WO2013057803A1 - Radiation and ion detection device equipped with correction device and analysis display device and analysis display method - Google Patents

Radiation and ion detection device equipped with correction device and analysis display device and analysis display method Download PDF

Info

Publication number
WO2013057803A1
WO2013057803A1 PCT/JP2011/074036 JP2011074036W WO2013057803A1 WO 2013057803 A1 WO2013057803 A1 WO 2013057803A1 JP 2011074036 W JP2011074036 W JP 2011074036W WO 2013057803 A1 WO2013057803 A1 WO 2013057803A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
counter
value
voltage
ionized
Prior art date
Application number
PCT/JP2011/074036
Other languages
French (fr)
Japanese (ja)
Inventor
長門 大矢
Original Assignee
Oya Nagato
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oya Nagato filed Critical Oya Nagato
Priority to PCT/JP2011/074036 priority Critical patent/WO2013057803A1/en
Publication of WO2013057803A1 publication Critical patent/WO2013057803A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/18Measuring radiation intensity with counting-tube arrangements, e.g. with Geiger counters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/06Proportional counter tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/08Geiger-Müller counter tubes

Definitions

  • radiation is detected even in an ion recombination region whose voltage is lower than the voltage of a counter tube normally used in a radiation detector, and even when the radiation is in a substance that does not reach the outside, it is applied to the surface of the ionized substance.
  • Dielectric detection of the charged ionic substance can be performed by charging the dielectric thin film, and according to the present invention, peripheral ionized matter and radiation can be detected quickly and safely and easily without destroying the test substance.
  • Non-Patent Document 1 As a technique of such a radiation detection method, as shown in Non-Patent Document 1, the Geiger counter detects the number of radiations, the proportional counter shown in Patent Document 1 detects the energy of radiation,
  • the semiconductor detector shown applies a technology such as a CCD, and a high voltage is used, and the tube used for the detector must be filled with gas or requires high technical skills.
  • the Geiger-Muller counters and semiconductor detectors described above have been widely used to specify the number of radiations, and the proportional counters to identify substances. However, since high voltage is used, it is necessary to be careful, and it requires technical skill and cost in the manufacturing process. This method will be adopted to simplify the process and allow anyone to make it.
  • the present inventor considered the voltage detected by the counter and the graph of radiation in FIG. 6 and used the voltage portion of the recombination region which is not normally used to amplify and detect a weak voltage change.
  • the present inventor has completed what detects the dielectric by detecting what is ionized by radiation or the like using low voltage and normal air which are not normally used.
  • the dielectric thin film is a dielectric thin film (plastic [polyethylene], etc.) where the radiation entrance window is dielectric. Therefore, dielectric detection from externally charged substances in the ionized state that is covered, and the atmosphere and substances that have been ionized through radiation passing through the electric field region where a low voltage is applied inside the counter tube.
  • the internal gas uses normal air or an inert gas
  • the operating voltage is a low voltage in the recombination region
  • the amplifier is supplied to the amplifier.
  • the correction device can supplement the influence of temperature and the like, and the analysis display device can calculate the energy value by radiation. It is obtained by measuring the voltage and measured using a voltmeter, oscilloscope, PC, etc. By analyzing the result, it is characterized in that it is possible to specify the intensity of radiation and the line type and substance.
  • the invention described in claim 2 uses the low voltage region of the recombination region which is not normally used in the Geiger-Muller counter tube and the proportional counter tube in the counter tube described in claim 1, and is used for the detector. It is possible to do this.
  • the invention described in claim 3 is a counter tube according to claim 1, in which the electricity inside the counter tube is applied to the cathode anode in the opposite direction as compared with a normal counter tube, thereby increasing the dielectric property and measuring. It is characterized by being able to.
  • the gas in the counter tube can be detected using normal air or an inert gas.
  • the invention according to claim 5 is the counter tube according to claim 1, in which the caliber is covered with a thin film of dielectric (plastic [polyethylene, etc.), and the ionization state of the substance is examined, so that the inside of food, the body, etc. It is also possible to measure the location where the radiation does not reach from the radiation source incorporated in the material, and to understand the abnormal ionization situation occurring in the substance.
  • dielectric plastic [polyethylene, etc.
  • the conductive electromagnetic shield (mesh, foil) is applied to the aperture for detecting radiation, thereby removing ions existing outside the counter tube. It is also possible to detect only radiation such as ⁇ rays, ⁇ rays, ⁇ rays, and X rays that jump into the chamber.
  • the invention according to claim 7 changes in the correction device according to claim 1 due to processing of a regular minute change seen due to a low voltage when amplification is performed, characteristics of a semiconductor, and the like. It is possible to measure the radiation energy value more accurately by attaching a correction device that adjusts the temperature to an appropriate value so that the obtained value can be corrected to a more accurate value. To do.
  • the analysis display device by adding one by one for each voltage value that changes as an output value according to time, the distribution of energy values respectively obtained by the particles is obtained. It is possible to determine the type of radiation and the radioactive substance.
  • the analysis display method when the correction device and the analysis display device according to the first aspect are not used, the analysis can be performed using a personal computer, and a low voltage is used for data input. Therefore, whether to use an AD converter that inputs voice directly to a personal computer or to read data from an oscilloscope into a personal computer, removes periodic minute changes in voltage based on that data, and displays an energy distribution diagram. It is possible to analyze and specify a substance from a specific pattern of energy.
  • the invention according to claim 10 is the detection device according to claim 1, wherein the ionization state of the cell is examined when radiotherapy is performed for medical use, that is, the burn, inflammation, tumor in the body in the ionization state Can be detected at a lower dose, and can be more active in inflammation, cancer cells, etc. by touching the counter very close or touching the body surface.
  • the ionized part of the cell can be dielectricized, the ionized state of the part can be removed, the function of the cell can be calmed down, and the proliferation can be suppressed.
  • the said detection apparatus is an electromagnetic shield, a counter, an amplifier, a correction
  • the electromagnetic shield can be covered with a net-like or foil-like electromagnetic shield to specify the type of static electricity and radiation from the surrounding area and the contact portion of the incident window.
  • an insulator paint, paper, rubber, etc.
  • the counter tube is similar to the structure of a normal GM tube or proportional counter tube.
  • the dielectric thin film is different from the internal gas in operating voltage
  • the dielectric thin film is a thin film made of a dielectric material (plastic [polyethylene], etc.) for which the radiation enters.
  • Dielectric detection is performed on dielectrics from charged substances that are covered by the ionization in the outside, and the atmosphere and substances that have been ionized by passing through the electric field region where a low voltage is applied inside the counter tube.
  • the internal gas uses normal air or an inert gas
  • the operating voltage uses a low voltage in a recombination region
  • the amplifier In order to obtain a more accurate energy value in an auxiliary manner, the correction device can also add an effect of correcting the temperature and the like. Is obtained by measuring the voltage, and is measured using a voltmeter or an instrument such as an oscilloscope or PC, and by analyzing the result, Intensity of rays, and can provide a device that can perform a specific line type and material.
  • the low voltage region of the recombination region that is not normally used in the Geiger-Muller counter tube and the proportional counter tube is used.
  • An apparatus that can be used can be provided.
  • the diameter of the substance is covered with a thin film of dielectric (plastic [polyethylene, etc.), and the ionization state of the substance is examined. For example, it is possible to measure an area where radiation does not reach from a radiation source incorporated therein, and to provide an apparatus that can understand an abnormal ionization state occurring in a substance.
  • dielectric plastic [polyethylene, etc.
  • the correction device due to the processing of the regular minute change seen because of the low voltage when amplification is performed, the characteristics of the semiconductor, etc.
  • the analysis display method when the correction device and the analysis display device according to claim 1 are not used, the analysis can be performed using a personal computer, Since it is a low voltage, use an AD converter that inputs voice directly to the personal computer or read data from the oscilloscope into the personal computer. It is possible to provide a method capable of creating a distribution map and analyzing and identifying a substance from a specific pattern of energy.
  • the ionization state of the cell is examined, that is, detection of a burn, inflammation, tumor, etc. in the body in the ionization state. That allows treatment at lower doses.
  • the ionized part of cells that are actively active due to inflammation, cancer cells, etc. can be dielectricized, and the ionized state of that part can be removed, It can calm down the function of cells and suppress proliferation.
  • FIG. 16 is a graph shown in FIGS. It is a graph showing the absolute value of FIG. It is a collection ion energy distribution graph.
  • the ⁇ ray is 45 to 100 mm, the ⁇ ray is 1 to 15 m, and the ⁇ ray is ⁇ .
  • about alpha rays need one sheet of paper, beta ray aluminum board 3mm, gamma ray concrete 50cm, or lead 10cm.
  • the radioactive material taken into the body or organic matter can hardly be detected unless it is gamma rays.
  • the total amount of energy emitted can be determined.
  • the charge is conversely induced, and the voltage value may be low or zero.
  • the dielectric material in the surrounding area is removed, and it waits until the voltage value in the counter returns to its original state. If it is not detected again, the exact amount of radiation energy cannot be determined.
  • the background may be measured in advance, and the difference obtained by subtracting the background may be considered as the radiation energy value.
  • the dielectric counter tube 1 is conductive so that it does not affect the detector even if it is touched with an electrostatically charged hand, etc., by covering the surroundings with an insulator except the entrance, and the amplifier 2 does not interfere with it. It shall be further wrapped with
  • the amplifier 2 uses a differential amplifier to accurately amplify a weak signal.
  • a Japanese tea tea can with a polyethylene inner lid can be used as the counter tube portion and the thin film dielectric material.
  • the electric field E (r) is given as follows.
  • the voltage may be increased to prevent ion recombination, there are two reasons for the low voltage.
  • the voltage can be expressed in direct proportion to the radiation energy value and the origin, so if the voltage change simply becomes N times, the radiation dose also becomes N times. I can think that it became.
  • the upper limit of the input voltage must be kept below 7V so that the sound source board of the personal computer is not damaged.
  • V 9 [V]
  • a 0.3mm
  • b 30mm in the recombination region, which is a low voltage
  • dielectric detection can be performed not only in the ion recombination region in the vicinity of 100 V but also in the proportional counter region, etc., from the graph of FIG. 6 showing the applied voltage and the number of collected ions.
  • the amplifying apparatus 2 uses a differential amplifier usually used in medical care to amplify and detect a voltage in order to capture a weak voltage change stably and accurately.
  • FIG. 14 shows a regular minute change process that is seen because the voltage is low when amplification is performed in the correction apparatus 3 by integrating or adding all values in one period to remove the periodic change.
  • FIG. 15 shows the average of the minute surroundings ⁇ without performing Fourier transform, and the ionization value can be easily obtained by subtracting from the original data.
  • the most important correction is the temperature correction of the semiconductor, so it changes due to the influence of temperature etc. so that the value obtained by changing according to the characteristics of the semiconductor can be corrected to a more accurate value
  • a correction device for making the value to be an appropriate value it becomes possible to measure the radiation energy value more accurately.
  • the electrical resistance increases as the temperature decreases, and the electrical resistance decreases as the temperature increases. Both can be measured and calculated to obtain an accurate ionization energy value.
  • ⁇ V ⁇ log
  • the correction by temperature can be obtained by Equation 2, and the constant parts T 0 , ⁇ , and ⁇ change depending on the size of the counter and the properties of the semiconductor.
  • the measurement voltage is not changed due to temperature in combination with a linear resistor, thermistor, platinum resistance thermometer, etc. having the reverse functions.
  • the temperature resistance characteristic of the thermistor can be described in this way according to the Steinhart equation approximately.
  • the energy value by radiation is obtained by measuring a voltage, and a device such as a voltmeter, an oscilloscope, a PC, or a dedicated circuit is used.
  • Ion flow rate is proportional to electric field, inversely proportional to pressure, approximately 1 (atm cm 2 / sV)
  • the proportionality constant ⁇ is called the recombination coefficient, and varies depending on the type of gas, temperature, and pressure.
  • Flow is a movement of charged particles in the electric field direction while repeating low-energy collisions with gas molecules.
  • the flow velocity v is proportional to the electric field strength E at a low electric field, and the mobility ⁇ is a proportionality constant, and is described as follows.
  • Electronic case For ion The flow rate of ions is about 3 orders of magnitude smaller than the flow rate of electrons.
  • the dielectric counter tube 1 is separated from the measurement location and closes after several seconds, it can be said that there is a small amount that generates ions.
  • it can be measured as a normal counter tube by providing an electromagnetic shield at the measurement port of the dielectric counter tube 1 or by reversing the polarity state of the electric field of the counter tube as shown in FIG.
  • the voltmeter can identify the energy intensity per unit time of radiation, an energy distribution map using an oscilloscope and a PC, and specify line types and substances.
  • Voltage change data is input from the oscilloscope to the correction analysis display device 5.
  • a distribution map is created from the graph 12 of voltage change over time.
  • the other part of only + or-only has ion recombination, and only one charge is detected.
  • the number of values that react up and down a, the number that reacts in the + direction: b, the number that reacts in the-direction: c, Number disappeared by coupling: d, voltage average value V + in the + direction, voltage average value V- in the ⁇ direction, V ⁇ , ion recombination correction coefficient k S , where k S is a specific value determined by the applied voltage and the counter It is a constant.
  • FIG. 16A If the absolute value of FIG. 16A is taken to be
  • the threshold value is set to 0.0065 and a noise portion equal to or lower than the threshold value is deleted, the pulse height of the voltage with respect to time as shown in the graph of FIG. 17B is obtained.
  • the pulse height of the voltage becomes the collected ion energy, and when the value as shown in FIG. 16 is measured for a longer time, and the voltage difference value is divided and counted for each ⁇ (V (t) ⁇ (t)), it is as shown in FIG.
  • the radiation particles can be identified by the wave height.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

