decalin and naphthalene and cyclic hydrocarbons; Nonpolar oils such as paraffin oil and the like.
  • a surfactant when dispersing the aqueous phase in the oil phase.
  • the surfactant is not particularly limited, but polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, polyoxyethylene stearyl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene hexyl decyl ether, polyoxyethylene Oxyethylene isostearyl ether, polyoxyethylene octyldodecyl ether, polyoxyethylene behenyl ether, polyoxyethylene cholesteryl ether, polyoxyethylene hydrogenated castor oil, sorbitan fatty acid ester, glycerin monofatty acid ester, glycerin trifatty acid ester, polyglycerin fatty acid ester, Polyoxyethylene glycerin isostearate, polyoxyethylene glycerin tri Sosutearin acid esters, polyoxyethylene glycerin monostearate, polyoxyethylene glycerin distearate, polyoxyethylene glycerin stearic acid ester and the like
  • a one-phase microemulsion or a fine W / O emulsion can be formed by appropriately adjusting the hydrophilic / hydrophobic balance (HLB) of the surfactant.
  • HLB hydrophilic / hydrophobic balance
  • a one-phase microemulsion is a state in which an oil phase and an aqueous phase coexist thermodynamically and the interfacial tension between the oil phase and the aqueous phase is minimal.
  • a fine W / O emulsion is a state in which an oil phase and a water phase exist stably in terms of kinetics, although unstable in thermodynamics.
  • the particle diameter of the aqueous phase of the fine W / O emulsion is about several tens to 100 nm.
  • an ionic monomer and a nonionic monomer are dissolved in water to prepare an aqueous phase, and then mixed with an oil phase.
  • a polymerization initiator is added to the aqueous phase for polymerization.
  • polymerization is performed in a state where a thermodynamically stable one-phase microemulsion or a kinetically stable fine W / O emulsion is formed.
  • the ionic monomer and the nonionic monomer are polymerized.
  • the ionic microgel can be stably produced.
  • the hydrophilic / hydrophobic balance (HLB) of the surfactant is adjusted so as to show a cloud point in the vicinity of the optimum polymerization temperature of the polymerization initiator for thermal polymerization or redox polymerization. In the vicinity, a one-phase microemulsion or a fine W / O emulsion can be formed.
  • the nonionic monomer is not particularly limited, but the general formula
  • R 1 is a hydrogen atom or a methyl group
  • R 2 and R 3 are each independently a methyl group, an ethyl group, a propyl group, or an isopropyl group.
  • the ionic monomer is not particularly limited, but the general formula
  • R 4 and R 5 are each independently a hydrogen atom or a methyl group
  • R 6 is a linear or branched alkylene group having 1 to 6 carbon atoms
  • X + is a proton Monovalent metal cation or ammonium ion.
  • R 7 is a hydrogen atom or a methyl group
  • R 8 is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms
  • R 9 has 1 carbon atom
  • R 10 , R 11 and R 12 are each independently a methyl group or an ethyl group
  • Y ⁇ is a halide ion.
  • anionic (meth) acrylamide derivatives are preferable, and 2-acrylamido-2-methylpropanesulfonic acid and salts thereof are more preferable.
  • the mass ratio of the nonionic monomer to the ionic monomer is usually 0.5 / 9.5 to 9.5 / 0.5, preferably 1/9 to 9/1, and 7/3 to 9/1. Is more preferable, and 8/2 is particularly preferable.
  • the ionic microgel preferably contains a copolymer of N, N-dimethylacrylamide and 2-acrylamido-2-methylpropanesulfonic acid. Thereby, crossover can be further suppressed.
  • the aqueous phase may further contain a crosslinking agent.
  • the crosslinking agent is not particularly limited, but the general formula
  • R 13 and R 17 are each independently a hydrogen atom or a methyl group
  • R 14 and R 16 are each independently an oxy group or an imino group
  • R 15 has the number of carbon atoms. 1 to 6 linear or branched alkylene groups or polyoxyethylene groups having 8 to 200 carbon atoms.
  • the cross-linking agent may have 3 or more polymerizable functional groups.
  • crosslinking agent examples include ethylene glycol diacrylate, ethylene glycol dimethacrylate, polyoxyethylene diacrylate, polyoxyethylene dimethacrylate, diethylene glycol dimethacrylate, trimethylolpropane triacrylate, N, N′-methylenebisacrylamide, N , N′-ethylenebisacrylamide, triallyl isocyanurate, pentaerythritol dimethacrylate and the like, and two or more of them may be used in combination. Of these, N, N′-methylenebisacrylamide is preferred.
  • the ratio of the amount of the crosslinking agent to the total amount of the nonionic monomer and the ionic monomer is usually 1 ⁇ 10 ⁇ 4 to 2%.
  • the ratio of the amount of the crosslinking agent to the total amount of the nonionic monomer and the ionic monomer is less than 1 ⁇ 10 ⁇ 4 %, it may be difficult to produce the ionic microgel. It may be difficult to suppress the occurrence of crossover.
  • an ionic microgel can be produced without using a crosslinking agent.
  • the weight average molecular weight of the ionic microgel is usually 1 ⁇ 10 5 to 5 ⁇ 10 6 .
  • the weight average molecular weight of ionic microgel is a molecular weight of PEG conversion, and can be measured using GPC.
  • the average particle size of the ionic microgel is usually 0.01 to 10 ⁇ m, preferably 0.01 to 1 ⁇ m.
  • the apparent viscosity of an aqueous dispersion of 0.5% by mass of ionic microgel is usually 1 ⁇ 10 4 mPa ⁇ s or more at a shear rate of 1.0 s ⁇ 1 .
  • the apparent viscosity of the 0.5 mass% ethanol dispersion of the ionic microgel is usually 5 ⁇ 10 3 mPa ⁇ s or more at a shear rate of 1.0 s ⁇ 1 .
  • the dynamic modulus of elasticity of the ionic microgel in a 0.5 mass% aqueous dispersion or ethanol dispersion has a strain of 1% or less and a frequency in the range of 0.01 to 10 Hz.
  • the apparent viscosity and dynamic elastic modulus can be measured at 25 ° C. using a cone plate rheometer MCR-300 (manufactured by Paar Physica).
  • a catalyst layer is prepared by mixing 4 parts by mass of carbon carrying a platinum-ruthenium catalyst, 44 parts by mass of a 5% by mass Nafion (registered trademark) solution EC-NS-05-AQ (manufactured by Toyo Technica) and 52 parts of ethanol. A coating solution for 111b was obtained. At this time, the carbon carrying the platinum-ruthenium catalyst has a platinum loading of 29.9 mass% and a ruthenium loading of 23.1 mass%.
  • a coating solution for the catalyst layer 111b was applied on the diffusion layer 111a to form the catalyst layer 111b, whereby an anode 111 was obtained. At this time, the coating solution for the catalyst layer 111b was applied so that the platinum content in the catalyst layer 111b was 1.00 mg / cm 2 .
  • catalyst layer 112b 4 parts by mass of carbon supporting platinum catalyst, 27 parts by mass of 5% by mass Nafion (registered trademark) solution EC-NS-05-AQ (manufactured by Toyo Technica) and 69 parts of ethanol are mixed. A coating solution was obtained. At this time, the carbon carrying the platinum catalyst has a platinum loading of 45.7% by mass.
  • Nafion (registered trademark) solution EC-NS-05-AQ manufactured by Toyo Technica
  • a coating solution for the catalyst layer 112b was applied on the diffusion layer 112a to form the catalyst layer 112b, whereby the cathode 112 was obtained. At this time, the coating solution for the catalyst layer 112b was applied so that the platinum content in the catalyst layer 112b was 1.00 mg / cm 2 .
  • the electrolyte membrane 113 was sandwiched between the anode 111 and the cathode 112 and hot pressed at 135 ° C. and 11.5 MPa for 180 seconds to obtain a membrane electrode assembly 110.
  • Example 1 Liquid fuel F was obtained by mixing 0.5 parts by mass of ionic microgel and 99.5 parts by mass of a 99.8% by mass aqueous methanol solution.
  • the liquid fuel supply tank 140 in which 2 mL of liquid fuel F was stored was installed, and the passive fuel cell 100 was obtained.
  • the porous membrane 141 an omnipore membrane JGWP04700 (manufactured by Micropore) made of polytetrafluoroethylene (PTFE) having a thickness of 10 ⁇ m and an average pore diameter of 0.2 ⁇ m was used.
  • PTFE polytetrafluoroethylene
  • Example 2 A passive fuel cell 100 was obtained in the same manner as in Example 1 except that 1.0 part by mass of ionic microgel and 99.0 parts by mass of a 99.8% by mass methanol aqueous solution were mixed.
  • Example 3 A passive fuel cell 100 was obtained in the same manner as in Example 1 except that 2.0 parts by mass of ionic microgel and 98.0 parts by mass of a 99.8% by mass aqueous methanol solution were mixed.
  • FIG. 2 shows the power generation characteristics of the passive fuel cell 100.
  • the power generation characteristics of the passive fuel cell 100 were measured using an electronic loader PLZ70UA (manufactured by KIKUSUI) in an environment of 25 ° C. and 50% RH.
  • FIG. 3 shows the power generation characteristics of the passive fuel cell 100 refilled with methanol.
  • 3A, 3B, and 3C show the power generation characteristics of the passive fuel cells 100 of Examples 1, 2, and 3, respectively.
  • the liquid fuel supply tank 140 of the passive fuel cell 100 was filled with a 10% by mass methanol aqueous solution instead of the 99.8% by mass methanol aqueous solution.
  • the methanol crossover of the passive fuel cell 100 was evaluated in an environment of 25 ° C. and 50% RH using a fuel cell evaluation apparatus 890B-100W / 10A (manufactured by Toyo Technica Co., Ltd.).
  • FIG. 4 shows the evaluation result of the methanol crossover of the passive fuel cell 100.
  • 4A, 4B, and 4C show the evaluation results of the passive fuel cells 100 of Examples 1, 2, and 3, respectively.
  • FIG. 4 shows that the passive fuel cells 100 of Examples 1 to 3 have substantially the same power generation characteristics before and after measuring the power generation characteristics at a current density of 50 mA / cm 2 and can suppress the occurrence of methanol crossover.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