[Problem] To provide, although it is generally difficult to detect radioactive materials present in a material, a technique for detecting the radioactive materials. [Solution] When radiation travels inside a material, the material is ionized, in which part of the ionized material is recombined and the remaining ionized material is polarized on the surface of the material. Therefore, it is possible to know an ionized state in the material by using an analysis display device (4) or a correction analysis display device (5) in such a way that: a voltage is applied to a dielectric counter tube (1) including a thin film dielectric material used in a detection portion of the dielectric counter tube to more strongly electrically induce ionized matter that is present and to detect a resulting small potential difference; and the potential difference is amplified by an amplifier (2) and corrected according to the temperature by a correction device (3) or a thermometer (6). In addition, although being weak, each type of radiation can also be directly detected. It cannot be determined that being in an ionized state is always caused by radiations, but in a material that cannot be normally ionized, it can be said that an abnormality is occurring. Since an ionized state in a material is known, it also becomes possible to determine the presence or absence of tumor, pain in an affected area of human, and the like.

Description

[規則37.2に基づきISAが決定した発明の名称] 補正装置と解析表示装置を具備する放射線およびイオン検出装置および解析表示方法[Name of Invention Determined by ISA Based on Rule 37.2] Radiation and Ion Detection Device and Analysis Display Method Comprising Correction Device and Analysis Display Device
本発明は、通常放射線検出器で使われる計数管の電圧より低電圧のイオン再結合領域においても放射線を検出するものとし、放射線が外部へ届かない物質内にある場合でも、電離し物質表面に帯電したイオン物質を誘電性の薄膜の帯電によって誘電検知が可能になり、この発明によって検査物質を破壊することなく、周辺電離物および放射線検出を素早く安全にかつ簡易に検出できるものとなる。
 
In the present invention, radiation is detected even in an ion recombination region whose voltage is lower than the voltage of a counter tube normally used in a radiation detector, and even when the radiation is in a substance that does not reach the outside, it is applied to the surface of the ionized substance. Dielectric detection of the charged ionic substance can be performed by charging the dielectric thin film, and according to the present invention, peripheral ionized matter and radiation can be detected quickly and safely and easily without destroying the test substance.
現在、放射線検出を行なう場合には、ガイガーカウンター、比例計数管、半導体検出器を使って行なっている。 Currently, radiation detection is performed using Geiger counters, proportional counters, and semiconductor detectors.
このような放射線検出方式の技術として、非特許文献1に示すような、ガイガーカウンターは放射線の数を検出、特許文献1に示される比例計数管は放射線のエネルギーを検出、また、特許文献2に示される半導体検出器ではCCDなどの技術を応用したものであり、高電圧を使ったり、検出器に使われる管はガスを充満させなければならなかったり、高い技術力を必要とする。 As a technique of such a radiation detection method, as shown in Non-Patent Document 1, the Geiger counter detects the number of radiations, the proportional counter shown in Patent Document 1 detects the energy of radiation, The semiconductor detector shown applies a technology such as a CCD, and a high voltage is used, and the tube used for the detector must be filled with gas or requires high technical skills.
国際公開第2008/059966号International Publication No. 2008/059966 特願平04―230058号Japanese Patent Application No. 04-230058
 上記したガイガーミュラー計数管や半導体検出器などは放射線の数を、比例計数管は物質の特定などを行いうために広く普及されてきた。しかし、高電圧を使用するので注意が必要で、製作過程において技術力と費用を必要とするものである。その過程を簡易にし、かつ、誰でも作れるようにするためにこの手法を取り入れるものとする。 The Geiger-Muller counters and semiconductor detectors described above have been widely used to specify the number of radiations, and the proportional counters to identify substances. However, since high voltage is used, it is necessary to be careful, and it requires technical skill and cost in the manufacturing process. This method will be adopted to simplify the process and allow anyone to make it.
また通常、α線、β線などの放射線源は人体に取り込まれると計測が極めて難しくなる。 Usually, radiation sources such as α rays and β rays are extremely difficult to measure when taken into the human body.
本発明者は、計数管によって検出される電圧と放射線の図6グラフを見て、通常使われていない再結合領域の電圧部分を使い、微弱な電圧変化を増幅させ検出するものを考えた。 The present inventor considered the voltage detected by the counter and the graph of radiation in FIG. 6 and used the voltage portion of the recombination region which is not normally used to amplify and detect a weak voltage change.
また、空間中の電離状態を誘電し調べることにより、放射線物質を含んだ物質の特定だけでなく、医療用として体内における放射線による被曝、炎症、及び、電離状態にある、火傷、腫瘍、痛みなどの状況も検出できる。 In addition, not only the identification of substances containing radioactive substances by examining the ionization state in the space, but also radiation exposure, inflammation, and ionization in the body for medical use, burns, tumors, pain, etc. The situation can also be detected.
そこで、本発明者は、通常使われていない低電圧と通常の空気を使い放射線などにより電離したものを誘電し、検出するものを完成させた。
 
Therefore, the present inventor has completed what detects the dielectric by detecting what is ionized by radiation or the like using low voltage and normal air which are not normally used.
請求項1に記載の発明は、放射線およびイオンを計測するための該検出装置であり、前記検出装置は電磁シールド、計数管、増幅器、補正装置、解析表示装置であり、補助的に前記電磁シールドは、入射窓に周囲および接触部からの静電気、および、放射線の種類を特定するために網状もしくは箔状の電磁シールドで覆うことも可能であり、前記計数管の周囲は手が触れても良いように静電気防止の為、絶縁体(塗料、紙、ゴムなど)で覆い、前記計数管は通常のGM管や比例計数管の構造と同様であるが、電気の陰極陽極を逆に計数管へかけることによって誘電性を高めることを可能にし、誘電性薄膜と内部ガスと使用電圧が異なり、前記誘電性薄膜は放射線の入る入射窓を誘電性のもの(プラスチック[ポリエチレン]など)の薄膜などによって覆ってあり、外部における電離状態にある帯電物質からの誘電と、また、計数管内部において低電圧をかけられた電場領域を放射線が通過し電離してしまった大気及び物質を誘電検出することによって得られた電位差を増幅させ電圧値として示すことができ、このとき、前記内部ガスは通常の大気、もしくは不活性ガスを使い、前記使用電圧は再結合領域の低電圧を使い、前記増幅器にて電圧変化を増幅し、前記補正装置は、補助的に、より正確なエネルギー値を得る為、温度などによる影響を補正することも付加できるものとし、前記解析表示装置は、放射線によるエネルギー値は電圧を測定することによって得られ、電圧計、もしくは、オシロスコープ、PCなどの機器を使い測定し、
その結果を解析することによって、放射線の強度、および、線種と物質の特定を行なうことが出来ることに特徴がある。
The invention according to claim 1 is the detection device for measuring radiation and ions, and the detection device is an electromagnetic shield, a counter, an amplifier, a correction device, and an analysis display device. The incident window can be covered with a net-like or foil-like electromagnetic shield to specify the type of static electricity and radiation from the periphery and the contact portion, and the counter tube may be touched by a hand. In order to prevent static electricity, it is covered with an insulator (paint, paper, rubber, etc.), and the counter tube has the same structure as a normal GM tube or proportional counter tube, but the electric cathode anode is reversed to the counter tube. It is possible to increase the dielectric property by applying the dielectric thin film, the internal gas and the operating voltage are different, and the dielectric thin film is a dielectric thin film (plastic [polyethylene], etc.) where the radiation entrance window is dielectric. Therefore, dielectric detection from externally charged substances in the ionized state that is covered, and the atmosphere and substances that have been ionized through radiation passing through the electric field region where a low voltage is applied inside the counter tube. In this case, the internal gas uses normal air or an inert gas, and the operating voltage is a low voltage in the recombination region, and the amplifier is supplied to the amplifier. In order to obtain a more accurate energy value, the correction device can supplement the influence of temperature and the like, and the analysis display device can calculate the energy value by radiation. It is obtained by measuring the voltage and measured using a voltmeter, oscilloscope, PC, etc.
By analyzing the result, it is characterized in that it is possible to specify the intensity of radiation and the line type and substance.
請求項2に記載の発明は、請求項1に記載の計数管において、通常ガイガーミュラー計数管、および、比例計数管で使われていない再結合領域の低電圧域を使い、検出器に使用することが可能であることを特徴とする。 The invention described in claim 2 uses the low voltage region of the recombination region which is not normally used in the Geiger-Muller counter tube and the proportional counter tube in the counter tube described in claim 1, and is used for the detector. It is possible to do this.
請求項3に記載の発明は、請求項1に記載の計数管において、計数管内部の電気を通常の計数管と比べて陰極陽極を逆方向にかけることによって、より誘電性を高め、測定することができることを特徴とする。 The invention described in claim 3 is a counter tube according to claim 1, in which the electricity inside the counter tube is applied to the cathode anode in the opposite direction as compared with a normal counter tube, thereby increasing the dielectric property and measuring. It is characterized by being able to.
請求項4に記載の発明は、請求項1に記載の計数管において、計数管内のガスは通常の大気もしくは不活性ガスを使い検出できることを特徴とする。 According to a fourth aspect of the present invention, in the counter tube according to the first aspect, the gas in the counter tube can be detected using normal air or an inert gas.
請求項5に記載の発明は、請求項1に記載の計数管において、誘電性の(プラスチック[ポリエチレン]など)薄い膜で口径を覆い、物質の電離状況を調べることにより、食物や体内など内部に取り込まれている放射線源から放射線が届かない箇所の測定も可能にし、物質内で起こっている異常な電離状況が分かるようになることを特徴とする。 The invention according to claim 5 is the counter tube according to claim 1, in which the caliber is covered with a thin film of dielectric (plastic [polyethylene, etc.), and the ionization state of the substance is examined, so that the inside of food, the body, etc. It is also possible to measure the location where the radiation does not reach from the radiation source incorporated in the material, and to understand the abnormal ionization situation occurring in the substance.
請求項6に記載の発明は、請求項1に記載の計数管において、電導性の電磁シールド(網、箔)を放射線検出する口径へ施すことにより、計数管外部に存在するイオンを除き、検出器内部へ飛び込んでくる、α線、β線、γ線、X線などの放射線のみを検出することも可能であることを特徴とする。 According to a sixth aspect of the present invention, in the counter tube according to the first aspect, the conductive electromagnetic shield (mesh, foil) is applied to the aperture for detecting radiation, thereby removing ions existing outside the counter tube. It is also possible to detect only radiation such as α rays, β rays, γ rays, and X rays that jump into the chamber.
請求項7に記載の発明は、請求項1に記載の補正装置において、増幅を行なった場合に低電圧である為に見られる規則的な微小変化の処理、また、半導体の特性などによって変化して得られた値をより正確な値に補正することができるように、温度などによって適正な値にする補正装置を取り付けることによって、より正確な放射線エネルギー値の測定が可能になることを特徴とする。 The invention according to claim 7 changes in the correction device according to claim 1 due to processing of a regular minute change seen due to a low voltage when amplification is performed, characteristics of a semiconductor, and the like. It is possible to measure the radiation energy value more accurately by attaching a correction device that adjusts the temperature to an appropriate value so that the obtained value can be corrected to a more accurate value. To do.
請求項8に記載の発明は、請求項1に記載の解析表示装置において、時間によって出力値として変化する電圧の値ごとに1つずつ加算することによって、粒子によってそれぞれ得られるエネルギー値の分布を求めることができ、それによって放射線の種類と放射性物質の特定を可能であることを特徴とする。 According to an eighth aspect of the present invention, in the analysis display device according to the first aspect, by adding one by one for each voltage value that changes as an output value according to time, the distribution of energy values respectively obtained by the particles is obtained. It is possible to determine the type of radiation and the radioactive substance.
請求項9に記載の発明は、解析表示方法において、請求項1に記載の補正装置と解析表示装置を使用しない場合は、パソコンを使って解析することができ、データ入力するために、低電圧であるので直接パソコンに備わっている音声入力を行なうAD変換器を使うか、オシロスコープからデータをパソコンに読み込むかを行い、そのデータを基に、電圧の周期的微小変化の除去し、エネルギー分布図を作成し、エネルギーの固有パターンから物質を解析特定することが可能であることを特徴とする。 According to the ninth aspect of the present invention, in the analysis display method, when the correction device and the analysis display device according to the first aspect are not used, the analysis can be performed using a personal computer, and a low voltage is used for data input. Therefore, whether to use an AD converter that inputs voice directly to a personal computer or to read data from an oscilloscope into a personal computer, removes periodic minute changes in voltage based on that data, and displays an energy distribution diagram. It is possible to analyze and specify a substance from a specific pattern of energy.
請求項10に記載の発明は、請求項1に記載の検出装置において、医療用として放射線治療を行なった際に細胞の電離状態を調べること、すなわち、電離状態にある体内の火傷、炎症、腫瘍などの検知をすることができ、それによって、より低線量での治療が可能となり、また、計数管を非常に近く、もしくは体表面に触れることで、炎症やがん細胞などにより活発に活動している細胞の電離している部分を誘電し、その部分の電離状態を除去でき、細胞の働きを沈静化、増殖を押さえることができる。
 