One embodiment of the present invention is a passive fuel cell which comprises a membrane electrode assembly, wherein an electrolyte membrane is held between an anode and a cathode, and a liquid fuel supply member that supplies a liquid fuel to the anode. The liquid fuel supply member has a porous membrane that is arranged so as to face the anode, and the liquid fuel contains a fuel component and an ionic microgel. The ionic microgel has a constituent unit derived from an ionic monomer and a constituent unit derived from a nonionic monomer.

Description

パッシブ型燃料電池及び液体燃料供給部材Passive fuel cell and liquid fuel supply member
 本発明の一実施形態は、パッシブ型燃料電池及び液体燃料供給部材に関する。 Embodiments of the present invention relate to a passive fuel cell and a liquid fuel supply member.
 近年、発電効率が高く、環境負荷の小さいエネルギー発電装置として、燃料電池が注目されている。燃料電池の基本原理は、水の電気分解の逆反応であり、燃焼を伴わない。このため、窒素酸化物等の有害物質が発生せず、水素以外の燃料からエネルギーを取り出す際に、二酸化炭素は発生するが、内燃機関に比べると、発生量が抑えられる。また、化学エネルギーを直接電気エネルギーに変換するため、変換過程におけるエネルギー損失が小さく、発電効率が高い。燃料電池は、アノード、カソード及び電解質膜の組み合わせによる単純な装置構成であるため、特殊な動力源を必要とせず、コンパクト化が可能であり、定置用分散電源だけでなく、車両用等の電源、また、最近では、モバイル機器用電源としても広く実用化の研究が行われている。 In recent years, fuel cells have attracted attention as energy generators with high power generation efficiency and low environmental impact. The basic principle of a fuel cell is the reverse reaction of water electrolysis, which does not involve combustion. For this reason, no harmful substances such as nitrogen oxides are generated, and carbon dioxide is generated when energy is extracted from fuel other than hydrogen, but the generation amount is suppressed as compared with an internal combustion engine. In addition, since chemical energy is directly converted into electrical energy, energy loss in the conversion process is small and power generation efficiency is high. Since the fuel cell has a simple device configuration by combining the anode, cathode and electrolyte membrane, it does not require a special power source and can be made compact. It can be used not only for stationary distributed power sources but also for power sources for vehicles, etc. Recently, research on practical application has been widely conducted as a power source for mobile devices.
 メタノール水溶液等の液体燃料をアノードに供給して酸化させると共に、カソードに酸素を供給して還元させる燃料電池として、直接メタノール型燃料電池(DMFC)が知られている。直接メタノール型燃料電池は、アノードで、反応式
 CHOH+HO→CO+6H+6e・・・(1)
で示されるように、メタノールが水と反応して水素イオンと電子が得られる。一方、カソードで、反応式
 O+4H+4e→2HO・・・(2)
で示されるように、プロトンと電子が消費される。このとき、プロトンが電解質膜を透過し、電子が外部回路を移動することによって、電気エネルギーを得ることができる。
A direct methanol fuel cell (DMFC) is known as a fuel cell in which liquid fuel such as aqueous methanol solution is supplied to the anode for oxidation and oxygen is supplied to the cathode for reduction. The direct methanol fuel cell has an anode with a reaction formula CH 3 OH + H 2 O → CO 2 + 6H + + 6e (1)
As shown, the methanol reacts with water to give hydrogen ions and electrons. On the other hand, at the cathode, the reaction formula O 2 + 4H + + 4e → 2H 2 O (2)
As shown, protons and electrons are consumed. At this time, protons permeate the electrolyte membrane, and electrons move through the external circuit, whereby electric energy can be obtained.
 しかしながら、直接メタノール型燃料電池では、メタノールが電解質膜を透過してカソードに移動するメタノールクロスオーバーが発生するという問題がある。 However, a direct methanol fuel cell has a problem that methanol crossover occurs in which methanol permeates the electrolyte membrane and moves to the cathode.
 特許文献1には、燃料成分及びイオン性ミクロゲルを含有する燃料電池用液体燃料が開示されている。このとき、イオン性ミクロゲルは、イオン性モノマー由来の構成単位及びノニオン性モノマー由来の構成単位を有する。 Patent Document 1 discloses a liquid fuel for a fuel cell containing a fuel component and an ionic microgel. At this time, the ionic microgel has a structural unit derived from an ionic monomer and a structural unit derived from a nonionic monomer.
 しかしながら、液体燃料をパッシブ型燃料電池に適用した場合の発電特性及びパッシブ型燃料電池に液体燃料を再充填した場合の発電特性をさらに向上させることが望まれている。 However, it is desired to further improve the power generation characteristics when the liquid fuel is applied to a passive fuel cell and the power generation characteristics when the liquid fuel is refilled in the passive fuel cell.
特許第4541277号公報Japanese Patent No. 4541277
 本発明の一実施形態は、上記の従来技術が有する問題に鑑み、発電特性及び液体燃料を再充填した場合の発電特性を向上させることが可能なパッシブ型燃料電池及び液体燃料供給部材を提供することを目的とする。 One embodiment of the present invention provides a passive fuel cell and a liquid fuel supply member that can improve power generation characteristics and power generation characteristics when refilled with liquid fuel, in view of the problems of the above-described conventional technology. For the purpose.
 本発明の一実施形態は、パッシブ型燃料電池において、アノード及びカソードにより電解質膜が挟持されている膜電極接合体と、前記アノードに液体燃料を供給する液体燃料供給部材を有し、前記液体燃料供給部材は、前記アノードと対向するように設けられている多孔質膜を有し、前記液体燃料は、燃料成分及びイオン性ミクロゲルを含み、前記イオン性ミクロゲルは、イオン性モノマー由来の構成単位及びノニオン性モノマー由来の構成単位を有する。 One embodiment of the present invention includes a membrane electrode assembly in which an electrolyte membrane is sandwiched between an anode and a cathode in a passive fuel cell, and a liquid fuel supply member that supplies liquid fuel to the anode. The supply member has a porous membrane provided so as to face the anode, the liquid fuel includes a fuel component and an ionic microgel, and the ionic microgel includes a structural unit derived from an ionic monomer and It has a structural unit derived from a nonionic monomer.
 本発明の一実施形態は、パッシブ型燃料電池のアノードに液体燃料を供給する液体燃料供給部材であって、前記アノードと対向するように設けられている多孔質膜を有し、前記液体燃料は、燃料成分及びイオン性ミクロゲルを含み、前記イオン性ミクロゲルは、イオン性モノマー由来の構成単位及びノニオン性モノマー由来の構成単位を有する。 One embodiment of the present invention is a liquid fuel supply member that supplies liquid fuel to an anode of a passive fuel cell, and has a porous membrane provided to face the anode, and the liquid fuel is The ionic microgel includes a constituent unit derived from an ionic monomer and a constituent unit derived from a nonionic monomer.
 本発明の一実施形態によれば、発電特性及び液体燃料を再充填した場合の発電特性を向上させることが可能なパッシブ型燃料電池及び液体燃料供給部材を提供することができる。 According to one embodiment of the present invention, it is possible to provide a passive fuel cell and a liquid fuel supply member that can improve power generation characteristics and power generation characteristics when liquid fuel is refilled.
パッシブ型燃料電池の一例を示す図である。It is a figure which shows an example of a passive type fuel cell. 実施例のパッシブ型燃料電池の発電特性を示す図である。It is a figure which shows the electric power generation characteristic of the passive type fuel cell of an Example. 実施例のメタノールを再充填したパッシブ型燃料電池の発電特性を示す図である。It is a figure which shows the electric power generation characteristic of the passive fuel cell which refilled methanol of the Example. 実施例のパッシブ型燃料電池のメタノールクロスオーバーの評価結果を示す図である。It is a figure which shows the evaluation result of the methanol crossover of the passive type fuel cell of an Example.
 次に、本発明を実施するための形態を図面と共に説明する。 Next, an embodiment for carrying out the present invention will be described with reference to the drawings.
 図1に、パッシブ型燃料電池の一例を示す。パッシブ型燃料電池100は、液体燃料Fに含まれる燃料成分を酸化するアノード111及び酸素等の酸化剤(不図示)を還元するカソード112により電解質膜113が挟持されている膜電極接合体110を有する。このとき、アノード111は、拡散層111a上に、触媒層111bが形成されており、カソード112は、拡散層112a上に、触媒層112bが形成されている。また、アノード111上に、セパレータ120が設置されており、セパレータ120は、液体燃料Fに含まれる燃料成分が流れる流路121を有する。さらに、カソード112上に、セパレータ130が設置されており、セパレータ130は、酸化剤が流れる流路131を有する。 FIG. 1 shows an example of a passive fuel cell. The passive fuel cell 100 includes a membrane electrode assembly 110 in which an electrolyte membrane 113 is sandwiched between an anode 111 that oxidizes a fuel component contained in a liquid fuel F and a cathode 112 that reduces an oxidizing agent (not shown) such as oxygen. Have. At this time, the anode 111 has the catalyst layer 111b formed on the diffusion layer 111a, and the cathode 112 has the catalyst layer 112b formed on the diffusion layer 112a. A separator 120 is installed on the anode 111, and the separator 120 has a flow path 121 through which a fuel component contained in the liquid fuel F flows. Furthermore, the separator 130 is installed on the cathode 112, and the separator 130 has the flow path 131 through which an oxidizing agent flows.
 拡散層111a、112aを構成する材料としては、特に限定されないが、炭素繊維不織布等が挙げられる。 Although it does not specifically limit as a material which comprises the diffusion layers 111a and 112a, A carbon fiber nonwoven fabric etc. are mentioned.
 触媒層111bに含まれる触媒としては、特に限定されないが、白金-ルテニウム触媒等が挙げられる。 The catalyst contained in the catalyst layer 111b is not particularly limited, and examples thereof include a platinum-ruthenium catalyst.
 触媒層112bに含まれる触媒としては、特に限定されないが、白金触媒等が挙げられる。 The catalyst contained in the catalyst layer 112b is not particularly limited, and examples thereof include a platinum catalyst.
 電解質膜113を構成する材料としては、特に限定されないが、Nafion(登録商標)等が挙げられる。 The material constituting the electrolyte membrane 113 is not particularly limited, and examples thereof include Nafion (registered trademark).
 セパレータ120、130を構成する材料としては、特に限定されないが、ステンレス鋼等の金属、カーボン等が挙げられる。 The material constituting the separators 120 and 130 is not particularly limited, and examples thereof include metals such as stainless steel and carbon.
 また、セパレータ120上に、アノード111に液体燃料Fを供給する液体燃料供給タンク140が着脱自在に設置されている。このとき、液体燃料Fは、イオン性モノマー由来の構成単位及びノニオン性モノマー由来の構成単位を有するイオン性ミクロゲルをさらに含む。このため、液体燃料供給タンク140内に貯蔵されている液体燃料Fは、イオン性ミクロゲルにより燃料成分が保持されており、燃料成分が電解質膜113を透過してカソード112に移動することを抑制することができる。その結果、燃料成分のクロスオーバーの発生を抑制することができる。また、液体燃料供給タンク140は、アノード111と対向するように、セパレータ120上に設置されている多孔質膜141を有する。このため、イオン性ミクロゲルの拡散層111aへの付着を抑制することができる。その結果、パッシブ型燃料電池100の発電特性を向上させることができる。 Further, on the separator 120, a liquid fuel supply tank 140 for supplying the liquid fuel F to the anode 111 is detachably installed. At this time, the liquid fuel F further includes an ionic microgel having a structural unit derived from an ionic monomer and a structural unit derived from a nonionic monomer. For this reason, the liquid fuel F stored in the liquid fuel supply tank 140 holds the fuel component by the ionic microgel and suppresses the fuel component from passing through the electrolyte membrane 113 and moving to the cathode 112. be able to. As a result, the occurrence of fuel component crossover can be suppressed. The liquid fuel supply tank 140 has a porous membrane 141 installed on the separator 120 so as to face the anode 111. For this reason, adhesion of the ionic microgel to the diffusion layer 111a can be suppressed. As a result, the power generation characteristics of the passive fuel cell 100 can be improved.
 液体燃料供給タンク140の本体を構成する材料としては、特に限定されないが、フッ素樹脂、ビニル樹脂等が挙げられる。 The material constituting the main body of the liquid fuel supply tank 140 is not particularly limited, and examples thereof include fluororesin and vinyl resin.
 多孔質膜141の平均孔径は、通常、0.01~10μmであり、0.05~0.2μmが好ましい。多孔質膜141の平均孔径が0.01μm未満であると、パッシブ型燃料電池100の液体燃料を再充填した場合の発電特性が低下することがあり、10μmを超えると、パッシブ型燃料電池100の発電特性が低下することがある。 The average pore diameter of the porous membrane 141 is usually 0.01 to 10 μm, preferably 0.05 to 0.2 μm. When the average pore diameter of the porous membrane 141 is less than 0.01 μm, the power generation characteristics when the liquid fuel of the passive fuel cell 100 is refilled may deteriorate, and when it exceeds 10 μm, the passive fuel cell 100 The power generation characteristics may deteriorate.
 多孔質膜141を構成する材料としては、特に限定されないが、フッ素樹脂、ポリイミド、フェノール樹脂、ガラス、カーボン等が挙げられる。中でも、イオン性ミクロゲルが付着しにくいことから、フッ素樹脂が好ましい。 The material constituting the porous film 141 is not particularly limited, and examples thereof include fluororesin, polyimide, phenol resin, glass, and carbon. Of these, fluororesins are preferred because ionic microgels are difficult to adhere.
 液体燃料F中のイオン性ミクロゲルの含有量は、通常、0.1~50質量%であり、0.1~10質量%が好ましく、0.1~5質量%がさらに好ましい。液体燃料Fのイオン性ミクロゲルの含有量が0.1質量%未満であると、燃料成分のクロスオーバーが発生することがあり、50質量%を超えると、パッシブ型燃料電池100の液体燃料を再充填した場合の発電特性が低下することがある。 The content of ionic microgel in the liquid fuel F is usually 0.1 to 50% by mass, preferably 0.1 to 10% by mass, and more preferably 0.1 to 5% by mass. If the content of the ionic microgel in the liquid fuel F is less than 0.1% by mass, a crossover of the fuel component may occur. If the content exceeds 50% by mass, the liquid fuel of the passive fuel cell 100 may be reused. When it is filled, the power generation characteristics may deteriorate.
 液体燃料F中の燃料成分の含有量は、通常、10~99.9質量%であるが、64質量%以上が好ましい。液体燃料F中の燃料成分の含有量が64質量%未満であると、パッシブ型燃料電池100の発電効率が低下することがある。 The content of the fuel component in the liquid fuel F is usually 10 to 99.9% by mass, preferably 64% by mass or more. When the content of the fuel component in the liquid fuel F is less than 64% by mass, the power generation efficiency of the passive fuel cell 100 may be lowered.
 燃料成分としては、特に限定されないが、メタノール、エタノール、ジメチルエーテル等が挙げられる。中でも、メタノールが好ましい。 Although it does not specifically limit as a fuel component, Methanol, ethanol, dimethyl ether etc. are mentioned. Of these, methanol is preferable.
 液体燃料Fは、水をさらに含んでいてもよい。 The liquid fuel F may further contain water.
 イオン性ミクロゲルを製造する方法としては、特に限定されないが、逆相乳化重合法等が挙げられる。このとき、逆相乳化重合法とは、イオン性モノマー及びノニオン性モノマーを含む水相が油相中に分散している状態で、イオン性モノマー及びノニオン性モノマーをラジカル重合する方法である。これにより、粉砕せずに、粉末状のイオン性ミクロゲルを分離することができる。さらに、イオン性ミクロゲルは、メタノール、エタノール、ジメチルエーテル等の燃料成分中に分散させると、膨潤するため、燃料成分のクロスオーバーを抑制することができる。 The method for producing the ionic microgel is not particularly limited, and includes a reverse phase emulsion polymerization method and the like. At this time, the reverse phase emulsion polymerization method is a method in which an ionic monomer and a nonionic monomer are radically polymerized in a state where an aqueous phase containing an ionic monomer and a nonionic monomer is dispersed in an oil phase. Thereby, powdery ionic microgel can be separated without crushing. Furthermore, since the ionic microgel swells when dispersed in a fuel component such as methanol, ethanol, dimethyl ether, etc., crossover of the fuel component can be suppressed.