The invention according to claim 10 is the detection device according to claim 1, wherein the ionization state of the cell is examined when radiotherapy is performed for medical use, that is, the burn, inflammation, tumor in the body in the ionization state Can be detected at a lower dose, and can be more active in inflammation, cancer cells, etc. by touching the counter very close or touching the body surface. The ionized part of the cell can be dielectricized, the ionized state of the part can be removed, the function of the cell can be calmed down, and the proliferation can be suppressed.
請求項1に記載の発明によれば、放射線およびイオンを計測するための該検出装置であり、前記検出装置は電磁シールド、計数管、増幅器、補正装置、解析表示装置であり、補助的に前記電磁シールドは、入射窓に周囲および接触部からの静電気、および、放射線の種類を特定するために網状もしくは箔状の電磁シールドで覆うことも可能であり、前記計数管の周囲は手が触れても良いように静電気防止の為、絶縁体(塗料、紙、ゴムなど)で覆い、前記計数管は通常のGM管や比例計数管の構造と同様であるが、電気の陰極陽極を逆に計数管へかけることによって誘電性を高めることを可能にし、誘電性薄膜と内部ガスと使用電圧が異なり、前記誘電性薄膜は放射線の入る入射窓を誘電性のもの(プラスチック[ポリエチレン]など)の薄膜などによって覆ってあり、外部における電離状態にある帯電物質からの誘電と、また、計数管内部において低電圧をかけられた電場領域を放射線が通過し電離してしまった大気及び物質を誘電検出することによって得られた電位差を増幅させ電圧値として示すことができ、このとき、前記内部ガスは通常の大気、もしくは不活性ガスを使い、前記使用電圧は再結合領域の低電圧を使い、前記増幅器にて電圧変化を増幅し、前記補正装置は、補助的に、より正確なエネルギー値を得る為、温度などによる影響を補正することも付加できるものとし、前記解析表示装置は、放射線によるエネルギー値は電圧を測定することによって得られ、電圧計、もしくは、オシロスコープ、PCなどの機器を使い測定し、その結果を解析することによって、放射線の強度、および、線種と物質の特定を行なうことが出来る装置を提供することができる。 According to invention of Claim 1, it is this detection apparatus for measuring a radiation and ion, The said detection apparatus is an electromagnetic shield, a counter, an amplifier, a correction | amendment apparatus, an analysis display apparatus, and the said auxiliary | assistant The electromagnetic shield can be covered with a net-like or foil-like electromagnetic shield to specify the type of static electricity and radiation from the surrounding area and the contact portion of the incident window. In order to prevent static electricity, it is covered with an insulator (paint, paper, rubber, etc.), and the counter tube is similar to the structure of a normal GM tube or proportional counter tube. It is possible to increase the dielectric property by placing it on the tube, and the dielectric thin film is different from the internal gas in operating voltage, and the dielectric thin film is a thin film made of a dielectric material (plastic [polyethylene], etc.) for which the radiation enters. Dielectric detection is performed on dielectrics from charged substances that are covered by the ionization in the outside, and the atmosphere and substances that have been ionized by passing through the electric field region where a low voltage is applied inside the counter tube. In this case, the internal gas uses normal air or an inert gas, the operating voltage uses a low voltage in a recombination region, and the amplifier In order to obtain a more accurate energy value in an auxiliary manner, the correction device can also add an effect of correcting the temperature and the like. Is obtained by measuring the voltage, and is measured using a voltmeter or an instrument such as an oscilloscope or PC, and by analyzing the result, Intensity of rays, and can provide a device that can perform a specific line type and material.
請求項2に記載の発明によれば、請求項1に記載の計数管において、通常ガイガーミュラー計数管、および、比例計数管で使われていない再結合領域の低電圧域を使い、検出器に使用することが可能である装置を提供することができる。 According to the second aspect of the present invention, in the counter tube according to the first aspect, the low voltage region of the recombination region that is not normally used in the Geiger-Muller counter tube and the proportional counter tube is used. An apparatus that can be used can be provided.
請求項3に記載の発明によれば、請求項1に記載の計数管において、
計数管内部の電気を通常の計数管と比べて陰極陽極を逆方向にかけることによって、より誘電性を高め、測定することができる装置を提供することができる。
According to the invention of claim 3, in the counter tube of claim 1,
By applying the electricity inside the counter tube in the opposite direction to the cathode anode as compared with a normal counter tube, it is possible to provide a device that can further increase the dielectric property and measure.
請求項4に記載の発明によれば、請求項1に記載の計数管において、計数管内のガスは通常の大気もしくは不活性ガスを使い検出できる装置を提供することができる。 According to the invention described in claim 4, in the counter tube according to claim 1, it is possible to provide a device capable of detecting the gas in the counter tube using normal air or an inert gas.
請求項5に記載の発明によれば、請求項1に記載の計数管において、誘電性の(プラスチック[ポリエチレン]など)薄い膜で口径を覆い、物質の電離状況を調べることにより、食物や体内など内部に取り込まれている放射線源から放射線が届かない箇所の測定も可能にし、物質内で起こっている異常な電離状況が分かるようになる装置を提供することができる。 According to the invention described in claim 5, in the counter tube according to claim 1, the diameter of the substance is covered with a thin film of dielectric (plastic [polyethylene, etc.), and the ionization state of the substance is examined. For example, it is possible to measure an area where radiation does not reach from a radiation source incorporated therein, and to provide an apparatus that can understand an abnormal ionization state occurring in a substance.
請求項6に記載の発明によれば、請求項1に記載の計数管において、電導性の電磁シールド(網、箔)を放射線検出する口径へ施すことにより、計数管外部に存在するイオンを除き、検出器内部へ飛び込んでくる、α線、β線、γ線、X線などの放射線のみを検出することも可能である装置を提供することができる。 According to the invention described in claim 6, in the counter tube according to claim 1, by applying a conductive electromagnetic shield (net, foil) to the aperture for detecting radiation, ions existing outside the counter tube are removed. It is possible to provide an apparatus capable of detecting only radiation such as α-rays, β-rays, γ-rays and X-rays jumping into the detector.
請求項7に記載の発明によれば、請求項1に記載の補正装置において、増幅を行なった場合に低電圧である為に見られる規則的な微小変化の処理、また、半導体の特性などによって変化して得られた値をより正確な値に補正することができるように、温度などによって適正な値にする補正装置を取り付けることによって、より正確な放射線エネルギー値の測定が可能になる装置を提供することができる。 According to the seventh aspect of the present invention, in the correction device according to the first aspect, due to the processing of the regular minute change seen because of the low voltage when amplification is performed, the characteristics of the semiconductor, etc. A device that enables more accurate measurement of the radiation energy value by attaching a correction device that adjusts the value to an appropriate value depending on the temperature so that the value obtained by changing can be corrected to a more accurate value. Can be provided.
請求項8に記載の発明によれば、請求項1に記載の解析表示装置において、時間によって出力値として変化する電圧の値ごとに1つずつ加算することによって、粒子によってそれぞれ得られるエネルギー値の分布を求めることができ、それによって放射線の種類と放射性物質の特定を可能である装置を提供することができる。 According to the invention described in claim 8, in the analysis display device according to claim 1, by adding one by one for each voltage value that changes as an output value with time, the energy value obtained by each particle An apparatus can be provided that can determine the distribution and thereby identify the type of radiation and the radioactive material.
請求項9に記載の発明によれば、解析表示方法において、請求項1に記載の補正装置と解析表示装置を使用しない場合は、パソコンを使って解析することができ、データ入力するために、低電圧であるので直接パソコンに備わっている音声入力を行なうAD変換器を使うか、オシロスコープからデータをパソコンに読み込むかを行い、そのデータを基に、電圧の周期的微小変化の除去し、エネルギー分布図を作成し、エネルギーの固有パターンから物質を解析特定することが可能である方法を提供することができる。 According to the invention described in claim 9, in the analysis display method, when the correction device and the analysis display device according to claim 1 are not used, the analysis can be performed using a personal computer, Since it is a low voltage, use an AD converter that inputs voice directly to the personal computer or read data from the oscilloscope into the personal computer. It is possible to provide a method capable of creating a distribution map and analyzing and identifying a substance from a specific pattern of energy.
請求項10に記載の発明によれば、検出装置において、医療用として放射線治療を行なった際に細胞の電離状態を調べること、すなわち、電離状態にある体内の火傷、炎症、腫瘍などの検知をすることができ、それによって、より低線量での治療が可能となり、
また、計数管を非常に近く、もしくは体表面に触れることで、炎症やがん細胞などにより活発に活動している細胞の電離している部分を誘電し、その部分の電離状態を除去でき、細胞の働きを沈静化、増殖を押さえることができる。
 
According to the invention described in claim 10, in the detection device, when the radiotherapy is performed for medical use, the ionization state of the cell is examined, that is, detection of a burn, inflammation, tumor, etc. in the body in the ionization state. That allows treatment at lower doses,
In addition, by touching the counter tube very close or touching the body surface, the ionized part of cells that are actively active due to inflammation, cancer cells, etc. can be dielectricized, and the ionized state of that part can be removed, It can calm down the function of cells and suppress proliferation.
本願発明の誘電性計数管検出器を示した模式構成図である。It is the model block diagram which showed the dielectric counter detector of this invention. 誘電性計数管検知器模式図である。It is a dielectric counter detector schematic diagram. 反転誘電性計数管検知器模式図である。It is a schematic diagram of an inverted dielectric counter detector. 比例計数管模式図である。It is a schematic diagram of a proportional counter. ガイガーミュラー計数管模式図である。It is a Geiger-Muller counter tube schematic diagram. 印加電圧と収集イオン数を示すグラフである。It is a graph which shows an applied voltage and the number of collection | recovery ions. 温度と電圧の半導体特性を表すグラフである。It is a graph showing the semiconductor characteristic of temperature and voltage. 常時多量の電離を続ける物質を誘電計数管によって測定した、電圧計の値と時間推移を表すグラフである。It is a graph showing the value of a voltmeter and time transition which measured the substance which continues a large amount of ionization always with a dielectric counter. 電離物がたまっている少量の電離状態を誘電計数管によって測定した、電圧計の値と時間推移を表すグラフである。It is a graph showing the value and time transition of the voltmeter which measured the small amount of ionization state which the ionized material has accumulated with the dielectric counter. 誘電物質が近くにあり不正確な計測を表すグラフである。It is a graph showing an inaccurate measurement with a dielectric substance nearby. 一時的に誘電物質がたまっていた場合を表すグラフである。It is a graph showing the case where the dielectric material has accumulated temporarily. オシロスコープで誘電測定したときの電圧変化を表すグラフである。It is a graph showing the voltage change when dielectric measurement is carried out with an oscilloscope. オシロスコープによって誘電測定された値の周辺部との差分を表すグラフである。It is a graph showing the difference with the peripheral part of the value dielectric-measured with the oscilloscope. 微小周期性をもつ波長範囲内の平均電圧値を表すグラフである。It is a graph showing the average voltage value within the wavelength range which has micro periodicity. Δtの範囲内の電圧平均値を表すグラフである。It is a graph showing the voltage average value in the range of (DELTA) t. 図12-図15としたグラフである。FIG. 16 is a graph shown in FIGS. 図16の絶対値を表すグラフである。It is a graph showing the absolute value of FIG. 収集イオンエネルギー分布グラフである。It is a collection ion energy distribution graph.
1  計数管部
2  電圧増幅器部
3  補正部
4 解析表示部
5 パソコン補正解析部
6 温度計
 