 油相としては、特に限定されないが、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン等のアルカン類;シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等のシクロアルカン類;ベンゼン、トルエン、キシレン、デカリン、ナフタレン等の芳香族炭化水素及び環状炭化水素;パラフィン油等の非極性油分等が挙げられる。 The oil phase is not particularly limited, but alkanes such as pentane, hexane, heptane, octane, nonane, decane and undecane; cycloalkanes such as cyclopentane, cyclohexane, cycloheptane and cyclooctane; benzene, toluene, xylene, Aromatic hydrocarbons such as decalin and naphthalene and cyclic hydrocarbons; Nonpolar oils such as paraffin oil and the like.
 水相を油相中に分散させる際に、界面活性剤を用いることが好ましい。 It is preferable to use a surfactant when dispersing the aqueous phase in the oil phase.
 界面活性剤としては、特に限定されないが、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンヘキシルデシルエーテル、ポリオキシエチレンイソステアリルエーテル、ポリオキシエチレンオクチルドデシルエーテル、ポリオキシエチレンベヘニルエーテル、ポリオキシエチレンコレステリルエーテル、ポリオキシエチレン硬化ひまし油、ソルビタン脂肪酸エステル、グリセリンモノ脂肪酸エステル、グリセリントリ脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリオキシエチレングリセリンイソステアリン酸エステル、ポリオキシエチレングリセリントリイソステアリン酸エステル、ポリオキシエチレングリセリンモノステアリン酸エステル、ポリオキシエチレングリセリンジステアリン酸エステル、ポリオキシエチレングリセリントリステアリン酸エステル等が挙げられ、二種以上併用してもよい。 The surfactant is not particularly limited, but polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, polyoxyethylene stearyl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene hexyl decyl ether, polyoxyethylene Oxyethylene isostearyl ether, polyoxyethylene octyldodecyl ether, polyoxyethylene behenyl ether, polyoxyethylene cholesteryl ether, polyoxyethylene hydrogenated castor oil, sorbitan fatty acid ester, glycerin monofatty acid ester, glycerin trifatty acid ester, polyglycerin fatty acid ester, Polyoxyethylene glycerin isostearate, polyoxyethylene glycerin tri Sosutearin acid esters, polyoxyethylene glycerin monostearate, polyoxyethylene glycerin distearate, polyoxyethylene glycerin stearic acid ester and the like, may be used in combination.
 このとき、界面活性剤の親水疎水バランス(HLB)を適宜調整することにより、一相マイクロエマルション又は微細W/Oエマルションを形成することができる。 At this time, a one-phase microemulsion or a fine W / O emulsion can be formed by appropriately adjusting the hydrophilic / hydrophobic balance (HLB) of the surfactant.
 一相マイクロエマルションとは、熱力学的に安定に油相と水相が共存しており、油相及び水相の間の界面張力が極小となっている状態である。また、微細W/Oエマルションとは、熱力学的には不安定であるが、速度論的に安定に油相及び水相が存在している状態である。一般的に、微細W/Oエマルションの水相の粒子径は、数10~100nm程度である。 A one-phase microemulsion is a state in which an oil phase and an aqueous phase coexist thermodynamically and the interfacial tension between the oil phase and the aqueous phase is minimal. A fine W / O emulsion is a state in which an oil phase and a water phase exist stably in terms of kinetics, although unstable in thermodynamics. Generally, the particle diameter of the aqueous phase of the fine W / O emulsion is about several tens to 100 nm.
 以下、イオン性ミクロゲルの製造方法について、具体的に説明する。まず、イオン性モノマー及びノニオン性モノマーを水中に溶解させて水相を調製した後、油相と混合する。次に、所定の温度まで昇温した後、水相に重合開始剤を添加して重合する。このとき、熱力学的に安定な一相マイクロエマルション又は速度論的に安定な微細W/Oエマルションが形成されている状態で重合する。具体的には、熱重合用又はレドックス重合用の重合開始剤の最適重合温度の近傍で、一相マイクロエマルション又は微細W/Oエマルションを形成した後、イオン性モノマー及びノニオン性モノマーを重合することにより、イオン性ミクロゲルを安定に製造することができる。 Hereinafter, the production method of the ionic microgel will be specifically described. First, an ionic monomer and a nonionic monomer are dissolved in water to prepare an aqueous phase, and then mixed with an oil phase. Next, after raising the temperature to a predetermined temperature, a polymerization initiator is added to the aqueous phase for polymerization. At this time, polymerization is performed in a state where a thermodynamically stable one-phase microemulsion or a kinetically stable fine W / O emulsion is formed. Specifically, after forming a one-phase microemulsion or fine W / O emulsion in the vicinity of the optimum polymerization temperature of a polymerization initiator for thermal polymerization or redox polymerization, the ionic monomer and the nonionic monomer are polymerized. Thus, the ionic microgel can be stably produced.
 このとき、界面活性剤の親水性疎水性バランス(HLB)を、熱重合用又はレドックス重合用の重合開始剤の最適重合温度の近傍で曇点を示すように調整することにより、最適重合温度の近傍で、一相マイクロエマルション又は微細W/Oエマルションを形成することができる。 At this time, the hydrophilic / hydrophobic balance (HLB) of the surfactant is adjusted so as to show a cloud point in the vicinity of the optimum polymerization temperature of the polymerization initiator for thermal polymerization or redox polymerization. In the vicinity, a one-phase microemulsion or a fine W / O emulsion can be formed.
 ノニオン性モノマーとしては、特に限定されないが、一般式 The nonionic monomer is not particularly limited, but the general formula
Figure JPOXMLDOC01-appb-C000001
(式中、Rは、水素原子又はメチル基であり、R及びRは、それぞれ独立に、メチル基、エチル基、プロピル基又はイソプロピル基である。)
で表されるN,N-ジアルキル(メタ)アクリルアミド等が挙げられる。中でも、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミドが好ましい。
Figure JPOXMLDOC01-appb-C000001
(In the formula, R 1 is a hydrogen atom or a methyl group, and R 2 and R 3 are each independently a methyl group, an ethyl group, a propyl group, or an isopropyl group.)
N, N-dialkyl (meth) acrylamide represented by Of these, N, N-dimethyl (meth) acrylamide and N, N-diethyl (meth) acrylamide are preferable.
 イオン性モノマーとしては、特に限定されないが、一般式 The ionic monomer is not particularly limited, but the general formula
Figure JPOXMLDOC01-appb-C000002
(式中、R及びRは、それぞれ独立に、水素原子又はメチル基であり、Rは、炭素原子数が1~6の直鎖又は分岐のアルキレン基であり、Xは、プロトン、1価の金属カチオン又はアンモニウムイオンである。)
で表されるアニオン性(メタ)アクリルアミド誘導体、一般式
Figure JPOXMLDOC01-appb-C000002
(Wherein R 4 and R 5 are each independently a hydrogen atom or a methyl group, R 6 is a linear or branched alkylene group having 1 to 6 carbon atoms, and X + is a proton Monovalent metal cation or ammonium ion.)
Anionic (meth) acrylamide derivatives represented by the general formula
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、水素原子又はメチル基であり、Rは、水素原子又は炭素原子数が1~6の直鎖又は分岐のアルキル基であり、Rは、炭素原子数が1~6の直鎖又は分岐のアルキレン基であり、R10、R11及びR12は、それぞれ独立に、メチル基又はエチル基であり、Yは、ハロゲン化物イオンである。)
で表されるカチオン性アクリルアミド誘導体等が挙げられる。中でも、アニオン性(メタ)アクリルアミド誘導体が好ましく、2-アクリルアミド-2-メチルプロパンスルホン酸及びその塩がさらに好ましい。
Figure JPOXMLDOC01-appb-C000003
(Wherein R 7 is a hydrogen atom or a methyl group, R 8 is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, and R 9 has 1 carbon atom) ˜6 linear or branched alkylene groups, R 10 , R 11 and R 12 are each independently a methyl group or an ethyl group, and Y is a halide ion.)
And the like, and the like. Of these, anionic (meth) acrylamide derivatives are preferable, and 2-acrylamido-2-methylpropanesulfonic acid and salts thereof are more preferable.
 イオン性モノマーに対するノニオン性モノマーの物質量比は、通常、0.5/9.5~9.5/0.5であり、1/9~9/1が好ましく、7/3~9/1がさらに好ましく、8/2が特に好ましい。 The mass ratio of the nonionic monomer to the ionic monomer is usually 0.5 / 9.5 to 9.5 / 0.5, preferably 1/9 to 9/1, and 7/3 to 9/1. Is more preferable, and 8/2 is particularly preferable.
 イオン性ミクロゲルは、N,N-ジメチルアクリルアミドと2-アクリルアミド-2-メチルプロパンスルホン酸の共重合体を含むことが好ましい。これにより、クロスオーバーをさらに抑制することができる。 The ionic microgel preferably contains a copolymer of N, N-dimethylacrylamide and 2-acrylamido-2-methylpropanesulfonic acid. Thereby, crossover can be further suppressed.
 水相は、架橋剤をさらに含んでいてもよい。 The aqueous phase may further contain a crosslinking agent.
 架橋剤としては、特に限定されないが、一般式 The crosslinking agent is not particularly limited, but the general formula
Figure JPOXMLDOC01-appb-C000004
(式中、R13及びR17は、それぞれ独立に、水素原子又はメチル基であり、R14及びR16は、それぞれ独立に、オキシ基又はイミノ基であり、R15は、炭素原子数が1~6の直鎖若しくは分岐のアルキレン基又は炭素原子数が8~200のポリオキシエチレン基である。)
で表される(メタ)アクリルアミド誘導体又は(メタ)アクリル酸誘導体が挙げられる。
Figure JPOXMLDOC01-appb-C000004
(Wherein R 13 and R 17 are each independently a hydrogen atom or a methyl group, R 14 and R 16 are each independently an oxy group or an imino group, and R 15 has the number of carbon atoms. 1 to 6 linear or branched alkylene groups or polyoxyethylene groups having 8 to 200 carbon atoms.)
(Meth) acrylamide derivatives or (meth) acrylic acid derivatives represented by:
 なお、架橋剤は、重合性官能基を3個以上有していてもよい。 The cross-linking agent may have 3 or more polymerizable functional groups.
 架橋剤の具体例としては、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、ポリオキシエチレンジアクリレート、ポリオキシエチレンジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、N,N'-メチレンビスアクリルアミド、N,N'-エチレンビスアクリルアミド、イソシアヌル酸トリアリル、ペンタエリスリトールジメタクリレート等が挙げられ、二種以上併用してもよい。中でも、N,N'-メチレンビスアクリルアミドが好ましい。 Specific examples of the crosslinking agent include ethylene glycol diacrylate, ethylene glycol dimethacrylate, polyoxyethylene diacrylate, polyoxyethylene dimethacrylate, diethylene glycol dimethacrylate, trimethylolpropane triacrylate, N, N′-methylenebisacrylamide, N , N′-ethylenebisacrylamide, triallyl isocyanurate, pentaerythritol dimethacrylate and the like, and two or more of them may be used in combination. Of these, N, N′-methylenebisacrylamide is preferred.
 ノニオン性モノマー及びイオン性モノマーの総物質量に対する架橋剤の物質量の比は、通常、1×10-4~2%である。ノニオン性モノマー及びイオン性モノマーの総物質量に対する架橋剤の物質量の比が1×10-4%未満であると、イオン性ミクロゲルの製造が困難になることがあり、2%を超えると、クロスオーバーの発生を抑制しにくくなることがある。 The ratio of the amount of the crosslinking agent to the total amount of the nonionic monomer and the ionic monomer is usually 1 × 10 −4 to 2%. When the ratio of the amount of the crosslinking agent to the total amount of the nonionic monomer and the ionic monomer is less than 1 × 10 −4 %, it may be difficult to produce the ionic microgel. It may be difficult to suppress the occurrence of crossover.
 なお、N,N-ジアルキルアクリルアミドとイオン性アクリルアミド誘導体を含む水相を用いると、架橋剤を用いなくても、イオン性ミクロゲルを製造することができる。 If an aqueous phase containing N, N-dialkylacrylamide and an ionic acrylamide derivative is used, an ionic microgel can be produced without using a crosslinking agent.
 イオン性ミクロゲルの重量平均分子量は、通常、1×10~5×10である。 The weight average molecular weight of the ionic microgel is usually 1 × 10 5 to 5 × 10 6 .
 なお、イオン性ミクロゲルの重量平均分子量は、PEG換算の分子量であり、GPCを用いて測定することができる。 In addition, the weight average molecular weight of ionic microgel is a molecular weight of PEG conversion, and can be measured using GPC.
 イオン性ミクロゲルの平均粒子径は、通常、0.01~10μmであり、0.01~1μmが好ましい。 The average particle size of the ionic microgel is usually 0.01 to 10 μm, preferably 0.01 to 1 μm.
 イオン性ミクロゲルの0.5質量%の水分散液の見かけ粘度は、ずり速度1.0s-1において、通常、1×10mPa・s以上である。また、イオン性ミクロゲルの0.5質量%のエタノール分散液の見かけ粘度は、ずり速度1.0s-1において、通常、5×10mPa・s以上である。さらに、イオン性ミクロゲルの0.5質量%の水分散液又はエタノール分散液における動的弾性率は、歪みが1%以下であり、周波数が0.01~10Hzの範囲で、通常、貯蔵弾性率G'>損失弾性率G''である。 The apparent viscosity of an aqueous dispersion of 0.5% by mass of ionic microgel is usually 1 × 10 4 mPa · s or more at a shear rate of 1.0 s −1 . Further, the apparent viscosity of the 0.5 mass% ethanol dispersion of the ionic microgel is usually 5 × 10 3 mPa · s or more at a shear rate of 1.0 s −1 . Furthermore, the dynamic modulus of elasticity of the ionic microgel in a 0.5 mass% aqueous dispersion or ethanol dispersion has a strain of 1% or less and a frequency in the range of 0.01 to 10 Hz. G ′> loss elastic modulus G ″.
 なお、見かけ粘度及び動的弾性率は、コーンプレート型レオメータMCR-300(Paar Physica社製)を用いて、25℃で測定することができる。 The apparent viscosity and dynamic elastic modulus can be measured at 25 ° C. using a cone plate rheometer MCR-300 (manufactured by Paar Physica).
 さらに、本発明の実施例について説明する。 Furthermore, examples of the present invention will be described.
 (膜電極接合体110の作製)
 拡散層111a、112aとしては、2.4cm×2.4cm×0.018cmのPTFE処理されたカーボンペーパーEC-TP1-060T(東陽テクニカ社製)を用いた。
(Preparation of membrane electrode assembly 110)
As diffusion layers 111a and 112a, 2.4 cm × 2.4 cm × 0.018 cm PTFE-treated carbon paper EC-TP1-060T (manufactured by Toyo Technica) was used.
 白金-ルテニウム触媒を担持しているカーボン4質量部、5質量%ナフィオン(登録商標)溶液EC-NS-05-AQ(東陽テクニカ社製)44質量部及びエタノール52部を混合して、触媒層111b用塗布液を得た。このとき、白金-ルテニウム触媒を担持しているカーボンは、白金の担持量が29.9質量%であり、ルテニウムの担持量が23.1質量%である。 A catalyst layer is prepared by mixing 4 parts by mass of carbon carrying a platinum-ruthenium catalyst, 44 parts by mass of a 5% by mass Nafion (registered trademark) solution EC-NS-05-AQ (manufactured by Toyo Technica) and 52 parts of ethanol. A coating solution for 111b was obtained. At this time, the carbon carrying the platinum-ruthenium catalyst has a platinum loading of 29.9 mass% and a ruthenium loading of 23.1 mass%.
 スプレーコート法を用いて、拡散層111a上に、触媒層111b用塗布液を塗布して、触媒層111bを形成し、アノード111を得た。このとき、触媒層111b中の白金の含有量が1.00mg/cmとなるように、触媒層111b用塗布液を塗布した。 Using a spray coating method, a coating solution for the catalyst layer 111b was applied on the diffusion layer 111a to form the catalyst layer 111b, whereby an anode 111 was obtained. At this time, the coating solution for the catalyst layer 111b was applied so that the platinum content in the catalyst layer 111b was 1.00 mg / cm 2 .
 白金触媒を担持しているカーボン4質量部、5質量%ナフィオン(登録商標)溶液EC-NS-05-AQ(東陽テクニカ社製)27質量部及びエタノール69部を混合して、触媒層112b用塗布液を得た。このとき、白金触媒を担持しているカーボンは、白金の担持量が45.7質量%である。 For catalyst layer 112b, 4 parts by mass of carbon supporting platinum catalyst, 27 parts by mass of 5% by mass Nafion (registered trademark) solution EC-NS-05-AQ (manufactured by Toyo Technica) and 69 parts of ethanol are mixed. A coating solution was obtained. At this time, the carbon carrying the platinum catalyst has a platinum loading of 45.7% by mass.
 スプレーコート法を用いて、拡散層112a上に、触媒層112b用塗布液を塗布して、触媒層112bを形成し、カソード112を得た。このとき、触媒層112b中の白金の含有量が1.00mg/cmとなるように、触媒層112b用塗布液を塗布した。 Using a spray coating method, a coating solution for the catalyst layer 112b was applied on the diffusion layer 112a to form the catalyst layer 112b, whereby the cathode 112 was obtained. At this time, the coating solution for the catalyst layer 112b was applied so that the platinum content in the catalyst layer 112b was 1.00 mg / cm 2 .
 電解質膜113としては、3.4cm×3.4cm×0.0051cmのNafion212(デュポン社製)を用いた。 As the electrolyte membrane 113, 3.4 cm × 3.4 cm × 0.0051 cm Nafion 212 (manufactured by DuPont) was used.
 アノード111及びカソード112の間に電解質膜113を挟持し、135℃、11.5MPaで180秒間ホットプレスし、膜電極接合体110を得た。 The electrolyte membrane 113 was sandwiched between the anode 111 and the cathode 112 and hot pressed at 135 ° C. and 11.5 MPa for 180 seconds to obtain a membrane electrode assembly 110.
 (イオン性ミクロゲルの作製)
 N,N-ジメチルアクリルアミド35g、2-アクリルアミド-2-メチルプロパンスルホン酸17.5g及びメチレンビスアクリルアミド70mgを、イオン交換水260g中に溶解させた後、水酸化ナトリウムを用いてpHを7.0に調整して、モノマー水溶液を得た。
(Production of ionic microgel)