DESCRIPTION OF SYMBOLS 1 Counter tube part 2 Voltage amplifier part 3 Correction | amendment part 4 Analysis display part 5 Personal computer correction | amendment analysis part 6 Thermometer
空間到達距離としては遮蔽される物質が無い場合でもα線は45~100mm、β線は1~15m、γ線は∞となり、
また、放射線を遮蔽できるものとしては、およそ、α線は紙一枚、β線アルミ板3mm、γ線コンクリート50cmもしくは鉛10cm必要である。
Even if there is no material to be shielded, the α ray is 45 to 100 mm, the β ray is 1 to 15 m, and the γ ray is ∞.
Moreover, about what can shield radiation, about alpha rays need one sheet of paper, beta ray aluminum board 3mm, gamma ray concrete 50cm, or lead 10cm.
従って、体内や有機物内部に取り込まれた放射性物質はγ線でないと殆んど検知できない。 Therefore, the radioactive material taken into the body or organic matter can hardly be detected unless it is gamma rays.
だが、放射線によって細胞などが電離した場合には、体表面、有機物表面に電荷がたまり静電場ができるので、内部における電離状態を示すことができる。 However, when cells or the like are ionized by radiation, charges are accumulated on the surface of the body and the surface of the organic substance, and an electrostatic field is generated, so that the ionization state inside can be shown.
それら静電場を計測することによって放射線エネルギー量を示すことができ、細胞への放射線の影響状態が分かる。 By measuring these electrostatic fields, the amount of radiation energy can be shown, and the influence state of radiation on cells can be understood.
細胞に対して放射線の影響状況が分かると、医療用として放射線治療を行なった際に細胞の電離状態を調べることにより、電離状態にある体内の火傷、炎症、腫瘍などの検知をすることができ、それによって、より低線量での治療が可能となる。 Once you know the effects of radiation on cells, you can detect burns, inflammation, tumors, etc. inside the ionized body by examining the ionization state of the cells when you perform radiation therapy for medical purposes. This allows treatment at lower doses.
これは、痛みや、細胞が増殖するときに電離状態になるので、これをも検知するものである。 This is also detected because pain and ionization occur when cells proliferate.
また、計数管を非常に近く、もしくは体表面に触れることで、炎症やガン細胞などにより活発に活動している細胞の電離している部分を誘電し、その部分の電離状態を除去でき、細胞の働きを沈静化、増殖を押さえることができる。 In addition, by touching the counter tube very close to the body surface, the ionized part of the cell that is actively active due to inflammation, cancer cells, etc. can be dielectricized, and the ionized state of that part can be removed. Can calm down and suppress proliferation.
これは、細胞分裂を起こす際には、細胞が電離状態になる。電離することによって、より活発に細胞分裂が行なわれるので、これを抑えるために電離を外へ逃がすことを行なうことによって細胞分裂が起こりにくい状態にすることである。 This is because the cells become ionized when cell division occurs. By ionizing, cell division is more actively performed. To suppress this, the ionization is allowed to escape to make the cell division difficult.
誘電を使い表面周辺にたまった電荷を検知することによって、放射線の出す総エネルギー量が分かる。 By detecting charges accumulated around the surface using dielectric, the total amount of energy emitted can be determined.
測定状況として、放射線によって電荷がたまるので、図8のように検知器で測定したとき一瞬、電圧値は高くなるがしばらく経つと値が安定する。 As a measurement situation, since electric charges accumulate due to radiation, the voltage value increases momentarily when measured by a detector as shown in FIG. 8, but the value stabilizes after a while.
ただし、外部周辺に誘電物質があると、図10のように、逆に電荷が誘電され、電圧値が低電圧もしくは0になることもある。 However, if there is a dielectric material around the outside, as shown in FIG. 10, the charge is conversely induced, and the voltage value may be low or zero.
その場合は周辺にある誘電物質を取り除き、計数管内の電圧値が元に戻るまで待ち、再度検知しなければ正確な放射線エネルギー量は判らない。 In that case, the dielectric material in the surrounding area is removed, and it waits until the voltage value in the counter returns to its original state. If it is not detected again, the exact amount of radiation energy cannot be determined.
このとき、誘電物質が取り除けない場合は、図2のように誘電計数管1の入射口に網状もしくは金属箔などの電磁シールドで覆い外部のイオンを遮蔽し、計数管内部に入ってくる放射線のみを検知することもできる。 At this time, when the dielectric material cannot be removed, only the radiation that enters the counter tube is covered by covering the entrance of the dielectric counter tube 1 with an electromagnetic shield such as a mesh or metal foil as shown in FIG. Can also be detected.
誘電しやすい物体や常に静電場を帯電する物体の値を知るためには、前もってバックグラウンドを測定し、バックグラウンド分を引いたその差が放射線エネルギー値を考えてよい。 In order to know the value of an object that is easily dielectric or an object that is always charged with an electrostatic field, the background may be measured in advance, and the difference obtained by subtracting the background may be considered as the radiation energy value.
誘電計数管1は入射口を除いて周囲を絶縁体で包むことによって静電気が帯電している手などで触れても検出器に影響を及ぼさないようにし、増幅器2なども干渉しないように伝導性のものでさらに包むものとする。 The dielectric counter tube 1 is conductive so that it does not affect the detector even if it is touched with an electrostatically charged hand, etc., by covering the surroundings with an insulator except the entrance, and the amplifier 2 does not interfere with it. It shall be further wrapped with
この増幅器2は差動増幅器を使い、微弱な信号を正確に増幅する。 The amplifier 2 uses a differential amplifier to accurately amplify a weak signal.
また、計数管部と薄膜誘電性物質としてはポリエチレンの内蓋のついた日本茶のお茶缶が使用できる。 Also, as the counter tube portion and the thin film dielectric material, a Japanese tea tea can with a polyethylene inner lid can be used.
計数管1について、図2より中心軸からの半径r、線の半径a、筒の半径b、とすると電場E(r)は以下のように与えられる。
Figure JPOXMLDOC01-appb-M000001
Assuming that the counter tube 1 has the radius r from the central axis, the radius a of the line, and the radius b of the cylinder from FIG. 2, the electric field E (r) is given as follows.
Figure JPOXMLDOC01-appb-M000001
イオン再結合をしないためにより電圧を高めても良いが、低電圧にするのは2点理由がある。 Although the voltage may be increased to prevent ion recombination, there are two reasons for the low voltage.
第一に、それら再結合領域の低電圧域では電圧は放射線のエネルギー値と原点から正比例し表すことができるので、単純に電圧変化がN倍になった場合には、放射線量もN倍になったと考えることが出来る。 First, in the low voltage region of these recombination regions, the voltage can be expressed in direct proportion to the radiation energy value and the origin, so if the voltage change simply becomes N times, the radiation dose also becomes N times. I can think that it became.
第二に、補正解析表示装置5で使う場合に、ハードウェアのオシロスコープが無くとも、PC用のフリーソフトなどのオシロスコープもあり、直接、パソコンの音源入力は16ビットの分解能でサンプリング速度が44.1kHzであるのでこれを使うことができる。 Second, when used in the correction analysis display device 5, there is an oscilloscope such as a PC free software even if there is no hardware oscilloscope. Since it is 1 kHz, this can be used.
ただし、パソコンの音源ボードが破損しないように入力電圧の上限を7V以下に抑えておかなければならない。 However, the upper limit of the input voltage must be kept below 7V so that the sound source board of the personal computer is not damaged.
ここでは仮に低電圧である再結合領域のV=9[V]、a=0.3mm,b=30mmとすると、E(r)=9/(2.4771×r)=3.633/r なので、直接パソコンから計測できる。 Here, if V = 9 [V], a = 0.3mm, b = 30mm in the recombination region, which is a low voltage, E (r) = 9 / (2.4771 × r) = 3.633 / r. It can be measured.
また、パソコンに直接接続しないならば、印加電圧と収集イオン数の図6のグラフより、100V付近のイオン再結合領域はもとより、比例計数管領域などでも誘電検知可能である。 If not directly connected to a personal computer, dielectric detection can be performed not only in the ion recombination region in the vicinity of 100 V but also in the proportional counter region, etc., from the graph of FIG. 6 showing the applied voltage and the number of collected ions.
増幅装置2は微弱な電圧変化を安定的かつ正確にとらえるために、通常医療で使われている差動増幅器を使い、電圧を増幅して検知する。 The amplifying apparatus 2 uses a differential amplifier usually used in medical care to amplify and detect a voltage in order to capture a weak voltage change stably and accurately.
補正装置3において、増幅を行なった場合に低電圧である為に見られる規則的な微小変化の処理は1周期の値を全て積分、または加算して、周期的変化を取り除く図14。 FIG. 14 shows a regular minute change process that is seen because the voltage is low when amplification is performed in the correction apparatus 3 by integrating or adding all values in one period to remove the periodic change.
もしくは、フーリエ変換をし、特定周波数の値を取り除き、逆フーリエ変換を行い、規則的微小変化部分を除去することも可能である。また、フーリエ変換しなくても、微小周囲δの平均をとり図15、元のデータから引くと簡単に電離値が求めることができる図16(a)。 Alternatively, it is possible to perform a Fourier transform, remove a specific frequency value, perform an inverse Fourier transform, and remove a regular minute change portion. Further, FIG. 15 shows the average of the minute surroundings δ without performing Fourier transform, and the ionization value can be easily obtained by subtracting from the original data.
一番補正の必要性が高いものは半導体の温度補正であるので、半導体の特性などによって変化して得られた値をより正確な値に補正することができるように、温度などの影響によって変化する値を適正な値にする補正装置を取り付けることによって、より正確な放射線エネルギー値の測定が可能になる。 The most important correction is the temperature correction of the semiconductor, so it changes due to the influence of temperature etc. so that the value obtained by changing according to the characteristics of the semiconductor can be corrected to a more accurate value By attaching a correction device for making the value to be an appropriate value, it becomes possible to measure the radiation energy value more accurately.
温度計6と組み合わせて、増幅装置半導体の温度特性を求めてみると、低温ほど電気抵抗が大きく、高温ほど電気抵抗が小さいため、補正解析表示装置5で測定する場合には、計測時の温度も共に測定し、計算して正確な電離エネルギー値を得ることができる。 When the temperature characteristic of the amplifier semiconductor is obtained in combination with the thermometer 6, the electrical resistance increases as the temperature decreases, and the electrical resistance decreases as the temperature increases. Both can be measured and calculated to obtain an accurate ionization energy value.
実験値、図7(a)より、通常、半導体を使った増幅器の特性を示す式はT=T0+αlog(βV)であるが、実験の結果、低温部での誤差が大きくなってしまうので、√Vをかけてやり、より実験値に近い値を図7(b)のように得ることができた。 From the experimental value, FIG. 7 (a), the equation indicating the characteristics of an amplifier using a semiconductor is usually T = T 0 + αlog (βV). However, as a result of the experiment, an error in a low temperature portion increases. , √V was applied, and a value closer to the experimental value could be obtained as shown in FIG.
温度T、測定電圧V、任意の定数T0、α、βとする。
Figure JPOXMLDOC01-appb-M000002
It is assumed that temperature T, measurement voltage V, and arbitrary constants T 0 , α, and β.
Figure JPOXMLDOC01-appb-M000002
温度による補正は、式2によって、求めることができ、定数部T0、α、βは計数管の大きさ、及び、半導体の性質によって変わるものとする。 The correction by temperature can be obtained by Equation 2, and the constant parts T 0 , α, and β change depending on the size of the counter and the properties of the semiconductor.
補正装置3を経由して測定する場合には、逆の働きを持つ、リニア抵抗器、サーミスタ及び白金測温抵抗体などと組み合わせて温度による測定電圧の変化が生じないようにする。 When measurement is performed via the correction device 3, the measurement voltage is not changed due to temperature in combination with a linear resistor, thermistor, platinum resistance thermometer, etc. having the reverse functions.
これを例えばサーミスタを使って補正しようとすると、抵抗R、温度T,B定数B、はサーミスタの特性より以下のようになる。
Figure JPOXMLDOC01-appb-M000003
S:RS(Ω)のサーミスタ温度
S:TS(℃)の抵抗値
T:抵抗R(Ω)の求めたい温度
R:温度T(℃)の求めたい抵抗値
 