35 g of N, N-dimethylacrylamide, 17.5 g of 2-acrylamido-2-methylpropanesulfonic acid and 70 mg of methylenebisacrylamide were dissolved in 260 g of ion-exchanged water, and then the pH was adjusted to 7.0 using sodium hydroxide. To obtain a monomer aqueous solution.
 還流装置を備えた1Lの三つ口フラスコに、n-ヘキサン260g、ポリオキシエチレン(3)オレイルエーテルのエマレックス503(日本エマルション社製)8.7g及びポリオキシエチレン(6)オレイルエーテルのエマレックス506(日本エマルション社製)17.6gを入れて、混合した後、窒素で置換した。次に、モノマー水溶液を加えて、窒素雰囲気下で攪拌しながら、オイルバスを用いて、重合系の温度が65~70℃になるまで昇温した。このとき、半透明な一相マイクロエマルションが形成されていることを確認した。さらに、過硫酸アンモニウム2gを加えた後、重合系の温度を65~70℃に維持しながら、3時間攪拌し、イオン性ミクロゲルを得た。次に、アセトンを加えて、イオン性ミクロゲルを沈殿させた後、アセトンで3回洗浄した。さらに、イオン性ミクロゲルを濾過した後、減圧乾燥させ、白色粉末状のイオン性ミクロゲルを得た。 In a 1 L three-necked flask equipped with a reflux apparatus, 260 g of n-hexane, 8.7 g of polyoxyethylene (3) oleyl ether Emalex 503 (manufactured by Nippon Emulsion Co., Ltd.) and polyoxyethylene (6) oleyl ether emma 17.6 g of Rex 506 (manufactured by Nippon Emulsion Co., Ltd.) was added and mixed, and then replaced with nitrogen. Next, an aqueous monomer solution was added, and the temperature of the polymerization system was increased to 65 to 70 ° C. using an oil bath while stirring in a nitrogen atmosphere. At this time, it was confirmed that a translucent one-phase microemulsion was formed. Further, 2 g of ammonium persulfate was added, and the mixture was stirred for 3 hours while maintaining the temperature of the polymerization system at 65 to 70 ° C. to obtain an ionic microgel. Next, acetone was added to precipitate the ionic microgel, followed by washing with acetone three times. Further, the ionic microgel was filtered and then dried under reduced pressure to obtain a white powdery ionic microgel.
 (実施例1)
 イオン性ミクロゲル0.5質量部及び99.8質量%メタノール水溶液99.5質量部を混合して、液体燃料Fを得た。
Example 1
Liquid fuel F was obtained by mixing 0.5 parts by mass of ionic microgel and 99.5 parts by mass of a 99.8% by mass aqueous methanol solution.
 膜電極接合体110に、セパレータ120及び130を設置した後、2mLの液体燃料Fが貯蔵されている液体燃料供給タンク140を設置して、パッシブ型燃料電池100を得た。このとき、多孔質膜141としては、厚さが10μm、平均孔径が0.2μmのポリテトラフルオロエチレン(PTFE)製のオムニポアメンブレンJGWP04700(ミクロポア社製)を用いた。 After the separators 120 and 130 were installed on the membrane electrode assembly 110, the liquid fuel supply tank 140 in which 2 mL of liquid fuel F was stored was installed, and the passive fuel cell 100 was obtained. At this time, as the porous membrane 141, an omnipore membrane JGWP04700 (manufactured by Micropore) made of polytetrafluoroethylene (PTFE) having a thickness of 10 μm and an average pore diameter of 0.2 μm was used.
 (実施例2)
 イオン性ミクロゲル1.0質量部及び99.8質量%メタノール水溶液99.0質量部を混合した以外は、実施例1と同様にして、パッシブ型燃料電池100を得た。
(Example 2)
A passive fuel cell 100 was obtained in the same manner as in Example 1 except that 1.0 part by mass of ionic microgel and 99.0 parts by mass of a 99.8% by mass methanol aqueous solution were mixed.
 (実施例3)
 イオン性ミクロゲル2.0質量部及び99.8質量%メタノール水溶液98.0質量部を混合した以外は、実施例1と同様にして、パッシブ型燃料電池100を得た。
(Example 3)
A passive fuel cell 100 was obtained in the same manner as in Example 1 except that 2.0 parts by mass of ionic microgel and 98.0 parts by mass of a 99.8% by mass aqueous methanol solution were mixed.
 (発電特性)
 燃料電池評価装置890B-100W/10A(東陽テクニカ社製)を用いて、25℃、50%RHの環境で、パッシブ型燃料電池100の電流密度50mA/cmにおける発電特性を測定した。
(Power generation characteristics)
Using a fuel cell evaluation apparatus 890B-100W / 10A (manufactured by Toyo Technica Co., Ltd.), the power generation characteristics at a current density of 50 mA / cm 2 of the passive fuel cell 100 were measured in an environment of 25 ° C. and 50% RH.
 図2に、パッシブ型燃料電池100の発電特性を示す。 FIG. 2 shows the power generation characteristics of the passive fuel cell 100.
 図2から、実施例1~3のパッシブ型燃料電池100は、発電特性が優れることがわかる。 2 that the passive fuel cells 100 of Examples 1 to 3 have excellent power generation characteristics.
 パッシブ型燃料電池100の液体燃料供給タンク140に消費されたメタノールを再充填した後、100分間放置した。次に、電子負荷器PLZ70UA(KIKUSUI社製)を用いて、25℃、50%RHの環境で、パッシブ型燃料電池100の発電特性を測定した。 After the methanol consumed in the liquid fuel supply tank 140 of the passive fuel cell 100 was refilled, it was left for 100 minutes. Next, the power generation characteristics of the passive fuel cell 100 were measured using an electronic loader PLZ70UA (manufactured by KIKUSUI) in an environment of 25 ° C. and 50% RH.
 図3に、メタノールを再充填したパッシブ型燃料電池100の発電特性を示す。なお、図3(a)、(b)及び(c)は、それぞれ実施例1、2及び3のパッシブ型燃料電池100の発電特性である。 FIG. 3 shows the power generation characteristics of the passive fuel cell 100 refilled with methanol. 3A, 3B, and 3C show the power generation characteristics of the passive fuel cells 100 of Examples 1, 2, and 3, respectively.
 図3から、実施例1~3のパッシブ型燃料電池100は、メタノールを再充填した後も、発電特性が優れることがわかる。 3 that the passive fuel cells 100 of Examples 1 to 3 have excellent power generation characteristics even after refilling with methanol.
 (メタノールクロスオーバー)
 電流密度50mA/cmにおける発電特性を測定する前後に、パッシブ型燃料電池100の液体燃料供給タンク140に、99.8質量%メタノール水溶液の代わりに、10質量%メタノール水溶液を充填した。次に、燃料電池評価装置890B-100W/10A(東陽テクニカ社製)を用いて、25℃、50%RHの環境で、パッシブ型燃料電池100のメタノールクロスオーバーを評価した。
(Methanol crossover)
Before and after the power generation characteristics at a current density of 50 mA / cm 2 were measured, the liquid fuel supply tank 140 of the passive fuel cell 100 was filled with a 10% by mass methanol aqueous solution instead of the 99.8% by mass methanol aqueous solution. Next, the methanol crossover of the passive fuel cell 100 was evaluated in an environment of 25 ° C. and 50% RH using a fuel cell evaluation apparatus 890B-100W / 10A (manufactured by Toyo Technica Co., Ltd.).
 図4に、パッシブ型燃料電池100のメタノールクロスオーバーの評価結果を示す。なお、図4(a)、(b)及び(c)は、それぞれ実施例1、2及び3のパッシブ型燃料電池100の評価結果である。 FIG. 4 shows the evaluation result of the methanol crossover of the passive fuel cell 100. 4A, 4B, and 4C show the evaluation results of the passive fuel cells 100 of Examples 1, 2, and 3, respectively.
 図4から、実施例1~3のパッシブ型燃料電池100は、電流密度50mA/cmにおける発電特性を測定する前後の発電特性がほぼ同等であり、メタノールクロスオーバーの発生を抑制できることがわかる。 FIG. 4 shows that the passive fuel cells 100 of Examples 1 to 3 have substantially the same power generation characteristics before and after measuring the power generation characteristics at a current density of 50 mA / cm 2 and can suppress the occurrence of methanol crossover.
 本国際出願は、2011年10月17日に出願された日本国特許出願2011-227793に基づく優先権を主張するものであり、日本国特許出願2011-227793の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application 2011-227793 filed on October 17, 2011, and the entire contents of Japanese Patent Application 2011-227793 are incorporated herein by reference. .
 100  パッシブ型燃料電池
 110  膜電極接合体
 111  アノード
 111a  拡散層
 111b  触媒層
 112  カソード
 112a  拡散層
 112b  触媒層
 113  電解質膜
 120、130  セパレータ
 121、131  流路
 140  液体燃料供給タンク
 141  多孔質膜
 F  液体燃料
DESCRIPTION OF SYMBOLS 100 Passive type fuel cell 110 Membrane electrode assembly 111 Anode 111a Diffusion layer 111b Catalyst layer 112 Cathode 112a Diffusion layer 112b Catalyst layer 113 Electrolyte membrane 120, 130 Separator 121, 131 Channel 140 Liquid fuel supply tank 141 Porous membrane F Liquid fuel