If this is corrected using, for example, a thermistor, the resistance R, temperature T, and B constant B are as follows from the characteristics of the thermistor.
Figure JPOXMLDOC01-appb-M000003
T S : R S (Ω) thermistor temperature R S : T S (° C) resistance value T: resistance R (Ω) desired temperature R: temperature T (° C.) desired resistance value
なお、サーミスタの温度抵抗特性は近似的にSteinhart式によるとこの様に記述できる。
Figure JPOXMLDOC01-appb-M000004
The temperature resistance characteristic of the thermistor can be described in this way according to the Steinhart equation approximately.
Figure JPOXMLDOC01-appb-M000004
リニア抵抗器、及び白金測温抵抗体などの場合はまた、別の計算式を使わなければならないが、IC化温度センサーを使えば、式2の特性に合った抵抗値を設定することができる。 In the case of linear resistors, platinum resistance thermometers, etc., another calculation formula must be used, but if an IC temperature sensor is used, a resistance value suitable for the characteristics of Formula 2 can be set. .
解析表示装置4、または補正解析表示装置5としては、放射線によるエネルギー値は電圧を測定することによって得られ、電圧計、オシロスコープ、PC,もしくは専用の回路などの機器を使う。 As the analysis display device 4 or the correction analysis display device 5, the energy value by radiation is obtained by measuring a voltage, and a device such as a voltmeter, an oscilloscope, a PC, or a dedicated circuit is used.
誘電計数管1でイオンを計測するのでイオン流動速度も考慮に入れなければならない。 Since ions are measured by the dielectric counter 1, the ion flow rate must also be taken into account.
イオン流動速度は電場に比例、圧力に反比例、およそ1(atm cm2/sV)
比例定数αを再結合係数といい、気体の種類、温度、圧力によって変わる。
Figure JPOXMLDOC01-appb-M000005
Ion flow rate is proportional to electric field, inversely proportional to pressure, approximately 1 (atm cm 2 / sV)
The proportionality constant α is called the recombination coefficient, and varies depending on the type of gas, temperature, and pressure.
Figure JPOXMLDOC01-appb-M000005
流動(ドリフト)とは荷電粒子が気体分子と低エネルギー衝突を繰り返しながら、電場方向へ移動することである。 Flow (drift) is a movement of charged particles in the electric field direction while repeating low-energy collisions with gas molecules.
その流動速度vは低電場では電場強度Eに比例し、移動度μを比例定数とし、以下のように記す。
Figure JPOXMLDOC01-appb-M000006
電子の場合
Figure JPOXMLDOC01-appb-I000007
イオンの場合
Figure JPOXMLDOC01-appb-I000008
電子の流動速度よりイオンの流動速度は約3桁ほど小さい。
 
The flow velocity v is proportional to the electric field strength E at a low electric field, and the mobility μ is a proportionality constant, and is described as follows.
Figure JPOXMLDOC01-appb-M000006
Electronic case
Figure JPOXMLDOC01-appb-I000007
For ion
Figure JPOXMLDOC01-appb-I000008
The flow rate of ions is about 3 orders of magnitude smaller than the flow rate of electrons.
だから、直接電圧計を接続し簡易的に計測する場合には、ある一定の速度で誘電計数管1を移動させて検知した方が電離値を読みやすい。 Therefore, when a voltmeter is directly connected and measurement is simple, it is easier to read the ionization value if the dielectric counter 1 is moved at a certain speed and detected.
その為、体内などを計測する場合には、円を画くようにして計測すると良い。 Therefore, when measuring the inside of the body, it is better to measure in a circle.
明らかに放射線源が多く存在する場合には、誘電計数管1を動かさずに計測すると、電圧値の変化は図8のようなグラフになる。 Obviously, when there are many radiation sources, if the measurement is performed without moving the dielectric counter 1, the change in the voltage value becomes a graph as shown in FIG.
また、少量存在する場合には、図9のようになり、その部分に一時的に溜まったイオンを計測するが、しばらく経つと元の状態にもどる。 Further, when a small amount exists, as shown in FIG. 9, the ions temporarily accumulated in the portion are measured, but after a while, the original state is restored.
しかし、誘電計数管1を測定場所から離し数秒経ってから近づけても同様になる場合には、少量であるがイオンを発生させるものが存在するということができる。 However, if the dielectric counter tube 1 is separated from the measurement location and closes after several seconds, it can be said that there is a small amount that generates ions.
また、計測付近に別の誘電体がある場合には、図10のように電圧値が低下し、正確に測定することが出来ない。 If there is another dielectric near the measurement, the voltage value decreases as shown in FIG. 10, and accurate measurement cannot be performed.
従ってそのような場合には、誘電体を取り除き、図11のように元の電圧に戻るのを待たなければならない。 Therefore, in such a case, it is necessary to remove the dielectric and wait for the voltage to return to the original voltage as shown in FIG.
また、もしくは、誘電計数管1の測定口に電磁シールドを施すか、図3のように計数管の電場の極性状態を+-逆にして、通常の計数管として測定することができる。 Alternatively, it can be measured as a normal counter tube by providing an electromagnetic shield at the measurement port of the dielectric counter tube 1 or by reversing the polarity state of the electric field of the counter tube as shown in FIG.
測定結果を解析することによって、電圧計では放射線の単位時間あたりのエネルギー強度、オシロスコープとPCを使ってエネルギーの分布図を作成し線種と物質の特定を行なうことが出来る。 By analyzing the measurement results, the voltmeter can identify the energy intensity per unit time of radiation, an energy distribution map using an oscilloscope and a PC, and specify line types and substances.
オシロスコープから電圧変化データを補正解析表示装置5へ入力する。 Voltage change data is input from the oscilloscope to the correction analysis display device 5.
例えば、時間における電圧変化のグラフ図12より、分布図を作成する。 For example, a distribution map is created from the graph 12 of voltage change over time.
ただし、簡易補正のみか、補正装置が無い、もしくは前の段階で補正していない場合には、半導体による増幅検知する際に見られる規則的微小変化と大気状態における変化に応じて、ここで補正を施す。 However, if there is only simple correction, or if there is no correction device, or if it has not been corrected at the previous stage, it is corrected here according to regular minute changes and changes in atmospheric conditions that are seen when detecting amplification by semiconductors. Apply.
元データをグラフ図12とした場合の補正方法として、
(1)ある範囲内Δtの隣接する最高値Vmax(Δt)、最低値Vmin(Δt)とし、
Figure JPOXMLDOC01-appb-M000009
波長内が大きく区分されている場合には有効であり、パルスなども特定しやすい。
Δt=1の場合は|V(t)-V(t+1)|と同じであり、Δt=2として処理をすると図13(a)のようになる。
また、この(a)の閾値を0.01として処理をすると図13(b)のグラフが得られる。
As a correction method when the original data is graphed in FIG. 12,
(1) Adjacent maximum value Vmax (Δt) and minimum value Vmin (Δt) within a certain range Δt,
Figure JPOXMLDOC01-appb-M000009
This is effective when the wavelength is largely divided, and it is easy to specify the pulse.
When Δt = 1, it is the same as | V (t) −V (t + 1) |, and when Δt = 2, processing is as shown in FIG.
Further, when processing is performed with the threshold value of (a) as 0.01, the graph of FIG. 13B is obtained.
(2)波長λの範囲の値の平均値をとる。
Figure JPOXMLDOC01-appb-M000010
(2) Take an average value in the range of the wavelength λ.
Figure JPOXMLDOC01-appb-M000010
しかし、測定器は時間的に離散系なので、
Figure JPOXMLDOC01-appb-M000011
However, since the measuring instrument is discrete in time,
Figure JPOXMLDOC01-appb-M000011
ここでは、λ=414として計算を行ないグラフにすると、図14のグラフとなり、波長内に検出された値を加算するので、線種が特定しにくいが、放射線のエネルギー変動が求めやすい。 Here, if the calculation is performed with λ = 414 and the graph is obtained, the graph shown in FIG. 14 is obtained. Since the values detected within the wavelength are added, it is difficult to specify the line type, but it is easy to obtain the energy fluctuation of the radiation.
(3)周期に合わせて値を引くV(t)[実測値]-φ(t)、
  正確な値が求まり、放射線種の特定も可能である。連続系では
Figure JPOXMLDOC01-appb-M000012
(3) V (t) [measured value] -φ (t), subtracting the value according to the period,
Accurate values can be obtained, and radiation types can be specified. In a continuous system
Figure JPOXMLDOC01-appb-M000012
しかし、測定器は時間的に離散系なので、
Figure JPOXMLDOC01-appb-M000013
However, since the measuring instrument is discrete in time,
Figure JPOXMLDOC01-appb-M000013
ここでは、δ=5「δの1は0.00004秒に相当する」とし元データV(t)を処理すると、図15のような半導体による増幅による、微小周期的なφ(t)のグラフが得られる。 Here, when the original data V (t) is processed assuming that δ = 5 “1 of δ corresponds to 0.00004 seconds”, a graph of micro periodic φ (t) by amplification by a semiconductor as shown in FIG. 15 is obtained. It is done.
ここから、実測値V(t)を削除すると、V(t)-φ(t)となり、図16(a)のパルスと雑音の混じったグラフが得られる。 From this, when the measured value V (t) is deleted, V (t) −φ (t) is obtained, and a graph in which the pulse and noise in FIG. 16A are mixed is obtained.
閾値を0.0065として雑音部分を削除すると図16(b)のパルスのみが表示された。 When the noise portion was deleted with the threshold value set to 0.0065, only the pulse of FIG. 16B was displayed.
また、この図16(b)のグラフより電圧差0より、ほぼ+成分と-成分にまたがるもの60、350、720[×0.00004s]の地点に見られるが、これは途中でイオン再結合が起こらずにそれぞれ計測されたものと考えられる。 In addition, from the graph of FIG. 16B, from the voltage difference 0, it can be seen at points of 60, 350, 720 [× 0.00004 s] that almost span the + component and the − component. It is thought that each was measured without happening.
それ以外の+だけ、もしくは-だけの部分はイオン再結合が起こり、片方の電荷のみ検出されたものである。 The other part of only + or-only has ion recombination, and only one charge is detected.
例えば、これより正確な測定値を得るためには、上下に反応する値の数:a、+方向に反応した数:b、-方向に反応した数:c、どちらにも反応しないでイオン再結合によって消えた数:d、+方向の電圧平均値V+、-方向の電圧平均値V-、イオン再結合補正係数kSとする、なおkSは印加電圧と計数管によって決定される固有の定数である。
Figure JPOXMLDOC01-appb-M000014
For example, in order to obtain a more accurate measured value than this, the number of values that react up and down: a, the number that reacts in the + direction: b, the number that reacts in the-direction: c, Number disappeared by coupling: d, voltage average value V + in the + direction, voltage average value V- in the − direction, V−, ion recombination correction coefficient k S , where k S is a specific value determined by the applied voltage and the counter It is a constant.
Figure JPOXMLDOC01-appb-M000014
このグラフではa=3、b=3、c=3となるので、dの値はa/(b+c)=(b+c)/dより、3/6=6/dとなるので、d=12となり、カウント数としての補正値は(a+b+c+d)/(a+b+c) =(3+3+3+12)/9 = 21/9を実際計測された値に乗算させてやり9×21/9=21個として計算できる。 In this graph, since a = 3, b = 3, and c = 3, the value of d is 3/6 = 6 / d from a / (b + c) = (b + c) / d. d = 12, and the correction value as the count was actually measured as (a + b + c + d) / (a + b + c) = (3 + 3 + 3 + 12) / 9) = 21/9 Multiply the value and calculate as 9 × 21/9 = 21.
図16(a)の絶対値を取り|V(t)-φ(t)|とすると、図17(a)ができる。 If the absolute value of FIG. 16A is taken to be | V (t) −φ (t) |, FIG. 17A can be obtained.
閾値を0.0065とし、閾値以下の雑音部分を削除すると図17(b)グラフのような、時間に対する電圧のパルス波高が得られる。 When the threshold value is set to 0.0065 and a noise portion equal to or lower than the threshold value is deleted, the pulse height of the voltage with respect to time as shown in the graph of FIG. 17B is obtained.
電圧のパルス波高は収集イオンエネルギーとなり、図16のような値をより長い時間計測しΔ(V(t)-φ(t))ごとに電圧差値を区分して数えると、図18のように表示でき、波高によって放射線粒子の特定ができる。 The pulse height of the voltage becomes the collected ion energy, and when the value as shown in FIG. 16 is measured for a longer time, and the voltage difference value is divided and counted for each Δ (V (t) −φ (t)), it is as shown in FIG. The radiation particles can be identified by the wave height.
また、それらの値を単位時間ごとに処理することによって、エネルギーの時間変化の推移がわかる。
 
 
In addition, by processing those values every unit time, it is possible to know the transition of energy with time.

Claims (10)

  1. 放射線およびイオンを計測するための該検出装置であり、前記検出装置は電磁シールド、計数管、増幅器、補正装置、解析表示装置であり、補助的に前記電磁シールドは、入射窓に周囲および接触部からの静電気、および、放射線の種類を特定するために網状もしくは箔状の電磁シールドで覆うことも可能であり、前記計数管の周囲は手が触れても良いように静電気防止の為、絶縁体(塗料、紙、ゴムなど)で覆い、前記計数管は通常のGM管や比例計数管の構造と同様であるが、電気の陰極陽極を逆に計数管へかけることによって誘電性を高めることを可能にし、誘電性薄膜と内部ガスと使用電圧が異なり、前記誘電性薄膜は放射線の入る入射窓を誘電性のもの(プラスチック[ポリエチレン]など)の薄膜などによって覆ってあり、外部における電離状態にある帯電物質からの誘電と、また、計数管内部において低電圧をかけられた電場領域を放射線が通過し電離してしまった大気及び物質を誘電検出することによって得られた電位差を増幅させ電圧値として示すことができ、このとき、前記内部ガスは通常の大気、もしくは不活性ガスを使い、前記使用電圧は再結合領域の低電圧を使い、前記増幅器にて電圧変化を増幅し、前記補正装置は、補助的に、より正確なエネルギー値を得る為、温度などによる影響を補正することも付加できるものとし、前記解析表示装置は、放射線によるエネルギー値は電圧を測定することによって得られ、電圧計、もしくは、オシロスコープ、PCなどの機器を使い測定し、その結果を解析することによって、放射線の強度、および、線種と物質の特定を行なうことが出来ることに特徴がある。
     
    The detection device for measuring radiation and ions, wherein the detection device is an electromagnetic shield, a counter tube, an amplifier, a correction device, and an analysis display device. It can be covered with a net-like or foil-like electromagnetic shield in order to specify the type of static electricity and radiation, and an insulator is used to prevent static electricity so that the counter tube may be touched by the hand. (The paint, paper, rubber, etc.), the counter tube is similar to the structure of a normal GM tube or a proportional counter tube. The dielectric thin film and the internal gas are used in different voltages, and the dielectric thin film has a radiation entrance window covered with a thin film of dielectric material (plastic [polyethylene], etc.). The difference between the dielectric from the charged substance in the ionized state and the potential difference obtained by dielectric detection of the atmosphere and the substance that the radiation passed through the electric field region where a low voltage was applied inside the counter tube and was ionized. It can be amplified and shown as a voltage value. At this time, the internal gas uses normal air or an inert gas, the operating voltage uses a low voltage in the recombination region, and the amplifier amplifies the voltage change. The correction device can supplement the influence of temperature and the like in order to obtain a more accurate energy value, and the analysis display device can measure the energy value of radiation by measuring the voltage. Obtain and measure the radiation intensity, line type, and object by measuring using a voltmeter, oscilloscope, or PC, and analyzing the results. It is characterized in that it is possible to a performing specific.
  2. 前記計数管は、通常ガイガーミュラー計数管、および、比例計数管で使われていない再結合領域の低電圧域を使い、検出器に使用することが可能であることを特徴とする、請求項1に記載の検出装置。
     
    The counter may be used as a detector using a Geiger-Muller counter and a low voltage region of a recombination region that is not used in a proportional counter. The detection device according to 1.
  3. 前記計数管は、
    計数管内部の電気を通常の計数管と比べて陰極陽極を逆方向にかけることによって、より誘電性を高め、測定することができることを特徴とする、請求項1に記載の検出装置。
     
    The counter is
    2. The detection device according to claim 1, wherein the electrical conductivity inside the counter tube can be measured by increasing the dielectric property by applying the cathode anode in the reverse direction as compared with a normal counter tube.
  4. 前記計数管は、計数管内のガスは通常の大気もしくは不活性ガスを使い検出できることを特徴とする、請求項1に記載の検出装置。
     
    The detection device according to claim 1, wherein the counter tube can detect the gas in the counter tube using normal air or an inert gas.
  5. 前記計数管は、誘電性の(プラスチック[ポリエチレン]など)薄い膜で口径を覆い、物質の電離状況を調べることにより、食物や体内など内部に取り込まれている放射線源から放射線が届かない箇所の測定も可能にし、物質内で起こっている異常な電離状況が分かるようになることを特徴とする、請求項1に記載の検出装置。
     
    The counter is covered with a thin film of dielectric material (plastic [polyethylene], etc.), and the ionization status of the substance is examined, so that the radiation does not reach from the radiation source incorporated in food or the body. The detection device according to claim 1, wherein measurement is also possible and an abnormal ionization state occurring in a substance can be understood.
  6. 前記計数管は、電導性の電磁シールド(網、箔)を放射線検出する口径へ施すことにより、計数管外部に存在するイオンを除き、検出器内部へ飛び込んでくる、α線、β線、γ線、X線などの放射線のみを検出することも可能であることを特徴とする、請求項1に記載の検出装置。
     