Claims (8)

  1.  アノード及びカソードにより電解質膜が挟持されている膜電極接合体と、前記アノードに液体燃料を供給する液体燃料供給部材を有し、
     前記液体燃料供給部材は、前記アノードと対向するように設けられている多孔質膜を有し、
     前記液体燃料は、燃料成分及びイオン性ミクロゲルを含み、
     前記イオン性ミクロゲルは、イオン性モノマー由来の構成単位及びノニオン性モノマー由来の構成単位を有することを特徴とするパッシブ型燃料電池。
    A membrane electrode assembly in which an electrolyte membrane is sandwiched between an anode and a cathode, and a liquid fuel supply member that supplies liquid fuel to the anode,
    The liquid fuel supply member has a porous membrane provided to face the anode,
    The liquid fuel includes a fuel component and an ionic microgel,
    The ionic microgel has a structural unit derived from an ionic monomer and a structural unit derived from a nonionic monomer.
  2.  前記多孔質膜は、平均孔径が0.01μm以上10μm以下であることを特徴とする請求項1に記載のパッシブ型燃料電池。 The passive fuel cell according to claim 1, wherein the porous membrane has an average pore size of 0.01 µm or more and 10 µm or less.
  3.  前記多孔質膜は、フッ素樹脂を含むことを特徴とする請求項1に記載のパッシブ型燃料電池。 The passive fuel cell according to claim 1, wherein the porous membrane contains a fluororesin.
  4.  前記液体燃料は、前記イオン性ミクロゲルの含有量が0.1質量%以上50質量%以下であることを特徴とする請求項1に記載のパッシブ型燃料電池。 The passive fuel cell according to claim 1, wherein the liquid fuel has a content of the ionic microgel of 0.1 mass% or more and 50 mass% or less.
  5.  前記液体燃料は、前記燃料成分の含有量が10質量%以上99.9質量%以下であることを特徴とする請求項1に記載のパッシブ型燃料電池。 2. The passive fuel cell according to claim 1, wherein the liquid fuel has a content of the fuel component of 10% by mass or more and 99.9% by mass or less.
  6.  前記イオン性モノマーがアニオン性モノマーであることを特徴とする請求項1に記載のパッシブ型燃料電池。 The passive fuel cell according to claim 1, wherein the ionic monomer is an anionic monomer.
  7.  前記燃料成分がメタノールであることを特徴とする請求項1に記載のパッシブ型燃料電池。 The passive fuel cell according to claim 1, wherein the fuel component is methanol.
  8.  パッシブ型燃料電池のアノードに液体燃料を供給する液体燃料供給部材であって、
     前記アノードと対向するように設けられている多孔質膜を有し、
     前記液体燃料は、燃料成分及びイオン性ミクロゲルを含み、
     前記イオン性ミクロゲルは、イオン性モノマー由来の構成単位及びノニオン性モノマー由来の構成単位を有することを特徴とする液体燃料供給部材。
    A liquid fuel supply member for supplying liquid fuel to an anode of a passive fuel cell,
    A porous membrane provided to face the anode;
    The liquid fuel includes a fuel component and an ionic microgel,
    The ionic microgel has a structural unit derived from an ionic monomer and a structural unit derived from a nonionic monomer.
PCT/JP2012/076049 2011-10-17 2012-10-05 Passive fuel cell and liquid fuel supply member WO2013058132A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011227793A JP2013089404A (en) 2011-10-17 2011-10-17 Passive type fuel cell and liquid fuel supply member
JP2011-227793 2011-10-17

Publications (1)

Publication Number Publication Date
WO2013058132A1 true WO2013058132A1 (en) 2013-04-25

Family

ID=48140783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076049 WO2013058132A1 (en) 2011-10-17 2012-10-05 Passive fuel cell and liquid fuel supply member

Country Status (2)

Country Link
JP (1) JP2013089404A (en)
WO (1) WO2013058132A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128689A (en) * 2005-11-01 2007-05-24 Shiseido Co Ltd Liquid fuel and fuel cell
JP2010097867A (en) * 2008-10-17 2010-04-30 Sony Corp Fuel cell and electronic device
JP2010153145A (en) * 2008-12-24 2010-07-08 Toshiba Corp Anode electrode for direct-methanol fuel cells, and membrane-electrode complex and fuel cell using the same
JP2010192393A (en) * 2009-02-20 2010-09-02 Toshiba Corp Fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128689A (en) * 2005-11-01 2007-05-24 Shiseido Co Ltd Liquid fuel and fuel cell
JP2010097867A (en) * 2008-10-17 2010-04-30 Sony Corp Fuel cell and electronic device
JP2010153145A (en) * 2008-12-24 2010-07-08 Toshiba Corp Anode electrode for direct-methanol fuel cells, and membrane-electrode complex and fuel cell using the same
JP2010192393A (en) * 2009-02-20 2010-09-02 Toshiba Corp Fuel cell

Also Published As

Publication number Publication date
JP2013089404A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
CA2605342C (en) Hydrophobic catalyst layer for polymer electrolyte fuel cell and method of producing the same, and polymer electrolyte fuel cell and method of producing the same
Pan et al. Performance characteristics of a passive direct ethylene glycol fuel cell with hydrogen peroxide as oxidant
JP5830386B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP2006114502A (en) Polymer electrolyte film for direct oxidation type fuel cell, its manufacturing method, and direct oxidation type fuel cell system including this
JP2006332041A (en) Hydrophobic catalyst layer of solid polymer fuel cell and its manufacturing method, and solid polymer fuel cell and its manufacturing method
Verjulio et al. Fabrication and evaluation of a passive alkaline membrane micro direct methanol fuel cell
WO2008132875A1 (en) Method for producing polymer electrolyte membrane for solid polymer fuel cell, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
WO2011102327A1 (en) Solid electrolyte film, and method for producing same
Tay et al. Composite Nafion® membrane embedded with hybrid nanofillers for promoting direct methanol fuel cell performance
JP2006244994A (en) Solid electrolyte, manufacturing method of solid electrolyte, electrode membrane junction and fuel cell
JP2008288065A (en) Electrolyte membrane, membrane-electrode assembly, fuel cell, and manufacturing method of electrolyte membrane
KR101002654B1 (en) Polymer membrane for fuelcell, method of preparing the same, membrane-electrode assembly comprising the same, and fuel cell system comprising the same
JP5286646B2 (en) Method for polymerizing sulfone group-containing monomers
WO2013058132A1 (en) Passive fuel cell and liquid fuel supply member
JP2006176871A (en) Hydrogen supply system
WO2006085619A1 (en) Fuel cell
JP4541277B2 (en) Liquid fuel for fuel cell and fuel cell
Yuan et al. Enhanced water management and fuel efficiency of a fully passive direct methanol fuel cell with super-hydrophilic/-hydrophobic cathode porous flow-field
JP2008177136A (en) Catalyst electrode for fuel cell and its manufacturing method
JP2010047724A (en) Electrolyte polymer having improved humidity retention property, and method of manufacturing the same
JP2009029846A (en) Electrolyte, electrode catalyst layer, fuel cell and method for producing them
JP2007066765A (en) Membrane electrode assembly and fuel cell using the same
JP2010061977A (en) Fuel cell
JP4552183B2 (en) Sol-like proton conducting electrolyte and fuel cell
JP5309576B2 (en) Gas decomposition element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842001

Country of ref document: EP

Kind code of ref document: A1