    The counter tube is formed by applying a conductive electromagnetic shield (net, foil) to the aperture for detecting radiation, thereby removing ions existing outside the counter tube and jumping into the detector. The detection apparatus according to claim 1, wherein only the radiation such as X-rays and X-rays can be detected.
  7. 前記補正装置は、増幅を行なった場合に低電圧である為に見られる規則的な微小変化の処理、また、
    半導体の特性などによって変化して得られた値をより正確な値に補正することができるように、温度などによって適正な値にする補正装置を取り付けることによって、より正確な放射線エネルギー値の測定が可能になることを特徴とする、請求項1に記載の補正装置。
     
    The correction device is a process of regular minute changes seen because of the low voltage when amplification is performed,
    A more accurate measurement of radiation energy value can be achieved by installing a corrector that adjusts the value appropriately according to the temperature so that the value obtained by changing the characteristics of the semiconductor can be corrected to a more accurate value. The correction device according to claim 1, wherein the correction device becomes possible.
  8. 前記解析表示装置は、時間によって出力値として変化する電圧の値ごとに1つずつ加算することによって、粒子によってそれぞれ得られるエネルギー値の分布を求めることができ、それによって放射線の種類と放射性物質の特定を可能であることを特徴とする、請求項1に記載の解析表示装置。
     
    The analysis display device can determine the distribution of energy values obtained by the particles by adding one by one for each voltage value that changes as an output value with time. The analysis display device according to claim 1, wherein identification is possible.
  9. 請求項1に記載の前記補正装置と前記解析表示装置を使用しない場合は、パソコンを使って解析することができ、データ入力するために、低電圧であるので直接パソコンに備わっている音声入力を行なうAD変換器を使うか、オシロスコープからデータをパソコンに読み込むかを行い、そのデータを基に、電圧の周期的微小変化の除去し、エネルギー分布図を作成し、エネルギーの固有パターンから物質を解析特定することが可能であることを特徴とする、解析表示方法。
     
    When the correction device according to claim 1 and the analysis display device are not used, analysis can be performed using a personal computer, and voice input provided directly to the personal computer is used because data is input at a low voltage. Whether to use an AD converter or read data from an oscilloscope to a personal computer, remove periodic minute changes in voltage based on the data, create an energy distribution diagram, and analyze substances from the specific pattern of energy An analysis display method characterized in that it can be specified.
  10. 前記検出装置は、医療用として放射線治療を行なった際に細胞の電離状態を調べること、すなわち、電離状態にある体内の火傷、炎症、腫瘍などの検知をすることができ、それによって、より低線量での治療が可能となり、また、計数管を非常に近く、もしくは体表面に触れることで、炎症やがん細胞などにより活発に活動している細胞の電離している部分を誘電し、その部分の電離状態を除去でき、細胞の働きを沈静化、増殖を押さえることができることを特徴とする、請求項1に記載の検出装置。
     
    The detection device can examine the ionization state of cells when performing radiotherapy for medical use, that is, can detect burns, inflammation, tumors, etc. in the body in an ionization state, thereby reducing the ionization state. Treatment with a dose is possible, and by touching the counter very close to or on the body surface, the ionized part of cells that are actively active due to inflammation, cancer cells, etc. is dielectricized, The detection device according to claim 1, wherein the ionization state of the part can be removed, the function of the cells can be calmed down, and proliferation can be suppressed.
PCT/JP2011/074036 2011-10-19 2011-10-19 Radiation and ion detection device equipped with correction device and analysis display device and analysis display method WO2013057803A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074036 WO2013057803A1 (en) 2011-10-19 2011-10-19 Radiation and ion detection device equipped with correction device and analysis display device and analysis display method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074036 WO2013057803A1 (en) 2011-10-19 2011-10-19 Radiation and ion detection device equipped with correction device and analysis display device and analysis display method

Publications (1)

Publication Number Publication Date
WO2013057803A1 true WO2013057803A1 (en) 2013-04-25

Family

ID=48140480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074036 WO2013057803A1 (en) 2011-10-19 2011-10-19 Radiation and ion detection device equipped with correction device and analysis display device and analysis display method

Country Status (1)

Country Link
WO (1) WO2013057803A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511809A (en) * 2015-04-07 2018-04-26 シェンゼン・エクスペクトビジョン・テクノロジー・カンパニー・リミテッド Semiconductor X-ray detector
JP2018512596A (en) * 2015-04-07 2018-05-17 シェンゼン・エクスペクトビジョン・テクノロジー・カンパニー・リミテッド Semiconductor X-ray detector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55101070A (en) * 1979-01-29 1980-08-01 Toshiba Corp Radiation detector
JPH0640974Y2 (en) * 1988-09-26 1994-10-26 工業技術院長 Bolt with ceramic head
JPH10332834A (en) * 1997-06-02 1998-12-18 Jeol Ltd X-ray measuring instrument
JP2001289802A (en) * 2000-04-10 2001-10-19 Rigaku Industrial Co X-ray fluorescence analyzer and x-ray detector used therefor
JP2001289955A (en) * 2000-04-10 2001-10-19 Rigaku Industrial Co X-ray fluorescence analyzer and x-ray detector used therefor
JP2008027795A (en) * 2006-07-24 2008-02-07 Toshiba Corp Proportional counter tube
JP2009079969A (en) * 2007-09-26 2009-04-16 Toshiba Corp Radiation spectrum measuring system
JP2010133879A (en) * 2008-12-05 2010-06-17 Akita Univ Radiation measuring apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55101070A (en) * 1979-01-29 1980-08-01 Toshiba Corp Radiation detector
JPH0640974Y2 (en) * 1988-09-26 1994-10-26 工業技術院長 Bolt with ceramic head
JPH10332834A (en) * 1997-06-02 1998-12-18 Jeol Ltd X-ray measuring instrument
JP2001289802A (en) * 2000-04-10 2001-10-19 Rigaku Industrial Co X-ray fluorescence analyzer and x-ray detector used therefor
JP2001289955A (en) * 2000-04-10 2001-10-19 Rigaku Industrial Co X-ray fluorescence analyzer and x-ray detector used therefor
JP2008027795A (en) * 2006-07-24 2008-02-07 Toshiba Corp Proportional counter tube
JP2009079969A (en) * 2007-09-26 2009-04-16 Toshiba Corp Radiation spectrum measuring system
JP2010133879A (en) * 2008-12-05 2010-06-17 Akita Univ Radiation measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511809A (en) * 2015-04-07 2018-04-26 シェンゼン・エクスペクトビジョン・テクノロジー・カンパニー・リミテッド Semiconductor X-ray detector
JP2018512596A (en) * 2015-04-07 2018-05-17 シェンゼン・エクスペクトビジョン・テクノロジー・カンパニー・リミテッド Semiconductor X-ray detector
US10007009B2 (en) 2015-04-07 2018-06-26 Shenzhen Xpectvision Technology Co., Ltd. Semiconductor X-ray detector
US10502843B2 (en) 2015-04-07 2019-12-10 Shenzhen Xpectvision Technology Co., Ltd. Semiconductor X-ray detector
US10514472B2 (en) 2015-04-07 2019-12-24 Shenzhen Xpectvision Technology Co., Ltd. Semiconductor X-ray detector

Similar Documents

Publication Publication Date Title
US10132936B2 (en) Alpha particle detection apparatus using dual probe structured ionization chamber and differential amplifier
JP5924981B2 (en) Radiation beam monitoring device
JP4613319B2 (en) Gas radiation detector
JP2010133879A (en) Radiation measuring apparatus
WO2013057803A1 (en) Radiation and ion detection device equipped with correction device and analysis display device and analysis display method
KR102483516B1 (en) Radon detector using pulsified alpha particle
KR20150093986A (en) Apparatus and method for measuring concentration of radon gas
KR20150093987A (en) Ionization chamber for measuring concentration of radon gas and radon concentration measuring apparatus with it
JP2020091293A (en) Dose distribution monitor and radiation irradiation system
Leidner et al. Energy calibration of the GEMPix in the energy range of 6 keV to 2 MeV
De Nardo et al. Microdosimetric measurements in gamma and neutron fields with a tissue equivalent proportional counter based on a gas electron multiplier
CN110621229B (en) Radiation measuring device and radiographic apparatus
Sharifi et al. Investigation and performance tests of a new parallel plate ionization chamber with double sensitive volume for measuring diagnostic X-rays
Madani et al. Real time dose rate meter for gamma radiation using LDPE and PMMA in presence of 1–5 kV/mm electric field
JPWO2013057803A1 (en) Dielectric ionization detector and detection method
US11079222B2 (en) Radiation-based thickness gauge
US3621238A (en) Gamma insensitive air monitor for radioactive gases
De Nardo et al. Operation of gas electron multiplier (GEM) with propane gas at low pressure and comparison with tissue-equivalent gas mixtures
Antonio et al. Comparison of calibration results for an extrapolation chamber obtained with different 90Sr+ 90Y secondary standard sources
Swanson et al. A method to measure static charge on a filter used for gravimetric analysis
Florentsev et al. Precision spectrometric search dosimeter-radiometer based on a Matrix SiPM, designed to restore the geometry of ionizing radiation sources
Recine et al. Understanding current signals induced by drifting electrons
Arbabi et al. Evaluation of a new ionisation chamber fabricated with carbon nanotubes
JP2007240467A (en) Open window ionization chamber
Isern et al. Characterization of a floating-gate radiation sensor for X-ray dose detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874164

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013539448

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11874164

Country of ref document: EP

Kind code of ref document: A1